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Abstract

Convalescent plasma is a blood product produced by recovered patients with several valuable

uses, especially during public health emergencies. We develop a model of plasma donation and

distribution and consider two incentive schemes to increase plasma supply based on “paying it

backward” and “paying it forward” principles. Under the former, donors obtain credits that

can be transferred to patients of their choosing. Under the latter, patients obtain priority for

plasma-derived products in exchange for a future donation pledge. We show that both incentives

generally increase overall treatment rates for all patients—not just those with credits or who have

pledged. Finally, we examine the implications of pooling blood types on the efficiency and equity

of plasma distribution. Our formal results are of independent interest for egalitarian divisible

goods rationing programs with compatibility constraints.
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1 Introduction

Blood plasma is the liquid part of blood that holds blood cells and dissolved proteins. Convalescent

plasma is from a patient who has recovered from a disease. Because it contains proteins produced while

battling illness, convalescent plasma has several valuable medical uses. One use is convalescent plasma

therapy, in which plasma is injected into a sick patient who is blood-type compatible in order to boost

that patient’s immune response. A second use is in formulating medical treatments like hyperimmune

globulin, monoclonal antibodies, and other related prophylatics. Both uses are common during the

outbreak of novel diseases, when no other treatments are available.1

The Covid-19 pandemic has attracted new attention to the procurement and distribution of con-

valescent plasma. As the pandemic has evolved, there has been on-going demand for convalescent

plasma for the development of new therapies, as well as periods of acute shortage for plasma therapy

as the disease spread throughout the world.2 By and large, the procurement of convalescent plasma

from patients is decentralized: local public health authorities, hospital staff, and physicians encourage

recovered patients to donate. There have only been a handful of coordinated efforts for donation, typ-

ically from hard-hit communities.3 Several blood donation centers, including the American Red Cross

and the Blood Centers of America, established procedures to collect Covid-19 convalescent plasma.

These centers sell donated plasma to hospitals and pharmaceutical companies. Some donation centers

have even experimented with forms of directed donation. For example, OneBlood, a Florida blood

center, allows for referred donation, in which the center attempts to match donated plasma to an

intended recipient, who may be a friend or family member (OneBlood, 2020). The New York Blood

Center also initially allowed donations from patients from specific hospitals to be returned to be used

by other patients at the same hospital (White Plains White Plains Hospital, 2020).4

This paper introduces and analyzes a market design approach to collecting and distributing conva-

lescent plasma. We develop a model that jointly incorporates donation and allocation of plasma and

explore two incentive schemes to increase the supply of plasma based on pay-it-backward and pay-it-

forward principles. Through the pay-it-backward principle, the system “pays back” a plasma donor

for her potentially life-saving donation by giving her a number of credits that can be used to obtain

priority for plasma therapies of her loved ones should the need arise. Through the pay-it-forward

principle, a patient receives priority access for plasma therapy in exchange for a pledge to return the

favor by donating her own plasma in the near future, assuming she recovers and becomes eligible for

plasma donation.5 These features embed and formalize practices that are already informally embraced

1Convalescent plasma therapy was used during the 2003 SARS-CoV-1 epidemic, 2009-2010 H1N1 influenza virus
pandemic, and 2012-13 MERS-CoV epidemic (EBA, 2020; Rubin, 2020). During the 1918 Spanish flu, fatality rates
were cut in half for patients treated with blood plasma (see Luke et al., 2006 and Roos, 2020). Convalescent plasma
has also been used to treat measles, influenza, and other infectious diseases. In fact, the first Nobel Prize in Physiology
or Medicine was the 1901 prize for serum therapy (serum is the liquid left after coagulant elements are removed from
plasma).

2Joyner et al., (2020) reports on studies of the effectiveness of convalescent plasma for Covid-19.
3Stack, (2020) notes that the Orthodox Jewish community in New York City, initially hard-hit by Covid-19, have

likely provided more than half of the plasma in Mayo Clinic’s expanded access program as of May 2020.
4As of April 15, 2020, this no longer occurs.
5A similar feature exists in non-directed donor (NDD) chains in kidney exchange, where a patient receives a living-

donor kidney before her incompatible donor donates a kidney to a patient in another incompatible patient-donor pair.
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by some doctors in their attempt to increase the recruitment of plasma donors (see, e.g., Rubin, 2020).

In our steady-state model of plasma donation, plasma donors may be given credits that can be

used to give treatment priority to family members and other close associates; priority is also given

to participants in clinical trials. The steady-state availability of plasma therapy is a function of the

number of patients who have recovered (both through plasma therapy and by other means). We

find that so long as the plasma replenishment rate is large enough to support the clinical trial, it

is possible to treat all prioritized patients in equilibrium. The rate of treatment for non-prioritized

patients becomes higher as a result of the priority scheme, as well. We characterize when it is possible

to treat all patients—even those who are not ex ante prioritized—and show that so long as recovered

patients are more willing to donate if they receive credits, introducing a credit system strictly benefits

non-prioritized patients. Overall treatment availability expands further if we prioritize patients who

pledge to pay it forward by donating plasma once they have recovered: if patients who pledge to

donate have an aggregate plasma replenishment rate that is more than one-for-one, prioritizing those

patients increases the treatment rate for non-prioritized patients, irrespective of how many patients

pledge to donate ex ante.

Most of our analysis works with a single blood type for ease of illustration. But we show how to

combine that analysis with ideas from graph theory to identify the optimal cross-blood-type plasma-

pooling strategy to maximize an egalitarian treatment objective. We show that our pooling procedure

(1) maximizes the smallest service rate and (2) minimizes the difference between the largest and

smallest service rate across blood types. Since our results do not depend on the specific structure of

plasma donation compatibility, the results we develop in this section are of independent interest for

egalitarian divisible good rationing problems with compatibility constraints.

The remainder of this paper is structured as follows. Section 2 reviews some design considerations

that might be relevant for practical implementation of our idea. Section 3 describes our model of

plasma donation and distribution under a blood-type identical allocation policy or in allocation of

plasma products, such as hyperimmune globulin, where blood-type compatibility is not needed; Sec-

tion 4 extends the framework to blood-type compatible allocation; we then review related literature

in Section 5. Section 6 concludes.

2 Market Design Considerations for Plasma Donation and

Distribution

We envision a mechanism in which only a portion of the convalescent plasma supply can be allocated

through the two types of incentive schemes we introduce. We refer to that portion as the incentivized

plasma reserve. The remaining portion is reserved for participants in clinical trials, as well as for any

other patient group the central planner selects for special treatment; for simplicity, we refer to that

portion as the clinical trial plasma reserve. The clinical trial plasma reserve is effectively exogenous—at

any point in time, the clinical trial plasma reserve will be allocated to its beneficiaries.

The incentivized plasma reserve, meanwhile, is endogenous: it depends on two different types of

Such an NDD chain becomes possible with the undirected initial donation of a Good Samaritan donor; the longest
single-center paired kidney exchange of this form involved 101 donors and recipients (Pope, 2018).
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incentives. The first incentive we consider is the provision of a fixed number of credits to plasma

donors, which can be later redeemed by patients of the donors’ choosing; we refer to this as a pay-

it-backward incentive. These credits are of potential value to donors because patients who arrive the

system with a credit have first-tier priority access for units in the incentivized plasma reserve.

The second type of incentive—which we call a pay-it-forward incentive—exploits the unusual feature

of convalescent plasma that any patient who recovers becomes a potential plasma donor. This provides

an opportunity to expand access to plasma: if we can use plasma to increase the patient recovery rate,

and those recovered patients go on to donate plasma, then we can grow the plasma supply more than

one-for-one. Thus, we propose to provide second-tier priority access to units in the incentivized plasma

reserve for patients who do not have a credit but who pledge to donate plasma in the near future, in the

event that they recover. Any patient who is able to fulfill her pledge through a plasma donation may

also receive a number of credits, although fewer than those provided to donors under pay-it-backward

incentives.

The priority tiers for access to the plasma product through the incentivized plasma reserve are

then:

1. First-tier priority : Patients who arrive with a credit.

2. Second-tier priority : Patients who arrive without a credit but who pledge to donate plasma upon

recovery, subject to eligibility requirements.

3. Third-tier priority : Any other patient who is in need of a plasma product.

Within each tier, ties are broken in a systematic way determined by the central planner. The system can

be utilized to allocate plasma therapies or other plasma-derived products like hyperimmune globulin.

Meanwhile, the allocation process in the clinical trial plasma reserve is fully regulated by the central

planner.

2.1 Pay-it-Backward Incentives

Some donors are purely altruistic and need no incentive to donate. But potential donors may at

least in part wish to be able to donate to their loved ones.6 For these donors, the pay-it-backward

incentive can be expected to be valuable because the credit provides a medium of exchange that eases

three frictions associated with donation. For example, consider a potential donor who wants to donate

to a family member. She may not be able to donate to her intended recipient if any of the following

three difficulties arise:

1. The donor and intended recipient are time-incompatible: when the beneficiary needs plasma

therapy, the donor is medically unable to donate.

2. The donor and intended recipient are plasma-incompatible: the beneficiary has antibodies for

antigens in the donor’s blood that makes the donation medically impossible.

6This consideration appears in donor FAQs, such as OneBlood, (2020).
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3. The donor and intended recipient are location-incompatible: the donation is either difficult or

impossible due to travel limitations.

By functioning as an in-kind medium of exchange, a credit surmounts each friction; this should nat-

urally result in greater overall donation. And because plasma donors can donate multiple units of

plasma, the resulting increase in plasma supply benefits the overall patient pool—not just credit re-

cipients.

There are two important precedents for the credit system we envision. The first is blood assurance

programs used for whole blood donation. In a blood assurance program, a donor obtains credits for

a donation. These credits can be used to obtain discounts, refunds or waived feeds if a credit holder

is ever to receive blood. For example, in the Cape Fear Valley system, each blood donation equals

one blood credit that may be kept by the donor or transferred to a family member or friend in need.

Blood credits are used to replace blood charges for patients in the health system (Cape Fear Valley,

2020). Starr, (2002, p. 190) describes the important role that blood assurance programs played in the

development of US blood markets in the 1960s, though they are currently less common.

The second precedent for a credit system is from kidney exchange: A voucher for a chronologically

incompatible pair (Veale et al., 2017) involves giving a (typically young) patient priority for a future

kidney transplant in exchange for a kidney donation from an older donor today; this mechanism is

used when the donor is expected to be too old to donate when the patient will need a transplant.

A relatively modest number of these intertemporal exchanges have been organized by the National

Kidney Registry, which arranges kidney chains initiated by good-samaritan donors.7 We anticipate a

potentially more substantial role for credits in plasma donation, because the risk and potential negative

consequences to the donor are much lower for plasma donation than for kidney donation.

2.2 Pay-it-Forward Incentives

The pay-it-backward principle just discussed rewards plasma donation ex post. The pay-it-forward

principle, by contrast, gives an ex ante reward for a pledge to donate in the future conditional on

recovery and eligibility; as we show in the next section, this too can be expected to increase the overall

plasma supply, so long as a large enough fraction of the pledged donations are actually carried through.

It is thus essential to think about how many pledged donations will actually materialize. Some

patients who benefit from pay-it-forward incentives may be unable to donate for medical eligibility

reasons.

It is also possible that a patient may simply decide not to honor her pledge. This is an important

practical issue, but non-directed donor chains in kidney exchange show that it is surmountable. In a

non-directed donor kidney exchange chain, a patient receives a kidney based on the pledge that their

donor will donate a kidney to another patient in the future. It is possible that after a patient receives

a kidney, their donor may renege; however, in practice this rarely occurs. Cowan et al., (2017) report

that only six donors reneged over the course of 1,700 transplants. And the incentive to renege on

upfront pledges may be stronger for kidneys than for plasma, since kidneys do not regenerate and

require a much more invasive procedure for donation.

7These chains were introduced by Roth et al., (2006), and the proof of concept was documented by Rees et al.,
(2009).
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In our model, we allow for the possibility that a patient who pledges to donate in the future ends up

not donating (for whatever reason); in the steady-state of our model, what we need is for the fulfilled

plasma donation pledges to cover the flow of units used by the patients who pledge (both those who

do and do not end up donating in the future).

Since pay-it-forward incentives have not been used in plasma donation before, it is difficult to

estimate what fraction of patients will end up fulfilling their pledges. But in any event, the plasma

replenishment rate under pay-it-forward incentives depends on (i) the rate of pledge fulfillment, (ii)

how many units of plasma each patient who does fulfill a pledge donates each time she does so, and

finally (iii) how many times those patients donate; of these parameters, the only one recovered patients

can control is (iii).

3 Model of Plasma Donation and Demand

To formalize our conceptual intuitions about the interaction between plasma donation and treat-

ment, we develop a simple steady-state model of plasma donation and demand. In this section, we

assume that each patent receives plasma from a donor of the same blood type or the allocation is for

a plasma product, such as hyperimmune globulin, for which blood-type compatibility is not needed.

We extend our analysis to blood-type compatible allocation of plasma in the next section.

3.1 Paying it Backward through Priority Credit

We consider a plasma rationing system that sets aside some units of plasma for clinical trial patients

through a clinical trial plasma reserve; the rest of the plasma supply is available to be distributed

through our incentive schemes through the incentivized plasma reserve.

We first consider a pay-it-backward incentive scheme: We suppose that each individual who donates

plasma receives v > 0 priority credits that can be used to give treatment priority to family members

or other close associates.8

The novel feature of this incentivized plasma reserve is that while the clinical trial plasma reserve

capacity is set as an exogenous parameter, the incentivized plasma reserve capacity will be endoge-

nously determined at steady-state as a function of certain population parameters as well as the priority

credit scheme in place. In particular, the incentivized plasma reserve will prioritize patient groups in

the following order:

1. patients who have credits (we refer to these patients as credit-prioritized); then

2. patients who do not have a credit (non-prioritized).

Within each group priority group, plasma therapy is allocated based on a well-defined rule such as

a point system or a lottery.

We contrast this system with one in which no credits are provided—i.e., v = 0—in which, there is

a set-aside reserve for clinical-trial patients and the rest of the plasma supply is rationed among the

remaining patients, with all plasma being supplied through purely altruistic donation.

8We introduce the pay-it-forward incentive scheme in the next section.
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We consider a continuum flow model over (continuous) time and analyze the system at a steady-

state. Flow rates are defined as one-dimensional Lebesgue measures of sets of individuals that become

available at each time.9

We suppose that there is a separate market for each blood type or the donated plasma is purified

and pooled to produce hyperimmune globulin shots, which does not require blood-type compatibility

for its administration.

Let τ be the flow clinical trial plasma reserve size. We assume that there is overdemand for the

trial, so that a flow rate of πt = τ of patients participate.

At steady-state we assume that there are patients who arrive to the medical system with the credit-

prioritized status; we denote the steady-state flow arrival rate of these patients by πv. Each of these

patients hold a credit given to her by a plasma donor.

The remaining patients are non-prioritized; we denote their steady-state flow rate by πn ≥ 0.10

Some of the patients recover without any plasma therapy; we denote the flow arrival rate of these

recovering patients by ω.

The plasma therapy has steady-state arrival flow rate γ. We assume for simplicity that each patient

who is treated recovers.11

We denote the service rates for clinical-trial patients, credit-prioritized patients, and non-prioritized

patients by st, sv, and sn respectively; these are the proportions of the respective populations that are

treated with plasma. The flow rates of recovery for each type of patient are then stπt, svπv, and snπn.

Plasma can only be supplied by recovered patients. The flow rate of patients who can poten-

tially provide plasma thus has four components: stπt, svπv, and snπn—all described in the previous

paragraph—as well as patients who have recovered without plasma therapy, with flow rate ω. We as-

sume that recovering clinical-trial patients, recovering non-prioritized patients, and recovering patients

using alternative treatment models donate plasma at the same rate p.12 We also make a simplifying

worst-case scenario assumption regarding credit-prioritized patients: we assume that credit-prioritized

patients who recover do not donate plasma.13

Thus, the steady-state plasma therapy supply flow rate is endogenously determined by

γ = p(stπt + snπn + ω)k, (1)

where p is the probability that a given recovered patient donates and k is the number of units of

9We denote measures of sets, i.e., flow rates, with Greek letters, while we use Latin letters for numbers and proportions.
10We treat πt = τ as an exogenous parameter and πn as a steady-state rate so that πv is endogenously determined as

a function of these and other population and credit system parameters at the steady-state.
11Our qualitative results are the same if only a proportion of treated patients recover and only a proportion of

non-treated patients die.
12We make this assumption for simplicity; all our results are robust to relaxing it. In particular, if recovered patients

who received plasma donate at a different rate than those who did not, our analysis here provides a lower bound on the
total plasma stock if we take p to equal the minimum of the two donation probabilities.

13If we instead assumed that recovering credit-prioritized patients donate at the same rate as the other patient groups,
our Propositions 1, 2, 4 and 5 would all still hold, as donation by recovered credit-prioritized patients increases the net
plasma supply, and all four results provide sufficient conditions for a priority system to function under a minimum
plasma supply. The qualitative conclusion of Proposition 3 that a credit system is better than an altruistic donation
scheme under Assumption 1, as well as the given sufficient condition, would also continue to hold.
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plasma that patient can donate.14

As mentioned before, each individual who donates plasma receives v ≥ 0 priority “credits” that

can be used to give treatment priority to a family member or other close associate. Patients become

credit-prioritized if, and only if, some donor allocates one of her v priority credits to them; thus, we

must have

πv = p(stπt + snπn + ω)qv, (2)

where q is the proportion of credits actually redeemed. We will use r = qv to denote the average

number of redeemed credits used per donor, which we call the credit redemption rate. We refer to

p(k − r)

as the replenishment rate of the plasma therapy; this is the average amount of net plasma donated to

the general pool per recovered patient.

Our first result states conditions that guarantee all prioritized groups have service rate 1, i.e., st = 1

and sv = 1:

Proposition 1. So long as the plasma replenishment rate is large enough to support the clinical trial,

i.e.,

p(k − r) ≥ τ

τ + ω
, (3)

it is possible to ensure that all clinical-trial and credit-prioritized patients receive plasma therapy, so

that

st = 1 and sv = 1. (4)

Proof. The total flow rate of patients who are prioritized is given as πt + πv. To serve all of them, we

need (4), i.e., that

γ ≥ πt + πv (5)

Substituting in (1) and (2), we see that (5) is equivalent to

p(πt + snπn + ω)(k − r) ≥ πt ⇐⇒ k − πt

p(πt + snπn + ω)
≥ r.

In the worst-case scenario, the service rate for non-prioritized patients would be sn = 0, yielding

k − πt

p(πt + ω)
≥ r

as a sufficient condition for (5); this is precisely (3) since πt = τ is the reserve size.

14In the model we think of each donor as donating just once; however, the analysis is unchanged if donors can donate
repeatedly and we take k to be the average total donations per-individual.
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We next turn our attention to the plasma therapy service rate sn for non-prioritized patients, which

takes the form

sn =
γ − stπt − svπv

πn
. (6)

Assuming that (3) holds (i.e., st = 1 and sv = 1) we substitute (1), (2), and the reserve size πt = τ

into (6) to find:

sn =


ωp(k−r)−τ

(
1−p(k−r)

)
πn
(

1−p(k−r)
) if p(k − r) < 1

+∞ if p(k − r) ≥ 1.

(7)

There is positive feedback: raising the number of patients who recover without plasma therapy, ω,

increases the steady-state service rate—and this effect is greater the larger the probability that recov-

ering patients donate, and the more units they contribute to the system. Naturally, the service rate is

also increasing in the replenishment rate.

We see from (7) that if the plasma replenishment rate is greater than 1, we will have an arbitrarily

large amount of plasma available at steady-state, so that all patients will be able to be treated. On

the other hand, even if the replenishment rate is less than 1, we may still be able treat everybody and

end up with finite but excess supply of plasma; this is characterized by (finite) sn ≥ 1.

We note in particular that so long as (3) holds, we have

sn ≥ 0,

which leads to the following corollary:

Corollary 1. So long as the plasma replenishment rate is large enough to support the clinical trial

(i.e., (3) holds), the flow recovery rate of non-prioritized patients, snπn + ω, is weakly higher than

the rate that would arise absent plasma donation, ω, even when all plasma-clinical-trial patients and

credit-prioritized patients are treated ahead of non-prioritized patients.

From (7), we compute that sn ≥ 1 whenever

p ≥ τ + πn

(τ + πn + ω)(k − r)
. (8)

We thus find:

Proposition 2. Whenever (8) holds, it is possible to treat all patients—prioritized and non-prioritized—

at steady-state. In particular, it is possible to treat all patients when replenishment rate is above

replacement; that is, when

p(k − r) ≥ τ + πn

τ + πn + ω
.

3.1.1 Altruistic Donation vs. Incentivized Backward Donation

Additionally, we can think of p in terms of a supply curve p( · ) that is strictly increasing and

differentiable as a function of the credit redemption rate, r. Thus, p(0) refers to the altruistic donation
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probability (which is what would arise without any incentive scheme involving prioritization through

credits).

We make the following assumption:

Assumption 1. The replenishment rate p(r)·(k−r) is strictly increasing at r = 0 (i.e., p′(0)k > p(0)).

Assumption 1 is fairly mild; it is satisfied if a sufficiently small percentage of recovering patients

donate altruistically without any credit scheme in place. Under Assumption 1, assuming an interior

maximum s∗ < 1 (i.e., s = 1 cannot be achieved no matter what r is), our expression (7) for sn

implicitly defines the optimal r through the necessary first-order condition:

0 =
dsn

dr
=

d

dr

[
ω · p(r) · (k − r)− τ

(
1− p(r) · (k − r)

)
πn
(
1− p(r) · (k − r)

) ]
,

so that we have
p′(r∗)

p(r∗)
=

1

k − r∗
. (9)

Observe that the r∗ in (9) is also the value that maximizes the replenishment rate p(r) · (k − r).15

Such an interior maximum exists for the service rate because the service rate is increasing in the

replenishment rate and the replenishment rate is increasing at r = 0 by Assumption 1 (and hence is

positive at a small r ≈ 0); moreover the service rate falls back to 0 when r satisfies (3) with equality.

We summarize our findings with the following proposition:

Proposition 3. Under Assumption 1, so long as the plasma replenishment rate is large enough to

support the clinical trial, (i.e., (3) holds) the credit redemption rate that maximizes the plasma service

rate for non-prioritized patients satisfies r∗ > 0—that is, using a credit scheme strictly improves

outcomes for non-prioritized patients.

Moreover, the service rate for non-prioritized patients sn is strictly increasing in the plasma replen-

ishment rate p(r) · (k − r) and is maximized either

• at sn∗ = 1 by all credit redemption rates r that satisfy (8), or

• at some sn∗ < 1 (if there is no r such that we can have sn = 1) by a credit redemption rate r∗ > 0

satisfying (9).

3.2 Paying it Forward through a Pledge of Future Donation

We now suppose that there is also a pathway some patients can use to gain priority for treatment,

which is to pledge upfront to donate plasma upon recovery. We suppose that in addition to upfront

treatment, we give such a patient vf ≥ 0 credits after (and if) she donates plasma.16

As before, we set aside a reserve for clinical-trial patients with the flow capacity τ . The rest of

the plasma therapy is allocated within the incentivized plasma reserve, which now has three priority

classes ordered as follows:
15If there are multiple such values, we pick the one among them that achieves the highest service rate sn.
16We may also count the treatment of the pledged patient herself as the upfront redemption of a credit, in which case

we would think of this patient as receiving credits to treat as many as vf + 1 patients, including herself.
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1. patients who have credit (whom we refer to as credit-prioritized, as before);

2. patients who do not have credits but pledge to donate after they recover (pledged patients); and

3. patients not in any of the other categories (non-prioritized patients).

We denote the steady-state flow rate of patients participating in clinical trial by π̂t = τ ; the flow

rate of credit-prioritized patients by π̂v; the flow rate of pledged patients by π̂f ; and the flow rate of

non-prioritized patients by

π̂n = πn − π̂f ≤ πn.

We refer to the different types of patients’ respective plasma therapy service rates as ŝt, ŝv, ŝf , and

ŝn.

Then the total flow rate of recovering patients has four components:

• patients who participate in clinical trials, with a flow rate ŝtπ̂t;

• patients who are credit-prioritized, with a flow rate ŝvπ̂v;17

• patients who have pledged to donate ex ante, with a flow rate ŝf π̂f ; and

• patients who are not part of clinical trials, do not have credits, and have not pledged to donate,

with a flow rate of ŝnπ̂n + ω.

The total steady-state flow of plasma therapy is

γ̂ =
(
p(ŝtπ̂t + ŝnπ̂n + ω) + pf ŝf π̂f

)
k, (10)

where p is the population probability to donate in return for credits (as in the prior sections) and pf

is the probability with which pledged patients donate upon recovery. We allow the possibility that

some patients who pledge may not end up donating—perhaps due to medical ineligibility—so that pf

is expected to be less than 1. We only assume that pledging increases one’s probability of donation,

so that pf ≥ p.

We assume that patients who decide to donate ex post each receive v priority credits to be used

by their loved ones, as before. On the other hand, pledged patients possibly also receive a number of

vouchers upon recovery and donation—if they they donate k units of plasma, they receive vf credits.

The vf credits are only given after the pledged recovering patient “pays it forward” by donating

plasma, which occurs with probability pf .

Thus, the flow rate of credit-prioritized patients π̂v satisfies

π̂v = p(ŝtπ̂t + ŝnπ̂n + ω)qv + pf ŝf π̂fqvf . (11)

17As before, we conduct a worst-case analysis under the assumption that patients who have credits do not become
plasma donors upon recovery. Propositions 4 and 5 continue to hold if we assume credit-prioritized patients also donate
with probability p upon recovery.
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As before, we will work with the credit redemption rates

r = qv

for the patients who have not pledged ex ante but decide to donate upon recovery. Similarly, for

pledged patients, we write:

rf = qvf .

The following proposition gives conditions under which we can fully serve all prioritized patient

groups (i.e., so that ŝt = 1, ŝv = 1, and ŝf = 1):

Proposition 4. Regardless of the pledged patient arrival rate π̂f , so long as we have

p(k − r) ≥ τ

τ + ω
and pf (k − rf ) ≥ 1, (12)

it is possible to ensure that all clinical-trial patients, credit-prioritized patients, and pledged patients

receive plasma therapy, so that

ŝn = 1, ŝv = 1, and ŝf = 1.

Proof. Clinical-trial patients, credit-prioritized patients, and pledged patients are prioritized over non-

pledged patients. Thus, by setting ŝt = ŝv = ŝf = 1 and using (10) and (11), we see that all prioritized

patient groups can all be treated by plasma if

γ̂ ≥ π̂t + π̂v + π̂f ⇐⇒ p(π̂t + ŝnπ̂n + ω)(k − r) + pf π̂f (k − rf ) ≥ π̂t + π̂f . (13)

To capture the minimum amount of plasma needed to treat all pledged patients, we consider the

worst-case scenario in which no non-prioritized patients are treated, i.e., ŝn = 0. Then necessary and

sufficient conditions for (13) to be satisfied regardless of π̂f are

p(k − r) ≥ π̂t

p(π̂t + ω)
and pf (k − rf ) ≥ 1. (14)

Replacing π̂t with τ in (14), we obtain (12).

The first condition in (12) is the same condition as (3): The replenishment rate of the plasma

obtained from initially non-pledged patients should be at least as large as is needed to support the

clinical trial plasma reserve. The second condition in (12) requires that the replenishment rate of

plasma obtained from pledged patients should at least cover those patients’ own initial treatment in

steady-state.

We now examine the plasma service rate for non-prioritized patients when (12) holds:

ŝn =
γ̂ − ŝtπ̂t − ŝvπ̂v − ŝf π̂f

π̂n
. (15)
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Expanding (15) assuming ŝv = 1, we find that

ŝn =

(
p(ŝtπ̂t + ŝnπ̂n + ω)(k − r)

)
− ŝtπ̂t +

(
pf ŝf π̂f (k − rf )

)
− ŝf π̂f

π̂n
. (16)

Solving (16) for ŝn (replacing π̂t = τ and ŝt = 1), we see that, assuming the pay-it-backward credit

replenishment rate does not on its own lead to infinite excess supply of plasma (i.e., p(1− r) < 1),

ŝn =
ωp(k − r)− τ

(
1− p(k − r)

)
+ pf ŝf π̂f

(
k − rf − 1

pf

)
π̂n
(
1− p(k − r)

) . (17)

Comparing (17) to (7), we see that non-prioritized patients are served at a weakly higher rate than

they would be under a system that does not prioritize pledged patients whenever

ωp(k − r)− τ
(
1− p(k − r)

)
+ pf ŝf π̂f

(
k − rf − 1

pf

)
π̂n
(
1− p(k − r)

)
= ŝn ≥ πn

π̂n
sn =

πn

π̂n

(
ωp(k − r)− τ

(
1− p(k − r)

)
πn
(
1− p(k − r)

) )
.

Thus, we find that ŝn ≥ sn when (12) holds, and conclude:

Proposition 5. So long as (12) holds, besides treating every clinical-trial patient and credit-prioritized

patient (ŝt = ŝv = 1), it is possible to treat every patient who pledges to donate plasma upfront (ŝf = 1),

while still raising the service rate for non-prioritized patients who have not pledged to donate.

4 ABO Blood-type Compatible Plasma Donation

We now build on the analysis from the preceding section to allow patients receive donation from

plasma-compatible donors who do not necessarily have identical blood type.

There are four blood types O, A, B, and AB. Type AB plasma can be used to treat patients of all

blood types; blood-type A plasma can be used to treat patients of blood types O and A; blood-type

B plasma can be used to treat patients of blood types O and B; and blood-type O plasma can only

be used to treat patients of blood type O. (Since convalescent plasma is a type of plasma, those same

compatibility requirements are needed for plasma transfusion.) We let B = {O,A,B,AB} be the set

of blood types.

Under an ABO-identical treatment policy, non-prioritized patients of different blood types may be

served in unequal service rates because the parameters π̂fX/π
n
X , ωX/π

n
X , pX , and pfX may vary based on

blood-type X ∈ B even if the voucher redemption rates rX and rfX are chosen to take these differences

into account. The main reason behind this variation is due to the location of outbreaks and differences

in people’s ability to socially distance, COVID-19 has so far affected some national and ethnic groups

more than others. Moreover, some blood types may have excess supply of plasma while the others do

not; for example, (8) may hold for some blood types while it does not for others.

We aim for an egalitarian service policy for plasma therapy with multiple blood types—thus we

seek to make the non-prioritized patient service rates of different blood types as equal as possible
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without affecting efficiency.

We need to account for voucher holders possibly having different blood types from their original

donors; we assume that their blood types are independently distributed from their donors’. Suppose

bX is the probability that a given patient is of blood type X. Let

rX = bX
∑
Y ∈B

qY vY

be the voucher redemption rate for backward donation, and let

rfX = bX
∑
Y ∈B

qY v
f
Y

be the voucher redemption rate for forward donation.

We refer to the service rates for non-prioritized patients for each blood type X given in (17) as

the ABO-identical service rate, and rephrase it here once more assuming all clinical-trial patients,

voucher-prioritized patients and pledged patients are served, i.e., ŝtX = 1, ŝvX = 1, and ŝfX = 1. Define

σX := ωXpX(k − rX)− τX
(
1− pX(k − rX)

)
+ pfX π̂

f
X

(
k − rfX −

1

pfX

)
(18)

δX := π̂nX
(
1− pX(k − rX)

)
(19)

for each blood type X. Here, σX is the steady-state net supply of blood-type X plasma to be rationed

to non-prioritized patients while δX is the steady-state net demand for plasma by non-prioritized

blood-type X patients.

4.1 Pooling for Plasma Treatment

Whenever, δX < 0, which happens when the plasma replenishment rate for X is greater than 1,

the blood-type X non-prioritized patients are self-sufficient, and we can distribute the remaining

plasma to other compatible blood types to serve all of them.18 Thus, assume that replenishment rate

pX(k − rX) < 1 for at least one blood type X ∈ B, as otherwise all blood types will be self-sufficient

and non-prioritized patients who survive donate enough plasma on net to supply future generations of

patients.

Moreover, assuming pX(k−rX) < 1, we observe that σX is the numerator and δX is the denominator

of ŝnX in (17)

ŝnX =
σX
δX
. (20)

Another way the excess plasma of one blood type can be used for other blood types is that if δX > 0

and still σX > δX . Suppose as an example, for δO, δA > 0 we have,

Since blood-type O patients can receive blood-type A plasma, for an egalitarian plasma allocation,

18Relative to our model as presented in the previous section, this is the case in which we obtain infinite supply of
blood-type X plasma in the steady-state.
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we can give some of the blood-type A plasma to blood-type O patients and increase the service rate

for O patients and decrease the service rate for A patients. Let σA→O be the resulting net transfer

flow of blood-type A plasma to blood-type O patients.

Then, the new service rates of both types will be

sO =
σO + σA→O

δO
≤ sA =

σA − σA→O
δA

. (21)

We can continue increasing the net transfer σA→O until both service rates become equal, to sustain an

egalitarian service rate among the two blood types. Either we will eventually have both service rates

exceeding 1, and hence all of these patients are served, or we will end up with an equal service rate

for A and O less than 1. Observe that the amount of plasma transfer from A to O that makes (21)

hold with equality is

σA→O =
σAδO − σOδA
δO + δA

, (22)

which is strictly greater than 0 (by (18) and δO, δA > 0) and strictly smaller than σA (as δO, δA > 0).

This resulting service rate, what we call the pooling service rate for A and O is then

ŝn{O,A} :=
σO + σA
δO + δA

= sO = sA. (23)

Observe that (23) treats patients as if A and O together form a “composite blood type” and yet the

subsidy of plasma is one way: some blood-type A plasma is used to treat blood-type O patients, but

blood-type O plasma is never used on blood-type A patients (as it would not be compatible).

As σA, σO, δA, δO > 0, we have

ŝnO =
σO
δO

< ŝn{O,A} < ŝnA =
σA
δA
.

Additionally, if the service rate for B, ŝnB is larger than the pooled rate in (22) but lower than ŝnA,

we can further subsidize blood-type O patients and return some of the blood-type A plasma that was

earmarked for O patients in (21) back to blood-type A patients.19 Eventually, we would end up with

a pooled service rate for the blood types {O,A,B}; as long as δB > 0, we would have

ŝn{O,A} < ŝn{O,A,B} =
σO + σA + σB
δO + δA + δB

< ŝnB.

4.2 Optimal Pooling

We now introduce a formal iterative pooling procedure to determine the service rates of non-

prioritized patients when there are four blood types.20

19If ŝnB > ŝnA, then we would start with blood-type B plasma to subsidize blood-type O patients and then check later
for further blood-type A plasma subsidy opportunities.

20The procedure discussed here subsumes the procedure that was introduced in an earlier working paper, Sönmez and
Ünver, (2015).
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Figure 1: The plasma compatibility graph (S,D,C).

Consider the following bipartite graph (see Figure 1), with sides labeled S and D. Either side

consists of the 4 nodes, one for each blood type:

S = {OS, AS, BS, ABS},
D = {OD, AD, BD, ABD}.

Each node in S represents the plasma supply of the corresponding blood type; each node inD represents

demand, i.e., the patients of the corresponding blood type. The nodes in both sides are connected

with undirected blood-type compatibility edges, when possible. Each edge is represented as {XD, Y S} ∈
S ∪ D, which means that blood-type Y plasma can be transfused to blood-type X patients; we let C

be the set of edges. We refer to (S,D,C) as the plasma compatibility graph.

For any D′ ⊆ D and S ′ ⊆ S, define

CD′(S ′) :=
{
Y S ∈ S ′ : {Y S, XD} ∈ C for some XD ∈ D′

}
;

set CD′(S ′) is the set of plasma supply nodes in S ′ that are compatible with the patients of blood types

in D′. We also define

sD′(S ′) :=

∑
Y S∈CD′ (S′)

σY∑
XD∈D′ δX

, (24)

which is the supply-to-demand ratio for demand nodes inD′ when the supply nodes in S ′ are exclusively

available for them. The ratio sD′(S ′) is our generalization of the service rates for non-prioritized

patients of a certain blood-type X under ABO-identical plasma rationing as defined in (20).

The steps of the pooling construction are as follows:

Plasma Pooling Procedure – We iteratively construct partitions S0,S1, . . . ,S¯̀

of S and D0,D1, . . . ,D¯̀ of D as follows:

Step 0. Define

D0 :=
{
XD ∈ D : δY < 0 for some Y S ∈ C{XD}(S)

}
, (25)

S0 :=
{
XS ∈ S : δY < 0 for some Y S ∈ C{XD}(S)

}
. (26)
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If δY < 0, then the plasma replenishment rate for blood-type Y is greater than 1, so

there is arbitrarily large steady-state supply—and the patients of the demand nodes

in D0 can be fully served with that plasma; meanwhile, the plasma of any supply

node XS ∈ S0 will not be required in the pooling procedure because any blood type

that blood-type X plasma can serve is also served by blood-type Y plasma. For each

XD ∈ D0, set the service rate of non-prioritized blood-type X patients to

ŝnX := 1.

...

Step ` ≥ 1: Given sets S0, . . . ,S`−1 and D0, . . . ,D`−1, we find the

D′ ⊆ D \ ∪`−1
m=0Dm,

that minimizes sD′(S \ ∪`−1
m=0Sm):21

D` := arg min
D′⊆D\∪`−1

m=0Dm

{
sD`

(
S \ ∪`−1

m=0Sm
)}

, (27)

S` := CD`

(
S \ ∪`−1

m=0Sm
)
. (28)

We allocate all plasma of supply nodes in S` to patients of demand nodes in D` and for

each XD ∈ D`, we set the service rate of non-prioritized patients of blood type X to be

ŝnX := min
{

1, sD`
(S`)

}
. (29)

If D \ ∪`m=0Dm 6= ∅, then we continue with Step `+ 1.

The pooling procedure just described first identifies patient types that can be completely served

using plasma that is in excess supply. Then, we iteratively match plasma to patients by finding the

patients who are hardest to serve with the remaining supply and assigning them as much plasma as

possible.

We first demonstrate that the procedure we have just described is feasible, in the sense that it

never over-allocates plasma supply:

Proposition 6. The plasma pooling procedure generates a feasible outcome service-rate vector.

In the Appendix, we prove Proposition 6 using a general method based on maximum-flow theory.

The argument we give does not depend on the structure of plasma donation compatibility, and thus may

be of independent interest for other divisible goods rationing problems with compatibility requirements.

As we might naturally expect given that our pooling procedure serves the hardest-to-serve patients

in each step, the service-rate vector we obtain has an intuitive fairness property. Given a service rate

21If there is more than one such set, then we take the largest of them, which is uniquely defined.
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vector s, the largest service rate under s is

max
X∈B
{sX}

and the smallest service rate under s is

min
X∈B
{sX}.

Proposition 7. The service rate vector obtained through our plasma pooling procedure

• maximizes the smallest service rate and

• minimizes the difference between the largest and smallest service rates

among service rate vectors that maximize the measure of patients served (under given pay-it-backward

and pay-it-forward voucher redemption rates (rX , r
f
X)X∈B and clinical-trial reserves (τX)X∈B).

The proof of Proposition 7 is also in the Appendix.

5 Related Literature

To our knowledge, this paper is the first to propose a market design approach to plasma donation.

That said, several of the key insights and tools in our proposed mechanisms for increasing plasma

donation in have parallels in the kidney exchange literature (see, e.g., Roth, Sönmez, and Ünver,

2004, 2005a,b). Within that literature, our model is most closely related to that of Sönmez, Ünver,

and Yenmez, (2020), who introduced a dynamic continuum matching model to study the effects of

incentivizing compatible kidney donor-patient pairs to participate in exchange by providing increased

priority in the deceased-donor queue. The most important difference is that patients and donors are

distinct in Sönmez, Ünver, and Yenmez, (2020), whereas in our model they are the same population.

The incentive schemes we propose exploit the fact that patients can go on to become donors unlike

kidney exchange settings.

There are parallels between the pay-it-forward and pay-it-backward idea in kidney exchange. Non-

directed donor chains involve paying it forward (Roth et al., 2006; Rees et al., 2009). In such a chain,

each participating incompatible patient-donor pair first receives a kidney donation for their patient and

at a later date their donor returns the favor by donating a kidney to another pair. These chains start

with the gift of an altruistic donor, and can lead to quite long sequences of donations. Intertemporal

incentives in kidney exchange also relate to the paying it backward concept. In a patient-donor pair

where the patient is not ready for a transplant yet, the donor will no longer be eligible for donation

when the patient is expected to need a transplant in the future (perhaps due to donor age). Veale

et al., (2017) report on a kidney voucher system where an older living donor of a young patient starts

a chain of kidney exchanges through donation to an incompatible pair. Since the younger patient will

likely need a kidney in the future, the patient receives priority for a kidney at the end of a similar

future chain if her kidney fails. Since the donor is old, the window for donation is short and the

scheme helps other pairs receive transplants through chain exchanges in the present and in some sense

“insures” the initial patient paired with the donor. Similarly, Akbarpour et al., (2019) study unpaired
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kidney exchange, where a patient i can receive a kidney from patient j and the system will remember

that patient j has the right to receive a kidney in the future.

Since plasma is part of blood, our work is also related to research on the design of blood markets.

Slonim, Wang, and Garbarino, (2014) provide a recent summary, and show that providing donors

some form of non-monetary incentive, such as a medal or trinket increases donation. Lacetera, Macis,

and Slonim, (2013) report that 18 of 19 different incentives in observational or field experimental

studies increase blood donation. The responsiveness of blood donation to incentives suggests that a

voucher may increase convalescent plasma donation rates. Heger et al., (forthcoming) have proposed

introducing a registry for prospective blood donors. There is also precedent for the formation of

a centralized plasma bank during a pandemic. Delamou et al., (2016), for example, report on the

Guinean National Blood Transfusion Center, which involved donor mobilization and plasma collection

for Ebola therapy in 2015.

Our paper is also related to schemes used to incentivize donation of solid organs in other countries

by using pledges to donate. Singapore has a presumed consent/opt-out policy for donation of cadaveric

kidneys, livers, hearts, and corneas. If someone does not want to donate a particular organ, they would

receive lower priority for receiving that particular organ (Singapore, 2012). In Israel, a patient who

holds a donor card or is a first-degree relative with a donor card obtains priority over patients who

do not. To obtain a donor card, the individual has to opt-in to donation (Lavee et al., 2010). In

Chile, an individual who does not wish to donate their organ would receive lower priority for organ

transplantation than a registered person if there is equal need and compatibility (Zúniga-Fajuri, 2015).

Last, we note that our continuum model is related to a growing literature in matching theory that

considers large-market models. Large-market models oriented towards market-design applications

include those of Kojima and Pathak, (2009), Che and Kojima, (2010), Abdulkadiroğlu, Che, and

Yasuda, (2011), Azevedo and Leshno, (2016), Azevedo and Hatfield, (2018), Azevedo and Budish,

(2019), Che, Kim, and Kojima, (2019), and Che and Tercieux, (2019). Our steady-state analysis

is also related to recent models of dynamic matching markets, such as the work of Ünver, (2010),

Anderson et al., (2017), Baccara, Lee, and Yariv, (2018), and Akbarpour, Li, and Gharan, (2020).

6 Conclusion

In this paper, we propose a market design approach to convalescent plasma donation and distribu-

tion. Plasma donors may be given credits that can be used to give treatment priority to their loved

ones; priority is also given to participants in clinical trials. Our model illustrates important possibil-

ities: if the plasma replenishment rate is large enough to support the patients in a clinical trial, it

is possible to treat all prioritized patients in equilibrium. There is also a positive spillover for non-

prioritized patients. Moreover, if recovered patients are more willing to donate if they receive credits,

introducing a credit system strictly benefits non-prioritized patients. Overall treatment availability

expands further if we prioritize patients who pledge to “pay it forward” by donating plasma once they

have recovered.

In terms of the model, there are several directions for future work. Our analysis has focused on

the steady-state for analytical convenience. Since both convalescent plasma supply and demand are

evolving rapidly, it will be important to understand transition dynamics leading to a steady-state.
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Second, we did not consider the possibility of other allocation systems, including those based on price.

As far as we know, there is no current market where infected patients can buy convalescent plasma

or where recovered patients can sell their plasma. However, as the market matures, these institutions

may develop, and it is worth understanding how they relate to our model.

Our model has been motivated by convalescent plasma, but our ideas can apply more generally to

increase supply for other human products. The key property necessary for our pay it forward incentive

to work is that a patient who receives treatment can go on to become a donor in the future. There

are several other products for which this property holds, including other blood components.

After we circulated the first version of this paper, we were approached by the leadership at the US

Covid plasma initiative (http://covidplasmasavealife.com), a leading network of patients, donors,

and hospitals which has supplied more than half of the plasma to the Mayo Clinic’s expanded access

program (Stack, 2020). The leadership inquired about a variant of our credit system for increasing

plasma donation for their hyperimmune globulin product under development. Pending clinical and

regulatory approval of their product, they intend to use our credit system to collect plasma in their

program (see https://www.covidplasmasavealife.com/hig).
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Appendix A Proof of Propositions 6 and 7

Instead of a brute-force approach tailored for only 4 blood types and the particular plasma com-

patibility digraph, we give a proof that is general and can be used even if there were many other

“blood types” and the compatibility digraph were constructed (arbitrarily) using those blood types. A

more plausible application of this general version of the result is constructing an egalitarian rationing

scheme for a divisible good with compatibility constraints.

A.1 Preliminaries

We use the concept of flow networks developed in the combinatorial optimization and graph theory

literature (see, e.g., Korte and Vygen, (2012) for a survey). We construct flow networks that are

isomorphic to our ABO-compatible plasma rationing problem; the flows on the network will correspond

to feasible plasma allocation policies. We then use our flow networks to show that for each ` ∈ {1, ..., ¯̀},
for each demand node XD ∈ D` (as defined in (27)), we can feasibly serve non-prioritized patients of

blood type X at the rate defined in (29) using plasma from the corresponding supply nodes in S`.

A.1.1 Flow Networks Isomorphic to the Rationing Problem and the Maximum Flow–

Minimum Cut Theorem

An ABO-compatible rationing flow network is defined through an acyclic digraph with nodes N =

{E,K} ∪ (D \ D0) ∪ (S \ S0) such that node E is referred to as the source; node K is referred to as

the sink ; set D0 is defined in (25); and set S0 is defined in (26).22 A directed edge of the flow network

originating from node i and pointing at node j is denoted by (i, j). We define the set E of edges as

follows:

• (E,XD) ∈ E for each XD ∈ D \ D0,

• (Y S, K) ∈ E for each Y S ∈ S \ S0,

• (XD, Y S) ∈ E ⇐⇒ {XD, Y S} ∈ C for each XD ∈ D \ D0 and Y S ∈ S \ S0.

A flow network of the acyclic digraph (N ,E) carries flows, which we will formally define below as

a function, from source E through the edges of the graph to the sink K. Each edge (i, j) ∈ E has

a capacity κ(i, j) > 0 denoting the maximum flow it can carry. Let κ = (κ(i, j))(i,j)∈E denote the

capacity vector for all the edges.

Formally, a flow network of the digraph (N ,E) is denoted by the pair (N , κ). A flow function

ϕ : E→ R+ is a mapping such that we have

(i) if (i, j) ∈ E then ϕ(i, j) ≤ κ(i, j);

(ii) if i ∈ N \ {E,K}, then
∑

h∈N :(h,i)∈E ϕ(h, i) =
∑

h∈N :(i,h)∈E ϕ(i, h).

22Note that we can retain S0 in the set of nodes and use S as the set of supply nodes included in the flow network.
In this case, all of our results will go through. For more general compatibility graphs than plasma donation this should
be done.
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Property (i) says that no edge can carry flow higher than its capacity. Property (ii) says that for any

node other than the source and the sink, the total flow entering must be equal to the total flow exiting.

We refer to ϕ(i, j) as the flow from node i to j under ϕ. Let Φ(N , κ) be the set of flow functions

defined for the flow network (N , κ).

A cut of the network is a subset of nodes V such that {E} ⊆ V ⊆ N \ {K}. The total capacity of

a cut V is

κ(V) :=
∑

i∈V, j∈N\V : (i,j)∈E

κ(i, j);

κ(V) is the sum of the capacities of edges originating from a node in V and ending at a outside V . A

minimum cut is a cut with the minimum possible total capacity, i.e., a cut V such that

κ(V) = min
{E}⊆V ′⊆N\{K}

{κ(V ′)}.

Given a flow function ϕ ∈ Φ(N , κ), the flow from cut V (to N \ V) under ϕ is denoted by

ϕ(V) :=
∑

i∈V, j∈N\V : (i,j)∈E

ϕ(i, j);

this is the total flow carried by the directed edges that start at a node in V and end at a node in N \V .

The value of ϕ is the flow under ϕ from cut N \ {K} (to {K}), which is also equal to the flow

from cut {E} (to N \ {E}). The maximum value of a flow function over the flow network (N , κ) is

defined as

max
ϕ∈Φ(N,κ)

ϕ(N \ {K}) = max
ϕ∈Φ(N ,κ)

{ϕ({E})}.

We refer to any flow function ϕ∗ ∈ arg maxϕ∈Φ(N ,κ){ϕ({E})} as a maximum flow function.

The following fundamental theorem relates the capacities of the edges to the maximum flow that

can be carried over a network:

Theorem 1 (Maximum Flow–Minimum Cut Theorem (Ford and Fulkerson, 1956)). The value of

a maximum flow function over a flow network is equal to the total capacity of one of the network’s

minimum cuts.

A.1.2 Egalitarian Rationing and x-Parametrized Flow Networks

We now consider a continuum of flow networks (N , κx) on the digraph (N ,E) where the edge

capacities from the source are parametrized by a vector x = (xX)XD∈D\D0
such that we have xX ∈ [0, 1]

for each X (see Figure 2 for an illustration):

• for any edge (XD, Y S) ∈ E, κx(XD, Y S) := +∞ (and hence, (XD, Y S) can carry any flow);

• for edge (XS, K) ∈ E (for any XS ∈ S \ S0), κx(XS, K) := σX is constant and equal to the

steady-state supply of blood-type X plasma defined in (18); and

• for edge (E,XD) ∈ E (for any XD ∈ D\D0), κx(E,XD) := xX ·δX , where δX is the steady-state

net demand of blood-type X patients defined in (19).
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Figure 2: The x–parametric flow network when D0 = ∅ and S0 = ∅ for the proof of Propositions 6 and 7,
which uses the plasma compatibility graph in Figure 1.

We refer to flow network (N , κx) as the x–parametric flow network.

As an intuitive metaphor, we may think of the demand nodes in our flow networks as representing

queues of patients of each blood type arriving from the source; flows across the network correspond

to directing patients in those queues to specific plasma supply nodes for treatment. Our x-parametric

networks in some sense represent gating processes that limit the fraction of patients of each blood type

that are allowed to proceed through the network to x. Our pooling algorithm corresponds to slowly

opening gates, while keeping track of how much supply has been allocated at each step.

Given any x ∈ (0, 1]|D\D0|, we have the following feasibility constraints by construction:

Lemma 1. For any flow function ϕ ∈ Φ(N , κx), if ϕ(XD, Y S) > 0 for some XD ∈ D \ D0 and

Y S ∈ S \ S0, then

• blood-type Y plasma is compatible with blood-type X patients, and ϕ(XD, Y S) units of such blood-

type Y plasma is given to blood-type X patients,

• in total, ϕ(E,XD) ≤ xX · δX ≤ δX units of blood-type X patients receive plasma, and

• in total, ϕ(Y S, K) ≤ σY units of blood-type plasma Y is allocated.

Conversely, for any feasible service rate vector s, there is a flow function ϕs ∈ Φ(N , κ1) where 1 =

(1, . . . , 1) such that for all XD ∈ D \ D0, we have ϕs(E,XD) = sXδX .

A.2 Proof of Proposition 6

Now, we consider the family of x-parametric networks and set xX = c for all XD ∈ D \ D0 and

increase c continuously from 0 to 1. When c is close to 0, the value of the network’s maximum flow is

equal to the total capacity of edges from the source, {(E,XD)}XD∈D\D0
because when c ≈ 0, any such

flow can be carried over the network as long as σX > 0 for all X ∈ B. Hence, when c ≈ 0, {E} is a

minimum cut. We increase x continuously until either
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• a break-point occurs at some c = c1 < 1 such that {E} is no longer a minimum cut of (N , κc1·1),

or

• c = c1 = 1 such that cut {E} stays as a minimum cut of (N , κc·1) until c reaches 1.23

If c1 = 1, then all patients can be served and we have ŝnX = x1 = 1 for all X ∈ B by construction

of the network.

Thus we suppose that c1 < 1. Then all minimum cuts are strictly larger than cut {E} at c = c1,

meaning that we will not be able to send a flow with value equal to the the sum of capacities of all

edges from the source anymore if c exceeds c1. Let N1 ) {E} be a minimum cut of the c1-parametric

network; if there are multiple such minimum cuts, let N1 be the largest of them.24

Now, suppose that XD ∈ N1 ∩D. Then for all supply nodes Y S ∈ S \ S0 such that {XD, Y S} ∈ C

we must have Y S ∈ N1, as otherwise the edge (XD, Y S) with capacity κc1·1(XD, Y S) = +∞ would

make the total capacity of the minimum cut of the whole network equal to +∞.25 (See Figure 3 for

an example of a possible minimum cut at some c1.)
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Figure 3: Example of a possible minimum cut N1 at some c = c1 (assuming D0 = S0 = ∅) with N1 ∩ D =
D∗1 = {BD, ABD}. Hence, N1 ∩ S = S∗1 = CD∗1 (S) = {BS , ABS}. The edges from N1 to N \ N1 are denoted
by thicker lines exiting the set N1. This cut’s total capacity is κc1·1(N1) = c1δO + c1δA + σB + σAB.

Therefore, total capacity of N1 satisfies

κc1·1(N1) =
∑

XD∈D\(D∗1∪D0)

κc1·1(E,XD) +
∑
Y S∈S∗1

κc1·1(Y S, K)

= c1 ·

 ∑
XD∈D\(D∗1∪D0)

δX

+

 ∑
Y S∈S∗1

σY

 , (30)

23Recall that 1 = (1, . . . , 1) is the |D \ D0| dimensional unit vector.
24Since the network is finite, it is straightforward to see that at least one minimum cut must exist.
25That would contradict N1 being a minimum cut of the network, as the cut {E} of the network has always a finite

total capacity.
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where

D∗1 := N1 ∩ D and S∗1 := N1 ∩ S = CD∗1 (S \ S0). (31)

As {E} is a minimum cut of (N , κc·1) for all c < c1, by the Maximum Flow–Minimum Cut Theorem,

a maximum flow function ϕc ∈ Φ(N , κc·1) satisfies

ϕc({E}) =
∑

XD∈D\D0

ϕc(E,XD) = κc·1({E}) =
∑

XD∈D\D0

κc·1(E,XD) = c ·

 ∑
XD∈D\D0

δX

 . (32)

The value of the maximum flow of (N , κc·1) is continuous in c at c1.26 Since N1 is a minimum cut

of (N , κc1·1), by the Maximum Flow–Minimum Cut Theorem and (32), we have

κc1·1(N1) = ϕc1(N1) = lim
c→c−1

ϕc({E}) = c1 ·

 ∑
XD∈D\D0

δX

 . (33)

From (30) and (33), we then have

c1 ·

 ∑
XD∈D\(D∗1∪D0)

δX

+
∑
Y S∈S∗1

σY = c1 ·

 ∑
XD∈D\D0

δX

 ,

leading together with (31) to

c1 =

∑
Y S∈S∗1

σY∑
XD∈D∗1

δX
= sD∗1 (S \ S0) = sD∗1 (S∗1 ), (34)

where s is as defined in (24).

The following claim shows that we have constructed precisely the sets D1 and S1 from our plasma

pooling procedure.

Claim 1. We have D∗1 = D1 and S∗1 = S1, where D1 and S1 are defined in (27) and (28), respectively

(for ` = 1).

Proof. For any subset D′ ⊆ D \D0, we define cut V = D′ ∪CD′(S \ S0)∪ {E}. Since N1 is a minimum

26Clearly, the value of the maximum flow is increasing in c. To see that we must have continuity in c, suppose for
the sake of seeking a contradiction that the value φ of the maximum flow at c1 is strictly greater than limc→c−1

ϕc({E}),
and pick some ε > 0 with

ε <
φ− limc→c−1

ϕc({E})
|E|

.

For some c′ sufficiently close to c1, the network (N , κc′·1) must be able to support the maximum flow at c1 with all
positive flow components decreased by ε because (N , κc1·1) supports that flow and κc

′·1 ≥ κc1·1 − (c1 − c′) · 1. But

φ− |E|ε > lim
c→c−1

ϕc({E}) ≥ ϕc′({E}),

contradicting the assumption that ϕc′ is a maximum flow for (N , κc′·1).
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cut of (N , κc1·1), using (33), we obtain

κc1·1(V) = c1 ·

 ∑
XD∈D\(D′∪D0)

δX

+

 ∑
Y S∈CD′ (S\S0)

σY

 ≥ κc1·1(N1) = c1 ·

 ∑
XD∈D\D0

δX

 .

and hence,

sD′(S \ S0) =

∑
Y S∈CD′ (S\S0) σY∑

XD∈D′ δX
≥ c1 = sD∗1 (S \ S0),

which proves that D∗1 = D1 and S∗1 = S1.

We now fix the capacity of the edge from the source (E,XD) for each XD ∈ D1 at xX = c1. We

continue to increase the coefficients of other edges from the source (E,XD) for each XD ∈ D\(D1∪D0)

at the same speed xX = c above c = c1. That is, we allocate all steady-state plasma associated with the

supply nodes in S1 to patients associated with the demand nodes in D1, and continue to increase the

capacities of all other edges from the source (i.e., the ones that do not end at nodes in D1), so that all

new (largest) minimum cuts will include N1. That is: for any maximum flow function ϕ ∈ Φ(N , κx),
where xX = c1 for all XD ∈ D1 and xX = c > c1 for all XD 6∈ D1 ∪ D0, whenever XD ∈ D1 and

Y S ∈ S1,

• ϕ(XD, Y S) is the amount of blood-type Y plasma allocated to blood-type X patients at steady-

state and

• ϕ(E,XD) = c1 · δX is the steady-state net flow of blood-type X patients served.

Then by iterating the argument just described, we determine a sequence of minimum cutsN1, . . . ,N¯̀

of networks (N , κx1
), . . . , (N , κx

¯̀

), respectively such that for all ` = 1, . . . , ¯̀,

x` = (x`X)XD∈D\D0
with x`X =

cm if XD ∈ D∗m for some m ≤ `

c` otherwise.

Then

D∗` := (D \ ∪`−1
m=1D∗m) ∩N` and S∗` := (S \ ∪`−1

m=0S∗m) ∩N` = CD∗`
(
S \ ∪`−1

m=0S∗m
)

= CD∗` (S∗` ),

with breakpoints c1 ≤ . . . ≤ c` ≤ . . . ≤ c¯̀≤ 1 such that

c` =

∑
Y S∈S∗`

σY∑
XD∈D∗`

δX
= sD∗` (S∗` ). (35)

Moreover, D∗` = D` and S∗` = S` for each ` as defined in (27) and (28).

Because the final flow obtained in this way is feasible, we see that we can feasibly serve plasma of

blood types corresponding to nodes in S` to blood-type X patients at a rate

ϕc`(E,XD) = c` · δX = sD`
(S`)δx,
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where ϕc` ∈ Φ(N , κx`) is a maximum flow function. Hence, the service rate ŝnX = sD`
(S`) is feasible to

achieve, completing the proof of Proposition 6.

A.3 Proof of Proposition 7

Now, let s′ be a service rate vector that maximizes plasma distribution and let ŝn be the service rate

vector of the plasma pooling procedure. Observe that ŝn maximizes the possible plasma distribution

for demand nodes in D0, as it serves them with maximum rate of 1; thus, this also must the case for

s′. If D0 = D then we are done, as all service rate vectors that maximize total plasma allocation are

identical and serve all patients at steady-state.

So suppose D0 6= D. We prove the two parts of the proposition separately.

First part: By the construction of D∗1 and S∗1 in (31) in the proof of Proposition 6, the maximum

possible flow for the smallest service rate is achieved at c = c1. Since D∗1 = D1 and S∗1 = S1, we

see that ŝn maximizes the smallest service rate among all service rate vectors, including s′.

Second part: We first show that the largest service rate under vector ŝn is weakly smaller than the

largest service rate under vector s′.

To the contrary, suppose maxX∈B{s′X} < maxX∈B{ŝnX}, and let Y ∈ arg maxX∈B{ŝnX}.

Since s′ maximizes the amount of steady-state plasma distributed, we have s′X = 1 for all XD ∈
D0, and (by Lemma 1) (s′X)X∈D\D0 is represented by a maximum flow function ϕs

′ ∈ Φ(N , κ1)

such that ϕs
′
(E,XD) = s′XδX for all XD ∈ D \ D0.

As blood type Y has the largest service rate under ŝn, either Y D ∈ D0 or Y D ∈ D∗¯̀ (recall that

D∗` and S∗` are iteratively defined in (34) for ` > 1). If Y D ∈ D0, then ŝnY = 1. Since s′ maximizes

plasma allocation, we should also have s′Y = 1, leading to 1 = maxX∈B{s′X} < maxX∈B{ŝnX} =

1—a contradiction.

Therefore, we must have Y D ∈ D∗¯̀, and ŝnY = c¯̀ as defined in (35). Since s′Y ≤ maxX∈B s
′
X < ŝnY ,

some of the plasma of some blood type Z that is allocated to blood-type Y patients under ŝn

is being allocated to some other blood-type X patients under s′. Since blood-type Z plasma is

given to blood-type Y patients under ŝn, ZS must be available in round ¯̀, i.e.,

ZS ∈ S∗¯̀. (36)

Moreover, in the pooling procedure, at least one such demand node XD has to be included in

D∗` for some ` < ¯̀—as otherwise, s′Y would be equal to ŝnY .

As we showed in the proof of Proposition 6, the plasma pooling procedure exclusively allocates

all possible plasma associated with supply nodes in C∪`m=0D∗`
(S) = ∪`m=0S∗m to patients associated

with demand nodes in ∪`m=0D∗` . Therefore, we must have ZS ∈ ∪`m=0S∗m, contradicting (36) since
¯̀> `.

Thus, we see that

max
X′∈B
{s′X′} ≥ max

X′∈B
{ŝnX′}
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which, in turn, together with the first part of the proposition implies that

max
X′∈B
{s′X′} − min

X′∈B
{s′X′} ≥ max

X′∈B
{ŝnX′} − min

X′∈B
{ŝnX′}.
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