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Appendix A On Current Practice of Tuition Exchange

In this appendix, we analyze the current practice of tuition exchange. As the centralized

process is loosely controlled, once each college sets its eligibility/admission quota and

eligible students are determined, the market functions more like a decentralized one rather

than centralized. Once colleges commit to the students they will sponsor, they lose their

control over them. A sponsored student can sometimes get multiple o�ers and decide

which one to accept and when to accept it. Hence, stability emerges as a relevant notion

for a benchmark market-equilibrium concept when there is no other friction. To adopt

stability in our model, we introduce blocking by a pair: Given a market
[
q, e,%

]
, we

say matching µ′ is obtained from matching µ by the mutual deviation of c and s if

s ∈ µ′(c) ⊆ µ(c)∪s, and µ′(s′) = µ(s′) for all s′ ∈ S \ (µ(c)∪s). A matching µ is blocked

by college-student pair (c, s) if c Ps µ(s) and µ′ �c µ for some matching µ′ obtained

from µ by the mutual deviation of c and s. As in any blocking condition in cooperative

games with externalities, we need to take a stance on how other players act when a pair

deviates. We assume that only a college, a student or a college-student pair deviates at

a time, and assume that the rest of the students and colleges do not make simultaneous

decisions.1 A matching µ is stable if it is individually rational and not blocked by any

college-student pair.

Tuition exchange has some idiosyncratic properties di�erent from those of previously

studied two-sided matching markets.

In tuition exchange, an admitted class of lower-quality students can be preferable to

one with higher-quality students under two di�erent matchings, if the latter one deteri-

orates the net balance of the college. The extreme version of this preference is a college

being extremely averse against negative net-balance matchings, regardless of the incom-

ing class, because maintaining a nonnegative net balance is important for a college to

continue its membership in the program.

We will incorporate these features as two formal assumptions in this section. As-

1See Pycia and Yenmez (2015) for more discussion of this stability concept under matching problems
with externalities.
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sumption 3 states that a better admitted class is preferable as long as the net balance

does not decrease, admission of unacceptable students deteriorates the rankings of uncon-

strained matchings regardless of their net balances, and a college deems its own students

unacceptable in tuition exchange. Assumption 4 introduces negative net-balance averse

preferences. In all results in this section we will use Assumption 3, while Assumption 4

will be used in only one result. We start by stating Assumption 3.

Assumption 3 For any c ∈ C and µ, ν ∈Mu,

(1) (preference increases with a better admitted class and a non-deteriorating balance)

if bµc ≥ bνc and µ(c)P ∗c ν(c), then µ �c ν,
(2) (awarding unacceptable students exchange scholarships is not preferable) if there

exists s ∈ ν(c) \ µ(c), ∅Pcs and ν(s′) = µ(s′) for all s′ ∈ S \ s, then µ �c ν, and
(3) (unacceptability of the college's own students for exchange scholarships) ∅Pcs for

all s ∈ Sc.

Assumption 3 implies that, if there exists s ∈ µ(c) such that ∅Pcs, then matching µ

is blocked by c. Moreover, if sPc∅ for all s ∈ µ(c), then matching µ is not blocked by

c. Hence, individual rationality and acceptability are equivalent under Assumption 3.

Moreover, Assumption 3 implies that if cPsµ(s), sPc∅, and |µ(c)| < qc, then (c, s) is a

blocking pair for matching µ. Similarly, if sPcs
′, sPc∅, s′ ∈ µ(c), and cPsµ(s), then (c, s)

is a blocking pair for matching µ.

The existence of stable matchings has been widely studied in two-sided matching

problems without externalities. For instance, in the college admission market, when the

college preferences are responsive up to quota, then the set of stable matching is nonempty

(see Gale and Shapley, 1962; Roth, 1985).2 We prove a similar result for our environment.

Proposition 3 Under Assumption 3, there exists at least one stable matching in any

tuition-exchange market.3

2In the earlier two-sided matching literature, stability a la Gale and Shapley (1962) has been the central
solution concept. Technically, our model is similar to a two-sided matching model with externalities, i.e.,
agents have preferences over allocations rather than their matches. Sasaki and Toda (1996) introduce
externalities in two-sided matching markets and various stability de�nitions. Pycia (2010) explores
existence in two-sided matching when agents have preferences over peers and matches. The �rst model
is quite general; however, their stability notion, which guarantees existence, requires a very conservative
de�nition of blocking. The second model, on the other hand, does not cover externalities regarding the
balancedness requirement. Pycia and Yenmez (2015) also focus on the existence of stable matching in a
two-sided matching problem with externalities such that preferences satisfy a substitutes condition.
However, our model has major di�erences from standard externality models, which generally inspect

peer e�ects or induce di�erent stability de�nitions as a solution for the decentralized market. We use the
standard stability notion in a model with externalities.

3All proofs of this section is in Appendix E.
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We prove this proposition by constructing an associated Gale-Shapley college-admissions

market in which the set of Gale-Shapley-stable matchings is identical to the set of stable

tuition-exchange matchings.

In Section 4, we showed the incompatibility between individual rationality, nonwaste-

fulness, and balancedness under Assumption 1. Although Assumption 3 is stronger than

Assumption 1, the incompatibility result still holds under Assumption 3.

Proposition 4 Under Assumption 3, there may not exist an individually rational and

nonwasteful matching that is also balanced.

Proposition 4 also shows that there exists no stable and balanced mechanism un-

der Assumption 3. One can then wonder whether there exists a stable mechanism that

performs better than all other stable mechanisms in terms of balancedness. We prove

otherwise.4

Proposition 5 Under Assumption 3, each college has the same net balance in all stable

matchings in a given market.

We also investigate what kinds of strategic decisions a tuition-exchange o�ce in a

college would face in a quota-determination game if a stable outcome emerges in the mar-

ket. Here we explicitly make the aforementioned additional assumption about negative

net-balance aversion on college preferences:5

Assumption 4 (Negative Net-Balance Aversion) Any college c ∈ C prefers µ ∈ Mu,

such that bµc = 0 and all s ∈ µ(c) are acceptable, to all ν ∈Mu with bνc < 0.

In the quota-determination game, we �x C, S, .C , and %. Colleges are the players

of the game and each college's strategy is setting its admission and eligibility quotas

under a simultaneous move, complete information setting. Without loss of generality, we

constrain the strategy space such that a reported admission quota is not less than the

reported eligibility quota. Given a true quota pro�le, denote the action set for c with Ac;

then, it is Ac =
{

(q̂c, êc) ∈ N2 | q̂c ≥ êc ≥ 0
}
. The outcome of the game is determined

by a stable mechanism (solution). In Theorem 10, by using the results of Proposition 6

below, we show that in any stable solution, if a college holds a negative net balance, then

the best response is only to decrease its eligibility quota. Proposition 6 also gives us a

4We also inspect the structure of stable matchings in Appendix F. We show that there always exist
college- and student-optimal stable matchings.

5This assumption is used only in Theorem 10.
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comparative result regarding how the net balances of colleges change when they certify

one additional student and do not decrease their admission quotas.6

Proposition 6 Under Assumption 3, for �xed preferences % and for any reported quota

pro�les q̂ and ê, let π̂ and π̃ be stable matchings for the induced markets
[
q̂, ê,%

]
and[

(q̃c, q̂−c), (ẽc, ê−c),%
]
, respectively, where q̂c ≥ êc, q̃c ≥ q̂c and ẽc = êc + 1. Then

bπ̃c ∈ {bπ̂c − 1, bπ̂c } if bπ̂c < 0; and bπ̃c ∈ {bπ̂c − 1, bπ̂c , ..., b
π̂
c + q̃c − q̂c} if bπ̂c ≥ 0.

The proposition concludes that, when a college increases its eligibility quota by one

without decreasing its admission quota, its overall net balance will decrease at most by

one under any stable solution. Its net balance may increase only if it is a nonnegative

net-balance college to start with.7

Theorem 10 Under Assumptions 3 and 4, for �xed preferences % and for any reported

quota pro�les q̂ and ê, if c has a negative net balance in a stable matching for market[
q̂, ê,%

]
where q̂c ≥ êc, then its best response in any stable solution is to set only lower

êc, but not higher; and in particular, there exist ẽc ≤ êc such that college c has a zero-

balance in every stable matching of the market
[
q̂, (ẽc, ê−c),%

]
.

Theorem 10 shows that if c has a negative net balance then it certi�es fewer students,

which will eventually increase its balance.8 When c certi�es fewer students it may cause

another college c′ to have a negative net balance. Then c′ will have a negative net balance

and will certify fewer students, too. In Theorem 11 below, we show this result.

Theorem 11 Under Assumption 3, for �xed preferences % and for any reported quota

pro�les q̂ and ê, if a college c is holding a negative net balance in a stable matching µ for

market
[
q̂, ê,%

]
such that q̂c ≥ êc, then bµ−c ≥ bµ

′

−c where µ
′ is any stable matching for

market
[
(q′c, q̂−c), (e

′
c, ê−c),%

]
, and q̂c ≥ q′c ≥ êc − 1 ≥ e′c.

6Weber (1997); Engelbrecht-Wiggans and Kahn (1998); Ausubel, Cramton, Pycia, Rostek, and
Weretka (2014) study demand reduction in auctions.

7This is possible only if q̃c > q̂c.
8This result is in a similar vein as the results on college admissions where the DA mechanism is shown

to be prone to admission quota manipulation of the colleges under responsive preferences, regardless of
imbalance aversion (see Sönmez, 1997). However, Konishi and Ünver (2006) show that the DA mechanism
would be immune to quota manipulation, if preferences of colleges over incoming students were responsive
and monotonic in number. On the other hand, even under this restriction of preferences over the incoming
class, our result would imply all stable mechanisms are manipulable with quota reports for colleges with
negative net balances if colleges have negative net-balance averse preferences. (See also Kojima and
Pathak, 2009.)
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Theorems 10 and 11 do not conduct an equilibrium analysis in a quota-determination

game. But they do point out that in a frictionless market, the colleges that will be likely

to have a negative-balance will be conservative and will decrease their eligibility quotas

for exports, which will further deteriorate the balances of other colleges.

Typically, no college fully withdraws in practice, as there is often a minimum quota of

participation in place. We conjecture that this could be instituted because of the reasons

outlined above. Given that continued membership is an attractive bene�t, often times,

smaller colleges will announce that they will import and export at this minimum quota

requirement, and will continue to be a member of the program without fully withdrawing

from the system.

We conclude that under a new design for tuition exchange, there should be no room

for quota underreporting by the colleges due to negative net-balance aversion, if possi-

ble. A fully centralized solution disregarding decentralized market stability seems to be

inevitable, as stability is at odds with balancedness and has various other shortcomings

regarding other incentives.

Moreover, we deem such a stability concept inappropriate for our purpose as the rights

of students to participate in market activity depends on the permission of their colleges.

Thus, we claim that balanced-e�ciency and individual rationality are the most important

features of a tuition-exchange outcome.

Appendix B Proofs

Proof of Propositions 1 and 4. Consider the following market. Let C = {a, b} and
for each c ∈ C set qc = ec = 1. The set of students in each college is: Sa = {1} and
Sb = {2}. The associated strict preference relations of students over colleges are given

as P1 : b P1 c∅ P1 a and P2 : a P2 c∅ P2 b. College preferences satisfy Assumption 1

(Assumption 3). Student 1 is not acceptable to b, i.e., ∅ Pb 1, and b prefers any matching

in which no student is assigned to itself over the matchings in which 1 is assigned to

itself. Student 2 is acceptable to a and a prefers any matching with positive balance to

the matchings in which no student is assigned to itself. There is one nonwasteful matching

that is not individually blocked: µ(1) = c∅ and µ(2) = a. This matching is not balanced,

as college b has negative net balances in µ.

Proof of Theorem 1. Consider an arbitrary market
[
q, e,%

]
. Let π be the matching

selected by 2S-TTC for
[
q, e,%

]
. Let E be the set of eligible students in

[
q, e,%

]
. First

note that, π(s) = c∅ for all s ∈ S \ E. In particular, under 2S-TTC s ∈ S \ E is never

pointed to by her home college. Hence, 2S-TTC selects a matching for [q, e,%].
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Acceptability: Students will be assigned to null college c∅ whenever they point to

it, and, hence, they will never need to point to an unacceptable college. Hence, a student

cannot be assigned to an unacceptable college. Moreover, a student cannot point to a

college that considers her unacceptable. Therefore, the students ranked below ∅ in Pc

cannot be assigned to c. Thus, 2S-TTC is acceptable.

Individual Rationality: Since each s ∈ S is assigned to an option (weakly) better

than c∅, s does not individually block π. Since all students in π(c) are ranked above ∅ in
Pc for each c ∈ C, π(c) R∗c S̃ for any S̃ ⊆ π(c). In any matching µ such that µ(s) = π(s)

for all s ∈ S \ π(c) and µ(c) ⊂ π(c), c ∈ C has a nonpositive net balance. Hence, π is not

individually blocked by c.

Respect for Internal Priorities: Suppose, contrary to the claim, that 2S-TTC

does not respect internal priorities. Then, there exists s ∈ Sc, who is assigned to a

college by 2S-TTC in
[
q, e,%

]
, is assigned to a worse option in

[
q, (ẽc, e−c),%

]
where

ẽc > ec. Since any ineligible student is assigned to c∅ in any market, ec > 0, qc > 0

and rc(s) ≤ ec.
9 We use a variation of the 2S-TTC in which only the students with the

highest internal priority at their home colleges point to a college each round. Since only

the top-priority students and students pointing to c∅ can form a cycle in each round under

both versions of 2S-TTC, they will select the same outcome. Let S(k) and S̃(k) be the set

of students in the cycles removed in Round k of 2S-TTC applied to the markets
[
q, e,%

]
and

[
q, (ẽc, e−c),%

]
, respectively.10 In both markets, the same set of students will be

active, i.e. point to a college in C or c∅, in the �rst round. Since we consider the same

preference pro�le, S(1) = S̃(1). Then, if s ∈ S(1), she is assigned to the same college in

both markets. If not, consider the second round. Since the same set of students is removed

with their assignments and s /∈ S(1), the set of active students and the remaining colleges

in the second round of 2S-TTC applied to the either market will be the same. Moreover,

students will be pointing to the same options in both markets. Hence, S(2) = S̃(2).

Then, if s ∈ S(2), she is assigned to the same colleges in both markets. If not, we can

repeat the same steps and show that s will be assigned to her match in [q, e,%] in the

outcome of 2S-TTC in market
[
q, (ẽc, e−c),%

]
.

Balanced-e�ciency: Since the matching selected by 2S-TTC consists of trading

cycles in which students and their assignments form unique cycles, its outcome is balanced

by Remark 1. Since 2S-TTC is acceptable, π is also acceptable. Let S(k) be the set of

9For the proof of Theorem 9, note that in any market each worker is assigned to a �rm weakly better
than her home �rm and all ineligible workers are assigned to their home �rms. Hence, ec > 0, qc > 0
and rc(s) ≤ ec.

10For the proof of Theorem 9, since s is an eligible worker in market
[
q, e,%

]
, s ∈ S(k′) for some

k′ ≤ K where K is the last round of 2S-TTC in market
[
q, e,%

]
.
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students who are in the cycles removed in Round k ≤ K of 2S-TTC where K is the last

round of 2S-TTC.11 We will prove that π is balanced-e�cient in two parts.

Part I: We �rst prove that π cannot be Pareto dominated by another acceptable

balanced matching. If s ∈ S(1), then π(s) ∈ C ∪ c∅ is the highest ranked option in

Ps that considers her acceptable. That is, no student s ∈ S(1) can be assigned to a

better college considering her acceptable. If there exists a matching ν such that ν �s π,
then ν(s) considers s unacceptable. That is, π cannot be Pareto dominated by another

acceptable matching ν in which at least one student in S(1) is better o� in ν.

If a student s ∈ S(2) is not assigned to a more preferred c ∈ C that considers her

acceptable, then c should be removed in Round 1. Let ν be an acceptable and balanced

matching such that ν(s) = c. Suppose there exists another student s′ such that π(s′) = c

and ν(s′) 6= c. Note that s′ is an eligible student. Because s′ is assigned in Round 1,

π(s′) = c is her favorite college among the ones considering her acceptable. That is, in

any acceptable and balanced matching ν in which s is assigned to π(s′), s′ will be made

worse o�. Suppose ν(s′) = c for any s′ ∈ π(c).12 Then, c is removed in Round 1 since

its eligibility counter reaches to zero and s /∈ Sc. Balancedness of ν implies that there

exists a student s̃ ∈ Ec ∩ S(1) such that π(s̃) = c∅ and ν(s̃) ∈ C. Then, ν cannot be

acceptable, because s̃ considers all colleges considering her acceptable as unacceptable.

Hence, π cannot be Pareto dominated by another balanced and acceptable matching ν

in which at least one student in S(2) is better o� in ν. In particular, if a student in S(2)

prefers ν to π, then at least one student in S(1) prefers π to ν.13

We similarly show the same for all other rounds of 2S-TTC. Thus, in a balanced

matching no student can be assigned to a better college among the colleges that consider

her acceptable without harming another student or violating balancedness or feasibility

constraints. Hence, no college can be made better o� without harming another agent

either, if we focus on matchings that are acceptable and balanced.

Part II: Next we show that there does not exist an unacceptable balanced matching

that Pareto dominates π. To the contrary of the claim, suppose there exists an unac-

ceptable balanced matching ν that Pareto dominates π. By de�nition, π(s) = ν(s) = c∅

for any s /∈ E.14 Then each i ∈ C ∪ S weakly prefers ν to π, and at least one agent

j ∈ C ∪ S strictly prefers ν to π. Due to the acceptability of the 2S-TTC, every student

weakly prefers her assignment in π to c∅. Therefore, every assigned student in π is also

11For the proof of Theorem 9, note that any worker removed after the removal of her home �rm is
ineligible and she is assigned to her home �rm in any matching.

12For the proof of Theorem 9, this case is not possible because in 2S-TTC's matching each �rm �lls
its all seats.

13We use this fact also in the proof of Theorem 5.
14For the proof of Theorem 9, π(s) = ν(s) = c for all s ∈ Sc \ E and c ∈ C.
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assigned to an acceptable college in ν. Thus, due to the balancedness of both π and ν,

|ν(c)| ≥ |π(c)| for all c ∈ C.15 As ν is unacceptable, there exists some c0 ∈ C such that

s0 ∈ ν(c0) is unacceptable for c0.
16 As bπc0 = bνc0 = 0 and ν %c0 π, there should be at

least one student s1 ∈ ν(c0) \ π(c0) such that s1 is acceptable for c0 by Assumption 1 and

c0Ps1π(s1). We consider two cases regarding π(s1):

Case 1: First, suppose π(s1) = c∅. Denote the home college of s1 by c1. Hence,

qc1 ≥ |ν(c1)| > |π(c1)| by balancedness of ν and π. By Assumption 1, ν(c1)P ∗c1π(c1), and

there exists a student s2 ∈ ν(c1)\π(c1) such that s2 is acceptable for c1 and ν(s2)Ps2π(s2).

Note that, s1 ∈ Ec1 forms a cycle with c∅ before c1 is removed under 2S-TTC.

Case 2: Next, suppose π(s1) ∈ C. Since π(s1) ∈ C, s1 is in a cycle that is removed

in some round of 2S-TTC. Denote π(s1) by c1. As |ν(c1)| ≥ |π(c1)|, there exists s2 ∈
ν(c1) \ π(c1), and s2 is acceptable for c1 by Assumption 1. We also have ν(s2)Ps2π(s2).

We continue with s2 and π(s2), similarly construct c2, and then s3. As we continue, by

�niteness, we should encounter the same student sk = s` for some k > ` ≥ 1, that is, we

have encountered her before in the construction. Consider the students s`+1, s`+2, ..., sk.

Let sk′ be the student who is assigned in the earliest round of 2S-TTC in this list. Suppose

sk′ is assigned to π(sk′) in Round k̄. By de�nition, she points to π(sk′) in Round k̄ and

sk′ ∈ E. However, she prefers ck′−1 to her assignment, and she is acceptable for ck′−1.

Moreover, in Round k̄, we know that ck′−1 has not been removed yet from the algorithm,

because if ck′−1 was constructed in Case 1 above, then qck′−1
> |π(ck′−1)| and sk′−1 ∈ Eck′−1

is still not removed, and if ck′−1 was constructed in Case 2 above, then sk′−1 ∈ π(ck′−1)

is still not removed. Therefore, sk′ should have pointed to ck′−1 not π(sk′) in 2S-TTC in

that round. This is a contradiction to ν Pareto dominating π.

Proof of Theorem 2. Suppose that there does exist such a mechanism. Denote it

by ψ. To show our result, we use several markets that only di�er in college preferences.

Case 1: Let C = {a, b, c} and Sa = {1,2}, Sb = {3}, and Sc = {4}. Let q =

e = (2, 1, 1). Let %S be the student preference pro�le with associated rankings over

colleges P1 : bP1cP1c∅, P2 : cP2c∅, P3 : aP3c∅, and P4 : aP4c∅.
17 Let %C be the college

preference pro�le with associated rankings over students Pa : 3Pa4Pa∅, Pb : 1Pb∅, and Pc :

1Pc2Pc∅.18 We assume that %C satis�es Assumption 1. There are two balanced-e�cient

and individually rational matchings: µ1 =
( a b c

4 ∅ 1

)
and µ2 =

( a b c

{3,4} 1 2

)
.

15For the proof of Theorem 9, |ν(c)| = |π(c)| = qc for all c ∈ C.
16For the proof of Theorem 9, since each �rm �lls all its seats with acceptable workers under 2S-TTC,

any balanced matching in which an unacceptable worker is assigned to a �rm cannot Pareto dominate
2S-TTC's outcome. Hence, we do not need to consider this case.

17In all these rankings, we list only the acceptable colleges.
18In all these rankings, we list only the acceptable students.
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If ψ selects µ1, then a can manipulate ψ by submitting %1
a where P

1
a : 3P 1

a ∅ and any

acceptable matching under % is preferred to the ones in which 4 is assigned to a. Note

that, %1
a satis�es Assumption 1. Then the only individually rational and balanced-e�cient

matching is µ3 =
( a b c

3 1 ∅
)
. Therefore, ψ

[
q, e,%

]
= µ2.

Case 2: We consider the same market with a slight change in a's preferences. Let %2
a

be a' s preferences with associated ranking over students P 2
a : 4P 2

a3P
2
a ∅. We assume that

%2
a satis�es Assumption 1. In this case, µ1 and µ2 are the only two balanced-e�cient and

individually rational matchings.

If ψ selects µ1, then a can manipulate ψ by submitting %a. Then we will be in Case

1 and µ2 will be selected, which makes a better o�. Therefore, ψ
[
q, e, (%2

a,%−a)
]

= µ2.

Case 3: Now consider the case where colleges report the preferences%3 where%3
a=%

2
a,

%3
b=%b, P

3
c : 1P 3

c ∅ is the associated ranking with %3
c and any acceptable matching under

%3 is preferred to any matching in which 2 is assigned to c under %3
c . Note that, %3

c

satis�es Assumption 1. Then there are two individually rational and balanced-e�cient

matchings: µ4 =
( a b c

4 ∅ 1

)
and µ5 =

( a b c

3 1 ∅
)
.

If ψ selects µ4, then in Case 2 c can manipulate ψ by reporting %3
c . Therefore,

ψ
[
q, e,%3

]
= µ5.

Case 4: Now consider the case where colleges report the following preferences %4

where %4
b=%b, %

4
c=%

3
c , P

4
a : 4P 4

a ∅ is the associated ranking with %4
a and any acceptable

matching under %4 is preferred to µ5 under %4
a. Note that, %4

a satis�es Assumption 1.

There is a unique balanced-e�cient and individually rational matching: µ4. In Case 3,

a can manipulate ψ by reporting %4
a; then we will be in Case 4 and a will be better o�

with respect to Case 3 preferences.

Therefore, there does not exist a balanced-e�cient, individually rational mechanism

that is immune to preference manipulation by colleges. By following the same steps,

we can show nonexistence of a mechanism which is acceptable, balanced-e�cient, and

immune to preference manipulation by colleges.

Proof of Theorem 3. For any market [q, e,%], consider the preference relations of

each student who ranks as acceptable only those colleges that �nd her acceptable. If we

consider only these preferences as possible preferences to choose from for each student,

then 2S-TTC cannot be manipulated by a group of students, as Pápai (2000) showed that

TTC is group strategy-proof. In 2S-TTC, observe that students are indi�erent among

reporting preference relations that rank the colleges �nding themselves as acceptable in

the same relative order. Therefore, there does not exist a group of students with pro�table

group manipulation under 2S-TTC.
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Thus, 2S-TTC is group strategy-proof for students.

The following lemma is used in proving Theorem 4.

Lemma 1 Let π and π̃ be the outcome of 2S-TTC in
[
q, e,%

]
and

[
(q̃c, q−c), (ẽc, e−c),%

]
where q̃c ≤ qc and ẽc ≤ ec for some c ∈ C, respectively. Then, M π̃

c ⊆ Mπ
c , π̃(c) ⊆ π(c)

and X π̃
c ⊆ Xπ

c .

Proof. If q̃c = qc and ẽc = ec, then π̃ = π. Hence, we have three remaining cases to

consider.

Case 1: q̃c = qc and ẽc < ec. We consider the case in which one more student is

certi�ed by c, i.e., ẽc + 1 = ec. Denote the student added to the eligible set by s. Let

s′ ∈ Sc and rc(s′) = rc(s) − 1. Consider the following variant of the 2S-TTC algorithm

for this new market: Suppose there is a cycle consisting of a student s′′ ∈ Sc′ for some

college c′ and c∅ in a round and c′ has not been removed yet. We remove this cycle if

and only if college c′ also points to s′′ in that round. Otherwise, we keep the cycle in

the market to the next round. If q̃c students are assigned to c before s is pointed to

by c, then c will be removed, and certifying one more student will not a�ect the set

of students exported and imported by c. Now consider the case in which less than q̃c

students are assigned to c before s is pointed to by c. Denote the intermediate matching

that we have just after s′ is removed by ν. Since c is removed just after s′ is removed

in
[
(q̃c, q−c), (ẽc, e−c),%

]
, M π̃

c = M ν
c , π̃(c) = ν(c), and X π̃

c = Xν
c . If s is assigned to a

college c′ ∈ C \ c, c will import one more acceptable student. Denote that matching by

µ. Then, we have M π̃
c = M ν

c ⊂ Mµ
c , π̃(c) = ν(c) ⊂ µ(c), and X π̃

c = Xν
c ⊂ Xµ

c . If s is

assigned to c∅ or c, then c will have the same import and export sets and for the latter

case we have π̃(c) = ν(c) ⊂ µ(c). If we keep certifying all ec − ẽc students one at a time,

we will have M π̃
c ⊆ Mπ

c , π̃(c) ⊆ π(c) and X π̃
c ⊆ Xπ

c , where π is the outcome of 2S-TTC

in
[
q, e,%

]
.

Case 2: q̃c < qc and ẽc = ec. Let π and ν be the outcomes of 2S-TTC in
[
q, e,%

]
and

[
(q̃c, q−c), e,%

]
, respectively. If |ν(c)| < q̃c then 2S-TTC will select ν when c reports

either q̃c or qc. That is, π = ν. If |ν(c)| = q̃c and c's eligibility counter reaches to zero in[
(q̃c, q−c), e,%

]
when it is removed, then it will not make a di�erence if c reports either

q̃c or qc. If |ν(c)| = q̃c and c is removed before all its eligible students are removed in[
(q̃c, q−c), e,%

]
, then one more student s ∈ Sc might be assigned to a college when c

reports qc. As in the previous case, c may import and export at least one more student.

At the end, we get M ν
c ⊆Mπ

c , ν(c) ⊆ π(c) and Xν
c ⊆ Xπ

c .

Case 3: q̃c < qc and ẽc < ec. Let µ be the outcome of 2S-TTC in
[
q, (ẽc, e−c),%

]
.

Then, we have M π̃
c ⊆Mµ

c ⊆Mπ
c , π̃(c) ⊆ µ(c) ⊆ π(c) and X π̃

c ⊆ Xµ
c ⊆ Xπ

c , where the �rst

and second subset relations come from invoking Case 1 and Case 2, respectively.
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Proof of Theorem 4. We prove a stronger version of Theorem 4: Under 2S-TTC,

suppose that preference pro�les are �xed for colleges such that no college reports an un-

acceptable student as acceptable in its preference report. In the induced quota-reporting

game, under Assumption 1, it is a dominant-strategy equilibrium for all c ∈ C to certify

all their students and to reveal their true admission quotas.

Take a market
[
q, e,%

]
and a college c. Suppose that preference reports are �xed such

that c does not report any unacceptable students as acceptable in these reports. Suppose

c reports (q̃c, ẽc) where q̃c ≤ qc and ẽc ≤ |Sc| = ec. In Lemma 1 we have shown that when

c reports its admission and eligibility quotas as higher, the set of students assigned to c

(weakly) expands. By Assumption 1, reporting (q̃c, ẽc) is weakly worse than reporting the

true admission quota and certifying all students for any pro�le of other colleges' admission

and eligibility quotas (q−c, e−c).

Proof of Proposition 2. The 2S-TTC mechanism takes into account only the set of

acceptable students based on the submitted preferences of colleges. Hence, for any two

di�erent preference pro�les with the same set of acceptable students, 2S-TTC selects the

same outcome.

Proof of Theorem 5. We consider a variant of 2S-TTC in which we select and

remove one cycle randomly per round and keep all other cycles intact to the next round.

Let S(k) be the set of students in the cycle removed in Round k. To the contrary, suppose

the theorem's claim does not hold. Let ψ be the mechanism satisfying all four axioms,

and selecting a di�erent matching for some market
[
q, e,%

]
. Denote the outcome of

2S-TTC for
[
q, e,%

]
by µ. First note that, ψ

[
q, e,%

]
(s) = µ(s) = c∅ for any ineligible

student s.19 In the rest of the proof, we work with students' preferences over colleges, PS,

instead of %S.

We �rst prove the following claim:

Claim: If there exists a student in S(k) who prefers her assignment in ψ
[
q, e,%

]
to

the one in µ, then there exists another student in ∪k−1
k′=1S(k′) who prefers her assignment

in µ to the one in ψ
[
q, e,%

]
.20

Proof of Claim: First note that, if for some student s, µ(s) 6= ψ
[
q, e,%

]
(s), then s

is an eligible student. We use induction in our proof. Consider the students in S(1). First

consider the case in which |S(1)| = 1 and the student in S(1) is assigned to c∅. Any college

that she prefers to c∅ considers her unacceptable. If she prefers her assignment under ψ

to c∅, then she is assigned to a college that considers her unacceptable by ψ. Therefore,

ψ is not acceptable. If she prefers c∅ to her assignment under ψ, then ψ is not acceptable.

19For the proof of Theorem 9, ψ
[
q, e,%

]
(s) = µ(s) = c for any ineligible worker s ∈ Sc and c ∈ C.

20We take ∪0k′=1S(k
′) = ∅.
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Then any acceptable mechanism will assign her to c∅. If |S(1)| > 1 or |S(1)| = 1 and the

student in S(1) is assigned to her home college, then each student in S(1) is assigned to

the best college that considers her as acceptable, and she prefers her assignment in µ to

c∅. If s ∈ S(1) prefers her assignment in ψ
[
q, e,%

]
to µ(s), then ψ is not acceptable.

Hence, each student in S(1) weakly prefers her assignment in µ. Moreover, by the proof

of balanced-e�ciency (Part I) of 2S-TTC in Theorem 1, if ψ
[
q, e,%

]
(s)Psµ(s) for some

student s ∈ S(2), then µ(s′)Ps′ψ
[
q, e,%

]
(s′) for some student s′ ∈ S(1).

In the inductive step, assume that for all Rounds 1, ..., k−1, for some k > 1, the claim

is correct. Consider Round k. If there exists a student s ∈ S(k) such that c = ψ
[
q, e,%]

(s)Psµ(s), then either c considers s acceptable and c is removed in Round k̄ of 2S-TTC

where k̄ < k, or s is unacceptable for c. In the latter case, ψ is not acceptable. Consider

the former case. Note that c 6= c∅.
21 Two cases are possible.

Case 1: First suppose that there exists s′ ∈ S who is assigned to c in µ in Round

k′ ≤ k − 1 but not in ψ
[
q, e,%

]
. If she prefers c to ψ

[
q, e,%

]
(s′), then we are done.

If she does not, k′ > 1, and by the inductive step, there exists a student s′′ ∈ S(k′′) for

some k′′ < k′ ≤ k − 1 who prefers µ(s′′) to ψ
[
q, e,%

]
(s′′).

Case 2: Now suppose µ(c) ⊂ ψ
[
q, e,%

]
(c). Then, |µ(c)| < qc and in Round k̄

eligibility quota of c binds under 2S-TTC.22 By balancedness, there is an eligible student

s′′ ∈ Sc who is assigned to c∅ in Round k̃ of 2S-TTC where 1 < k̃ ≤ k̄ < k and

ψ
[
q, e,%

]
(s′′) ∈ C. If she prefers c∅ to ψ

[
q, e,%

]
(s′′), then we are done. If she does

not, by the inductive step, there exists a student s̄ ∈ S(k′′) for some k′′ < k̃ ≤ k − 1 who

prefers µ(s̄) to ψ
[
q, e,%

]
(s̄).�

Now we are ready to prove the theorem. First note that, we cannot have µ 6= ψ
[
q, e %

]
and µ(s) = ψ

[
q, e %

]
(s) for all s ∈ S(k) and k ≤ K where K is the last round of 2S-TTC

in
[
q, e %

]
.

By the Claim and the observation above, as µ 6= ψ
[
q, e %

]
, there exists a student

s and some round k ≥ 1 such that s ∈ S(k) prefers µ(s) to ψ
[
q, e,%

]
(s), and µ(s′) =

ψ
[
q, e,%

]
(s′) for all s′ ∈ ∪k−1

k′=1S(k′).

We will construct our proof in three steps. Assign to each round of the 2S-TTC

mechanism a counter and set it as Counter(k′) = |S(k′)| for all rounds k′ ≤ K. In the

rest of the proof, we select which cycle to remove in the following manner for the market

constructed below while removing only one cycle in every round of the 2S-TTC algorithm:

if the cycle removed in Round k of 2S-TTC for
[
q, e,%

]
also exists in Round k of 2S-TTC

for this market, then we remove this cycle in that round. Otherwise, we arbitrarily choose

21For the proof of Theorem 9, c cannot be the home �rm of s.
22For the proof of Theorem 9, since |µ(c)| = qc for all c ∈ C, this case is not possible.
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one cycle.

Step 1: Construct a preference pro�le %̃ with associated ranking P̃ as follows: Let

student s ∈ Sc rank only µ(s) as acceptable in P̃s and %̃j =%j for all j ∈
[
(C ∪ S) \ s

]
.

By the execution of the TTC algorithm, 2S-TTC will select µ for
[
q, e, %̃

]
. Since ψ is

strategy-proof for students and acceptable, ψ
[
q, e, %̃

]
(s) = c∅.

Then, we check whether the assignments of students in ∪k−1
k′=1S(k′) are the same in

ψ
[
q, e, %̃

]
and µ. If not, then for some k̃ < k, there exists a student s̃ ∈ S(k̃) prefer-

ring µ(s̃) to ψ
[
q, e, %̃

]
(s̃) and each student in ∪k̃−1

k′=1S(k′) gets the same college in µ and

ψ
[
q, e, %̃

]
. Then we repeat Step 1 by taking %:= %̃, s := s̃, and k := k̃.

This repetition will end by the �niteness of rounds. When all students in ∪k−1
k′=1S(k′)

get the same college in µ, i.e. 2S-TTC outcome in
[
q, e, %̃

]
, and ψ

[
q, e, %̃

]
, then we

proceed to Step 2.

Step 2: In Step 1, we have shown that s prefers µ(s) to ψ
[
q, e, %̃

]
(s) = c∅. Suppose

c is the home college of s. Set a new eligibility quota ẽc equal to the rank of student s

in c's internal priority order, that is, ẽc = rc(s), and let ẽ−c = e−c. In
[
q, ẽ, %̃

]
, 2S-TTC

assigns all students in ∪kk′=1S(k′) to the same college as in µ. ψ
[
q, ẽ, %̃

]
(s) = c∅ since

ψ respects internal priorities and we weakly decreased c's eligibility quota. We check

whether the assignments of students in ∪k−1
k′=1S(k′) are the same in both ψ

[
q, ẽ, %̃

]
and

µ. If not, then by the Claim, there should exist s̃ ∈ S(k̃) preferring µ(s̃) to ψ
[
q, ẽ, %̃

]
(s̃),

and each student in ∪k̃−1
k′=1S(k′) gets the same college in µ and ψ

[
q, ẽ, %̃

]
where k̃ < k;

then we restart from Step 1 by taking %:= %̃, s := s̃, k := k̃, and e := ẽ.

Eventually, by the �niteness of the rounds of 2S-TTC and as we reduce the round k

in each iteration, we reach the point in our proof such that students in ∪k−1
k′=1S(k′) get the

same college in µ and ψ
[
q, ẽ, %̃

]
.

Observe that s is the last remaining eligible student of c in Round k of 2S-TTC

for
[
q, ẽ, %̃

]
by the choice of ẽc = rc(s). If |S(k)| = 1, then µ(s) is the home college

of s. Suppose |S(k)| > 1. Since for all s′′ ∈ ∪k−1
k′=1S(k′), µ(s′′) = ψ

[
q, ẽ, %̃

]
(s′′) and

µ(s)P̃sψ
[
q, ẽ, %̃

]
(s) = c∅, some s′ ∈ S(k) ∩ µ(c) will be assigned to a di�erent college

in ψ
[
q, ẽ, %̃

]
than c. Otherwise, ψ is not balanced. As for all s′′ ∈ ∪k−1

k′=1S(k′), µ(s′′) =

ψ
[
q, ẽ, %̃

]
(s′′), and s′ points to the best available college that �nds her acceptable in

Round k, c = µ(s′)P̃s′ψ
[
q, ẽ, %̃

]
(s′). We decrease Counter(k) by 1. If Counter(k) > 0,

then we turn back to Step 1 by taking %:= %̃ and s := s′; otherwise we continue with

Step 3. Note that eventually we will �nd a Step k̄ such that Counter(k̄)≤0, because we
weakly decrease all counters and decrease one counter by 1 in each iteration of Step 2.

Step 3: By the construction above, each s̃ ∈ S(k) ranks only µ(s̃) as acceptable in

P̃s and she is the last certi�ed student by her home college in
[
q, ẽ, %̃

]
. If |S(k)| = 1,
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then µ(s) is the home college of s and ψ
[
q, ẽ, %̃

]
is Pareto dominated by the matching

in which each student other than s is assigned her assignment in ψ
[
q, ẽ, %̃

]
and s is

assigned to µ(s). Therefore, if |S(k)| = 1, then ψ
[
q, ẽ, %̃

]
cannot be balanced-e�cient.

Now, suppose |S(k)| > 1. In Step 2, we showed that there exist at least 2 students

s1(=s in Step 2), s2(=s
′ in Step 2) in S(k) who are not assigned to µ(s1) and µ(s2) = c1

(= c in Step 2), respectively, in ψ
[
q, ẽ, %̃

]
, where c1 is the home college of s1. Then,

they are assigned to c∅ in ψ
[
q, ẽ, %̃

]
, by the acceptability of ψ. Recall that in 2S-TTC

for
[
q, ẽ, %̃

]
, each student certi�ed by the home colleges of s1 and s2 � colleges c1 and

c2, respectively � other than s1 and s2 is removed in a round earlier than k. Suppose for

s3 ∈ S(k), µ(s3) = c2. Since ψ
[
q, ẽ, %̃

]
(s2) = c∅, for all s̃ ∈ ∪k−1

k′=1S(k′), ψ
[
q, ẽ, %̃

]
(s̃) =

µ(s̃) (by Step 2), and ψ is balanced, s3 cannot be assigned to c2 in ψ
[
q, ẽ, %̃

]
, and hence,

ψ
[
q, ẽ, %̃

]
(s3) = c∅. We continue similarly with s3 and the home college of s3, say college

c3, eventually showing that for all s̃ ∈ S(k), ψ
[
q, ẽ, %̃

]
(s̃) = c∅. Recall that students in

S(k) had formed a trading cycle in which each student in the cycle was assigned in µ

the home college of the next student in the cycle. Thus, ψ
[
q, ẽ, %̃

]
is Pareto dominated

by the balanced matching ν obtained as ν(s̃) = ψ
[
q, ẽ, %̃

]
(s̃) for all s̃ ∈ S \ S(k) and

ν(s̃) = µ(s̃) for all s̃ ∈ S(k). This is because each college in the cycle of Round k gets one

acceptable student more and each student in that cycle weakly prefers µ to ψ
[
q, ẽ, %̃

]
.

This contradicts the balanced-e�ciency of ψ. Hence, ψ
[
q, e,%

]
= µ, i.e., ψ is equivalent

to 2S-TTC.

Proof of Theorem 6. Let ψ satisfy all conditions and be strategy-proof for students.

Then, consider the following market. There are 3 colleges C = {a, b, c} with q = e =

(2, 1, 1). Let Sa = {1,2}, Sb = {3}, Sc = {4}, and each student be acceptable to each

college and the college preference pro�le satisfy Assumption 1. The internal priority order

of a and student preference pro�les are given as: 1 .a 2, bP1c∅, cP2c∅, aP3c∅, bP4aP4c∅.
23

2S-TTC selects µ =
( a b c

{3,4} 1 2

)
. ψ will also select µ, since any other matching

in which all students are assigned is individually irrational (and unacceptable).

If student 4 reports %′4 with associated ranking P
′
4 : bP ′4c∅P

′
4a then 2S-TTC will select

µ′ =
( a b c

3 1 ∅
)
. The only balanced and individually rational (acceptable) matching in

which more than two students are assigned is µ′′ =
( a b c

3 4 2

)
. Therefore, the outcome

of ψ when 4 reports %′4 is µ′′. Hence, 4 can manipulate ψ.

Proof of Theorem 7. We �rst prove the strategy-proofness of 2S-TTTC for students.

23In all these rankings, we list only the acceptable colleges.
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Consider a tuition exchange market
[
q, e,%

]
and tolerance pro�le (`c, uc)c∈C . We use

a variation of 2S-TTTC in which in each round only the students who are pointed to

by their home colleges can point to a college in C. Let µ be the matching selected by

2S-TTTC in
[
q, e,%

]
. First note that, any student who is assigned to c∅ after the

termination of the algorithm has never been pointed by her home college and she cannot

change her match by misreporting. Let k > 0 be the �rst round that we cannot locate a

cycle. Note that in Round k either there exists a chain, which may or may not respect the

tolerance pro�le, or the algorithm terminates. Student s assigned in Round k′ < k (under

truth telling) cannot a�ect the cycles that formed in earlier rounds. Before Round k′, all

colleges, which consider s acceptable and s prefers to µ(s), should have been removed or

become non-importing. If s forms a cycle by misreporting in Round k′′ < k′, then she

should have pointed to a worse option than µ(s). Therefore, student s cannot get a better

match by misreporting.

Now consider Round k. If Round k is the termination round, then we are done.

Otherwise, �rstly assume that we have a chain that respects the tolerance pro�le. Any

active student in Round k cannot a�ect the cycles that formed in earlier rounds. Then

consider the student pointed to by the tail college of the chain. This student will be

assigned in this round no matter which achievable college she points to. Therefore, it

is in her best interest to be truthful so that she points to her most preferred importing

college, which considers her acceptable, among the available ones. This argument is also

true for the other students in the chain.

Now consider the case where we do not have a chain that respects the tolerance pro�le.

That is, each exporting college c has already a balance of `c. Then we will remove all the

non-exporting colleges; 2S-TTTC reduces to the 2S-TTC mechanism. It is easy to see

that we will not have chains respecting the tolerance pro�le in the future rounds, either.

Moreover, the remaining students cannot prevent the removal of non-exporting colleges

in this round by changing their preferences.

For the remaining rounds, we can show that no student can gain from misreporting

by following the same reasoning.

Next we prove 2S-TTTC's outcome cannot be Pareto dominated by an acceptable

matching ν that satis�es the tolerance pro�le. Note that, ν(s) = c∅ for any ineligible

student s. Denote the outcome of the 2S-TTTC mechanism with µ. We �rst consider the

students who are assigned before the termination of the algorithm. Let k ≥ 1 be the �rst

round that we cannot locate a cycle. We consider the variant that we described before.

As described above, either k is the termination round or there exists a chain in Round

k. In the �rst round, each student is pointing to her favorite among available importing
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colleges, which consider her acceptable, and c∅. If a student is assigned in this round,

then she should get the same college in ν. Now consider students assigned in Round

k′ < k when k > 1. All the colleges that a student prefers to her assignment and consider

her acceptable should have been removed or become non-importing in an earlier round.

We cannot make this student better o� by assigning her to a college that considers her

acceptable without hurting another student assigned in an earlier round or violating the

tolerance conditions or feasibility constraints.

If k is the termination round, we are done. Otherwise, we consider the students

assigned in Round k. First, consider the case where there exists a chain not violating the

tolerance conditions. All students in that chain are assigned to importing colleges that

they prefer most among the available ones considering them acceptable. They cannot be

made better o� without making some students assigned in the earlier rounds worse o� or

violating the tolerance conditions or feasibility constraints. If there does not exist a chain

respecting the tolerance pro�le, then 2S-TTTC reduces to the 2S-TTC mechanism. After

this round, assigning a student to a college by not following a trade in an encountered

cycle will violate the tolerance conditions or feasibility constraints.

For the remaining rounds, by following the same reasoning, we can show that no

student can be made better o� without either hurting another student or violating the

tolerance conditions or feasibility constraints.

Moreover, if we assign the students, who were assigned to c∅ after the termination

of the algorithm, to some college in ν, then either the tolerance conditions or feasibility

constraints are violated. Hence, no college can be made better o� without harming

another agent or violating the tolerance conditions or feasibility constraints.

Proof of Theorem 8. We refer to the proof of Theorem 1. We replace the word

�cycle� with �cycle or chain� throughout the proof and the proof holds.

Proof of Theorem 9. In any market, since qc = |Sc| for all c ∈ C, under 2S-TTC
when a �rm is removed its eligibility counter reaches zero. Hence, each eligible worker

will be pointed by her home �rm at some round and she will be assigned to a �rm weakly

better than her home �rm. Moreover, each ineligible worker is assigned to her home �rm.

Hence, each worker is assigned to an acceptable �rm. Moreover, each �rm is only pointed

by the workers it considers as acceptable. That is, for any problem, 2S-TTC selects a

matching which is acceptable. Moreover, 2S-TTC is individually rational since each agent

is matched with acceptable agents and a �rm c cannot block 2S-TTC's outcome since

all other �rms �ll their seats in any matching. The part of the proof of Theorem 1 for

respecting internal priorities and balanced-e�ciency hold. Note that, as all matchings are

balanced in this domain, balanced-e�ciency and Pareto e�ciency are equivalent concepts.
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Since we can run 2S-TTC initially assigning all ineligible workers to their home �rms,

the proof of Theorem 3 implies the worker-strategy-proofness of 2S-TTC.

The proof of Theorem 5 for uniqueness holds with a slight change. First note that

any Pareto e�cient, worker-strategy-proof and acceptable mechanism assigns workers to

either their home �rms or better �rms that consider them acceptable. In the uniqueness

part of the proof (i.e. Theorem 5's proof adopted for 2S-TTC being the only mecha-

nism satisfying Pareto e�ciency, worker-strategy-proofness, acceptability, and respect for

internal priorities in the temporary worker exchange model), while updating worker s's

preferences in Step 1, we do it as follows: rank µ(s) and her home �rm as only acceptable

�rms in the correct order of her true preferences. And then at the end of Step 1, she

will be assigned to her home �rm under ψ. Since ψ respects internal priorities and is

acceptable, worker-strategy-proof, and balanced-e�cient, s will remain at her home �rm

in Step 2. When we reach Step 3, we will have a set of workers who are assigned to their

home �rms by ψ; however, a trading cycle between them would improve total welfare

without violating balancedness or feasibility.

Immunity to Preference Manipulation by Colleges: Recall that in any matching

balancedness is satis�ed and �rms �ll their admission quotas. Hence, under Assumption

2, �rms are indi�erent between any acceptable matching. Since the 2S-TTC mechanism

selects an acceptable matching when �rms report truthfully, �rms cannot be better o�

by manipulating their preferences over the matchings and reporting quotas di�erent from

their true quotas.

Stability: Consider an arbitrary market
[
q, e,%

]
. Denote the outcome of 2S-TTC by

µ. Recall that qc = |Sc| for all c ∈ C, all workers consider their current �rms acceptable,

all �rms consider their current workers acceptable, and workers who are not certi�ed

remain at their current �rms. Hence, |µ(c)| = qc for all c ∈ C. Since in µ all �rms' quotas

are �lled, µ is nonwasteful. Note that, any mutual deviation of worker-�rm pair needs to

end up with a (balanced) matching. Since all employees in µ(c) are acceptable, replacing

one of the employees in µ(c) with another one in S \µ(c) cannot make c better o�. Hence,

µ cannot be blocked by a worker-�rm pair.

Appendix C Tuition-Exchange Programs

We �rst explain why tuition-exchange programs exist in the �rst place because some

colleges choose to subsidize faculty directly instead of participating in tuition-exchange

programs. Although this may create �exibility for the students, any direct compensation
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over $5,250 is taxable income, whereas a tuition-exchange scholarship is not.24 Tuition

exchange is not considered to be an income transfer.25 Moreover, colleges may not want

to switch to such direct-compensation programs from a cost-saving perspective, regard-

less of the tax bene�t to the faculty member. We present a simple back-of-the envelope

calculation to demonstrate these cost savings. There are more than 1,800 4-year colleges

in the US and at most half of them have membership to at least one tuition-exchange

program. Suppose n students are given tuition exchange/remission scholarships a year.

Instead, if a college �nances the tuition of a faculty member's child through direct cash

compensation, then all tuition exchange colleges will have to pay $nT̄ , where T is the

average full tuition cost of colleges. However, assuming that average qualities and sizes

of colleges with and without tuition scholarship are the same, only half of these students

will attend a tuition exchange college in return; so the colleges will only get back $nT
2
.

The remaining n
2
slots will be �lled with regular students. Regular students on average

pay about half of the tuition thanks to other �nancial aid programs. For example, 2012

Tuition Discounting Study of the National Association of College and University Business

O�cers report that incoming freshmen pay on average 56% of full tuition at a private

university. Thus, they will only pay $nT
4

to tuition exchange colleges. As tuition ex-

change scholarships constitute a very small portion of college admissions, this calculation

assumes that average tuition payment would not change by establishment of direct cash

compensation instead of tuition exchange. Thus, as a result, the colleges will lose in total

about $nT
4
, which corresponds to one fourth of average full tuition per student. Thus,

the total per-student-savings for the faculty member and the college is more than half of

tuition payment - assuming one third of the direct compensation is paid in income tax at

the margin by the parent.

The Tuition Exchange Inc (TTEI): In addition to information provided in the

Section 2, here we give more detail. TTEI is a reciprocal scholarship program for children

(and other family members) of faculty and sta� employed at more than 600 colleges.

Member colleges are spread over 47 states and the District of Columbia. Both research

universities and liberal arts colleges are members. US News and World Report lists 38

member colleges in the best 200 research universities and 46 member colleges in the best

100 liberal arts colleges.

In TTEI, every participating institution determines the number of outgoing students

it can certify, as well as how many TTEI awards it will grant to incoming students each

24See https://www.irs.gov/newsroom/tax-bene�ts-for-education-information-center reached on Feb 18,
2018.

25In particular, it is considered a scholarship, and it is not taxable. See
https://www.irs.gov/publications/p970 reached on Feb 18, 2018.
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year. Then each faculty member submits the TTEI application to the registration o�ce

of their college. If the number of applicants is greater than the number of students that

the college is willing to certify, then the college decides whom to certify based on years

of service or some other criterion (internal priority order).

Each student who is certi�ed eligible submits a list of colleges to the liaison o�ce of her

home institution. Each liaison o�ce sends a copy of the TTEI �Certi�cate of Eligibility� to

the TTEI liaison o�cer at the participating colleges and universities listed by the eligible

dependents. Certi�cation only means that the student is eligible for a TTEI award; it

is not a guarantee of an award. The eligible student must apply for admission to the

college(s) in which she is interested, following each institution's application procedures

and deadlines. After admission decisions have been made, the admissions o�ces or TTEI

liaisons at her listed institutions inform her whether she will be o�ered a TTEI award.

TTEI scholarships are competitive, and some eligible applicants may not receive them.

That is, the sponsoring institution cannot guarantee that an �export� candidate, regardless

of quali�cations, will receive a TTEI scholarship. Institutions choose their scholarship

recipients (�imports�) based on the applicants' academic pro�les.

To collect anecdotal evidence on how much faculty members value the tuition-exchange

bene�t, we also conducted an IRB-approved e-mail-delivered online survey in 21 tuition-

exchange colleges (all TTEI members and possibly members of other tuition exchange

programs) using Qualtrics e-mail survey software. Our respondent pool is composed of

153 faculty members (with a 7.5% to 15% response rate). In this pool, there are 47,

56, and 50 assistant, associate, and full professors, respectively. 17% of the respondents

have no child. In order to understand whether tuition-exchange bene�ts attract faculty

members, we ask how important of a role their college's membership in a tuition-exchange

program played their acceptance of their o�er. According to 19%/57% of the respondents,

the tuition-exchange bene�t was extremely important/important in their acceptance de-

cision, respectively. Moreover, according to 23%/62% of the respondents with children,

the tuition-exchange bene�t played an extremely important/important role in their ac-

ceptance decision, respectively. In order to understand the value of the tuition-exchange

bene�t for faculty, we asked how much annual income they would give up in order to keep

their tuition-exchange bene�t. When we consider all respondents, the average annual

value of the tuition-exchange bene�t is $7,570 each year in today's dollars per faculty

member (for the ones with one or more child currently, it is only slightly higher, $8,422).

The Council of Independent Colleges Tuition Exchange Program (CIC-TEP):

CIC-TEP is composed of almost 500 colleges. All full-time employees of the member

colleges and their dependents can bene�t from this program. Each college certi�es its own
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employees eligible based on its own rules. Each member college is required to accept at

least three exchange students per year. There is no limitation on the number of exported

students. Each certi�ed student also applies for admission directly to the member colleges

of her choice. Certi�ed students must be admitted by the host college in order to be

considered for the tuition exchange scholarship. Each year more than 1,500 students

bene�t from this program.

Catholic College Cooperative Tuition Exchange (CCCTE): CCCTE is composed

of 70 member colleges. Each member college certi�es its employees as eligible based

on its own rules. Students must be admitted by the host college before applying for

the tuition exchange scholarship. Admission does not guarantee the scholarship. Each

member college can have at most �ve more import students than its exports. The number

of exported students is not limited.

Great Lakes Colleges' Association (GLCA): GLCA is composed of thirteen liberal

arts colleges in Pennsylvania, Michigan, Ohio, and Indiana. Each member college de-

termines the eligibility of its employees based on its own rules. All other policies are

determined by the host colleges. Each accepted student pays a fee equal to 15% of the

GLCA mean tuition. The remaining tuition is paid by the home college.

Associated Colleges of the Midwest (ACM): ACM is composed of fourteen liberal

arts colleges in Wisconsin, Minnesota, Iowa, Illinois, and Colorado. Eligibility of the

students is determined based on the home college rules. Each host college compensates

50% tuition to all imported students. The remaining portion of the tuition is paid by the

home college and the student.

Faculty and Sta� Children Exchange Program (FACHEX): FACHEX is composed

of 28 Jesuit colleges. Each student �rst applies to be admitted by the host college.

Admission to the host college does not guarantee receiving tuition exchange scholarship.

Council for Christian Colleges and Universities Tuition-Waiver Exchange Pro-

gram (CCCU-TWEP): CCCU-TWEP is composed of 100 colleges. Each member col-

lege must accept at least one exchange student. In order to receive tuition exchange

scholarship, each student needs to be admitted by the host college.

Appendix D Temporary Worker-Exchange Programs

D.1 Teacher Exchange

The Fulbright Teacher Exchange Program, established by an act of the US Congress

in 1946, provides opportunities to school teachers in the US to participate in a direct ex-
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change of positions with teachers from countries, including the Greece, Finland, Nether-

lands, India, Mexico, and the UK. Matching procedure is arranged by the Fulbright pro-

gram sta�, and each candidate and each school must be approved before the matchings

are �nalized.

The Commonwealth Teacher Exchange Programme (CTEP) was founded by the

League for the Exchange of Commonwealth Teachers more than 100 years ago. Participant

teachers exchange their jobs and homes with each other usually for a year, and they stay

employed by their own school. Countries participating to this program are Australia,

Canada, and the UK. More than 40,000 teachers have bene�ted from the CTEP. Principals

have the right to veto any proposed exchange they think will not be appropriate for their

school.

The Educator Exchange Program is organized by the Canadian Education Exchange

Foundation. The program includes reciprocal interprovincial and international exchanges.

The international destinations are Australia, Denmark, France, Germany, Switzerland,

the UK, and Colorado, the US.

The Manitoba Teacher Exchange enables teachers in Manitoba to exchange their

positions with teachers in Australia, the UK, the US, Germany, and other Canadian

provinces. Once a potential match is found, the incoming teacher's information is sent

to the Manitoba applicant, the principal of the school, and the employing authority.

Acceptance of all these teachers is required for the completion of the exchange.

In the Saskatchewan Teacher Exchange, public school teachers with at least �ve

years of experience can apply for exchange positions with teachers in the UK, the US,

and Germany. Potential exchange candidates are determined based on similar teaching as-

signments and they are sent to applicant's director of education. If the potential exchange

candidates are considered acceptable, then the applicant will consider the candidate. The

exchange is �nalized once the applicant accepts it.

The Northern Territory Teacher Exchange Program is a reciprocal program in

which teachers in Northern Australia exchange positions with teachers from the UK,

Canada, the US, New Zealand, and other Australian states. When a potential match is

found for an applicant, the applicant and her school principal decide whether to accept

or reject the proposal. The match is �nalized when both sides accept it.

The Western Australian Teacher Exchange is a reciprocal program. The match is

�nalized after the approval of the principals of both sides.

The Rural Teacher Exchange is a reciprocal program which gives opportunity to

teachers in rural schools in New South Wales to exchange their positions. Exchanges

are selected via centralized mechanism. However, if a teacher can �nd a possible ex-
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change counterpart, then they can exchange their positions before entering the central

mechanism.

D.2 Clinical Exchange

In the International Clinical Exchange Program, medical students exchange posi-

tions with other medical students from other countries. The program is run by the Inter-

national Federation of Medical Students Association. Every year, approximately 13,000

students exchange their positions. The exchanges are done bilaterally. In a county, the

exact number of available positions available for another country is determined by the

number of contracts signed between both countries.

The MICEFA Medical Program has enabled medical students in France and the US

to exchange their positions for one to two months for 30 years. Students are exchanged

on a one-to-one basis and each exchange students pays tuition to her home institute.

D.3 Student Exchange

The National Student Exchange (NSE), established in 1968, is composed of nearly

200 colleges from the US, Canada, Guam, Puerto Rico, and the US Virgin Islands. More

than 100,000 undergraduate students have exchanged their colleges through NSE. Ex-

change students pay either the in-state tuition of their host college or the normal tuition

of their home college.

The University of California Reciprocal Exchange Program enables the students

of the University of California system to study in more than 120 universities from 33

countries. Around 4,000 students bene�t from this program annually. Exchange students

are selected by their home universities. This is a reciprocal exchange program and it aims

to balance the costs and bene�ts of import and export students for each university.

The University Mobility in Asia and the Paci�c Exchange Program (UMAPEP),

established in 1993, is a student exchange program between 500 universities in 34 Asia-

Paci�c countries. UMAPEP involves two programs: a bilateral exchange program and a

multilateral exchange program. In the bilateral exchange program, home colleges select

the exchange students and exchanges are done through bilateral agreements signed be-

tween the member colleges. In the multilateral exchange program, host universities select

the incoming exchange students.

The International Student Exchange (ISE), founded in 1979, is a reciprocal program.

Around 40,000 students from 45 countries have bene�ted from ISE. Each exchange student

pays tuition to her home college.
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The Erasmus Student Exchange Program is a leading exchange program between

the universities in Europe. Close to 3 million students have participated since it started

in 1987. The number of students bene�ting from the program is increasing each year;

in 2011, more than 230,000 students attended a college in another member country as

an exchange student. The number of member colleges is more than 4,000. Each college

needs to sign bilateral agreements with the other member institutions. In particular, the

student exchanges are done between the member universities that have signed a bilateral

contract with each other. The bilateral agreement includes information about the number

of students who will be exchanged between the two universities in a given period. The

selection process of the exchange students is mostly done as follows. The maximum

number of students that can be exported to a partner university is determined based on

the bilateral agreement with that partner and the number of students who have been

exported since the agreement was signed. The students submit their list of preferences

over the partner universities to their home university. Each university ranks its own

students based on predetermined criteria, e.g., GPA and seniority. Based on the ranking,

a serial dictatorship mechanism is applied to place students in the available slots. Finally,

the list of students who received slots at the partner universities is sent to the partners.

The partner universities typically accept all the students on the list. An exchange student

pays her tuition to her own college, not the one importing her.

There are huge imbalances between the number of students exported and imported

by each country. Moreover, countries with high positive balances are not often willing

to match the quota requests of the net-exporter countries. This precautionary behavior

may lead to ine�ciencies as in tuition-exchange markets.

D.4 Scienti�c Exchange

The Mevlana Exchange Program aims to exchange academic sta� between Turkish

universities and universities in other countries. Turkish public universities are governed

by the Turkish Higher Education Council and professors are public servants. Therefore,

the part of the exchange that is among public universities can be seen as a sta�-exchange

program, while the exchange among public and private Turkish universities and foreign

universities can be seen as a worker-exchange program. Any country can join this pro-

gram. In 2013, around 1,000 faculty members bene�ted from this program.
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Appendix E Proofs of Appendix A

Proof of Proposition 3. We prove existence by showing that for any tuition-exchange

market there exists an associated college admission market and the set of stable matchings

are the same under both markets. Under Assumption 3, we �x a tuition exchange market[
q, e,%

]
. Let E be the set of eligible students. We �rst introduce an associated college

admissions market, i.e., a Gale-Shapley (1962) two-sided many-to-one matching market,[
S,C, q, PS, PC

]
, where the set of students is S; the set of colleges is C; the quota vector of

colleges for admissions is q; the preference pro�le of students over colleges is PS, which are

all the same entities imported from the tuition exchange market; and the preference pro�le

of colleges over the set of students is PC , which we construct as follows: for all T ⊂ S with

|T | < qc and i, j ∈ E\T , (i) i Pc j =⇒ (T∪i) P c (T∪j), (ii) i Pc ∅ ⇐⇒ (T∪i) P c T ,

and (iii) T P c (T ∪ k) and k Pc ` =⇒ (T ∪ i) P c (T ∪ k) P c (T ∪ `) for all k, ` ∈ S \E.
Note that, PC is responsive up to quota. We �x C and S and represent such a college

admission market as
[
q, PS, PC

]
. In this college admissions market, a matching µ is a

correspondence µ : C ∪ S � C ∪ S ∪ c∅ such that (1) µ(c) ⊆ S where |µ(c)| ≤ qc for all

c ∈ C, (2) µ(s) ∈ C ∪ c∅ where |µ(s)| = 1 for all s ∈ S, and (3) s ∈ µ(c) ⇐⇒ µ(s) = c

for all c ∈ C and s ∈ S. A matching µ is individually rational if µ(s) Rs c∅ for all s ∈ S,
and, for all s ∈ µ(c), we have sP c∅ for all c ∈ C. A matching µ is nonwasteful if there

does not exist any (c, s) ∈ C ×S such that (1) c Ps µ(s), (2) |µ(c)| < qc, and (3) sP c∅. A
matching µ is blocked by a pair (c, s) ∈ C ×S if c Ps µ(s), and there exists s′ ∈ µ(c) such

that s P c s
′. A matching µ is stable in a college admission market if it is individually

rational, nonwasteful, and not blocked by any pair.

By our construction PC is responsive up to quota; hence there exists at least one

stable matching for
[
q, PS, PC

]
(see Gale and Shapley, 1962; Roth, 1985). Let µ be a

stable matching for
[
q, PS, PC

]
. We �rst show that µ is also a matching for

[
q, e,%

]
.

Due to individual rationality, µ(s) = c∅ for all s /∈ E. By the de�nition of a matching

in a college admission market, other parts of the de�nition of a matching in a tuition

exchange market hold. Hence, µ is a matching for
[
q, e,%

]
.

Now, we show that µ is stable for
[
q, e,%

]
. Due to individually rationality of µ

in the college admission market, µ(s)Rsc∅ and sPc∅ for all s ∈ µ(c) and c ∈ C. By

Assumption 3 and the de�nition of individual rationality in the tuition-exchange market,

µ is individually rational in
[
q, e,%

]
. Whenever there exists s ∈ S such that cPsµ(s), then

either s ∈ S \ E or µ �c µ′ for all µ′ ∈ M, where s ∈ µ′(c) ⊆ µ(c) ∪ s and µ(s′) = µ′(s′)

for all s′ ∈ S \ (µ(c) ∪ s). This follows from the de�nition of stability and construction

of the college preferences in the associated college admission market and Assumption 3.

Hence, µ is stable for
[
q, e,%

]
.
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Finally, we show that if a matching is not stable for
[
q, PS, PC

]
, then it is either not

a matching or unstable for
[
q, e,%

]
. Note that any matching for

[
q, e,%

]
is also a

well-de�ned matching for
[
q, PS, PC

]
. Hence, it su�ces to show that any matching µ

for
[
q, e,%

]
that is not stable for

[
q, PS, PC

]
fails to be stable for

[
q, e,%

]
.26 If µ is

blocked by an agent in
[
q, PS, PC

]
, then by our assumption on the preferences it is also

blocked by the same agent in
[
q, e,%

]
. If µ is wasteful for

[
q, PS, PC

]
, then there exists

a college-student pair (c, s) such that |µ(c)| < qc, s ∈ E, cPsµ(s), sP c∅ and her addition

to the set of students admitted by c in µ and keeping all other students assignment the

same is both preferred by c and herself in
[
q, e,%

]
. Similarly, if (c, s) is a blocking

pair in
[
q, PS, PC

]
then by our preference construction and stability de�nition (c, s) is a

blocking pair in
[
q, e,%

]
. Thus, if µ is a stable matching for

[
q, e,%

]
, it is also stable

for
[
q, PS, PC

]
.

Hence, the set of stable matchings for
[
q, e,%

]
and the set of stable matchings for[

q, PS, PC

]
are the same.

Proof of Proposition 5. Under Assumption 3, we �x a market
[
q, e,%

]
. The case

in which we have a unique stable matching for
[
q, e,%

]
is trivial. Hence, we consider

the case in which there are at least two stable matchings. Let ν and µ be any two stable

matchings for
[
q, e,%

]
. By the proof of Proposition 3, ν and µ are also stable for the

associated college admission market
[
q, PS, PC

]
. Let Sν and Sµ be the set of students

assigned to a college in ν and µ, respectively. Due to Assumption 3 Part 3 and individual

rationality, Mµ
c = µ(c), M ν

c = ν(c) for all c ∈ C. In the rural hospital theorem (Roth,

1986) it is shown that the number of students assigned to a college is the same in all stable

matchings, |ν(c)| = |µ(c)| for each c ∈ C. Moreover, the set of students assigned to a

college is the same in all stable matchings, i.e., Sν = Sµ. SinceXµ
c = Sµ∩Sc, Xν

c = Sν∩Sc,
and Sν = Sµ, we have Xµ

c = Xν
c . Then, b

µ
c = |µ(c)| − |Sµ ∩ Sc| = |ν(c)| − |Sν ∩ Sc| = bνc

for all c ∈ C.
We �rst state and prove the following Lemma, which is used in proving Proposition 6

and Theorem 11.

Lemma 2 Under Assumption 3, let π̂ be a stable matching for
[
q̂, ê,%

]
and π̃ be a

stable matching for
[
(q̃c, q̂−c), (ẽc, ê−c),%

]
where ẽc = êc + 1, and q̃c = q̂c if |π̂(c)| = q̂c

and q̃c ≥ q̂c otherwise. Then we have bπ̃c ∈ {bπ̂c − 1, bπ̂c } and bπ̃c′ ∈ {bπ̂c′ , bπ̂c′ + 1} for all

c′ ∈ C \ c.

Proof. Let E be the set of eligible students in
[
q̂, ê,%

]
. Denote the newly certi�ed

student of c by i in
[
(q̃c, q̂−c), (ẽc, ê−c),%

]
. The net balance of each college is the same

26This observation implies that, there does not exist a stable matching for
[
q, e,%

]
that is not stable

for
[
q, PS , PC

]
.
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at every stable matching by Proposition 5. Moreover, π̂ is stable for the associated

college admissions market
[
q̂, PS, PC

]
by the proof of Proposition 3. Thus, without loss

of generality, we assume π̂ to be the outcome of the (student-proposing) DA algorithm

for
[
q̂, PS, PC

]
.

First, consider the market
[
(q̃c, q̂−c), êc,%

]
. Let

[
(q̃c, q̂−c), PS, P

′
C

]
be the associated

college admissions market. Note that, under both P
′
C and PC the rankings over the

individual students are the same for all colleges. If |π̂(c)| < q̂c, then adding new seats

to an underdemanded college will not change the set of students assigned to c, and DA

selects the same outcome in
[
q̂, PS, PC

]
and

[
(q̃c, q̂−c), PS, P

′
C

]
. If |π̂(c)| = q̂c, q̃c = q̂c by

assumption. Hence, DA selects the same outcome for
[
(q̃c, q̂−c), PS, P

′
C

]
and

[
q̂, PS, PC

]
.

Denote the associated college admissions market of
[
(q̃c, q̂−c), (ẽc, ê−c),%

]
by
[
(q̃c, q̂−c), PS, P

′′
C

]
.

Note that the preference pro�le of the colleges change in the related college admission mar-

ket since we change the set of eligible students. However, the rankings over the individual

students in E under both PC and P
′′
C for all colleges are the same. We will apply the

sequential DA algorithm introduced by McVitie and Wilson (1971) for
[
(q̃c, q̂−c), PS, P

′′
C

]
,

where the newly certi�ed student i will be considered at the end. Let π̃ be the outcome

of DA for
[
(q̃c, q̂−c), PS, P

′′
C

]
.

Let C< be the set of colleges that could not �ll all their seats, and C= be the set

of colleges that did, in π̂. Formally, C< = {c ∈ C : |π̂(c)| < q̂c} and C= = {c ∈
C : |π̂(c)| = q̂c}. Now, when it is the turn of i to apply in the sequential version of

the student-proposing DA, the current tentative matching is π̂. After i starts making

applications in the algorithm, let c̃ be the �rst option that does not reject i. Since ∅Pci,
c 6= c̃, i.e., c̃ is not i's home college.

In the rest of the proof, as we run the sequential DA, we run the following cases

iteratively, starting with student i:

1. If c̃ = c∅, then the algorithm terminates; bπ̃ = bπ̂.

2. If c̃ ∈ C<, then i will be assigned to c̃ and the algorithm terminates; bπ̃c = bπ̂c − 1,

bπ̃c̃ = bπ̂c̃ + 1, and bπ̃c′ = bπ̂c′ for all c
′ ∈ C \ {c, c̃}.

3. If c̃ ∈ C=, then student ĩ who is the least preferred student among the ones in π̂(c̃)

is rejected in favor of i. We consider two cases:

3.a. Case ĩ ∈ Sc: The net balance of no college will change from the beginning, and

we continue from the beginning above, again using student ĩ instead of i.

3.b. Case ĩ /∈ Sc: The instantaneous balance of c will deteriorate by 1 as i is tentatively

accepted. Now, it is ĩ's turn in the sequential DA to make o�ers. In this series of o�ers,

suppose option that does not reject student ĩ is ˜̃c. Denote the home college of ĩ by c′

(note that c′ 6= c̃).
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3.b.i. If ˜̃c ∈ c∅ ∪ C<, then the algorithm will terminate, and bπ̃c ∈ {bπ̂c − 1, bπ̂c },
bπ̃c̄ ∈ {bπ̂c̄ , bπ̂c̄ + 1} for all c̄ ∈ C \ c.

3.b.ii. If ˜̃c ∈ C=, then the least preferred student held by ˜̃c will be rejected in favor

of ĩ. Let this student be ˜̃i. There are two further cases:

3.b.ii.A. Case ˜̃i ∈ Sc: Then, ˜̃c 6= c. The instantaneous balance of c will increase by

1, and we will start from the beginning again with ˜̃i instead of i. The total change in c's

balance since the beginning will be 0. Also, no other college's balance has changed since

the beginning.

3.b.ii.B. Case ˜̃i /∈ Sc: We start from Step 3.b above with student ˜̃i instead of ĩ.

Thus, whenever we continue from the beginning, the instantaneous balance of c is bπ̂c ,

and whenever we continue from Step 3.b, the instantaneous balance of c is bπ̂c −1 or bπ̂c and

the instantaneous balances of all other colleges either increase by one or stay the same.

Due to �niteness, the algorithm will terminate at some point at Steps 1 or 2 or 3.b.i; and

the net balance of c at the new DA outcome will be bπ̂c or b
π̂
c − 1. Moreover, whenever the

algorithm terminates, the net balance of any other college has gone up by one or stayed

the same.

We are ready to prove the results stated in the Appendix A.

Proof of Proposition 6. First recall that, any stable matching for the associated

college admission market of a tuition exchange market is also a stable matching for that

tuition exchange market. Let
[
q̂, PS, PC

]
and

[
(q̃c, q̂−c), PS, P

′
C

]
be the associated college

admissions markets of
[
q̂, ê,%

]
and

[
(q̃c, q̂−c), (êc + 1, ê−c),%

]
, respectively. Let π̂ and π̃

be the outcome of DA for
[
q̂, PS, PC

]
and

[
(q̃c, q̂−c), PS, P

′
C

]
, respectively. By Propositions

3 and 5, it is su�cient to prove the proposition for π̂ and π̃. Note that M π̂
c = π̂(c) by

Assumption 3 Part 3, and π̂ is stable in
[
q̂, ê,%

]
.

Two cases are possible:

Case 1: bπ̂c < 0: We have |π̂(c)| = |M π̂
c | < |X π̂

c | ≤ êc ≤ q̂c. Then, by Lemma 2,

bπ̃c ∈ {bπ̂c − 1, bπ̂c }.
Case 2: bπ̂c ≥ 0: We have two cases again:

2.a. |π̂(c)| < q̂c or q̃c = q̂c: By Lemma 2, bπ̃c ∈ {bπ̂c − 1, bπ̂c }.
2.b. |π̂(c)| = q̂c and q̃c = q̂c + k for k > 0: Denote the newly certi�ed student of

c by i in market
[
(q̃c, q̂−c), (ẽc, ê−c),%

]
. We �rst consider the outcome of DA in the

associated college admissions market of
[
(q̃c, q̂−c), ê,%

]
, which we denote by π′′. We �rst

show that the number of students imported by c in π′′ cannot be less than the one in

π̂. Let C< = {c̃ ∈ C : |π̂(c̃)| < q̂c̃}. By our construction, in any stable matching for

the associated college admissions market all students in S \ E are assigned to c∅ where

E is the set of eligible students according to ê. Due to the nonwastefulness of π̂, π̂(s)Psc̃
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for all s ∈ E \ π̂(c̃) and c̃ ∈ C<. We know that DA is resource monotonic: when the

number of seats (weakly) increases at each college, then every student will be weakly

better o� (see Kesten, 2006). That is, π′′(s)Rsπ̂(s) for all s ∈ E. By combining the

resource monotonicity and individual rationality of DA, we can say that if a student is

assigned to a college in π̂, then she will also be assigned to a college in π′′. Hence, we can

write: ∑
c′∈C

|π′′(c′)| ≥
∑
c′∈C

|π̂(c′)|. (1)

Note that the di�erence between the left-hand side and the right-hand side of the equation

can be at most k. This follows from the fact that in π′′ no new student will be assigned

to a college in C<, the number of students assigned to other colleges can increase only for

c, and the maximum increment is k.

By combining nonwastefulness and resource monotonicity we can write:∑
c̃∈C<

|π′′(c̃)| ≤
∑
c̃∈C<

|π̂(c̃)|. (2)

Then, if we subtract the left-hand side of Equation 2 from the left-hand side of Equation

1 and the right-hand side of Equation 2 from the right-hand side of Equation 1, we get

the following inequality: ∑
c′∈C\C<

|π′′(c′)| ≥
∑

c′∈C\C<

|π̂(c′)|. (3)

Given that each college in C \C< �lls its seats in π̂, when we subtract
∑

c′∈C\(C<∪c)
q̂c′ from

both sides of Equation 3, we get the following inequality:

|π′′(c)|+
∑

c′∈C\(C<∪c)

(|π′′(c′)| − q̂c′) ≥ |π̂(c)|. (4)

The term
∑

c′∈C\(C<∪c)
(|π′′(c′)|− q̂c′) is nonpositive since |π′′(c′)| ≤ q̂c′ for all c

′ ∈ C\(C<∪c).

Therefore, |π′′(c)| ≥ |π̂(c)|.
If |π′′(c)| = |π̂(c)| then |π′′(c′)| = |π̂(c′)| for all c′ ∈ C. This follows from Equation 4,

Equation 2, and the fact that |π′′(c′)| ≤ |π̂(c′)| for all c′ ∈ C \ {c}. Therefore, c cannot
export and import more students, and bπ

′′
c = bπ̂c . If |π′′(c)| > |π̂(c)|, then at most k more

students can be assigned to a college in π′′ among the eligible students who were not

assigned to a college in π̂. It is possible that some of the students belong to Sc. Thus,

bπ
′′
c ∈ {bπ̂c , ..., bπ̂c + k}.
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By Lemma 2, as we increase the eligibility quota of college c by 1 and keep the admission

quota at q̃c, we have b
π̃
c ∈ {bπ

′′
c − 1, bπ

′′
c }, and hence, bπ̃c ∈ {bπ̂c − 1, bπ̂c , ..., b

π̂
c + k}.

Proof of Theorem 10. Given Proposition 6, when c decreases its certi�cation

quota by one and keeps its admission quota the same, its balance in any stable matching

for the new market will either be the same or increase by one. Since c will have a

nonnegative balance in any stable matching for the market
[
q̂, (ēc = 0, ê−c),%

]
, there

exists 0 ≤ ẽc ≤ êc such that c has a zero-balance in every stable matching for the market[
q̂, (ẽc, ê−c),%

]
.

Proof of Theorem 11. We consider two markets:
[
q̂, ê,%

]
and

[
(q′c, q̂−c), (êc −

1, ê−c),%
]
with q̂c ≥ êc and q̂c ≥ q′c ≥ êc− 1 such that for c, bµc < 0 for a stable matching

µ for the �rst market. Let µ′ be an arbitrary stable matching for the second market. We

want to show that bµ−c ≥ bµ
′

−c. From Proposition 6, we know that bµ
′
c < 0 or bµ

′
c = 0. By

Proposition 5, without loss of generality we assume that µ and µ′ are the outcome of the

sequential DA algorithm for the associated college admissions market of
[
q̂, ê,%

]
and[

(q′c, q̂−c), (êc − 1, ê−c),%
]
, respectively. We have two cases:

Case 1: bµ
′
c < 0. We have |µ′(c)| = |Mµ′

c | < |Xµ′
c | ≤ êc− 1 ≤ min{q̂c, q′c}. Hence, as c

did not �ll its admission quota at µ′ under both q̂c and q
′
c, in market

[
q̂, (êc − 1, ê−c),%

]
µ′ will still be the outcome of DA for the associated college admissions market. When we

add a new student i from c to the set of eligible students, we obtain
[
q̂, ê,%

]
. By Lemma

2, we have bµc′ ∈ {b
µ′

c′ , b
µ′

c′ + 1} for all c′ ∈ C \ c.
Case 2: bµ

′
c = 0. There are two possibilities: (a) |µ′(c)| < q′c and (b) |µ′(c)| = q′c.

2.a. If |µ′(c)| < q′c, then by Lemma 2, we have bµc′ ∈ {b
µ′

c′ , b
µ′

c′ + 1} for all c′ ∈ C \ c.
2.b. If |µ′(c)| = q′c, then |µ′(c)| = êc− 1 = q′c.

27 We �rst increase the admission quota

of c from q′c to q̂c and keep its eligibility quota at êc− 1. Suppose the number of students

assigned to c increases at the outcome of DA under the associated college admissions

market of
[
q̂, (êc − 1, ê−c),%

]
, which we denote by µ′′, i.e., |µ′′(c)| > |µ′(c)| = êc − 1.

Thus, bµ
′′
c > 0. When we also increase the eligibility quota of c from êc − 1 to êc, then

by Lemma 2, bµc ∈ {bµ
′′
c − 1, bµ

′′
c }, and hence, bµc ≥ 0. However, this contradicts the fact

that bµc < 0. Therefore, |µ′′(c)| = |µ′(c)| = q′c ≤ q̂c. Hence, under both associated college

admissions markets of
[
(q′c, q̂−c), (êc − 1, ê−c),%

]
and

[
q̂, (êc − 1, ê−c),%

]
, DA chooses

the same matching, i.e., µ′′ = µ′. When we increase the eligibility quota of c from êc − 1

to êc and keep the admission quota at q̂c, DA outcome changes from µ′′ = µ′ to µ for the

associated college admissions market. By Lemma 2, we have bµc′ ∈ {b
µ′

c′ , b
µ′

c′ + 1} for all
c′ ∈ C \ c.

In either case, bµ
′

−c ≤ bµ−c. Moreover, Lemma 2 implies the same conclusion for any

27That is, this case is possible when q′c = êc − 1.
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market [(q′c, q̂−c), (e
′
c, ê−c),%] where e′c ≤ êc − 1.

Appendix F Structure of Stable Matchings

In this Appendix, we inspect the structure of stable matchings. In the college admis-

sions market, there always exist student-optimal and college-optimal Gale-Shapley-stable

matchings (see Gale and Shapley, 1962; Roth, 1985).28 Under Assumption 3, we can

guarantee the existence of college- and student-optimal stable tuition-exchange match-

ings. This result's proof also uses the associated Gale-Shapley college admissions market

for each tuition-exchange market and the properties of Gale-Shapley stable matchings in

these markets.29

Proposition 7 Under Assumption 3, there exist college- and student-optimal matchings

in any tuition-exchange market.

Proof of Proposition 7. By the proof of Proposition 3, Gale and Shapley (1962),

and Roth (1985), there exists a student-optimal stable matching for each tuition-exchange

market. By Assumption 3 Part 1 and Proposition 5, colleges compare only the stable

matchings through the admitted set of students. By Gale and Shapley (1962) and Roth

(1985), there exists a college-optimal stable matching for each tuition-exchange market.

Appendix G Further Discussion on 2S-TTCMechanism

We illustrate the dynamics of the 2S-TTC mechanism with an example below.

Example 1 Let C = {a, b, c, d, e}, Sa = {1,2}, Sb = {3,4}, Sc = {5,6}, Sd = {7,8},
and Se = {9}. Let e = (2, 2, 2, 2, 1) and q = (2, 2, 2, 1, 1). The internal priorities and the

28A matching is student-(or college-)optimal stable if it is preferred to all the other stable matchings
by all students (or colleges).

29The lattice property of Gale-Shapley-stable college-admissions matchings can also be used to prove
an analogous lattice property for stable matchings in tuition-exchange markets under Assumption 3. We
skip it for brevity.
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rankings of agents associated with their preferences over matchings are given as:

.a .b .c .d .e

1 3 6 7 9

2 4 5 8

Pa Pb Pc Pd Pe

3 5 2 2 2

4 1 3 3 3

5 6 4 4 8

9 2 9 9 7

7 7 7 5 5

∅ ∅ ∅ ∅ ∅

P1 P2 P3 P4 P5 P6 P7 P8 P9

b b a c b a c e c

c c c a a b a c d

c∅ c∅ c∅ c∅ c∅ c∅ c∅ c∅ c∅

Let oe and oa be the vectors representing the eligibility and admission counters of

colleges, respectively. Then we set oe = (2, 2, 2, 2, 1) and oa = (2, 2, 2, 1, 1).

Round 1: The only cycle formed is (b,3, a,1). Therefore, 1 is assigned to b and 3

is assigned to a. Observe that although college a is the most-preferred college of student

6, she is not acceptable to a, and hence, she points to college b instead. The updated

counters are oe = (1, 1, 2, 2, 1) and oa = (1, 1, 2, 1, 1).

Round 2: The only cycle formed in Round 2 is (c,6, b,4). Therefore, 6 is assigned to

b and 4 is assigned to c. The updated counters are oe = (1, 0, 1, 2, 1) and oa = (1, 0, 1, 1, 1).

College b is removed.

Round 3: The only cycle formed in Round 3 is (a,2, c,5). Therefore, 5 is assigned to

a and 2 is assigned to c. The updated counters are oe = (0, 0, 0, 2, 1) and oa = (0, 0, 0, 1, 1).
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Colleges a and c are removed.

Round 4: The only cycle formed in Round 4 is (c∅,7). Therefore, 7 is assigned to c∅.

Given that we have a trivial cycle including c∅, we only update oe. The updated counters

are oe = (0, 0, 0, 1, 1) and oa = (0, 0, 0, 1, 1).

Round 5: The only cycle formed at this round is (e,9, d,8). Therefore, 8 is as-

signed to e and 9 is assigned to d. The updated counters are oe = (0, 0, 0, 0, 0) and

oa = (0, 0, 0, 0, 0).

All students are assigned, so the algorithm terminates and its outcome is given by

matching

µ =
( a b c d e

{3,5} {1,6} {2,4} 9 8

)
.

�

It would be good to point out a few simple observations regarding regular TTC and

2S-TTC. Since students may not be able to point to their top available choices during

the algorithm (as such colleges may �nd them unacceptable), 2S-TTC is not balanced-

e�cient for students in general. Since colleges cannot necessarily choose among their

acceptable choices, 2S-TTC is not balanced-e�cient for colleges in general, either.30 As

this is a two-sided matching market, we could also propose the college-pointing version of

the 2S-TTC mechanism in which colleges point to their highest ranked students under PC

the ones considering them acceptable and each student points to her home college in each

round. This variant takes college preference intensity more seriously. However, it gives

incentives to both students and colleges for manipulation. On the other hand, 2S-TTC

is group strategy-proof for students, as we state in Theorem 3.

On the other hand, regular TTC mechanism that ignores colleges' preferences all to-

gether is balanced-e�cient for students (observe that during the TTC algorithm, students

always point to their top available college). Its Pareto e�ciency in a one-sided market di-

rectly implies this result, while this does not provide any immediate e�ciency implication

for 2S-TTC (other than that among acceptable balanced matchings, its outcome is Pareto

undominated). Hence, regular TTC is also balanced-e�cient for all agents since student

preferences are strict. But in general, regular TTC is not acceptable unlike 2S-TTC, as

college preferences are ignored altogether. Thus, regular TTC is not a good mechanism

for our purposes. We illustrate with an example that 2S-TTC is not balanced-e�cient for

students and not balanced-e�cient for colleges. However, it is balanced-e�cient overall

30This is in vein similar to the well-known fact that a stable matching is neither e�cient for students
nor e�cient for colleges, in general. But under strict preferences, all stable matchings are Pareto e�cient
for all agents.
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as proven in Theorem 1.

Example 2 Suppose C = {a, b, c} such that Sa = {1}, Sb = {2}, and Sc = {3}. Let

e = q = (1, 1, 1). The preferences of students and colleges ranking over incoming students

are given as follows:

Pa Pb Pc

3 2 1

2 3 3

1 ∅ 2

P1 P2 P3

b c a

a a b

c b c

If we apply the regular TTC mechanism to this market without taking colleges' prefer-

ences into account, the outcome is

(
a b c

3 1 2

)
. However, this is not acceptable for

colleges: college b gets an unacceptable student, 1. Our 2S-TTC mechanism does not select

this outcome. In fact, its outcome is

(
a b c

1 3 2

)
. Observe that although this match-

ing is not balanced-e�cient for students (the above TTC outcome Pareto dominates it for

students) and not balanced-e�cient for colleges (since the matching

(
a b c

3 2 1

)
Pareto dominates it for colleges), it is balanced-e�cient for all agents. �

Appendix H Independence of Axioms

• A student-strategy-proof, acceptable but not balanced-e�cient mechanism that also

respects internal priorities: A mechanism that always selects the null matching for

any market.31

• A student-strategy-proof, balanced-e�cient, acceptable mechanism that does not re-

spect internal priorities: Consider a variant of the 2S-TTC mechanism in which

each college points to the certi�ed student who has the lowest priority among the

certi�ed ones. This mechanism is strategy-proof for students, balanced-e�cient,

and acceptable, but it fails to respect internal priorities.

• A balanced-e�cient, acceptable, but not student-strategy-proof mechanism that re-

spects internal priorities: Consider the following market. There are three colleges

C = {a, b, c} and three students Sa = {1}, Sb = {2}, and Sc = {3}. All students

31For the proof of Theorem 9, a mechanism that always assigns workers to their home �rm for any
market.
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are acceptable for colleges. The ranking P associated with preference pro�le %S is

given as

P1 P2 P3

b a b

c c a

a b c

c∅ c∅ c∅

Let mechanism ψ select the same matching as 2S-TTC for each market except the

market
[
q = (1, 1, 1), e = (1, 1, 1),%

]
, and for this market it assigns 1 to c, 2

to a, and 3 to b. This mechanism is balanced-e�cient, acceptable, and respecting

internal priorities. However, it is not student-strategy-proof, because when 1 reports

c unacceptable, ψ will assign 1 to b.

• A balanced-e�cient, student-strategy-proof, but not acceptable mechanism that re-

spects internal priorities: Consider a variant of 2S-TTC in which students are not

restricted to point to those colleges that consider them acceptable. This mechanism

is balanced-e�cient, student-strategy-proof, and respecting internal priorities, but

it is not acceptable since an unacceptable student can be assigned to a college.

Appendix I Simulations

Theoretically, 2S-TTC and the current decentralized market procedure modeled in Ap-

pendix A cannot be Pareto ranked. Moreover, when we consider the number of unassigned

students, neither 2S-TTC nor the decentralized market procedure performs better than

the other in every market. In order to compare the performances of 2S-TTC and the

current decentralized market procedure, we run computer simulations under various sce-

narios. We consider environments with 10 and 20 colleges and 5 and 10 available seats.

Each student is linked to a college, and the number of students linked to a college is equal

to its capacity. We construct the preference pro�le of each student s ∈ Sc by incorporat-

ing the possible correlation among students' preferences. In particular, we calculate s's

utility from being assigned to college c′ ∈ C \ {c} as follows:32

U(s, c′) = βZ(c′) + (1− β)X(s, c′).

Here, Z(c′) ∈ (0, 1) is an i.i.d. standard uniformly distributed random variable and it

32To be consistent with the tuition exchange practice, we do not calculate students' utilities for their
home colleges.
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represents the common tastes of students on c′. X(s, c′) ∈ (0, 1) is also an i.i.d. standard

uniformly distributed random variable and it represents the individual taste of s on c′.

The correlation in the students' preferences is captured by β ∈ [0, 1]. As β increases,

the students' preferences over the colleges become more similar. For each student s we

randomly choose a threshold utility value T (s) in order to determine the set of acceptable

colleges where T (s) ∈ (0, 0.5) is an i.i.d. standard uniformly distributed random variable.

We say c′ is acceptable for s if T (s) ≤ U(s, c′). By using the utilities students get from

each college and the threshold value, we construct the ordinal preferences of students over

colleges.

In order to construct college rankings (preferences) over students, we follow a similar

method as in the student preference pro�le construction. In particular, we calculate c's

utility from s′ ∈ S \ Sc as follows:33

V (c, s′) = αW (s′) + (1− α)Y (c, s′).

Here, W (s′) ∈ (0, 1) is an i.i.d. standard uniformly distributed random variable and it

represents the common tastes of colleges on s′. Y (c, s′) ∈ (0, 1) is also an i.i.d standard

uniformly distributed random variable and it represents the individual taste of c on s.

The correlation in the college rankings is captured by α ∈ [0, 1]. Like β, as α increases the

colleges' rankings over the students become more similar. For each c ∈ C we randomly

choose a threshold value T (c) in order to determine the set of acceptable students for c

where T (c) ∈ (0, 0.5) is an i.i.d. standard uniformly distributed random variable. We say

s′ is acceptable for c if T (c) ≤ V (c, s′). By using the utilities colleges get from each student

and the threshold value, we construct the ordinal rankings of colleges over students.

Under each case, we consider a time horizon of 25 periods.34 In order to mimic the

decentralized procedure, we use student-proposing DA mechanism in each period. We

consider two di�erent strategies colleges play. Under the �rst strategy, each college certi-

�es its all students as eligible in period 1. Observe that this is a naive behavior, and in

a sense the best-case scenario if colleges are negative-balance averse. Under this assump-

tion, colleges have incentives to certify fewer students than their quota (see Theorems 10

and 11 in Appendix A). For further periods, if a college c carries an aggregate negative

balance of x, then it certi�es only qc − x students, otherwise it certi�es all its students.

Under the second strategy, in each period we rerun the DA mechanism until the outcome

in that period satis�es zero balance and in each run a college with negative balance ex-

33To be consistent with the tuition exchange practice, we do not calculate colleges' utilities for their
own students.

34We consider the �rst �ve periods as warm-up periods.
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cludes one student from its certi�ed list. On the other hand, under 2S-TTC, since colleges

run a zero balance, each college certi�es all of its students in each period. Under each

scenario, we run the DA and TTC 1,000 times by using di�erent random draws for X, Y ,

W , Z, and T and calculate the number of students unassigned under DA and 2S-TTC,

and the number of students preferring 2S-TTC over DA and vice versa. For each run, we

use the same draw of Z for all 25 periods.
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Figure 1: Student welfare under simulations with 20 colleges each with 10 seats

We also relax the zero-balance constraint and allow each college to run a negative

balance of not more than 20% of its quota. Under the �rst strategy for a decentralized

market, each college certi�es all its students as eligible in period 1. For further periods,

if a college carries an aggregate negative balance of x > 0.2qc, then it certi�es only

1.2qc − x students, otherwise it certi�es all its students. Under the second strategy, we

exclude students from each college's certi�cation set only if they run a negative balance

more than 20% of their quota. Similarly, since each college can run a certain amount of

negative balance, we use 2S-TTTC instead of 2S-TTC with a tolerable balance interval

of [−0.2qc,∞).

In Figure 1, we illustrate the simulation results for 20 colleges and 10 seats case. The

horizontal axis refers to changing levels of α and β, the preference correlation parameters.

Di�erent values of β are grouped together (shown in the right-bottom graph's legend)

36

Supplemental Material for: Umut Mert Dur, M. Utku &#xdc;nver. 2019. "Two-Sided Matching via Balanced Exchange." 
Journal of Political Economy 127(3). DOI: 10.1086/701358. 



while α is used as the main horizontal axis variable. The vertical axis variables in top 4

graphs demonstrate the di�erence of the percentage of unassigned students between the

DA mechanism under the two alternative strategies of the colleges (In each row, the 1st

and 3rd graphs are for straightforward behavior of DA, i.e., strategy 1, and the 2nd and 4th

graphs are for the equilibrium behavior of DA, i.e., strategy 2, explained above) and 2S-

TTC/2S-TTTC. In bottom 4 graphs, the vertical axes demonstrate the di�erence between

the percentage of the students preferring the versions of 2S-TTC and the percentage of the

students preferring the DA mechanism under two alternative strategies of the colleges.35

Under all scenarios, when we compare the percentage of students preferring the ver-

sions of 2S-TTC and the DA mechanism under two alternative strategies of the colleges,

we observe that 2S-TTC and 2S-TTTC outperform both alternative strategic behaviors

under DA. For example, when α = 0.5 and β = 0.5, for yearly tolerance level 0, 19.23%

more of all students (i.e., the percentage of students who prefer 2S-TTC to DA minus the

percentage who prefer DA to 2S-TTC) prefer 2S-TTC outcome to DA straightforward

behavior outcome (while this di�erence increases to 28.62% for DA equilibrium simula-

tions), as seen in the middle of the graph of the 1st (and 2nd, respectively) graph of the

bottom row of Figure 1.36

Except for very low correlation in both college and student preferences, we observe that

the percentage of unassigned students is less under the versions of 2S-TTC compared to

the one under both alternative strategic behaviors under DA. For example, when α = 0.5

and β = 0.5, for the yearly tolerance level 0, 2S-TTC matches 12.74% of all students more

over the percentage matched by DA under straightforward behavior (while this di�erence

increases to 23.30% over the percentage matched by DA under equilibrium behavior) as

seen in the middle of the 1st graph (and 2nd graph, respectively) in the top row of Figure

1, respectively.37

In general, as α, the colleges' preference correlation parameter, increases, both welfare

measures favor 2S-TTC over DA increasingly more under both tolerance level and both

35The results of the other cases are illustrated in Figures 4-6.
36We do not give a separate �gure for the absolute percentage of students who prefer 2S-TTC over

DA. For the considered tolerance 0 scenarios of Figure 1, the absolute percentage of students who prefer
2S-TTC over DA-straightforward treatment changes between 20% to 49.5% for di�erent levels of α and
β � minimized at α = 1 and β = 0, while maximized at α = 0 and β = 0.75 (and 23%−58.5% of students
prefer 2S-TTC to DA-equilibrium treatment � minimized at α = 0.5 and β = 0, while maximized at
α = 1 and β = 0.5).

37Although, we do not give a separate �gure, it is noteworthy to mention that the absolute percentage
of students unmatched under DA straightforward scenario increases from 1.4% to 58.4% of all students
in both α and β per period, under tolerance 0 scenarios of Figure 1. The corresponding percentages are
1.1% to 80.5% under the DA equilibrium scenario, increasing again in both α and β. Other treatments,
including the ones reported at the end of this section, display similar pattern although percentage change
interval is slightly di�erent.
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DA behavior scenarios. On the other hand, as β, the students' preference correlation

parameter, increases, 2S-TTC's dominance measures display mostly a unimodal pattern

(peaking for moderate β) for any �xed α. We conclude that 2S-TTC and 2S-TTTC

approaches outperform DA methods in almost all cases.
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Figure 2: Excess balance under DA when all students are eligible; simulation results for
markets with 20 colleges each with 10 seats

One may think that when colleges do not limit the number of eligible students, they

would achieve tolerable balance levels eventually. To test this claim, we run DA mecha-

nism when colleges do not limit the number of their eligible students. We calculate (1)

the percentage of colleges with excess negative balance at the end of the time horizon

and (2) the magnitude of the total excess negative balance relative to the total number

of available seats in all periods. The case for 20 colleges and 10 seats is given in Figure

2. The average negative balance of colleges varies between 0.2% and 15% of the available

seats at colleges and increases with α and β. Similarly, as α increases the percentage of

colleges with excess negative balance increases and it varies between 17% and 45%.38

Finally, we consider the case in which the number of students applying to be certi�ed

by each college varies in each period. In particular, we run simulations for 10 colleges

38The results of all other cases are illustrated in Figures 7-9.
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and each college has 10 available seats. Di�erent from the previous cases, the number of

students applying to be certi�ed may vary and it is selected from interval [6, 10] according

to i.i.d. uniform distribution. Preference pro�les of the students and the colleges are

constructed as described above. We measure the performances of 2S-TTC and 2S-TTTC

compared to the DA mechanism under two strategic behaviors. The results are illustrated

in Figure 3. All the results are consistent with the cases in which the number of students

in each college equals to the number of available seats.
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Figure 3: Student welfare in unbalanced market under simulations with 10 colleges each
with 10 seats.
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Figure 4: Student welfare under simulations with 20 colleges each with 5 seats.
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Figure 5: Student welfare under simulations with 10 colleges each with 10 seats.
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Figure 6: Student welfare under simulations with 10 colleges each with 5 seats.
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Figure 7: Excess balance under DA when all students are eligible; simulations with 20
colleges each with 5 seats.
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Figure 8: Excess balance under DA when all students are eligible; simulations with 10
colleges each with 10 seats.
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Figure 9: Excess balance under DA when all students are eligible; simulations with 10
colleges each with 5 seats.
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