Two-Sided Matching via Balanced Exchange: Tuition and Worker Exchanges

Umut M. Dur
North Carolina State

\&

M. Utku Ünver

Boston College

March 25, 2015

Design of Matching Markets

In the last decade and a half, economists have worked on the design of matching markets

- Some influenced policy makers for adoption of new policies and institutions:
- Doctor-residency matching (Roth 84, Roth \& Peranson 99)
- School choice (Balinski \& Sönmez 98, Abdulkadiroğlu \& Sönmez 03)
- Kidney exchange (Roth, Sönmez,Ünver 04, 05, 07)
- Signaling in Econ PhD Market (Coles, Kushnir, Niederle 13)
- Course allocation (Sönmez \& Ünver 10, Budish 11, Budish \& Kessler 14)
- Adoption of children (Vaughn, Akan, Kesten, Ünver 14)
- Some have not influenced the policy yet:

On-campus housing; Cadet-branch matching in the military;
Dynamic daycare and public housing assignment; Lobar live-donor lung and liver exchange ...

- Deeper understanding of how matching markets work
- A new two-sided matching problem where eventual market outcome is linked to an initial status-quo matching, which may give firms and workers certain rights on how the future activity can play out.
- Two new classes of assignment problems which mimic Tuition Exchanges and Student/Worker Exchanges
- The Tuition Exchange, Inc.
- US National and EU Erasmus Student Exchange
- Commonwealth Teacher Exchange
- International Clinical Exchange
- Employee rotation programs of departments of a company or institution: public school teacher rotation such as Turkey
- Maintaining one-to-one balance between the outgoing and incoming students is the central issue for colleges
- New axiom playing key role in success of these markets: Balancedness
- Procedure in use suffers from serious problems
- Decentralized matching causing withdrawal of schools (tuition exchange): we identify the problems with stable market outcomes.
- Bilateral agreements (student/worker exchanges) not being able to get all gains from exchange.
- Propose a new mechanism: two-sided top-trading cycles (2S-TTC)
- Uses a variant TTC algorithm (Gale via Shapley and Scarf 74, and Abdulkadiroğlu and Sönmez 03), first use of TTC algorithm in a two-sided market
- The unique mechanism that satisfies student-strategy-proofness, balanced-efficiency, individually rationality, and a fairness criterion respect for internal priorities.
- Immune to admission and export quota manipulation by colleges.
- Any individually rational mechanism that matches more students is manipulable by students.
- When firms have 0-1 preferences over incoming workers, then it is also stable and strategy-proof.

What is Tuition Exchange?

- "The Tuition Exchange" (TuitionExchange.org) is a reciprocal scholarship program for children of faculty at more than 600 institutions.
- Dependent children of faculty are able to access tuition benefits in the other member institutions.
- Participating in tuition exchange programs enhances the packages at a nominal cost.
- Every year 20 new institutions join the program.
- On average 6,000 scholarships are awarded annually: \$115 million awarded annually.
- No money transaction and tax.
- Schools prefer tuition exchange over direct compensation to protect themselves from "yearly demand shocks" (marginal cost of a student $\approx 1 / 4$ of tuition; fixed costs dominate)

What is Tuition Exchange?

Each institutions has agreed to maintain a balance between

- The number of awarded students sponsored by an institution: EXPORTS
- The number of scholarships awarded to students sponsored by other colleges: IMPORTS
- If EXPORTS exceed IMPORTS then

SUSPENDED

What is Tuition Exchange?

- Not all applicants are certified as eligible by the home institutions
- Based on years of service
- Not all certified applicants are awarded
- Scholarship receipts are chosen based on academic profile

What is Tuition Exchange?

Timeline

Why Balancedness?

- Lewis \& Clark, Reed, Puget Sound, Whitman, Willamette
- Children of faculty members were allowed to attend one of the members tuition free upon admission.
- Balancedness was not required.
- Huge imbalances between the colleges.
- It will stop accepting new applicants after Fall of 2015.

Why Balancedness?

Bilateral Agreements

- In student/worker exchange programs bilateral agreements are signed
- If balancedness fails after a period of time the agreement is nullified.

Why Balancedness?

Time banks and favor currency holdings

- In "time banks" people make favors of each other.
- Marginal rate of substitution is one favor is equal to one favor (but not must).
- Baby-sitting, dog-sitting exchanges.
- Sweeney \& Sweeney (77) reports the shutting down of a baby-sitting coop, as people are averse to spending their accumulated favor currencies (negative balance aversion). (See also Möbius 01 on dynamic favor exchange.)

Model: Market

A tuition exchange market consists of

- a set of colleges $C=\left\{c_{1}, \ldots, c_{m}\right\}$
- a set of students $S=\bigcup_{c \in C} S_{c}$ where S_{c} is the set of students who are applying to be sponsored by college c
- an admissions quota vector $q=\left(q_{c}\right)_{c \in C}$ where q_{c} is the maximum number of students who will be imported by college c
- an eligibility quota vector $e=\left(e_{c}\right)_{c \in C}$ where e_{c} is the number of students certified as eligible by college c
- a list of college internal priorities $\triangleright=\left(\triangleright_{c}\right)_{c \in C} \quad\left(\triangleright_{c}\right.$ is a linear order over S_{c}); let $r_{c}(s)$ be the ranking of student $s \in S_{c}$ in \triangleright_{c}.
- a list of student and college preferences
$\succsim=\left(\succsim c, \succsim_{s}\right)=\left(\left(\succsim_{c}\right)_{c \in C},\left(\succsim_{s}\right)_{s \in S}\right)$ over matchings. Students only care about their assignments.
Fixing $C,\left\{S_{c}\right\}_{c \in C, \triangleright}$, a tuition exchange market is defined by
$\mathrm{r}_{\mathrm{n}} \cap \succ 1$

Model: Matchings

An outcome of a market [q, e, \succsim] is a matching.

- A matching is a correspondence $\mu: C \cup S \rightarrow C \cup S \cup c_{\emptyset}$ such that:
- $\mu(c) \subseteq S$ where $|\mu(c)| \leq q_{c}$ for all $c \in C$,
- $\mu(s) \subseteq C \cup c_{\emptyset}$ where $|\mu(s)|=1$ for all $s \in S$,
- if $r_{c}(s)>e_{c}$ then $\mu(s)=c_{\emptyset}$ for all $s \in S_{c}$ (i.e., a student is eligible if and only if its internal priority does not exceed the cutoff.)
- Set of matchings \mathscr{M}.
- A (direct) mechanism φ is a systematic way of selecting a matching for each market $[q, e, \succsim]$.

Property: Balancedness

Given a matching μ,

- X_{c}^{μ} : set of exports of college c; the eligible students in S_{c} matched with other colleges.
- M_{c}^{μ} : set of imports the eligible students of other colleges matched with c
- $b_{c}^{\mu}=\left|M_{c}^{\mu}\right|-\left|X_{c}^{\mu}\right|$: net balance of college c.
- μ is balanced if $b_{c}^{\mu}=0$ for all $c \in C$.

Model: College Preferences

- College preferences over admitted (groups of) students are responsive (Roth, 1985) (to ranking over individual students) and are denoted by a linear order P_{c} :
For any $J \subset S$ with $|J|<q_{c}$ and any $i, j \in S \backslash J$,
- $(J \cup\{i\}) P_{c} J \Longleftrightarrow i P_{c} \emptyset$
- $(J \cup\{i\}) P_{c}(J \cup\{j\}) \Longleftrightarrow i P_{c} j$
- Colleges possibly also care about their net balance in the matching in addition to the admitted students.
- For any two matchings v and μ such that $b_{c}^{v}=b_{c}^{\mu}$ we have $v(c) P_{c} \mu(c) \Longrightarrow v \succ_{c} \mu$

Other Desired Properties: Efficiency

- A matching μ is Pareto efficient if it is not possible to find an alternative matching that makes
- all agents at least as well off,
- at least one agent better off.
- A balanced matching is balanced-efficient if it is not Pareto dominated by another balanced matching.

Other Desired Properties: Non-manipulability

- A mechanism is immune to preference manipulation by students (or colleges) if it is always a weakly dominant strategy for each student (or college) to truthfully reveal her (or its) preferences over matchings for fixed quotas.
- A mechanism is immune to quota manipulation by colleges if for fixed college preferences, it is a weakly dominant strategy for each college to reveal its true admission and eligibility quotas.
- A mechanism is student-strategy-proof if it is immune to preference manipulation by students.
- A mechanism is college-strategy-proof if it is a weakly dominant strategy for a college to truthfully reveal its preferences and admission and eligibility quotas.
- A mechanism is strategy-proof if it is student-strategy-proof and college-strategy-proof.

Other Desired Properties: Fairness

- The by-laws of many colleges regarding tuition exemption and exchange use priorities based on the seniority of the dependent faculty member/staff. This needs to be somehow respected.
- A mechanism φ respects internal priorities if for all colleges c, whenever a student $i \in S_{c}$ is assigned to a college in problem $\left[\left(q_{c}, q_{-c}\right),\left(e_{c}, e_{-c}\right), \succsim\right]$ then i is also assigned to a college in the problem $\left[\left(\tilde{q}_{c}, q_{-c}\right),\left(\widetilde{e}_{c}, e_{-c}\right), \succsim\right]$ where $\widetilde{e}_{c}>e_{c}$ and $\widetilde{q}_{c} \geq q_{c}$.

Decentralized Market and Stability

- The current decentralized market works as follows
- Eligible students applications are sent to the colleges listed in their preference list
- Each college ranks its applicants and sends acceptance letter to the best students without exceeding its quota
- Students receive acceptance letter and reject all the offers except the best one
- Each rejected colleges sends acceptance letter to the best students in the waiting list without exceeding its quota
- Students receive acceptance letter and reject all the offers except the best one.
- This procedure works like the first few steps of the college-proposing deferred acceptance algorithm.
- Benchmark decentralized market mechanism: stable mechanisms.

Stability and Market Shutting Down

- We say a matching μ is blocked by a college $c \in C$ if there exists some $\mu^{\prime} \in \mathscr{M}$ such that $\mu^{\prime} \succ_{c} \mu, \mu^{\prime}(s)=\mu(s)$ for all $s \in S \backslash \mu(c)$ and $\mu^{\prime}(c) \subset \mu(c)$.
- A matching μ is blocked by a student $s \in S$ if $c_{0} P_{s} \mu(c)$.
- A matching μ is individually rational if it is not blocked by any individual college or student.
- A matching $\mu \in \mathscr{M}$ is blocked by college-student pair (c, s) if $c P_{s} \mu(s)$ and $\mu^{\prime} \succ_{c} \mu$ where $\mu^{\prime} \in \mathscr{M}$ is obtained from μ by the mutual deviation of college c and student s, that is, $s \in \mu^{\prime}(c) \subseteq \mu(c) \cup s$, and $\mu^{\prime}\left(s^{\prime}\right)=\mu\left(s^{\prime}\right)$ for all $s^{\prime} \in S \backslash(\mu(c) \cup s)$.
- A matching μ is (pairwise) stable if it is individually rational and not blocked by any college-student pair.

Stability and Market Shutting Down

Assumptions on College Preferences

Assumption (1)

For any $c \in C$ and $\mu, v \in \mathscr{M}$,
(1) (Preference increases with better admitted class and non-deteriorating balance) if $b_{c}^{\mu} \geq b_{c}^{v}$ and $\mu(c) P_{c}^{*} v(c)$ then $\mu \succ{ }_{c} v$,
(2) (Awarding unacceptable students exchange scholarships is not preferable) if there exists $s \in v(c) \backslash \mu(c), \emptyset P_{c} s$ and $v\left(s^{\prime}\right)=\mu\left(s^{\prime}\right)$ for all $s^{\prime} \in S \backslash s$ then $\mu \succ_{c} v$, and
(3) (Unacceptability of own students for exchange scholarships) $\emptyset P_{c} s$ for all $s \in S_{c}$.

Assumption (2)
(Negative Net Balance Aversion) College c prefers $\mu \in \mathscr{M}$ with $h^{\mu}-n$ tn all $v \in \mathbb{M}$ with $h^{v}<n$

Stability and Market Shutting Down

Theorem

Under Assumption 1,

- A stable matching exists.
- All stable matchings have the same net balance for all colleges.
- There may not be a stable and balanced matching in general.
- In a quota reporting game (when preferences are common knowledge) where market outcome is found by a stable mechanism:
- If Assumption 2 also holds, the only best responses for a negative net balance college (under true quota revelation) dictate to decrease its eligibility quota.
- When a college decreases its eligibility quota, the negative net balance of no college gets closer to zero.

Two-Sided Top-Trading-Cycles (2S-TTC) Mechanism works via the following variant of A\&S TTC algorithm: Consider a problem [q, e, \succsim]: Assign two counters for import and eligible students to each college $c \neq c_{\emptyset}$ and set them equal to q_{c} and e_{c}.

- Each student points to her favorite college, which considers her acceptable, each college $c \neq c_{\emptyset}$ points to the highest internal priority student, and c_{\emptyset} points to all students pointing to it.
- Every student in a cycle is assigned a seat at the college she is pointing to removed.
- The eligible student counter of each college whose student is in a cycle is reduced by one.
- The import counter of each college in a cycle is reduced by one only if the cycle includes at least two colleges. if either counter falls to zero, the college is removed.
- Continue with the remaining colleges and students.

Two-Sided Top Trading Cycles

Example

Let $C=\{a, b, c, d, e\}, S_{a}=\{\mathbf{1}, \mathbf{2}\}, S_{b}=\{\mathbf{3}, \mathbf{4}\}, S_{c}=\{\mathbf{5}, \mathbf{6}\}$, $S_{d}=\{\mathbf{7}, \mathbf{8}\}, S_{e}=\{\mathbf{9}\}$. Let $e=(2,2,2,2,1)$ and $q=(2,2,2,1,1)$. The internal priority order is given as

a	b	c	d	e
1	3	6	$\mathbf{7}$	$\mathbf{9}$
2	4	5	8	

The preference profiles of colleges and students are given as

a	b	c	d	e
$\mathbf{3}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$
$\mathbf{4}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$
$\mathbf{5}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{8}$
$\mathbf{9}$	$\mathbf{2}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{7}$
$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{5}$
		c_{\emptyset}	c_{\emptyset}	c_{\emptyset}
	c_{\emptyset}	c_{\emptyset}	c_{\emptyset}	c_{\emptyset}
	c_{\emptyset}	c_{\emptyset}	$\mathbf{3}$	$\mathbf{4}$
c_{\emptyset}	c_{\emptyset}	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(2,2,2,2,1) q=(2,2,2,1,1)$

Round 1

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(1,1,2,2,1) q=(1,1,2,1,1)$

Round 1

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(1,1,2,2,1) q=(1,1,2,1,1)$

Round 2

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(1,0,1,2,1) q=(1,0,1,1,1)$

		b			d		1	2	3	4	5	6	7	8	9
	1	3	6		7	9	b$c$$c$	b	a	c	b	a	c	e	c
	2	4	5		8						a	b	a	c	d
								c_{0}	c_{0}	c_{\square}	c_{0}	c	c_{\square}	c_{\square}	c_{\square}

Round 2

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(1,0,1,2,1) q=(1,0,1,1,1)$

c	b	c	d	e
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{9}$
$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$	

Round 3

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(0,0,0,2,1) q=(0,0,0,1,1)$

| $\mathbf{1}$ b c d e
 $\mathbf{1}$ $\mathbf{3}$ $\mathbf{6}$ $\mathbf{7}$ $\mathbf{9}$
 $\mathbf{2}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{8}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: |

Round 3

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(0,0,0,2,1) q=(0,0,0,1,1)$

Round 4

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(0,0,0,1,1) q=(0,0,0,1,1)$

Round 4

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(0,0,0,1,1) q=(0,0,0,1,1)$

Round 5

Two-Sided Top Trading Cycles

Example

$\emptyset P_{a} \mathbf{6}$, Counters: $e=(0,0,0,0,0) q=(0,0,0,0,0)$

c	b	c	d	
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{9}$
$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$	

Round 5

Two-Sided Top Trading Cycles

Properties of 2S-TTC

Theorem
2S-TTC is balanced-efficient, respecting internal priorities, and individually rational.

Two-Sided Top Trading Cycles

Properties of 2S-TTC

Theorem

There does not exist a mechanism which is balanced-efficient, individually rational, and immune to preference manipulation by colleges (even under Assumption 1).

Theorem

2S-TTC is student-group-strategy-proof.

Two-Sided Top Trading Cycles

Properties of 2S-TTC

Relax Assumptions 1 and 2:

Assumption (3)

For any $\mu, v \in \mathscr{M}$ and $c \in C$, if $b_{c}^{\mu}=0, b_{c}^{v} \leq 0$, and $\mu(c) P_{c} v(c)$ then $\mu \succ_{c} v$.

Theorem

Under Assumption 3 and when $e_{c}=\left|S_{c}\right|$ for all $c, 2 S-T T C$ is immune to quota manipulation by colleges.

- Given an acceptable set of students, colleges are indifferent between any of their rankings.
- Hence, the mechanism can be run through colleges only reporting acceptable students.

Two-Sided Top Trading Cycles

Properties of 2S-TTC

Theorem

Under Assumption 3, 2S-TTC is the unique mechanism that is balanced-efficient, respecting internal priorities, individually rational, and student-strategy-proof.

Related: Ma (94), Pápai (00), Pycia \& Ünver (09), Morrill (11), Abdulkadiroğlu \& Che (11), Dur (12)

Two-Sided Top Trading Cycles

Properties of 2S-TTC

Proposition

Any balanced and individually rational mechanism, which

- assigns at least the same number of students as 2S-TTC
- selects an allocation in which more student is assigned whenever exists,
is not strategy-proof for students.

Temporary Student and Worker Exchanges

Compatibility-Based (0-1) Firm Preferences

- In temporary exchange programs, firm preferences can be coarser.
- Suppose firms find workers either acceptable or not:
- US National exchange and EU Erasmus Exchange
- International Clinical Exchange: Medical students
- Commonwealth Tuition Exchange
- Staff Rotation Programs: Teacher rotation under Ministry of Education; employee rotation for multinationals.
- Initial employees are acceptable.
- If a firm's employee is not matched to a different firm in the market then she remains matched to her home firm.

Temporary Student and Worker Exchanges

Assumption (3*)

For any $c \in C$ and $\mu, v \in \mathscr{M}$, if $b_{c}^{\mu}=b_{c}^{v}$ and
$\left|\left\{s \in \mu(c): s P_{c} \emptyset\right\}\right| \geq\left|\left\{s \in v(c): s P_{c} \emptyset\right\}\right|$ then $\mu \succsim_{c} v$.

Theorem

Under Assumption 3*, 2S-TTC is

- a balanced-efficient, individually rational, strategy-proof, and stable mechanism that also respects internal priorities; and
- the unique balanced-efficient, individually rational, and student-strategy-proof mechanism that respects internal priorities.

Future Work

- Implementation
- Dynamic tuition exchange 2S-TTCC
- Erasmus student exchange and diversity, 2S-TTCC (Dur, Kesten, Ünver, in progress)

