Ionization from Solar Pumped Metastable Levels of Atomic Samarium

Paul A Bernhardt¹, Carl L Siefring¹, Albert Viggiano², Jeffrey M. Holmes²
Todd R. Pedersen², Ron Caton², Daniel Miller² and Keith M Groves³
(1)Naval Research Laboratory, Washington, DC
(2)Air Force Research Laboratory, Kirtland AFB, NM
(3) Inst. Sci. Res., Boston College, Chestnut Hill, MA

Work Sponsored at NRL by 6.1 Base Program

AFRL MOSC Experiment (Radar Data from ALTAIR)

Ionization Processes in Samarium Vapor

- Why did MOSC Samarium Not Produce Predicted Density Levels?
- Samarium Atom Photo Chemistry (NRL CRM)
 - Sm Energy Levels
 - Sm Metastable Level Pumping in Sunlight (Important)
 - Samarium Photo-Ionization (Important but Slow)
 - Samarium Associative Ionization with Atomic Oxygen
 - Reaction Energy
 - Weakly Exothermic from Ground State Sm (7F) Metastable Levels
 - Strongly Exothermic from Higher Sm(9H, 7H, ...) Metastable States
 - SmO⁺ Production (Autoionization) and Loss (Recombination-Important)
 - Samarium Reaction with Diatomic Oxygen (Important)
- 3-D Time Dependent Predictions for MOSC Release
- Data Acquired During AFRL MOSC Experiment for Comparison
 - Initial Electron Production Inventory from NRL CERTO Beacon
 - Altair Radar Map of Electron Density
 - AFRL Spectrogram of Optical Emissions
- Conclusions

Conceptual Samarium Photo Chemistry

Solar Resonance Fluorescence +hvSolar Photo-Ionization hvAuto-Ionization with Atomic Oxygen 0Dissociative Recombination e^{-} Oxidation with Molecular Oxygen -0_2

All Known Samarium Atomic Levels

Normalized Equilibrium Populations of the Metastable Levels of Samarium with Direct Solar Illumination with Auto-Ionization Dependence on Energy

Samarium Neutral Diffusion Based on the MSIS Atmosphere for 9 May 2013

$$D_{Sm} = \left(\sum_{j \neq Sm} 1/D_{Smj}\right)^{-1} \text{ where } D_{Smj} = \frac{3}{32 f r_{Smj}^2 n_j} \left(1 + \frac{m_{Sm}}{m_j}\right)^{1/2} \left(\frac{8kT_{Sm}}{\pi m_{Sm}}\right)^{1/2} \text{ and } j = 0, N_2, \text{ or } O_2$$

 $D_{Sm} = 5.83 \times 10^8 \text{ cm}^2/\text{s}$ at 171 km Altitude

(Latest) Time Dependent Computation of Sm⁺ and SmO⁺ Ions for Sm Release in Sunlight and Autoionization Reaction with O

• Solar Photoionization Reaction

 $Sm + hv_{Sun} \xrightarrow{\beta_{SmSun}} Sm^+ + e^- \text{ rate: } \beta_{SmSun} = 0.00442 \ s^{-1}, \tau_{SmSun} = k_{SmSun}^{-1} = 220 \text{ s}$

• Metastable State Autoionization Reaction for Release at 171 km Altitude

$$Sm^{*} + O \xrightarrow{k_{Sm+O}} SmO^{+} + e^{-} + \Delta E_{\alpha} \text{ rate: } k_{Sm+O} = \phi_{SmExo} \overline{\sigma_{Sm+O}} v$$

$$\phi_{SmExo} = 0.104, \ \sigma_{Sm+O} \square \ 5 \times 10^{-15} \, cm^{2}, v \square \sqrt{kT_{O} / m_{O}} \square \ 718 \text{ m/s for } T_{O} = 1000K$$

$$k_{Sm+O} \square \ 3.73 \times 10^{-10} \text{ cm}^{3}/\text{s}, n_{O} = 6.8 \times 10^{9} \text{ cm}^{-3}, \beta_{Sm+O} = k_{Sm+O} n_{O} = 2.54 \text{ s}^{-1}$$

- Samarium Oxidation* $Sm[\alpha] + O_2 \xrightarrow{k_{Sm+O_2}} SmO + O$ $k_{Sm+O_2} \square 5.1 \times 10^{-10} \text{ cm}^3/\text{s}, n_{O_2} = 6.4 \times 10^8 \text{ cm}^{-3}, \beta_{Sm+O_2} = k_{Sm+O_2}n_{O_2} = 0.32 \text{ s}^{-1}$
- Dissociative Recombination Reaction $SmO^{+}[{}^{6}\Gamma] + e^{-} \xrightarrow{k_{SmO^{+}e^{-}}} Sm[{}^{7}F] + O[{}^{3}P]$ rate: $k_{SmO^{+}e^{-}} \approx 10^{-7} \text{ cm}^{3}s^{-1}$

*Note: Sm + O_2 Reaction from M. L. Campbell, Temperature-Dependent Rate Constants for the Reactions of Gas-Phase Lanthanides with O_2 , J. Phys. Chem. A, 1999, 103 (36), pp 7274–7279

3D Numerical Model of Sm Release Photochemistry

- Neutral and Ion Equations with Chemical Reactions
 - Neutral Samarium, Samarium Monoxide Ion, Samarium Ion, Samarium Monoxide, Electrons

$$\begin{aligned} \frac{\partial N_{sm}}{\partial t} &= \frac{D_1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial N_{sm}}{\partial R} \right) + D_1 \frac{\partial^2 N_{sm}}{\partial z^2} - \beta_{sm} N_{sm} + k_{smO^+e^-} N_{smO^+} N_e \\ \frac{\partial N_{smO^+}}{\partial t} &= D_1 \frac{\partial^2 N_{smO^+}}{\partial z^2} + \beta_{sm+O} N_{sm} - k_{smO^+e^-} N_{smO^+} N_e, \beta_{sm+O} = k_{sm+O} n_O \\ \frac{\partial N_{sm^+}}{\partial t} &= D_1 \frac{\partial^2 N_{sm^+}}{\partial z^2} + \beta_{smSun} N_{sm} \\ \frac{\partial N_{smO}}{\partial t} &= \frac{D_1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial N_{smO}}{\partial R} \right) + D_1 \frac{\partial^2 N_{smO}}{\partial z^2} + \beta_{sm+O_2} N_{sm}, \beta_{sm+O_2} = k_{sm+O_2} n_{O_2} \\ N_e &= N_{sm^+} + N_{smO^+}, \ \beta_{sm} \equiv \beta_{smSun} + \beta_{sm+O} + \beta_{sm+O_2} \end{aligned}$$

- Cylindrical Coordinates with **z** along **B**
- Numerical Solution by Expanding Boundary Coordinate Transform

Central Cloud Density for Samarium Release Including *Recombination* Sm Release Product Neutrals and lons

New 3-D Model for Samarium Release at t = 20 s

3-D Model for Samarium Release at t = 100 s

Resonance Fluorescence of Samarium Atoms and Atomic Ions

Estimated Total Electron Content Yield for MOSC Samarium Releases

MOSC CERTO Beacon to Rongelap, 1 and 9 May 2013

AFRL MOSC Experiment, ALTAIR – Launch 2

DISTRIBUTION STATEMENT B: Distribution authorized to U.S. Government agencies only; Administrative or Operational Use; 07 Oct 2013. Other requests for this document shall be referred to Air Force Research Laboratory/(office symbol), 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776.

Central Cloud Density for Samarium Release Including *Recombination* Sm Release Product Neutrals and lons

MOSC Optical Spectra (From Todd Pedersen and Jeff Holmes, AFRL)

Summary on MOSC Samarium Release

- Factors that Control the Ionization from Sm Release in Sunlight
 - Formation Metastable States
 - Photo-ionization
 - Atomic Oxygen Reaction
 - Recombination of Samarium Monoxide Ion (Depletes Electrons)
 - Reaction of Samarium with Diatomic Oxygen (Depletes Samarium)
- Physics Based Modeling of MOSC Sm Release
 - Predictions of Metastable Level Population, (Sm and Sm⁺) Optical Spectra
 - Time Dependent Predictions of Ion Compositions and Electron Density
 - Spectral Lines for Sm, Sm+ and SmO
 - Future Work (Model Validation and Prediction for Future Experiments)
 - Compare with Beacon, Radar and Optical Observations
 - Compare with AFRL Empirical Model
 - Compute HF Refraction Off Model Electron Clouds
- Conclusions
 - CRM Model Is Converging on Accurate Solutions
 - MOSC Used Critical Diagnostics
 - Visible Spectrograph Yields Neutral and Ion Composition
 - Incoherent Scatter Radar Yields Long Term Electron Production
 - Radio Beacon Instrument Yields Initial Electron Production
 - SmO⁺ + e⁻ Recombination is Exothermic and Very Reactive
 - Sm + O Reaction is Slightly Exothermic and Very Reactive
 - Sm Release Probably Will Produce Few Ions Without Sunlight