

Australian Government

Department of Defence Defence Science and Technology Organisation

The DSTO lonospheric Sounder Replacement for JORN

Dr Trevor J Harris, Adrian D Quinn High-Frequency Radar Branch, DSTO, Australia

14th Ionospheric Effects Symposium 2015

Background

JORN = Jindalee Over-the-horizon Radar Network

- 3 Radars
- The Northern approaches to Australia
- High-Frequency (HF) band, 3-30MHz
- A national defence capability for Australia.

The Requirement

- JORN requires a real-time model of the ionosphere.
- Primary source of data is
 - 2x DPS-4 and 11x DPS-1.
- DPS-1 at end of maintainable life.
- JORN ongoing sustainment program
 - Upgrade of VIS network
 - form/fit/function VIS replacement.
- HFRB of DSTO developed VI solution
 - based on its radar hardware technology
 - HFRB solution is the Portable Remote Ionospheric Monitoring Equipment (PRIME)

Criteria for the PRIME development

- form/fit/function replacement of old Lowell DPS-1
- NOT trying to compete or reproduce latest Lowell or other VIS
- accurate + resilient TRACE output over wide variety of ionospheres
- Robust hardware/software to handle varied local conditions
- easy and convenient advancement path for future development
- Flexibility in design
 - allow for scientific R&D
 - JORN operational usage
- commonality with other JORN products to ease through-life maintenance (*eg.* Common hardware with OIS)

Timeline of PRIME development

2006-2007 – DINIS -> DORS – Digital Oblique Receiver System

- A HFRB OIS Rx and Tx system
- Using HFRB MkIID drx + HFRB dwfg hardware,software

2007-2009 – SpICE – Spatial Ionospheric Correlation Experiment

- Evaluated DORS as a QVIS (NVIS), then as a VIS.
- Demonstrated a DSTO VIS capability

2x digital Rx \rightarrow 2x digital wfg \rightarrow

2010-2015 – VISRep – The JORN VIS Replacement Project

- Aug 2010 PRIME concept demo
- Dec 2014 PRIME validation
- 2015 JORN integrations

PRIME

- All DSTO created and developed
- ~20W CW system; 100% duty cycle;
- Operates with close but separate Tx & Rx antenna;
- Has overcome issues with Rx in the near-field of CW Tx;
- The Tx direct-wave is the largest signal at the Rx;
- Uses 2x orthogonal Rx antenna
 - to obtain 2x analogue signal channels
 - which are digitised at RF to give 2x complex timeseries
 - which then give 2x complex ionograms
- O/X discrimination based on phases of 2x complex ionograms
- Realtime Trace extraction of both O and X mode signals
- Realtime Ionospheric parameters

Raw -> Clean -> O/X-> Trace

130

-140

-150

-160

-170

-180

-190

130

-140

-150

-160 ^A

-170

-180

14

TOP1-

h0F1 fbF1

Es trace

F1 trace

F2 trace

Elayer-QP Elayer-CC F1layer-QP

F1layer-CC F2layer-QP F2layer-CC

14

E trace

n lonse at 1304/2015 ID (5 vervior-ampointo_131210_001324_0000_01564, prg

on konce at 13/04/2015 50:15 worwor-per 13/12/10 001324 trace-O_0000_01564 and 5.prg

Side-x-Side trial Dec2014

m Tx - RX HERE

JORN

VIS

The Two VIS

09:00

hu 04-Dec-201

12:00

Thu 04-Dec-2014

15:00

18:00

21:00

PRIME ~10-15dB > DPS1

UNCLASSIFIED

Ionogram / Trace comparison PRIME HRI

DSTO

DPS1 SBT

UNCLASSIFIED

UNCLASSIFIED

Comparison of Traces and Parameters

Parameter robustness – PRIME superior

UNCLASSIFIED

8

(MHz)

PRIME foF2

Ionograms: the Good, Bad & Ugly

Frequency (MHz

2.00-20.00 MHz @ 312.50 kHz/s, ATTEN: 0 dB, OFFSET: 0.00 ms

Frequency (MHz 2.00-22.00 MHz @ 156.25 kHz/s, ATTEN: 3 dB, OFFSET: 0.00 ms

Frequency (MHz 2.00-22.00 MHz @ 156.25 kHz/s, ATTEN: 3 dB, OFFSET: 0.00 ms

nstr

Issues investigated and solved

- Receiving lonograms in the near field of VIS transmitter
 - Isolation electrical, RF, spatial (≥100m and position in the null)
 - signal processing
- Self-generated noise sources
 - Direct wave leakage and phase noise
 - other equipment on site (generators, comms antenna, ...)
 - coupling via common power-lines, timing sources (TRDU, GPS), switched power supplies, power-packs, RF leakage (PA, WFG, GPS), earth-current loops
- Rx choices: Monitor drx vs MkIID drx
 - Monitor Rx sufficient for F-layer signals.
 - MkIID required for better sensitivity in E-region (avge of 9dB better SNR)
- Improving the SNR at E-layer frequencies
 - Alternate Rx Antenna, Signal processing options
- Visual inspections of Raw, cleaned, processed ionograms and Trace extraction
 - When the ionosphere is good, all fits and extractions are good
 - Many unusual ionospheric conditions produced many poor results
 - Tuning and algorithmic development for a more robust system
- Operational viability
 - Running at an existing JORN VIS site, using existing JORN VIS antenna,
 - in presence of OIS Tx
 - Connected to JORN sounder data network, being received and displayed at JCC

In Progress

- Soak-test of PRIME at an operational JORN sounder site – full feed into RTIM etc...
- Align high-res output with OIS high-res files
- Transition the PRIME solution to a JORN supportable, configured, operational system
- Build and field more systems
- Transition Build and Maintenance to Industry

VIS Replacement Trial: Curtin 2014 "Simultaneous" DPS-1 and PRIME data collect

Nb: features same in general, some difference in detail

JORN Sounder Locations

DPS1 SBT

Ionogram / Trace comparison PRIME HRI

DPS1 SBT

Ionogram / Trace comparison PRIME HRI

Ionogram / Trace comparison PRIME HRI

Final Results: O-Mode Ionogram Image with trace, QP parameters and profile

Final Results: Example-2 Raw Ionogram Image with trace, QP parameters and profile

Example Ionogram

Example Ionogram

Difficult Ionosphere ...

xn lonos at 30/05/2014 19:01 wovwov-pwr_131210_090308_trace-O_0000_0100_0156k_5.png

Difficult ionosphere...

Manual validation of the trace fitting to GOOD and AVERAGE ionospheres.

Validators: Lenard Pederick, Manuel Cervera

6 days of Data from Woodside VIS for

12,17,27,30 Dec2013, 1,2 Jan2014

VISRep algorithms of Apr2014

GOOD ionosphere:

- lack of spread-F, spread-Es and multihop Es;
- Observability of É, F1, F2 layers (hence must daytime data)

Trace	Pass	Fail	comment	Total	Pass %
Е	475	22	6 fail due to spread E	497	96 %
F1	378	110	101 fail due to bad F1/F2 cusp	488	77 %
F2	492	17	All provided a good foF2	509	97 %

This table represents the accuracy of the trace extraction process for those ionograms that an <u>expert</u> could scale

Test-21: VIS Side-by-Side Comparison

Test-21: VIS Side-by-Side Comparison O-X Power

Comparison with Sounder derived Parameters

(all data for 02-07 Dec 2014)

Difference in Virtual-Heights (F-region only)

Trace – MaxPower (PRIME)

