

Integrity **★** Service **★** Excellence

Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space Clouds (MOSC) Experiment

Ionospheric Effects Symposium

Alexandria, VA, May 2015

T. Pedersen

Space Weather Center of Excellence

Space Vehicles Directorate

Air Force Research Laboratory

Approved for public release <u>(date)</u> under Case Number

- Co-authors:
 - R. Caton, D. Miller, J. Holmes
 - AFRL/RVBXI
 - K. Groves
 - Boston College
- MOSC Experiment Sponsored by the Department of Defense Space Test Program
- Launch vehicles and payload integration supplied by NASA Sounding Rocket Program
- Data analysis at AFRL supported by the Air Force Office of Scientific Research

Outline

- MOSC experiment overview
- Diagnostic instrumentation
- Fitting of optical data
 - Amplitude
 - Position
 - Widths
- Comparison with ALTAIR radar data
- Peak plasma density as a function of time
- Findings and discussion
- Summary and conclusions

MOSC Experiment Overview

- 2 Terrier-Orion rockets funded by DoD Space Test Program
 - Launch from Kwajalein Atoll May 2013
 - Launch 1 07:38 UT May 1, 2013
 - Launch 2 07:23 UT May 9, 2013
- Primary objective: examine feasibility of using artificial plasma to short out Rayleigh-Taylor instability
- Released 2 Samarium canisters each, total of ~6 kg per launch
 - Produce plasma via chemionization:

 $Sm + 0 \rightarrow SmO^+ + e^-$

- Ground diagnostics from 5 islands including:
 - Incoherent Scatter Radar, GPS/VHF Scintillation RX, All-Sky Cameras, Optical Spectrograph, Ionosondes, Beacon RX, HF TX/RX

Radar and Optical Data

Movie of radar scan in optics

Optics provide critical context for radar measurements

- ALTAIR radar pointed at expected release location
- Pre-programmed raster scan locations
 updated in real time based on optics
- Radar electron density modulated in time as radar scans across cloud
 - But of limited utility unless position relative to cloud is known

Radar densities vs. time and altitude

Empirical Model Construction

- Fit optical data to 2-D Gaussian distribution as function of time
 - Provides the following ٠ properties
 - X, Y locations (in pixels)
 - X,Y halfwidths (in pixels)
 - Peak optical intensity
 - **Background intensity**
 - Tilt relative to principal axes
- Fit low-order polynomials to data as function of time
- Fit relative optical intensity data to radar TEC and plasma density
 - Absolute intensity changes due to twilight, clouds, etc.

Optical Intensity Fits

- Not actually used in model
 - Absolute intensity has too many dependencies
 - Rapidly changing twilight background on ground
 - Rapidly changing illumination of clouds at altitude
 - Filters not tuned for relevant wavelengths
 - Clouds, light pollution, etc.
 - But good indicator of data quality
- Absolute intensities from the various filters track each other very well
 - Unfiltered channel overexposed most of the time
 - Wild points generally due to passage of tropospheric clouds

 Fitting process very consistent across 4 orders of magnitude and 6 wavelength channels

Position Fits

- Data originally in pixel coordinates
 - Convert to lat, lon
 - Calibrate images to azimuth and elevation
 - Use release height to map from az/el to lat/lon
- Good piecewise fits using low-order polynomials
 - Break point near 1000 sec
 - Linear or parabolic
- Slight differences between wavelengths
 - This fit for all wavelengths combined

Cloud Width Fits

- Data originally in pixel coordinates
 - Convert to km
 - Axes can be rotated relative to true N-S and E-W – "Tilt" paramater
- Rapid non-linear cloud expansion before 100 sec
 - Did not attempt to fit at these early times
- Very linear after 100 sec
 - E-W expansion greater for Launch 1
 - N-S expansion about 2x that of E-W for Launch 2

Relative Intensity Model

- Absolute optical intensities not useful
- But relative intensities give cloud size and shape
 - Key to comparison with radar density data
 - Relative intensities for radar beam locations
 - Now in coordinate system relative to cloud center!

Comparison with Radar TEC

- Raw radar data is function of range, az, el
 - Convert az and el to coordinates relative to cloud center
- Optical data is inherently integrated through the cloud
 - Near-vertical lines of sight
 - Integrate radar densities in range along beams to give closest equivalent to optical data (TEC)
- First-cut comparison:
 - Assume rapid ionization but small recombination
 - Total number of ions approximately constant after initial stages
 - Cloud expansion is dominant cause of density decrease
 - Observed linear expansion in 2-D (TEC) space should give t⁻² dependence
 - Very good fit captures much of the structure
 - Individual fluctuations from scans across cloud clearly highly correlated

- Reasonably good fit using only simple assumptions
- Optics clearly capturing cloud plasma structure

- Radar data represents minimum bound on peak cloud density
 - Only occasionally comes close to center of cloud
- Ionosonde picks up peak density regardless of cloud location
 - Should provide upper bound on radar measurements
- Log-log fit to sounder densities makes very nice upper bound on radar data for both launches
 - Exponents of ~-0.75 much smaller than -3 expected from constant particle number and 3-D linear expansion

- 2-D Gaussian distribution a reasonable model for cloud size and shape
 - Overall good fits but misses some E-W asymmetry
- Cloud expansion very linear except at earliest times
 - Disagrees with theoretical diffusion-based prediction: $r \propto t^{\, \hat{\overline{2}}}$
- Optical model correlates well with radar TEC measurements: $TEC \propto t^{-2}$ gives reasonable scaling and fits well with linear expansion in 2-D
- Overall density dependence closer to $N_e \propto t^{-\frac{3}{4}}$
 - Why not $N_e \propto t^{-3}$ based on linear expansion in 3-D?
 - Ongoing electron production throughout experiment?

Summary

- Empirical model developed for MOSC Sm clouds
 - Position, size, and shape from optical fits to 2-D Gaussian
 - Density envelope from sounder and radar data
- Observed cloud expansion very linear with time
 - Constant number of electrons would give t⁻³ dependence
- Observed density drops off much more slowly than theory or fixed electron number would indicate: ~ t^{-3/4}
 - Ongoing ionization?
- Model already being used for high-fidelity raytracing to compare with RF observations
- Planning to use as input to background dynamics model to examine impact on Rayleigh-Taylor instability

