Two-Sided Matching via Balanced Exchange: Tuition and Worker Exchanges

Umut M. Dur

&

M. Utku Ünver

North Carolina State

Boston College

March 25, 2015

In the last decade and a half, economists have worked on the design of matching markets

- Some influenced policy makers for adoption of new policies and institutions:
 - Doctor-residency matching (Roth 84, Roth & Peranson 99)
 - School choice (Balinski & Sönmez 98, Abdulkadiroğlu & Sönmez 03)
 - Kidney exchange (Roth, Sönmez, Ünver 04, 05, 07)
 - Signaling in Econ PhD Market (Coles, Kushnir, Niederle 13)
 - Course allocation (Sönmez & Ünver 10, Budish 11, Budish & Kessler 14)
 - Adoption of children (Vaughn, Akan, Kesten, Ünver 14)
- Some have not influenced the policy <u>yet</u>: On-campus housing; Cadet-branch matching in the military; Dynamic daycare and public housing assignment; Lobar live-donor lung and liver exchange ...
- Deeper understanding of how matching markets work < ≡ → ∞

- A new two-sided matching problem where eventual market outcome is linked to an initial status-quo matching, which may give firms and workers certain rights on how the future activity can play out.
- Two new classes of assignment problems which mimic **Tuition Exchanges** and **Student/Worker Exchanges**
 - The Tuition Exchange, Inc.
 - US National and EU Erasmus Student Exchange
 - Commonwealth Teacher Exchange
 - International Clinical Exchange
 - Employee rotation programs of departments of a company or institution: public school teacher rotation such as Turkey
- Maintaining <u>one-to-one balance</u> between the outgoing and incoming students is the central issue for colleges

・ 同 ト ・ ヨ ト ・ ヨ ト

- New axiom playing key role in success of these markets: **Balancedness**
- Procedure in use suffers from serious problems
 - Decentralized matching causing withdrawal of schools (tuition exchange): we identify the problems with stable market outcomes.
 - Bilateral agreements (student/worker exchanges) not being able to get all gains from exchange.

- Propose a new mechanism: two-sided top-trading cycles (2S-TTC)
 - Uses a variant TTC algorithm (Gale via Shapley and Scarf 74, and Abdulkadiroğlu and Sönmez 03), first use of TTC algorithm in a two-sided market
 - The unique mechanism that satisfies student-strategy-proofness, balanced-efficiency, individually rationality, and a fairness criterion respect for internal priorities.
 - Immune to admission and export quota manipulation by colleges.
 - Any individually rational mechanism that matches more students is manipulable by students.
 - When firms have 0-1 preferences over incoming workers, then it is also stable and strategy-proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

- "The Tuition Exchange" (TuitionExchange.org) is a reciprocal scholarship program for children of faculty at more than 600 institutions.
- Dependent children of faculty are able to access tuition benefits in the other member institutions.
- Participating in tuition exchange programs enhances the packages at a nominal cost.
- Every year 20 new institutions join the program.
- On average 6,000 scholarships are awarded annually: \$115 million awarded annually.
- No money transaction and tax.
- Schools prefer tuition exchange over direct compensation to protect themselves from "yearly demand shocks" (marginal cost of a student $\approx 1/4$ of tuition; fixed costs dominate)

Each institutions has agreed to maintain a balance between

- The number of awarded students sponsored by an institution: EXPORTS
- The number of scholarships awarded to students sponsored by other colleges: IMPORTS
- If EXPORTS exceed IMPORTS then

SUSPENDED

- Not all applicants are certified as eligible by the home institutions
 - Based on years of service
- Not all certified applicants are awarded
 - Scholarship receipts are chosen based on academic profile

<ロト < 同ト < ヨト < ヨト

э

- Lewis & Clark, Reed, Puget Sound, Whitman, Willamette
- Children of faculty members were allowed to attend one of the members tuition free upon admission.
 - Balancedness was not required.
 - Huge imbalances between the colleges.
- It will stop accepting new applicants after Fall of 2015.

- In student/worker exchange programs bilateral agreements are signed
- If balancedness fails after a period of time the agreement is nullified.

- In "time banks" people make favors of each other.
- Marginal rate of substitution is one favor is equal to one favor (but not must).
- Baby-sitting, dog-sitting exchanges.
- Sweeney & Sweeney (77) reports the shutting down of a baby-sitting coop, as people are averse to spending their accumulated favor currencies (negative balance aversion). (See also Möbius 01 on dynamic favor exchange.)

A tuition exchange market consists of

- a set of colleges $C = \{c_1, ..., c_m\}$
- a set of students $S = \bigcup_{c \in C} S_c$ where S_c is the set of students who are applying to be sponsored by college c
- an admissions quota vector q = (q_c)_{c∈C} where q_c is the maximum number of students who will be imported by college c
- an eligibility quota vector e = (e_c)_{c∈C} where e_c is the number of students certified as eligible by college c
- a list of college internal priorities ▷ = (▷_c)_{c∈C} (▷_c is a linear order over S_c); let r_c(s) be the ranking of student s ∈ S_c in ▷_c.
- a list of student and college preferences

 $\succeq = (\succeq_C, \succeq_S) = ((\succeq_c)_{c \in C}, (\succeq_s)_{s \in S})$ over matchings. Students only care about their assignments.

Fixing $C, \{S_c\}_{c \in C}, \triangleright$, a tuition exchange market is defined by

An outcome of a market $[q, e, \succeq]$ is a *matching*.

- A matching is a correspondence µ : C ∪ S → C ∪ S ∪ c₀ such that:
 - $\mu(c) \subseteq S$ where $|\mu(c)| \leq q_c$ for all $c \in C$,
 - $\mu(s) \subseteq C \cup c_{\emptyset}$ where $|\mu(s)| = 1$ for all $s \in S$,
 - if $r_c(s) > e_c$ then $\mu(s) = c_{\emptyset}$ for all $s \in S_c$ (i.e., a student is eligible if and only if its internal priority does not exceed the cutoff.)
- Set of matchings \mathcal{M} .
- A (direct) mechanism φ is a systematic way of selecting a matching for each market [q, e, ≿].

Given a matching μ ,

- X_c^{μ} : set of exports of college *c*; the eligible students in S_c matched with other colleges.
- M_c^{μ} : set of imports the eligible students of other colleges matched with *c*
- $b_c^{\mu} = |M_c^{\mu}| |X_c^{\mu}|$: **net balance** of college *c*.
- μ is **balanced** if $b_c^{\mu} = 0$ for all $c \in C$.

College preferences over admitted (groups of) students are responsive (Roth, 1985) (to ranking over individual students) and are denoted by a linear order P_c:
 For any J ⊂ S with |J| < q_c and any i, j ∈ S \ J,

•
$$(J \cup \{i\})P_cJ \iff iP_c\emptyset$$

•
$$(J \cup \{i\})P_c(J \cup \{j\}) \iff iP_cj$$

- Colleges possibly also care about their net balance in the matching in addition to the admitted students.
 - For any two matchings v and μ such that $b_c^v = b_c^{\mu}$ we have $v(c)P_c\mu(c) \implies v \succ_c \mu$

- A matching μ is **Pareto efficient** if it is not possible to find an alternative matching that makes
 - all agents at least as well off,
 - at least one agent better off.
- A balanced matching is *balanced-efficient* if it is not Pareto dominated by another balanced matching.

- A mechanism is **immune to preference manipulation by students (or colleges)** if it is always a weakly dominant strategy for each student (or college) to truthfully reveal her (or its) preferences over matchings for fixed quotas.
- A mechanism is **immune to quota manipulation by colleges** if for fixed college preferences, it is a weakly dominant strategy for each college to reveal its true admission and eligibility quotas.
- A mechanism is **student-strategy-proof** if it is immune to preference manipulation by students.
- A mechanism is **college**—**strategy**-**proof** if it is a weakly dominant strategy for a college to truthfully reveal its preferences and admission and eligibility quotas.
- A mechanism is **strategy-proof** if it is student-strategy-proof and college-strategy-proof.

- The by-laws of many colleges regarding tuition exemption and exchange use priorities based on the seniority of the dependent faculty member/staff. This needs to be somehow respected.
- A mechanism φ respects internal priorities if for all colleges c, whenever a student i ∈ S_c is assigned to a college in problem [(q_c, q_{-c}), (e_c, e_{-c}), ≿] then i is also assigned to a college in the problem [(q̃_c, q_{-c}), (ẽ_c, e_{-c}), ≿] where ẽ_c > e_c and q̃_c ≥ q_c.

- The current decentralized market works as follows
 - Eligible students applications are sent to the colleges listed in their preference list
 - Each college ranks its applicants and sends acceptance letter to the best students without exceeding its quota
 - Students receive acceptance letter and reject all the offers except the best one
 - Each rejected colleges sends acceptance letter to the best students in the waiting list without exceeding its quota
 - Students receive acceptance letter and reject all the offers except the best one.
- This procedure works like the first few steps of the college-proposing deferred acceptance algorithm.
- Benchmark decentralized market mechanism: stable mechanisms.

- We say a matching μ is **blocked by a college** $c \in C$ if there exists some $\mu' \in \mathcal{M}$ such that $\mu' \succ_c \mu$, $\mu'(s) = \mu(s)$ for all $s \in S \setminus \mu(c)$ and $\mu'(c) \subset \mu(c)$.
- A matching μ is **blocked by a student** $s \in S$ if $c_{\emptyset} P_s \mu(c)$.
- A matching μ is *individually rational* if it is not blocked by any individual college or student.
- A matching μ∈ M is blocked by college-student pair

 (c,s) if c P_s μ(s) and μ' ≻_c μ where μ' ∈ M is obtained from
 μ by the mutual deviation of college c and student s, that is,
 s ∈ μ'(c) ⊆ μ(c) ∪ s, and μ'(s') = μ(s') for all
 s' ∈ S \ (μ(c) ∪ s).
- A matching μ is (*pairwise*) *stable* if it is individually rational and not blocked by any college-student pair.

Assumption (1)

For any $c \in C$ and $\mu, \nu \in \mathcal{M}$,

(1) (Preference increases with better admitted class and non-deteriorating balance) if $b_c^{\mu} \ge b_c^{\nu}$ and $\mu(c)P_c^*\nu(c)$ then $\mu \succ_c \nu$,

(2) (Awarding unacceptable students exchange scholarships is not preferable) if there exists $s \in v(c) \setminus \mu(c)$, $\emptyset P_c s$ and $v(s') = \mu(s')$ for all $s' \in S \setminus s$ then $\mu \succ_c v$, and (3) (Unacceptability of own students for exchange scholarships) $\emptyset P_c s$ for all $s \in S_c$.

Assumption (2)

(Negative Net Balance Aversion) College c prefers $\mu \in \mathcal{M}$ with $b^{\mu} = 0$ to all $\nu \in \mathcal{M}$ with $b^{\nu} < 0$ Dur & Onver Two-Sided Matching via Balanced Exchange

Theorem

Under Assumption 1,

- A stable matching exists.
- All stable matchings have the same net balance for all colleges.
- There may not be a stable and balanced matching in general.
- In a quota reporting game (when preferences are common knowledge) where market outcome is found by a stable mechanism:
 - If Assumption 2 also holds, the only best responses for a negative net balance college (under true quota revelation) dictate to decrease its eligibility quota.
 - When a college decreases its eligibility quota, the negative net balance of no college gets closer to zero.

Two-Sided Top-Trading-Cycles (2S-TTC) Mechanism works via the following variant of A&S TTC algorithm: Consider a problem $[q, e, \succeq]$: Assign two counters for import and eligible students to each college $c \neq c_0$ and set them equal to q_c and e_c .

- Each student points to her favorite college, which considers her acceptable, each college $c \neq c_{\emptyset}$ points to the highest internal priority student, and c_{\emptyset} points to all students pointing to it.
- Every student in a cycle is assigned a seat at the college she is pointing to removed.
- The <u>eligible student counter</u> of each college whose student is in a cycle is reduced by one.
- The <u>import counter</u> of each college in a cycle is reduced by one only if the cycle includes <u>at least</u> two colleges. if either counter falls to zero, the college is removed.
- Continue with the remaining colleges and students.
 Continue with the remaining colleges and students.
 Two-Sided Matching via Balanced Exchange

Let $C = \{a, b, c, d, e\}$, $S_a = \{1, 2\}$, $S_b = \{3, 4\}$, $S_c = \{5, 6\}$, $S_d = \{7, 8\}$, $S_e = \{9\}$. Let e = (2, 2, 2, 2, 1) and q = (2, 2, 2, 1, 1). The internal priority order is given as

а	b	С	d	е
1	3	6	7	9
2	4	5	8	

The preference profiles of colleges and students are given as

а	b	С	d	е											
3	5	2	2	2	1	2	3	4	5	6	7	8	9		
4	1	3	3	3		<i>b</i>			h			0			
5	6	4	4	8	D	D	a	C	D	a L	C	e			
9	2	9	9	7	С	С	С	а	а	D	а	С	a		
7	7	7	5	5	CØ	C∅	СØ	СØ	СØ	СØ	СØ	C∅	CØ		
-	-	-	3	3	(日)(四)(四)(四)(四)(四)(四)										
					Dur & Ünver Two-Sided Matching via Balanced Exchange								e		

	h		4		1	2	3	4	5	6	7	8	9
	D	C	u	e		h	2	6	Ь	2		0	6
1	3	6	7	9	D	D	d	C	D	d	C	е	C
-	4	г Г		•	С	С	С	а	а	b	а	С	d
	4	Э	ð		Ca								
					C0	CØ							

					1	2	3	4	5	6	7	8	9
а	b	С	d	е			-	-	-	-	-		-
	_	_	_		b	Ь	а	С	Ь	а	С	е	С
1	3	6	7	9	-	-	-	-	-	,	-	-	,
2	Л	Б	o		С	С	С	а	а	b	а	С	a
	4	5	0		Ca	Ca	Ca	Ca	Ca	Ca	Ca	Ca	Ca
					-0	-CØ	-CØ	-CØ	-CØ	-00	-CØ	-CØ	-C()

					1	2	3	4	5	6	7	8	9
а	b	С	d	е				-			-		
			_		Ь	Ь	а	С	Ь	а	С	е	С
1	3	6	7	9						-			-
2	4	E	0		С	С	С	а	а	b	а	С	d
2	4	3	o		6.	Ca	C.						
-					C0								

					1	2	3	4	5	6	7	8	9
а	b	С	d	е				-			-		
			_		Ь	Ь	а	С	Ь	а	С	е	С
1	3	6	7	9						-			-
2	4	E	0		С	С	С	а	а	b	а	С	d
2	4	3	o		6.	Ca	C.						
-					C0								

 $\emptyset P_a \mathbf{6}$, Counters: $e = (1, 0, 1, 2, 1) \ q = (1, 0, 1, 1, 1)$

					1	2	3	4	5	6	7	8	g
а	b	С	d	е				-		<u> </u>	<u> </u>	<u> </u>	
	-	-	-		h	h	а	C	h	а	C	P	C
1	3	6	7	9	Ď	2	u	C	2		C	C	
~	-	-		-	С	С	С	а	а	b	а	С	d
2	4	5	8		-	-	-	-	-	-	-	-	-
					c_{\emptyset}								

Round 3

Dur & Ünver

Two-Sided Matching via Balanced Exchange

 $\emptyset P_a \mathbf{6}$, Counters: $e = (0, 0, 0, 2, 1) \ q = (0, 0, 0, 1, 1)$

	,				1	2	3	4	5	6	7	8	9
а	b	С	d	е					,				
1	2	6	7	0	b	b	а	С	b	а	С	е	С
T	5	U	1	9	C	C	C	а	а	b	а	C	d
2	4	5	8							~			
					c_{\emptyset}	c_{\emptyset}	c_{\emptyset}	c_{\emptyset}	c_{\emptyset}	СØ	c_{\emptyset}	c_{\emptyset}	c_{\emptyset}

Round 3

Dur & Ünver

					1	2	3	4	5	6	7	8	9
a	D	С	а	е		4	-	-	4	-	-	-	
1	3	6	7	Q	D	D	а	С	D	а	С	е	С
-	5	U	•	5	C	C	C	а	а	b	а	C	d
2	4	5	8		C	C	C	u	u	~	u	C	ŭ
					CØ	СØ	СØ	CØ	CØ	СØ	C_{\emptyset}	СØ	CØ

	h	<u> </u>	d		1	2	3	4	5	6	7	8	9
	0	C	<u>u</u>		b	b	а	с	b	а	с	е	с
1	3	6	7	9	~	~	<u> </u>	2	2	6	2	6	d
2	4	5	8		C	C	C	d	d	D	d	C	u
		-			CØ	СØ	СØ	CØ	CØ	СØ	СØ	СØ	CØ

	h	<u> </u>	d		1	2	3	4	5	6	7	8	9
		L	u		h	h	2	C	h	2	C	ρ	C
1	3	6	7	9	D	D	u	C	D	,	C	C	,
2	Л	5	Q		С	С	С	а	а	b	а	С	d
	-	J	U		CØ								

1.1

					1	2	3	4	5	6	7	8	9
а	b	С	d	е									
1	2	6	7	0	b	b	а	С	b	а	С	е	С
T	3	0	1	9	C	C	C	2	2	Ь	2	~	d
2	4	5	8		C	C	C	a	d	D	a	C	u
	<u> </u>	<u> </u>	•		C_{\emptyset}	CØ	C_{\emptyset}	C_{\emptyset}	CØ	CØ	CØ	CØ	CØ

Theorem

2S-TTC is balanced-efficient, respecting internal priorities, and individually rational.

・ロト ・同ト ・ヨト ・ヨト

э

Theorem

There does not exist a mechanism which is <u>balanced-efficient</u>, <u>individually rational</u>, and <u>immune to preference manipulation by</u> <u>colleges</u> (even under Assumption 1).

Theorem

2S-TTC is student-group-strategy-proof.

▲ 伊 ▶ → 三 ▶

Relax Assumptions 1 and 2:

Assumption (3)

For any $\mu, \nu \in \mathscr{M}$ and $c \in C$, if $b_c^{\mu} = 0$, $b_c^{\nu} \leq 0$, and $\mu(c)P_c\nu(c)$ then $\mu \succ_c \nu$.

Theorem

Under Assumption 3 and when $e_c = |S_c|$ for all c, 2S-TTC is immune to quota manipulation by colleges.

- Given an acceptable set of students, colleges are indifferent between any of their rankings.
- Hence, the mechanism can be run through colleges only reporting acceptable students.

Theorem

Under Assumption 3, 2S-TTC is the **unique** mechanism that is <u>balanced-efficient</u>, <u>respecting internal priorities</u>, <u>individually</u> <u>rational</u>, and <u>student-strategy-proof</u>.

Related: Ma (94), Pápai (00), Pycia & Ünver (09), Morrill (11), Abdulkadiroğlu & Che (11), Dur (12)

Proposition

Any balanced and individually rational mechanism, which

- assigns at least the same number of students as 2S-TTC
- selects an allocation in which more student is assigned whenever exists,

is not strategy-proof for students.

- In temporary exchange programs, firm preferences can be coarser.
- Suppose firms find workers either acceptable or not:
 - US National exchange and EU Erasmus Exchange
 - International Clinical Exchange: Medical students
 - Commonwealth Tuition Exchange
 - Staff Rotation Programs: Teacher rotation under Ministry of Education; employee rotation for multinationals.
- Initial employees are acceptable.
- If a firm's employee is not matched to a different firm in the market then she remains matched to her home firm.

Assumption (3*)

For any $c \in C$ and $\mu, \nu \in \mathcal{M}$, if $b_c^{\mu} = b_c^{\nu}$ and $|\{s \in \mu(c) : sP_c \emptyset\}| \ge |\{s \in \nu(c) : sP_c \emptyset\}|$ then $\mu \succeq_c \nu$.

Theorem

Under Assumption 3*, 2S-TTC is

- a balanced–efficient, individually rational, strategy-proof, and stable mechanism that also respects internal priorities; and
- the **unique** <u>balanced-efficient</u>, <u>individually rational</u>, and <u>student-strategy-proof</u> mechanism that <u>respects internal</u> priorities.

・ロト ・同ト ・ヨト ・ヨト

- Implementation
- Dynamic tuition exchange 2S-TTCC
- Erasmus student exchange and diversity, 2S-TTCC (Dur, Kesten, Ünver, in progress)