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Abstract

Allocation and exchange of many discrete resources – such as kidneys or school seats
– is conducted via direct mechanisms without monetary transfers. A primary concern in
designing such mechanisms is the coordinated strategic behavior of market participants
and its impact on resulting allocations. To assess the impact of this implementation
constraint, we construct the full class of group dominant-strategy incentive compatible
and Pareto efficient mechanisms. We call these mechanisms “Trading Cycles.” This class
contains new mechanisms as well as such previously studied mechanisms as top trading
cycles, serial dictatorships, and hierarchical exchange. In some problems, the new
trading-cycles mechanisms perform better than all previously known mechanisms. Just
as importantly, knowing that all group incentive-compatible and efficient mechanisms
can be implemented as trading cycles allows us to determine easily which efficient
outcomes can and cannot be achieved in a group incentive-compatible way.
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1 Introduction

The theory of mechanism design has informed the design of many markets and other insti-
tutions. Auction mechanisms have been developed to sell treasury bills, electricity, natural
gas, radio spectra, timber, and foreclosed homes. Other mechanisms have been developed
to allocate resources in environments in which transfers are not used or are prohibited: to
allocate and exchange transplant organs – such as kidneys – through newly established re-
gional programs such as the Alliance for Paired Donation (centered in Toledo, Ohio) and
the New England Program for Kidney Exchange (centered in Newton, Massachusetts), and
the new U.S. national program (managed by the United Network for Organ Sharing) (cf.
Roth, Sönmez, and Ünver, 2004), to allocate school seats in New York City, Chicago, San
Francisco, and Boston (cf. Abdulkadiroğlu and Sönmez, 2003), and to allocate dormitory
rooms to students at US colleges (cf. Abdulkadiroğlu and Sönmez, 1999).

A primary concern in market design is the coordinated strategic behavior of market
participants and its impact on resulting allocations. For instance, auction procedures such as
the well-known Vickrey-Clarke-Groves mechanisms – though individually dominant-strategy
incentive compatible – are susceptible to collusive behavior by bidders (cf. Vickrey, 1961;
Clarke, 1971; Groves, 1973; Bennett and Conn, 1976). In environments in which transfers
are not used, cooperation among market participants is also well documented. Coordination
among parents participating in school choice was documented by Pathak and Sönmez (2008).
In the allocation and exchange of transplant organs, a doctor acting on behalf of several
patients can coordinate their reports if it benefits his or her patients. There are known cases
of doctors gaming medical systems for the benefit of their patients.1 In kidney exchange,
transplant centers occasionally try to first conduct kidney exchanges using their internal
patient-donor pool, and list their patient and donors in outside exchange programs only if
they fail to find a suitable match, thus hindering the efficiency of regional exchange systems
(cf. Sönmez and Ünver, 2010; Ashlagi and Roth, 2011).

Such coordinated strategic behavior is avoided if the market mechanism is group dominant-
strategy incentive compatible. Group incentive compatibility means that no group of agents
can jointly manipulate the system so that all of them weakly benefit from this manipulation,
while at least one in the group strictly benefits. For instance, group incentive compatibility
of a transplant allocation and exchange mechanism guarantees that no doctor is able to
manipulate the mechanism on behalf of his or her patients without harming at least one
of them. Non-manipulability is not the only benefit of using group incentive-compatible

1For instance, in 2003 two Chicago hospitals settled a Federal lawsuit alleging that some patients had
been fraudulently certified as sicker than they were to move them up on the liver transplant queue (Warmbir,
2003).
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mechanisms. Group incentive-compatible mechanisms impose minimal costs of searching for
and processing strategic information, and do not discriminate among agents based on their
access to information and ability to strategize (cf. Vickrey, 1961; Dasgupta, Hammond, and
Maskin, 1979; Pathak and Sönmez, 2008).

What then are group incentive-compatible mechanisms? Which efficient outcomes can
they achieve? In environments in which agents have quasilinear utilities and monetary
transfers can be used, these questions have been answered by Green and Laffont (1977,
1979), who showed that no group dominant-strategy incentive-compatible mechanism leads
to efficient outcomes, while every individually dominant-strategy incentive-compatible and
efficient mechanism is equivalent to a Vickrey-Clarke-Groves mechanism. In contrast, in the
above-mentioned environments without transfers, these questions remained unanswered.

This paper addresses these questions by constructing a new class of group strategy-proof
and efficient mechanisms – trading cycles – and showing that every group dominant-strategy
incentive-compatible and efficient mechanism is equivalent to a trading cycle mechanism.
This equivalence is the main result of the paper. Some special cases of our class such as
top trading cycles, serial dictatorships, and hierarchical exchange have already been studied;
many mechanisms in our class have never been studied before. As illustrated below, in some
problems, employing the new trading-cycles mechanisms does improve on all previously stud-
ied mechanisms. The new trading-cycles mechanisms also allow one to implement efficient
allocations that cannot be implemented by previously studied mechanisms.

Just as importantly, knowing that all group dominant-strategy incentive-compatible and
efficient mechanisms may be represented in our class allows us to easily determine what can
and cannot be achieved in a group incentive-compatible way. The equivalence result radically
simplifies any analysis of such questions because it allows us to restrict our attention to
trading cycles without loss of generality. In this sense, the class of trading-cycles mechanisms
is a natural benchmark of which efficient outcomes can be achieved in a group incentive-
compatible way in the no-transfers environments we study, just as the Vickrey-Clarke-Groves
class provides such a benchmark for individual incentive compatibility in environments with
transfers.

Before describing the trading-cycles mechanisms, let us highlight some common features
of the above market design problems with no transfers. There is a finite group of agents, each
of whom would like to consume a single indivisible object to which we will refer as a house,
using the terminology coined by Shapley and Scarf (1974). Agents have strict preferences
over the houses.2 Some of the houses might be agents’ common endowment, while others
belong to agents’ private endowments. The outcome of the problem is a matching of agents

2We will discuss the strictness assumption later in the introduction.
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and houses. Since we provide a unified treatment of both house allocation (from social
endowment) and house exchange (among agents with private endowments), we refer to our
environment as house allocation and exchange. By the revelation principle, we may restrict
our attention to direct revelation mechanisms; that is, agents reveal their preferences over
houses, and the mechanism matches each agent with a house (or the agent’s outside option).

As a first step in the description of the trading-cycles let us discuss its special case –
Gale’s top-trading-cycles mechanism (reported by Shapley and Scarf, 1974) – in a special
environment in which there are as many houses as agents and each agent is endowed with one
house (and owns or controls the house). Gale’s top trading cycles resembles decentralized
trading and matches agents and houses in a sequence of rounds. In each round, each house
points to its owner and each agent points to his most preferred unmatched house. Since
there is a finite number of agents, there exists at least one pointing cycle in which an agent,
say agent 1, points to a house, say house A; the agent who controls house A points to house
B, etc.; and finally the last agent in the cycle points to the house controlled by agent 1. The
pointing cycles might be short (agent 1 points to house A, which points back to agent 1) or
might involve many agents. The procedure then matches each agent in each pointing cycle
with the house he points to. The pointing cycles thus become cycles of trading. Rounds are
repeated until no agents and houses are left unmatched. The top-trading-cycles algorithm
can be used in more general environments, for instance when all houses are socially endowed.
In such environments, we need to specify for each round and each house which agent plays
the role of the owner of this house (see Abdulkadiroğlu and Sönmez, 1999; Pápai, 2000).

Our trading-cycles algorithm builds on the top-trading-cycles idea. However, while top
trading cycles matches agents only along “top” cycles – cycles in which each agent points to
and is matched with his most preferred previously unmatched house – trading cycles allows
exchanges along any cycles that preserve group strategy-proofness and efficiency. Our results
show that not all such cycles are top cycles: in addition to top cycles, group strategy-proof
and efficient trading can be conducted along certain cycles in which one of the agents (whom
we call “broker” below) points to and is matched with his second-most preferred unmatched
house.

We are now ready to describe the trading-cycles algorithm. The algorithm matches houses
and agents in a sequence of rounds. At each round some agents and houses are matched and
the matches are final. At the beginning of the round, each previously unmatched house is
controlled by a unique unmatched agent. We distinguish two forms of control over a house,
which we call ownership and brokerage. The trading-cycles algorithm takes the allocation
of control rights in each round as given and such that there is at most one broker and one
brokered house. Each house points to the agent that controls it, and each agent except the
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broker (if there is one) points to his most preferred unmatched house. If there is a broker,
he points to his most preferred unmatched house other than the brokered house. Since there
is a finite number of agents, there exists at least one pointing cycle. The algorithm clears
the pointing cycle by matching each agent with the house he points to.3

The allocation of control rights in each round is fully determined by how agents and houses
were matched prior to that round. The above-described algorithm takes as given the mapping
from such partial matchings to control rights. Each such mapping that satisfies certain
consistency conditions determines a mechanism in our class. For expositional purposes, we
first formulate our main result for settings in which all houses are social endowments, and
hence there are no additional exogenous constraints on the allocation of control rights (cf.
Hylland and Zeckhauser, 1979). For instance, at some universities, the dormitory rooms
are treated as social endowments. At other universities, however, some students, such as
sophomores, have the right to stay in the room they lived in the preceding year. In kidney
exchange, patients (interpreted as agents) come with a paired-donor (interpreted as a house)
and have to be matched with at least their paired-donor. Such exogenous control rights are
straightforwardly accommodated by our mechanism class. When some houses are private
endowments of agents it is natural to require that the participation in the mechanism is
individually rational so that each agent likes the mechanism’s outcome at least as much
as the best house from his endowment. The class of group strategy-proof, efficient, and
individually rational direct mechanisms equals the class of individually rational trading-
cycles mechanisms. A trading-cycles mechanism is individually rational if and only if it may
be represented by a consistent control rights structure in which each agent is given ownership
rights over all houses from his endowment.4

Recognizing the role of brokers in house allocation and exchange is crucial to obtaining
the entire class of group strategy-proof and Pareto-efficient mechanisms.5 Previously only
trading-cycles mechanisms with ownership control rights were studied (see also Shapley and

3We study environments both with and without outside options. The results are the same in both
environments, but the above algorithm needs to be slightly generalized in the case of outside options by
allowing agents to point to houses or their outside options. We also need to postpone matching a broker
with his outside option until a round in which an agent who owns a house lists the brokered house as his
most preferred one.

4In particular, this implies that when each agent has a private endowment then top-trading-cycles mech-
anisms are the unique mechanisms that are group strategy-proof, efficient, and individually rational. A
variant of this corollary in the special setting in which there are as many houses as agents and each agent
is endowed with exactly one house was earlier proven by Ma (1994) (Pápai (2007) extended Ma’s result to
multi-unit environments in which all objects are initially owned).

5It is natural to ask whether we can run an analogue of trading cycles with more than one broker in a
given round. The answer is negative; such a mechanism would not be strategy-proof and efficient. As we
explain in the paper, at-most-one-broker-per-round is an inherent feature of group strategy-proofness and
efficiency, and not merely a convenient simplification.
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Scarf, 1974; Abdulkadiroğlu and Sönmez, 1999; Pápai, 2000). The introduction of brokers is
also useful in some mechanism design problems.

As an example of a mechanism design problem in which brokerage rights are useful, con-
sider a manager who assigns n tasks t1, ..., tn to n employees w1, ..., wn with strict preferences
over the tasks. One of the employees, w1, is the manager’s nephew. The manager wants
the allocation to be Pareto efficient with regard to the employees’ preferences. Within this
constraint, she would like to avoid assigning task t1 to her nephew w1. She wants to use a
group strategy-proof direct mechanism, because she does not know employees’ preferences.
The only way to do this using the previously known mechanisms is through Pápai (2000)’s
class, endowing employees w2, ..., wn with the tasks, let them find the Pareto-efficient allo-
cation via the top-trading-cycles algorithm, and then allocating the remaining task to the
nephew. Every procedure like that privileges all employees w2, ..., wn over the nephew w1:
the nephew is allocated the task no one else wanted. Using a trading-cycles mechanism, the
manager can improve the outcome of her nephew while still achieving her objective. To do
so, she makes the nephew the broker of t1, allocates the remaining tasks among w2, ..., wn

(for instance, she may make wi the owner of ti, i = 2, ..., n), and runs the trading cycles.
The allocation of employee w1 in this trading-cycles mechanism is better than in any top-
trading-cycles procedure satisfying the manager’s constraints: the allocation is weakly better
regardless of agents’ preference profile, and it is strictly better for some preference profiles.
In particular, trading cycles can be used to implement Pareto-efficient outcomes that cannot
be implemented by any previously known mechanism.

Our results may be also used to understand what cannot be achieved in a group strategy-
proof way. For instance, if the manager in the above example would like to avoid assigning
two tasks t1 and t2 to her nephew w1, then she must run a trading-cycles mechanism in
which the nephew initially does not have control rights over any task, and can acquire such
control rights only when one of the tasks t1, t2 is allocated. As before, many brokered trading-
cycles mechanism would make the nephew better off than all top-trading-cycles mechanisms.
However, the manager cannot allow the nephew to participate in the initial round of trading.
This form of discrimination against the nephew is unavoidable and is caused by the need to
learn employees’ preferences in a group strategy-proof way.

To illustrate the applicability of our results, in Appendix B we show how some of the
deepest insights in the no-transfer market design theory are immediate corollaries of our
theorems: (i) Pápai (2000)’s result that all reallocation-proof, efficient, and group strategy-
proof mechanisms are implementable as hierarchical exchange and (ii) Svensson (1999)’s
result that a mechanism is neutral and group strategy-proof if and only if it is a serial
dictatorship (we provide more details on these two results in the overview of the literature
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below). Appendix B also shows how our theorems can be used to generate new insights into
subclasses of group strategy-proof and efficient mechanisms.

The no-transfers market design has been studied extensively. We already compared our
result to one of the two most influential mechanism: top trading cycles. Another mechanism
that has been very influential in studies of object allocation is serial dictatorships (Satterth-
waite and Sonnenschein, 1981; Svensson, 1994, 1999; Ergin, 2000). It is group strategy-proof
and efficient, and hence is a special case of trading cycles. When houses are social endow-
ments, we can run a serial dictatorship by ordering agents in a priority queue and matching
each agent, in order, with his most preferred house among houses that were not matched with
higher-priority agents. The trading cycles can replicate any serial dictatorship by endowing
the first agent in the priority queue with ownership rights over all houses in the first round,
endowing the second agent in the priority queue with ownership rights over all unmatched
houses in the second round, etc.6

The largest subclass of group-strategy proof and efficient allocation and exchange mecha-
nisms in the literature prior to our study was constructed by Pápai (2000) in a very insightful
paper. She focuses on the allocation problem and constructs a class of mechanisms referred
to as top trading cycles or hierarchical exchange, which use the same algorithm as Gale’s
top-trading-cycles mechanism with the exception that the mechanism takes as an input a
structure of control rights (ownership only) over houses that – for each round of the mecha-
nism and each unmatched house – determines the agent to whom the house points to. Her
class characterizes group strategy-proofness and Pareto efficiency together with an additional
property that she refers to as reallocation-proofness. A mechanism is reallocation-proof in
the sense of Pápai (2000) if there is no profile of preferences with a pair of agents and a
pair of preference manipulations such that (i) if both of them misrepresent their preferences,
both of them weakly gain and one of them strictly gains by swapping their assignments, and
(ii) if only one of them misrepresents his preferences, he cannot change his assignment. Pá-
pai also notes that the stronger reallocation-proofness-type property obtained by dropping
condition (ii) conflicts with group strategy-proofness and Pareto efficiency or allowing the
swap of assignments among more than two agents. We do not use reallocation-proofness in
our results.

All the above work share with our paper the assumption that agents have strict prefer-
ences. This is the standard modeling assumption in analysis of matching and house allocation
and exchange because – as Ehlers (2002) shows – “one cannot go much beyond strict prefer-
ences if one insists on efficiency and group strategy-proofness.” The full preference domain

6The serial dictatorships also belong to Pápai’s top-trading-cycles class. The connections between serial
dictatorships and top trading cycles have been also explored by Abdulkadiroğlu and Sönmez (1999).

7



gives rise to an impossibility result, i.e., when agents can be indifferent among houses, there
exists no mechanism that is group strategy-proof and Pareto efficient.7 For this reason,
participants are frequently allowed to submit only strict preference orderings to real-life di-
rect mechanisms in various markets, such as dormitory room allocation, school choice, and
matching of interns and hospitals.8

The study of strategy-proof mechanisms has a long tradition. Gibbard (1973) and Sat-
terthwaite (1975) have shown that all strategy-proof and unanimous voting rules are dictato-
rial. Satterthwaite and Sonnenschein (1981) extended this result to public goods economies
with production, Zhou (1991) extended it to pure public goods economies, and Hatfield
(2009) to group strategy-proof quota allocations. In social choice models, Dasgupta, Ham-
mond, and Maskin (1979) have proved that every Pareto-efficient and strategy-proof social
choice rule is dictatorial. In exchange economies, Barberà and Jackson (1995) showed that
strategy-proof mechanisms are Pareto inefficient. Characterizations of Pareto-efficient and
strategy-proof mechanisms that are non-dictatorial have been obtained by Green and Laf-
font (1977) for design problems with monetary transfers and quasi-linear utilities (cf. Vickrey,
1961; Clarke, 1971; Groves, 1973; Roberts, 1979); by Barberà, Jackson, and Neme (1997)
for sharing a perfectly divisible good among agents with single-peaked preferences over their
shares(cf. Sprumont, 1991); and by Barberà, Gül, and Stacchetti (1993) for voting problems
with single-peaked preferences (cf. Moulin, 1980).9

2 Model

2.1 Environment

Let I be a set of agents and H be a set of houses. We use letters i, j,k to refer to agents
and h, g,e to refer to houses. Each agent i has a strict preference relation over H, denoted

7Ehlers also characterizes group strategy-proof and Pareto-efficient mechanisms in the maximal subset of
full preference domain such that such a mechanism exists. Under strict preferences, his class of mechanisms
is a subclass of ours, and substantially different from the general class. See Bogomolnaia, Deb, and Ehlers
(2005) for another characterization with indifferences.

8In school choice there is a tension between efficiency and priority-based fairness; see for example Balinski
and Sönmez (1999); Ergin (2002); Abdulkadiroğlu and Sönmez (2003); Ehlers and Klaus (2006); Kesten
(2006); Erdil and Ergin (2008); Kojima and Manea (2010); Abdulkadiroğlu and Che (2010); Abdulkadiroğlu,
Che, and Yasuda (2011).

9Sönmez (1999) studies generalized matching problems in which each agent is endowed with a good.
The class of such problems non-trivially intersects with the class of house allocation and exchange problems
studied in this paper. He shows that there exists a Pareto-efficient, strategy-proof, and individually rational
mechanism if and only if the core is nonempty and agents are indifferent between all core allocations. He also
shows that any such mechanism is group strategy-proof (cf. Shapley and Scarf, 1974; Roth and Postlewaite,
1977; Roth, 1982; Ma, 1994). A related problem of preference aggregation has also been intensively studied,
beginning with Arrow (1950).
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by �i.10 Let Pi be the set of strict preference relations for agent i, and let PJ denote the
Cartesian product ×i∈JPi for any J ⊆ I. Any profile from �= (�i)i∈I from P ≡ PI is called
a preference profile. For all �∈ P and all J ⊆ I, let �J= (�i)i∈J ∈ PJ be the restriction
of � to J .

To simplify the exposition, we make two initial assumptions. Both of these assumptions
are fully relaxed in subsequent sections. First, we initially restrict attention to house al-
location problems. A house allocation problem is the triple �I,H,�� (cf. Hylland and
Zeckhauser, 1979). Throughout the paper, we fix I and H, and thus, a problem is identified
with its preference profile. In Section 6, we generalize the setting and the results to house
allocation and exchange by allowing agents to have initial rights over houses. The results on
allocation and exchange turn out to be straightforward corollaries of the results on (pure)
allocation. Second, we initially follow the tradition adopted by many papers in the literature
(cf. Svensson, 1999) and assume that |H| ≥ |I| so that each agent is allocated a house. This
assumption is satisfied in settings in which each agent is always allocated a house (there are
no outside options), as well as in settings in which agents’ outside options are tradeable,
effectively being indistinguishable from houses. In Section 7, we allow for non-tradeable
outside options and show that analogues of our results remain true irrespective of whether
|H| ≥ |I| or |H| < |I|.

An outcome of a house allocation problem is a matching. To define a matching, let
us start with a more general concept that we will use frequently. A submatching is an
allocation of a subset of houses to a subset of agents, such that no two different agents get
the same house. Formally, a submatching is a one-to-one function σ : J → H; where for
J ⊆ I, using the standard function notation, we denote by σ(i) the assignment of agent
i ∈ J under σ, and by σ

−1(h) the agent that got house h ∈ σ(J) under σ. Let S be the
set of submatchings. For each σ ∈ S, let Iσ denote the set of agents matched by σ and
Hσ ⊆ H denote the set of houses matched by σ. For all h ∈ H, let S−h ⊂ S be the set of
submatchings σ ∈ S such that h ∈ H −Hσ, i.e., the set of submatchings at which house h is
unmatched. In virtue of the set-theoretic interpretation of functions, submatchings are sets
of agent-house pairs, and are ordered by inclusion. A matching is a maximal submatching;
that is, µ ∈ S is a matching if Iµ = I. Let M ⊂ S be the set of matchings. We will write
Iσ for I − Iσ, and Hσ for H −Hσ for short. We will also write M for S −M.

A (direct) mechanism is a mapping ϕ : P −→ M that assigns a matching for each
preference profile (or, equivalently, allocation problem).

10By �i we denote the induced weak preference relation; that is, for any g, h ∈ H, g �i h ⇐⇒ g = h or
g �i h.
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2.2 Group Strategy-Proofness and Pareto Efficiency

A mechanism is group strategy-proof if there is no group of agents that can misstate their
preferences in a way such that each one in the group gets a weakly better house, and at
least one agent in the group gets a strictly better house. Formally, a mechanism ϕ is group
strategy-proof if for all �∈ P, there exists no J ⊆ I and ��

J
∈ PJ such that

ϕ[��
J
,�−J ](i) �i ϕ[�](i) for all i ∈ J,

and
ϕ[��

J
,�−J ](j) �j ϕ[�](j) for at least one j ∈ J.

In our domain group strategy-proofness has a non-cooperative interpretation, and is
equivalent to the conjunction of two non-cooperative properties: individual strategy-proofness
and non-bossiness. The strategy-proofness of a mechanism means that the truthful revelation
of preferences is a weakly dominant strategy: a mechanism ϕ is (individually) strategy-
proof if for all �∈ P, there is no i ∈ I and ��

i
∈ Pi such that

ϕ[��
i
,�−i](i) �i ϕ[�](i).

Non-bossiness (Satterthwaite and Sonnenschein, 1981) means that no agent can misreport
his preferences in such a way that his allocation is not changed but the allocation of some
other agent is changed: a mechanism ϕ is non-bossy if for all �∈ P, there is no i ∈ I and
��

i
∈ Pi such that

ϕ[��
i
,�−i](i) = ϕ[�](i) and ϕ[��

i
,�−i] �= ϕ[�].

The following lemma due to Pápai (2000) states the non-cooperative interpretation of group
strategy-proofness:

Lemma 1. Pápai (2000) A house-allocation mechanism is group strategy-proof if and only
if it is individually strategy-proof and non-bossy.

Another useful formulation of group strategy-proofness builds on Maskin (1999). A
mechanism ϕ is Maskin monotonic if ϕ[��] = ϕ[�] whenever ��∈ P is a ϕ-monotonic
transformation of �∈ P. A preference profile ��∈ P is a ϕ-monotonic transformation of
�∈ P if

{h ∈ H : h �i ϕ[�](i)} ⊇ {h ∈ H : h �
�
i
ϕ[�](i)} for all i ∈ I.

Thus, for each agent, the set of houses better than the base-profile allocation weakly shrinks
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when we go from the base profile to its monotonic transformation. The following lemma was
proven by Takamiya (2001) for a subset of the problems we study. His proof extends word
for word to our domain of problems.

Lemma 2. A house-allocation mechanism is Maskin monotonic if and only if it is group
strategy-proof.

A matching is Pareto efficient if no other matching would make everybody weakly better
off, and at least one agent strictly better off. That is, a matching µ ∈M is Pareto efficient
if there exists no matching ν ∈M such that for all i ∈ I, ν(i) �i µ(i), and for some i ∈ I,
ν(i) �i µ(i). A mechanism is Pareto efficient if it finds a Pareto-efficient matching for
every problem.

Pareto efficiency is a very weak requirement when imposed on group strategy-proof mech-
anisms. Every group strategy-proof mechanism that maps P onto the entire set of matchings
M is Pareto efficient. This surjectivity property, which refer to as full range, is implied, for
instance, by unanimity of Gibbard (1973) and Satterthwaite (1975). A house allocation
mechanism is unanimous if the mechanism allocates all agents their most-preferred houses
whenever no two agents rank the same house as their most-preferred choice (that is, the
overall matching most preferred by all agents obtains whenever the agents agree on the most
preferred matching).

3 Beyond Top Trading Cycles

3.1 Top Trading Cycles

To set the stage for our trading-cycles (TC) mechanism, let us look at the well-known top-
trading-cycles (TTC) algorithm adapted by Pápai (2000) to house allocation problems.11 The
class of mechanisms presented in this section is identical to Pápai’s “hierarchical exchange”
class. Our presentation, however, is novel and aims to simultaneously simplify the earlier
constructions of Pápai’s class, and to introduce some of the terminology we will later use to
introduce our class of all group strategy-proof and efficient mechanisms (TC).

TTC is a recursive algorithm that matches houses to agents in a sequence of rounds.
In each round, some agents and houses are matched. The matches will not be changed in
subsequent rounds of the algorithm.

At the beginning of each round, each unmatched house is “owned” by an unmatched
agent. The algorithm creates a directed graph in which each unmatched house points to the

11The algorithm was originally proposed by David Gale for the special case of house exchange (cf. Shapley
and Scarf, 1974).
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agent who owns it, and each unmatched agent points to his most preferred house among the
unmatched houses. In the resultant directed graph there exists at least one exchange cycle
in which agent 1’s most preferred house is owned by agent 2, agent 2’s most preferred house
is owned by agent 3, ..., and finally, for some k = 1, 2, ..., agent k’s most preferred house is
owned by agent 1. Moreover, no two exchange cycles intersect. The algorithm matches all
agents in exchange cycles with their most preferred houses.

The algorithm terminates when all agents are matched. As at least one agent-house pair
is matched in every round, the algorithm terminates after finitely many rounds.

As we see, the outcome of the TTC algorithm is determined by two types of inputs:
agents’ preferences and agents’ rights of ownership over houses. The preferences are, of
course, submitted by the agents. The ownership rights are defined exogenously as part of
the mechanism.12 We formalize this aspect of the mechanism via the following concept.

Definition 1. A structure of ownership rights is a collection of mappings
�
cσ : Hσ → Iσ

�
σ∈M.

The structure of ownership rights {cσ}σ∈M is consistent if

c
−1
σ

(i) ⊆ c
−1
σ� (i) if σ ⊆ σ

�
∈M and i ∈ Iσ� .

The structure of ownership rights tells us at each submatching which unmatched agent
owns any particular unmatched house. Agent i owns house h at submatching σ when cσ(h) =

i. Consistency means that whenever an agent owns a house at a submatching (σ) then he
also owns it at any larger submatching (σ�) as long as he is unmatched.

Each consistent structure of ownership rights {cσ}σ∈M determines a hierarchical exchange
mechanism of Pápai (2000). This class of mechanisms consists of mappings from agents’
preferences P to matchings M obtained by running the TTC algorithm with consistent
structures of ownership rights. Because of this, we will also refer to hierarchical exchange as
TTC mechanisms. Pápai showed that all TTC mechanisms are group strategy-proof and
Pareto efficient.

Example 1. As an example, consider the TTC mechanism to allocate four houses h1, ..., h4

to three agents i1, ..., i3 given by the structure of ownership rights that allocates ownership
12Recall that we are studying an allocation problem in which objects are a collective endowment. In

Section 6 we will enlarge the analysis to include exchange problems among agents with private endowments.
In exchange problems, some of the mechanism’s ownership rights are determined by individual rationality
constraints.
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of houses according to the following table:

h1 h2 h3 h4

i1 i2 i3 i1

i3 i1 i2 i3

i2 i3 i1 i2

That is, house h1 is initially owned by i1; at submatchings i3 and it are not matched and i1

is matched, it is owned by i3; at submatchings i1 and i3 are matched and it is not matched,
it is owned by i2. Notice that the owner is uniquely determined and the ownership structure
is consistent.

To see how the TTC algorithms run, let us apply this mechanism to the preference profile
in which all agents i have the same preferences �i:

agent i preferences: h1 �i h2 �i h3 �i h4.

In the first round, all agents point to house h1, houses h1 and h4 point to agent i1, house h2

points to i2, and house h3 points to i3. In this round, there is one exchange cycle, in which
i1 is matched with h1.

In the second round, agents i2,i3 and houses h2, h3, h4 are unmatched. House h2 is still
owned by i2, while houses h3, h4 are still owned by i3. In the resultant directed graph, there is
again one exchange cycle in which i2 points to h2 and h2 points to i2, and they are matched.

In the third round, agent i3 owns all unmatched houses, is matched with h3, and the
algorithm terminates.

The second round of this example illustrates two phenomena. First, we cannot allocate
the ownership unconditionally, as this would leave unresolved the ownership of house h4 after
its initial owner, agent i1, is matched with house h1. Second, it illustrates the need for the
consistency condition. If the ownership structure was not consistent, and, say, h2 was owned
by i3 at σ = {(i1, h1)} (that is, after i1 left with h1), then agent i2 would have an incentive
to misreport his preferences and claim that he prefers h2 over all other houses.

Although under the above preference structure, all exchange cycles involve only one agent
and one house, this is not generally true. Consider, for instance, the following preference

13



profile in which i2’s preference between h2 and h3 is reversed:

agent i1 preferences: h1 �i1 h2 �i1 h3 �i1 h4,

agent i2 preferences: h1 �i2 h3 �i2 h2 �i3 h4,

agent i3 preferences: h1 �i3 h2 �i3 h3 �i3 h4.

When this profile is reported, the first round is the same as above, but the exchange cycle
in the second round has agent i2 pointing to h3, h3 pointing to i3, i3 pointing to h2, and h2

pointing to i2.
To appreciate the generality of the Pápai’s class, notice that the serial dictatorship of

Satterthwaite and Sonnenschein (1981) and Svensson (1994) is a special case of the TTC
mechanisms in which at each submatching there is an agent who owns all unmatched houses.

3.2 Beyond Top Trading Cycles: An Example

How might a group strategy-proof and efficient non-TTC mechanism look like? To give an
example, we will modify the TTC mechanism of Example 1.

Example 2. Consider three agents i1, ..., i3 and three houses h1, ..., h3 and an ownership
structure that allocates ownership of houses according to the following table (obtained by
dropping house h4 in the ownership structure of the example of Subsection 3.2):

h1 h2 h3

i1 i2 i3

i3 i1 i2

i2 i3 i1

The owner is uniquely determined and the ownership structure is consistent. Given this
structure, let us run TTC with one modification: agent i1 is not allowed to point to house
h1 as long as there are other unmatched agents. In rounds with other unmatched agents
(and hence other unmatched houses), agent i1 will point to his most preferred house among
unmatched houses other than h1.13

For instance, if each agent i has the preference h1 �i h2 �i h3 then in the first round
agents i2 and i3 will point to h1, but agent i1 will point to his second-choice house, h2. We

13Pápai (2000) gives an example of a non-TTC mapping from P to M. Her construction is different
from ours though the resultant mappings are identical. As we will show in the next section, the advantage
of our construction lies in its generalizability to cover the whole class of group strategy-proof and efficient
mechanisms.
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will then have an exchange cycle in which i1 is matched with h2 and i2 is matched with h1.
In the second round, the algorithm matches agent i3 and house h3, and terminates.

This mechanism is group strategy-proof and Pareto efficient. An easy recursion may
convince us that at each round the submatching formed is Pareto efficient for matched
agents. Indeed, if an agent matched in the first round does not get his top choice then he
gets his second choice, and getting his first choice would harm another agent matched in
that round. In general, agents matched in the n’th round get their first or second choice
among houses available in the n’th round, and giving one of these agents a better house
would harm some other agent matched at the same or earlier round. The intuition behind
its group strategy-proofness is more complex, and we defer its discussion until our formal
results.

The mechanism of Example 2 turns out to be different from all TTC mechanisms. To see
this, first observe that the mechanism matches house h1 with agent i2 under the illustrative
preference profile analyzed above, whereas it would match h1 with another agent, i3, if
agent i1 submitted preferences h1 �i1 h3 �i1 h2 (and other agents i �= i1 continued to have
preferences h1 �i h2 �i h3). However, any TTC mechanism would match h1 with the same
agent in these two preference profiles. Indeed, TTC ownership structure uniquely determines
which agent owns h1 at the empty submatching, and this agent would be matched with h1

in the first round of the algorithm under any preference profile in which all agents rank h1

as their first choice.
For future use, notice that in the above example, agent i1 does not have full ownership

right over h1. Unless he is the only agent left, he cannot form the trivial exchange cycle that
would match him with h1. He does have some control right over h1, however: he can trade
h1 for houses owned by other agents. In our general trading-cycles algorithm, we will refer
to such weak control rights as “brokerage.”

4 Trading-Cycles Mechanism

We turn now to our new algorithm, trading cycles (TC), an example of which we saw in
the previous section. Like TTC, the TC is a recursive algorithm that matches agents and
houses in exchange cycles over a sequence of rounds. TC is more flexible, however, as it
allows two types of intra-round control rights over houses that agents bring to the exchange
cycles: ownership and brokerage.

In our description of the TTC class, each TTC mechanism was determined by a consistent
ownership structure. Similarly, each TC mechanism is determined by a consistent structure
of control rights.
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Definition 2. A structure of control rights is a collection of mappings

�
(cσ, bσ) : Hσ → Iσ × {ownership,brokerage}

�
σ∈M .

The functions cσ of the control rights structure tell us which unmatched agent controls
any particular unmatched house at submatching σ. Agent i controls house h ∈ Hσ at
submatching σ when cσ(h) = i. The type of control is determined by functions bσ. We say
that the agent cσ(h) owns h at σ if bσ(h) =ownership, and that the agent cσ(h) brokers h

at σ if bσ(h) =brokerage. In the former case we call the agent an owner and the controlled
house an owned house. In the latter case we use the terms broker and brokered house.
Notice that each controlled (owned or brokered) house is unmatched at σ, and any unmatched
house is controlled by some uniquely determined unmatched agent.

The consistency requirement on TC control rights structures consists of three constraints
on brokerage at any given submatching (the within-round requirements) and three con-
straints on how the control rights are related across different submatchings (the across-rounds
requirements).

Within-round Requirements. Consider any σ ∈M.

(R1) There is at most one brokered house at σ.

(R2) If i is the only unmatched agent at σ then i owns all unmatched houses at
σ.

(R3) If agent i brokers a house at σ, then i does not own any houses at σ.

The conditions allow for different houses to be brokered at different submatchings, even
though there is at most one brokered house at any given submatching.

Requirements R1-R2 are what we need for the TC algorithm to be well defined (R3 is
necessary for Pareto efficiency and individual strategy-proofness; see Appendix A). With
these requirements in place, we are ready to describe the TC algorithm, postponing the
introduction of the remaining consistency requirements until the next section.

The TC algorithm. The algorithm consists of a finite sequence of rounds
r = 1, 2, .... In each round some agents are matched with houses. By σ

r−1 we
denote the submatching of agents and houses matched before round r. Before
the first round the submatching is empty, that is, σ

0 = ∅. If σ
r−1 ∈M, that is,

when every agent is matched with a house, the algorithm terminates and gives
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matching σ
r−1 as its outcome. If σ

r−1 ∈ M, then the algorithm proceeds with
the following three steps of round r:

Step 1. Pointing. Each house h ∈ Hσr−1 points to the agent who controls it at
σ

r−1. If there exists a broker at σ
r−1, then he points to his most preferred house

among the ones owned at σ
r−1. Every other agent i ∈ Iσr−1 points to his most

preferred house in Hσr−1 .

Step 2. Trading cycles. There exists n ∈ {1, 2, ...} and an exchange cycle

h
1
→ i

1
→ h

2
→ ...h

n
→ i

n
→ h

1

in which agents i
� ∈ Iσr−1 point to houses h

�+1 ∈ Hσr−1 and houses h
� points to

agents i
� (here � = 1, ..., n and superscripts are added modulo n);

Step 3. Matching. Each agent in each trading cycle is matched with the house
he is pointing to; σ

r is defined as the union of σ
r−1 and the set of newly matched

agent-house pairs.

The algorithm terminates when all agents or all houses are matched.

Looking back at the example of the previous section, we see that it was TC and that
agent i1 brokered house h1 while other agents owned houses. We may now also see that
requirements R1 and R2 are needed to ensure that in Step 1 there always is an owned house
for the broker to point to. The difference between TTC and TC is encapsulated in Step
1; the other steps are standard and were already present in Gale’s TTC idea (Shapley and
Scarf, 1974). The existence of the trading cycle follows from there being a finite number of
nodes (agents and houses), each pointing at another. The matching of Step 3 is well defined,
as (i) each agent points to exactly one house, and (ii) each matched house is allocated to
exactly one agent (no two different agents pointing to the same house h can belong to trading
cycles because there is a unique pointing path that starts with house h). Finally, since we
match at least one agent-house pair in every round, and since there are finitely many agents
and houses, the algorithm stops after finitely many rounds.

Our algorithm builds on Gale’s top-trading-cycles idea described in Section 3.1, but allows
more general trading cycles than top cycles. In TC, brokers do not necessarily point to their
top-choice houses. In contrast, all previous developments of Gale’s idea, such as the top
trading cycles with newcomers (Abdulkadiroğlu and Sönmez, 1999), hierarchical exchange
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(Pápai, 2000), top trading cycles for school choice (Abdulkadiroğlu and Sönmez, 2003), and
top trading cycles and chains (Roth, Sönmez, and Ünver, 2004), allowed only top trading
cycles and had all agents point to their top choice among unmatched houses. All these
previous developments may be viewed as using a subclass of TC in which all control rights
are ownership rights and there are no brokers.14

The terminology of owners and brokers is motivated by a trading analogy. In each round
of the algorithm, an owner can either be matched with the house he controls or with another
house obtained from an exchange. A broker cannot be matched with the house he controls;
the broker can only be matched with a house obtained from an exchange with other agents.
At any submatching (but not globally throughout the algorithm), we can think of the broker
of house h as representing a latent agent who owns h but prefers any other house over it.
The analogy is, of course, imperfect.

Introduced in the previous section, the TC algorithm with a control rights structure sat-
isfying R1-R3 provides a Pareto-efficient mechanism that maps profiles from P to matchings
in M. The recursive argument for the efficiency of the non-TTC mechanism from Section
3.2 applies.

Proposition 1. The outcome of the TC algorithm is Pareto-efficient for all control rights
structures that satisfy R1-R3.

We are about to see that the TC-induced mapping is group strategy-proof if the control
rights structure also satisfies the following across-round consistency requirements.

Across-round Requirements. Consider any submatchings σ,σ
� such that

|σ�| = |σ|+ 1 and σ ⊂ σ
� ∈M, and any agent i ∈ Iσ� and any house h ∈ Hσ� :

(R4) If i owns h at σ then i owns h at σ
�.

(R5) Assume that at least two agents from Iσ� own houses at σ. If i brokers
house h at σ then i brokers h at σ

�.

(R6) Assume that at σ agent i controls h and agent i
� ∈ Iσ controls h

� ∈ Hσ.
Then, i

� owns h at σ ∪ {(i, h�)}, and
if, in addition, i brokers h at σ but not at σ

� and i
� ∈ Iσ� , then i

� owns h at σ
�.

Requirements R4 and R5 postulate that control rights persist: agents hold on to control rights
as we move from smaller to larger submatchings, or through the rounds of the algorithm. R4
(persistence of ownership) is identical to the consistency assumption we imposed on TTC.

14In particular, TC can easily handle private endowments, as explained in Section 6.
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The first example of Section 3.1 illustrated why we need such a persistence assumption for the
resultant mechanism to be individually strategy-proof. A similar example might convince us
that individual strategy-proofness relies also on requirement R5 (persistence of brokerage);
see Appendix A.

Requirement R6 has two related parts. The first part (consolation for lost control rights)
postulates that when an agent i is matched with a house controlled by i

� then i
� owns the

houses previously controlled by i. R6’s second part (brokered-to-owned house transition)
postulates who obtains the control right over a house when a broker loses his brokerage
right. By R5, the broker can only lose the brokerage right between σ and σ

� when no more
than one agent is a σ-owner and σ

�-owner; this is the agent who obtains the control right
at σ

� over the house brokered at σ. A key implication of R6 is the transfer of ownership
rights to ex-brokers: if i brokers h at σ but not at σ

�, and i
� ∈ Iσ� owns h

� ∈ Hσ� at σ,
then R6’s first part implies that i owns h

� at σ ∪ {(i�, h)}, and R4 further implies that i

owns h
� at σ

� ∪ {(i�, h)}. We refer to this consequence of R6 (and R4) as broker-to-heir
transition. Requirement R6 is needed to guarantee both the non-bossiness and individual
strategy-proofness of the mechanisms; see Appendix A.

We are now ready to define our mechanism class.

Definition 3. A control rights structure is consistent if it satisfies requirements R1-R6.
The class of TC mechanisms (trading cycles) consists of mappings from agents’ preference
profiles P to matchings M obtained by running the TC algorithm with consistent control
rights structures.

The TTC mechanisms of Section 3.1 and the non-TTC mechanism of Section 3.2 are
examples of TC. We will denote by ψ

c,b the TC mechanism obtained from a consistent
control rights structure {(cσ, bσ)}

σ∈M. In Section 6 we adapt this class of mechanisms to
exchange problems, and in Section 7 we enlarge it to allow for agents’ outside options (in
particular, in Section 7 we allow agents to ranks some objects as unacceptable).

To sidestep the complication of condition R6 in the first reading, the reader is invited to
keep in mind a smaller class of control rights structures in which both of these requirements
are replaced by the following strong form of brokerage persistence: “If |σ�| < |I|−1 and agent
i brokers house h at σ then i brokers h at σ

�.” We think that by restricting attention to this
smaller class of control rights structures, one is not missing much of the flexibility of the
TC class of mechanism. We hasten to stress, however, that the complication is there for a
reason: there are TC mechanisms that cannot be replicated by TC control rights structures
satisfying the above strengthening of R5-R6; such TC mechanisms are group strategy-proof
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and efficient by the results of the next section. Let us also stress that, a priori, we could
expect the class of group strategy-proof and efficient mechanisms to be much more complex
than it turned out to be. In fact, Section 6 and Appendix B show that brokers and condition
R6 are actually quite easy to work with.

Example 3. Can we replace R5-R6 by the following simpler (and stronger) property “if
|σ�| < |I| − 1 and agent i brokers house h at σ and is unmatched at σ

� ⊃ σ, then i brokers
h at σ

� ” (an analogue of R4 for brokers)? The following example shows that we cannot.
Consider an environment with four agents, i1, i2, i3, i4, four houses, h1, h2, h3, h4, and a TC
mechanism ψ

c,b whose control rights structure (c, b) is explained below and illustrated by the
table in Figure 1.

h1 h2 h3 h4

i1,o i2,o i1,o i4,b

i3,o (i1, h1)(i2, h4) � � otherwise i3,o (i1, h1)� �
i2 and i3 are matched, and

i1 is matched with h2 or h3

i2,o i4,o i1,o i2,o i2,o i4,o
i4,o i3,o i3,o i4,o i4,o

i4,o i3,o

Figure 1: A control rights structure with broker-to-heir transition

Houses h1, h3 are owned by agent i1 (denoted by “o” next to i1 in the figure); he continues
owning them as long as he is unmatched (R4 is satisfied). When i1 is matched the unmatched
of the two houses is owned by i3 (if he is still unmatched). When both i1 and i3 are matched
and h1 or h3 is unmatched, the house is owned by i2. When all agents are matched and one
of the houses h1 or h3 is unmatched, the house is owned by i4.

House h2 is owned by i2. When i2 is matched but h2 is not then h2 is inherited by one
of the unmatched agents; who inherits h2 depends on how the matched agents are matched
(the submatching). If i1 is matched with h1 and i2 is matched with h4, then the next owners
of h2 are i4 and i3, in this order. In all other cases, the order of next owners of h2 is i1, i3,
and i4.

House h4 is initially brokered by agent i4 (denoted by “b” next to i4 in the figure). Agent
i4 continues to broker h4 as long as he is unmatched with two exceptions: (i) if i1 is matched
with h1 then i4 looses the brokerage right, and h4 becomes an owned house with the order of
owners i2, i4, and i3; and (ii) if i4 is the only remaining agent, then he owns h4. Notice that
the first exception satisfies condition R6, while the second is dictated by R2. In general, we
can check that the control right structure is consistent.
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Let us now check that the TC mechanism defined by this control rights structure is
different from all TC mechanisms with consistent control rights structures in which the
simple analogue of R4 for brokers holds true: “if |σ�| < |I| − 1 and agent i brokers house h

at σ and is unmatched at σ
� ⊃ σ, then i brokers h at σ

� .” By way of contradiction, let us
assume that there is a TC mechanism ψ with a control rights structure satisfying the above
strong form of brokerage persistence and produces the same allocation as ψ

c,b for each profile
of agents’ preferences.

First, notice that at the empty submatching, i4 is the broker of h4 in ψ. This is so because
h4 is not owned by any agent at the empty submatching ∅ as (ψ[�])−1(h4) = (ψc,b[�])−1(h4)

varies with �∈ P (that is, across profiles at which all agents rank h4 first). Hence, there is
an agent who has the brokerage right over h4, and it must be i4, as ψ[�](i4) = ψ

c,b[�](i4) = g

for all �∈ P such that all agents rank h4 first and any g ∈ {h1, h3, h2} second.
Second, consider the submatching σ = {(i1, h1)} and a preference profile �∈ P such that

i1 ranks h1 first, others rank h4, h3, h2, and h1 in this order. In mechanism ψ, agent i4 would
continue to be the broker of h4 at σ, and thus

ψ[�](i4) = h3.

However,
ψ

c,b[�](i4) = h2.

This contradiction shows that indeed the TC mechanism of the example cannot be repre-
sented by a control right structure in which brokerage satisfies the analogue of R4 for brokers
(in particular it cannot be represented without brokers).

5 Main Results

Our main results tell us that the class of Trading Cycles mechanisms coincides with the
class of Pareto-efficient and group strategy-proof direct mechanisms. In this section we state
and prove it for the model of allocation in which all objects are acceptable. In the following
two sections we relax both of these simplifying assumptions.

Theorem 1. Every TC mechanism is group strategy-proof and Pareto efficient.

Theorem 2. Every group strategy-proof and Pareto-efficient direct mechanism is TC.

Let us start the discussion of the proof of Theorem 1 with the following observation about
the TC algorithm.
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Lemma 3. If an agent i is unmatched at a round r of the algorithm under preference profiles
[�i,�−i] and [��

i
,�−i], then the control rights structure at round r is the same under [�i,�−i]

and [��
i
,�−i].

The lemma obtains because its assumption implies that the same submatching was formed
before round r whenever agent i submitted preference ranking �i or ��

i
. Hence, the control

rights structures must also be the same at round r. The lemma has an important implication:
as long as an agent is unmatched, he cannot influence when he becomes an owner, a broker,
or enters the broker-to-heir transition (see R6) by choosing which preferences to submit.

To see intuitively why trading cycles are strategy-proof, notice that the above lemma
implies that no agent i can improve his match by being matched earlier. Owners cannot
benefit by waiting since they get the best available house at the time they match under �.
Checking that brokers cannot benefit by waiting is only slightly more subtle. We provide
the details below.

As observed by Pápai (2000), to show not only that individual agents cannot benefit from
manipulation, but also that groups of agents cannot, it is enough to show that the mechanism
is non-bossy. Proving non-bossiness is harder and this part of the proof is relegated to
Appendix C. To get a sense for the proof, consider a TC mechanism without brokers, and
an agent i who gets the same object whether he submits preferences �i or ��

i
. An inductive

argument then shows that the algorithm will go though the same cycles under �= (�i,�−i)

and ��= (��
i
,�−i) even if the rounds at which these cycles are formed may differ. If brokers

were strongly persistent, the same argument would apply. The difficulty in proving non-
bossiness is when a broker loses his brokerage right. Condition R5 ensures that cycles of
three agents or more are the same under both � and ��, but that cycles of one or two agents
can be different. For instance, in the setting of Example 3, consider a preference profile
in which agents i1 and i3 rank houses h1 �i1,i3 h4 �i1,i3 h2 �i1,i3 h3 and agents i2 and i4

rank houses h4 �i2,i4 h2 �i2,i4 h3 �i2,i4 h1. Under this preference profile, �{i1,i2,i3,i4}, in the
first round, broker i4 obtains object h2 in a cycle i4 → h2 → i2 → h4 → i4. However if i2

submitted instead preference ranking ��
i2

identical to �i1,i3 , then i4 and i2 would not swap
houses in first round. They would both be still unmatched in round 2, and i4 would have
lost his brokerage right; house h4 would now be owned by i2 (notice that not only it is so
in the example but in fact condition R6 requires that i2 owns h4 when i1 becomes matched
and i4 looses the brokerage right). Agent i2 would then match with h4 in round 2. In round
3, agent i4 would become owner of h2 (again this is so in the example, and, importantly it
is guaranteed by the broker-to-heir transition property of R6). Thus, in round 3 agent i4

would match with h2. While the cycles are different, the allocations are the same. Looking
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at requirement R6 (and its broker-to-heir corollary) can give us a sense why – even if one or
two agent cycles are different at � and

�
��

i2
,�−i2

�
– such or a similar scenario is bound to

happen.

Beginning of the proof of Theorem 1. Proposition 1 demonstrates Pareto efficiency. By
Lemma 1, to prove group strategy-proofness it is enough to show that every TC mechanism
is individually strategy-proof and non-bossy. We will prove individual strategy-proofness
below, and non-bossiness in Appendix C. Let ψ

c,b be a TC mechanism. Let � be a preference
profile. We fix an agent i ∈ I. We will show that i cannot benefit by submitting ��

i
�=�i

while the other agents submit �−i. Let s be the round i leaves (with house h) at �i and s
�

be the time i leaves (with h
�) at ��

i
in the algorithm. We will consider two cases.

Case 1. s ≤ s
�: At round s, the same houses and agents are in the market at both �i

and ��
i
by Lemma 3. If i is not a broker at time s under �i, then, by submitting �i, agent i

gets the top-choice house among the remaining ones in round s, implying that he cannot be
better off by submitting ��

i
.

Assume now that i is a broker at time s under �i. Let e be the brokered house at time
s. If e is not agent i’s top-choice house remaining under �i, then by submitting �i, agent i

gets the top-choice house among the remaining ones in round s, implying that he cannot be
better off by submitting ��

i
.

It remains for us to consider the situation in which e is broker i’s top-choice remaining
house, and to show that i cannot get e by submitting the profile ��

i
. For an argument by

contradiction, assume that under ��
i
agent i leaves at round s

� with house e. Because agent
i is a broker when he leaves at �i, there is an agent j who is matched with house e at time
s. At this time, j is an owner of some owned house hj, and e is his top-choice house. By
Lemma 3, the control rights structure at round s is the same under both �i and ��

i
. Hence,

i is also a broker at time s after submitting ��
i
, and j is an owner of hj. Moreover, j’s top

choice is still house e. That means that under ��
i
agent j will stay unmatched until s

� + 1.
Since agent i leaves with e at s

�, he cannot be the broker of e at this round, because a broker
cannot leave with the brokered house, while another owner j is unmatched. Thus, there
is a round s

�� ∈ {s + 1, ..., s�} at which agent i stops being the broker of e. Since e is still
unmatched at this round, there is a broker-to-heir transition between s

��− 1 and s
�� (by R6).

Because j is an owner of hj at both s
�� − 1 and s

��, he would have inherited e at s
�� (by R6).

Then, however, j would have left with e at s
��
, as e is j’s top choice among houses left at s

(and hence those left at s
��). A contradiction.

Case 2. s > s
�: At round s

�, the same houses and agents are in the market at both �i

and ��
i

by Lemma 3. Consider round s
� at both �i and ��

i
. Under ��

i
, agent i points to
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house h
� = h

1 that points to agent i
1 that points to ... that points to object h

n that points
to agent i = i

n (and this cycle leaves at round s
�). If the cycle is trivial (n = 1) and h

� points
back to i, then i owns h

�. Since ownership persists by R4, i will own h
� at s > s

�, and thus
at round s, agent i would leave with a house at least as good as h

�.
In the sequel, assume that there is at least one other agent i

n in the cycle (that is, n ≥ 2).
If each house h

� is owned by i
�, for all � ∈ {1, ..., n}, then the chain h

� = h
1 → i

1 →

h
2 → ... → h

n → i will stay in the system as long as i is in the system (by persistence of
ownership, implied through R4). Thus, at round s agent i would leave with a house at least
as good as h

� under �i.
If i

� brokers h
� for some � ∈ {1, ..., n}, then the chain h

� = h
1 → i

1 → h
2 → ... → h

n → i

will stay in the system as long as i
� continues brokering h

� (since there are no other brokerages
and ownerships persist by R4). If i

� brokers h
� at round s under �i, then we are done, since

the same cycle would have formed. Thus suppose that at a round s
�� ∈ {s� + 1, ..., s} broker

i
� loses his broker status. Because n ≥ 2, agent i

�+1 is an owner both at rounds s
�� − 1 and

s
��. Hence, the loss of brokerage status means that i

� enters a broker-to-heir transition. We
must then have n = 2 (since by R6, only 1 previous owner can remain unmatched during the
broker-to-heir transition). There are two cases: either i

1 owns h
1 = h

� and h
2 (and i

2 = i
� is

the heir) or i
2 = i owns h

1 and h
2. In the former case, i

1 who wants h
2, will leave with it

at round s
�� under �i, and i will inherit h

1 = h
� at s

�� + 1 by R6. In the latter case, i owns
h

1 = h
� already at round s

��. In both cases, at s ≥ s
�� agent i can only leave with a house at

least as good as h
� under �i. QED

Let us finish this section with an overview of the proof of Theorem 2 (the full proof is
in the Supplementary Appendix D). In the proof we fix a group strategy-proof and Pareto-
efficient direct mechanism ϕ and construct a TC mechanism ψ

c,b that is equivalent to ϕ. We
proceed in three steps: we first construct the candidate control rights structure (c, b), then
show it satisfies conditions R1-R6, and finally show that the resultant TC mechanism ψ

c,b

equals ϕ.
We define a candidate control rights structure in terms of how ϕ allocates objects for

preferences from some special preference classes. To see how this is done, consider the
empty submatching and a house h. If ϕ were a TC and h was owned by an agent then
at all preference profiles in which all agents rank h as their most preferred house, ϕ would
allocate h to the same agent – the owner of h at the empty submatching. We thus check
whether ϕ allocates h to the same agent at all above profiles, and if it does, we call this
agent the candidate owner of h (in the proof, for brevity, we refer to the candidate owner as
owner*). If ϕ does not allocate h to the same agent at all above profiles, h is a candidate
brokered house. Notice that if ϕ were a TC and h was brokered by an agent then at every
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profile at which every agent ranks h as his most preferred house and some other house h
�

as his second-most preferred house, ϕ would allocate h
� to the same agent – the broker of

h at the empty submatching. We thus check whether there is an agent who always gets his
second-most preferred house at the above profiles, and if there is such an agent we call this
agent the candidate broker of h (broker* for short). Finally, we prove the key result that
every house h either has a candidate owner or a candidate broker.

The construction of candidate control rights at non-empty submatchings is similar. The
only modification is that instead of looking at preferences at which all agents agree on their
most preferred house (or two most preferred houses), we impose this commonality only on
unmatched agents, and at the same time assume the matched agents rank the houses they are
matched with at the top, while all other agents rank matched houses at the bottom. Thanks
to the simplifying assumption that |H| ≥ |I|, the Pareto efficiency of TC mechanisms implies
that the above procedure would work well if ϕ was a TC, and we prove that indeed it works
well whenever ϕ is group strategy-proof and efficient.15

The second step of the proof is to show that the above candidate control rights structure
indeed satisfies properties R1-R6. We flesh out the argument in several lemmas. With these
lemmas proven, we have constructed a TC mechanism ψ

c,b. The last step of the proof is to
show that ψ

c,b = ϕ. We rely on the recursive structure of TC, and proceed by induction
with respect to the rounds of ψ

c,b.

6 House Allocation and Exchange

In this section, we generalize the model by allowing agents to have private endowments.
The characterizations in the resulting allocation and exchange domains are straightforward
corollaries of our main results. We also relate the results to allocation and exchange market
design environments.

6.1 Model of House Allocation and Exchange

Let H = {Hi}i∈{0}∪I
be a collection of |I|+ 1 pairwise-disjoint subsets of H (some of which

might be empty) such that ∪i∈{0}∪IHi = H. We interpret houses from H0 as the social
endowment of the agents, and houses from Hi, i ∈ I, as the private endowment of agent i. A
house allocation and exchange problem is a list �H, I,H,�� . Since we allow some of the
agents to have empty endowment, the allocation model of Section 2 is contained as a special
case with H = {H, ∅, ..., ∅}. We may fix H, I and H, and identify the house allocation and

15This point in the construction requires more care in the case of |H| < |I|; see Section 7.
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exchange problem just by its preference profile �. Matchings and mechanisms are defined
as in the allocation model of Section 2.

Pareto efficiency and group strategy-proofness are defined in the same way as in Section
2. In particular, the equivalence between group strategy-proofness and the conjunction
of individual strategy-proofness and non-bossiness continue to hold true. In addition to
efficiency and strategy-proofness, satisfactory mechanisms in this problem domain should
be individually rational. A mechanism is individually rational if it always selects an
individually rational matching. A matching is individually rational, if it assigns each agent
a house that is at least as good as the house he would choose from among his endowment.
Formally, a matching µ is individually rational if

µ(i) �i h ∀i ∈ I,∀h ∈ Hi.

For agents with empty endowments, Hi = ∅, this condition is tautologically true.

6.2 Results

Our main characterization result for house allocation and exchange is now an immediate
corollary of Theorems 1-2.

Theorem 3. In house allocation and exchange problems, a mechanism is individually
rational, Pareto efficient, and group strategy-proof if and only if it is an individually rational
TC mechanism.

Furthermore, it is straightforward to identify individually rational TC mechanisms. Re-
ferring to control rights at the empty submatching as the initial control rights, let us formu-
late the criterion for individual rationality as follows.

Proposition 2. In house allocation and exchange problems, a TC mechanism is individually
rational if and only if it may be represented by a consistent control rights structure in which
each agent is given the initial ownership rights of all houses from his endowment.

Proof of Proposition 2. To prove individual rationality of the above subclass of TC
mechanisms, consider an agent i and assume that i owns at the empty submatching a house
h from his endowment. Then R4 ensures that i owns h throughout the execution of the TC
algorithm. Thus, the TC mechanism will allocate to i house h or a house that i prefers to h.
Now, let ψ be an individually rational TC mechanism. Recall that ownership* was defined
in the proof of Theorem 2. For any agent i and house h from i’s endowment, i is owner* of
h because individual rationality implies that ψ[�](i) = h for any �∈ P[∅, h], which is the
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set of preference profiles that rank h first for all agents. The construction from the proof
of Theorem 2 thus yields a control rights structure that assigns to each agent the initial
ownership rights over the houses from his endowment, and represents ψ. QED
Notice that when one agent is endowed with all houses, there are individually rational mech-
anisms that might be represented both by a control rights structure that assigns this agent
initial ownership rights over all houses, and by an alternative control rights structure that
assigns this agent ownership rights over all houses but one. Except for such situations, how-
ever, any control rights structure of an individually rational TC mechanism assigns to each
agent the initial ownership rights of all houses from his endowment.

As a corollary of the above two results, we obtain a powerful and non-trivial characteri-
zation for an important subdomain of allocation and exchange problems:

Theorem 4. In house allocation and exchange problems where each agent has a nonempty
endowment, a mechanism is individually rational, Pareto efficient, and group strategy-proof
if and only if it is a TTC mechanism (aka hierarchical exchange) that assigns all agents the
initial ownership rights of houses from their endowment.

Proof of Theorem 4. By Theorem 3, a mechanism ϕ is individually rational, Pareto
efficient and group strategy-proof if and only if there exists an individually rational and
consistent control rights structure (c, b) such that ϕ = ψ

c,b. By Proposition 2 we may
assume that each agent has initial ownership rights over the houses from their endowment.
By condition R4 of consistency all unmatched agents own a house throughout the mechanism,
and hence R3 implies that no agent is a broker. ψ

c,b is thus a TTC mechanism. QED

This result is a generalization of the result stated by Ma (1994) for the housing market
of Shapley and Scarf (1974). A housing market is a house allocation and exchange problem
in which |I| = |H| and each agent is endowed with a house. In this environment, Ma
characterized TTC (in which agents own their endowments) as the unique mechanism that
is individually rational, strategy-proof, and Pareto efficient.

6.3 Market Design Environments

The assumptions of Theorem 3 are satisfied by the house allocation problem with existing
tenants of Abdulkadiroğlu and Sönmez (1999). Theirs is the subclass of house allocation and
exchange problems in which each agent is endowed with one or zero house. In the former
case, the agent is referred to as an existing tenant. The house allocation problem with
existing tenants is modeled after dormitory assignment problems in US college campuses. In
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each such college, at the beginning of the academic year, there are new senior, junior, and
sophomore students, each of whom already occupies a room from the last academic year.
There are vacated rooms by the graduating class and there are new freshmen who would like
to obtain a room, though they do not currently occupy any.

The assumptions of Theorem 4 are satisfied by the kidney exchange with strict preferences
(Roth, Sönmez, and Ünver, 2004), and the kidney exchange problem with good Samaritan
donors (Sönmez and Ünver, 2006). Kidney transplant patients are the agents and live kidney
donors are the houses. Each agent is endowed with a live donor who would like to donate a
kidney if his paired-donor receives a transplant in return. Thus, all agents have nonempty
endowments. The model also allows for unattached donors known as good Samaritan donors
who would like to donate a kidney to any patient. In the US, good Samaritan donors have
been the driving force behind kidney exchange since 2006. Many regional programs such as
the Alliance for Paired Donation (centered in Toledo, Ohio) and the New England Program
for Kidney Exchange (centered in Newton, Massachusetts) have used good Samaritan donors
in many of kidney exchanges conducted since 2006 (cf. Rees, Kopke, Pelletier, Segev, Rutter,
Fabrega, Rogers, Pankewycz, Hiller, Roth, Sandholm, Ünver, and Montgomery, 2009).

The kidney exchange context underscores the importance of group strategy-proofness.
The doctors of patients are the ones who have the information about patients’ preferences
over kidneys and it is known that doctors (or transplant centers) themselves at times ma-
nipulate the system to benefit their patients.16 An individually strategy-proof mechanism
that is not group strategy-proof could thus by manipulated by doctors. Group strategy-
proofness guarantees that no doctor is able to manipulate the mechanism on behalf of his or
her patients without harming at least one of them.

7 Outside Options

In this final section, we drop the assumption that |H| ≥ |I| and allow agents to prefer their
(non-tradeable) outside options to some of the houses. Thus, some agents may be matched
with their outside options, and we need to slightly modify some of the definitions. As before,
I is the set of agents and H is the set of houses. Each agent i has a strict preference relation
�i over H and his outside option, denoted yi. We denote the set of outside options by
Y . The houses preferred to the outside option are called acceptable (to the agent); the
remaining houses are called unacceptable to this agent. As before, we denote by Pi the

16Deceased-donor queue procedures are sometimes gamed by physicians acting as advocates for their
patients. In particular, in 2003 two Chicago hospitals settled a federal lawsuit alleging that some patients
had been fraudulently certified as sicker than they were to move them up on the liver transplant queue
(Warmbir, 2003).
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set of agent i’s preference profiles, and PJ = ×i∈JPi for any J ⊆ I.
Let us initially restrict our attention to house allocation problems. This restriction can

be easily relaxed as in Section 6, and we do so at the end of the section. As before, a house
allocation problem is the triple �I,H,��. We impose no assumption on the cardinalities of
I and H; in particular, we allow both |H| ≥ |I| and |H| < |I|.

We generalize the concept of submatching as follows: For J ⊆ I, a submatching is a
one-to-one function σ : J → H ∪ Y such that each agent is matched with a house or his
outside option.

A terminological warning is in order. A natural interpretation of the outside option is
remaining unmatched. We will not refer to the outside option in this way, however, in order
to avoid confusion with our submatching terminology. As in the main body of the paper,
whenever we say that an agent is unmatched at σ, we refer to agents from Iσ = I − Iσ. An
agent is considered matched even if he is matched to his outside option.

As before, S is the set of submatchings, Iσ denotes the set of agents matched by σ,
Hσ ⊆ H denotes the set of houses matched by σ, and we use the standard function notation
so that σ(i) is the assignment of agent i ∈ Iσ, σ

−1(h) is the agent that got house h ∈ σ(Iσ),
and σ

−1 (Y ) is the set of agents matched to their outside options. A matching is a maximal
submatching, that is, µ ∈ S is a matching if Iµ = I. As before, M ⊂ S is the set of
matchings. A (direct) mechanism is a mapping ϕ : P −→ M that assigns a matching for
each preference profile (or, equivalently, allocation problem). Mechanisms, efficiency, and
group strategy-proofness are defined as before.

The control rights structures (c, b) and their consistency R1-R6 are defined as before (no-
tice though that the meaning of some terms such as submatching has changed, as explained
above). In particular, (i) only houses are owned or brokered, the outside options are not; and
(ii) control rights are defined for all submatchings, including submatchings in which some
agents are matched with their outside options. Notice that if a control rights structure is
consistent on the domain with outside options, and |H| ≥ |I|, then the restriction of the
control rights structure to submatchings in which all agents are matched with houses is a
consistent control rights structure in the sense of Sections 4-5.

We will adjust the definition of the TC algorithm by adding two clauses.

Clause (a). We add the following provision to Step 1 (pointing) of round r:
- If an agent prefers his outside option to all unmatched houses, the agent points to the

outside option. If there is a broker for whom the brokered house is the only acceptable house,
such a broker also points to his outside option. The outside option of each agent points to
the agent.
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- We modify the definition of σ
r in Step 3 (matching); σ

r is defined as the union of σ
r−1

and the set of agent-house pairs and agent-outside option pairs matched in Step 3.

Clause (b). In Step 3, we do not match agents in the cycle containing the broker except
if leaving this cycle unmatched implies that no cycle is matched in the current round.

Clause (a) accommodates outside options. Clause (b) is added to ensure that we do not
match a broker with his outside option when he prefers the brokered house to the outside
option and the brokered house is not allocated to any other agent. Notice that the broker
is matched only if any pointing sequence that starts with an owner ends by pointing to the
broker.

We will refer to the algorithm of Section 4 modified by clauses (a) and (b) as outside
options TC, and when there is no risk of confusion, simply as TC. We will refer to the
mechanism ψ

c,b resulting from running the outside options TC on consistent control rights
structures as outside options TC, or TC. Using the same name is justified because the
mechanism described above can be used to allocate houses in the setting of Sections 2-6,
and – when restricted to the case of |H| ≥ |I| and the subdomain of preferences in which
all agents prefer any house to their outside option in the setting – is identical with the TC
mechanism of Section 5. Indeed, in the restricted setting clause (a) is never invoked, and
presence or absence of clause (b) has no impact on the allocation. This follows from the
group strategy-proofness of TC of Section 5. Given a profile of agents’ preferences, agents
who are brokers along the run of the TC without clause (b) can replicate the run of TC with
clause (b) as follows: The first agent who becomes a broker along the path of the algorithm
reports all houses that are matched in cycles not involving the broker ahead of the house
the broker will be allocated, while keeping his preference profile otherwise intact. If another
agent becomes a broker after the first broker is matched or loses his brokerage right, we
modify this agent’s preferences in the same way, and the same for other brokers. If the
outcomes of the mechanism were dependent on whether the brokers simulate clause (b) or
not, there would be a preference profile in which one of the brokers could either improve
his outcome or boss other agents; contrary to group strategy-proofness. By Theorem 1 this
is not possible. The fact that clause (b) does not impact allocation in the setting without
outside options is analogous to the well-known fact that in TTC the order in which we match
the cycles of agents does not matter.

In the presence of outside options, the TC class of mechanisms again coincides with the
class of Pareto-efficient and group strategy-proof direct mechanisms. The proof resembles
the proofs of Theorems 1 and 2; the required modifications are discussed in Supplementary
Appendix E.
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Theorem 5. In the environment with outside options, every TC mechanism is group strategy-
proof and Pareto efficient. Moreover, every group strategy-proof and Pareto-efficient direct
mechanism is TC.

We are now ready to extend the characterization to the general allocation and exchange
setting with outside options. As in Section 6, the social endowment H0 ⊂ H and agents’
endowments Hi ⊂ H, i ∈ I, are disjoint and sum up to H. A house allocation and exchange
problem is a list �H, I,H,�� where H = {Hi}i∈{0}∪I

. The results of Section 6 translate to
the setting with outside options; the proofs rely on Theorem 5 instead of Theorems 1 and 2,
and are otherwise unchanged.

Theorem 6. In house allocation and exchange problems with outside options, a mechanism
is individually rational, Pareto efficient, and group strategy-proof if and only if it is an
individually rational TC mechanism.

As before, it is straightforward to identify individually rational TC mechanisms.

Proposition 3. In house allocation and exchange problems with outside options, a TC
mechanism is individually rational if and only if it may be represented by a consistent control
rights structure in which each agent is given the initial ownership rights of all houses from
his endowment.

In the environment with outside options, we define the TTC mechanisms as TC with no
brokers. Our characterization of TTC remains correct.

Theorem 7. In house allocation and exchange problems with outside options, if each agent
has a nonempty endowment, then a mechanism is individually rational, Pareto efficient, and
group strategy-proof if and only if it is a TTC mechanism (with outside options) that assigns
all agents the initial ownership rights of houses from their endowment.

A Appendix: Comments on Consistency Requirements

This appendix explains the consistency requirements R3, R5, and R6. The remaining re-
quirements, R1, R2, and R4, were discussed in the main text.

R3 postulates that a broker does not own any houses. Dropping this assumption would
violate efficiency. For instance, consider the case of two agents 1 and 2 such that agent 1
brokers house h1 and owns house h2 while 2 has no control rights. If agent 1 prefers h1

over h2 while agent 2 prefers h2 over h1 then running the TC algorithm (with the above
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inconsistent control rights structure) would allocate h2 to agent 1 and h1 to agent 2, which
is inefficient.

R5 might be called limited persistence of brokerage, and is the counterpart of R4 for
brokers. R5 states that a brokerage right persists when we move from smaller to larger
submatching provided two or more owners from the smaller submatching remain unmatched
at the larger submatching. The following example illustrates why we need this requirement
to keep TC individually strategy-proof:

Example 4. Why do we need R5 to prevent individual manipulation? Consider
four agents i1, ..., i4. Assume that at the empty submatching agent i2 brokers a house and
other agents own one house each. Denote by hk the house controlled by agent ik. Let
us maintain R1-R3, R4, and R6, and violate R5 by assuming that h2 is owned by i4 at
submatching {(i1, h1)}. Now, there are two previous owners unmatched at {(i1, h1)}, i3 and
i4. Moreover, i2 is no longer a broker. Consider now a preference profile such that h1 is
i1’s and i2’s mutual first-choice house, h2 is the first choice of the other agents, and h3 is
the second choice of i2 and i3. Under this preference profile and control rights structure, i2

would benefit by misrepresenting his preferences and declaring h3 to be his first choice.

R6 refers to the case where a broker loses his right at a submatching at which only a
single previous owner is unmatched. In this case, the broker requires some protection against
losing his right. That is to say, when the previous owner gets matched with the ex-brokered
house, the ex-broker owns the houses of this owner. This is the broker-to-heir transition of
the ex-broker.

The following two examples illustrate why we need R6 to keep TC both individually
strategy-proof and non-bossy. The first one is similar to the above one:

Example 5. Why do we need R6 to prevent individual manipulation? Consider
four agents i1, ..., i4. Assume that at the empty submatching agent i2 brokers h2, i1 owns
h1, h4, and i3 owns h3. At submatching {(i1, h1)}, assume that i3 owns h2 as well, and i2

loses his brokerage right. Now, i4 inherits h4 as an owner. We assume R1-R5, and violate
R6. R5 is not violated, as there is a single previous owner unmatched at {(i1, h1)}, and he is
i3. However, R6 is violated, as at the submatching {(i1, h1), (i3, h2}, i2 is not the heir to i3.
That is, i2 does not own the ex-owned house h3 of i3, but i4 does. Consider the preference
profile at which agents i1 and i2 have house h1, i2 has h2 and i4 has h3 as their first choices;
and agent i2’s second choice is h3. Then, i2 would benefit by ranking h3 first.
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Example 6. Why do we need R6 to prevent bossiness? Consider the same control
rights structure as in Example 5. Consider the preference profile at which i1 and i3’s first
choices are h1, and i2 and i4’s first choice is h3; second choice of i3 is h2. Agent i3 will be
bossy by ranking h2 first. In both cases he receives house h2. However, in the first case, i2

receives h4, while in the latter, he receives h3.

B Appendix: Further Illustrative Applications

In house allocation problems, we characterized the set of group strategy-proof and efficient
mechanisms through a new class, trading cycles. The results in Sections 6 and 7 used
the characterization of Theorems 1 and 2 to draw new characterizations in environments
with outside options and private property rights, respectively. In this appendix we give
three further illustrative examples of how our main results radically simplify the analysis of
allocation and exchange problems.

B.1 Neutrality

Neutrality and group strategy-proofness were characterized through serial dictatorships by
Svensson (1999) when there are no outside options. In a serial dictatorship agents are
ordered, first agent in the ordering gets his most preferred house, the second agent in the
ordering gets her most preferred among houses unassigned to agents higher in the ordering,
etc. Svensson’s result is implied by Theorem 2as illustrated below.

A mechanism is neutral if whenever the house names are relabeled in the problem, the
mechanism outcome assigns agents the house that carries the relabeled name of the house
that was assigned in the original problem. Formally, a relabeling of houses is a bijection
π : H → H. For any preference profile �∈ P, and relabeling π, let �π∈ P be such that
g �π

i
h ⇔ π

−1(g) �i π
−1(h) for all i ∈ I and g, h ∈ H. A mechanism ϕ is neutral if for all

relabelings π, all �∈ P, and all i ∈ I, we have ϕ[�π](i) = π(ϕ[�](i)).

Corollary 1. A mechanism is group strategy-proof and neutral if and only if it is a serial
dictatorship.

.
Proof of Corollary 1. Let ϕ be a group strategy-proof and neutral mechanism. Neutrality
implies that φ has full range that is φ[P] = M. Indeed, for any µ ∈ M, we can take an
arbitrary �∈ P, define relabeling π so that π(ϕ[�](i)) = µ(i) for all i ∈ I, and conclude from
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neutrality that ϕ[�π] = µ. As observed in Section 2, full range and group strategy-proofness
imply Pareto efficiency. Thus, ϕ is a trading cycles mechanism ψ

c,b by Theorem 2.
It remains to show that any neutral trading cycles mechanism ψ

c,b is equivalent to a serial
dictatorship. Let σ ∈ M. By R1 and R3 there is an agent i ∈ Iσ who owns some house
h ∈ Hσ at σ. In particular, for any �∈ P[σ; h], ψ

c,b[�](i) = h. Let σ
� ∈M with Iσ� = Iσ.

Let g ∈ Hσ� . Take a relabeling π such that π(h) = g and π(σ(j)) = σ
�(j) for all j ∈ Iσ.

Now, �π∈ P[σ�; g] and by neutrality ψ
c,b[�π](i) = π(h) = g. Maskin monotonicity implies

that i is allocated the best unmatched house at σ
� as long as Iσ� = Iσ. The mechanismψ

c,b

is thus equivalent to a serial dictatorship. QED

B.2 Reallocation-proofness

Reallocation-proofness, group strategy-proofness, and efficiency were characterized by Pápai
(2000) through hierarchical exchange (i.e., TTC mechanisms). A mechanism ϕ is reallocation-
proof if there exists no pair of agents i, j ∈ I such that for some �∈ P, ��

i
∈ Pi, and

��
j
∈ Pj with ϕ[��

i
,�−i] = ϕ[��

j
,�−j] = ϕ[�], we have ϕ[��

{i,j},�−{i,j}](j) �i ϕ[�](i) and
ϕ[��

{i,j},�−{i,j}](i) �j ϕ[�](j). We can derive the key insight of Pápai (2000) as a corollary
of 2:

Corollary 2. If a mechanism is group strategy-proof, Pareto efficient, and reallocation-proof
then it is a hierarchical exchange mechanism.

Proof of Corollary 2. Let ϕ be a group strategy-proof, efficient, and reallocation-proof
mechanism. By Theorem 2, it is equivalent to a reallocation-proof TC mechanism ψ

c,b. It
remains to show that the control right structure (c, b) can be chosen in such a way that there
are no brokers. Take any submatching σ ∈M. First notice that if there are two owners, j

and k at σ then no house is σ-brokered. Indeed, by way of contradiction assume that some
house h is σ-brokered by an agent i, and let hj be a house owned by j and hk be a house owned
by k. Consider a preference profile �∈ P[σ] and such that �i∈ Pi[σ; h, hk], �j∈ Pj[σ; hj],
and �k∈ Pk[σ; h]. Then, the deviation to ��

i
∈ Pi[σ; h, hj, hk] and ��

j
∈ Pj[σ; h, hj] violates

the reallocation-proofness condition. Hence, (c, b) can allow brokers only at submatchings
with a unique owner. But then ψ

c,b is equivalent to ψ
c
�
,b
� such that (c�, b�) is identical to (c, b)

except that at any submatching σ at which (c, b) gives brokerage right over a house h to an
agent i, the primed control right structure (c�, b�) gives ownership of h to the unique (c, b)

owner j at σ, and gives i the ownership of all unmatched houses at σ ∪ {(j, h)}. QED
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B.3 Invariance

Our main results allows one to easily find and prove new characterization results. As an
example let us propose an alternative characterization of hierarchical exchange of Pápai
(2000). A mechanism is invariant if for any agent i ∈ I and any object h ∈ H if for all
g �i h

φ (�i,�−i) (i) = g ⇐⇒ φ (��
i
,�−i) (i) = g

then for all g �i h and all j ∈ I

φ (�i,�−i) (j) = g ⇐⇒ φ (��
i
,�−i) (j) = g.

We then get the following corollary of Theorems 1 and 2,

Corollary 3. A mechanism is strategy-proof, efficient, and invariant if, and only if, it is a
hierarchical exchange mechanism.

For the proof, notice that invariance implies non-bossiness, and hence the class of mech-
anisms in the lemma is group strategy-proof. The rest of the proof resembles the proof of
Corollary 2.
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Supplement to “Incentive Compatible Allocation and
Exchange of Discrete Resources”

by

Marek Pycia and M. Utku Ünver

C Supplementary Appendix: Proof of Theorem 1

Proof of Theorem 1. In the main text we showed that TC is Pareto efficient and indi-
vidually strategy-proof. By Papai’s Lemma 1, it is sufficient to show that TC is non-bossy.
Let ψ

c,b be a TC mechanism. Fix an agent i∗ ∈ I and two preference profiles �= [�i∗ ,�−i∗ ]

and ��= [��
i∗ ,�−i∗ ] such that

h∗ = ψ
c,b[��](i∗) = ψ

c,b[�](i∗).

Let s be the round i∗ leaves (with house h∗) submitting �i∗ and s
� be the time i∗ leaves

(with h∗) submitting ��
i∗ . By symmetry, it is enough to consider the case s ≤ s

�. In order
to show that

ψ
c,b[�](i) = ψ

c,b[��](i) ∀ i ∈ I,

we will prove the following stronger statement:

Hypothesis: If a cycle h
1 → i

1 → h
2 → ... → h

n → i
n → h

1 of length n ∈ {1, 2, ...} forms
and is removed at round r under preference profile �, then under preference profile �� one
of the following three (non-exclusive) cases obtains:

1. the same cycle h
1 → i

1 → h
2 → ... → h

n → i
n → h

1 forms; or

2. n = 2 and two cycles form:

• cycle h
1 → i

2 → h
1 or cycle g → i

2 → h
1 → i → g for some agent i and some

house g, and

• cycle h
2 → i

1 → h
2 or cycle h → i

1 → h
2 → j → h for some agent j and some

house h;

or

3. n = 1 and there exists an agent j �= i
1 and a house h �= h

1 such that the cycle
h → i

1 → h
1 → j → h forms.
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Whenever in the proof we encounter cycles of length n, the superscripts on houses and agents
will be understood to be modulo n, that is i

n+1 = i
1 and h

n+1 = h
1. By σ

s−1[�] we denote
the submatching of agents and houses matched before round s of ψ

c,b when agents submitted
preference profile �. We refer to cycles formed under � as �-cycles, and to cycles formed
under �� as ��-cycles.

By Lemma 3, the above hypothesis is true for all r < s. The proof for r ≥ s proceeds by
induction over the round r.

Initial step. Consider r = s. Under �, house h
1
∗ points to agent i∗ = i

1
∗ points to house

h∗ = h
2
∗ that points to agent i

2
∗ that points to ... that agent i

n

∗ that points to house h
1
∗, and

the cycle
h

1
∗ → i

1
∗ → h

2
∗ → ... → h

n

∗ → i
n

∗ → h
1
∗

is removed at round s. Lemma 3 implies that the same houses and agents are in the market
at time s under both � and �� and that all agents from Iσs[�] − {i1∗, ..., i

n

∗} are matched by
σ

s[��] in the same way as in σ
s[�]. Lemma 3 also implies that the chain h

2
∗ → ... → h

n

∗ →

i
n

∗ → h
1
∗ → i

1
∗ forms at round s under preferences ��.

If all pairs (i�∗, h
�

∗), for all � ∈ {2, ..., n}, consist of an owner and an owned house at σ
s[�],

then they consist of an owner and an owned house at σ
s[��] and the chain h

2
∗ → ... → h

n

∗ →

i
n

∗ → h
1
∗ → i

1
∗ will stay in the system as long as i

1
∗ is in the system (by R4). Thus, at s

� all
agents i

1
∗, ..., i

n

∗ would leave in the same cycle as under � . Notice that this argument fully
covers the case n = 1.

If n > 1 and i
�

∗ brokers h
�

∗ for some � ∈ {2, ..., n}, then the chain h
2
∗ → ... → h

n

∗ →

i
n

∗ → h
1
∗ → i

1
∗ will stay in the system as long as i

�

∗ continues to broker h
�

∗. If i
�

∗ continues to
broker h

�

∗ until round s
� under ��, then the initial step is proved. Otherwise, there is a round

s
�� ∈ {s + 1, ..., s�} such that agent i

�

∗ has the brokerage right over h
�

∗ at rounds s, ..., s
�� − 1

but not at round s
��. By R6’s broker-to-heir transition property, n = 2 and i

�+1
∗ owns h

�

∗

at σ
s
��
[��] because he owns h

�+1
∗ at both σ

s
��−1[��] and σ

s
��
[��]. As i

�+1
∗ ’s top preference is

then h
�

∗, he will leave with it at s
��. By R6’s broker-to-heir transition property, agent i

�

∗ will
inherit h

�+1
∗ at s

�� + 1 and will be matched with it. This case ends the proof of the inductive
hypothesis for r = s.

Inductive step. Now, take any round r > s such that σ
r[�] − σ

r−1[�] is non-empty, and
assume that the inductive hypothesis is true for all rounds up to r− 1. Consider agents and
houses

h
1
→ i

1
→ h

2
→ ... → h

n
→ i

n
→ h

1

that form a cycle of length n ≥ 1 at round r under �. Since all agents but i
∗ (who is matched
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before round r) have same preferences in both profiles � and ��, so do agents i
1
, ..., i

n. We
start with two preparatory claims.

Claim 1. If agent j and house h are unmatched at submatchings σ,σ
�, and j controls h at σ

but not at σ∪σ
�, then j brokers h at σ. If, additionally, agent j

� and house h
� are unmatched

at submatchings σ,σ
�, and, at σ

�, agent j controls h and agent j
� owns h

�, then j �= j
�, j

�

owns h and h
� at σ ∪ σ

�, and j brokers h at σ
� and owns h

� at σ ∪ σ
� ∪ {(j�, h)}.

Notice that j �= j
� in the claim, but we allow h = h

�.

Proof of Claim 1: The first statement follows from R4. To prove the second statement, first
notice that R4 implies that j brokers h at σ

�, and hence j �= j
�. R4 furthermore implies

that j
� owns h

� at all submatchings between σ
� and σ ∪ σ

�. Since j stops brokering h at a
submatching between σ

� and σ ∪ σ
�, assumption R6 implies that j

� owns h at σ ∪ σ
�, and j

owns h
� at σ ∪ σ

� ∪ {(j�, h)}. QED

Claim 2. Under ��, all houses i
� prefers over h

�+1, except possibly h
�, are matched with

agents other than i
�. If i

� is a σ
r−1 (�)-owner then there is no exception: under ��, all

houses i
� prefers over h

�+1 are matched with agents other than i
�.

Proof of Claim 2: Consider the run of algorithm under ��. If i
� is σ

r−1 [�]-owner then all
houses i

� prefers over h
�+1 are matched before round r under �. The inductive assumption

thus implies that they are also matched with agents other than i
� under ��. Similarly, if i

�

is σ
r−1 [�]-broker then all houses i

� prefers over h
�+1, except possibly h

�, are matched before
round r under �, and the inductive assumption yields the claim. QED

To conclude the proof, let us introduce the following notation:
t is the earliest round one of the houses h

1
, ..., h

n is matched under ��;
h

�+1 is a house matched in round t under ��,
j

�+1 is the agent controlling house h
�+1 at σ

t−1[��], and
ν = σ

r−1[�] ∪ σ
t−1[��].

If j
�+1 = i

�+1, then agent i
�+1 controls h

�+1 at σ
t−1[��]. Three cases are possible:

• If n = 1, then i
�+1 owns h

�+1 at σ
r−1[�], and by R4 at ν, as well. First, let us now

show that i
�+1 cannot broker h

�+1 at σ
t−1[��]. If he does then there exists some agent

j that owns a house h at σ
t−1[��] so that h → j → h

�+1 → i
�+1 is part of the cycle
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occurring in round t under ��. Moreover, i
�+1 loses brokerage of h

�+1 between σ
t−1[��]

and ν, then by R6, j owns h
�+1 at ν contradicting i

�+1 owns h
�+1 at ν. Thus, i

�+1

owns h
�+1 at σ

t−1[��], and, by Claim 2, he points to h
�+1 and is matched with it. The

inductive hypothesis is correct for the cycle.

• If n ≥ 2 and i
�+1 prefers h

�+2 over h
�+1, then by Claim 2, he points to it (he cannot

broker it since he controls h
�+1), and house h

�+1 is matched in a cycle that contains
h

�+1 → i
�+1 → h

�+2 → ....

• If n ≥ 2 and i
�+1 prefers h

�+1 over h
�+2, then i

�+1 is the broker of h
�+1 at σ

r−1 [�].
First, let us show that i

�+1 cannot own own h
�+1 at σ

t−1 [��]. If he does then he owns it
at ν, as well. Then i

�+1 loses brokerage of h
�+1 between σ

r−1[�] and ν. R5 implies that
there is at most one other σ

r−1[�]-owner left unmatched at ν, and i
� is that owner.

R6 implies that i
� should own h

�+1 at ν, a contradiction. Hence, i
�+1 brokers h

�+1 at
σ

t−1[��]. By Claim 2, i
�+1 points to h

�+2 (as he cannot point to h
�+1), and house h

�+1

is matched in a cycle that contains h
�+1 → i

�+1 → h
�+2 → ....

We can conclude that j
�+1 �= i

�+1, or the inductive hypothesis is true for the cycle of i
1
, ..., i

n,
or that the cycle of h

�+1 at �� contains h
�+1 → i

�+1 → h
�+2 → ....

In the last of this three possibilities, let us define j
�+2 to be the agent controlling h

�+2 at
σ

t−1[��], and repeat the above procedure for h
�+2. In this way, repeating this procedure, we

either show that the cycle

h
�+1
→ i

�+1
→ h

�+2
→ ... → i

�
→ h

�+1

leaves at round t under �� (and the inductive hypothesis (part 1) is true for this cycle), or
there is k such that i

�+k �= j
�+k. In the sequel, we consider the latter case.

Without loss of generality, we may assume that � + k = 1 (modulo n), j
1 �= i

1 controls
h

1 at σ
t−1 [��], and h

1 is matched in round t under σ
�. By Claim 2, all agents i

1
, ..., i

n are
unmatched at σ

t−1 [��] because all houses h
1
, ..., h

n are. Thus, all these agents and houses
are unmatched at ν. Consider three cases.

Case 1. n = 1: Agent i
1 then owns h

1 at σ
r−1[�], and by the inductive assumption, he

gets at most house h
1 under ��. Thus, i

1 is unmatched in round t. Consider two subcases
depending on whether j

1 is matched at σ
r−1[�] or not.

• If j
1 ∈ Iσr−1[�] : Then j

1 �= i
1 and the inductive assumption and h

1
/∈ Hσr−1[�] imply

that
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� there exists house h �= h
1 such that j

1 is matched before round r in a cycle
h → j

1 → h under �, and

� there exists agent i such that the cycle h → i → h
1 → j

1 → h is matched at
round t under ��

.

Notice that i �∈ Iσr−1[�], as otherwise the inductive assumption implies that i is matched
with h

1 under �, contrary to h
1 �∈ Hσr−1[�]. Thus both i and i

1 are unmatched at ν,
and Claim 1 implies that either i = i

1, or i is a broker of h at σ
t−1[��]. In the latter

case, R1 implies that j
1 is an owner of h

1 at σ
t−1[��], and R4 implies that j

1 owns h
1 at

ν contrary to j
1 �= i

1 and i
1 owning h

1 at σ
r−1 [�], and hence at ν. This contradiction

shows that i
1 = i, and hence that the inductive hypothesis (part 3) is true for i

1.

• If j
1

/∈ Iσr−1[�] : Then, agents j
1 �= i

1 are unmatched at the submatching ν, and Claim
1 implies that j

1 is a broker of h
1 at σ

t−1[��]. Let j
� �= j be an agent matched in the

same cycle as h
1 at t under ��. Then j

� is an owner of a house h
� at σ

t−1[��].

If j
� is matched at σ

r−1 [�] then the inductive assumption implies that, under ��, h
1 is

matched to i
1 in a two-agent cycle, and hence j

� = i
1, and is unmatched at σ

r−1 [�]; a
contradiction. An analogous argument shows that h

� is unmatched at σ
r−1 [�]. Thus

j
� and h

� are unmatched at σ
r−1 [�], and hence at ν. Then, R4, R5, and R6 imply that

j
� owns h

1 at ν; and thus j
� = i

1. Since i
1 points to h

1, they are matched in the cycle
h
� → i

1 → h
1 → j → h

�, and the inductive hypothesis (part 3) is true for i
1.

Case 2 . n > 1 and i
1 �= j

1 brokers h
1 at σ

r−1[�]: Then i
2 is the σ

r−1 [�]-owner of h
2. We

show that in this case n = 2, and the inductive hypothesis (part 2) holds for both h
1 (and

hence i
2) and for h

2 (and hence i
1).

First, consider how h
1 is matched under ��. Suppose j

0 → h
1 → j

1 is the part of the cycle
of h

1 in round t under ��. By the inductive assumption, j
0 is unmatched at σ

r−1[�], and
one of the two subcases obtains:

(a) all other houses and agents in the cycle of h
1 under �� are unmatched at σ

r−1[�], or
(b) the cycle h

0 → j
0 → h

1 → j
1 → h

0 occurs under �� and j
1 is matched with h

0 in
σ

r−1[�], i.e., {(j1
, h

0)} ⊆ σ
r−1[�].

We handle these two subcases separately:

• Subcase (a): Two further subcases are possible depending on whether j
1 brokers h

1 at
σ

t−1[�] or not:
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� Assume j
1 brokers h

1 at σ
t−1[��]. Then, there exists owner-owned house pair

(j0
, h

0) at σ
t−1[��] such that h

0 → j
0 → h

1 → j
1 is part of the cycle of h

1 in
round t under ��. Either, j

1 or i
1 exits brokerage between σ

t−1[��] or σ
r−1[�],

respectively, and ν, as both of them cannot broker it at ν. Depending on whether
j
1 or i

1 loses brokerage right, by R5 there are only two agents in the cycle of h
1

under �� or �, respectively; moreover, by R6, j
0 or i

n owns h
1 at ν, respectively.

However, then neither j
1 nor i

1 can broker h
1 at ν, implying that both lose

brokerage rights, and hence, h
1 is owned by both j

0 and i
n at ν. Thus, j

0 = i
n,

and n = 2. We conclude that i
2 is matched with h

1 under �� and the cycle he
gets matched in has two agents, i.e., h

0 → i
2 → h

1 → j
1 → h

0.

� Assume j
1 owns h

1 at σ
t−1[��]. Then, R4 implies that j

1 owns h
1 at ν. Moreover,

again by R4, i
1 brokers h

1 at σ
r−1[�] and loses his brokerage right between σ

r−1[�]

and ν. By R5, there could be at most one σ
r−1[�]- owner still not matched at ν.

Hence, n = 2 and, i
n = i

2 is the remaining owner (of house h
2). By R6, at ν, i

2

also owns h
1. Since also j

1 owns h
1 at ν, j

1 = i
2. By Claim 2, h

1 or h
2 is the best

house that i
2 can get. Since i

2 is an owner at σ
r−1[�] and he points to h

1 rather
than h

2, he prefers h
1 over h

2. Therefore, the cycle of h
1 in round t under �� is

h
1 → i

2 → h
1.

• Subcase (b): R6 implies that at σ
t−1[��] ∪ {(j1

, h
0)} ⊂ ν, j

0 owns h
1. Then i

1 leaves
brokerage of h

1 between σ
r−1[�] and ν. As i

2 owns h
2 at σ

r−1[�], by R5, i
2 is the

only previous owner unmatched at the submatching i
1 leaves brokerage. Thus, the

cycle of h
1 under � includes only two agents i

1 and i
2, i.e., n = 2. Moreover, R6

and R4 imply that i
2 owns h

1 at ν. Thus, i
2 = j

0, and the cycle of h
1 at �� is

h
0 → i

2 → h
1 → j

1 → h
0.

Either subcase proves that there are two agents in the cycle of h
1 under �, i.e., n = 2, and

the inductive hypothesis (part 2) holds for i
1 and h

2.

Next, consider how h
2 is matched under ��. Since, at σ

r−1 (�), i
1 controls h

1 and i
2 controls

h
2, R6 implies that i

1 owns h
2 at ν ∪ {(i2, h1)}. Let t

1 be the round in which i
1 is matched

and t
2 be the round in which h

2 is matched under ��. Since h
1 is matched with i

2 and not
i
1 under ��, Claim 2 implies that t

1 ≥ t
2. Moreover, t

2 ≥ t. Suppose j
� → h

2 → j
2 is part

of the cycle of h
2 in round t

2 under ��. Let

ν
2 = σ

r−1[�] ∪ σ
t
2−1[��] ∪ {(i2, h1)}.
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We have ν ⊆ ν
2. Thus, by R4, i

1 owns h
2 at ν

2. We consider two subcases: i
1 = j

2 and
i
1 �= j

2.

• Assume i
1 = j

2. First consider the case i
1 brokers h

2 at σ
t
2−1[��]. Then i

1 = j
2 �= j

�,
and j

� is an owner at σ
t
2−1[��]. Agent j

� is not matched at σ
r−1[�], as otherwise

the inductive assumption would imply that h
2 is matched at σ

r−1[�], a contradiction.
Hence, j

� is not matched at ν
2. Moreover, i

1 loses brokerage right of h
2 between

σ
t
2−1[��] and ν

2, as he owns it at ν
2. By R6, j

� owns h
2 at ν

2, contradicting i
1 owns

it at ν
2. We can conclude that i

1 owns h
2 at σ

t
2−1[��]. Since h

1 is matched with i
2

and not i
1 under ��, Claim 2 implies that h

2 → i
1 → h

2 is the cycle under ��, showing
that the inductive hypothesis (part 2) holds true for i

1 and h
2.

• Assume i
1 �= j

2. By the inductive assumption, j
� is unmatched at ν

2, and either

(a) all other houses and agents in the cycle of h
2 under �� are unmatched at σ

r−1[�],
or

(b) the cycle h
� → j

� → h
2 → j

2 → h
� occurs under �� and j

2 is matched with h
� in

σ
r−1[�] , i.e., {(j2

, h
�)} ⊆ σ

r−1[�].

� Subcase (a): As i
1 owns h

2 at ν
2, R4 implies that j

2 is the broker of h
2 at σ

t
2−1[�],

and he loses this brokerage right between σ
t
2−1[��] and ν

2. Hence, j
� �= j

2 and
by R5, there are no other agents than j

2 and j
� in the cycle of h

2 under ��. By
R6 and R4 j

� owns h
2 at ν

2. Thus, j
� = i

1 . Hence, the cycle of h
2 under �� is

h
� → i

1 → h
2 → j

2 → h
� .

� Subcase (b): R6 implies that at σ
t
2−1[��] ∪ {(j2

, h
�)} ⊂ ν

2, j
� owns h

2. By R4, j
�

owns h
2 at ν

2. Recall that i
1 owns h

2 at ν
2. Then i

1 = j
�, and the cycle of h

2

under �� is h
� → i

1 → h
2 → j

2 → h
�.

Either subcase proves that the inductive hypothesis (part 2) holds for i
1 and h

2.

Case 3 . n > 1 and i
1 owns h

1 at σ
r−1[�] (in particular, R4 implies that i

1 owns h
1

at ν). We will show that this case cannot happen. By the inductive assumption either
(a) all agents in the ��-cycle of h

1 are unmatched at σ
r−1[�] or (b) n = 2 and the cycle

h
0 → j

0 → h
1 → j

1 → h
0 occurs under �� for some house h

0, and j
1 is matched with h

0 in
σ

r−1[�], that is {(j1
, h

0)} ⊆ σ
r−1[�].

• Subcase (a): By R4, agent j
1 is the broker of h

1 at σ
t−1[��] and loses this right between

σ
t−1[��] and ν. Hence, j

0 �= j
1 owns a house h

0 such that h
0 → j

0 → h
1 → j

1 is part
of the cycle of h

1 under ��. As j
1 loses brokerage right of h

1, by R5 there can be at
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most one other agent in this cycle, and hence the cycle is h
0 → j

0 → h
1 → j

1 → h
0.

R6 implies that j
0 owns h

1 at ν, hence j
0 = i

1. Then i
1 gets h

1 under �� in round t.
However, as i

1 is both a σ
r−1[�]-owner and a σ

t−1[��]-owner, Claim 2 implies that he
would point to h

2 not h
1 under �� in round t, a contradiction.

• Subcase (b): R6 implies that j
0 owns h

1 at σ
t−1[��] ∪ {(j1

, h
0)} ⊂ ν. Furthermore j

0

is unmatched at σ
r−1[�], as otherwise the inductive assumption would imply that h

1

is matched at this submatching contrary to h
1 being unmatched at σ

r−1[�]. Thus, j
0

is unmatched at ν, and, by R4, he owns h
1 at ν. As i

1 also owns h
1 at ν, we have

j
0 = i

1. Thus, h
0 → i

1 → h
1 → j

1 → h
0 is the cycle of h

1 under ��. But we know
that i

1 (a σ
r−1[�]-owner) prefers h

2 over h
1. Because h

2 is unmatched at σ
t−1[��], it

must be that i
1 brokers h

2 at this submatching. Thus, h
0 = h

2
. This contradicts the

fact that h
0 is matched and h

2 is unmatched at σ
r−1[�].

Either subcase leads to a contradiction showing that Case 3 cannot happen. This completes
the proof of the inductive hypothesis. QED

D Supplementary Appendix: Proof of Theorem 2 (Im-
plementation Result)

Let ϕ be a group strategy-proof and Pareto-efficient mechanism (fixed throughout the proof).
We are to prove that ϕ may be represented as a TC mechanism. We will first construct the
candidate control rights structure (c, b) and then show that the induced TC mechanism ψ

c,b

is equivalent to ϕ.
Let us start by introducing some useful terms and notation. Let σ ∈ M, n ≥ 0 and

h
1
, h

2
, ..., h

n ∈ Hσ, and i ∈ I.
Pi[σ, h

1
, ..., h

n] is the set of preferences �i of agent i such that

• if i ∈ Iσ, then
σ(i) �i g for all g ∈ H − {σ(i)} ,

• if i ∈ Iσ, then

h
1
�i h

2
� ... �i h

n
�i g �i g

� for all g ∈ Hσ −
�
h

1
, ..., h

n
�

and all g
�
∈ Hσ.

That is, if i is not matched in submatching σ, Pi[σ, h
1
, ..., h

n] is the set of preferences that
rank h

1,...,hn in order over the remaining houses unmatched under σ, and rank those over
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the houses matched under σ; otherwise, Pi[σ, h
1
, ..., h

n] is the set of preferences that rank
agent i’s match under σ over all other houses (observe that Pi[∅] ≡ Pi).

P[σ, h
1
, ..., h

n] ⊆ P is the Cartesian product of Pi[σ, h
1
, ..., h

n] over all i ∈ I. We define

P∗[σ, h] = ∪
h�∈Hσ−{h}P[σ, h, h

�],

i.e., the set of preference profiles generated by P[σ, h] that rank the same house as the second
choice across all agents unmatched under σ.

When σ is fixed, we will occasionally write �h1
, ..., h

n
, ...� instead of Pi[σ, h

1
, ..., h

n].

We are ready to introduce some new terminology for the mechanism ϕ that is similar
to the control rights structure terminology of the TC mechanisms. To distinguish the two
classes defined for TC and ϕ, we will suffix these new definitions with *.

A house h ∈ Hσ is an owned* house at σ ∈M if ϕ[�]−1(h) = i for all �∈ P[σ, h] for
some i ∈ Iσ; we refer to i as the owner* of h at σ.

A house e ∈ Hσ is a brokered* house at σ ∈M if there exist some � and ��∈ P∗[σ, e]

such that ϕ[�]−1(e) �= ϕ[��]−1(e). Agent k is the broker* of e at σ if e is a brokered*
house at σ and for all �∈ P∗[σ, e] house ϕ[�](k) is the second choice of k in �k. Observe
that a house cannot be both owned* and brokered* at the same submatching. 17

Notice that if ϕ is a TC mechanism and i is an owner at σ then i is an owner* at σ, and
similarly for the broker*. Thus, owners* and brokers* are the candidate owners and brokers
in the TC mechanism that we will construct. We will show that the starred terms can be
used to determine a consistent control rights structure (c, b) and a TC mechanism ψ

c,b. The
proof of Theorem 2 will be finished after we show that ϕ = ψ

c,b.

Two lemmas proved in Pápai (2000) will be useful. Following her definition, we say that
j envies i at � if

ϕ[�](i) �j ϕ[�](j).

Lemma 4. (Pápai 2000) For all i, j ∈ I, all �∈ P, and all �∗
j
∈ Pj, if j envies i at � and

ϕ[�∗
j
,�−j](i) �= ϕ[�](i), then

ϕ[�](i) �i ϕ[�∗
j
,�−j](i).

17It may appear from the definitions that there is a third option for an unmatched house besides being
owned* and brokered* at a submatching. Proposition However, 4 below shows that these are the only two
options.
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Lemma 5. (Pápai 2000) For all i, j ∈ I, all �∈ P, and all �∗
j
∈ Pj, if j envies i at � and

ϕ[�∗
j
,�−j](i) �= ϕ[�](i), then there exists �∗

i
∈ Pi such that

ϕ[�∗
i
,�

∗
j
,�−{i,j}](i) = ϕ[�](j).

This last lemma allows us to prove

Lemma 6. For all i, j ∈ I, all �∈ P, and all �∗
j
∈ Pj, if j envies i at �, then

ϕ[�∗
j
,�−j](i) �i ϕ[�](j).

Proof of Lemma 6. If ϕ[�∗
j
,�−j](i) �= ϕ[�](i) then the lemma follows from Lemma 5 and

strategy-proofness of i. If ϕ[�∗
j
,�−j](i) = ϕ[�](i) then Pareto efficiency of ϕ (�) implies

that i cannot envy j when j envies i and hence the claim of the lemma follows. QED

D.1 The Starred Control Rights Structure is Well Defined

The lemma below shows that if a house does not have a well-defined owner*, then it has a
well-defined broker*. Thus the starred (candidate) control rights structure is well defined.
All lemmas in this section are formulated and proven at a fixed submatching σ ∈M.

Lemma 7. Let σ ∈M. For all i ∈ Iσ and all h ∈ Hσ,

ϕ[�](i) = σ(i) for all �∈ P[σ, h].

Proof of Lemma 7. Suppose that an agent in i ∈ Iσ does not get σ(i) at ϕ[�]. Then we
can create a new matching by assigning all agents in Iσ that get a house in Hσ a house in
Hσ that was assigned to an agent in Iσ, all other agents j in Iσ the house ϕ[�](j), and all
agents j in Iσ the house σ(j). Since each agent in Iσ ranks houses in Hσ lower than houses
in Hσ and each agent in Iσ ranks his σ-house as his first choice, this new matching Pareto
dominates ϕ[�], contradicting that ϕ is Pareto efficient. QED

Lemma 8. Let σ ∈ M and e, h ∈ Hσ. Then there exists some agent i ∈ Iσ such that
ϕ[�](i) = e for all �∈ P[σ, e, h].

Proof of Lemma 8. By way of contradiction suppose that �,��∈ P[σ, e, h] are such
that ϕ[�](i) = e �= ϕ[��](i). Without loss of generality, we assume that � and �� differ only
in preferences of a single agent j ∈ Iσ. Let g = ϕ[�](j). By strategy-proofness for j, we
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have j ��= i and g �= e. Moreover, by Maskin monotonicity, if it were true that g = h, then
ϕ[��] = ϕ[�] would be true, contradicting that ϕ[��] �= ϕ[�]. Thus, g �= h. We may further
assume that

�i∈ �e, h, g, ...� ,

as Maskin monotonicity for i implies that ϕ (�) does not depend on how i ranks houses
below e, and strategy-proofness for i implies that we still have e �= ϕ[�i,�

�
−i

](i) = ϕ[��](i).
Let g

� = ϕ[��](j). By non-bossiness, g
� �= g and by strategy-proofness g

� �= e, h. Maskin
monotonicity for j allows us also to assume that

�j∈ �e, h, g, g
�
, ...� and �

�
j
∈ �e, h, g

�
, g, ....� .

Let i
� ∈ Iσ be the agent who gets e at ��, and k ∈ Iσ be the agent who gets h at �.

Notice that such agents exist because of Pareto efficiency. Because neither i nor j gets e at
��, we have i

� �= i, j. Furthermore, we saw above that j does not get h at �, and Lemma 4
implies that neither i nor i

� gets h at �. Thus k �= i, i
�
, j.

Claim 1. (1) Under �, agents i, j, k are matched with houses as follows

ϕ[�](i) = e, ϕ[�](j) = g, and ϕ[�](k) = h

(2) Under ��, agents i
�
, j, k are matched with houses as follows

ϕ[��](i�) = e, ϕ[��](j) = g
�
, ϕ[��](i) = g, and ϕ[��](k) = h.

Proof of Claim 1. The first five equalities were proved or assumed above and are listed
for convenience only. The last two equalities require an argument. First, let us show that
ϕ[��](i) = g. Since agent j envies i at � and ϕ[�](j) = g, Lemma 6 implies that i gets at
least g at ��=

�
�−j,�

�
j

�
. Hence, ϕ[��](i) ∈ {h, g} . Furthermore, Lemma 4 tells us that j

cannot envy i at ��. Hence, ϕ[��](i) = g.

Second, let us show that ϕ[��](k) = h. Consider an auxiliary preference ranking �̃k ∈

�e, h, g, ...� that agrees with �k except possibly for the relative ranking of g. Maskin mono-
tonicity implies that

ϕ (�̃k,�−k) = ϕ (�) .

Thus, agent j envies k at (�̃k,�−k) and ϕ[�̃k,�−k](j) = g, and thus Lemma 6 implies
that ϕ[�̃k,�−k,j,�

�
j
](k) �k g. Strategy-proofness for k implies that k cannot get e at
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�
�̃k,�−k,j,�

�
j

�
. To prove that k gets h it is thus enough to show that i gets g at

�
�̃k,�−k,j,�

�
j

�
.

The proof is analogous to the proof equality ϕ[��](i) = g above: i gets at least g at
�
�̃k,�−k,j,�

�
j

�
, and because j cannot envy i at

�
�̃k,�−k,j,�

�
j

�
(by Lemma 4), we must

have ϕ[�̃k,�−k,j,�
�
j
] (i) = g. We have thus shown that ϕ[�̃k,�−k,j,�

�
j
] (k) = h, and by

Maskin monotonicity it must be that ϕ[�̃k,�−k,j,�
�
j
] = ϕ[�k,�−k,j,�

�
j
] = ϕ[��]. Thus,

ϕ[��](k) = h, and the claim is proved. QED

The above claim and Maskin monotonicity, allows us to assume in the sequel that

�k∈ �e, h, g, ...� .

Let us also fix three auxiliary preference rankings for use in the subsequent analysis:

�
∗
i
∈ �h, e, g, ...� ,

�
∗
i�∈ �h, e, ...� , and

�
∗
k
∈ �e, g, h, ...� .

We will prove a number of claims.

Claim 2. (1) ϕ[�∗
i
,�−i](i) = h and ϕ[�∗

i� ,�
�
−i� ](i

�) = h.

(2) ϕ[�∗
i
,�−i](j) = g.

Proof of Claim 2.
(1) By strategy-proofness for i, ϕ[�∗

i
,�−i](i) �∗

i
e. Everybody else in Iσ ranks e over

h. Thus, by Lemma 7 and Pareto efficiency, i should get h at [�∗
i
,�−i]. The symmetric

argument yields ϕ[�∗
i� ,�

�
−i� ](i

�) = h.

(2) By Maskin monotonicity for i, ϕ[�∗
i
,��

−i
] = ϕ[��]. Thus, j gets g

� at [�∗
i
,��

−i
]. By

strategy-proofness for j, agent j gets at least g
� and no house better than g at [�∗

i
,�−i]

(recall that between �−i and ��
−i

only j changes preferences). Thus, in order to prove the
claim that j gets g at [�∗

i
,�−i] it is enough to show that he cannot get g

� at [�∗
i
,�−i].

Assume to the contrary that j gets g
� at [�∗

i
,�−i]. Then, non-bossiness would imply that i

gets h at [�∗
i
,��

−i
]. By strategy-proofness for i, he gets at least h at ��. But then j envies i

both at � and ��=
�
��

j
,�−j

�
and by Lemma 4, i must get same house at these two profiles.

This contradiction proves Claim 2. QED

Claim 3. (1) ϕ[�∗
k
,�−k](k) = g.

(2) ϕ[�∗
k
,��

−k
] = ϕ[�∗

k
,�−k].
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Proof of Claim 3. (1) Because k gets h at �, strategy-proofness implies that k cannot get
e and gets at least h at [�∗

k
,�−k]. Thus, k gets h or g at [�∗

k
,�−k]. Everybody else in Iσ

ranks h over g. Thus, by Lemma 7 and Pareto efficiency, agent k should get g at [�∗
k
,�−k].

(2) Profiles,[�∗
k
,��

−k
] and [�∗

k
,�−k] differ only in preferences of agent j who ranks g

above g
� at �j and the other way at ��

j
. We established in part (1) that j does not get g at

[�∗
k
,�−k]. Maskin monotonicity for j implies ϕ[�∗

k
,��

−k
] = ϕ[�∗

k
,�−k]. QED

Claim 4. ϕ[�∗
k
,�−k](i) = e and ϕ[�∗

k
,�−k](i�) = h.

Proof of Claim 4. Because agent k envies agent i at �, Lemma 6 implies that i gets at
least h = ϕ[�](k) at [�∗

k
,�−k]. Hence ϕ[�∗

k
,�−k](i) ∈ {e, h} . Analogously, because agent k

envies agent i
� at ��, Lemma 6 implies that i

� gets at least h = ϕ[��](k) at [�∗
k
,��

−k
]. Hence

ϕ[�∗
k
,��

−k
](i�) ∈ {e, h} . By Claim 3(2), ϕ[�∗

k
,�−k](i�) ∈ {e, h} . Thus,

{ϕ[�∗
k
,�−k](i), ϕ[�∗

k
,�−k](i

�)} = {e, h} .

This equality implies that to prove the claim it is enough to show that ϕ[�∗
k
,�−k](i) = h

and ϕ[�∗
k
,�−k](i�) = e cannot both be true. Suppose they are. By Maskin monotonicity for

i, ϕ[�∗
k
,�−k] = ϕ[�∗

k
,�∗

i
,�−{k,i}]. This equivalence and Claim 3(1) give ϕ[�∗

k
,�∗

i
,�−{k,i}

](k) = g. By strategy-proofness, agent k gets at least g and not e at [�∗
i
,�−i]. By Claim

2(1), we must thus have ϕ[�∗
i
,�−i](k) = g. But this contradicts Claim 2(2). QED

Claim 5. (1) ϕ[�∗
k
,�−k] = ϕ[�∗

k
,�∗

i� ,�−{k,i�}] = ϕ[�∗
k
,�∗

i� ,�
�
j
,�−{k,i�,j}].

(2) ϕ[�∗
k
,�∗

i��
�
−{k,i�}](k) = g.

Proof of Claim 5. The first equality of part (1) follows from Maskin monotonicity for i
� and

Claim 4. To prove the second equality of part (1), notice that at preference profile (�∗
k
,�−k)

agent j does not get e or h (by Claim 4), and he does not get g by Claim 3(1). Thus the
second equality follows from Maskin monotonicity for j. Now, part (2) of the claim follows
from part (1) and Claim 3(1). QED

Claim 6. ϕ[�∗
i� ,�

�
−i� ](i) = e.

Proof of Claim 6. Strategy-proofness for k and Claim 5(2) imply that agent k gets at least
g at

�
�∗

i� ,�
�
−i�

�
but does not get e. By Claim 2(1), k gets g at

�
�∗

i� ,�
�
−i�

�
. By non-bossiness

for k and part (2) of Claim 5,

ϕ[�∗
i� ,�

�
−i� ] = ϕ[�∗

k
,�

∗
i��

�
−{k,i�}].
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This equality and part (1) of Claim 5 imply that

ϕ[�∗
i� ,�

�
−i� ] = ϕ[�∗

k
,�−k].

This equation and Claim 4 give us ϕ[�∗
i� ,�

�
−i� ](i) = e. QED

Claim 7. ϕ[�∗
i� ,�

�
−i� ](i) �= e.

Proof of Claim 7. Let us first prove that ϕ[�∗
{i,i�},�

�
−{i,i�}](i) �= h. Suppose not. Then,

Maskin monotonicity for i
� gives ϕ[�∗

i
,��

−i
] = ϕ[�∗

{i,i�},�
�
−{i,i�}], and in particular, ϕ[�∗

i
,��

−i

](i) = h. By strategy-proofness for i, ϕ[��](i) �i h, contradicting that ϕ[��](i�) = e and
ϕ[��](k) = h, and proving the required inequality.

Since �i pushes down the ranking of h in �∗
i
, the just-proven inequality and Maskin

monotonicity for i give:
ϕ[�∗

{i,i�},�
�
−{i,i�}] = ϕ[�∗

i� ,�
�
−i� ].

A symmetric argument implies that ϕ[�∗
{i,i�},�−{i,i�}](i�) �= h and

ϕ[�∗
{i,i�},�−{i,i�}] = ϕ[�∗

i
,�−i].

Contrary to the claim we are proving, suppose that ϕ[�∗
i� ,�

�
−i� ](i) = e. Then, the first

of the above-displayed equalities implies ϕ[�∗
{i,i�},�

�
−{i,i�}](i) = e and, hence, j envies i at

[�∗
{i,i�},�

�
−{i,i�}] = [�∗

{i,i�},�−{i,i�,j},�
�
j
]. This, however, leads to a contradiction with Lemma

4, because Claim 2 and the second above-displayed equality implies that ϕ[�∗
{i,i�},�−{i,i�,j}

,�j](i) = h. Thus, we have shown that ϕ[�∗
i� ,�

�
−i� ](i) �= e. QED

The contradiction between Claims 6 and 7 shows that the initial assumption ϕ[�](i) =

e �= ϕ[��](i) cannot be correct. QED

Lemma 9. (Existence and uniqueness of a broker* for each brokered* house) Let
σ ∈M and e be a brokered* house at σ. Then there exists an agent k ∈ Iσ who is the unique
broker* of e at σ.

Proof of Lemma 9. Let σ ∈ M and e be a brokered* house at σ. We start with the
following preparatory claim:

Claim 1. If h, h
� are two different houses in Hσ − {e}, and �,��∈ P[σ, e, h, h

�], then ϕ[��

]−1(h) = ϕ[�]−1(h).
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Proof of Claim 1. By Lemma 8, ϕ[��]−1(e) = ϕ[�]−1(e). Let i = ϕ[�]−1(e). Also let
�∗ and ��∗be monotonic transformations of � and ��, respectively, such that i ranks e

first, all agents in Iσ rank e below all houses in Hσ − {e}, and the relative rankings of all
other houses at �∗, � and ��∗, �� are respectively the same. By Maskin monotonicity,
ϕ[�∗�] = ϕ[��] and ϕ[�∗] = ϕ[�]. Also �∗

,��∗∈ P[σ ∪ {(i, e)} , h, h
�]. Thus, by Lemma

8, ϕ[�∗]−1(h) = ϕ[�∗�]−1(h). Hence, ϕ[��]−1(h) = ϕ[��∗]−1(h) = ϕ[�∗]−1(h) = ϕ[�]−1(h).

QED

Claim 2. If h, h
� are two different houses in Hσ − {e}, and profiles �∈ P[σ, e, h, h

�] and
��∈ P[σ, e, h

�] are such that ϕ[��]−1(e) �= ϕ[�]−1(e), then ϕ[��]−1(h�) = ϕ[�]−1(h).

Proof of Claim 2. Let k
� = ϕ[��]−1(h�) and �∗∈ P[σ, e, h

�
, h] be such that the only difference

between �∗ and � is the relative ranking of house h
�. Since by Claim 1 ϕ[�∗]−1(h�) = ϕ[��

]−1(h�) = k
� and since we lower house h

� in everybody’s preferences except k
� at [�∗

k� ,�−k� ],

by Maskin monotonicity
ϕ[�∗

k� ,�−k� ] = ϕ[�∗].

In particular, ϕ[�∗
k� ,�−k� ](k�) = h

�. By strategy-proofness for k
�
, we have ϕ[�](k�) ∈ {h, h

�}.
On the other hand, by Lemma 8,

ϕ[�∗]−1(e) = ϕ[��]−1(e).

The two above displayed equalities imply that ϕ[�∗
k� ,�−k� ]−1(e) = ϕ[��]−1(e). By assump-

tion of the claim, ϕ[�]−1(e) �= ϕ[��]−1(e) = ϕ[�∗
k� ,�−k� ]−1(e). By non-bossiness, agent

k
� changes his own allocation while switching between the two profiles � and [�∗

k� ,�−k� ],
implying that ϕ[�](k�) = h. QED

Claim 3. If h, h
� are two different houses in Hσ−{e}, and �∈ P[σ, e, h], and ��∈ P[σ, e, h

�
, h],

then ϕ[�]−1(h) = ϕ[��]−1(h�).

Proof of Claim 3. If ϕ[�]−1(e) �= ϕ[��]−1(e), then Claim 3 reduces to Claim 2. Assume that
ϕ[�]−1(e) = ϕ[��]−1(e). Because e is brokered* at σ, there exists some h

�� ∈ Hσ − {e} such
that for some ���∈ P[σ, e, h

��],

ϕ[���]−1(e) �= ϕ[�]−1(e) = ϕ[��]−1(e).

By Lemma 8, h
�� �= h. By the same lemma, we assume that ���∈ P[σ, e, h

��
, h].

By Claim 2, ϕ[���]−1(h��) = ϕ[�]−1(h) and ϕ[���]−1(h��) = ϕ[��]−1(h�), implying that
ϕ[�]−1(h) = ϕ[��]−1(h�). QED
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Claim 4. If h ∈ Hσ − {e} and �, ��∈ P[σ, e, h], then ϕ[�]−1(h) = ϕ[��]−1(h).

Proof of Claim 4. By Lemma 8, ϕ[�]−1(e) = ϕ[��]−1(e). Because e is brokered* at σ, there
exists some h

�� ∈ Hσ − {e} such that for some ���∈ P[σ, e, h
��],

ϕ[���]−1(e) �= ϕ[�]−1(e) = ϕ[��]−1(e).

By Lemma 8, h
�� �= h and, by the same lemma, we may assume ���∈ P[σ, e, h

��
, h]. By Claim

3, ϕ[���]−1(h��) = ϕ[�]−1(h) and ϕ[���]−1(h��) = ϕ[��]−1(h), implying that ϕ[�]−1(h) = ϕ[��

]−1(h). QED

To complete the proof of the lemma notice that e being brokered implies there is at least
one house in Hσ − {e}. Let h and h

� ∈ Hσ − {e}, �∈ P[σ, e, h], ��∈ P[σ, e, h
�]. If h = h

�,
then ϕ[��]−1(h) = ϕ[�]−1(h) by Claim 4. Consider the case h �= h

�, and fix �∗∈ P[σ, e, h, h
�].

By Claim 3, ϕ[��]−1(h) = ϕ[�∗]−1(h�) and by Claim 4 ϕ[�∗]−1(h) = ϕ[�]−1(h), implying
that ϕ[�]−1(h) = ϕ[��]−1(h�). Thus, the agent ϕ[�]−1(h) is the unique broker* of e at σ.
QED

Lemma 10. Let σ ∈ M, i ∈ Iσ, and h ∈ Hσ. If ϕ[�](i) = h for all �∈ P∗[σ, h] then i

owns* h at σ.

Proof of Lemma 10. Let us start with two preparatory claims:

Claim 1. Suppose σ ∈M, houses g and h ∈ Hσ are different, and agent i ∈ Iσ. If ϕ[��](i) = h

for all ��∈ P[σ, g, h], then ϕ[�∗
i
,�−i](i) = g for all �∗

i
∈ �g, ...� and all �−i∈ P−i[σ, h].

Proof of Claim 1. Let �−i∈ P−i[σ, h]. Take any �i∈ �h, g, ...�. If ϕ[�](i) = h, then
Pareto efficiency and strategy-proofness imply that ϕ[�∗

i
,�−i](i) = g for all �∗

i
∈ �g, h, ...�,

and furthermore, by strategy-proofness, for all �∗
i
∈ �g, ...�. It remains to consider the case

ϕ[�](i) �= h.
Take ��∈ P[σ, h, g] such that �� and � coincide other than unmatched agents’ ranking of

house g. We have ϕ[��](i) = h by the hypothesis of the claim. Two cases are possible: ϕ[�

](i) = g and ϕ[�](i) �= g. If ϕ[�](i) = g, then by strategy-proofness, ϕ[�∗
i
,�−i](i) = g and

we are done. Thus, in the remainder assume that there exists some agent k = ϕ[�]−1(g) �= i.
By Maskin monotonicity, ϕ[��

{i,k},�−{i,k}](i) = h and ϕ[��
{i,k},�−{i,k}](k) = g.

Let �∗
i
∈ �g, h, ...�. By strategy-proofness, agent i gets at least h at [�∗

i
,��

k
,�−{i,k}]; and

by Pareto efficiency, agent i gets g. Also recall that ϕ[�](i) ≺i g and ϕ[�](k) = g. Thus,
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ϕ[�∗
i
,��

k
,�−{i,k}](k) �= h because otherwise agents i and k could jointly improve upon their

ϕ[�] allocation by submitting [�∗
i
,��

k
] at �, contradicting group strategy-proofness. Thus,

g ��
k

ϕ[�∗
i
,��

k
,�−{i,k}](k), and furthermore, Maskin monotonicity implies ϕ[�∗

i
,��

k
,�−{i,k}

] = ϕ[�∗
i
,�−i]. In particular, ϕ[�∗

i
,�−i](i) = g. QED

Claim 2. Suppose σ ∈M, houses g and h ∈ Hσ are different, and ϕ[��]−1(h) = i ∈ Iσ for
all ��∈ P[σ, g, h]. If �∈ P[σ, h] and there is some ��∈ P[σ, h, g] such that �k∈ �h, g, ...� for
k = ϕ[��]−1(g), then ϕ[�](i) = h.

Proof of Claim 2. By way of contradiction, assume that i is the owner* of h at σ, that
��∈ P[σ, h, g], and that k = ϕ[��]−1(g), but there is some �∈ P[σ, h] such that �k∈ �h, g, ...�

and ϕ[�]−1(h) �= i. By strategy-proofness, we can choose �i∈ �h, g, ...�. Furthermore, we
can choose � such that � and �� differ only in the preferences of a single agent j ∈ Iσ and
in how house g is ranked by the agents.

Let �∗∈ P[σ, h] be the unique profile, such that �∗ and � differ only in the preferences of
agent j, and �∗ and �� differ only in how house g is ranked by the agents. Notice that j �= k

as otherwise Maskin monotonicity would imply that i gets h at �. Thus, �∗
k
∈ �h, g, ...� , and

Maskin monotonicity implies that ϕ[�∗](i) = h.
Let h

� be the house that j gets at � and let ��� be the unique profile in P[σ, h, g] such
that ��� and � differ only in how house g is ranked by agents. By Maskin monotonicity, we
may assume that ���

j
∈ �h, g, h

�
, ...�.

By Claim 1 and strategy-proofness, ϕ[���
j
,�−j](i) equals either h or g. At the same

time, strategy-proofness implies that ϕ[���
j
,�−j](j) equals either g or h

�. In either case,
agent j prefers the allocation of agent i at [���

j
,�−j]. If ϕ[���

j
,�−j](i) = g, this would be a

contradiction with Lemma 3, as j could improve the allocation of i by switching from [���
j

,�−j] to [�∗
j
,�−j] =�∗. Hence, ϕ[���

j
,�−j](i) = h, and by non-bossiness ϕ[���

j
,�−j](j) = g.

However, k �= j gets g at �� and by strategy-proofness j cannot get it at [���
j
,��

−j
]. This is

a contradiction because [���
j
,�−j] = [���

j
,��

−j
]. QED

We are ready to finish the proof of the lemma. Fix σ ∈ M. We proceed by way of
contradiction. Let i ∈ Iσ be such that ϕ[��](i) = h for all ��∈ P∗[σ, h]. Let �∈ P[σ, h] be
such that ϕ[�]−1(h) = j �= i. For all unmatched houses g �= h at σ, define �g to be the
unique profile in P[σ, h, g] that differs from � only in how agents rank g.

Take a house g1 �= h unmatched at σ, and let k1 be the agent that gets g1 at �g1 . By
Claim 2, agent i gets h at any profile in P[σ, h] at which k1 ranks g1 second. Hence, by
Maskin monotonicity i also gets h at any profile in P[σ, h] at which k1 gets g1.

Let g2 = ϕ[�](k1) and let k2 be the agent that gets g2 at �g2 . Because i does not get
h at �, the previous paragraph yields g2 �= g1 and k2 �= k1. As in the previous paragraph,
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Claim 2 and Maskin monotonicity imply that i gets h at any profile in P[σ, h] at which k2

gets g2 or ranks g2 second.
Furthermore, we will show that i gets h at any profile ��∈ P[σ, h] at which k2 ranks g1

second. Indeed, suppose ��
k2
∈ �h, g1, ...� and i does not get h at ��. Let ���

i
∈ �h, g1, ...�. By

Claim 1 and strategy-proofness, agent i gets g1 at [���
i
,��

−i
]. By the previous paragraph and

strategy-proofness, k2 does not get h at [���
i
,��

−i
], and thus k2 envies i at [���

i
,��

−i
]. However,

by the previous paragraph k2 can improve the outcome of agent i, contrary to Lemma 4.
Thus, i gets h at any profile in P[σ, h] at which k2 ranks g1 second.

Let g3 be the house that k2 gets at � and let k3 be the agent that gets g3 at �g3 . As
above, we can show that i gets h at any profile in P[σ, h] at which k3 ranks g3 or g2 or g1

second.
Since the number of agents is finite, by repeating the procedure we arrive at an agent

kn who ranks one of the houses g1, ..., gn second at �. That means that i gets h at �, a
contradiction that concludes the proof. QED

Lemmas 9 and 10 and the definitions of owned* and brokered* houses give us the key
result of this subsection:

Proposition 4. (Houses are either brokered* or owned*) For any σ ∈M, any house
h ∈ Hσ is owned* or brokered* at σ, but not both. In particular, if there is a single owner*
at σ then h is not a brokered* house.

Although the starred control rights do not allow having a broker* when there is a single
owner*, R1-R6 do not eliminate this possibility from consistent control rights structures.
However, it turns out that for any control rights obeying R1-R6, it is trivial to construct an
equivalent one in which control rights are set equal to the original ones at all submatchings
except possibly submatchings with single owners, where all houses are now owned by this
original owner. In particular, if there is a broker in a submatching with a single owner in the
original control rights structure, then in the superior submatching that matches the owner
with the originally brokered house, the new control rights are set such that the original
broker owns the remaining houses.

D.2 The Starred Control Rights Structure Satisfies R1-R6

Before proving R1-R6 let us state and prove one more auxiliary result.

Lemma 11. (Relationship between brokerage* and ownership*). Let σ ∈M, agent
k be a broker* of house e at σ, and ���∈ P∗[σ, e]. Then agent ϕ[���]−1(e) is the owner* of
house ϕ[���](k) at σ.
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Proof of Lemma 11. Let ���∈ P∗[σ, e] and h = ϕ[���](k). Because k is a broker* at σ,
Lemma 9 implies that house h is agent k’s second choice. Since ���∈ P∗[σ, e], house h is the
second choice of all agents in Iσ at ���, and thus,

�
��
∈ P[σ, e, h].

There exists an agent i ∈ (Iσ) − {k} such that ϕ[���]−1(e) = i. By Lemma 8, for all
�∈ P[σ, e, h], agent i gets e at �. We are to show that i is the owner* of h at σ.

Claim 1. If �∈ P[σ, e, h], then ϕ[�](i) = e and ϕ[�](k) = h.

Proof of Claim 1. The first claim follows from Lemma 8, and the second from Lemma 9.
QED

Claim 2. ϕ[�](i) = e and ϕ[�](k) = h.

Proof of Claim 2. Let preference profile � be such that �i�=���
i� for all i

� ∈ {k, i} ∪ Iσ and
all houses in Hσ are ranked above the houses in Hσ by i

� ∈ Iσ. By Claim 1 and Maskin
monotonicity, ϕ[�](i) = e and ϕ[�](k) = h. QED.

Claim 3. ϕ[�∗
i
,�−i](i) = h.

Proof of Claim 3. Let �∗
i
∈ �h, e, ....�. By the strategy-proofness of ϕ, since ϕ[�](i) = e,

agent i gets at least e at [�∗
i
,�−i], and since all other agents in Iσ prefer e over h, the Pareto

efficiency of ϕ implies that ϕ[�∗
i
,�−i](i) = h.

Claim 4. ϕ[�∗
k
,�−k] = ϕ[�].

Proof of Claim 4. Let �∗
k
∈ �h, e, ....�. Since ϕ[�](k) = h, profile [�∗

k
,�−k] is a monotonic

transformation of � and by the Maskin monotonicity of ϕ, we have ϕ[�∗
k
,�−k] = ϕ[�].

Claim 5. ϕ[�∗
{i,k},�−{i,k}](i) = h.

Proof of Claim 5. By Claim 4, ϕ[�∗
k
,�−k](i) = ϕ[�](i) = e, and, by the strategy-proofness

of ϕ, i gets at least e at [�∗
{i,k},�−{i,k}]. Thus, if i does not get h at [�∗

{i,k},�−{i,k}] then one
of the following two cases would have to obtain.

Case 1. An agent j �∈ {i, k} gets h at [�∗
{i,k},�−{i,k}]: Then i gets e, and k gets some

house worse than e. But then jointly i and k can report �{i,k} instead of �∗
{i,k} and they

would jointly improve at �∗
{i,k}, i.e., ϕ[�](i) = e = ϕ[�∗

i,k
,�−i,k](i) and ϕ[�](k) = h �∗

k

ϕ[�∗
i,k

,�−i,k](k), contradicting that ϕ is group strategy-proof.
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Case 2. Agent k gets h at [�∗
i,k

,�−i,k]: By the strategy-proofness of ϕ, agent k should
at least get h at [�∗

i
,�−i]. But we know by Step 2 that ϕ[�∗

i
,�−i](i) = h, thus we should

have ϕ[�∗
i
,�−i](k) = e. Then by the Maskin monotonicity of ϕ, we have ϕ[�∗

i,k
,�−i,k](i) =

ϕ[�∗
i
,�−i](i) = h where the last equality follows by Step 2, a contradiction that proves the

claim. QED

Claim 6. If ϕ[�∗
{i,k},�−{i,k}](i) = h, then ϕ[�∗

{i,k},�−{i,k}](k) �= e.

Proof of Claim 6. For an indirect argument, suppose that ϕ[�∗
{i,k},�−{i,k}](i) = h and

ϕ[�∗
{i,k},�−{i,k}](k) = e. Then, ϕ[�∗

i
,�−i](k) = e by the strategy-proofness of ϕ. Since e

is a brokered* house at σ, there exist some house g �∈ {e, h} and some preference profile
��∈ P[σ, e, g] such that ϕ[��]−1(e) = j for some agent j �∈ {i, k}. By Lemma 8, we may
assume that each agent i

� ∈ Iσ ranks houses other than g and h in the same way at ��
i� and

�i� and that ��
i�∈ �e, g, h, ...�. Since k is the broker* of e at σ, we have ϕ[��](k) = g. By

Maskin monotonicity,
ϕ[��] = ϕ[��

{i,k},�−{i,k}].

Now i gets a house weakly worse than h at [��
{i,k},�−{i,k}]. However, if i and k manipulated

and submitted �∗
{i,k} instead of ��

{i,k}, they would get h and e respectively at [�∗
{i,k},�−{i,k}].

Both agents weakly improve, while k strictly improves. This contradicts the fact that ϕ is
group strategy-proof. QED

Now, Claims 5 and 6 imply that ϕ[�∗
{i,k},�−{i,k}](i) = h and ϕ[�∗

{i,k},�−{i,k}](k) �= e. By
Maskin monotonicity, we can drop the ranking of e in �∗

i
and �∗

k
, and yet, the outcome of

ϕ will not change. Recall that �−{i,k} was an arbitrary profile in which all houses in Hσ are
ranked above the houses in Hσ by i

� ∈ Iσ − {i, k}. Thus, i gets h at all profiles of P[σ, h].
QED

The following six lemmas show that the starred control rights structure satisfies R1-R6
(respectively).

Lemma 12. (R1; Uniqueness of a brokered* house). Let σ ∈M. If e is a brokered*
house at σ, then no other house is a brokered* house at σ (and all other unmatched houses
are owned* houses).

Proof of Lemma 12. Let e be a brokered* house at σ. By Lemma 9, there is a broker*
of e at σ; let us denote him as k. Consider a house h ∈ Iσ − {e}. By Lemma 8, there is an
agent i who gets e at all profiles in P[σ, e, h]. By Lemma 10, i is the owner* of h. Thus h is
not a brokered* house at σ. QED
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Lemma 13. (R2; Last unmatched agent is an owner). Let σ ∈ M, such that there
exists a unique agent i unmatched at σ. Then i owns* all unmatched houses at σ ∈ Iσ.

Proof of Lemma 13. Let �∈ P[σ, h] for h ∈ Hσ. By Pareto efficiency of ϕ, ϕ[�](i) = h,
implying that i owns* h at σ. QED

Lemma 14. (R3; Broker* does not own*). Let σ ∈ M. If agent k is the broker* of
house e at σ, then he cannot own* any houses at σ.

Proof of Lemma 14. Suppose that k owns* a house h �= e at σ. By Lemma 8, there exists
some agent i �= k who gets e at all profiles in P[σ, e, h]. Thus, i gets h at all �∈ P∗[σ, h],
contradicting that k owns* h. QED

Lemma 15. (R4; Persistence of ownership*). Let i own* h at some σ ∈ M. If
σ
� � σ, and i and h are unmatched at σ

�, then i owns* h at σ
�.

Proof of Lemma 15. Imagine to the contrary that i gets h at all �∈ P[σ, h], but there
is some ��∈ P[σ�, h] such that some agent j ∈ Iσ� − Iσ, such that j �= i, gets h at ��. Take
�∈ P[σ, h] such that

• for each agent k �∈ Iσ� − Iσ, �k=��
k
, and

• each agent k ∈ Iσ� − Iσ ranks σ
�(k) as his second choice (just behind h) in �k .

Each k ∈ Iσ� − Iσ is indifferent between �� and � because:

• at �� agent k gets σ
�(k) by Lemma 7,

• at � agent k gets σ
�(k) by the Pareto efficiency of ϕ and the fact that ϕ[�](i) = h.

The only difference between the profiles �� and � are the preferences of the agents in Iσ�−Iσ.
Thus, agents Iσ� − Iσ are indifferent between � and ��, while agent j is strictly better off at
��. This contradicts the fact that ϕ is group strategy-proof. QED

Lemma 16. (R5; Limited persistence of brokerage*) Let σ, σ
� ∈ M be such that

σ
� � σ. Suppose that agent k is the broker* of house e at σ, agent i is the owner* of house

h at σ, and agent i
� �= i is the owner* of house h

� at σ. If k, i, i
�
, e, h, h

� are unmatched at
σ
�, then k brokers* e at σ

�.
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Proof of Lemma 16. First, notice that i gets e at all �∈ P[σ, e, h] and i
� gets e at all

�∈ P[σ, e, h
�], and k gets h and h

�
, respectively by Lemma 11. Take �h∈ P[σ, e, h] and

�h
�
∈ P[σ, e, h

�] such that each agent j ∈ Iσ� − Iσ has σ
�(j) as his third choice and each agent

j ∈ I−Iσ� ranks each house unmatched at σ
� above all houses matched at σ

� at both preference
profiles. Let profile ��h be obtained from �h by moving σ

�(j) for all j ∈ Iσ� − Iσ up to be
the first choice of j. Let ��h�be obtained analogously from �h

� . By Maskin monotonicity,
ϕ[��h]−1(e) = i �= i

� = ϕ[��h� ]−1(e). Since ��h and ��h� ∈ P∗[σ�, e], house e is a brokered*
house at σ

�.
For an indirect argument for the second part of the proof, suppose that k is not the

broker* of e at σ
�. Then, by Lemma 9 there exists some other agent k

� �= k who brokers* e

at σ
�.
Let ��∈ P[σ�, e, h] be arbitrary and �∈ P[σ, e, h] be such that each agent j in Iσ� − Iσ

lists σ
�(j) as his third choice at �, each agent in I− Iσ� lists houses in Hσ� lower than houses

in Hσ� −Hσ at �, and the rest of the relative rankings of the houses are the same between
� and ��. Since k brokers* e at σ and i owns* h at σ, by Lemma 11 ϕ[�](k) = g and
ϕ[�](i) = e. Then, by Pareto efficiency, ϕ[��](j) = σ

�(j) for all j ∈ Iσ� − Iσ, and thus, by
Maskin monotonicity, ϕ[��] = ϕ[�]. Now, ϕ[��](k) = h , however, this contradicts the fact
that agent k

� �= k brokers* e at σ
� and thus, ϕ[��](k�) = h. Therefore, k brokers* e at σ

�, as
well. QED

Lemma 17. (R6; Consolation for lost control rights*) Let σ ∈ M, i, j ∈ Iσ, and
g, h ∈ Hσ be such that i �= j and g �= h, i controls* h and j controls* g at σ. Then i owns*
g at σ

� = σ ∪ {(j, h)}.

Proof of Lemma 17. First consider the case i brokers* h and j owns* g at σ. By Lemmas 10
and 11 and Maskin monotonicity, for all profiles�∈ P[σ] such that�i∈ �h, g, ...�, �j∈ �h, ...�,
we have ϕ[�](i) = g and ϕ[�](j) = h. Then, by Maskin monotonicity, for any ��∈ P[σ�, g],
ϕ[�](i) = g, i.e., i owns* g at σ

�.
Next consider the case i owns* h and j owns* g at σ. For all profiles �∈ P[σ] such that
�i∈ �g, h...�, �j∈ �h, g, ...�, strategy-proofness for i implies ϕ[�](i) �i h as otherwise ��

i
∈

�h, ...� , ϕ[��
i
,�−i](i) = h. Similarly, ϕ[�](j) �j g. Pareto efficiency implies ϕ[�](i) = g and

ϕ[�](j) = h. Hence, by Maskin monotonicity, for all ���∈ P[σ�, g], ϕ[���](i) = g, i.e., i owns*
g at σ

�.
Finally consider the case i owns* h and j brokers* g at σ. By Lemmas 10 and 11 and Maskin
monotonicity, for all profiles�∈ P[σ] such that�i∈ �g, ...�, �j∈ �g, h...�, we have ϕ[�](i) = g

and ϕ[�](j) = h. Then, by Maskin monotonicity, for any ��∈ P[σ�, g], ϕ[�](i) = g, i.e., i

owns* g at σ
�. QED
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Lemma 18. (R6; Brokered*-to-Owned* House Transition) Let σ ∈M, k, j, i ∈ Iσ,
and e, g, h ∈ Hσ be such that k �= j and e �= g, k brokers* e at σ but not at σ

� = σ ∪ {(j, g)},
and i owns* h at σ. Then i owns* e at σ

�.

Proof of Lemma 18. By Lemmas 10 and 11 and Maskin monotonicity, for all profiles
�∈ P[σ] such that �i∈ �e, ...�, �k∈ �e, h, ...�, we have ϕ[�](i) = e and ϕ[�](k) = h. Since
P[σ�] ⊂ P[σ], Proposition 4 implies that either i owns* e at σ

� or k brokers* e at σ
�. The

latter is not true, by an assumption made in the lemma; hence i owns* e at σ
�. QED

D.3 The TC Mechanism Defined by the Starred Control Rights

Structure Equals ϕ

We showed above that the starred control rights structure (c, b) is well defined and consistent
(satisfies R1-R6). We will now close the proof of Theorem 2 by showing that the resulting
TC mechanism, ψ

c,b, maps preferences to outcomes in the same way as ϕ does.
Fix �∈ P. We will show that ϕ[�] = ψ

c,b[�] proceeding by induction on rounds of ψ
c,b.

Let I
r be the set of agents removed in round r of ψ

c,b. For each agent i ∈ I
r, there is a

unique house that points to him and is removed in the same cycle as i; let us denote this
house hi. Let us construct the following preference profile �∗ by modifying �.

• If ψ
c,b[�](i) = hi, then �∗

i
=�i.

• If ψ
c,b[�](i) �= hi and if no brokered house was removed in the same cycle as i or the

brokered house was assigned to i, then we construct �∗
i

from �i by moving hi just
after ψ

c,b[�](i) (we do not change the ranking of other houses).

• If i is removed as owner and a brokered house e
r was removed in the same cycle as i

but not assigned to i, then we construct �∗
i

from �i by moving e
r just after ψ

c,b[�](i)

and moving hi just after e
r.

• If a broker k
r was removed in a cycle

hi1 → i
1
→ hi2 → i

2
→ ...hin → i

n
→ e

r
→ k

r
→ hi1 ,

then we construct �∗
kr from �kr by moving hin just below hi1 .

We will show that

ϕ[�∗](i) = ψ
c,b[�∗](i) ∀i ∈ ∪s≤rI

s
, ∀r = 0, 1, 2, ... (1)
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by induction over the round r of ψ
c,b. The claim is trivially true for r = 0. Fix round r ≥ 1

and let σ
r−1 be the matching fixed before round r (in particular, σ

0 = ∅). For the inductive
step, assume that

ϕ[�∗](i) = ψ
c,b[�∗](i) ∀i ∈ ∪s≤r−1I

s = Iσr−1

We will prove that the same expression holds for agents in I
r using the following three claims.

Claim 1. ϕ[�∗](i) �∗
i

hi for all owners i ∈ I
r.

Proof of Claim 1. Let ��∈ P[σr−1
, hi] be a preference profile such that the relative ranking

of all houses in H − Hσr−1 − {hi} in ��
j

is the same as in �∗
j

for all j ∈ (I − Iσr−1) − {i},
and let ���∈ P[σr−1] be a preference profile such that the relative ranking of all houses in
H −Hσr−1 in ���

j
is the same as in �∗

j
for all j ∈ (I − Iσr−1)− {i}.

By Maskin monotonicity,

ϕ[�∗] = ϕ[���
(I−Iσr−1 )−{i},�

�
Iσr−1

,�
∗
i
].

Furthermore, by definition hi is owned by i at σ
r−1 under ψ

c,b and the construction of the
control right structure (c, b) from ϕ means that hi is owned* by i in ϕ. Thus,

ϕ[��](i) = hi,

and no agent j ∈ (I− Iσr−1)−{i} gets hi at ϕ[��]. These agents also do not get houses from
Hσr−1 at ϕ[��]. Maskin monotonicity thus implies that

ϕ[��] = ϕ[���
(I−Iσr−1 )−{i},�

�
Iσr−1∪{i}].

Taken together the first above-displayed equation, the strategy-proofness of ϕ, the third and
second above-displayed equation give us

ϕ[�∗](i) = ϕ[���
(I−Iσr−1 )−{i},�

�
Iσr−1

,�
∗
i
](i) �∗

i
ϕ[���

(I−Iσr−1 )−{i},�
�
Iσr−1∪{i}](i) = ϕ[��](i) = hi.

QED

Claim 2. If i ∈ I
r and no brokered house was removed in the cycle of i, then ϕ[�∗](i) =

ψ
c,b[�∗](i).

Proof of Claim 2. The inductive assumption implies that all houses better than ψ
c,b[�∗](i)
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are already given to other agents; hence

ψ
c,b[�∗](i) �∗

i
ϕ[�∗](i).

For an indirect argument, suppose ϕ[�∗](i) �= ψ
c,b[�∗](i). Then, Claim 1 and the construc-

tion of �∗ imply that
ϕ[�∗](i) = hi.

Let
hi → i → hi2 → i

2
→ ... → hin → i

n
→ hi

be the cycle in which i is removed under ψ
c,b[�∗]. From

ϕ[�∗](i) = hi = ψ
c,b[�∗](in),

we conclude that ϕ[�∗](in) �= ψ
c,b[�∗](in), and Claim 1 and the construction of �∗ imply

that
ϕ[�∗](in) = hin = ψ

c,b[�∗](in−1).

As we continue iteratively, we obtain that

ϕ[�∗](j) = hj

for all j ∈ {i, i2, ..., in}. Hence, the matching obtained by assigning ψ
c,b[�∗](j) to each agent

j ∈ {i, i2, ..., in} and ϕ[�∗](j) to each agent j ∈ I − {i, i2, ..., in} Pareto dominates ϕ[�∗] at
�∗, contradicting that ϕ[�∗] is Pareto efficient. QED

Claim 3. If i ∈ I
r and a brokered house was removed in the cycle of i, then ϕ[�∗](i) =

ψ
c,b[�∗](i).

Proof of Claim 3. Let e ≡ hi0 be the brokered house and k ≡ i
0 be the broker at σ

r−1. Let

hi1 → i
1
→ hi2 → ... → i

n
→ e → k → hi1

be the cycle in which they are removed in round r of ψ
c,b. By the inductive assumption, for

each i
�, � = 1, ..., n, all houses better than hi�+1 are given to other agents before round r.

Hence, Claim 1 implies that

ϕ[�∗](i�) ∈ {hi�+1 , e, hi�} , � = 1, ..., n (2)
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Recall that h
∗
i�+1 �

∗
i�

e �i� hi� . We prove Claim 3 in two steps:
Step 1. Let us show that ϕ[�∗](in) = e = ψ

c,b[�∗](in). Suppose not. Then, ϕ[�∗](in) �= e.
Since e = hin+1 , the above displayed inclusion gives us ϕ[�∗](in) = hin . Thus, the above
displayed inclusion tells us that ϕ[�∗](i�) ∈ {e, hi�} for � = n − 1. We cannot have ϕ[�∗

](i�) = e as it would not be Pareto efficient because agents i
n and i

n−1 would be better off
by swapping their allocations. Thus, ϕ[�∗](i�) = hi� . Iterating this last argument we show
that

ϕ[�∗](i�) = hi� , � = n, n− 1, ..., 1.

Let us construct an auxiliary preference profile ��∈ P[σr−1] from �∗ by pushing up σ
r−1 (i) in

preferences of agents i ∈ Iσr−1 , pushing down houses matched at σ
r−1 in preferences of agents

i ∈ I−Iσr−1 , and pushing down h
2 in preferences of i

1 while preserving the relative ranking of
houses otherwise. By above observations, �� is a ϕ-Maskin-monotone transformation of �∗,
and hence ϕ[�∗] = ϕ[��]. Notice that agent i

1 owns* h
1 at σ

r−1 in ϕ and agent k brokers* e

at σ
r−1 in ϕ (by construction of ψ

c,b in which i
1 is the owner of h

1 and agent k is the broker
of e at σ

r−1). Because ��
k
∈ Pk[σr−1

, hi1 , ...]∪Pk[σr−1
, e, hi1 , ...], and ��

i1
∈ Pk[σr−1

, e, hi1 , ...],
we get ϕ[��](i1) = e and thus ϕ[�∗](i1) = e contrary to the above displayed equations. This
contradiction concludes Step 1.

Step 2. Let us show that

ϕ[�∗](i�) = hi�+1 = ψ
c,b[�∗](i�) ∀ � ∈ {0, ..., n− 1} .

By way of contradiction, suppose there exists some � ∈ {0, ..., n− 1} such that ϕ[�∗](i�) �=

hi�+1 . Then, inclusion 2 and Step 1 imply that ϕ[�∗](i�) = hi� . Thus, ϕ[�∗](i�−1) �= hi(�−1)+1 .
Iterating this argument we show

ϕ[�∗](im) = him m = �− 1, �− 2, ..., 1.

Let us construct an auxiliary preference profile ��∈ P[σr−1] from �∗ by pushing up
σ

r−1 (i) in preferences of agents i ∈ Iσr−1 , pushing down houses matched at σ
r−1 in preferences

of agents i ∈ I − Iσr−1 , and pushing down h
1 in preferences of i

0 ≡ k while preserving the
relative ranking of houses otherwise.

The above-displayed equations imply ϕ[�∗](k) �= hi1 , and thus�� is a ϕ-Maskin-monotone
transformation of �∗, and hence ϕ[�∗] = ϕ[��]. Notice that agent i

n owns* h
n at σ

r−1 in ϕ

and agent k brokers* e at σ
r−1 in ϕ (by construction of ψ

c,b in which i
1 is the owner of h

1

and agent k is the broker of e at σ
r−1). Because ��

k
∈ Pk[σr−1

, hin , ...] ∪ Pk[σr−1
, e, hin , ...],
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and ��
i1
∈ Pk[σr−1

, e, hin , ...], we get ϕ[��](k) = hin and thus

ϕ[�∗](k) = hin .

In consequence, inclusion 2 and Step 1 imply that ϕ[�∗](in−1) = hin−1 . Thus, ϕ[�∗](in−2) �=

hin−1 . Iterating this argument we show

ϕ[�∗](im) = him m = n− 1, n− 2, ..., 1.

The above-displayed equations and Step 1 imply that ϕ[�∗] is Pareto dominated by the
allocation in which each agent i

m, m = 0, ..., n− 1, gets house h
m+1, and all other agents get

their ϕ[�∗] houses. This contradiction concludes Step 2, and proves Claim 3. QED

Claims 2 and 3 show that ϕ[�∗](i) = ψ
c,b[�∗](i) for all i ∈ I

r. This completes the
inductive proof of equations (1). Now, the theorem follows from

ψ
c,b[�] = ψ

c,b[�∗], ψ
c,b[�∗] = ϕ[�∗], and ϕ[�∗] = ϕ[�].

The first of these equations follows directly from the construction of �∗. The second equation
is equivalent to equations 1. To prove the third equation, observe that for every agent i ∈ I,





h ∈ H : h �i ψ

c,b[�](i)� �� �
=ψc,b[�∗](i)=ϕ[�∗]





=





h ∈ H : h �

∗
i

ψ
c,b[�](i)� �� �

=ψc,b[�∗](i)=ϕ[�∗]





.

In particular,

{h ∈ H : h �i ϕ[�∗](i)} = {h ∈ H : h �
∗
i

ϕ[�∗](i)} for all i ∈ I,

and hence � is a ϕ−monotonic transformation of �∗. The third equation thus follows from
Maskin monotonicity of ϕ. QED

E Supplementary Appendix: Proof of Theorem 5

The argument for the Pareto efficiency of TC remains the same as in the TC example of
Section 3.2. As before, group strategy-proofness is equivalent to individual strategy-proofness
and non-bossiness.
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Lemma 19. In the environment with outside options, a mechanism is group strategy-proof
if and only if it is individually strategy-proof and non-bossy.

The proof follows word-by-word the proof of Lemma 1 in Pápai (2000). QED
Our arguments for individual strategy-proofness and non-bossiness go through with two

modifications. First, when in the proof of Theorem 1 we assume that an agent is matched
with a house, we should now substitute “a house or the agent’s outside option.” If the agent
is matched in a cycle of a length above 1, we can then conclude that the agent is indeed
matched with a house. Second, in some steps of the proof we consider separately the case
when a broker is matched with his outside option. We handle these cases below. This allows
us to assume this case away in the relevant parts of the original proof.

Consider the proof of individual strategy-proofness. In Case 1: s ≤ s
�, let i be a broker

of house e and under �i leaves with his outside option in round s. Since the same houses
are matched under �i and ��

i
, under ��

i
the best the broker can do is to leave either with his

outside option, or – if he prefers the brokered house e to his outside option – to leave with the
brokered house e. We need to prove that the latter cannot happen. By Lemma 3, in round
s of TC under ��

i
, agent i is a broker of e and there is an owner j whose first preference is e.

For i to be matched with e, he would need to lose the brokerage right but by R5-R6 if this
happens then j becomes the owner of e, and is then matched with it, ending the argument
for Case 1. In Case 2: s > s

�, if i be a broker of house e matched with his outside option
under ��

i
, then submitting this preference profile cannot be better than submitting the true

profile �i, as under any profile agent i is matched at least with his outside option.
Consider the proof of non-bossiness. We run the same induction as in the proof without

outside options. In the initial step of the induction, consider the additional case when i∗

is a broker and is matched with his outside option at time s under �. By assumption i∗

is matched with his outside option under �� and the inductive hypothesis is true. In the
inductive step, consider the additional case in which i

1 is a broker and is matched with his
outside option at time r > s under � (handling this case separately allows us to assume
this case away in all claims of the inductive step). By the inductive assumption, there is
an r

∗ such that σ
r−1 [�] ⊆ σ

r
∗
[��]. At σ

r−1 [�], i
1 brokers a house h and all houses other

than h that i
1 prefers to his outside option are matched. Since i

1 gets at least his outside
option, he either gets his outside option (and the inductive step is true) or he gets h. In the
latter case, as in the proof of individual strategy-proofness, at σ

r−1 [�], there is an owner j

whose top preference is h. He remains unmatched as long as h is unmatched. Since for i
1

to obtain h he would need to lose his brokerage right, conditions R5-R6 imply that j would
get ownership over h, and would match with h. Hence i

1 cannot be matched with h and is
matched with his outside option.
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To prove that any group strategy-proof and efficient mechanism is TC we follow the same
steps as in the proof of Theorem 2 with one important modification. For σ ∈M, n ≥ 0 and
h

1
, h

2
, ..., h

n ∈ Hσ, and i ∈ I, we redefine Pi[σ, h
1
, ..., h

n] to be the set of preferences �i of
agent i such that

• if i ∈ Iσ, then
σ(i) �i g for all g ∈ H − {σ(i)} ,

• if i ∈ Iσ, then
h

1
�i h

2
� ... �i h

n
�i yi � g for all g ∈ Hσ.

In particular, the definitions of ownership* and brokerage* are repeated word-by-word, but
the meaning of Pi[σ, h

1
, ..., h

n] is changed as above. With this modification, the proof goes
through. QED

68


