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Introduction 

 We have been applying Image Space Reconstruction Algorithms (ISRAs) 
to the solution of large-scale ionospheric tomography problems 
 

 Desirable features of ISRAs 
• Positive definite  more physical solutions 
• ISRAs are amenable to spare-matrix formulations 
• Fast, stable, and robust 
• Easy to add between iteration physicality constraints 

 
 We present the results of our studies of two types of ISRA 

• Least-Squares Positive Definite (LSPD): iterative non-negative least-squares 
generalization  

• Richardson-Lucy: applicable to measurements that follow Poisson statistics 
 

 We compare their performance to the Multiplicative Algebraic 
Reconstruction (MART) and the Conjugate Gradient Least Squares 
algorithms 
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Overview 

 What are we trying to do?  
• Specific application: improve on-

orbit specification of the 
ionosphere or thermosphere 

• Approach: Use aggregates of 
limb scan information to infer the 
2-D (or 3-D) distribution of O+ 
ions in the ionosphere 

 Brightness measurements are 
linear in the volume emission rate 
• Analogous to Computerized 

Ionospheric Tomography linear 
in the electron density 

• Noise on brightness 
measurements obeys Poisson 
statistics – not the Normal 
Distribution 
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SSULI Measurement Scenario 

3 Daytime Limb Scans 



Ionospheric Tomography & Current Algorithms 

 Line-of-sight integrals are replaced 
by summations assuming constant 
volume emission rate in a voxel 

 The result is a large sparse linear 
system of equations 

 To solve this in the Least-Squares 
sense, we minimize the Chi-
squared statistic 

 This system is solved by 
• Multiplicative Algebraic 

Reconstruction Technique (MART) 
• Conjugate Gradient Methods (for 

example Conjugate Gradient Least 
Squares – CGLS) 

• And others… 
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The Problem 

 How can we produce accurate, physical solutions in the presence of 
measurement noise? 
• Want to weight solutions using signal-to-noise ratio using Weighted Least 

Squares approach 
• Solutions must be physical and ideally smooth 

– Noise introduces high frequency components to the solution  often results in 
non-physical negative density or volume emission rate values and undesirable 
solution roughness 

– Smoothness: Current regularization schemes are ad hoc – can we introduce a 
physicality constraint? 

• Account for the type of measurement statistics 
– Current methods can approximate Poisson solutions: Is there an exact 

method? 
 

 Our solution: Image Space Reconstruction Algorithms 
• Richardson-Lucy (RL): non-negative, naturally handles Poisson statistics 
• Least-Squares, Positive-Definite (LSPD): non-negative, naturally handles 

Gaussian statistics 
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CGLS Inversion, Noise-free 
-Non-physicality- 

 Right: IRI-2007 input ionosphere 
 Center: LSPD reconstruction, showing 

• Reconstruction is imperfect due to limited instrument sampling 
• But is non-negative  

 Right: CGLS reconstruction 
• Parts of image show negative, non-physical values 
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Image Space Reconstruction Algorithms 
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What About Measurements With Poisson Noise?  

 CGLS, MART, and LSPD approaches work well for random 
variables that follow Normal/Gaussian distributions 
• But when used on Poisson distributed data can result in biases 
• For following comparisons, we use adjusted error bars for those 

approaches 
 

 Mighell suggested modifications to Gaussian-based approaches 
that will work for Poisson distributed data 
• Adjust the count rates for non-zero values upward by one count:  

 
 

• Force the data to be greater than one and take the square-root to get 
the uncertainties: 
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Test Problems 

 Used IRI-2007 to generate the test ionosphere 
• Nighttime case at solar maximum 

 Simulated SSULI measurements using: 
• Realistic instrument viewing information 
• Varying sensitivity  varied signal-to-noise ratio of “data” 

 Realistic photon shot noise was added based on the instrument 
sensitivity 
• Sensitivities: 1000, 100, 10, 1, 0.1, 0.01 ct/s/Rayleigh 
• SSULI sensitivity ~0.1 ct/s/Rayleigh 

 Studied the accuracy of the retrievals 
• No Physicality Constraint applied 
• Adjusted/optimized the diffusion weight 

 Non-regularized CGLS solutions used as a “control” 
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Reconstructions with Noise 
-Non-Constrained, S = 1ct/s/R- 
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Regularization 

 Most common regularization scheme is Tikhonov, standard approach 
of introducing a penalty term to enforce smoothness 
 
 
• Where L is a regularization operator 

– L = I ; the identity matrix  ad hoc, provides simplest solution, but drives 
image to prior 

– L = variety of derivative operators ; smooth solution  ad hoc, lower 
bias than using identity operator 

– L = Σx
-1 ;the inverse model covariance matrix  based on prior information, 

could bias solution to prior knowledge 
• NO accepted best approach to estimate the optimal weighting value, λ 

– Approaches: Truncate iterations, TSVD, GCV, L-curve, Draftsmen’s license 
(chi-by-eye)… 
 

 We opted for between iteration application of a physicality constraint 
• This approach equally weights solution physicality and accuracy of the fit 

to the data 
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CGLS Inversion with Noise 
-Tikhonov Regularization, Identity Operator- 

 S = 1 ct/s/R, 
Tikhonov 
regularization 
• Weight 

estimates using 
“Draftsmen 
License”  

• Arc densities 
are too low 

• Arc asymmetry 
is not correct 

 Weight for RL is 
10 times what is 
needed for 
weighted least 
squares 
approach 
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Physicality Constraint 

 Regularization to a differential equation is an approach used in the 
computer graphics modeling community 
• Improves computer rendering by generating a smooth surface from facet 

information 
 We use the time independent diffusion equation 

 
 

 Currently, we assume uniform, isotropic transport 
• Permits the algorithms to produce reasonable results during daytime and 

at night 
– Will work for either ionospheric emissions (nighttime ionosphere) or for 

emission generated by neutral species (O and N2 in the dayglow) 
• However, some emissions, for example O I 1356 Å, have both ionospheric 

and thermospheric components during the daytime 
– Drives eventual need for non-isotropic, non-uniform diffusion approximation 

 Implemented using the Successive Over-Relaxation approximation 
• Makes small steps to “relax” solution to the diffusion approximation 
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Successive Over-Relaxation (SOR) 

 We chose this iterative approach to solve the diffusion equation 
• Desired a method with low computational overhead 
• Wanted a means to guide the algorithms to a physically meaningful 

solution 
 Approximating the diffusion equation at time step k+1 by finite 

difference equations (assuming ∆x = ∆y, i & j are cell indices): 
 
 

 To ensure a stable solution, the maximum time step size allowed 
is limited by the diffusion time across the cell: 
 
 
• We refer to W as the diffusion weight and use it to tune the weighting 

of the physicality constraint 
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Reconstructions with Noise 
-Physicality Constrained- 

 S = 0.01 ct/s/R, 
W=1/4 
• Solution is 

too smooth 
• Arc densities 

are too low 
• Arc 

asymmetry is 
not correct 

 Able to 
reconstruct 
incredibly noisy 
data 
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Reconstructions with Noise 
-Physicality Constrained- 

 S = 1 ct/s/R, 
W=1/4 
• Solution is 

too smooth 
• Arc densities 

are too low 
• Arc 

asymmetry is 
not correct 

 Need to reduce 
diffusion weight, 
W 
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Reconstructions with Noise 
-Physicality Constrained- 

 S = 1 ct/s/R, 
estimated best 
diffusion weight 
• Solution is 

smooth, but 
not too 
smooth 

• Arc densities 
are in good 
agreement 

• Arc 
asymmetry is 
more correct 

 Best diffusion 
weight estimated 
from Signal-to-
Noise Ratio of 
measurements: 
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Speed Comparison 

 Test problem had: 
• 1820 lines of sight 
• 1305 density cells 

 Measured execution speed versus 
accuracy of convergence, ε: 
• All algorithms use same stopping 

criteria 
• Fractional change in the volume 

emission rate and the chi-squared 
of the fit to the data both change 
by < ε between steps 

 During each set of tests, data 
mean signal-to-noise ratio fixed at: 
• Top: 2.7 
• Bottom: 283 
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ε CGLS MART LSPD RL 

10-2 0.14 2.1 0.14 0.15 

10-3 0.20 4.8 0.17 0.18 

10-4 0.60 8.9 0.23 0.24 

10-5 4.9 16.3 0.34 0.35 

Low SNR = 2.7 

High SNR = 283 
ε CGLS MART LSPD RL 

10-2 0.14 2.3 0.14 0.14 

10-3 0.20 6.5 0.19 0.20 

10-4 0.41 21.8 0.34 0.40 

10-5 3.72 226.7 3.07 3.71 



Does it really work? 

 Comparison of SSULI tomography 
versus ALTAIR radar measurements 
using Richardson-Lucy algorithm and 
physicality constraint 

• Agreement is very good 
• Scatterplot below shows high degree of 

correlation 
• Diffusion weight estimated from SNR of 

measurements 
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Summary 

 We now have the means to rapidly and accurately invert spaceflight 
limb-scan data 
• Routine, automated processing is possible 
• Can now derive 2D structure along the orbit plane 
• Approach is being extended to 3D 
• Also works with other applications 

 
 Our approach entails 

• New iterative Image Space Reconstruction Algorithms 
• Physicality constraint using regularization to a partial differential equation 

 
 Advantages of our approach: 

• The algorithms are both fast and robust 
• The Richardson-Lucy algorithm handles Poisson nose explicitly 

– Can work on data with very low signal-to-noise ratio 
• Regularization approach is somewhat “vanilla”, in that minimal tuning is 

required 
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