2024

Enhanced Magnetization by Defect-Assisted Exciton Recombination in Atomically Thin CrCl3

X.-Y. Zhang, T. K. M. Graham, Y.-X. Wang, H. Bae, N. Delegan, Z.-C. Wang, J. Regner, K. Watanabe, T. Taniguchi, M. Jung, Z. Sofer, F. Tafti, D. D. Awschalom, F. J. Heremans, B. Yan & B. B. Zhou.

arXiv:2312.08476 (2023).

2023

Axion optical induction of antiferromagnetic order

J.-X. Qiu, et al.

Nature Materials 22, 583-590 (2023).

Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals

Y.-X. Wang, X.-Y. Zhang, C. Li, X. Yao, R. Duan, T. K. M. Graham, Z. Liu, F. Tafti, D. Broido, Y. Ran & B. B. Zhou.

Nature Physics 19, 507-514 (2023). Full-text access.

Summary:
  Weyl semimetals are candidates for efficient photocurrent generation; however, their strong photo-response is not well-understood. Here, we introduce quantum-enabled photocurrent flow microscopy to visualize the photocurrent flow inside the Weyl semimetals WTe2 and TaIrTe4. We discover, surprisingly, that anisotropy in the thermoelectric properties of Weyl semimetals generates spontaneous, circulating photocurrents, which can be extracted in specially-designed devices. Learn more.

EurekAlert!

2021

ac susceptometry of 2D van der Waals magnets enabled by the coherent control of quantum sensors

X.-Y. Zhang, Y.-X. Wang, T. A. Tartaglia, T. Ding, M. J. Gray, K. S. Burch, F. Tafti & B. B. Zhou.

PRX Quantum 2, 030352 (2021). Editors’ Suggestion.

Summary:
  Instruments based on the SQUID magnetometer, born from the “first quantum revolution”, are now indispensable for characterizing bulk magnetic materials, but are powerless on atomically-thin magnets. Here, we extend NV magnetometry to the dynamic properties of ultrathin spintronic materials, complementing its nanoscale resolution for static magnetization. Our work takes a step towards quantum 2.0 technologies that exploit the coherent control of individual quantum states. Learn more.

Layer Hall effect in a 2D topological axion antiferromagnet

A. Gao, et al.

Nature 595, 521, (2021).

2020

Spatiotemporal mapping of a photocurrent vortex in monolayer MoS2 using diamond quantum sensors

B. B. Zhou*, P. C. Jerger*, K. H. Lee, M. Fukami, F. Mujid, J. Park & D. D. Awschalom.

Phys. Rev. X 10, 011003 (2020).


Summary:  
Detection of photocurrents in materials by transport measurements averages over spatial variations and is limited to small device sizes to allow efficient photocarrier extraction. In contrast, NV magnetometry provides a contact-free, space- and time-resolved probe of current distributions. Moreover, synchronized control over the photoexcitation and NV manipulation pulses enables high-sensitivity “lock-in” detection. Learn more.

2019

Extreme diamond-based quantum sensors

J. J. Hamlin & B. B. Zhou.

Science 366, 1312 (2019).


Perspective
  with James Hamlin on advances in the characterization of high pressure phenomena via NV magnetometry.

Prior to Boston College

2018

D. D. Awschalom, R. Hanson, Jörg Wratchrup & B. B. Zhou. Quantum technologies with optically interfaced solid-state spins. Nature Photonics 12, 516–527 (2018).

2017

B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G. Burkard & D. D. Awschalom. Holonomic quantum control by coherent optical excitation in diamond. Phys. Rev. Lett. 119, 140503 (2017).

B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk & D. D. Awschalom. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nature Physics 13, 330 (2017).

2016

A. Gyenis, H. Inoue, S. Jeon, B. B. Zhou, et al. Imaging electronic states on topological semimetals using scanning tunneling microscopy. New J. Phys. 18, 105003 (2016).

C. G. Yale*, F. J. Heremans*, B. B. Zhou*, A. Auer, G. Burkard & D. D. Awschalom. Optical manipulation of the Berry phase in a solid-state spin qubit. Nature Photonics 10, 184 (2016).

See also “News and Views”.

2014

S. Jeon*, B. B. Zhou*, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath & A. Yazdani. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nature Materials 13, 851 (2014).

See also “News and Views”.

P. Aynajian, E. H. da Silva Neto, B. B. Zhou, S. Misra, R. E. Baumbach, Z. Fisk, J. Mydosh, J. D. Thompson, E. D. Bauer & A. Yazdani. Visualizing heavy fermion formation and their unconventional superconductivity in f-electron materials. J. Phys. Soc. Jpn. 83, 061008 (2014).

M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani & R. J. Cava. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg. Chem. 53 (8), 4062 (2014).

2013

S. Misra, B. B. Zhou, I. K. Drozdov, J. Seo, L. Urban, A. Gyenis, S. C. J. Kingsley, H. Jones & A. Yazdani. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instr. 84, 103903, (2013).

B. B. Zhou*, S. Misra*, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer & A. Yazdani. Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nature Physics 9, 474 (2013).

Cover article. See also “News and Views”.

2010

A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom & A. Yazdani. Visualizing critical correlations near the metal-insulator transition in Ga1-xMnxAs. Science 327, 665, (2010).

See also “Perspectives”.

2007