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1 Introduction

The market mechanism is considered as the central notion in finding a competitive allocation in
an exchange economy. In this paper, we propose a class of market mechanisms for fair allocation
problems with indivisible objects and money. A fair allocation problem with indivisible objects and
money consists of a set of agents, a set of indivisible objects, a fixed amount of money endowment,
and utility profiles of agents on objects and money. In an allocation for the problem, each object shall
be assigned to an agent and each agent will get a share from the money endowment. We assume that
each agent’s utility function is quasi-linear in money shares.

In real life, there are several applications of fair allocation problems. One example is parking space
and benefit allocation at a workplace. In this problem, each employee shall get a parking space and a
share from a fixed benefits package. Another example is allocation of a bequest consisting of houses
and money so that each inheritor shall get a house and a share from the money. A third example
is job allocation among a group of employees. In this problem, each employee shall be assigned a
job and a money compensation. Another application is a room assignment-rent division problem. In
this problem, a group of agents shall rent a house. Each agent shall get a room and pay a share of
the rent of the house. In this problem, the money endowment is a negative amount, where as in the
applications we mentioned above there is a positive money endowment.

An allocation is a matching which assigns each agent an object and a money distribution vector
which attaches a money share for each object. An allocation mechanism finds an allocation for each
fair allocation problem. In this paper, we propose a class of allocation mechanisms which use the
principal ideas of the “tâtonnement process.”

As it is well-known, tâtonnement process can be iteratively used to find a competitive allocation in
an exchange economy starting from an arbitrary price vector. We keep the sum of the prices of goods
constant instead of having a numéraire good. We first formulate overdemand, underdemand, and per-
fect demand in the domain of fair allocation problems. The dynamic mechanism we propose mimics
the market mechanism starting from an initial money distribution vector. After we find the demand
of each agent at the initial money distribution, we determine the set of underdemanded objects, the
set of overdemanded objects, and the set of perfectly demanded objects using a well-known result in
combinatorial optimization theory, Gallai (1963, 1964) -Edmonds(1965) Decomposition Lemma. We
then apply the following money adjustment process: (i) money shares attached to the underdemanded
objects are increased by an equal small amount; (ii) money shares attached to the overdemanded ob-
jects are decreased by an equal small amount; (iii) money shares attached to the perfectly demanded
objects are changed by an equal small amount that is no larger than the increment for the under-
demanded objects and no smaller than the decrement for the overdemanded objects. We choose the
amount of changes such that the sum of money changes for all objects is equal to zero. This adjust-
ment gives a new “feasible” money distribution vector such that the sum of money shares is equal
to the money endowment. We determine the demands of all agents, the supplies of all objects, the
set of overdemanded objects, the set of underdemanded objects, and the set of perfectly demanded
objects at the new money distribution vector. Then we repeat the above money adjustment process.
We iteratively continue adjusting money shares until there are no underdemanded objects left. We
show that at this point, we can assign each agent a matching in her demand set and such a matching
can be constructed by Edmonds’ (1965) algorithm.

An allocation is envy-free (Foley, 1967) if nobody prefers the object and money share of another
agent to her allocation share. An allocation is efficient if the summation of indirect utilities of all
agents under this allocation is no smaller than the sum under any other allocation. An allocation is
individually rational if the indirect utility of no agent is less than the reservation utility, which is zero.
We show that the outcome of any market mechanism is envy-free, efficient, and individually rational.
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Since there are various applications of fair allocation problems, different market mechanisms can
be used to solve different applications.

In a room assignment-rent division problem it is important to find an allocation with “non-positive
money shares.” If an allocation has positive money shares, it involves a compensation of an agent
by the other renters. However, the other renters will be better off by keeping this agent out of their
coalition and leaving her room empty. However, there may not exist envy-free allocations with non-
positive money shares (Maskin, 1987). We propose a market mechanism to solve this problem whenever
such an allocation exists. If the change of money shares of the perfectly demanded objects is equal to
the increment of money shares of the underdemanded objects, then the induced market mechanism
will find an envy-free allocation with non-positive money shares whenever such an allocation exists.
We show this result by the equivalence of this particular market mechanism to the Abdulkadiroğlu,
Sönmez and Ünver (2004) mechanism, which has the mentioned property.

On the other hand, in a bequest allocation problem it is important to find an allocation with
“non-negative money shares.” If an allocation has negative money shares, it involves taxation on an
agent by the other inheritors. However, there may not be additional money owned by the inheritor
to pay the tax share. We propose a market mechanism for solving this problem whenever such an
allocation exists. If the change of money shares of the perfectly demanded objects is equal to the
decrement of the money shares of the overdemanded objects, then the induced market mechanism will
find an envy-free allocation with non-negative money shares whenever such an allocation exists.

Note that the outcome of the first mechanism above can be found using a standard Vickrey-
type auction such as Demange, Gale, and Sotomayor’s (1986): Find the buyer-optimal competitive
price/money distribution and outcome using an auction for the induced auction market and then
balance the budget by equally subsidizing/taxing the owner of each object. The dual of this procedure
can be used to find the outcome of the second mechanism (another algorithm for this mechanism is
suggested by Aragones (1995)). However, the outcome of none of the other market mechanisms
we introduce in this paper can be found using an auction already introduced in the literature. An
interesting example of these is as follows: The two above mechanisms are “egalitarian” in the sense
that they minimize the maximum money share and maximize the minimum money share among all
envy-free allocations, respectively. We introduce a compromise between the two above mechanisms:
we treat underdemanded and overdemanded objects symmetrically in money adjustments and we do
not adjust the prices of perfectly demanded objects in the process. We refer to this mechanism as the
“compromised egalitarian mechanism.”

1.1 Literature Background

In the literature, there are many studies on fair allocation problems with indivisible objects and
money. Studies including Svensson (1983), Quinzii (1984), Maskin (1987) and Alkan, Demange and
Gale (1991) derive properties of envy-free allocations and Walrasian equilibrium in fair allocation
problems. Tadenuma and Thomson (1991, 1995) and Svensson and Larsson (2002) present axiomatic
approaches for fair allocation problems. Aragones (1995), Su (1999), Klijn (2000), Brams and Kilgour
(2001), Haake, Raith and Su (2002), Potthoff (2002), Abdulkadiroğlu, Sönmez and Ünver (2004)
(ASÜ, from now on) propose different allocation mechanisms for fair allocation problems. In a recent
paper, ASÜ formulated an allocation procedure based on the principles of the market mechanism.
They propose a natural mechanism for a room assignment-rent division problem. They show that an
informal tâtonnement process can be formalized in such a way that the induced market mechanism
finds an envy-free allocation with a non-positive money distribution whenever possible. They only
formulate the set of overdemanded objects. By decreasing the money share of the objects in this set by
a small amount, and by increasing the money shares of the remaining objects by a small amount, they
obtain a money adjustment process. This is the key to their market mechanism. We generalize this
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idea to generate a general class of mechanisms to solve various fair allocation problems. We introduce
the set of underdemanded objects and the set of perfectly demanded objects using a well-known result
in combinatorial optimization theory, known as Gallai (1963, 1964)-Edmonds (1965) Decomposition
Lemma. We then propose the generalized money adjustment process that is outlined in the previous
section. It turns out th‘at the ASÜ mechanism is one of the mechanisms in this class.

The choice of the tâtonnement process does not usually have an effect on the choice of the com-
petitive allocation in exchange economies. However, in the fair allocation problems, selection of the
tâtonnement process bears additional significance. As we show in this paper, the choice of money
updating method changes the properties of the outcome extensively. It follows from the definition
of our mechanism, ASÜ Theorem 2 and the dual of this theorem that two of the mechanisms in our
class find extreme envy-free allocations with the smallest of the money shares maximized or with the
largest of the money shares minimized among all envy-free allocations.1

In the next section, we introduce our model.

2 Fair Allocation Problems

A fair allocation problem is a quadruple hI,A, V,mi where I = {i1, . . . , in} is a set of agents,
A = {a1, . . . , an} is a set of objects, V = [via]i∈I,a∈A is a value matrix where v

i
a ∈ R denotes the value

of object a ∈ A for agent i ∈ I, and m ∈ R is the money endowment. Each agent i ∈ I can use one and
only one object.2 Let F be the set of all fair allocation problems. We will fix a problem hI,A, V,mi
∈ F for the rest of our analysis.

A money distribution t = (ta1 , ..., tan) is a list such that
P

a∈A ta = m where money share
ta ∈ R shows the money share attached to object a ∈ A under money distribution t. Let T be the set
of money distributions.

The utility of each agent i ∈ I is a function ui : A×R→ R which is defined as

ui(a, ta) = via + ta

for all objects a ∈ A at all money shares ta ∈ R. Each agent has a reservation utility, which is equal
to zero, denoting her outside options.

We shall assume that X
a∈A

via +m ≥ 0

for each agent i ∈ I. This assumption is fairly standard in the literature.3 It will ensure individual
rationality of the mechanisms that we will introduce. There are two interpretations of this assumption:
(i) Each agent thinks that the total disutility of the objects can be compensated by the money
endowment. It is natural to assume that if an agent thinks it is not worth to obtain the objects then
she will not be in this coalition of agents. (ii) If an agent would like to form a coalition with agents
who are exact copies of her, then this coalition of agents will be willing to obtain these objects.

1Alkan, Demange and Gale (1991) prove the existence of extreme allocations of this sort. In different domains of
problems, there are extreme allocations and mechanisms of this sort as well. For example, in “two-sided matching
markets” Gale and Shapley (1962) propose two mechanisms which find optimal stable matchings for each side of the
market.

2 In reality, there may be more agents than objects. In this case, we create |I|− |A| new dummy objects, add these to
set A, and make the number of objects equal to number of agents. We modify the value vector of each agent by adding
value via = 0 (the reservation utility) for any dummy object a. In a solution (that is described below) of the problem,
some agents will be assigned dummy objects, or no real objects, and they will be only compensated/taxed by money
shares.

3See Su (1999), Brams and Kilgour (2001), Haake, Raith and Su (2002), and Abdulkadiroğlu, Sönmez and Ünver
(2004).

4



Amatching μ = {{i1, μi1} , ..., {in, μin}} is a list of the assignments of objects to agents such that
each object is assigned to one agent and each agent is assigned one object and component μi ∈ A
denotes the assignment of agent i ∈ I under matching μ. Let M denote the set of matchings. That
is, for any i ∈ I, μi ∈ A, and for any {i, j} ⊆ I, we have μi 6= μj .

An allocation is a matching - money distribution pair (μ, t) ∈M×T . At an allocation (μ, t) ∈
M×T each agent i ∈ I obtains object μi and money share tμi .

An allocation mechanism is a systematic procedure which finds an allocation for each problem.

3 A Market Approach

We adopt a market approach in our analysis. The demand of each agent i ∈ I is a correspondence
Di : T ³ A that is defined as

Di(t) =
©
a ∈ A : ui(a, ta) ≥ ui(a

0, ta0) ∀ a0 ∈ A
ª

for all t ∈ T . By definition, Di (t) 6= ∅ for any i ∈ I and t ∈ T .
The demand profile at money distribution t ∈ T is defined as D(t) = (Di(t))i∈I .
The supply of each object a ∈ A is a correspondence Sa : T ³ I which is defined as

Sa(t) = {i ∈ I : a ∈ Di(t)}

for all t ∈ T .
The supply profile at money distribution t ∈ T is defined as S(t) = (Sa(t))a∈A.
The indirect utility function of each agent i ∈ I, eui : T → R, is defined as

eui(t) = max
a∈A

ui(a, ta)

for all t ∈ T .
For any t ∈ T , a matching μ ∈M clears the market if μi ∈ Di (t) for any i ∈ I.
In order to formulate our market approach, we need to define the objects in excess supply, the

objects in excess demand, and the objects in perfect demand. This will be crucial for the definition
of the “tatônnement” process.

3.1 Gallai-Edmonds Decomposition

We use a graph theoretic approach to define the notions of overdemand, underdemand and perfect
demand.

We say that a set {i, a} consisting of an agent i ∈ I and an object a ∈ A is a link at money
distribution t ∈ T if and only if a ∈ Di (t). The set of links at a money distribution t ∈ T is defined
as follows:

L (t) = {{i, a} : i ∈ I, a ∈ A, and a ∈ Di(t)}

for each t ∈ T .
The demand-supply graph at money distribution t ∈ T is a pair hI ∪A,L (t)i where agents in

I and objects in A are the nodes of the graph and links in L (t) are the arcs of the graph. We denote
the demand-supply graph at money distribution t ∈ T by G(t).

Fix t ∈ T . A market assignment at t is a set of links Q ⊆ L (t) such that any agent receives
either no object or one object in her demand and any object is assigned to either nobody or one agent
in its supply. That is, {i, a} ∈ Q and {j, b} ∈ Q\ {{i, a}} implies i 6= j and a 6= b. Component Qi is
the assigned object of agent i ∈ I under market assignment Q : if agent i is assigned an object under
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Q then Qi ∈ A, and if agent i is not assigned any object under Q then Qi = ∅. Let Q (t) be the set of
market assignments at t. For any x ∈ A ∪ I and Q ∈ Q (t) we say that x is unmatched under Q
if there is no {i, a} ∈ Q such that x ∈ {i, a}. A market assignment Q ∈ Q (t) is maximal if for all
R ∈ Q (t) we have |Q| ≥ |R|. LetM (t) be the set of maximal market assignments at t. The following
observations are trivial, and yet crucial for our market approach:

Observation 1: A market assignment Q ∈ Q(t) is a matching if and only if |Q| = n.

Observation 2: A matching μ ∈M clears the market at t if and only if it is a market assignment at
t.

Since |Q| ≤ n for any Q ∈ Q (t), if a market assignment Q ∈ Q (t) is a matching then it is maximal.
Consider the following partitions {UD (t) , OD (t) , PD (t)} of A and {US (t) , OS (t) , PS (t)} of I

defined at t:

UD(t) = {a ∈ A : ∃Q ∈M (t) such that ∀i ∈ I, (i, a) 6∈ Q} .
US (t) = {i ∈ I : ∃Q ∈M (t) such that ∀a ∈ A, (i, a) 6∈ Q} .
OD (t) = {a ∈ A\UD (t) : ∃i ∈ US (t) such that (i, a) ∈ L (t)} .
OS (t) = {i ∈ I\US (t) : ∃a ∈ UD (t) such that (i, a) ∈ L (t)} .
PD (t) = {a ∈ A\UD (t) : ∀i ∈ US (t) , (i, a) 6∈ L (t)} .
PS (t) = {i ∈ I\US (t) : ∀a ∈ UD (t) , (i, a) 6∈ L (t)} .

Set UD (t) (US (t)) is the set of objects (agents) for each of which (whom) there is a maximal
market assignment leaving it (her) unmatched at t. Set OD (t) (OS (t)) is the set of objects (agents)
each of which (whom) is matched under any maximal market assignment at t and has a link to an
agent in US (t) (an object in UD (t)). Set PD(t) (PS(t)) is the set of objects (agents) each of which
(whom) is matched under any maximal market assignment at t and does not have any link to agents
in US(t) (objects in UD (t)). These sets are crucial for the structure of maximal market assignments.
This structure is well-studied in the combinatorial optimization literature. Gallai (1963, 1964) and
Edmonds (1965)) Decomposition (GED) Lemma for bipartite graphs is about the structure of maximal
market assignments, we derive this lemma from the GED Lemma for general graphs in Appendix E.4

Gallai-Edmonds Decomposition (GED) Lemma for Bipartite Graphs: Let t ∈ T . We have
Di(t) ⊆ OD(t) for any i ∈ US(t) and Sa (t) ⊆ OS(t) for any a ∈ UD (t). Let Q ∈M (t) be a maximal
market assignment at t.

1. Every object in OD (t) is assigned to an agent in US (t) under Q.

2. Every agent in OS (t) is assigned an object in UD (t) under Q.

3. Every object in PD (t) is assigned to an agent in PS(t) and every agent in PS (t) is assigned an
object in PD (t) under Q.5

We will refer to this lemma as the GED Lemma. Based on the GED Lemma, we refer to OD (t)
as the set of overdemanded objects, UD (t) as the set of underdemanded objects, and PD (t)
as the set of perfectly demanded objects at money distribution t. Similarly, we refer to OS (t)
as the set of oversupplied agents, US (t) as the set of undersupplied agents, and PS (t)

4See Bogomolnaia and Moulin (2004) and Roth, Sönmez and Ünver (2005) for use of the Gallai-Edmonds Decompo-
sition Lemma in other allocation problems.

5See Bogomolnaia and Moulin (2004) for an alternative formulation of the GED Lemma for bipartite graphs.
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as the set of perfectly supplied agents at money distribution t.6 We refer to the partitions
{UD (t) , OD (t) , PD (t)} of A and {US (t) , OS (t) , PS (t)} of I as the Gallai-Edmonds Decom-
position (GED) of the problem at t. The next result is a direct corollary of the GED Lemma and
the definitions:

Corollary 1: Let t ∈ T . We have

1. If UD (t) 6= ∅ then |UD (t)| > |OS (t)| , otherwise OS (t) = ∅.

2. If US (t) 6= ∅ then |US (t)| > |OD (t)| , otherwise OD (t) = ∅.

3. |PD (t)| = |PS (t)|.

The next lemma is crucial for our analysis and our understanding of the conditions of a market
clearing money distribution:

Lemma 1: Let t ∈ T and Q ∈M (t).

1. |Q| = n if and only if UD (t) = ∅.

2. |Q| = n if and only if US (t) = ∅.

Proofs of all results are given in Appendix A.
Sets UD(t) and US (t) can be constructed in polynomial time complexity in number of agents n

using several well-known algorithms in combinatorial optimization literature. For example, Edmonds’
(1965) algorithm finds a maximal market assignment Q in O(n3) complexity, and then construction
of sets UD (t) , OD (t) , PD (t) and US(t), OS (t) , PS (t) is straightforward. These are explained in
Appendix B.

4 Market Mechanisms

A market mechanism incrementally increases the money shares of the underdemanded objects. It
incrementally decreases the money shares of the overdemanded objects. It changes the money shares
of the perfectly demanded objects by no greater than the increment for the underdemanded objects
and no smaller than the decrement for the overdemanded objects such that the sum of the money
shares of all objects is equal to m. We are ready to state a market mechanism “informally” as follows:

Step 0: Initially set the money share of each object a ∈ A to t0a =
m
n such that t0 = (mn ,

m
n , ...,

m
n ).

Find a maximal market assignment Q0.
(a) If

¯̄
Q0
¯̄
= n then Q0 is a matching such that Q0i ∈ Di(t

0) for each agent i by Observation 1. We
terminate the procedure and

¡
Q0, t0

¢
is the outcome.

(b) If
¯̄
Q0
¯̄
< n then UD

¡
t0
¢
6= ∅ by Lemma 1 and we proceed to the next step.

In a general step s,

Step s: Construct GED at ts−1 using Qs−1. Let ts ∈ T be defined as tsa = ts−1a + α for any
a ∈ UD(ts−1), tsa = ts−1a + β for any a ∈ PD(ts−1), and tsa = ts−1a + γ for any a ∈ OD(ts−1) such that
α→ 0, β → 0, γ → 0 with

(i) α ≥ β ≥ γ and
(ii)

¯̄
UD(ts−1)

¯̄
α+

¯̄
PD(ts−1)

¯̄
β +

¯̄
OD(ts−1)

¯̄
γ = 0.

Construct a maximal market assignment Qs at ts.

6For alternative approaches in constructing overdemanded and oversupplied sets using Hall’s (1935) Theorem, see
Demange, Gale and Sotomayor (1986) and de Vries, Schummer and Vohra (2005).
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(a) If |Qs| = n then Qs is a matching such that Qs
i ∈ Di(t

s) for each agent i by Observation 1. We
terminate the procedure and (Qs, ts) is the outcome.
(b) If |Qs| < n then UD (ts) 6= ∅ by Lemma 1 and we proceed to the next step.

The above money adjustment rule definition is in the flavor of an informal “tâtonnement” process in
exchange economies. In the next subsection, we will make a formal definition of the money adjustment
rule and be precise about the properties of increments (or decrements) α, β, γ.

4.1 Formalization of a Market Mechanism

We claim that the crucial money distribution levels in an informal tâtonnement process are those at
which a new object joins the demand of an agent. Because that is only when the set of overdemanded
objects, the set of underdemanded objects and the set of perfectly demanded objects can change. We
prove this with a lemma.

Lemma 2: Let {ts} be the money distribution sequence of a market mechanism. For any step s, if
we have Di(t

s+1) ⊆ Di(t
s) for all i ∈ I, then UD(ts+1) = UD(ts), US(ts+1) = US(ts), PD(ts+1) =

PD(ts), PS(ts+1) = PS(ts), OD(ts+1) = OD(ts), and OS(ts+1) = OS(ts).

This result shows that as long as new objects do not join the demands of agents, underdemand,
undersupply, perfect demand, perfect supply, overdemand, and oversupply will not change in a market
mechanism. Note that even if some objects are dropped from demands of agents during this process,
these crucial sets will stay put.

We can directly find the next money distribution when a new object joins the demand of an agent.
This new money distribution may possibly induce a change in overdemand, underdemand and perfect
demand.

Let t ∈ T be a money distribution reached in the market mechanism. We continuously increase
or decrease money shares. Let t0 ∈ T be the first money distribution level reached after t where the
demand of an agent includes a new object.

We will distinguish momentary rates α,β and γ and the discrete changes achieved in money distri-
bution after a certain amount of money adjustments. Let 4ta be a discrete increment for the money
share of object a such that

t0a = ta + α (t) ∀ a ∈ UD (t)

t0a = ta + β (t) ∀ a ∈ PD (t)

t0a = ta + γ (t) ∀ a ∈ OD (t)

The agent who demands a new object at t0 is necessarily a member of US (t) or PS(t). That is,
because (i) each agent in OS(t) demands an object in UD(t) at money distribution t and the money
shares of objects in UD(t) are increasing uniformly at the highest rate, and (ii) utilities are quasi-linear
in money. Three observations hold for the discrete changes α (t), β (t), and γ (t) :

A new object can join the demand of an agent in US (t) in two ways. Either this object is a
perfectly demanded object at money distribution t and its money share is rising faster than money
shares of the overdemanded objects or this object is an underdemanded object.

We define

x(t) =

½
mini∈US(t)

¡
ũi (t)−maxa∈UD(t) ui(a, ta)

¢
if UD(t) 6= ∅ and US (t) 6= ∅

0 otherwise

and

y(t) =

½
mini∈US(t)

¡
ũi (t)−maxa∈PD(t) ui(a, ta)

¢
if PD(t) 6= ∅ and US (t) 6= ∅

x(t) otherwise
.
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Consider objects a, b, c ∈ A such that a ∈ UD(t), b ∈ PD(t), and c ∈ OD (t). The money share of
a increases at the rate α, the money share of b increases at the rate β, and the money share of c
increases at the rate γ initially at t until t0 is reached.

• The money differential ta − tc increases at the same momentary rate, α − γ, for any pair of
such objects until a new object joins the demand of an agent. This may happen when an agent
in US (t) demands an underdemanded object and x(t) is the minimum differential for that to
occur. Therefore, we need α (t) − γ (t) ≤ x (t) to have the same momentary rates, α and γ, to
use in our money adjustments between t and t0 by Lemma 2.

• The money differential tb− tc increases at the same momentary rate, β− γ, for any pair of such
objects until a new object joins the demand of an agent. This may happen when an agent in
US (t) demands a perfectly demanded object and y(t) is the minimum differential for that to
occur. Therefore, we need β (t) − γ (t) ≤ y (t) to have the same momentary rates, β and γ, to
use in our money adjustments between t and t0 by Lemma 2.

A new object can join the demand of a member of PS(t), if it is an underdemanded object and
money shares of the underdemanded objects are rising faster than money shares of the perfectly
demanded objects. We define

z(t) =

½
mini∈PS(t)

¡
ũi (t)−maxa∈UD(t) ui(a, ta)

¢
if UD(t) 6= ∅ and PS (t) 6= ∅

x(t) otherwise
.

Consider objects a, b ∈ A such that a ∈ UD(t), b ∈ PD(t). The money share of a increases at the
rate α, the money share of b increases at the rate β initially at t until t0 is reached.

• The money differential ta − tb increases at the same momentary rate, α − β, for any pair of
such objects until a new object joins the demand of an agent. This may happen when an agent
in PS (t) demands an underdemanded object and z(t) is the minimum differential for that to
occur. Therefore, we need α (t) − β (t) ≤ z (t) to have the same momentary rates, α and β, to
use in our money adjustments between t and t0 by Lemma 2.

One of these three situations will occur before the others causing a new object to join the demand
of an agent. Using this information we can construct a “discrete algorithm” to find the outcome of a
market mechanism.

To summarize, we have

α(t)− γ(t) ≤ x(t),

β(t)− γ(t) ≤ y(t), and (1)

α(t)− β(t) ≤ z(t)

and, since at money distribution t0 a new object joins the demand of an agent, one of the above
inequalities is binding.

Since t0 is a money distribution level reached in a market mechanism, we have

γ(t) ≤ β(t) ≤ α(t) (2)

and
|UD(t)|α(t) + |PD(t)|β(t) + |OD(t)| γ(t) = 0 . (3)
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If UD (t) 6= ∅, Equation 1 implies that α(t)− γ(t) > 0, or β(t)− γ(t) > 0, or α(t)− β(t) > 0. In
either case, Equation 2 implies that α (t) > γ (t), which in turn implies with Equation 3 that α (t) > 0
and γ (t) < 0.

We are ready to introduce an iterative discrete algorithm that is used to compute the outcome of
a market mechanism.

Step 0: Initially set the money share of each object to m
n . Let t

0 = (mn ,
m
n , ...,

m
n ). Find a maximal

market assignment Q0 ∈M
¡
t0
¢
at t0.

(a) If
¯̄
Q0
¯̄
= n then Q0 is a matching such that Q0i ∈ Di(t

0) for each agent i. We terminate the
procedure and

¡
Q0, t0

¢
is the outcome.

(b) If
¯̄
Q0
¯̄
< n then UD(t0) 6= ∅ by Lemma 1 and we proceed to the next step.

In a general step s,

Step s: Construct GE Decomposition at ts−1 using Qs−1. Let ts ∈ T be defined as tsa = ts−1a +α(ts−1)
for all a ∈ UD(ts−1), tsa = ts−1a + β(ts−1) for all a ∈ PD(ts−1), and tsa = ts−1a + γ(ts−1) for all
a ∈ OD(ts−1). Find a maximal market assignment Qs ∈M (ts) at ts.
(a) If |Qs| = n then Qs is a matching such that Qs

i ∈ Di(t
s) for each agent i. We terminate the

procedure and (Qs, ts) is the outcome.
(b) If |Qs| < n then UD(ts) 6= ∅ by Lemma 1 and we proceed to the next step.

We use the discrete algorithm outlined above for showing that a market mechanism converges to
a market outcome and for computing the outcome of a market mechanism.

Note that one may uniquely define a market mechanism by choosing one of the functions α, β, and
γ as a function of the remaining two. For instance, different choices of function β induce algorithms
for different market mechanisms. Three interesting mechanisms are (i) the market mechanism with
β = α, (ii) the market mechanism with β = 0, and (iii) the market mechanism with β = γ. In the
first mechanism, the money shares of the perfectly demanded objects increase at the same rate as
the underdemanded objects. In the second mechanism, the money shares of the perfectly demanded
objects are kept constant. In the third mechanism, the money shares of the perfectly demanded objects
decrease at the same rate as the overdemanded objects. In the below example, we find functions α, β,
and γ used in the algorithms for these market mechanisms.

Example 1: For each of these mechanisms, we find functions α, β, and γ using Equation System 1,
Equation 2, and Equation 3:

1. Market mechanism with β = α :

α(t) =
|OD(t)|

n
min {x(t), y (t)} ,

γ(t) = − |UD(t)|+ |PD(t)|
n

min {x(t), y (t)} ,

β(t) =
|OD(t)|

n
min {x(t), y (t)}

for all t ∈ T .

2. Market mechanism with β = 0 :

α(t) = min{ |OD(t)|
|OD(t)|+ |UD(t)|x(t),

|OD(t)|
|UD(t)|y(t), z(t)},

γ(t) = max{− |UD(t)|
|OD(t)|+ |UD(t)|x(t),−y(t),−

|UD(t)|
|OD(t)|z(t)},

β(t) = 0

for all t ∈ T .

10



3. Market mechanism with β = γ :

α(t) =
|OD(t)|+ |PD(t)|

n
min {x(t), z (t)} ,

γ(t) = − |UD(t)|
n

min {x(t), z (t)} ,

β(t) = − |UD(t)|
n

min {x(t), z (t)}

for all t ∈ T . ¨

In Appendix C, we show how the discrete algorithm can be used to find the outcome of a market
mechanism for a fair allocation problem with an example.

4.2 Convergence of a Market Mechanism

We will prove that a market mechanism converges to a market outcome. We will use the discrete
algorithm to prove this result. The following proposition shows that summation of indirect utilities
monotonically decreases in the discrete algorithm of a market mechanism.

Proposition 1: Let {ts} be the money distribution sequence of the discrete algorithm of a market
mechanism. For every step s ≥ 0 with UD(ts) 6= ∅ we have

P
i∈I ũi(t

s) ≥
P

i∈I ũi(t
s+1)+α(ts)−γ(ts).

We can state our main convergence result.

Theorem 1: Let {ts} be the money distribution sequence in a market mechanism. Then, there exists
some equivalent discrete algorithm which converges to a money distribution in finite number of steps.

4.3 Characteristics of a Market Outcome

Envy-freeness and efficiency are central notions in fair allocation problems. An allocation (μ, t) ∈
M×T is envy-free if and only if

ui(μi, tμi) ≥ ui(a, ta) ∀ a ∈ A.

Note that an allocation (μ, t) ∈M×T is envy-free if and only if μi ∈ Di(t) for each agent i ∈ I. An
allocation (μ, t) ∈M×T is efficient if and only ifX

i∈I
ui(μi, tμi) ≥

X
i∈I

ui(λi, xλi) ∀ (λ, x) ∈M×T .

Svensson (1983) showed that if an allocation is envy-free then it is efficient in this class of fair allocation
problems.

Another central notion is individual rationality. An allocation (μ, t) ∈ M×T is individually
rational if and only if

ui(μi, tμi) ≥ 0 ∀ a ∈ A.

An individually rational allocation guarantees at least the reservation utility for each agent. Our
market mechanisms find allocations, which satisfy the above properties.

Proposition 2: An outcome of a market mechanism is envy-free, efficient, and individually rational.
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5 The Family of Market Mechanisms and the Compromised Egali-
tarian Mechanism

Different choices of function β in the discrete algorithm find outcomes of different market mechanisms.
Three examples are as follows:

• Consider a fair allocation problem with a negative money endowment. An example is room
assignment-rent division problem. Hence, a natural allocation to this problem involves an al-
location with non-positive money shares. Envy-free allocations with non-positive money shares
may not exist (Maskin, 1987). For example, let I = {i1, i2}, A = {a1, a2}, vi1 = vi2 = (2, 16)
and m = −10. The unique envy-free money distribution is t = (2,−12).
The market mechanism with β(t) = α(t) for all t ∈ T finds an envy-free allocation with non-
positive money shares whenever such an allocation exists. This mechanism is suggested by ASÜ
for a room assignment-rent division problem using a different definition for OD(t). In Appendix
D, we prove that the ASÜ mechanism is equivalent to market mechanism with β = α. They also
prove the mentioned property of this mechanism in their Theorem 2. The money distribution
that this mechanism converges to is the money distribution that solves7

min
t∈T

µ
max
a∈A

ta

¶
.

• Consider a fair allocation problem with a positive money endowment. An example is the division
of a bequest consisting of houses and money among inheritors. A natural allocation has “non-
negative” money shares for each inheritor. Envy-free allocations with non-negative money shares
may not exist. An allocation with a negative money share involves taxation on an agent by the
others. It directly follows from the dual statement of ASÜ Theorem 2 that the market mechanism
with β(t) = γ(t) for all t ∈ T finds an envy-free allocation with non-negative money shares
whenever such an allocation exists. The money distribution that this mechanism converges to
is the money distribution that solves

max
t∈T

µ
min
a∈A

ta

¶
.

Alkan, Demange and Gale (1991) refer to the above two allocations as money-Rawlsian envy-free
allocations. Aragones (1995) also presents a method which finds the last money-Rawlsian allocation
described above in a fair allocation problem. We will refer to these mechanisms as maximal-share
and minimal-share egalitarian mechanisms, respectively. Note that the outcome of these mech-
anisms can also be found using Demange, Gale and Sotomayor (1986) auction and its dual: apply a
Vickrey auction and find the buyer- or seller-optimal competitive price/money distribution and bal-
ance the budget by equally subsidizing/taxing each agent. However, this is not true for other market
mechanisms, including the following interesting mechanism:

7This result directly follows from Theorem 2 of ASÜ. This theorem proves that the ASÜ mechanism will converge to
a non-positive money distribution (non-negative price vector in the terminology of ASÜ) as long as such an envy-free
money distribution exists. This property is equivalent to the money distribution found by the ASÜ mechanism is a
solution to

min
t∈T

max
a∈A

ta

12



• The market mechanism with β = 0 neither favors nor disfavors perfectly demanded goods in
money adjustments. Hence, overdemanded and underdemanded objects are treated symmetri-
cally in this mechanism. Therefore, this mechanism is a compromise between the two egalitarian
mechanisms introduced above. We refer to this mechanism as the compromised egalitarian
mechanism.

We can also start from arbitrary initial money distributions t ∈ T instead of equal shares as t0.
All our convergence results translate to this case without loss of generality. These can reflect object
specific weights and these will induce new market allocations.

6 Appendix A: Proofs of Results

Proof of Lemma 1: Let t ∈ T and Q ∈M (t). First suppose |Q| = n, that is each agent is matched
with an object in her demand set at t under Q. Then there is no agent and no object unmatched.
Since each maximal market assignment has cardinality n, none of them leaves any agent or any object
unmatched. Therefore, UD (t) = US (t) = ∅.

Next, suppose UD (t) = ∅. Each object is matched with an agent in its supply at a maximal
market assignment. Since |I| = |A| = n, we have |Q| = n for any Q ∈M (t).

The proof of US (t) = ∅ implies |Q| = n is the dual of the above proof. ¨

Proof of Lemma 2: Let {ts} be the money distribution sequence of a market mechanism. Let step
s be such that Di(t

s+1) ⊆ Di(t
s) for all i ∈ I and UD(ts) 6= ∅. Let α, β, γ ∈ R satisfy

(a) α ≥ β ≥ γ,
(b) α→ 0, β → 0, γ → 0 such that α− γ ≤ ũi (t

s)− ui(a, t
s
a) for all i ∈ I and a ∈ A\Di(t

s), and
(c) ts+1a = tsa + α for all a ∈ UD(ts), ts+1a = tsa + β for all a ∈ PD(ts), and ts+1a = tsa + γ for all

a ∈ OD(ts).
We will prove the lemma by showing thatM

¡
ts+1

¢
=M (ts) , that is the set of maximal market

assignments are identical for ts+1 and ts. The following observations will be useful in establishing this
result:

1. We have UD(ts) 6= ∅ and OS(ts) 6= ∅. If Sa (ts) = ∅ then Sa
¡
ts+1

¢
6= ∅ for any a ∈ UD(ts). Let

i ∈ OS(ts) and a ∈ US(ts) be such that i ∈ Sa (t
s). Note that Sa (ts) ⊆ OS(ts) by the GED

Lemma. For any b ∈ A

ũi (t
s) = ui(a, t

s
a) = via + tsa ≥ ui(b, t

s
b) = vib + tsb,

and money share of b increases at most by α, implying

ui
¡
a, ts+1a

¢
= via + ts+1a = via + tsa + α

≥ vib + tsb + α

≥ vib + ts+1b = ui
¡
b, ts+1b

¢
.

Hence a ∈ Di

¡
ts+1

¢
and i ∈ Sa

¡
ts+1

¢
. We showed that for any link {i, a} ∈ L (ts) such that

a ∈ UD(ts) and i ∈ OS(ts) we have {i, a} ∈ L
¡
ts+1

¢
.

2. If PD(ts) = ∅ (or equivalently PS(ts) = ∅ by the GED Lemma) skip to the next observation.
For any a ∈ PD(ts) we have Sa(ts) ⊆ PS(ts) ∪ OS(ts) and Sa(t

s) ∩ PS(ts) 6= ∅ by the GED
Lemma, and similarly for any i ∈ PS(ts), Di(t

s) ⊆ PD(ts) ∪ OD(ts) and Di(t
s) ∩ PD(ts) 6= ∅

by the GED Lemma. Let a ∈ PD(ts) and i ∈ Sa (t
s) ∩ PS(ts). We have

ũi (t
s) = ui(a, t

s
a) = via + tsa ≥ ui(b, t

s
b) = vib + tsb

13



for any b ∈ A. For any b ∈ A\UD(ts), money share of b increases by at most β and we have,

ui
¡
a, ts+1a

¢
= via + ts+1a = via + tsa + β

≥ vib + tsb + β

≥ vib + ts+1b = ui
¡
b, ts+1b

¢
.

Since Di

¡
ts+1

¢
⊆ Di (t

s) ⊆ PD(ts) ∪OD(ts), a ∈ Di

¡
ts+1

¢
and i ∈ Sa

¡
ts+1

¢
. We showed that

for any link {i, a} ∈ L (ts) such that a ∈ PD(ts) and i ∈ PS(ts), we have {i, a} ∈ L
¡
ts+1

¢
.

3. We have OD(ts) 6= ∅ and US(ts) 6= ∅. Note that for any i ∈ US(ts), Di(t
s) 6= ∅. Let a ∈ OD(ts)

and i ∈ US(ts) be such that i ∈ Sa (t
s) . We have Di (t

s) ⊆ OD (ts) by the GED Lemma. We
have

ũi (t
s) = ui(a, t

s
a) = via + tsa ≥ ui(b, t

s
b) = vib + tsb

for any b ∈ A. For any b ∈ OD(ts), its money share changes by γ and we have,

ui
¡
a, ts+1a

¢
= via + ts+1a = via + tsa + γ

≥ vib + tsb + γ

= vib + ts+1b = ui
¡
b, ts+1b

¢
.

Since Di(t
s+1) ⊆ Di (t

s) , we have Di(t
s+1) ⊆ OD (ts) , in turn implying with the above finding

that a ∈ Di

¡
ts+1

¢
and i ∈ Sa

¡
ts+1

¢
. We showed that for any link {i, a} ∈ L (ts) such that a ∈ OD(ts)

and i ∈ US(ts), we have {i, a} ∈ L
¡
ts+1

¢
.

Next, we finish the proof of the lemma.
First we prove that M (ts) ⊆ M

¡
ts+1

¢
. Let Q ∈ M (ts). By the GED Lemma, under Q over-

supplied agents are matched with underdemanded objects, overdemanded objects are matched with
undersupplied agents, and perfectly demanded objects are perfectly matched with perfectly supplied
agents. Therefore by the above three observations, we have Q ∈ Q

¡
ts+1

¢
. Since Di

¡
ts+1

¢
⊆ Di (t

s)
for any i ∈ I, Sa

¡
ts+1

¢
⊆ Sa (t

s) for any a ∈ A, we have L
¡
ts+1

¢
⊆ L (ts). This together with the fact

that Q is maximal at ts imply that Q is maximal at ts+1, that is Q ∈M
¡
ts+1

¢
.

Next we prove thatM
¡
ts+1

¢
⊆M (ts). Let Q∗ ∈M

¡
ts+1

¢
. Since L

¡
ts+1

¢
⊆ L (ts), Q∗ ∈ Q(ts).

We already proved above that for any Q ∈M(ts), we have |Q| = |Q∗|, therefore Q∗ ∈M (ts).
We established M

¡
ts+1

¢
=M (ts). This implies that UD(ts+1) = UD(ts), US(ts+1) = US(ts),

PD(ts+1) = PD(ts), PS(ts+1) = PS(ts), OD(ts+1) = OD(ts), and OS(ts+1) = OS(ts). ¨
Proof of Proposition 1: Let {ts} be the money distribution sequence of the discrete algorithm of a
market mechanism. Let s be a step with UD(ts) 6= ∅. We determine indirect utility ũi(ts+1) for each
agent i ∈ I. We consider agents in US(t), OS(t), and PS(t) separately.

1. Let i ∈ US(ts) and a ∈ Di(t
s). By the GED Lemma, we have a ∈ OD(ts). By the construction

of ts+1a we have ts+1a = tsa + γ(ts). We obtain

ui(a, t
s+1
a ) = via + ts+1a = via + tsa + γ(ts) = ui(a, t

s
a) + γ(ts). (4)

We will show that ui(a, ts+1a ) ≥ ui(b, t
s+1
b ) for all b ∈ A. Let b ∈ A\{a}. Three cases are possible:

(a) b ∈ UD(ts). By the construction of α (ts) and γ(ts), we have

α (ts)− γ(ts) ≤ min
j∈US(ts)

µ
ũj(t

s)− max
c∈UD(ts)

uj(c, t
s
c)

¶
≤ ũi(t

s)− max
c∈UD(ts)

ui(c, t
s
c)

≤ ũi(t
s)− ui(b, t

s
b) = ui(a, t

s
a)− ui(b, t

s
b).
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This implies
ui(b, t

s
b) + α (ts) ≤ ui(a, t

s
a) + γ(ts). (5)

By the construction of ts+1b , the money share of object b increases by α(ts). We have
ts+1b = tsb + α(ts). This together with Equation 4 and Equation 5 implies

ui(b, t
s+1
b ) = vib + ts+1b = vib + tsb + α(ts) = ui(b, t

s
b) + α(ts) ≤ ui(a, t

s
a) + γ(ts) = ui(a, t

s+1
a ).

(b) b ∈ PD(ts). By the construction of γ (ts) and β(ts), we have

β (ts)− γ(ts) ≤ min
j∈US(ts)

µ
ũj(t

s)− max
c∈PD(ts)

uj(c, t
s
c)

¶
≤ ũi(t

s)− max
c∈PD(ts)

ui(c, t
s
c)

≤ ũi(t
s)− ui(b, t

s
b) = ui(a, t

s
a)− ui(b, t

s
b).

This implies
ui(b, t

s
b) + β (ts) ≤ ui(a, t

s
a) + γ(ts). (6)

By the construction of ts+1b , the money share of object b increases by β(ts). We have
ts+1b = tsb + β(ts). This together with Equation 4 and Equation 6 implies

ui(b, t
s+1
b ) = vib + ts+1b = vib + tsb + β(ts) = ui(b, t

s
b) + β(ts) ≤ ui(a, t

s
a) + γ(ts) = ui(a, t

s+1
a ).

(c) b ∈ OD(ts)\{a}. By the construction of ts+1b , the money share of object b increases by γ(ts).
We have ts+1b = tsb + γ(ts). Since a ∈ Di(t

s), we have ui(b, tsb) ≤ ui(a, t
s
a). These together

with Equation 4 imply

ui(b, t
s+1
b ) = vib + ts+1b = vib + tsb + γ(ts) = ui(b, t

s
b) + γ(ts) ≤ ui(a, t

s
a) + γ(ts) = ui(a, t

s+1
a ).

We showed that a ∈ Di(t
s+1) and

ũi(t
s+1) = ui(a, t

s+1
a ) = ui(a, t

s
a) + γ(ts) = ũi(t

s) + γ(ts). (7)

2. Let i ∈ OS(ts) and a ∈ Di(t
s)∩UD(ts). By the construction of ts+1a , we have ts+1a = tsa +α(ts).

We have
ui(a, t

s+1
a ) = via + ts+1a = via + tsa + α(ts) = ui(a, t

s
a) + α(ts). (8)

We will show that ui(a, ts+1a ) ≥ ui(b, t
s+1
b ) for all b ∈ A.

Let b ∈ A\{a}. We have ui(a, t
s
a) ≥ ui(b, t

s
b), since a ∈ Di(t

s). By the construction of ts+1b ,
the money share of object b increases at most by α(ts). We have ts+1b ≤ tsb + α(ts). These and
Equation 8 imply

ui(b, t
s+1
b ) = vib + ts+1b ≤ vib + tsb + α(ts) = ui(b, t

s
b) + α(ts) ≤ ui(a, t

s
a) + α(ts) = ui(a, t

s+1
a ).

We showed that a ∈ Di(t
s+1) and

ũi(t
s+1) = ui(a, t

s+1
a ) = ui(a, t

s
a) + α(ts) = ũi(t

s) + α(ts). (9)

3. Let i ∈ PS(ts) and a ∈ Di(t
s)\OD(ts). We have a ∈ PD(ts). By the construction of ts+1a we

have ts+1a = tsa + β(ts). We obtain

ui(a, t
s+1
a ) = via + ts+1a = via + tsa + β(ts) = ui(a, t

s
a) + β(ts). (10)

We will show that ui(a, ts+1a ) ≥ ui(b, t
s+1
b ) for all b ∈ A. Let b ∈ A\{a}. Two cases are possible:
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(a) b ∈ UD(ts). By the construction of α (ts) and β(ts) we have

α (ts)− β(ts) ≤ min
j∈PS(ts)

µ
ũj(t

s)− max
c∈UD(ts)

uj(c, t
s
c)

¶
≤ ũi(t

s)− max
c∈UD(ts)

ui(c, t
s
c)

≤ ũi(t
s)− ui(b, t

s
b) = ui(a, t

s
a)− ui(b, t

s
b).

We have
ui(b, t

s
b) + α (ts) ≤ ui(a, t

s
a) + β(ts). (11)

By the construction of ts+1b , the money share of object b increases by α(ts). We have
ts+1b = tsb + α(ts). This together with Equation 10 and Equation 11 implies

ui(b, t
s+1
b ) = vib + ts+1b = vib + tsb + α(ts) = ui(b, t

s
b) + α(ts) ≤ ui(a, t

s
a) + β(ts) = ui(a, t

s+1
a ).

(b) b ∈ OD(ts)∪PD(ts)\{a}.We have b ∈ OD(ts) or b ∈ PD(ts). By the construction of ts+1b ,
the money share of object b increases at most by β (ts). Hence, ts+1b ≤ tsb + β(ts). Since
a ∈ Di(t

s), we have ui(b, tsb) ≤ ui(a, t
s
a). These together with Equation 10 imply

ui(b, t
s+1
b ) = vib + ts+1b ≤ vib + tsb + β(ts) = ui(b, t

s
b) + β(ts) ≤ ui(a, t

s
a) + β(ts) = ui(a, t

s+1
a ).

We showed that a ∈ Di(t
s+1) and

ũi(t
s+1) = ui(a, t

s+1
a ) = ui(a, t

s
a) + β(ts) = ũi(t

s) + β(ts). (12)

Next, we will inspect the sum of indirect utilities at money distribution ts+1. We have

X
i∈I

ũi(t
s+1) =

X
i∈OS(ts)

(ũi(t
s) + α(ts)) +

X
i∈PS(ts)

(ũi(t
s) + β(ts)) +

X
i∈US(ts)

(ũi(t
s) + γ(ts))

=
X
i∈I

ũi(t
s) + |OS(ts)|| {z }

≤|UD(ts)|−1

α(ts) + |PS(ts)|| {z }
=PD(ts)

β(ts) + |US(ts)|| {z }
≥|OD(ts)|+1

γ(ts)

≤
X
i∈I

ũi(t
s) + (|UD(ts)|− 1)α(ts) + |PD(ts)|β(ts) + (|OD(ts)|+ 1) γ(ts) since α > 0 and γ < 0

=
X
i∈I

ũi(t
s) + γ(ts)− α(ts) + |UD(ts)|α(ts) + |PD(ts)|β(ts) + |OD(ts)| γ(ts)| {z }

=0 by Equation 3

This completes the proof of Proposition 1. ¨
Proof of Theorem 1: Let {ts} be the money distribution sequence in the discrete algorithm of a
market mechanism. Consider any step s. For any i ∈ I we have ũi(ts) ≥ ui(a, t

s
a) for all a ∈ A. We

have
nũi(t

s) ≥
X
a∈A

ui(a, t
s
a) =

X
a∈A

via +
X
a∈A

tsa =
X
a∈A

via +m

for all i ∈ I. Hence,

X
i∈I

ũi(t
s) ≥ 1

n

ÃX
i∈I

X
a∈A

via

!
+m.

Therefore the sum of the indirect utilities of agents is bounded below in the market mechanism. We
claim that D (ts) 6= D(tu) for any steps s, u with UD (ts) 6= ∅ and UD (tu) 6= ∅ by contradiction.
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Suppose there exists two steps s and u with u > s such that D (ts) = D(tu), UD (ts) 6= ∅, and
UD (tu) 6= ∅. We have

P
i∈I ũi(t

s) >
P

i∈I ũi(t
u) by Proposition 1. Moreover s+ 1 6= u, since at step

s + 1 a new object joins the demand of at least one agent. Hence
P

i∈I ũi(t
s+1) >

P
i∈I ũi(t

u) by
Proposition 1.

Claim 1: The set of money distributions that attain the same demand is convex.

Proof of Claim 1: To see this, let t, t0 ∈ T be such that D (t) = D (t0). Let σ ∈ [0, 1] and t00 =
σt0 + (1− σ) t. We have

P
a∈A t00a =

P
a∈A σt0a + (1− σ) ta = m hence t00 ∈ T . Moreover for any i ∈ I,

a ∈ Di (t) , and b ∈ A\Di (t) , we have

ui
¡
a, t00a

¢
= via + σt0a + (1− σ) ta = σ

¡
via + t0a

¢
+ (1− σ)

¡
via + ta

¢
> σ

¡
vib + t0b

¢
+ (1− σ)

¡
vib + tb

¢
= ui

¡
b, t00b

¢
.

Hence, D (t00) = D (t) = D (t0). QED.

Claim 2: Let C (t) be the set of money distributions that achieve the same demand as t. Then
U (t) =

©P
i∈I ũi(t

0) : t0 ∈ C (t)
ª
is convex.

Proof of Claim 2: let u1 and u2 ∈ U (t). Let u∗ = σu1 + (1− σ)u2 for σ ∈ (0, 1). Let th ∈ C (t) such
that

P
i∈I ũi(t

h) = uh for each h = 1, 2. Then for ai ∈ D (t) for all i,

u∗ = σu1 + (1− σ)u2 = σ
X
i

ui
¡
ai, t

1
ai

¢
+ (1− σ)

X
i

ui
¡
ai, t

2
ai

¢
=
X
i

σviai + σt1ai + (1− σ) viai + (1− σ) t2ai

=
X
i

viai + σt1ai + (1− σ) t2ai =
X
i

ũi(σt
1 + (1− σ) t2)

Since σt1 + (1− σ) t2 ∈ C (t), u∗ ∈ U (t). QED

Let u(ts) = infts0∈U(ts) U
³
ts
0
´
.

Claim 3: There exists some market mechanism such that some t∗ with
P

i∈I ũi(t
∗) =u(ts) can be

reached from ts in the same step.

Proof of Claim 4: Observe that by Claims 1 and 2, we can choose t∗ by for any σ ∈ (0, 1), t =
σts+(1− σ) t∗ satisfies D (t) = D (ts). Fix the rate of change of transfers for overdemanded, perfectly
demanded, and underdemanded objects as α∗, β∗, γ∗ such that α∗ = maxa∈UD(ts) (t

∗
a − tsa), β

∗ =
maxa∈PD(ts) (t

∗
a − tsa), and γ∗ = maxa∈OD(ts) (t

∗
a − tsa) . QED

Therefore, we can make sure that D (ts) 6= D(tu) for any two different steps s, u with UD (ts) 6= ∅
and UD (tu) 6= ∅ under an equivalent discrete algorithm. Since in every step a new demand config-
uration is reached and there are finite number of such configurations, {ts} converges to tS for some
finite step S. ¨

Proof of Proposition 2: Identical to the proofs of ASÜ Proposition 1, Proposition 2 and Proposition
3. ¨
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7 Appendix B: Construction of a Maximal Market Assignment, Sets
of Underdemanded Objects and Undersupplied Agents

Fix t ∈ T . Take any market assignment Q ∈ Q (t). Let a ∈ A. An odd-length alternating path
for Q from a is a path (a, i1, a1, ..., ik, ak, i) of distinct agents and objects such that {i , a } ∈ Q
for any ∈ {1, 2, ..., k}; {a, i1} , {ak, i} ∈ L (t) \Q, and {a −1, i } ∈ L (t) \Q for any ∈ {2, 3, ..., k}.8
That is, this path has 2k + 1 links in it (odd-length) and the first link is not in Q, the second link
is in Q, the third link is not in Q,..., the last link is in Q (alternating). An odd-length alternating
path from an agent is symmetrically defined. If Q has an odd-length alternating path, then it cannot
be maximal: since we can have the assignments {a, i1},{a1, i2},...,{ak, i} instead of the assignments
{i1, a1},{i2, a2},..., {ik, ak} and obtain k + 1 agents matched instead of k without affecting the rest
of the assignments under Q at t. Edmonds’ algorithm starts from any market assignment, finds an
odd-length alternating path in it, and then creates a new market assignment from the old one as
explained above, and repeats the process until there are no odd-length alternating paths left. Berge
(1957) showed that a market assignment is maximal if and only if it does not have any odd-length
alternating path. Therefore, Edmonds’ algorithm converges to a maximal market assignment. It has
O
¡
n3
¢
time complexity, and faster algorithms than Edmonds’ algorithm have been introduced.9

Once a maximal market assignment Q ∈M (t) is determined, we can construct US (t) and UD (t)
also in polynomial time complexity. Take an object a that is left unmatched under Q. Define an
even-length alternating path for Q from a as a path (a, i1, a1, ..., ik, ak) of distinct agents and
objects such that {i , a } ∈ Q for any ∈ {1, 2, ..., k}; {a, i1} ∈ L (t) \Q and {a −1, i } ∈ L (t) \Q for
any ∈ {2, 3, ..., k}. Note that (a) is a degenerate even-length alternating path with zero links. We
define an even-length alternating path starting from an unmatched agent under Q in a symmetric
manner. That is, this path has 2k links in it (even-length) and the first link is not in Q, the second
link is in Q, the third link is not in Q..., the last link is in Q (alternating). Suppose that path
(a, i1, a1, ..., ik, ak) is an even-length alternating path from a. We can leave a1 unmatched instead of
a under a maximal market assignment: modify Q to include {a, i1} instead of {i1, a1} . Similarly, for
any ∈ {2, 3, ..., k}, we can leave a unmatched instead of a under a maximal market assignment:
modify Q to include links {a, i1} , {a1, i2} , ..., {a −1, i } instead of links {i1, a1} , {i2, a2} , ..., {i , a }.
As explained in Goemans (2004), (i) the set of underdemanded objects is the union of all objects that
can be reached by an even-length alternating path from at least one unmatched object under Q; and
(ii) the set of undersupplied agents is the union of all agents that can be reached by an even-length
alternating path from at least one unmatched agent under Q.

8 Appendix C: Example

Example 2: Consider the market mechanism in which the money shares of perfectly demanded
objects are increased half as fast as the money shares of underdemanded objects, i.e. β = 1

2α.

8 It is also known as an augmenting path.
9See Korte and Vygen (2000) for an excellent reference on combinatorial optimization theory.

18



We find functions α, β, and γ for the discrete algorithm as

α(t) = min

(
|OD(t)|

|OD(t)|+ |UD(t)|+ 1
2 |PD(t)|

x(t),
|OD(t)|

1
2 |OD(t)|+ |UD(t)|+

1
2 |PD(t)|

y(t), 2z(t)

)
,

γ(t) = −
|UD(t)|+ 1

2 |PD(t)|
|OD(t)| α(t), and

β(t) =
1

2
α(t) ∀ t ∈ T .

Consider fair allocation problem hI,A, V,mi with agent set I = {i1, i2, i3, i4, i5, i6}, object set A =
{a1, a2, a3, a4, a5}, the value matrix

V =
£
via
¤
i∈I,a∈A =

a1 a2 a3 a4 a5
i1 37 62 13 14 12
i2 -34 -47 1 -10 -24
i3 58 -26 34 47 58
i4 0 47 24 56 72
i5 -36 47 -50 12 47
i6 2 16 -81 -104 -69

,

and money endowment m = 600. Since |A| < |I|, we introduce a dummy object a6 and set the value
of each agent for this object to 0.

We will find the outcome of the market mechanism introduced above for this fair allocation problem
using the discrete algorithm.

Step 0: We set the initial money distribution as

t0 = (100, 100, 100, 100, 100, 100).

Below, we give the utility profile of agents at t0. The indirect utilities of agents are highlighted in
bold.

£
ui(a, t

0
a)
¤
i∈I,a∈A =

a1 a2 a3 a4 a5 a6
i1 137 162 113 114 112 100
i2 66 53 101 90 76 100
i3 158 74 134 147 158 100
i4 100 147 124 156 172 100
i5 64 147 50 112 147 100
i6 102 116 19 -4 31 100

.

The set of links at t0 is given as

L
¡
t0
¢
= {{i1, a2} , {i2, a3} , {i3, a1} , {i3, a5} , {i4, a5} , {i5, a2} , {i5, a5} , {i6, a2}} .

We find
Q0 = {{i1, a2} , {i2, a3} , {i3, a1} , {i5, a5}}

as a maximal market assignment.10 Since
¯̄
Q0
¯̄
< 6 = n, US(t0) 6= ∅ and UD

¡
t0
¢
6= ∅ by Lemma 1

and hence, we proceed to the next step.

10 It is easy to find a maximal market assignment for this example, for more complicated problems we can use Edmonds’
(1965) algorithm.
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Step 1: We first find the GED of the problem at t0. We find UD
¡
t0
¢
as follows: Q0 leaves a4 and a6

unmatched, implying that a4 and a6 are underdemanded. There are no non-degenerate even-length
alternating paths starting from either a4 or a6, implying UD

¡
t0
¢
= {a4, a6}. We find US

¡
t0
¢
as

follows: Q0 leaves i4 and i6 unmatched implying i4 and i6 are undersupplied. Path (i4, a5, i5, a2, i1)
is an even-length alternating path starting from i4. Therefore, i5 and i1 are undersupplied. No
other even-length alternating paths starting from i4 or i6 contain other agents. Hence, US

¡
t0
¢
=

{i1, i4, i5, i6}. The agents who have links with objects in UD
¡
t0
¢
are oversupplied. There are no

links including either object a4 or a6 in L
¡
t0
¢
, therefore, OS

¡
t0
¢
= ∅. The objects which have links

with agents in US
¡
t0
¢
are overdemanded. We have OD

¡
t0
¢
= {a2, a5}. The rest of the objects are

perfectly demanded, implying PD
¡
t0
¢
= I\

¡
UD

¡
t0
¢
∪OD

¡
t0
¢¢
= {a1, a3}. The rest of the agents

are perfectly supplied, implying PS
¡
t0
¢
= I\

¡
US

¡
t0
¢
∪OS

¡
t0
¢¢
= {i2, i3}. In summary, we have

UD
¡
t0
¢
= {a4, a6} , OD

¡
t0
¢
= {a2, a5} , and PD

¡
t0
¢
= {a1, a3} ;

US
¡
t0
¢
= {i1, i4, i5, i6} , OS

¡
t0
¢
= ∅, and PS

¡
t0
¢
= {i2, i3} .

We determine x(t0), y(t0), and z(t0) in order to calculate money distribution t1.

x(t0) = min
i∈US(t0)

µ
ũi
¡
t0
¢
− max

a∈UD(t0)
ui(a, t

0
a)

¶
= ũi6

¡
t0
¢
− ui6

¡
a6, t

0
a6

¢
= 116− 100 = 16.

y(t0) = min
i∈US(t0)

µ
ũi
¡
t0
¢
− max

a∈PD(t0)
ui(a, t

0
a)

¶
= ũi6

¡
t0
¢
− ui6

¡
a1, t

0
a1

¢
= 116− 102 = 14.

z(t0) = min
i∈PS(t0)

µ
ũi
¡
t0
¢
− max

a∈UD(t0)
ui(a, t

0
a)

¶
= ũi2

¡
t0
¢
− ui2

¡
a6, t

0
a6

¢
= 101− 100 = 1.

We determine α(t0), γ(t0), and β(t0) as

α(t0) = min{2
5
x
¡
t0
¢
,
1

2
y
¡
t0
¢
, 2z

¡
t0
¢
} = min{32

5
, 7, 2} = 2,

γ(t0) = −3
2
α(t0) = −3, and

β(t0) =
1

2
α(t0) = 1.

We determine the new money distribution as

t1 = (101, 97, 101, 102, 97, 102).

The utility matrix at t1 is given below:

£
ui(a, t

1
a)
¤
i∈I,a∈A =

a1 a2 a3 a4 a5 a6
i1 138 159 114 116 109 102
i2 67 50 102 92 73 102
i3 159 71 135 149 155 102
i4 101 144 125 158 169 102
i5 65 144 51 114 144 102
i6 103 113 20 -2 28 102

.

The set of links at t1 is given as
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L
¡
t1
¢
= {{i1, a2} , {i2, a3} , {i2, a6} , {i3, a1} , {i4, a5} , {i5, a2} , {i5, a5} , {i6, a2}} .

We find

Q1 = {{i1, a2} , {i2, a3} , {i3, a1} , {i4, a5}}

as a maximal market assignment at t1. Since
¯̄
Q1
¯̄
< 6 = n, UD

¡
t1
¢
6= ∅ and US

¡
t1
¢
6= ∅ by Lemma

1 and hence, we proceed to the next step.

Step 2: First, we find the GED of the problem at t1 using Q1. We determine UD
¡
t1
¢
as follows:

Q1 leaves a4 and a6 unmatched, implying a4 and a6 are underdemanded. Path (a6, i2, a3) is an even-
length alternating path starting from a6. Therefore, a3 is underdemanded, as well. There are no other
non-degenerate even-length alternating paths starting from a4 or a6. Hence, UD

¡
t1
¢
= {a3, a4, a6}.

We determine US
¡
t1
¢
as follows: Q1 leaves i5 and i6 unmatched, implying i5 and i6 are undersupplied.

Path (i5, a2, i1) is an even-length alternating path starting from i5, implying i1 is undersupplied. Path
(i5, a5, i4) is an even-length alternating path starting from i5, implying i4 is undersupplied. Other
even-length alternating paths starting from i5 or i6 do not include any other new agents. Therefore,
US

¡
t1
¢
= {i1, i4, i5, i6}. Set OD

¡
t1
¢
is the set of objects which have links to agents in US

¡
t1
¢
. We

have OD
¡
t1
¢
= {a2, a5}. Set OS(t1) is the set of agents who have links to objects in UD

¡
t1
¢
. We have

OS
¡
t1
¢
= {i2}. The remaining objects are perfectly demanded: PD

¡
t1
¢
= A\

¡
UD

¡
t1
¢
∪OD

¡
t1
¢¢
=

{a1}. The remaining agents are perfectly supplied: PS
¡
t1
¢
= I\

¡
US

¡
t1
¢
∪OS

¡
t1
¢¢
= {i3}. In

summary, we have

UD
¡
t1
¢
= {a3, a4, a6} , OD

¡
t1
¢
= {a2, a5} , and PD

¡
t1
¢
= {a1} ;

US
¡
t1
¢
= {i1, i4, i5, i6} , OS

¡
t1
¢
= {i2} , and PS

¡
t1
¢
= {i3} .

We find,

x(t1) = min
i∈US(t1)

µ
ũi
¡
t1
¢
− max

a∈UD(t1)
ui(a, t

1
a)

¶
= ũi6

¡
t1
¢
− ui6

¡
a6, t

1
a6

¢
= 113− 102 = 11.

y(t1) = min
i∈US(t1)

µ
ũi
¡
t1
¢
− max

a∈PD(t1)
ui(a, t

1
a)

¶
= ũi6

¡
t1
¢
− ui6

¡
a1, t

1
a1

¢
= 113− 103 = 10.

z(t1) = min
i∈PS(t1)

µ
ũi
¡
t1
¢
− max

a∈UD(t1)
ui(a, t

1
a)

¶
= ũi3

¡
t1
¢
− ui3

¡
a4, t

1
a4

¢
= 159− 149 = 10.

We determine α(t1), γ(t1), and β(t1) as

α(t1) = min{ 4
11

x
¡
t1
¢
,
4

9
y
¡
t1
¢
, 2z

¡
t1
¢
} = min{4, 40

9
, 20} = 4,

γ(t1) = −7
4
α(t1) = −7, and

β(t1) =
1

2
α(t1) = 2.

We determine the new money distribution as

t2 = (103, 90, 105, 106, 90, 106).
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The utility matrix at t2 is given below:

£
ui(a, t

2
a)
¤
i∈I,a∈A =

a1 a2 a3 a4 a5 a6
i1 140 152 118 120 102 106
i2 69 43 106 96 66 106
i3 161 64 139 153 148 106
i4 103 137 129 162 162 106
i5 67 137 55 118 137 106
i6 105 106 24 2 21 106

.

The set of links at t2 is given by

L
¡
t2
¢
= {{i1, a2} , {i2, a3} , {i2, a6} , {i3, a1} , {i4, a4} , {i4, a5} , {i5, a2} , {i5, a5} , {i6, a2} , {i6, a6}} .

A maximal market assignment is given by

Q2 = {{i1, a2} , {i2, a3} , {i3, a1} , {i4, a4} , {i5, a5} , {i6, a6}} .

We have
¯̄
Q2
¯̄
= 6 = n, implying Q2 is a market matching by Observation 1. We terminate the

procedure and Q2 is a matching that clears the market and
¡
Q2, t2

¢
is an outcome of the market

mechanism with β = α
2 for fair allocation problem hI,A, V,mi. ¨

9 Appendix D: Equivalence between Market Mechanism with β = α
and ASÜ Mechanism

Fix t ∈ T . Let OD∗(t) be the full set of overdemanded objects at t as defined by ASÜ. It is constructed
as follows: B ⊂ A is overdemanded if |{i ∈ I : Di(t) ⊆ B}| > |B|. A set of objects is a minimal
overdemanded set if it is overdemanded and none of its proper subsets is overdemanded. ASÜ
iteratively define the full set of overdemanded objects at t as follows: Given t find all minimal
overdemanded sets. Remove these objects from the demand of each agent and find the minimal
overdemanded sets for the modified demand profiles. Proceed in a similar way until there is no
minimal overdemanded set for the modified demand profiles. The full set of overdemanded objects,
OD∗(t), is the union of each of the sets encountered in the procedure.

We prove that OD∗(t) = OD(t):

• OD∗(t) ⊆ OD(t) : Let a ∈ OD∗(t).

— Suppose a is removed in the above construction in round 1 in minimal overdemanded
set B1. Let J1 = {i ∈ I : Di(t) ⊆ B}. Let i ∈ Sa (t). We have |J1| > |B1|, since B1
is overdemanded. Let J ⊆ J1\ {i} be such that |J | = |B1|. We have for all B ⊆ B1,
|{j ∈ J : Dj(t) ⊆ B}| ≤ |B|, since B1 is a minimal overdemanded set and none of its
proper subsets are overdemanded. This implies by Hall’s (1935) Theorem that all objects
in B1 can be distributed to agents in J . Since i only demands objects in B1, i can remain
unmatched in a maximal market assignment, implying i ∈ US (t). Since i ∈ Sa (t) , we have
a ∈ OD(t) by the GED Lemma.

— Suppose a is removed in the above construction in round 2 in the remaining minimal overde-
manded set B2. We showed above that in a maximal market assignment all overdemanded
objects removed in the first round can be matched to agents removed in the first round.
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Let J1 be the agents removed in first round, let B1 be the objects removed in the first
round. Let J2 = {i ∈ I : Di(t)\B1 ⊆ B2}. Let i ∈ Sa (t). Let J ⊆ J2\ {i} be such that
|J | = |B2|. We have for any B ⊆ B2, |{j ∈ J : Dj(t)\B1 ⊆ B}| ≤ |B|, since B2 is a minimal
overdemanded set and none of its subsets are overdemanded after B1 is removed, implying
by Hall’s Theorem that all objects in B2 can be distributed to agents in J2. Since all objects
in B1 and B2 can be committed to agents in J1 and J respectively, and since i does not
demand any other objects (i.e. Di(t) ⊆ B1 ∪ B2), there is Q ∈ M (t) such that Qi = ∅,
implying i ∈ US (t). Since i ∈ Sa (t) , we have a ∈ OD(t) by the GED Lemma.

Continuing in a similar iterative manner, we obtain OD∗(t) ⊆ OD(t).

• OD(t) ⊆ OD∗(t) : Let J∗ = {i ∈ I : Di (t) ⊆ OD∗ (t)}. There are no overdemanded sets in
A\OD∗(t) : for any B ⊆ A\OD∗(t) we have |{i ∈ I : Di(t) ⊆ I}| ≤ |B|. Since |J∗| > |OD∗ (t)|,
we have |I\J∗| < |A\OD∗ (t)|. Therefore, by Hall’s Theorem all agents in I\J∗ can be matched
with objects in A\OD∗(t). Since all agents I\J∗ are matched under all maximal market assign-
ments, I\J∗ ⊆ I\US (t), this in turn implies that US (t) ⊆ J∗. OD(t) is the set of objects that
agents in US(t) demand, and OD∗(t) is the set of objects that agents in J∗ demand, implying
OD(t) ⊆ OD∗(t).

10 Appendix E: Derivation of GED Lemma for Bipartite Graphs

A connected component of a graph is a maximal connected subgraph. An odd component is a
connected component with odd number of nodes and an even component is a connected component
with an even number of nodes. The GED Lemma for general graphs can be stated as follows (it is
part of Theorem 10.32 on page 227 in Korte and Vygen (2000) due to Gallai (1964)) in the context of
the demand-supply graph:

Gallai-Edmonds Decomposition Lemma for General Graphs: Let t ∈ T .

1. Every object in OD(t) is assigned to an agent in US(t), every agent in OS(t) is assigned an
object in UD(t), every object in PD(t) is assigned to an agent in PS(t) and every agent in
PS(t) is assigned an object in PD(t) under any maximal market assignment.

2. Construct demand-supply graph G(t) at t. Consider the demand-supply subgraph obtained by
deleting the objects in OD(t) and their links with all agents, and also agents in OS(t) and their
links with all objects. Let R (t) be this remaining graph.

• Every even component of R (t) only contains nodes in PD(t) ∪ PS(t) and it is possible
to match all nodes in every even component in R (t) with each other under a market
assignment.

• Every odd component of R (t) only contains nodes in UD(t) ∪ US(t). Let U be the set of
nodes in an odd component of R (t). Then it is always possible to match any |U |− 1 nodes
of set U under a market assignment with each other. Moreover under any maximal market
assignment, at most one node of U is matched with a node in OS(t) ∪OD (t) and |U |− 1
nodes of U are matched with each other.

The following lemma is the main tool in deriving the GED Lemma for bipartite graphs like the
demand-supply graph.
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Lemma 3: For any t ∈ T , every odd component of R(t) is a singleton, where R(t) is defined as in
the statement of the GED Lemma for general graphs.

Proof of Lemma 3: Fix a money distribution t ∈ T . Find demand-supply graph G(t). Find the
remainder demand-supply graph R(t). Consider an odd component of graph R(t). Let U be the set
of nodes in it. We have U ⊆ UD(t)∪US(t) by the GED Lemma for general graphs. Since |U | is odd,
and since within U it is possible to match |U |−1 nodes of U (by the GED Lemma for general graphs),
it should be the case that either there are |U |−1

2 agents and |U |+1
2 objects, or |U |−12 objects and |U |+1

2
agents in U .

Suppose there are |U |−12 agents and |U |+1
2 objects. By the GED Lemma, under any maximal market

assignment, all agents in |U | are matched (to be able to match |U |− 1 nodes within U), contradicting
to the fact that these agents are members of UD(t). Therefore, there cannot be any agents in U ,
implying that |U |−12 = 0 =⇒ |U | = 1, i.e. U consists of a single object.

The case with |U |−1
2 objects and |U |+1

2 agents is symmetric. ¨

In Lemma 3, we showed that objects in UD(t) cannot supply any agent in US(t) (and hence,
agents in US(t) cannot demand any object in UD(t)). The following corollary is straightforward to
state given Lemma 3, GED Lemma for general graphs and the fact that objects in PD(t) cannot
supply any agent in US(t) and agents in PS(t) cannot demand any object in UD(t) (by definition):

Corollary 2: For any money distribution t ∈ T ,

• For each i ∈ US(t) we have Di (t) ⊆ OD(t).

• For each a ∈ UD (t) we have Sa (t) ⊆ OS (t).

Corollary 2 and the GED Lemma for general graphs imply the GED Lemma for bipartite graphs.

References
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