

GPS Occultation Density Observations Associated with the Midnight Temperature Maximum

Rebecca L. Bishop¹, Timothy Brubaker², Paul R. Straus¹

¹The Aerospace Corporation ²Penn. State University

PSL/SSAL 13 May 2015

Outline

- Introduction
 - Thermospheric Midnight Temperature Maximum (MTM) and Midnight Density Maximum (MDM)
 - Ionospheric Midnight Density Maximum (MD_pM)
- C/NOFS Mission
 - CORISS Sensor
- GPS Radio Occultation Data (GPSRO)
- MD_pM Observations
 - Altitude variation
 - Temporal Variations
 - Occurrence Statistics
- Summary

C/NOFS satellite. [Courtesy of NASA]

Nighttime Thermospheric Variations Midnight Temperature Maximum

- The Midnight Temperature Maximum (MTM) is enhancement in thermospheric temperature [see reviews: Herrero et al., 1993, Colerico and Mendillo, 2002]
 - Occurrence between 2200 and 0300 LT
 - Latitude Range: +/- 20°

Figure 3. Thermospheric temperature map for the period 77142 to 77188 in the latitude band ± 20 deg. and between 1700 and 0600 LT. The shaded contours indicate the midnight temperature maximum distribution.

From Herrero and Spencer, 1982

- Temperature Range: ~25 to 170K [Meriwether et al., 2011]
- Observed by ground-based all-sky, photometers, Fabry-Perot Interferometers and on-orbit sensors.
- Early observations from ground photometers
- First on-orbit observation by Neutral Atmosphere Temperature Instrument (NATE) on Atmospheric Explorer-E satellite

Rebecca.L.Bishop@aero.org PSL/SSAL

Nighttime Thermospheric Variations

Midnight Density Maximum (MDM)

- Midnight Density Maximum (MDM)
 - Occurs over similar latitudes
 - Typically lags MTM
- On-orbit observations:
 - Mass spectrometers
 - Drag measurements
 - Observed by San Marco III and V [*Arduini et al.*, 1996]
- Phenomenon produced in models/simulations:
 - Whole Atmosphere Model [Akmaev et al., 2010]
- Produced by tidal winds at equator
 - Downward progression of MTM/MDM indicative of upward propagating tidal meridional wind

Nighttime Ionospheric Variations

Midnight Plasma Density Maximum (MD_PM)

- Plasma density enhancements in nighttime NmF2 have been observed by ionosondes, GPS, radars [e.g. Farelo et al., 2002, Luan et al., 2008]
- Theories for MD_PM formation focus on transport via theremosphere/ionosphere coupling
 - Downward flux of electron density several hours following earlier upward ExB drift
 - Meridional winds associated with MTM transport plasma to higher altitudes.

Rebecca.L.Bishop@aero.org PSL/SSAL

Communication/Navigation Outage Forecast System C/NOFS Satellite

- Joint DoD Space Test Program and Air Force Research Laboratory (AFRL)
- Original Purpose: "Demonstrate a technique for locating and forecasting scintillation in the low latitude ionosphere".
- Payload:
 - Vector Electric Field Instrument (VEFI): NASA Goddard
 - Coherent Electromagnetic Radio Tomography (CERTO) NRL
 - GPS Sensor (CORISS): The Aerospace Corporation
 - Neutral Wind Meter and Ion Velocity Meter (CINDI): UT Dallas
 - Planar Langmuir Probe (PLP): AFRL

C/NOFS in testing at General Dynamics [Courtesy of AFRL]

Communication/Navigation Outage Forecast System C/NOFS Satellite – Cont.

- Launched: 16 April 2008
- Initial Orbit:
 - 405 x 853 km
 - 13.0 inclination
 - 97.3 min period

- Current Orbit altitude:
 - Approx. 345 x 500 km
- Re-entry estimate: Fall 2015

Artist Rendition of C/NOFS. Image Credit: NASA/Goddard Space Flight Center

CORISS Overview

C/NOFS Occultation Receiver for Ionospheric Sensing and Specification

- CORISS is a Modified Version of the Jason/ICESat Receiver
 - RF front end adapted to C/NOFS RFI requirements
 - Single patch antenna on anti-velocity side of s/c
 - Receiver s/w updated by The Aerospace Corporation to perform occultations & other special functions (Tom Meehan consulting)
 - On-board processing of scintillation parameters: S4, $\sigma_{\!\varphi}$, spectra
- Data Collection Modes
 - LR data (0.1 Hz):
 - Non-occulting tracks
 - MR data (1.0 Hz):
 - Occulting tracks (typically elevations below 0°)
 - HR data (50 Hz):
 - Ionospheric altitudes (-5° to ~50 km tangent altitude) at night (L1 only)
 - Tropospheric altitudes (below ~50 km tangent altitude

MD_PM Observations Identifying Density Enhancements TEC at 300 km, March 01-08, 2010 400 300 A ы 200 100 0 02 03 04 05 06 07 08 Day 300 km reference altitude TEC at 300 km, March 06-07, 2010 200 selected – Near nighttime F-Peak 150 **Density enhancements** Post-Midnight visible 5 out of 7 days in **Density Peaks** ΕC example week. 100 March 6-7 observed 2 50 enhancements ~130 min apart. 0 22 23 00 06 18 19 20 21 01 02 03 04 05 Hour

Rebecca.L.Bishop@aero.org PSL/SSAL

Density Enhancement Due to F-peak motion?

- F-Peak between 250 and 275 km most of the night
- All altitude slices exhibit similar density enhancement – Local F-peak motion unlikely source.
- Shows a "wave-like" structure

Temporal Variations of Nighttime Ionosphere Density

- Typical MD_PM has changes in TEC >40 TECU but may be as low as 10 TECU
- Polynomial fit to 8 hours preceding nighttime minimum and then subtracted from data
- Multiple enhancements commonly observed
- GPSRO spans large horizontal area (lat/lon)
 - Multiple peaks may be due to latitude variations captured.
- Typical periods of variations: 2, 4, and ~6 hr

Occurrence Statistics

October 2009 - April 2010

	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Days of Data	27	30	29	29	25	27	28	29
Percent Occurrence	81.5	96.7	89.7	93.1	92.0	92.6	92.9	96.6
Average Time of Maximum (LT)	0106	2341	0035	0001	0043	2346	0007	0031
Average Time of First Minimum (LT)	2114	2037	2121	2137	2202	2125	2132	2105

- Valid days include at least one data point every 15 minutes
- Geomagnetically quiet period
 - Ap < 20 for all but ~10 days
- Average time is near local midnight
- MDM appears to be relatively common

Summary

- 6 months of GPS radio occultation data has been analyzed for MDM events
- MDM events are relatively common with an average occurrence rate of 91.9%
- Post-sunset TEC enhancement events occur independent of geomagnetic activity
- A wave structure appears to often exist with periods of 2, 4, ~6 hr.
- The TEC enhancements occur primarily on the bottom-side of the F-peak, but are observable for the dataset's entire altitude range.
- There are significant latitudinal and longitudinal variations in MDM magnitude and surrounding depletions

Acknowledgements: This work is supported under The Aerospace Corporation's Sustained Experimentation and Research for Program Applications

References

- Akmaev, R. A., F. Wu, T. J. Fuller-Rowell, H. Wang, M. D. Iredell, J. Geophys. Res., 115, doi:10.1029/2010JA015651, 2010.
- Arduini, C., G. Laneve, U. Ponzi, *Adv. Space* Res., *18,* 361-370, 1996.
- Arduini, C., G. Laneve, F. A. Herrero, *Geophys. Res. Lett.*, 24(4), 377-380, 1997.
- Colerico, M.J., M. Mendillo, J. Atmos. Solar Terr. Phys., 64, 1361-1369, 2002.
- Farelo, A. F., M. Herraiz, A. V. Mikhailov, Ann. Geophys., 20, 1795-1806, 2002.
- Herrero, F. A., and N. W. Spencer, *Geophys. Res. Lett.*, 9(10), 1179-1182, 1982.
- Luan, X., W. Wang, A. Burns, S.C. Solomon, J. Lei, *J. Geophys. Res.*, 113, doi:10.1029/27008JA13063, 2008.
- Meriwether, J. W., J. J. Makela, Y. Huang, D. J. Fisher, R. A. Buriti, A. F. Medeiros, H. Takahshi, *J. Geophys. Res.*, *116*, doi:10.1029/2012JA017855, 2011.

All trademarks, trade names, and service marks are the property of their respective owners

