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Abstract

Fraction notation conveys both part-whole (3/4 is 3 out of 4) and magnitude (3/4 = 0.75) information, yet evidence suggests that both
children and adults find accessing magnitude information from fractions particularly difficult. Recent research suggests that using number
lines to teach children about fractions can help emphasize fraction magnitude. In three experiments with adults and 9-12-year-old children,
we compare the benefits of number lines and pie charts for thinking about rational numbers. In Experiment 1, we first investigate how adults
spontaneously visualize symbolic fractions. Then, in two further experiments, we explore whether priming children to use pie charts vs.
number lines impacts performance on a subsequent symbolic magnitude task and whether children differentially rely on a partitioning
strategy to map rational numbers to number lines vs. pie charts. Our data reveal that adults very infrequently spontaneously visualize
fractions along a number line and, contrary to other findings, that practice mapping rational numbers to number lines did not improve
performance on a subsequent symbolic magnitude comparison task relative to practice mapping the same magnitudes to pie charts.
However, children were more likely to use overt partitioning strategies when working with pie charts compared to number lines, suggesting
these representations did lend themselves to different working strategies. We discuss the interpretations and implications of these findings
for future research and education. All materials and data are provided as Supplementary Materials.
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Learning and understanding fractions is extremely important both for everyday life and for later math skills.
For example, over two-thirds of sampled workers in the USA report using fractions for their jobs (Handel,
2016). Furthermore, fractions are an important gatekeeper for learning algebra, an important topic in math
education (Booth & Newton, 2012; Siegler et al., 2012). However, fractions pose a substantial challenge for
many students who make both procedural and conceptual errors throughout fraction education and well into
adulthood (e.g., Christou & Vosniadou, 2012; Lortie-Forgues, Tian, & Siegler, 2015; National Mathematics
Advisory Panel, 2008; Ni & Zhou, 2005; Vamvakoussi & Vosniadou, 2010). Thus, it is essential to understand
the difficulties children face when learning about fractions and investigate ways to help children overcome
them.

A notable aspect of fraction notation is that it represents both a relation between two quantities (a part whole
relation between the numerator and the denominator) and a single numerical magnitude on a continuum (e.g.,
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% represents 3 of 4 parts and the magnitude 0.75). Children and adults have great difficulty with the latter
aspect of fraction symbols; that is, interpreting the numerical magnitude associated with fractions (Bonato,
Fabbri, Umilta, & Zorzi, 2007; DeWolf, Grounds, Bassok, & Holyoak, 2014; Hurst & Cordes, 2016, 2018).
As such, there has been a recent emphasis in both research (Siegler et al., 2013) and education (National
Governors Association Center for Best Practices, 2010) on children’s understanding of fraction magnitudes in
particular. Furthermore, typical errors when trying to understand fraction magnitudes have also been shown to
impact health and financial decision making (e.g., Reyna & Brainerd, 2007). In the current study, we focus on
how children and adults visualize the magnitudes associated with symbolic fractions as spatial representations
(i.e., pie charts, number lines) and whether priming specific spatial representations promotes better magnitude
processing, as spatial visualizations play an important role in both learning fractions and using fractions for
every day reasoning contexts (e.g., Cramer et al., 1997; Galesic et al., 2009; Keijzer & Terwel, 2003; Rau &
Matthews, 2017; Shah & Hoeffner, 2002).

Symbolic Numerical Magnitude

The majority of work investigating how children and adults think about numerical magnitude has been in
the context of whole numbers. This research suggests that children and adults represent whole numbers
as approximate, ordered magnitudes. This evidence often comes from performance on symbolic numerical
comparison tasks in which the participant is asked to decide which of two numbers is largest as accurately
and quickly as possible. These studies reveal ratio-dependent responding, such that the speed and accuracy
with which a person responds is dependent upon the ratio between the numbers (Moyer & Landauer, 1967,
1973; Sekuler & Mierkiewicz, 1977). Critically, this pattern of responding suggests that these representations
are both noisy (i.e., the representation of 6 is not exact, but instead also bleeds into the representations of other
numbers) and ordered (i.e., 6 overlaps more with 7 than with 10; Moyer & Landauer, 1967, 1973).

This finding of ratio-dependence is robust for whole number comparisons but has only recently been dem-
onstrated in comparisons involving other kinds of rational numbers, including fractions and decimals. This
research suggests that adults and children are able to represent approximate magnitudes when comparing
two fractions, two decimals, and when comparing across notations (i.e., fraction vs. decimal, fraction vs. whole
number, decimal vs. whole number; DeWolf et al., 2014; Faulkenberry & Pierce, 2011; Ganor-Stern, 2012,
2013; Hurst & Cordes, 2016, 2018; Meert, Grégoire, & Noél, 2010; Schneider & Siegler, 2010; Sprute &
Temple, 2011; Varma & Karl, 2013; Wang & Siegler, 2013; although there are some contexts where accessing
the magnitudes may be more difficult, e.g., Bonato et al., 2007; Kallai & Tzelgov, 2014). From these findings,
researchers suggest that adults and children are able to represent the magnitudes of fractions, decimals, and
whole numbers in an integrated way.

Spatial Representations of Magnitude

In line with research on whole numbers (Ramani & Siegler, 2008; Siegler & Ramani, 2009), recent evidence
suggests that fraction understanding benefits from the use of number lines, resulting in better learning than
using more traditional area models, including pie charts (Cramer et al., 2002; Gunderson et al., 2019; Hamdan
& Gunderson, 2017; Keijzer & Terwel, 2003; Saxe et al., 2013; Wang & Siegler, 2013). For example, training
studies have found that children taught to divide and color a number line to represent fraction magnitudes
performed better on a symbolic magnitude comparison task than children who were taught to divide and color
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area models to represent fraction magnitudes (Gunderson et al., 2019; Hamdan & Gunderson, 2017). More-
over, another study found a number-line-focused experimental curriculum, designed to help students make
connections between the numerical magnitudes associated with fractions and integers, resulted in benefits over
business-as-usual schooling for a range of integer and fraction concepts (Saxe et al., 2013).

However, other work suggests that area models (e.g., pie charts) may be useful for representing part-whole
information, a critical part of formal fraction education (e.g., Cramer et al., 1997; Cramer et al., 2002). Learning
part-whole relations is important for learning the meaning of the fraction symbols (e.g., that 2/3 corresponds
to 2 out of 3 and not 2 and 3) and to begin coordinating the proportional relation described by those symbols,
serving as a building block for learning additional fraction concepts (Clark et al., 2003; Mix & Paik, 2008; Saxe
et al.,, 1999). Relatedly, pie charts may be useful for communicating relative proportional information, rather
than absolute information, when compared to other kinds of charts and graphs (Shah & Hoeffner, 2002).

When taken together, these studies suggest that number lines and area models may show distinct advantages
and disadvantages, with number lines conveying magnitude information and pie charts conveying part-whole
information. But do these distinct affordances make one spatial representation align better with one type of
symbolic representation? Some evidence suggests that adults are more accurate when mapping between
fraction symbols and pie charts than between fractions and number lines (Hurst, Relander, & Cordes, 2016).
This may not be surprising, given research suggesting that both fractions and area models may be less
transparent than decimals and number lines for communicating or learning magnitude, respectively (DeWolf
et al., 2014, 2015; Rapp et al., 2015). On the other hand, decimals are generally preferred for representing
continuous numerical magnitudes, which may make them more likely to align with number lines (DeWolf,
Bassok, & Holyoak, 2015; DeWolf et al., 2014; Hurst & Cordes, 2016, 2018).

The Current Study

In the current study, we focused primarily (although not exclusively) on fraction notation. Given that fraction
notation represents both magnitude and part-whole information, it can convey both continuous magnitude and
discrete part-whole features. Yet, thinking about fraction magnitude is difficult, even for children actively learn-
ing fractions and decimals (Bonato et al., 2007; DeWolf et al., 2014; Hurst & Cordes, 2016, 2018). In this study,
we explored how people report thinking about symbolic fraction magnitude, whether children can be prompted
to think about continuous fraction magnitude by giving them a number line (versus a pie chart), and whether
written partitioning strategies are spontaneously used to map between symbolic and spatial representations.
We investigated these questions by first assessing how adults report thinking about fraction magnitudes and,
in particular, if they spontaneously used linear or part-whole visualizations to think about fractions (Experiment
1). However, adults rarely reported using number lines, making it impossible to address this question using
self-reports. Thus, in Experiments 2 and 3, we provided children with short mapping activities that explicitly
involved either number lines or pie charts prior to completing a symbolic magnitude task. We then investigated
how this experience with distinct spatial representations may impact children’s performance on a subsequent
symbolic task. Therefore, across three experiments we investigated the role of distinct spatial representations
in conceptualizing fraction magnitude information.
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Experiment 1

In Experiment 1, we assessed adults’ self-report of how they think fractions, after they completed a symbolic
magnitude comparison task, to address two questions: (1) How do adults visualize fraction magnitudes? (2)
Does the type of visualization relate to their abilities to process symbolic fraction magnitude? In particular, do
individuals who visualize fractions as continuous magnitudes (e.g., falling along a number line) perform better
on a fraction magnitude comparison task than those who visualize fractions as area models (e.g., pie chart)?
As an additional research question, we were interested in replicating the effects of ratio-dependent responding
seen in magnitude comparison tasks and investigating whether adults also rely on magnitude information
during other fraction tasks. Thus, we also address (3) whether adults show ratio dependent responding when
doing speeded and approximate fraction addition.

Method

Participants

Fifty adult college students from a university in the Northeastern USA (M,4, = 19.2 years, range 18 to 24 years,
39 females) participated for partial course credit.

Measures

Adults completed all tasks in the same order on a 13-inch MacBook laptop using Xojo programming software
(formerly named REALBasic): (1) magnitude comparison task, (2) speeded fraction arithmetic, and (3) fraction
visualization questionnaire. Adults were tested one-on-one in a quiet room in our laboratory. The experimenter
remained in the room for the magnitude comparison and speeded arithmetic tasks but left during the fraction
visualization questionnaire. A list of trials and all the stimuli are available at the Open Science Framework (see
Hurst, Massaro, & Cordes, 2020a).

Magnitude comparison task — Adults first participated in a magnitude comparison task (based on Hurst &
Cordes, 2016, 2018) in which they were asked to rapidly judge which of two rational numbers was greater in
magnitude. On each trial, two numbers were presented on the screen, one on the left and one on the right, and
participants were asked to choose which of the two numbers represented the larger magnitude as quickly and
accurately as they could by pressing the corresponding key on the keyboard (right or left arrow). The stimuli
remained on the screen until the participant made a response and then a small fixation cross appeared in the
middle of the screen for 1000ms until the next trial began. All adults received three blocks of trials that differed
in the notation of the stimuli being compared: FvF trials involving two fractions (e.g. 3/5 vs 2/9), DvF trials
involving one fraction and one decimal (e.g. 3/5 vs 0.22), and NvF trials involving one fraction and one whole
number (e.g. 4/3 vs 2). At the beginning of each block, participants were given one notation-specific practice
problem (the same problem across participants) with computerized feedback about their accuracy. After the
practice problem, participants were invited to ask additional questions or clarify the task. On test trials, no
feedback was given.

The order of trials within each block and the order of the blocks were randomized across participants. Stimulus
pairs on each trial came from one of two ratio bins (ratio = larger numerical magnitude / smaller numerical
magnitude): small ratio bin (ratios ranged from 1.35 to 1.51) and large ratio bin (ratios ranged from 2.2 to 2.9).
For each Ratio (2) x Notation Block (3) combination there were four unique comparisons, shown twice (once
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with the largest number on the left and once with the largest on the right). Thus, there were a total of 48 trials (4
Unique Comparisons x 2 (shown twice) x 2 Ratios x 3 Notation Blocks).

The decimal stimuli (used in the DvF block) were presented to the hundredths digit, with a whole number before
each decimal point (e.g. 0.15; 1.36). The fraction stimuli (used in all blocks: DvF, NvF, and FvF) had numerator
and denominator values each less than or equal to 10. The two fractions for each comparison in the FvF block
were made up of four different integers (i.e., a/b vs. c/d where a, b, ¢, d were all different positive integers) in
order to prevent the use of whole number strategies (e.g., Schneider & Siegler, 2010). Furthermore, the larger
fraction also had the larger numerator on 50% of the frials, the larger denominator on 25% of the trials, and the
smaller “gap” (i.e., the difference between the numerator and the denominator) on about 38% of the trials, to
avoid allowing participants to respond exclusively based on these heuristics (e.g., Kallai & Tzelgov, 2009, 2014;
Meert, Grégoire, & Noél, 2010). In the NvF block, fractions ranged from 6/5 to 9/2 and whole numbers ranged
from 1 to 6. In the FvF block, fractions ranged from 1/5 to 7/2. In the DvF block, fractions ranged from 1/5 to 5/3
and decimals ranged from 0.22 to 3.5. The DvF comparisons were the same as the FvF comparisons but with
one value converted to an approximate decimal equivalent (e.g., 1/3 would be turned into 0.3). Decimals were
approximately 2cm high x 5.5 cm wide, Fractions were approximately 5.5 cm high and 2.7 cm wide, and Whole
Numbers were approximately 2 cm high and 1.2 cm wide. The fixation cross between trials was approximately
0.5 cm high x 0.5 cm wide, in the center of the screen.

Speeded arithmetic task — On each trial, two symbolic fractions were displayed on the screen with an
addition sign (+) between them for 1500 ms (e.g., “1/7 + 2/9”, but with the fractions presented in their formal
upright format), followed by a screen displaying the question “Less than 1 or More than 1?” Participants were
asked to quickly judge whether the sum of the addition problem was more than one or less than one and press
the corresponding key with stickers labeled as “more” (right arrow key) or “less” (left arrow key), respectively.
Before beginning the task, participants were given one practice trial and were invited to ask any questions.
Because the task was speeded (making it very difficult to compute an exact sum of two fractions with different
denominators in such a short time), and because participants were not asked to provide an exact sum but
only approximate whether the answer was above or below one, we considered this task to be an approximate
magnitude addition task.

The task consisted of 16 unique trials, shown twice (with the order of the fractions reversed), resulting in 32
trials. The sum of the two fractions fell into two ratio bins surrounding the value one: close/small ratios of 3:2
and far/large ratios of 2:1. In each ratio bin, four trials summed to a value greater than one and the other four
trials summed to a value less than one. In the small ratio bin, sums greater than one were approximately equal
to 1.46 (range 1.41 to 1.53) and sums less than one were approximately 0.7 (range 0.65 to 0.78). In the large
ratio bin, sums greater than one were approximately equal to 1.74 (range 1.69 to 1.80) and sums less than one
were approximately 0.48 (range 0.37 to 0.59).

Fraction visualization questionnaire — Lastly, adults were presented with three questions: (1) “In what way
do you think about fractions? In other words, when you think about a fraction (for example, 1/2 or 4/5) how do
you visualize it?” (2) “If you were explaining fractions to someone, which visual references would be best to
use?” and (3) “What kind of visual references do you remember learning fractions with most?” For questions
2 and 3, participants were provided with the options of a) Pie Chart, b) Number line, or c) No visual aid. For
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question 3, adults were provided with the additional option of “Other”, with a space to provide more details.
Adults were asked to respond as honestly as possible.

Data Coding

Accuracy (proportion correct) and reaction time (RT) were measured on both the magnitude comparison and
speeded arithmetic tasks. Only RTs from correct responses and those within three standard deviations of the
individual’'s average RT were included in the analyses. At the individual level, in order for average RT for each
participant to accurately represent the speed in which they processed symbolic magnitudes on the magnitude
comparison task, adults who performed at or below chance (4/8 or below) or who had fewer than three included
trials (i.e., that were correct and within three SDs of their average RT) were excluded (similar criteria to those
used in Hurst & Cordes, 2016). This resulted in a final sample of 38 (out of 50) participants having complete
and useable RT data on the magnitude comparison task. Given the lower samples of useable RT data, we
only report the analyses involving accuracy on the task (proportion of trials correct). However, RT performance
showed a similar pattern — RT results are reported in the Supplementary Materials (see Hurst, Massaro, &
Cordes, 2020b) and data is available on the OSF Project Page (see Hurst, Massaro, & Cordes, 2020a).

The responses from the first question on the fraction visualization questionnaire were coded based on three
major themes: (1) area models, which included any description that involved visualizing an object or image
involving parts of a whole shape or object, such as a pizza, a pie chart, or a rectangle with shaded in sections,
(2) number lines, which included any method of visualizing a number line or continuum, and (3) symbolic
methods, which included any responses that involved thinking about the magnitude using only symbols, for
example estimating the proximity of the value to anchors like 1/2 or 1 and/or converting to another symbolic
notation (e.g., decimal). Some participants gave responses that did not fit into any of these categories, for
example “one number on top of another” or “as a ratio”. Participants’ responses could be given multiple codes
if they fell into more than one of these categories. Two independent coders coded all responses and disagreed
on 8/50 of the responses. Disagreements were discussed and settled by a third coder.

Data Analysis

All data analysis was done in R (version 3.5.1) (R Core Team, 2018) with RStudio (R Studio Team, 2016) using
packages from tidyverse (Wickham, 2017), as well as jmv (version 0.9.5; Selker, Love, & Dropmann, 2018), ez
(version 4.4-0; Lawrence, 2016), psychReport (version 0.4; Mackenzie, 2018), effsize (version 0.7.4; Torchiano,
2018), and irr (version 0.84.1; Gamer, Lemon, & Puspendra Singh, 2019). Bayesian analyses were conducted
using JASP (Version 0.10; JASP Team, 2019). For the ANOVA models, we compare models that are matched
except for a given effect and evidence for the inclusion of the effect is reported as BF;,; and evidence for
the exclusion of the effect (i.e., 1/BF;,) is reported as BF.,. For all other analyses, we use the more typical
notation of B4y as the Bayes Factor for the alternate hypothesis (comparing the alternate model, 1, to the null
model 0) and By, as the Bayes Factor for the null hypothesis (comparing the null model, 0, with the alternate
model, 1). For each test, we report the Bayes Factor (either BF;,o/BF g or BF¢/BFq,) that is larger than one,
as these are easier to interpret, and they are always reciprocals of each other. Each Bayes Factor can be
interpreted as how much more likely the data are under the referenced model (i.e., either inclusion or exclusion;
alternate or null) relative to the other model. For example, if BF;, = 10, then the data are 10 times more likely
under the model that includes the effect than the model that does not include the effect. Bayes analyses were
performed in JASP using default priors (JASP Team, 2019).
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Results and Discussion

Magnitude Comparison Task

Accuracy on the magnitude comparison task was analyzed using a repeated measure ANOVA with notation
(3: FvF, NvF, and DvF) and ratio (2: small, larger) as within subject factors (see Figure 1). Bayes factor (either
BF;.o/BF 19 or BF,/BF ¢, Whichever is greater than one) is reported for each effect as well.

Proportion Correct:
C
(=]
»

Magnitude
A
= N W

(=)

FvF DvF NvF
® Small Ratio Large Ratio

Figure 1. Performance on the magnitude comparison task of Experiment 1, by ratio and notation.

Note. Error bars represent standard error (SE) of the mean.

There was a main effect of notation, F(2, 98) = 6.7, p = .002, 71123 = .12, BF;,q = 19.6, such that performance
on FvF trials, M = 0.83, was significantly lower than NvF trials, M = 0.89, #49) = 3.2, p = .002, Cohen’s d =
0.5, BF4o = 14.5, and DvF trials, M = 0.88, #(49) = 2.5, p = .016, Cohen’s d = 0.3, BF; = 2.5, which were not
significantly different from each other, #49) = 1.3, p = .210, Cohen’s d = 0.2, BFy, = 3.0. There was also a main
effect of ratio, F(1, 49) = 50.4, p <.001, n; = .50, BFj,¢; = 1.6 X 100, with higher accuracy on the large ratio, M =
0.92, than the small ratio, M = 0.81. There was not a significant interaction between notation and ratio, F(2, 98)

= 1.4, p=.253, 12 = .03, BFcyq, = 5.8.

Overall, these findings replicate previous work showing ratio-dependent responding when adults compared
fractions and whole numbers, fractions and decimals, and two fractions (e.g., Faulkenberry & Pierce, 2011;
Ganor-Stern, 2013; Hurst & Cordes, 2016; Schneider & Siegler, 2010). In addition, performance when compar-
ing two fractions was significantly less accurate and slower than when comparing one fraction with a whole
number or decimal, replicating patterns in other work (Hurst & Cordes, 2016). This finding suggests that the
difficulties encountered when thinking about rational number magnitudes may be particularly tied to the fraction
notation itself. That is, comparing two fractions within the same notation was more difficult than comparing a
fraction to a value in a different notation. Together, these findings are consistent with claims that adults consider
fractions as falling along an integrated continuum with whole numbers and decimals, but also highlight the
difficulty in processing the numerical magnitudes associated with fraction notation in particular.
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Speeded Arithmetic Task

We were primarily interested in whether adults would display significant ratio effects on a fraction addition task
that only required an approximate sum. Thus, we used paired f-tests to compare performance on the small
and large ratio bins in terms of both accuracy and RT. On the large ratio trials, M. = 0.92, Mgt = 571 ms,
adults performed significantly more accurately, t(49) = 4.46, p < .001, Cohen’s d = 0.5, BF 5 = 450, and faster,
t(49) = 6.59, p < .001, Cohen’s d = 0.36, BF 1y = 4.7 x 10°, than on the small ratio trials, M. = 0.85, Mgt =
742 ms. This suggests that adults do access approximate representations of fraction magnitude information in
other contexts beyond magnitude comparisons.

Fraction Visualization Reports

Only one participant (2%) reported using a number line in response to our first question about how they think
about or visualize fractions. In contrast, 64% of individuals (n = 32) reported using a visual area model (e.g.,
imagining a pie chart) and 46% (n = 23) reported using symbolic methods (e.g., estimating decimal form;
note, however that 10 adults are included in both groups as they reported examples from both categories). In
addition, 8% (n = 4) reported using a method that did not fit into these categories (e.g., “one number on top of

another”, “as a ratio”).

Responses to the second question aligned with this pattern of results. That is, when asked to pick (of three
options) which would be the best visual reference to use to explain fractions to someone else, almost all
participants reported a pie chart: 84% (n = 42), with fewer reporting a number line (14%, n = 7) or using no
visual reference (2%, n = 1). Similarly, when asked which visual references they remember learning with (note
that adults could select more than one option for this question), 82% (n = 41) said they remember using a pie
chart and only 22% (n = 11) reported using a number line (note, again, that n = 7 of these adults reported both
and so are included in both categories). In addition, 2% (n = 1) reported not remembering any visual reference
and 14% (n = 7) selected “other”. The “other” responses included: real world examples, shaded objects, sets
of objects, money, and base-10 blocks (sets of stackable blocks that can be organized into sets of 10 to easily
communicate place-value).

Overall, these self-reports reveal that many of the adults spontaneously thought about fractions via area
models — with most also reporting pie charts as being the best way to teach someone about fractions and the
way they remember learning about fractions. It may not be surprising that pie charts were chosen so frequently
when it was provided as an option in our multiple-choice questions, especially since pie charts may be the can-
onical fraction representation. More striking, however, is adults’ responses on the open-ended question about
the way in which they “think about fractions” (which came before the multiple-choice questions). Even without
prompting, most adults reported using a visual strategy involving an area model or image, like a pie chart or
a shaded object, highlighting the overall preference for this type of representation amongst our adult sample.
Notably, in contrast, only one person spontaneously reported using a number line. Even when number lines
were provided as a multiple-choice option, markedly few participants selected them, suggesting that number
lines are not perceived as being a particularly useful representation for thinking about fraction magnitudes,
at least by the adult college students tested. Of note, however, is that this pattern may be attributable to the
age of our sample, as the emphasis on number lines in the classroom has been relatively recent (National
Mathematics Advisory Panel, 2008) and may not have been part of the curriculum when these adults were
learning fractions.
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Performance Differences Across Fraction Visualization Methods

Our primary interest was to investigate whether there were individual differences in magnitude understanding
between people who opted to use area models versus number lines to think about fractions. However, almost
none of the participants reported using number lines and instead area models were the primary way adults
reported visualizing fractions, making it impossible to make any meaningful inferences from the data between
these two choices. Yet, many adults did report using a symbolic method for thinking about fractions. These
symbolic methods required adults to think about the magnitudes associated with the values relative to other
symbols, either within the same notation (e.g., ¥ is less than %) or across notations (converting 3/5 to a
decimal or percentage), despite not involving a visual figure aid. Given this, we hypothesized, post-hoc, that
this feature of symbolic reasoning may be theoretically similar to the hypothesized benefits of the number line.

To explore this hypothesis, we compared performance on the magnitude comparison task between those who
spontaneously reported using only area model visualizations and those who spontaneously reported using only
symbolic methods. Notably, given that 20% of adults (n = 10) reported using both of these methods, we isolated
this analysis to only those adults who reported only one of them. In line with our predictions, accuracy on the
magnitude comparison task was higher for those who reported using symbolic methods (n = 13), M = 0.90,
compared to those who reported an area model visualization (n = 22), M = 0.82, #23.3) = 2.49, p = .020, BF,,
= 3.6. There was not a significant difference in performance on the speeded arithmetic task between adults
who reported a symbolic method, M = 0.88, versus area model visualization, M = 0.87, #(22.1) = 0.29, p = .775,
BFgq = 2.9.

The significant difference on the magnitude comparison task may suggest that using symbols to reason about
fractions reflects more advanced knowledge of fractions and/or that this reasoning requires an increased
attention to magnitude, allowing for more accurate estimates of magnitude than part-whole visualizations. Thus,
it may be that those individuals who thought about fraction magnitudes relative to other symbols had a better
understanding of the relations among magnitudes in fraction, decimal, and whole number notation, and less of
a focus on the part-whole components of fractions. However, given that this was a post-hoc hypothesis and
analysis and that we did not find the same difference in the speeded arithmetic task, a different fraction task
that also appears to rely on magnitude knowledge, additional research is needed to more fully investigate the
differences in the way people spontaneously think about fraction values.

Overall, results of Experiment 1 reveal that adults generally do not spontaneously visualize fractions as falling
along a number line, however the particular way they report reasoning about fractions was related to their
performance on the magnitude comparison task. Therefore, although some clear and striking patterns emerged
in the data, we were unable to investigate our central question about the utility of the number line for thinking
about fractions because almost no participants reported spontaneously engaging in this kind of thinking. Thus,
in Experiment 2 we investigated the relation between visual and symbolic representations of fractions by
explicitly providing children with different visualizations of fractions before completing the symbolic comparison
task. We focused on children in Experiments 2 and 3 because we thought they may be more able to readily
adopt a number line visualization strategy for fractions, for two reasons: first, they are more likely to have
experienced number lines in their classroom due to the more recent adoption of number lines in mainstream
curricula (National Mathematics Advisory Panel, 2008) and second, they are still actively learning fractions,
which may make them more flexible and less rigid in their preferred strategies. However, we did collect data
from separate samples of adults for Experiments 2 and 3 and although the results are complementary to the
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results from the child data, we are only reporting the adult samples in the Supplementary Materials (see Hurst,
Massaro, & Cordes, 2020b). All data are also available on the OSF Project Page (see Hurst, Massaro, &
Cordes 2020a).

Experiment 2

In Experiment 2, 9- to 12-year-old children were assigned to one of two conditions in which they were asked to
map fractions to either pie charts or to number lines. Following this task, participants engaged in the magnitude
comparison task (as in Experiment 1). By allowing children to engage in a visual mapping task directly, we
investigated whether priming children to think about fractions using either number lines or pie charts would
impact subsequent performance on a symbolic magnitude task. Furthermore, by testing children we can more
thoroughly investigate the impact of these spatial representations on fraction magnitude understanding with
expectations that our findings may have implications for education. In particular, given that adults (based
on Experiment 1) mostly reported learning fractions with area models and not number lines, they may be
particularly resistant to number line priming, as these might be highly unfamiliar representations. Children
who are in the process of learning about fraction and decimal magnitudes and who are more likely to have
encountered fractions on number lines, however, may have more malleable visual representations of fractions
and thus may be more open to adapting the way they think about fractions. Notably, this age group is older than
children in other recent studies investigating the efficacy of number lines (e.g., Gunderson et al., 2019; Hamdan
& Gunderson, 2017) so that we could investigate whether the way children approach symbolic fractions could
be impacted using a brief practice rather than teaching an entirely new approach. Thus, we used children who
were already familiar with fractions and had begun instruction on these topics.

In Experiment 2, we investigated two specific research questions: (1) Does practice mapping fractions to
number lines result in better fraction magnitude performance than practice mapping fractions to pie charts? (2)
Do children use overt partitioning strategies when dealing with number lines and pie charts? Research with
adults suggests they are more error-prone when translating between fractions and number lines than pie charts
(Hurst et al., 2016). However, whether this is due to a difference in the types of overt strategies people use
when encountering a number line compared to a pie chart is unclear.

Method

Participants

Seventy 9-12-year-old children were included in the analyses and were assigned to one of two between-subject
conditions: Number Line Condition (N = 35, M,ge = 10.5 years, range: 9.0 to 12.8 years, 20 females, 14 males,
1 unreported), or Pie Chart Condition (N = 35, M, = 10.5 years, range: 9.2 to 12.8 years, 16 females, 19
males). Children’s grade was not consistently collected, but based on the education system in the Northeastern
United States, they were in approximately 3 to 5t grades, which is around the time that fractions are typically
introduced. Children were tested at local after school programs, summer camps, and public parks, as well as
in our laboratory or in their homes. Written consent was obtained from parents or legal guardians of all children
and children provided both oral and written assent for their own participation. Children received a small prize,
sticker, or $10 for their participation, depending on the regulations of the specific testing facility.
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Design and Measures

All participants completed the visual representation activities and the magnitude comparison task. The visual
representation activities involved either Number Lines or Pie Charts, depending on the participant’s condition.
The magnitude comparison task was identical to the task used in Experiment 1. The experimenter remained
quietly in the room for the duration of the study and the entire experiment took approximately 25 minutes.

Visual representation activities — All participants received two separate 21.5 cm by 14 cm paper booklets:
one booklet for Number-to-Position trials and one for Position-to-Number trials (adapted from Siegler & Opfer,
2003), presented in that order (see Figure 2).

Experiment 2 Experiment 3
Number-to-Position Trial Position-to-Number Trial Number-to-Position Trial
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Figure 2. Stimuli from Experiment 2 (left, middle) and Experiment 3 (right) across the two conditions.

In the Number-to-Position task, participants were presented a symbolic fraction above an empty pie chart (4 cm
radius) or 0-to-1 number line (13.8 cm long) and asked to place a mark on the number line or fill in the part
of the circle that went with the number at the top. The number line had labeled end points of 0 and 1. On the
pie charts, a vertical radial line extended from the center of the circle to the top. This was intended to be a
reference line for participants; however, many chose not to use it and drew two of their own boundary lines.

On each ftrial, after the participant made their mark or filled in the circle, the experimenter showed the partici-
pant the correct response by making a mark on the line or on the pie chart with a yellow highlighter, using a
premeasured cut out. The experimenter then gave the participant feedback by commenting on the participant’s
response relative to the correct response (e.g., “You were pretty close!” or “Not quite, it's actually smaller”). The
participant completed seven of these problems, each presented on a separate page and in the same order, but
with a different target magnitude: 1/2, 3/4, 1/3, 7/8, 3/5, 5/6, and 1/5.

In the Position-to-Number task, participants in the Number line condition were given a number line with
endpoints of 0 and 1 with a 1 cm hatch mark somewhere along the line representing a magnitude. Participants
in the Pie Chart condition were given a pie chart with a shaded portion. In both conditions, the number line
and pie chart were accompanied by a symbolic fraction above the spatial representation with the correct
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denominator but an empty box in the numerator'. Participants were asked to write down their best estimate of
the correct numerator of the fraction, using the denominator provided. The experimenter corrected responses
on each trial by showing the participant a card with a number line or pie chart divided up into the relevant
units and indicating the correct answer. Participants completed seven trials with each problem presented on a
separate page and in the same order, but with a different target magnitude: 1/2, 3/4, 1/4, 2/3, 7/9, 3/7, and 1/8.

Data Coding and Analysis

For the Number-to-Position task, percent absolute error (PAE) was used as a measure of performance accura-
cy (as in Siegler & Booth, 2004). PAE was measured as the absolute difference between the magnitude that
was estimated and the target magnitude divided by the range of the line/pie chart and multiplied by 100:

PAE = 100*[abs(estimate — target)/range]

For example, if on the 0 to 1 representation a participant was trying to estimate %2 and put their mark at
the location corresponding to 0.6, their PAE would be 100*[abs(0.5-0.6)/1] = 10%. Two independent coders
measured responses on each booklet and reliability was measured using the intraclass correlation (ICC;
modeled using consistency with a two-way model using R package irr by Gamer et al., 2019). Reliability was
excellent for all magnitudes in each condition (ICCs’s > .75) and the average value given by the two coders was
used in the analyses.

Booklets were also coded for evidence of overt partitioning strategies. Two independent coders determined
whether, for each magnitude, there was evidence of overt partitioning (additional lines on the number line or
pie chart beyond the response) or not. Each participant was then categorized as either consistently using an
overt partitioning strategy on every ftrial, consistently not using an overt partitioning strategy, or inconsistently
applying strategies (i.e., partitioning on some ftrials, but not others). Inter-rater reliability on these overall
categorizations (measured using Cohen’s Kappa with the R package irr; Gamer et al., 2019) was excellent
(Cohen's Kappa = .84) and the codes from the first coder were used in the analyses.

For both the PAE analyses and the partitioning categorization, performance on the magnitude of 2 was not
included for three reasons: (1) overall performance on 2 was very accurate, (2) we are not able to disambigu-
ate a partitioning strategy from only placing the answer because there is only one hatch mark needed to fully
partition the representation, and (3) the visual aspects of our pie chart display may have made V2 easier for pie
charts than for number lines.

For both conditions, accuracy on the Position-to-Number task was computed as the proportion of trials in which
a correct numerator response was provided. On the magnitude comparison task, accuracy was used as the
primary dependent variable.

All analyses were done using the software and packages as described in Experiment 1.

Results and Discussion

Magnitude Comparison Task

In order to investigate our primary question of whether the number line versus pie chart mapping tasks
impacted subsequent performance on the magnitude task, we analyzed the magnitude comparison task using
an ANOVA on proportion correct with notation (3: FvF, DvF, and NvF) and ratio (2: small and large) as
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within-subject factors and condition (2: Number Line and Pie Chart) as a between subject factor. Bayes factors
are also reported for each main and interaction effect in the ANOVA based on comparing models that contain
the effect to equivalent matched models that do not contain the effect. As in Experiment 1, for each test we
report the Bayes Factor (either BF;,/BF 1o or BF ., /BFg1) that is larger than one.

Data (see Figure 3) did not reveal a main effect of notation, F(2, 136) = 0.5, p = .580, qf, < .01, BFgyqg = 23.1.
However, there was a significant main effect of ratio, (1, 68) = 49.9, p <.001, n; = .40, BFj,; = 1.25 x 109, and
a ratio by notation interaction (reporting Huynh-Feldt correction for a violation of sphericity), F(1.77, 120.02) =
5.3, p =.009, n; = .07, BFj,q = 5.5. Paired t-tests indicated that there was a significant ratio effect, with lower
accuracy on the smaller ratio than the larger ratio, on all three trial types: FvF trials: Mgnay = 0.59, Migge =
0.81, #(69) = 4.7, p < .001, Cohen’s d = 0.72, BF o = 1563; DVF trials: Mgma = 0.62, Miage = 0.76, #(69) = 5.3,
p < .001, Cohen’s d = 0.67, BFo = 12821; and NVF trials: Mgma = 0.68, Miaqe = 0.74, #(69) = 2.8, p = .006,
Cohen’s d = 0.29, BF o = 5.2. However, the size of the ratio effect (i.e., the difference in performance between
the small and large ratio trials) was significantly smaller in the NvF trials than in the FvF trials (p = .003) and
the DvF trials (p = .040), which were not significantly different from each other (p = .162). The presence of ratio
effects replicates prior work using a similar task with similarly aged children (Hurst & Cordes, 2018) and adults
(Hurst & Cordes, 2016), suggesting that children are able to access magnitude information in an integrated way
from fractions, decimals, and whole numbers.

1
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Figure 3. Children’s performance on Experiment 2 separated by condition and presented by notation block and ratio.

Note. Error bars are standard error of the mean.

There was not a main effect of condition, Mpc = 0.72, My = 0.68, F(1, 68) = 0.98, p = .325, Tlf, = .01, BFgyq =
2.9. However, there was a small interaction between notation and condition, ~(2, 136) = 3.3, p = .039, n, = .05,
BF. = 1.5 (all other interactions with condition: Condition x Ratio p = .516, BF4,y = 5.3, Condition x Ratio x
Notation, p = .211, BF4,y = 3.16). In particular, performance across the three notations was very similar in the
Number Line condition, Mg = 0.66 My, = 0.67, Mp,s = 0.70, (all pairwise ps > .100, 2.4 < BFy; < 5.5), with
only slight variation revealing numerically highest performance in the DvF trials and lowest in the FvF trials. On
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the other hand, in the Pie Chart condition, there was slightly more variation in performance across the three
notations, Mg,r = 0.73 Myr = 0.75, Mp,r = 0.68, and the ordinal pattern of performance differed, with highest
performance on the NvF ftrials and lowest performance on the DvF trials (NvF vs. DvF: p = .044, BF,, = 1.2;
FvF v. DvF: p = .080, BFy, = 1.3; NvF and FvF: p = .593, BFy, = 4.8). Thus, this small interaction is likely
caused by subtle changes in the pattern of performance across the three notations, with performance in the
Pie Chart condition showing slightly more variability and slightly higher performance, particularly in the NvF and
FvF trials. However, the simple tests comparing performance on each notation between the Number Line and
Pie Chart conditions were not statistically significant (all ps > .050; 1.2 < all BFy; < 3.7), making it difficult to
interpret this finding.

Visual Representation Task Performance

In order to further understand children’s use of number lines and pie charts, we analyzed performance on the
visual representation activities. On the Number-to-Position task, there was not a significant difference in PAE
(excluding trial 1/2) between the Pie Chart condition, M = 6.6%, and the Number Line condition, M = 8.9%,
{(68) = 1.5, p = .133, Cohen’s d = 0.36, BFy; = 1.5. On the Position-to-Number trials, children did very well
overall and there was also not a significant difference between the two conditions on proportion correct, My, =
0.84, Mpc = 0.87, #(61.6) = 0.61, p = .542, Cohen’s d = 0.15, BFy; = 3.5.

Partitioning strategies — Next, we looked at differences in the use of overt partitioning across the two
representations on the Number-to-Position task, as this is the task in which they were asked to draw on the
spatial representation.

In general, pie charts were associated with partitioning, whereas number lines did not show much evidence of
written partitioning strategies (see Table 1). When looking at only those children who were consistent in their
strategy use (either never partitioning or always partitioning), we find a significant difference between the Pie
Chart and Number Line conditions, x? = 26.2, p < .001, BF o = 2.6 x 105, with children in the Pie Chart condition
much more likely to use a partitioning strategy and children in the Number Line condition much less likely to
use written partitioning strategies. Children who were inconsistent in their strategy use were excluded from the
prior analysis because it is unclear if they should be categorized as “partitioners”, given that sometimes they did
not rely on that strategy. However, when these children were grouped with the children who always partitioned,
making the comparison children who partitioned on at least one trial vs. children who never partitioned, the
difference between the Pie Chart and Number Line conditions is even larger, x? = 30.3, p < .001, BF, = 2.5 x
108,

Table 1
Number of Participants in Each Strategy Category

Experiment 2 Experiment 3
NL PC Ext NL Ext PC
Strategy Category Fractions Fractions Fractions Decimals Fractions Decimals
Never Partitioning 28 5 32 33 9 8
Sometimes Partitioning 3 10 3 2 20 19
Always Partitioning 4 20 2 2 8 10
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Thus, although we did not see significant performance differences when mapping fractions to number lines
versus pie charts, there was a notable difference in the use of overt partitioning across our representation
types. When working with number lines, children did not often use a written partitioning strategy. Although we
cannot be certain what strategy these children did employ, the lack of written strategy might indicate that they
used a more approximate approach, such as directly estimating the location of the fraction on the number line.
On the other hand, when working with pie charts, children tended to partition the pie charts into pieces. Thus,
it may be that number lines are associated with continuous magnitude in a way that encourages approximate
estimation, or at least, does not encourage the use of written partitioning strategies. Conversely, individuals
may be more likely to associate pie charts with discrete part-whole information in a way that does encourage
the use of partitioning strategies. Notably, this was the case despite the fact that participants only mapped
fractions, which may be difficult to process as a continuous magnitude (although not impossible; Hurst &
Cordes, 2016, 2018; current manuscript Experiment 1). Thus, it is not that fractions always lead people to use
partitioning strategies. Rather, children may attend less to the exact part-whole fraction information in the case
of number line representations (by not using an overt partitioning strategy, but instead potentially engaging a
magnitude estimation strategy) and to treat fractions like a part-whole structure with specific components in the
case of pie charts (by using a partitioning strategy). Notably, however, given that we could only rely on overt,
written strategies, it is possible that children simply instantiated these strategies in different ways (e.g., through
their gestures on number lines and by drawing on pie charts). This is an important question for future work.

Overall, in Experiment 2 we did not find that a relatively short activity mapping fractions with number lines led to
substantially better performance on the symbolic magnitude comparison task than practice mapping fractions to
pie charts and the Bayes Factors generally suggest small evidence in favor of the null or inconclusive evidence
in either direction. However, there was some evidence of differences between the two conditions, such that
children in the Pie Chart condition showed more notation-dependent responding, with a slight increase in
performance in the NvF ftrials in particular relative to the DvF trials. Based on previous work suggesting that
teaching with or providing short trainings with number lines lead to better fraction understanding than area
model representations, specifically pie charts (Cramer et al., 2002; Hamdan & Gunderson, 2017; Keijzer &
Terwel, 2003; Saxe et al., 2013; Wang & Siegler, 2013), our lack of finding (and if anything, a pattern in the
opposite direction) may be surprising. It is possible that using a number line representation is not beneficial
for symbolic magnitude comparisons. However, there are several other, non-mutually exclusive, possibilities for
why these activities did not lead to differences in the subsequent symbolic magnitude comparison task.

One possibility is that the primary advantage offered by the number line model is that it provides a visual
representation that emphasizes the relation between different symbolic representations, including decimals,
fractions, and integers — relations which are not as readily represented via pie charts (e.g., Saxe et al., 2013).
In line with this hypothesis, those adults in Experiment 1 who reported using symbolic methods that integrated
different magnitudes and/or different types of numbers performed better on the magnitude comparison task.
Importantly, although some previous studies that showed a benefit for number lines included instruction with
both fractions and decimals (e.g., Wang & Siegler, 2013), children in Experiment 2 only received number lines
and pie charts with proper fractions (i.e., fractions between 0 and 1). Thus, it may be that children are unable
to reap the benefits of the number line model under these circumstances, where a pie chart may be just as
effective. This idea was explored in Experiment 3.
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Experiment 3

In Experiment 3, we used a very similar paradigm to Experiment 2, but extended our visual mapping task to
include symbolic magnitudes between 0 and 5 in fraction, decimal, and whole number notation. In so doing,
we addressed two specific research questions, similar to those in Experiment 2: (1) Does practice mapping
fractions, decimals, and whole numbers to number lines result in better symbolic magnitude performance than
practice mapping the same values to pie charts? (2) Do children use overt partitioning strategies with number
lines and pie charts and do these strategies differ for fractions and decimals? In particular, are the strategies
that people engage during the mapping task more dependent on the notation they are given (decimals vs.
fractions) or on the visual-spatial representation (number lines vs. pie charts)? On the one hand, in Experiment
2 children used distinct written strategies when dealing with number lines and pie charts even though they
were given the same fraction magnitudes. Thus, we might expect that the same patterns would be true for
decimals. On the other hand, decimals are more easily used to think about magnitudes (e.g., Hurst & Cordes,
2016, 2018) and do not directly represent information about the components. Thus, we might expect that
people will be unlikely to engage in written partitioning strategies with decimals, even when given a pie chart.
In Experiment 3, we included trials with fraction and decimal notation in order to directly test these distinct
predictions.

Method

Participants

Seventy-four 9-12-year-old children participated in the study, separated across two conditions: Extended Num-
ber Line (N = 37, M,ge = 10.4 years, range: 9 to 12.5 years, 17 females) and Extended Pie Chart (N = 37, Myge
= 10.5 years, range: 9.3 to 12.3 years, 12 females). General aspects of our recruitment, consenting, and testing
procedures were identical to Experiment 2.

Design and Measures

Procedures and tasks in Experiment 3 (see Figure 2 for stimuli) were identical to Experiment 2 except for the
following differences in the visual representation activities: (1) participants were given 14 Number-to-Position
trials, and no Position-to-Number trials (given the overall high accuracy on the Position-to-Number trials in
Experiment 2) using the following rational numbers (fractions, decimals, and whole numbers): 4, 6/4, 1/5, 1.4,
3.8, 3/4, 2.3, 0.2, 8/3, 9/2, 2, 10/3, 4.1, and 2.7; (2) in the Extended Number Line Condition, all number lines
were labeled with endpoints of 0 to 5, with 0.7 cm vertical hatch marks located at the whole number units on
the line (i.e., 1, 2, 3, and 4); (3) in the Extended Pie Chart Condition, all pie charts were represented as five
circles (radius = 1.5 cm) aligned horizontally across the center of the page (representing all values from 0 to
5) with 0.3 mm between each circle and each circle containing a radius line extending from the center of circle
to the top; and (4) after the participant completed their response, the experimenter used a premade cut out of
the correct answer to put a yellow hatch-mark in the correct spot on the line or fill in the correct amount in the
circles (as in Experiment 2), however participants were not given evaluative verbal feedback but instead the
experimenter simply said: “This shows the number”, pointing to their correct yellow answer.

Data Coding and Analysis

Coding of responses and strategies on the visual representation activities mimicked that of Experiment 2. For
analyses involving performance on the spatial representations, we did not include the whole number values
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as those ftrials were trivially easy (the number line included markings at these locations and the pie charts are
whole objects) and were only included to help children think about the integration across notations. Additionally,
as in Experiment 2, we did not look at strategies or accuracy on the fractions involving 2 in the denominator
(9/2), since we cannot disambiguate between a partitioning strategy and the correct answer. Again, two inde-
pendent coders coded for strategy use (overt partitioning strategy or not, for decimals and fractions separately;
all Cohen’s Kappas > .85) and codes for the first coder are used in the analysis. Two independent coders also
measured the accuracy of responses for average error on fractions and decimals separately (using the same
model and methods as Experiment 2; all IRRs > .90) and the average value between the two coders was used
in the analyses. Eleven children in the Extended Pie Chart condition responded to the booklet in an atypical
fashion, making it impossible to score the accuracy of these participants in a way that is comparable to the
others (e.g., coloring in the pie charts as you might a rectangle). Thus, their data were not included in analyses
involving performance on the spatial mapping tasks, but they were included in analyses involving the other
tasks and strategies on the spatial mapping task. All analyses were done as described in Experiment 2.

Results and Discussion

Magnitude Comparison Task

As in Experiment 2, we analyzed accuracy data from the magnitude comparison task using an ANOVA with
notation (3: FvF, DvF, and NvF) and ratio (2: small and large) as within-subject factors and condition (2: Ext-NL
and Ext-PC) as a between subject factor (see Figure 4). Bayesian analyses were conducted and are reported
as for Experiments 1 and 2. We replicated the main effects of Experiment 2: there was a main effect of ratio,
F(1, 72) = 46.5, p < .001, n; = .39, BFj, = 3.8 x 108, and a ratio by notation interaction, F(2, 144) = 5.06,
p = .008, nf) = .07, BFj,q = 3.2, but not a significant main effect of notation, F(2, 144) = 2.3, p = .106, qf)
= .03, BF,q = 4.5. Within each notation, performance was better on the large ratio than the small ratio, FvF:
Mgman = 0.61, Migge = 0.79, {(73) = 4.8, p < .001, Cohen’s d = 0.61, BF4y = 1791, DVF: Msyay = 0.64, Miarge
= 0.76, #(73) = 5.2, p < .001, Cohen’s d = 0.60, BFy, = 1.0 x 104, and NVF: Mg = 0.71, Migge = 0.76, (73)
= 2.2, p = .030, Cohen’s d = 0.24, BF,o = 1.3. Furthermore, NvF showed significantly smaller ratio effects
than both FvF (p = .003) and DvF (p = .028), which were not significantly different from each other (p = .264).
However, there were no significant main or interaction effects involving condition (ps > .100; Condition BF ¢, =
3.8, Condition x Ratio BFg, = 5.9, Condition x Notation BF,,y = 7.9, Condition x Ratio x Notation BF¢, =
8.4). Therefore, as in Experiment 2, a brief practice with number lines or pie charts did not impact children’s
subsequent performance on a symbolic comparison task, even when the mapping activities involved different
kinds of numbers. Furthermore, the Bayes Factors for the effects involving condition provide small-strong
evidence for the null hypothesis that there is no difference in performance on the symbolic comparison task
between the two conditions.
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Figure 4. Children’s performance on Experiment 3 separated by condition and presented by notation block and ratio.

Note. Error bars are standard error of the mean.

Visual Representation Task

Next, we analyzed performance on the spatial representation activities using a repeated measures ANOVA with
Notation (2: Fractions, Decimals) as a within-subject factor and Condition (2: number lines vs. pie charts) as a
between-subject factor on PAE. No main effects or interactions were significant; main effect of notation: F(1, 61)
=247, p = 121, n} = .04, BF g, = 1.2; main effect of condition: F(1, 61) < 0.01, p = .982, n} < .001, BF g, =
3.8; interaction: F(1, 61) = 1.08, p = .302, n; = .02, BFgyeiy = 2.5: Mirac -nL = 11.3, Mirac —pc = 9.6, Myec _nL = 7.0,
Mgec —pc = 8.7.

Additionally, we explored written partitioning strategies across the two conditions for fractions (although, as in
Experiment 2, excluding 9/2 given that almost every participant provided the answer without overt partitioning
strategies) and decimals separately. The full counts broken down by condition and age group are presented in
Table 1.

Most children in the Extended Number Line condition consistently provided the answer without using a written
partitioning strategy for both fractions and decimals. In the Extended Pie Chart condition, however, children
showed much less consistency in their strategies, with many children using partitioning strategies on some
trials but not all of them. Furthermore, when looking at just those children who consistently used or did not
use a partitioning strategy the pattern of responses between Extended Number Line and Extended Pie Chart
conditions were significantly different for both fractions, x? = 12.2, p < .001, BF, = 77.3, and decimals, x? =
16.9, p < .001, BF4, = 809. As in Experiment 2, children who inconsistently partitioned the visual reference
were excluded from these analyses. However, when inconsistent partitioners are grouped with the consistent
partitioners (i.e., comparing the number of children who partition at least one trial versus children who never
partition), the same difference is found between the Extended Number Line and Extended Pie Chart conditions
for both fractions, x? = 28.9, p < .001, BF 1 = 1.1 x 108, and decimals, x? = 34.2, p < .001, BF 5 = 2.3 x 107.

Thus, although children did not show differences in their error between number lines and pie charts, they did
show significant differences in their strategies. Children were more inconsistent in their approach to the pie
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charts, sometimes dividing them and sometimes not, but children were very unlikely to divide up the number
lines and tended to simply put their answer on the line without indicating additional markings. In line with
Experiment 2, this suggests that children may be inclined to adapt their strategy based on the visual-spatial
representation, using a part-whole partitioning strategy for pie charts and using a different strategy for number
lines. As in Experiment 2, we cannot know for certain what children who did not partition were doing, but it
may be that these children were using more approximate estimation strategies that did not require providing the
exact part-whole information. Notably, the number of children using each type of strategy is nearly identical for
the fractions and decimals within each condition (both ps > .500, comparing fraction vs. decimal, within the NL
and PC conditions separately), suggesting that the notation did not substantially impact strategy selection and
instead the spatial representations impacted written strategy use for both fractions and decimals similarly.

Comparing Experiments 2 and 3

We also directly compared performance on the visual mapping tasks across the two experiments to investigate
how performance and strategy use when mapping between symbolic and spatial representations may differ for
proper fractions between 0 and 1 (Experiment 2) and improper fractions between 0 and 5 (Experiment 3). First,
we compared PAE on the fraction trials only for 0-to-1 fractions (Experiment 2) and 0-to-5 fractions (Experiment
3), using a 2 (Experiment) x 2 (Spatial Model: number line or pie chart) between-subject ANOVA. There was
not a main effect of Experiment, F(1, 129) = 2.3, p = .134, r]f) = .02, BF gy = 1.7, Spatial Model, F(1, 129) = 1.4,
p =.238, n) = .01, BFgxqy = 2.6, or an interaction, F(1, 129) = 0.03, p = .870, n; < .001, BF g, = 3.9.

Next, we compared the strategies children engaged in across the two experiments (see Table 1 for number of
children in each category across experiments). There was not a significant difference between the Experiment
2 and Experiment 3 number line activities, when comparing the number of children who consistently used
partitioning strategies or never used partitioning strategies on fraction trials, x2 = 0.87, p = .350, BFy; = 3.8,
and this is still true when the children who were inconsistent are grouped with those who always partitioned,
to compare children who ever partitioned versus those who never partitioned, x2 = 0.55, p = .460, BFy; = 3.6.
However, there was a significant difference between Experiments 2 and 3 on the conditions using pie charts,
when comparing the number of children who always partitioned vs. never partitioned, x2 = 4.9, p = .026, BF o =
3.8. Notably, this difference is not significant when the children who were inconsistent are grouped with those
who always partition so that we compare children who partition on any trial vs. those that never partition, x% =
1.2, p = .282, BFyy = 2.5. Although children in Experiment 2 were likely to consistently partition the pie chart,
children in Experiment 3 were less consistent, with some children always partitioning, others never partitioning,
and many inconsistently using partitioning from trial to trial. Thus, when these “inconsistent” children are
removed, the two experiments look very different — but when the “inconsistent” children are grouped with
children who always partitioned, then the experiments look fairly similar (although, there is only weak evidence
for the null in this case).

However, it should be noted that children were not randomly assigned to experiment and data from the two
experiments were collected at different times. Thus, the cross-experiment comparisons should be interpreted
with caution. However, they do suggest that further work directly manipulating this difference (values beyond 0
to 1 and from multiple notations) may provide insight into children’s approach to these distinct tasks.
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General Discussion

Across three experiments, we investigated the relation between symbolic magnitude understanding and the
use of number lines and pie charts for thinking about the magnitudes of symbolic rational numbers. In general,
and in contrast to our predictions, we did not find that our number line mapping tasks primed children to better
compare symbolic fraction magnitudes, regardless of whether the mapping task involved proper fractions only
or a mix of notations and magnitudes. However, we did find consistent evidence that children were more likely
to apply explicit part-whole partitioning strategies with pie charts compared to number lines regardless of the
specific magnitude or notation (Experiments 2 and 3) and that symbolic methods for reasoning about fraction
may be associated with better fraction magnitude comparison performance than visual part-whole methods,
at least in adults (Experiment 1). Furthermore, despite these differences in written strategy use, children did
not show differences in error when using number lines vs. pie charts. Lastly, as evidenced by the significant
ratio effects in all experiments, we replicated previous work with children and adults suggesting that they can
represent the magnitudes of fractions, decimals, and whole numbers in an integrated fashion (Ganor-Stern,
2012, 2013; Hurst & Cordes, 2016, 2018) and further extend these findings to suggest that adults process
fraction magnitude information in approximate arithmetic contexts as well.

These findings have implications for the way we think about fraction concepts, for fraction education, and for
better understanding how visual representations may differentially evoke specific strategies more generally. In
particular, these findings highlight that the magnitude component and the part-whole component of fraction
symbols may be differentially accessed or used, depending on the specific spatial representations. Although
adults may not spontaneously visualize fractions using number lines (Experiment 1), when children were
forced to map between fractions and number lines they were less likely to engage in part-whole partitioning
strategies, compared to when they mapped fractions to pie charts. Importantly, however, we cannot be certain
what strategy children were using. One possibility may be that children attempted to map the fraction to the
number line with a holistic magnitude approach that did not require them to partition or divide the line at all.
The finding that partitioning strategies differed as a function of visual representation (number lines versus pie
charts) is consistent with the idea that pie charts may be more likely to promote a focus on discrete parts,
whereas number lines promote attention to continuous numerical magnitude. In addition to having implications
for education and how these different conceptual fraction features (magnitude and part-whole components)
are taught, this work also has broader implications for how best to convey fractional information in health,
marketing, and/or financial scenarios. For example, when presenting fractional or proportional information, we
may want to consider whether the fraction magnitude or the specific fractional components are most relevant
and select different representational strategies accordingly.

In addition, although children in Experiment 3 tended to not use partitioning strategies for number lines (similar-
ly to children in Experiment 2), they were less consistent in their strategy use with pie charts, both across and
within children. This pattern with pie charts in Experiment 3 is distinct from the pattern in Experiment 2, in which
children relied almost exclusively on part-whole partitioning strategies for pie charts. This may suggest that
the inclusion of different notations on the same representation or the fact that the target magnitudes extended
beyond one prompted some children to not bother partitioning the pie charts, maybe because they engaged in
estimation strategies rather than partitioning strategies. Adults (reported in the Supplementary Materials, see
Hurst, Massaro, & Cordes, 2020b) show a similar pattern such that when adults did partition, it tended to be
on the 0 to 1 pie chart, however we generally saw lower levels of partitioning across the board in the adult
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data. This may be because adults were generally more likely to engage estimation strategies regardless of the
representation. This is consistent with other work showing that adults do show ratio effects with both pie charts
and number lines, suggesting that they are able think about magnitude without the presence of discretized
units (Hurst, Relander, & Cordes, 2016). Alternatively, this qualitative difference between children and adults
may reflect more general differences about their tendency to provide written information as part of their answer.
It may be that the adults, who have not been recently instructed on how to use pie charts or number lines,
were simply less likely to think including the partitioning lines was a necessary component of their response.
Importantly, however, these patterns may suggest important educational and developmental differences in how
people use visual presentations of fractional information.

When taken together, these findings provide some evidence suggesting that in order to teach fraction magni-
tudes it may be important to emphasize the relations between different magnitudes, in different notations, for
values beyond just zero-to-one using a number line spatial representation. Given that children and adults may
use number lines with an approximate, estimation-based approach, using this representation for magnitude
may more closely align with the way number lines are used for whole numbers as well. On the other hand,
children tended to use pie charts with a much more part-whole approach, especially for proper fractions. Thus,
it may be that pie charts provide a benefit for conceptualizing the part-whole components of fractions. This is
something that should continue to be investigated further.

Given these findings suggesting that the pie charts, particularly the 0-1 pie chart, may have been approached
in part-whole way with overt partitioning, and the number lines were not, why did these strategy differences
not result in performance differences, either in terms of error on the actual spatial mapping task or on the
subsequent symbolic magnitude comparison task? In terms of the number line and pie charts tasks specifically,
it may be that the different strategies were well-aligned with the needs of the particular representation, allowing
children to maximize their performance on both representations. Alternatively, the differences in overt-written
strategies may not provide a complete picture. For example, it may be that children partitioned both number
lines and pie charts, but instantiated them differently, such as using mental partitioning strategies or physical
strategies involving their fingers or hands, both of which we were not able to capture within the current data.
In either case, this is informative for how people approach number line and pie chart spatial models, but is one
possible explanation for why these differences in approaches did not culminate in differences in error patterns
or in performance on the subsequent symbolic magnitude comparison task.

Furthermore, there are several other related possibilities as to why these differences in written strategy use on
the priming task did not lead to differences in the subsequent symbolic magnitude comparison performance.
One possibility is that the priming task did not involve explicit instruction and/or may have not been intensive
enough to alter participant’s approach to comparing symbolic magnitudes. Although participants did receive
feedback on the task, they were not instructed as to how to use the number lines or pie charts. However, many
of the recent studies showing an impact of number lines were with younger children who did not have much
fraction understanding already, and as such, the primary manipulation involved instruction (e.g., Gunderson et
al., 2019; Hamdan & Gunderson, 2017). It may be that the older children in the current study (who already
had some knowledge of fractions) may have been more likely to default to their learned or practiced way of
thinking about fractions, such that our visualization activities may have not altered their approach to the tasks.
Moreover, although we tested children who are actively in the process of learning fractions and decimals and
adults who have already completed instruction on these topics, we did not systematically collect information
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about the educational experience of these participants. In particular, it may be that some participants already
had substantial experience with number lines, used number lines for whole numbers but not fractions, or had
not used number lines in any capacity. Thus, the older age of these children, and therefore the more fraction
experience they already have, may have limited the impact of our priming manipulation. Future studies may
consider increasing the number of trials or difficulty of the priming tasks and/or explicitly drawing participant’s
attention to the use of mental visualization strategies, in order to promote greater transfer from the priming task
to the magnitude comparison task. Additionally, future research should explicitly compare the malleability of
fraction visualization across middle childhood to determine whether younger children may have more malleable
fraction visualization strategies. If so, it may be that introducing the magnitudes of non-whole number quantities
onto number lines before young children are introduced to the formal part-whole aspect of fraction notation can
improve children’s learning of rational number concepts more generally.

Conclusions

In summary, the current study reports three experiments providing convergent evidence that adults and children
are able to mentally represent the magnitudes of fractions, decimals, and whole numbers in an integrated,
approximate, and ordered way. In addition, despite not seeing substantial differences in accuracy or in priming
between the pie chart and number line activities, our findings do provide some evidence that pie charts may
be more aligned with part-whole based strategies, whereas number lines may be more aligned with magni-
tude-based strategies. Together, our results provide some insight into the use of visual-spatial representations
for fraction education and indicate that both number lines and pie charts may convey distinct, but important,
fraction information, providing a strong case that both visual representations be used to promote fraction
understanding.

Notes

i) Although these terms (Number-to-Position and Position-to-Number) have typically been used for number line mappings
only, for ease in communication we will be using them for mapping with both number lines and pie charts.

if) We provided the denominator because we were concerned that without this cue the task would be too confusing or
difficult for the children, and children might not provide a fraction at all but might provide a whole number or a decimal
instead. Based on our results, however, this decision may have inadvertently made the task too easy.

Funding

The authors have no funding to report.

Competing Interests

The authors have declared that no competing interests exist.

Acknowledgments

The authors have no support to report.

Author Note

A version of this manuscript with a subset of the data was reported in M.A.H.’s PhD dissertation in August, 2017.

Journal of Numerical Cognition
2020, Vol. 6(2), 204-230

GOLD
https://doi.org/10.5964/jnc.v6i2.285 B PsychOpen


https://www.psychopen.eu/

Spatial Mapping of Fraction Magnitudes 226

Data Availability

For this study, a dataset is freely available (Hurst, Massaro, & Cordes, 2020a).

Supplementary Materials

The Supplementary Materials published on PsychArchives include a written methods and results section for the smaller
adult samples collected as a comparison sample to the children in Experiments 2 and Experiments 3. These data were
largely consistent with the child data and were much smaller samples, and thus are included as supplements for complete-
ness.

The OSF Project page includes (1) all of the data from all three experiments reported here and the adult samples reported
in the Supplementary Materials, (2) all the analysis code in R used to analyze all the data, and (3) all the materials,
including image files, administration programs, and PDFs of the paper-pencil priming materials. The wiki on the OSF page
includes additional details about each of the files provided (for unrestricted access, see Index of Supplementary Materials
below).

Index of Supplementary Materials

Hurst, M. A, Massaro, M., & Cordes, S. (2020a). Spatial mapping of fraction magnitudes [Research data and materials].
OSF. https://osf.io/eycdk

Hurst, M. A., Massaro, M., & Cordes, S. (2020b). Supplementary materials to "Fraction magnitude: Mapping between
symbolic and spatial representations of proportion” [Additional analyses]. PsychOpen.
https://doi.org/10.23668/psycharchives.3164

References

Bonato, M., Fabbri, S., Umilta, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer?
Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1410-1419.
https://doi.org/10.1037/0096-1523.33.6.1410

Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational
Psychology, 37(4), 247-253. https://doi.org/10.1016/j.cedpsych.2012.07.001

Clark, M. R., Berenson, S. B., & Cavey, L. O. (2003). A comparison of ratios and fractions and their roles as tools in
proportional reasoning. The Journal of Mathematical Behavior, 22(3), 297-317.
https://doi.org/10.1016/S0732-3123(03)00023-3

Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the
transition from arithmetic to algebra. Mathematical Thinking and Learning, 14(1), 1-27.
https://doi.org/10.1080/10986065.2012.625074

Cramer, K. A., Behr, M., Post, T., & Lesh, R. (1997). Rational Number Project: Fraction lessons for the middle grades: Level
1. Dubuque, IA, USA: Kendall.

Journal of Numerical Cognition
2020, Vol. 6(2), 204-230

GOLD
https://doi.org/10.5964/jnc.v6i2.285 B PsychOpen


https://osf.io/eycdk
https://doi.org/10.23668/psycharchives.3164
https://doi.org/10.1037%2F0096-1523.33.6.1410
https://doi.org/10.1016%2Fj.cedpsych.2012.07.001
https://doi.org/10.1016%2FS0732-3123%2803%2900023-3
https://doi.org/10.1080%2F10986065.2012.625074
https://www.psychopen.eu/

Hurst, Massaro, & Cordes 227

Cramer, K. A, Post, T. R, & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison
of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for
Research in Mathematics Education, 33(2), 111-144. https://doi.org/10.2307/749646

DeWolf, M., Bassok, M., & Holyoak, K. J. (2015). Conceptual structure and the procedural affordances of rational numbers:
Relational reasoning with fractions and decimals. Journal of Experimental Psychology: General, 144(1), 127-150.
https://doi.org/10.1037/xge0000034

DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2014). Magnitude comparison with different types of rational
numbers. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 71-82.
https://doi.org/10.1037/a0032916

Faulkenberry, T. J., & Pierce, B. H. (2011). Mental representations in fraction comparison: Holistic versus component-based
strategies. Experimental Psychology, 58(6), 480-489. https://doi.org/10.1027/1618-3169/a000116

Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to communicate medical risks: Overcoming
low numeracy. Health Psychology, 28(2), 210-216. https://doi.org/10.1037/a0014474

Gamer, M., Lemon, J., & Puspendra Singh, I. F. (2019). irr: Various Coefficients of Interrater Reliability and Agreement (R
package version 0.84.1) [Computer software]. Retrieved from https://CRAN.R-project.org/package=irr

Ganor-Stern, D. (2012). Fractions but not negative numbers are represented on the mental number line. Acta Psychologica,
139(2), 350-357. https://doi.org/10.1016/j.actpsy.2011.11.008

Ganor-Stern, D. (2013). Are 1/2 and 0.5 represented in the same way? Acta Psychologica, 142(3), 299-307.
https://doi.org/10.1016/j.actpsy.2013.01.003

Gunderson, E. A., Hamdan, N., Hildebrand, L., & Bartek, V. (2019). Number line unidimensionality is a critical feature for
promoting fraction magnitude concepts. Journal of Experimental Child Psychology, 187, Article 104657.
https://doi.org/10.1016/j.jecp.2019.06.010

Hamdan, N., & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a
fraction intervention. Developmental Psychology, 53(3), 587-596. https://doi.org/10.1037/dev0000252

Handel, M. J. (2016). What do people do at work? A profile of U.S. jobs from the survey of workplace Skills, Technology,
and Management Practices (STAMP). Journal for Labour Market Research, 49(2), 177-197.
https://doi.org/10.1007/s12651-016-0213-1

Hurst, M. A., & Cordes, S. (2016). Rational-number comparison across notation: Fractions, decimals, and whole numbers.
Journal of Experimental Psychology: Human Perception and Performance, 42(2), 281-293.
https://doi.org/10.1037/xhp0000140

Hurst, M. A, & Cordes, S. (2018). Children’s understanding of fraction and decimal symbols and the notation-specific
relation to pre-algebra ability. Journal of Experimental Child Psychology, 168, 32-48.
https://doi.org/10.1016/j.jecp.2017.12.003

Hurst, M. A., Relander, C., & Cordes, S. (2016). Biases and benefits of number lines and pie charts in proportion
representation. In A. Papafragou, D. Grodner, D. Mirman, & J. C. Trueswell (Eds.) (2016), Proceedings of the 38th
Annual Conference of the Cognitive Science Society (pp. 586-591). Austin, TX, USA: Cognitive Science Society.

Journal of Numerical Cognition
2020, Vol. 6(2), 204-230

GOLD
https://doi.org/10.5964/jnc.v6i2.285 B PsychOpen


https://doi.org/10.2307%2F749646
https://doi.org/10.1037%2Fxge0000034
https://doi.org/10.1037%2Fa0032916
https://doi.org/10.1027%2F1618-3169%2Fa000116
https://doi.org/10.1037%2Fa0014474
https://CRAN.R-project.org/package=irr
https://doi.org/10.1016%2Fj.actpsy.2011.11.008
https://doi.org/10.1016%2Fj.actpsy.2013.01.003
https://doi.org/10.1016%2Fj.jecp.2019.06.010
https://doi.org/10.1037%2Fdev0000252
https://doi.org/10.1007%2Fs12651-016-0213-1
https://doi.org/10.1037%2Fxhp0000140
https://doi.org/10.1016%2Fj.jecp.2017.12.003
https://www.psychopen.eu/

Spatial Mapping of Fraction Magnitudes 228

JASP Team. (2019). JASP (Version 0.1) [Computer software].

Kallai, A. Y., & Tzelgov, J. (2009). A generalized fraction: An entity smaller than one on the mental number line. Journal of
Experimental Psychology: Human Perception and Performance, 35(6), 1845-1864. https://doi.org/10.1037/a0016892

Kallai, A. Y., & Tzelgov, J. (2014). Decimals are not processed automatically, not even as being smaller than one. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 40(4), 962-975. https://doi.org/10.1037/a0035782

Keijzer, R., & Terwel, J. (2003). Learning for mathematical insight: A longitudinal comparative study on modelling. Learning
and Instruction, 13(3), 285-304. https://doi.org/10.1016/S0959-4752(02)00003-8

Lawrence, M. A. (2016). ez: Easy Analysis and Visualization of Factorial Experiments (R package version 4.4-0) [Computer
software]. Retrieved from https://CRAN.R-project.org/package=ez

Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult?
Developmental Review, 38, 201-221. https://doi.org/10.1016/j.dr.2015.07.008

Mackenzie, I. G. (2018). psychReport: Reproducible Reports in Psychology (R package version 0.4) [Computer software].
Retrieved from https://CRAN.R-project.org/package=psychReport

Meert, G., Grégoire, J., & Noél, M.-P. (2010). Comparing the magnitude of two fractions with common components: Which
representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107(3), 244-259.
https://doi.org/10.1016/j.jecp.2010.04.008

Mix, K. S., & Paik, J. H. (2008). Do Korean fraction names promote part-whole reasoning? Journal of Cognition and
Development, 9(2), 145-170. https://doi.org/10.1080/15248370802022605

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519-1520.
https://doi.org/10.1038/2151519a0

Moyer, R. S., & Landauer, T. K. (1973). Determinants of reaction time for digit inequality judgments. Bulletin of the
Psychonomic Society, 1(3), 167-168. https://doi.org/10.3758/BF03334328

National Governors Association Center for Best Practices. (2010). Common core state standards for mathematics. Council

of Chief State School Officers. Retrieved from http://www.corestandards.org/Math/

National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the national mathematics
advisory panel. Washington, DC, USA: U.S. Department of Education.

Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole
number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3

Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical
knowledge through playing number board games. Child Development, 79(2), 375-394.
https://doi.org/10.1111/j.1467-8624.2007.01131.x

Rapp, M., Bassok, M., DeWolf, M., & Holyoak, K. J. (2015). Modeling discrete and continuous entities with fractions and
decimals. Journal of Experimental Psychology: Applied, 21(1), 47-56. https://doi.org/10.1037/xap0000036

Journal of Numerical Cognition
2020, Vol. 6(2), 204-230

GOLD
https://doi.org/10.5964/jnc.v6i2.285 B PsychOpen


https://doi.org/10.1037%2Fa0016892
https://doi.org/10.1037%2Fa0035782
https://doi.org/10.1016%2FS0959-4752%2802%2900003-8
https://CRAN.R-project.org/package=ez
https://doi.org/10.1016%2Fj.dr.2015.07.008
https://CRAN.R-project.org/package=psychReport
https://doi.org/10.1016%2Fj.jecp.2010.04.008
https://doi.org/10.1080%2F15248370802022605
https://doi.org/10.1038%2F2151519a0
https://doi.org/10.3758%2FBF03334328
http://www.corestandards.org/Math/
https://doi.org/10.1207%2Fs15326985ep4001_3
https://doi.org/10.1111%2Fj.1467-8624.2007.01131.x
https://doi.org/10.1037%2Fxap0000036
https://www.psychopen.eu/

Hurst, Massaro, & Cordes 229

Rau, M. A., & Matthews, P. G. (2017). How to make ‘more’ better? Principles for effective use of multiple representations to
enhance students’ learning about fractions. ZDM, 49(4), 531-544. https://doi.org/10.1007/s11858-017-0846-8

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Retrieved from https://www.R-project.org

Reyna, V. F., & Brainerd, C. J. (2007). The importance of mathematics in health and human judgment: Numeracy, risk
communication, and medical decision making. Learning and Individual Differences, 17(2), 147-159.
https://doi.org/10.1016/j.lindif.2007.03.010

R Studio Team. (2016). RStudio: Integrated Development for R. RStudio Inc. Retrieved from http://www.rstudio.com

Saxe, G. B., Diakow, R., & Gearhart, M. (2013). Towards curricular coherence in integers and fractions: A study of the
efficacy of a lesson sequence that uses the number line as the principal representational context. ZDM, 45(3), 343-364.
https://doi.org/10.1007/s11858-012-0466-2

Saxe, G. B., Gearhart, M., & Seltzer, M. (1999). Relations between classroom practices and student learning in the domain
of fractions. Cognition and Instruction, 17(1), 1-24. https://doi.org/10.1207/s1532690xci1701_1

Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology:
Human Perception and Performance, 36(5), 1227-1238. https://doi.org/10.1037/a0018170

Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48(2), 630-633.
https://doi.org/10.2307/1128664

Selker, R., Love, J., & Dropmann, D. (2018). jmv: The “jamovi” Analyses (R package version 0.9.5.) [Computer software].
Retrieved from https://CRAN.R-project.org/package=jmv

Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational
Psychology Review, 14, 47-69. https://doi.org/10.1023/A:1013180410169

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2),
428-444. https://doi.org/10.1111/j.1467-8624.2004.00684 .x

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., . . . Chen, M. (2012). Early
predictors of high school mathematics achievement. Psychological Science, 23(7), 691-697.
https://doi.org/10.1177/0956797612440101

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical
development. Trends in Cognitive Sciences, 17(1), 13-19. https://doi.org/10.1016/j.tics.2012.11.004

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of
numerical quantity. Psychological Science, 14(3), 237-243. https://doi.org/10.1111/1467-9280.02438

Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income
preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545-560.
https://doi.org/10.1037/a0014239

Sprute, L., & Temple, E. (2011). Representations of fractions: Evidence for accessing the whole magnitude in adults. Mind,
Brain and Education, 5(1), 42-47. https://doi.org/10.1111/j.1751-228X.2011.01109.x

Journal of Numerical Cognition
2020, Vol. 6(2), 204-230

GOLD
https://doi.org/10.5964/jnc.v6i2.285 B PsychOpen


https://doi.org/10.1007%2Fs11858-017-0846-8
https://www.R-project.org
https://doi.org/10.1016%2Fj.lindif.2007.03.010
http://www.rstudio.com
https://doi.org/10.1007%2Fs11858-012-0466-2
https://doi.org/10.1207%2Fs1532690xci1701_1
https://doi.org/10.1037%2Fa0018170
https://doi.org/10.2307%2F1128664
https://CRAN.R-project.org/package=jmv
https://doi.org/10.1023%2FA%3A1013180410169
https://doi.org/10.1111%2Fj.1467-8624.2004.00684.x
https://doi.org/10.1177%2F0956797612440101
https://doi.org/10.1016%2Fj.tics.2012.11.004
https://doi.org/10.1111%2F1467-9280.02438
https://doi.org/10.1037%2Fa0014239
https://doi.org/10.1111%2Fj.1751-228X.2011.01109.x
https://www.psychopen.eu/

Spatial Mapping of Fraction Magnitudes 230

Torchiano, M. (2018). effsize: Efficient Effect Size Computation. Retrieved from https://CRAN.R-project.org/package=effsize

Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary
school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181-209.
https://doi.org/10.1080/07370001003676603

Varma, S., & Karl, S. R. (2013). Understanding decimal proportions: Discrete representations, parallel access, and
privileged processing of zero. Cognitive Psychology, 66(3), 283-301. https://doi.org/10.1016/j.cogpsych.2013.01.002

Wang, Y., & Siegler, R. S. (2013). Representations of and translation between common fractions and decimal fractions.
Chinese Science Bulletin, 58(36), 4630-4640. https://doi.org/10.1007/s11434-013-6035-4

Wickham, H. (2017). Tidyverse: Easily Install and Load the “Tidyverse” (R package version 1.2.1). Retrieved from
https://CRAN.R-project.org/package=tidyverse

Journal of Numerical Cognition PsychOpen GOLD is a publishing service by GO
2020, Vol. 6(2), 204230 Leibniz Institute for Psychology Information (ZPID), B PsychOp en
https://doi.org/10.5964/jnc.v6i2.285 Trier, Germany. www.leibniz-psychology.org

LD


https://CRAN.R-project.org/package=effsize
https://doi.org/10.1080%2F07370001003676603
https://doi.org/10.1016%2Fj.cogpsych.2013.01.002
https://doi.org/10.1007%2Fs11434-013-6035-4
https://CRAN.R-project.org/package=tidyverse
https://www.leibniz-psychology.org/
https://www.psychopen.eu/

	Spatial Mapping of Fraction Magnitudes
	(Introduction)
	Symbolic Numerical Magnitude
	Spatial Representations of Magnitude
	The Current Study

	Experiment 1
	Method
	Data Analysis
	Results and Discussion

	Experiment 2
	Method
	Results and Discussion

	Experiment 3
	Method
	Results and Discussion

	Comparing Experiments 2 and 3
	General Discussion
	Conclusions

	Notes
	(Additional Information)
	Funding
	Competing Interests
	Acknowledgments
	Author Note
	Data Availability

	Supplementary Materials
	References


