

Full-Orbit Ultraviolet Ionospheric Tomography and Applications

Scott Budzien¹, Kenneth Dymond¹, Andrew Nicholas¹, Andrew Stephan¹, and Matthew Hei²

¹Naval Research Laboratory Washington, DC ²Sotera Defense Solutions, Inc., Springfield, VA

Far-ultraviolet Tomography at NRL

- NRL has performed FUV tomography of the nighttime ionosphere and 2-D algorithms over many years
 - -LORAAS, COSMIC TIP+GOX, SSULI missions
- Space-based tomography provides coverage over oceans and other regions of limited access
- Recent innovations include
 - New Image Space Reconstruction Algorithms (ISRAs)
 - Full-orbit volume emission rate tomography
 - Incorporating atmospheric extinction
 - Multiple UV sensor tomography (SSULI+SSUSI)

This presentation will focus on full-orbit FUV tomography using SSULI and SSULI+SSUSI

Measuring Ionospheric Airglow on DMSP

SSUSI Nighttime Ionosphere

◆ DMSP SSULI & SSUSI sensors measure ion density (and more), including vertical and horizontal gradients Scan Mirror ✓ ✓

 SSULI scans the limb vertically in the orbital plane

 SSUSI scans the limb and disk perpendicular to the orbital plane

Why Tomography?

Medical Tomography

- Tomographic reconstruction provides a crosssection revealing density structure and gradients using multiple viewing angles
- DMSP carries two complementary optical sensors SSUSI & SSULI
 - Near-orthogonal viewing angles
 - Compatible or identical measurements (O, N₂, O⁺)
 - Combination improves signal-to-noise
 - Different views compensate for particle noise data losses as S/C traverses auroras/SAA
 - Tomographic reconstruction can maximize sensor data volume by eliminating parallax effects (e.g. SSULI aurora and terminator views)
- Optimal reconstruction can be performed before feeding 135.6 data to global assimilative model
 - Reconstruction grid can be tuned to GAIM spatial resolution
 - Can be performed continuously around the orbit independent of airglow excitation processes

Atmospheric Tomography

- Atmospheric tomography resolves key atmospheric/ionospheric structures to constrain drivers in physics-based models
 - More accurate physical drivers can improve forecast accuracy
- SSUSI & SSULI can jointly perform airglow tomography to unambiguously resolve
 - Vertical and horizontal gradient structures in the ionosphere
 - Specification is relevant to RF operational applications
 - Neutral composition distributions, dynamical features, and temperature
 - Relevant to GAIM full-physics ionospheric forecasting

SSULI/SSUSI UV Tomography Method

- 2-D retrieval in orbit angle and altitude along the whole orbit
- OI 1356 airglow emission
 - Image Space Reconstruction Algorithms
 - Reconstruction on volume emission rate
 - No assumptions about physical processes generating airglow
 - Dayglow, nightglow, terminator, aurora handled simultaneously
 - Simply geolocate the emission correctly; then model the physics at a later analysis stage
- Use coincident SSULI and SSUSI observations
 - Co-adding 15 SSUSI pixels directly below DMSP coincides with cross-track width of SSULI
 - Maximize signal-to-noise with fewest assumptions
- ◆ Extinction by atmospheric O₂ Schumann-Runge absorption is very important for accurate reconstruction
- Diffusive regularization scheme; regularization is limited on each iteration to be less than the reconstruction algorithm change

SSULI-SSUSI Tomography Approach

Predicted Reconstruction Fidelity

- Reconstruction accuracy depends upon
 - Dominatied primarily counting statistics of measurement
 - Number of independent line-of-sight measurement
- Regions with low sampling or small Vem have highest uncertainty

Tomography Simulation: SSULI Only (1/2)

- 5500 SSULI lines-of-sight and modeled 135.6 nm emission
- SSULI samples horizontally and vertically in the orbital plane
 - 100-750 km altitude, 5° cross-track, 5.6° limb scan cadence
 - Good vertical resolution, but limited horizontal resolution

Tomography Simulation: SSULI Only (2/2)

- Dayside at iteration 300
- Showing pixelization of Vem

- Nightside at iteration 10
- Showing pixelization of Vem

Tomography Simulation: SSUSI Only

- Dayside at iteration 200
- Showing pixelization of Vem

- Nightside at iteration 500
- Showing pixelization of Vem

Tomography Simulation: SSULI+SSUSI (1/2)

- ◆ ~10000 lines-of-sight and modeled 135.6 nm emission
- Comparable signal-to-noise of two sensors

Tomography Simulation: SSULI+SSUSI (2/2)

- Dayside at iteration 300
- Showing pixelization of Vem

- Nightside at iteration 10
- Showing pixelization of Vem

Tomography: SSULI+SSUSI Nighttime Data

- SSULI & ALTAIR ISR data from DMSP F18 Cal-Val
 - April 6, 2010
 - Uniform initial guess
- Volume emission rate reconstruction
 - Restricted to nighttime region over ALTAIR
 - 50 iterations
- Converted to electron density
 - Assumed all Vem attributed to O++e recombination
 - Expect slight overestimate
 of Ne due to O⁺+O⁻
- ALTAIR electron density
 - Provided by Groves, 2010

Tomography: SSULI+SSUSI Nighttime Data

- SSULI, SSUSI & ALTAIR ISR data from DMSP F18 Cal-Val
 - Nominal sensitivites: no cross-calibration scaling
 - Uniform initial guess
- Volume emission rate reconstruction
 - Restricted to nighttime region over ALTAIR
 - 200 iterations
- Converted to electron density
 - Assumed all Vem attributed to O++e recombination
 - Expect slight overestimate
 of Ne due to O⁺+O⁻
- ALTAIR electron density

UV Tomography Summary

- Key principles:
 - We have developed FUV space-based <u>volume emission rate</u> tomography, irrespective of excitation source
 - Strongly data-centric, very few assumptions
 - Compatible with photon count data (Poisson statistics)
- UV sensors can by design optimize viewing geometry for tomography applications, e.g. SSULI/SSUSI, LITES/GROUP-C
- SSULI and SSUSI together improve signal-to-noise of reconstruction and compensates intrinsic limitations of each sensor
- The Richardson-Lucy reconstruction method is intrinsically positive-definite, compatible with Poisson statistics, and insensitive to initial guess
- Extinction effects must be considered in the UV for accurate reconstructions
- ◆ Full-orbit tomography can provide continuous monochromatic images of dayside, nightside, and aurora (e.g. O 135.6 nm, N₂ LBH) corrected for viewing geometry effects

Continuing Work

- Additional SSULI-SSUSI data reconstructions from DMSP F18, F19
- Collaborating with SSUSI team to optimize usage of SSUSI data
- Evaluating tomographic retrievals in vicinity of auroras
- Accounting for non-Poisson uncertainties, such as
 - Pointing uncertainty
 - Within cell non-uniformity
 - O2 extinction
 - Monte Carlo error modeling
- Optimized reconstruction grids (possibly non-uniform) to balance resolution, S/N, and computation time
- ◆ STP-H5 GROUP-C & LITES Experiments
 - UV Tomography + GPS occultation and scintillation
 - International Space Station
 - Jan 2016 Launch

Co-adding Lines of Sight

- SSULI and SSUSI have different sensitivities, dwell times, and target brightness
- We improve counting statistics by coadding data lines-of-sight
 - Intrinsic individual sensor resolutions are higher than reconstruction pixel grid
 - Does not affect reconstructionaccuracy
 - Reduces computation time

SSULI Limb Data

- SSULI Limb Scan Data
 - Single Orbit 6/21/2012
 - 65 Vertical Profiles each orbit
 - Tangent Point Locations
 - ~3000 km ahead of DMSP spacecraft

