

Recreating the effects of Artificial Ionospheric Modification observed in the HF environment; an application of numerical ray tracing

N. K. Jackson-Booth¹, L. A. Selzer¹, R. W. Penney¹, J. Reid¹, T. Pedersen², R. Caton², P. Cannon³, K. Groves⁴, G. Attrill⁵, M. J. Angling³, R. Parris² & Yi-Jiun Su²

¹QinetiQ, ²University of Birmingham, ³Air Force Research Laboratory, ⁴Boston College, ⁵Dstl

njbooth@QinetiQ.com

© Copyright QinetiQ Limited 2015

Contents

- Introduction
- System Overview
- Preliminary Results
- Ionogram reconstruction: Launch 2 Rongelap to Kwajalein path
- Conclusions

Introduction

Introduction

- Artificial Ionospheric Modification (AIM) involves the exploitation of the ionosphere through injections of aerosols, chemicals or RF signals
- MOSC was a US experiment which released samarium into the ionosphere to:
 - Create new layers and explore affects on scintillation
- In May 2013 two sounding rockets were launched from Kwajalein Atoll in the Marshall Islands
 - Each rocket released two canisters of samarium
 - UK contributed an High Frequency (HF) sounding experiment to characterise evolution of cloud and how it moved

MOSC launch location

System overview

Deployment Sites

Rongelap			Kwajalein	Roi	Likiep	Rongelap	Wotho
		Kwajalein		83 km	204 km	297 km	301 km
	Ç,			340°	48.5°	339°	320.5°
Wotho	Palaasa	Roi	83 km		190 km	215 km	225 km
	Release		160°		72°	338.5°	313.5°
All I and	Likiep	Likiep	204 km	190 km		296 km	358 km
+ Roi			229°	253°		299°	287°
	4 4 "	Rongelap	297 km	215 km	296 km		96 km
Kwaj			160°	158°	118.5°		242°
Data SIO, NOAA, U.S. Navy	NGA, GEBCO	Wotho	301 km	225 km	358 km	96 km	
lat 9.8706	Google earth 46°-lign 167.607025° elev -4476 m eye alt 408.61 km O		140°	133°	105.5°	62°	

Equipment overview

Roi

- IRIS receive system
- HF chirp transmitter
- AFRL USRP beacon receiver
- NRL beacon receiver
- AFRL Digisonde
- ALTAIR radar
- Illinois Radar
- AFRL optics
- Clemson University optics
- Speedball launch site

Kwajalein

- 18 channel N-IRIS (including 18 antenna array)
- AFRL USRP beacon receiver
- NRL beacon receiver
- AFRL GPS receiver

Rongelap

- IRIS2 receiver
- Chirp transmitter
- Delay-Doppler transmitter
- AFRL USRP beacon receiver
- NRL beacon receiver
- AFRL GPS experiment
- AFRL Digisonde
- AFRL optics
- **Clemson University optics**

Likiep

- IRIS2 receiver
- Delay-Doppler transmitter
- MIT LL chirp transmitter
- AFRL USRP beacon receiver
- AFRL GPS experiment
- Clemson University optics

Wotho

- IRIS2 receiver
- MIT LL receiver (chirp and delay-Doppler)
- AFRL USRP beacon receiver
- AFRL GPS receiver

QinetiQ experiment in blue

Chirp Transmissions

- Chirp transmitters installed on Rongelap and Likiep
- A FM-CW chirp waveform transmitted
 - Sweep rate 100 kHz/s
 - Frequency range 2-30 MHz (blanking at distress frequencies)
 - Generate conventional oblique ionograms
- NIRIS
 - 18-channel digital wideband receiver (based on Roke MCDWR) installed on Kwajalein
 - Phase coherent across rx cards
- Ionogram Mode
 - Recorded chirps between 2-28 MHz from Likiep and Rongelap
 - Start time 1:04.015

Preliminary Results

MOSC Launches

- MOSC launch 1 occurred on 1st May 2013
 - Launch at 07:38 UT
 - Release at 07:40:40 UT
 - Release height of 170.1 km
 - Only 10% of samarium ionised
- MOSC launch 2 occurred on 9th May 2013
 - Launch at 07:23 UT
 - Release at 07:25:40 UT
 - Release height of ~ 180 km
 - Again only 10% of samarium ionised
- Results for both launches very similar

Launch 1: Rongelap - Kwajalein path (1st May 2013)

On Rongelap path the extra layer can be seen for 25 minutes after release

Launch 1: 'Ghost trace'

- During the initial analysis a trace was seen just above the F-layer on ionograms recorded on the Rongelap to Kwajalein path
- Their existence was confirmed on the Rongelap to Wotho path
- Combined with the AoA information it is seen that these so called 'ghost traces' had a slightly longer delay than the F-layer, but had the same AoA
- The 'ghost traces' were seen in the first ionogram after release, but appeared to get stronger with time

Gaussian perturbation and Chapman layer: 'Ghost trace'

Ionogram reconstruction: Launch 2 *Rongelap to Kwajalein path*

AFRL Cloud Model

- The AFRL model was based on optical and ALTAIR data recorded during release.
- The model is time dependent and parametric.
- The cloud asymmetrically disperses with time.
- Its centroid position drifts with time.

Home Ray Trace

- A 3D ray tracing procedure in spherical coordinates.
- Implements the Runge-Kutta ODE solver.
- Solves the Haselgrove equation set.
- Computes the:
 - Group path.
 - Phase path.
 - Reflection height.
- Divergent power loss.
- Produces a ray between the input transmitter and receiver ground locations which are assumed to be stationary.

F Layer Simulations

- 2D projection of cloud visualised (shaded region on the base).
- If the hit point deviates from target its ray is no longer included (dashed traces).
 - Ionogram can be reconstructed using time of flight of rays.

Possible Geometries

Complete Reconstruction

Time: 07:25:58 UT (time of release).

Complete Reconstruction – Angle of Arrival

Experimental - Elevation

Simulated

- Now able to extract angle of arrival of distinct rays.
- A comparison to AoA data from MOSC can confirm predicted ray geometries.

Complete Reconstruction

lonograms of the Rongelap to Kwajalein path, 07:27:58 UT (2 minutes after release).

Time Evolution

Conclusions

Conclusions

- AFRL cloud model successfully incorporated into ray trace
- The synthetized ionograms reproduce the correct delay times for the respective layers seen in the experimental plots.
- The synthetic ionograms also contain the new layers due to an interaction with the plasma cloud.
- The 'Ghost' layer sitting above the F layer is due to a ray scattering off the cloud to the F layer and then reflected down to the receiver. This longer route causes a small time delay as seen on both the recorded and synthesized ionograms.

Questions?

