Applications of Image Space Reconstruction Algorithms to Ionospheric Tomography

Kenneth Dymond & Scott Budzien
Space Science Division
Naval Research Laboratory

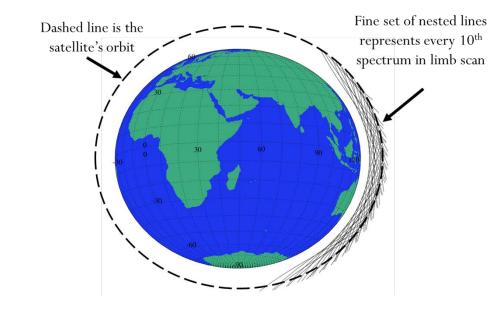
Matthew Hei Sotera Defense

Introduction

- We have been applying Image Space Reconstruction Algorithms (ISRAs) to the solution of large-scale ionospheric tomography problems
- Desirable features of ISRAs
 - Positive definite → more physical solutions
 - ISRAs are amenable to spare-matrix formulations
 - Fast, stable, and robust
 - Easy to add between iteration physicality constraints
- We present the results of our studies of two types of ISRA
 - Least-Squares Positive Definite (LSPD): iterative non-negative least-squares generalization
 - Richardson-Lucy: applicable to measurements that follow Poisson statistics
- We compare their performance to the Multiplicative Algebraic Reconstruction (MART) and the Conjugate Gradient Least Squares algorithms

Overview

- What are we trying to do?
 - Specific application: improve onorbit specification of the ionosphere or thermosphere
 - Approach: Use aggregates of limb scan information to infer the 2-D (or 3-D) distribution of O+ ions in the ionosphere
- Brightness measurements are linear in the volume emission rate
 - Analogous to Computerized Ionospheric Tomography → linear in the electron density
 - Noise on brightness measurements obeys Poisson statistics – not the Normal Distribution

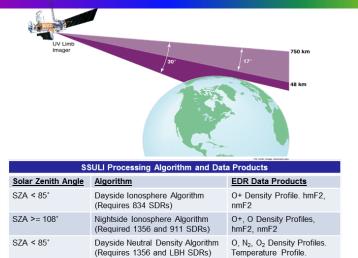


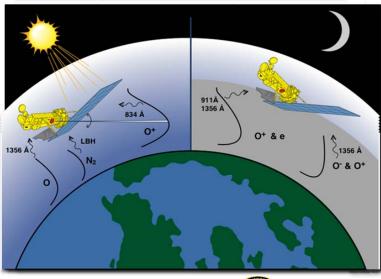
$$4\pi I = 10^{-6} \int_0^\infty \mathcal{E}(s, z, \lambda, \phi) \, ds(z, \lambda, \phi)$$

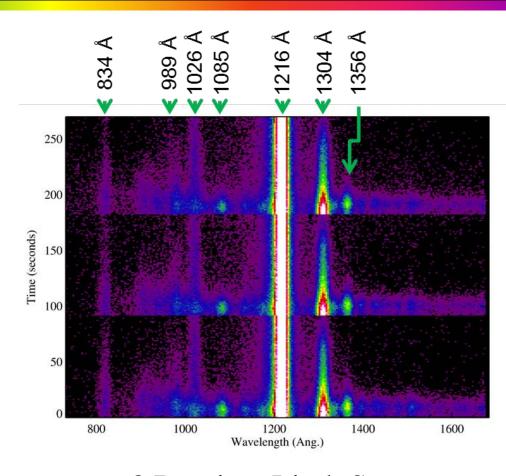
Volume emission rate, ε:

$$\varepsilon(z,\lambda,\phi) = \alpha n_{e}(z,\lambda,\phi) n_{o^{+}}(z,\lambda,\phi)$$

SSULI Measurement Scenario







3 Daytime Limb Scans

Ionospheric Tomography & Current Algorithms

- Line-of-sight integrals are replaced by summations assuming constant volume emission rate in a voxel
- The result is a large sparse linear system of equations
- To solve this in the Least-Squares sense, we minimize the Chisquared statistic
- This system is solved by
 - Multiplicative Algebraic
 Reconstruction Technique (MART)
 - Conjugate Gradient Methods (for example Conjugate Gradient Least Squares – CGLS)
 - And others...

$$4\pi I = 10^{-6} \sum_{i} \mathcal{E}(z, \lambda, \phi) \Delta s_{i}(z, \lambda, \phi)$$

$$Ax = b$$

$$\chi^{2} = (Ax - b)^{T} \sum_{D}^{-1} (Ax - b)$$

$$(A^{T} \sum_{D}^{-1} A) x = A^{T} \sum_{D}^{-1} b$$

$$\Sigma_{D}^{-1} = \begin{pmatrix} 1/\sigma_{i}^{2} & 0 \\ & \ddots & \\ 0 & 1/\sigma_{n}^{2} \end{pmatrix} =$$

inverse data covariance matrix

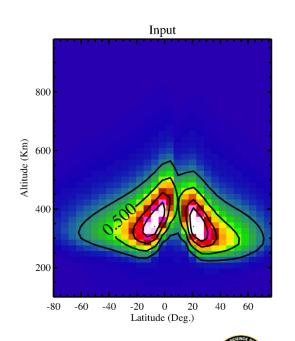
The Problem

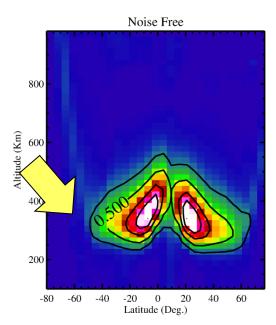
- How can we produce accurate, physical solutions in the presence of measurement noise?
 - Want to weight solutions using signal-to-noise ratio using Weighted Least Squares approach
 - Solutions must be physical and ideally smooth

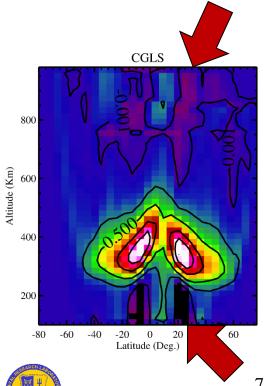
 - Smoothness: Current regularization schemes are ad hoc can we introduce a physicality constraint?
 - Account for the type of measurement statistics
 - Current methods can approximate Poisson solutions: Is there an exact method?
- Our solution: Image Space Reconstruction Algorithms
 - Richardson-Lucy (RL): non-negative, naturally handles Poisson statistics
 - Least-Squares, Positive-Definite (LSPD): non-negative, naturally handles Gaussian statistics

CGLS Inversion, Noise-free -Non-physicality-

- ➤ Right: IRI-2007 input ionosphere
- Center: LSPD reconstruction, showing
 - Reconstruction is imperfect due to limited instrument sampling
 - But is non-negative
- Right: CGLS reconstruction
 - Parts of image show negative, non-physical values







5/22/2015

Image Space Reconstruction Algorithms

Least-squares Positive Definite

$$\chi^2 = (Ax - b)^T \Sigma_D^{-1} (Ax - b)$$

$$(A^{\mathsf{T}}\Sigma_{\scriptscriptstyle D}^{\scriptscriptstyle -1}A)x = A^{\mathsf{T}}\Sigma_{\scriptscriptstyle D}^{\scriptscriptstyle -1}b$$

Ensure Karush-Tucker-Kuhn conditions are met:

$$x \otimes (A^{\mathsf{T}} \Sigma_{\scriptscriptstyle D}^{\scriptscriptstyle -1} A) x = x \otimes A^{\mathsf{T}} \Sigma_{\scriptscriptstyle D}^{\scriptscriptstyle -1} b$$

$$x_{j+1} = x_{j} \otimes \frac{A^{T} \Sigma_{D}^{-1} b}{\left(A^{T} \Sigma_{D}^{-1} A x_{j}\right)}$$

Richardson-Lucy

$$J = 1^{\mathsf{T}} \left(Ax - b \otimes \log Ax \right)$$

$$\nabla J = A^{T} \left(1 - \frac{b}{Ax} \right) = 0$$

Ensure Karush-Tucker-Kuhn conditions are met:

$$x \otimes A^{\mathsf{T}} \left(\bar{1} \right) = x \otimes A^{\mathsf{T}} \left(\frac{b}{Ax} \right)$$

$$x_{j+1} = x_{j} \otimes \frac{A^{T}}{A^{T}(\bar{1})} \left(\frac{b}{Ax_{j}}\right)$$

What About Measurements With Poisson Noise?

- CGLS, MART, and LSPD approaches work well for random variables that follow Normal/Gaussian distributions
 - But when used on Poisson distributed data can result in biases
 - For following comparisons, we use adjusted error bars for those approaches
- Mighell suggested modifications to Gaussian-based approaches that will work for Poisson distributed data
 - Adjust the count rates for non-zero values upward by one count:

$$b_a = b+1$$
 where $b>1$

 Force the data to be greater than one and take the square-root to get the uncertainties:

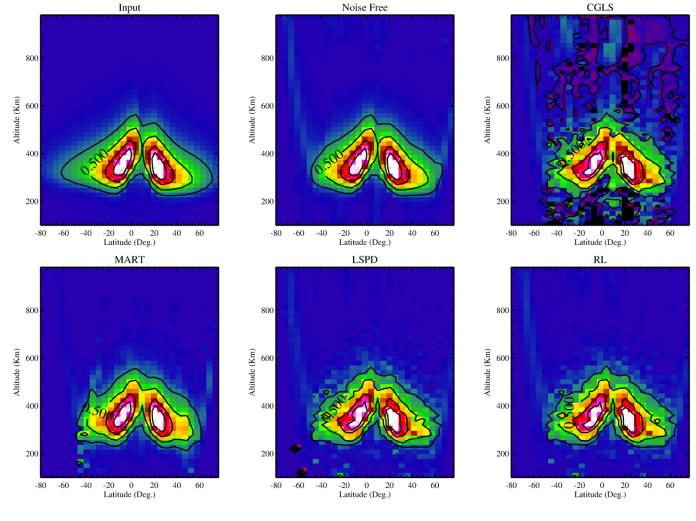
$$\sigma = \sqrt{b_{a} + 1}$$

Test Problems

- Used IRI-2007 to generate the test ionosphere
 - Nighttime case at solar maximum
- Simulated SSULI measurements using:
 - Realistic instrument viewing information
 - Varying sensitivity

 varied signal-to-noise ratio of "data"
- Realistic photon shot noise was added based on the instrument sensitivity
 - Sensitivities: 1000, 100, 10, 1, 0.1, 0.01 ct/s/Rayleigh
 - SSULI sensitivity ~0.1 ct/s/Rayleigh
- Studied the accuracy of the retrievals
 - No Physicality Constraint applied
 - Adjusted/optimized the diffusion weight
- Non-regularized CGLS solutions used as a "control"

Reconstructions with Noise -Non-Constrained, S = 1ct/s/R-



Regularization

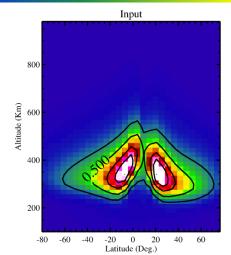
Most common regularization scheme is Tikhonov, standard approach of introducing a penalty term to enforce smoothness

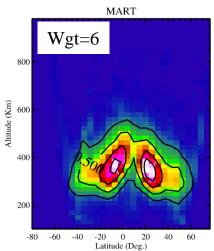
$$(A^{\mathsf{T}}\Sigma_{\scriptscriptstyle D}^{\scriptscriptstyle -1}A + \lambda L)x = A^{\mathsf{T}}\Sigma_{\scriptscriptstyle D}^{\scriptscriptstyle -1}b$$

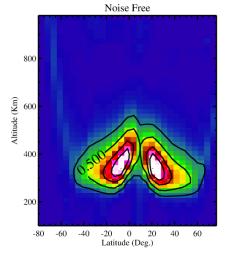
- Where L is a regularization operator
 - L = I ; the identity matrix → ad hoc, provides simplest solution, but drives image to prior
 - L = variety of derivative operators ; smooth solution → ad hoc, lower bias than using identity operator
 - − L = Σ_x^{-1} ; the inverse model covariance matrix → based on prior information, could bias solution to prior knowledge
- NO accepted best approach to estimate the optimal weighting value, λ
 - Approaches: Truncate iterations, TSVD, GCV, L-curve, Draftsmen's license (chi-by-eye)...
- We opted for between iteration application of a physicality constraint
 - This approach equally weights solution physicality and accuracy of the fit to the data

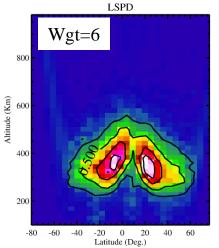
CGLS Inversion with Noise -Tikhonov Regularization, Identity Operator-

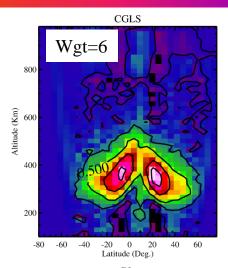
- S = 1 ct/s/R,Tikhonovregularization
 - Weight estimates using "Draftsmen License"
 - Arc densities are too low
 - Arc asymmetry is not correct
- Weight for RL is 10 times what is needed for weighted least squares approach

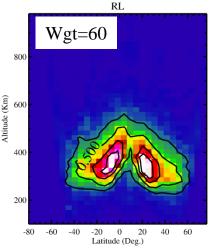












Physicality Constraint

- Regularization to a differential equation is an approach used in the computer graphics modeling community
 - Improves computer rendering by generating a smooth surface from facet information
- > We use the time independent diffusion equation

$$\frac{\partial n}{\partial t} = \nabla \left(\left(\overline{D} \nabla n \right) \right) \Rightarrow 0 = \nabla^2 n \quad (time \ independent)$$

- > Currently, we assume uniform, isotropic transport
 - Permits the algorithms to produce reasonable results during daytime and at night
 - Will work for either ionospheric emissions (nighttime ionosphere) or for emission generated by neutral species (O and N₂ in the dayglow)
 - However, some emissions, for example O I 1356 Å, have both ionospheric and thermospheric components during the daytime
 - Drives eventual need for non-isotropic, non-uniform diffusion approximation
- Implemented using the Successive Over-Relaxation approximation
 - Makes small steps to "relax" solution to the diffusion approximation

Successive Over-Relaxation (SOR)

- We chose this iterative approach to solve the diffusion equation
 - Desired a method with low computational overhead
 - Wanted a means to guide the algorithms to a physically meaningful solution
- Approximating the diffusion equation at time step k+1 by finite difference equations (assuming $\Delta x = \Delta y$, i & j are cell indices):

$$n_{i,j}^{k+1} = n_{i,j}^{k} - \frac{D\Delta t}{\left(\Delta x\right)^{2}} \left(n_{i-1,j}^{k} + n_{i+1,j}^{k} + n_{i,j-1}^{k} + n_{i,j+1}^{k} - 4n_{i,j}^{k}\right)$$

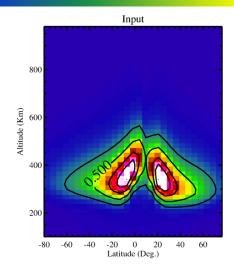
➤ To ensure a stable solution, the maximum time step size allowed is limited by the diffusion time across the cell:

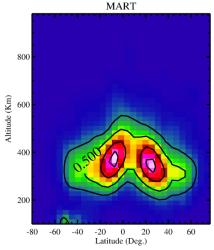
$$W \equiv \frac{D\Delta t}{\left(\Delta x\right)^2} \le \frac{1}{4}$$

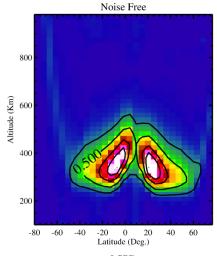
 We refer to W as the diffusion weight and use it to tune the weighting of the physicality constraint

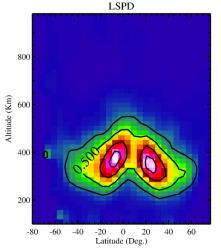
Reconstructions with Noise -Physicality Constrained-

- > S = 0.01 ct/s/R, W=1/4
 - Solution is too smooth
 - Arc densities are too low
 - Arc
 asymmetry is
 not correct
- Able to reconstruct incredibly noisy data

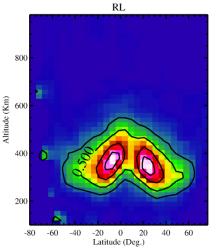








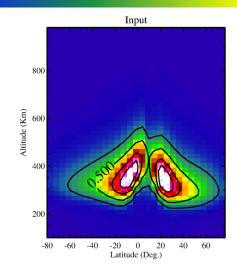


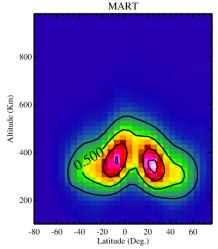


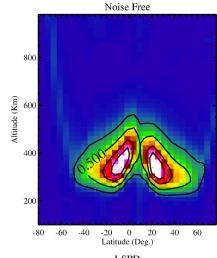
Reconstructions with Noise -Physicality Constrained-

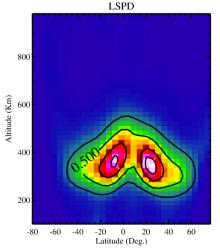
- > S = 1 ct/s/R, W = 1/4
 - Solution is too smooth
 - Arc densities are too low
 - Arc asymmetry is not correct
- Need to reduce diffusion weight, W

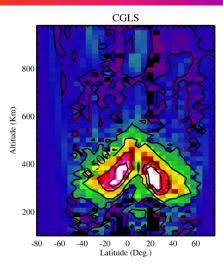
5/22/2015

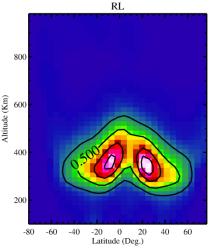










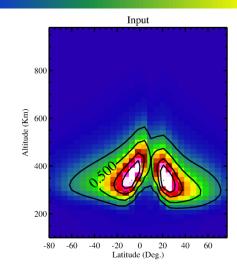


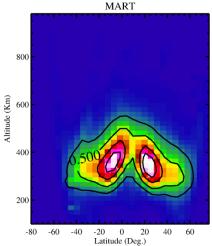
Reconstructions with Noise -Physicality Constrained-

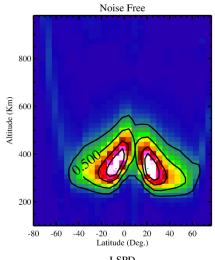
- \gt S = 1 ct/s/R, estimated best diffusion weight
 - Solution is smooth, but not too smooth
 - Arc densities are in good agreement
 - Arc asymmetry is more correct
- Best diffusion weight estimated from Signal-to-Noise Ratio of measurements:

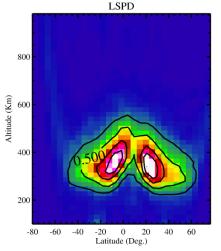
 $W \square \sqrt{2} mean(SNR)$

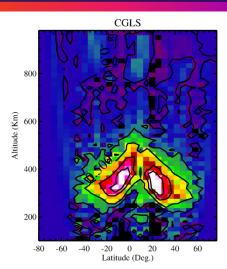
5/22/2015

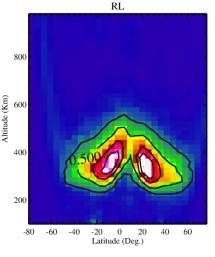












Speed Comparison

- > Test problem had:
 - 1820 lines of sight
 - 1305 density cells
- Measured execution speed versus accuracy of convergence, ε:
 - All algorithms use same stopping criteria
 - Fractional change in the volume emission rate and the chi-squared of the fit to the data both change by $< \varepsilon$ between steps
- During each set of tests, data mean signal-to-noise ratio fixed at:

Top: 2.7

Bottom: 283

Low SNR = 2.7

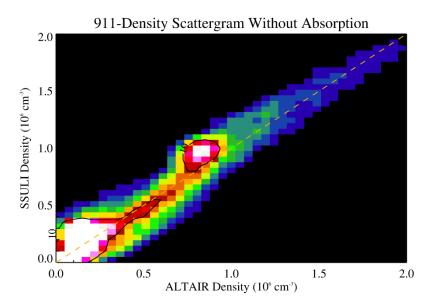
3	CGLS	MART	LSPD	RL
10 ⁻²	0.14	2.1	0.14	0.15
10 ⁻³	0.20	4.8	0.17	0.18
10-4	0.60	8.9	0.23	0.24
10 ⁻⁵	4.9	16.3	0.34	0.35

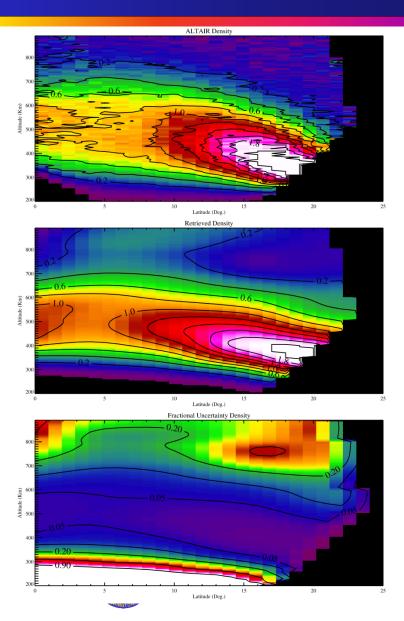
High SNR = 283

ε	CGLS	MART	LSPD	RL
10 ⁻²	0.14	2.3	0.14	0.14
10 ⁻³	0.20	6.5	0.19	0.20
10-4	0.41	21.8	0.34	0.40
10 ⁻⁵	3.72	226.7	3.07	3.71

Does it really work?

- Comparison of SSULI tomography versus ALTAIR radar measurements using Richardson-Lucy algorithm and physicality constraint
 - Agreement is very good
 - Scatterplot below shows high degree of correlation
 - Diffusion weight estimated from SNR of measurements





Summary

- We now have the means to rapidly and accurately invert spaceflight limb-scan data
 - Routine, automated processing is possible
 - Can now derive 2D structure along the orbit plane
 - Approach is being extended to 3D
 - Also works with other applications
- Our approach entails
 - New iterative Image Space Reconstruction Algorithms
 - Physicality constraint using regularization to a partial differential equation
- Advantages of our approach:
 - The algorithms are both fast and robust
 - The Richardson-Lucy algorithm handles Poisson nose explicitly
 - Can work on data with very low signal-to-noise ratio
 - Regularization approach is somewhat "vanilla", in that minimal tuning is required

Acknowledgements

- We are grateful to F. Kamalabadi (U. of Illinois) for useful discussions regarding tomography algorithms and to Keith Groves (Boston College) for providing the ALTAIR data.
- ➤ The SSULI program and part of this research was supported by USAF/Space and Missile Systems Center (SMC). The Chief of Naval Research also supported this work through the Naval Research Laboratory (NRL) 6.1 Base Program.

