#### **Applications of Image Space Reconstruction Algorithms to Ionospheric Tomography**

Kenneth Dymond & Scott Budzien Space Science Division Naval Research Laboratory

> Matthew Hei Sotera Defense

## Introduction

- We have been applying Image Space Reconstruction Algorithms (ISRAs) to the solution of large-scale ionospheric tomography problems
- Desirable features of ISRAs
  - Positive definite → more physical solutions
  - ISRAs are amenable to spare-matrix formulations
  - Fast, stable, and robust
  - Easy to add between iteration physicality constraints
- We present the results of our studies of two types of ISRA
  - Least-Squares Positive Definite (LSPD): iterative non-negative least-squares generalization
  - Richardson-Lucy: applicable to measurements that follow Poisson statistics
- We compare their performance to the Multiplicative Algebraic Reconstruction (MART) and the Conjugate Gradient Least Squares algorithms





## Overview

- What are we trying to do?
  - Specific application: improve onorbit specification of the ionosphere or thermosphere
  - Approach: Use aggregates of limb scan information to infer the 2-D (or 3-D) distribution of O<sup>+</sup> ions in the ionosphere
- Brightness measurements are linear in the volume emission rate
  - Analogous to Computerized Ionospheric Tomography → linear in the electron density
  - Noise on brightness measurements obeys Poisson statistics – not the Normal Distribution



$$4\pi I = 10^{-6} \int_0^\infty \varepsilon(s, z, \lambda, \phi) \, ds(z, \lambda, \phi)$$

Volume emission rate,  $\varepsilon$ :  $\varepsilon(z,\lambda,\phi) = \alpha n_{e}(z,\lambda,\phi) n_{o^{+}}(z,\lambda,\phi)$ 





#### **SSULI Measurement Scenario**



## **Ionospheric Tomography & Current Algorithms**

- Line-of-sight integrals are replaced by summations assuming constant volume emission rate in a voxel
- The result is a large sparse linear system of equations
- To solve this in the Least-Squares sense, we minimize the Chisquared statistic
- This system is solved by
  - Multiplicative Algebraic
     Reconstruction Technique (MART)
  - Conjugate Gradient Methods (for example Conjugate Gradient Least Squares – CGLS)
  - And others...

$$4\pi I = 10^{-6} \sum_{i} \varepsilon(z,\lambda,\phi) \Delta s_{i}(z,\lambda,\phi)$$
$$Ax = b$$
$$\chi^{2} = (Ax - b)^{T} \Sigma_{D}^{-1} (Ax - b)$$
$$(A^{T} \Sigma_{D}^{-1} A) x = A^{T} \Sigma_{D}^{-1} b$$
$$\Sigma_{D}^{-1} = \begin{pmatrix} 1/\sigma_{i}^{2} & 0\\ & \ddots \\ 0 & 1/\sigma_{n}^{2} \end{pmatrix} =$$

inverse data covariance matrix





## **The Problem**

- How can we produce accurate, physical solutions in the presence of measurement noise?
  - Want to weight solutions using signal-to-noise ratio using Weighted Least Squares approach
  - Solutions must be physical and ideally smooth
    - Noise introduces high frequency components to the solution 
       often results in non-physical negative density or volume emission rate values and undesirable solution roughness
    - Smoothness: Current regularization schemes are *ad hoc* can we introduce a physicality constraint?
  - Account for the type of measurement statistics
    - Current methods can approximate Poisson solutions: Is there an exact method?
- Our solution: Image Space Reconstruction Algorithms
  - Richardson-Lucy (RL): non-negative, naturally handles Poisson statistics
  - Least-Squares, Positive-Definite (LSPD): non-negative, naturally handles Gaussian statistics







# CGLS Inversion, Noise-free -Non-physicality-

- Right: IRI-2007 input ionosphere
- Center: LSPD reconstruction, showing
  - Reconstruction is imperfect due to limited instrument sampling
  - But is non-negative
- Right: CGLS reconstruction
  - Parts of image show negative, non-physical values









#### **Image Space Reconstruction Algorithms**

Least-squares Positive Definite

$$\chi^2 = (Ax - b)^T \Sigma_D^{-1} (Ax - b)$$

$$(A^{T}\Sigma_{D}^{-1}A)x = A^{T}\Sigma_{D}^{-1}b$$

Ensure Karush-Tucker-Kuhn conditions are met:

$$x \otimes (A^{\mathsf{T}} \Sigma_{D}^{-1} A) x = x \otimes A^{\mathsf{T}} \Sigma_{D}^{-1} b$$

$$x_{j+1} = x_{j} \otimes \frac{A^{T} \Sigma_{D}^{-1} b}{\left(A^{T} \Sigma_{D}^{-1} A x_{j}\right)}$$

5/22/2015



**Richardson-Lucy** 

$$J = 1^{T} \left( Ax - b \otimes \log Ax \right)$$

$$\nabla J = A^{T} \left( 1 - \frac{b}{Ax} \right) = 0$$

Ensure Karush-Tucker-Kuhn conditions are met:

$$x \otimes A^{T}(\bar{1}) = x \otimes A^{T}\left(\frac{b}{Ax}\right)$$
$$x_{j+1} = x_{j} \otimes \frac{A^{T}(\bar{1})}{A^{T}(\bar{1})}\left(\frac{b}{Ax_{j}}\right)$$



## What About Measurements With Poisson Noise?

- CGLS, MART, and LSPD approaches work well for random variables that follow Normal/Gaussian distributions
  - But when used on Poisson distributed data can result in biases
  - For following comparisons, we use adjusted error bars for those approaches
- Mighell suggested modifications to Gaussian-based approaches that will work for Poisson distributed data
  - Adjust the count rates for non-zero values upward by one count:

$$b_a = b + 1$$
 where  $b > 1$ 

• Force the data to be greater than one and take the square-root to get the uncertainties:

$$\sigma = \sqrt{b_a + 1}$$





## **Test Problems**

- Used IRI-2007 to generate the test ionosphere
  - Nighttime case at solar maximum
- Simulated SSULI measurements using:
  - Realistic instrument viewing information
  - Varying sensitivity → varied signal-to-noise ratio of "data"
- Realistic photon shot noise was added based on the instrument sensitivity
  - Sensitivities: 1000, 100, 10, 1, 0.1, 0.01 ct/s/Rayleigh
  - SSULI sensitivity ~0.1 ct/s/Rayleigh
- Studied the accuracy of the retrievals
  - No Physicality Constraint applied
  - Adjusted/optimized the diffusion weight
- Non-regularized CGLS solutions used as a "control"





#### **Reconstructions with Noise** -Non-Constrained, S = 1ct/s/R-







# **Regularization**

Most common regularization scheme is Tikhonov, standard approach of introducing a penalty term to enforce smoothness

$$\left(A^{T}\Sigma_{D}^{-1}A+\lambda L\right)x=A^{T}\Sigma_{D}^{-1}b$$

- Where L is a regularization operator
  - L = I ; the identity matrix → ad hoc, provides simplest solution, but drives image to prior
  - L = variety of derivative operators
     is smooth solution → ad hoc, lower
     bias than using identity operator
  - L =  $\Sigma_x^{-1}$ ; the inverse model covariance matrix → based on prior information, could bias solution to prior knowledge
- NO accepted best approach to estimate the optimal weighting value,  $\lambda$ 
  - Approaches: Truncate iterations, TSVD, GCV, L-curve, Draftsmen's license (chi-by-eye)...
- > We opted for between iteration application of a physicality constraint
  - This approach equally weights solution physicality and accuracy of the fit to the data





# CGLS Inversion with Noise -Tikhonov Regularization, Identity Operator-

- S = 1 ct/s/R, Tikhonov regularization
  - Weight estimates using "Draftsmen License"
  - Arc densities
     are too low
  - Arc asymmetry is not correct
- Weight for RL is 10 times what is needed for weighted least squares approach

5/22/2015



Input





CGLS





## **Physicality Constraint**

- Regularization to a differential equation is an approach used in the computer graphics modeling community
  - Improves computer rendering by generating a smooth surface from facet information
- We use the time independent diffusion equation

$$\frac{\partial n}{\partial t} = \nabla \Box \left( \overline{D} \nabla n \right) \Longrightarrow 0 = \nabla^2 n \quad (time \ independent)$$

- Currently, we assume uniform, isotropic transport
  - Permits the algorithms to produce reasonable results during daytime and at night
    - Will work for either ionospheric emissions (nighttime ionosphere) or for emission generated by neutral species (O and N<sub>2</sub> in the dayglow)
  - However, some emissions, for example O I 1356 Å, have both ionospheric and thermospheric components during the daytime
    - Drives eventual need for non-isotropic, non-uniform diffusion approximation
- Implemented using the Successive Over-Relaxation approximation
  - Makes small steps to "relax" solution to the diffusion approximation





## **Successive Over-Relaxation (SOR)**

- > We chose this iterative approach to solve the diffusion equation
  - Desired a method with low computational overhead
  - Wanted a means to guide the algorithms to a physically meaningful solution
- > Approximating the diffusion equation at time step k+1 by finite difference equations (assuming  $\Delta x = \Delta y$ , i & j are cell indices):

$$n_{i,j}^{k+1} = n_{i,j}^{k} - \frac{D\Delta t}{\left(\Delta x\right)^{2}} \left(n_{i-1,j}^{k} + n_{i+1,j}^{k} + n_{i,j-1}^{k} + n_{i,j+1}^{k} - 4n_{i,j}^{k}\right)$$

To ensure a stable solution, the maximum time step size allowed is limited by the diffusion time across the cell:

$$W \equiv \frac{D\Delta t}{\left(\Delta x\right)^2} \le \frac{1}{4}$$

• We refer to W as the diffusion weight and use it to tune the weighting of the physicality constraint





# **Reconstructions with Noise** -Physicality Constrained-

- ➤ S = 0.01 ct/s/R, W=1/4
  - Solution is
     too smooth
  - Arc densities are too low
  - Arc asymmetry is not correct
- Able to reconstruct incredibly noisy data

5/22/2015



Input





CGLS





# **Reconstructions with Noise** -Physicality Constrained-

- S = 1 ct/s/R,
   W=1/4
  - Solution is
     too smooth
  - Arc densities are too low
  - Arc asymmetry is not correct
- Need to reduce diffusion weight, W

5/22/2015



Input





CGLS





# **Reconstructions with Noise** -Physicality Constrained-

- S = 1 ct/s/R, estimated best diffusion weight
  - Solution is smooth, but not too smooth
  - Arc densities are in good agreement
  - Arc asymmetry is more correct
- Best diffusion weight estimated from Signal-to-Noise Ratio of measurements:

 $W \square \sqrt{2} mean(SNR)$ 







20 40 60

20 40 60

# **Speed Comparison**

- Test problem had:
  - 1820 lines of sight
  - 1305 density cells
- Measured execution speed versus accuracy of convergence, ε:
  - All algorithms use same stopping criteria
  - Fractional change in the volume emission rate and the chi-squared of the fit to the data both change by < ε between steps</li>
- During each set of tests, data mean signal-to-noise ratio fixed at:
  - *Top: 2.7*
  - Bottom: 283





| Low SNR = | 2.7 |
|-----------|-----|
|-----------|-----|

| 3                | CGLS | MART | LSPD | RL   |
|------------------|------|------|------|------|
| 10 <sup>-2</sup> | 0.14 | 2.1  | 0.14 | 0.15 |
| 10 <sup>-3</sup> | 0.20 | 4.8  | 0.17 | 0.18 |
| 10-4             | 0.60 | 8.9  | 0.23 | 0.24 |
| 10 <sup>-5</sup> | 4.9  | 16.3 | 0.34 | 0.35 |

#### High SNR = 283

| 3                | CGLS | MART  | LSPD | RL   |
|------------------|------|-------|------|------|
| 10 <sup>-2</sup> | 0.14 | 2.3   | 0.14 | 0.14 |
| 10 <sup>-3</sup> | 0.20 | 6.5   | 0.19 | 0.20 |
| 10-4             | 0.41 | 21.8  | 0.34 | 0.40 |
| 10 <sup>-5</sup> | 3.72 | 226.7 | 3.07 | 3.71 |



#### **Does it really work?**

- Comparison of SSULI tomography versus ALTAIR radar measurements using Richardson-Lucy algorithm and physicality constraint
  - Agreement is very good
  - Scatterplot below shows high degree of correlation
  - Diffusion weight estimated from SNR of measurements



ALTAIR Density







## Summary

- We now have the means to rapidly and accurately invert spaceflight limb-scan data
  - Routine, automated processing is possible
  - Can now derive 2D structure along the orbit plane
  - Approach is being extended to 3D
  - Also works with other applications
- Our approach entails
  - New iterative Image Space Reconstruction Algorithms
  - Physicality constraint using regularization to a partial differential equation
- > Advantages of our approach:
  - The algorithms are both fast and robust
  - The Richardson-Lucy algorithm handles Poisson nose explicitly
    - Can work on data with very low signal-to-noise ratio
  - Regularization approach is somewhat "vanilla", in that minimal tuning is required





### Acknowledgements

- We are grateful to F. Kamalabadi (U. of Illinois) for useful discussions regarding tomography algorithms and to Keith Groves (Boston College) for providing the ALTAIR data.
- The SSULI program and part of this research was supported by USAF/Space and Missile Systems Center (SMC). The Chief of Naval Research also supported this work through the Naval Research Laboratory (NRL) 6.1 Base Program.



5/22/2015

