Dual-Donor Organ Exchange

Haluk Ergin Tayfun Sönmez M. Utku Ünver

Introduction

- Kidney Exchange became a wide-spread modality of transplantation within the last decade.
- More than 500 patients a year receive kidney transplant in the US along through exchange, about 10% of all live-donor transplants.
- In theory **live donor organ exchange** can be utilized for any organ for which live donation is feasible.

Kidney Exchange

Institutions

- Human organs cannot received or given in exchange for "valuable consideration" (US, NOTA 1984, WHO)
- However, live donor kidney exchange is not considered as "valuable consideration" (US NOTA amendment, 2007)
- Livers and lungs are two of the other organs for which live donation is feasible.
- Live-donor liver and lung donations are common especially in regions where deceased donation possibilities are limited, such as Japan, South Korea, and Hong Kong.
- Moreover, in many occasions, each live-donor transplant for these organs requires the involvement of two donors.

Live-Donor Lobar Lung Transplants

Figure from Date et al. Multimedia Manual of Cardiothoracic Surgery 2005

 <u>Two</u> donors each donate to a single patient a lobe of their lungs (less than 1/4th of total lung volume) to a donor. Lung lobes enlarge but do not regenerate.

Live-Donor Lung Transplants

- In Japan around 20 patients receive transplants a year. The number is increasing.
- Size compatibility and blood-type compatibility are required. No consensus on tissue-type compatibility, many transplant centers do not check.

Dual-Graft Liver Transplants

- Patient needs roughly at least 40% of his own liver size to survive.
- Donor needs at least 30% remnant liver volume to survive. Usually right lobe is 60+%, left lobe is 40-% of liver.
- Occasionally, the left lobe mass falls below 30%. Donor cannot donate right lobe and a single left lobe is too small for patient.
- Then <u>two</u> lobes are needed for a patient from two donors.

Dual-Graft Liver Transplants

- In Korea, around 10% of the patients at the biggest center receive dual lobe liver transplants. Potential is 20% of all live-donor liver transplants in Korea (850 per year).
- In China, by live donation mandate of 2010, live donation is increasing. "Voluntary donation programs" became nationwide in 2013. Given the prevalence of Hep-B related end-stage liver disease in Asia, we would expect this phenomenon being very relevant.
- Only Blood-type compatibility is required. Tissue-type incompatibility is not an issue for liver. Even though one lobe could be too small, two are enough in most cases. Size incompatibility is not an issue.

Simultaneous Liver-Kidney Transplants

- 7.5-15% of end-stage liver disease patients need also kidney transplantation.
- Simultaneous transplantation has been more effective than sequential transplantation for long term survival.
- Each KLT patient requires <u>two</u> designated live-donors, one for kidney and one for liver.
- Live donors are favored over deceased donors.

Contribution

- We introduce a new transplant modality to the attention of scientific community: Multi-donor organ exchange
- We model multi-donor organ exchange as matching problems to
 - characterize the maximum number of patients that can be saved under different institutional constraints and
 - find simple algorithms to find optimal exchanges.
- We simulate gains from exchange for dual-graft livers, simultaneous liver-kidney, and lungs to show that
 - **Dual-graft liver exchange** results gains **comparable** with single-graft liver exchange and dual-graft direct donation
 - Lung exchange can quadruple the number of patients who receive live donor lung donation, much more than kidney exchange.
 - An integrated SLK exchange program can triple gains of an isolated SLK exchange; and quadruple the number of SLK transplants even under 2&3-way exchanges.

Literature

- Kidney Exchange: Among many
 - Rapaport [1986] proposed the idea
 - Ross et al. [1997] proposed ethical implementation grounds
 - Roth, Sönmez, Ünver [2004, 2005, 2007] introduced optimization, matching, and market design techniques
 - Segev et al. [2005] simulated gains, approval of the optimization techniques among doctors
 - Roth et al. [2006] proposed non-simultaneous NDD chains
 - Abraham, Blum, Sandholm [2007] designed an efficient algorithm for the NP-complete computational problem
 - Rees et al. [2010] proof of concept of non-simultaneous NDD-chains
 - Ünver [2010] dynamically optimal clearinghouses
 - Sönmez & Ünver [2014, 2015] and Nicolò & Rodriguez-Alvaréz
 [2014] compatible pairs in exchange
 - Roth, Sönmez, Ünver[2005] and Ashlagi & Roth [2014] multi-hospital exchange programs

Literature

- Liver Exchange: Only three papers
 - Hwang et al. [2010] proposed the idea and documented the practice in South Korea since 2003
 - Chen et al. [2010] documented the program in Hong Kong
 - Dickerson & Sandholm [2014] showed asymptotic gains from joint liver+kidney exchange
- Multi-Donor Exchange: Ours is the first
 - Dual-Graft Liver Exchange
 - Lung Exchange
 - Simultaneous Liver-Kidney Exchange

Blood-Type Compatibility

Blood-type compatibility is required (like kidneys).

Multi-donor Exchange

- Finding two compatible donors is difficult.
- Multi-donor exchange can substantially increase the number of transplants.

Possible Two&Three-way Multi-Donor Exchanges

Umbrella Model for Organ Exchanges

- ullet Each patient in need of an organ has ${\bf k}$ attached donors
 - If all of them are compatible with her, she receives from them;
 - Otherwise, she participates in **exchange**
- Preferences: Dichotomous over compatible donors
- Compatibility:
 - Blood-type: Kidneys, Lungs, Livers
 - Tissue-type: Kidneys, possibly Lungs
 - Size: Lungs, Single-lobe Livers (roughly: each patient can get grafts from donors that are at least as heavy/tall as herself; the constraint could be more detailed for livers) Not a problem for dual-graft and juvenile lung transplantation.
- Number of Required Donors: k
 - ullet ${f k}={f 1}$: Kidney, Single-lobe liver
 - **k** = **2** : Lung, Dual-graft liver, Kidney/Liver
- Model 0: Kidneys Roth, Sönmez, Ünver [2005]

Model 1: Multi-Donor Organ Exchange Model

We abstract away from size compatibility at first

Blood types: O, A, B, AB

Blood-type incompatibility: ✓

Tissue-type incompatibility: X

Size incompatibility: X

Number of donors: 2

- Exact model for dual-graft liver exchange
- Exact model for lung exchange for juveniles (cystic fibrosis) Donor size is not an issue
- For adult lung transplants, there is an equivalent interpretation: A, O are the most common blood types, making up of 80% of the world population. In this interpretation,
 - suppose there are two types of agents large (ℓ) and small (s), ℓ can only receive from ℓ , s can receive from both s and ℓ ;
 - while patients and donors can have only A or O blood types.

Compatibility Partial Order

- Compatibility: 2 dimensional binary partial order on unit square: ⊵
- Model 1a: A blood antigen is the first dimension, B blood antigen is the second dimension. For $X \in \{A, B\}$
 - ullet No X antigen $\equiv 1$
 - Has X antigen $\equiv 0$
- **Model 1b**: Size replaces antigen *B* in dimension 2 in the partial order.
 - $\ell \equiv \text{No } B$ antigen
 - $s \equiv \mathsf{Has}\ B$ antigen

Multi-Donor Exchange Problem - Model 1a

- Set of blood types $\mathcal{B} = \{O, A, B, AB\} = \{11, 01, 10, 00\}$ set of compatibility types.
- A patient-donors triple is denoted by the blood types of its patient and donors respectively as $X-Y-Z=X-Z-Y\in\mathcal{B}^3$
- Set of triple types B³

Definition

A multi-donor exchange problem is a vector of non-negative integers $\mathcal{E} = \{n(X - Y - Z) \mid X - Y - Z \in \mathcal{B}^3\}$ such that for all

$$X - Y - Z \in \mathcal{B}^3$$

(1)
$$n(X - Y - Z) = n(X - Z - Y)$$
 and

(2)
$$Y \supseteq X$$
 and $Z \supseteq X \implies n(X - Y - Z) = 0$.

Two-way Multi-Donor Exchange

Lemma (Participation Lemma for Two-way Exchanges)

In any given multi-donor exchange problem, the only types that could be part of a two-way exchange are

$$A - Y - B$$
 and $B - Y' - A$

for all $Y, Y' \in \{O, A, B\}$.

Sequential Two-way Multi-Donor Exchange Algorithm

- Step 1: Match the maximum number of A A B and B B A types. Match the maximum number of A B B and B A A types.
- Step 2: Match the maximum number of A-O-B types with any subset of the remaining B-B-A and B-A-A types. Match the maximum number of B-O-A types with any subset of the remaining A-A-B and A-B-B types.
- Step 3: Match the maximum number of the remaining A-O-B and B-O-A types.

Sequential Two-way Multi-Donor Exchange Algorithm

Optimal Two-way Multi-Donor Exchange

Theorem (Optimal Two-way Multi-Donor Exchange)

Given a multi-donor exchange problem, the sequential two-way multi-donor exchange algorithm maximizes the number of two-way exchanges. The maximum number of transplants through two-way exchanges is $2 \min\{N_1, N_2, N_3, N_4\}$ where:

$$\begin{array}{l} N_1 = n(A-A-B) + n(A-O-B) + n(A-B-B) \\ N_2 = n(A-O-B) + n(A-B-B) + n(B-B-A) + n(B-O-A) \\ N_3 = n(A-A-B) + n(A-O-B) + n(B-O-A) + n(B-A-A) \\ N_4 = n(B-B-A) + n(B-O-A) + n(B-A-A) \end{array}$$

Larger Multi-Donor Exchanges

- Participation Lemma can be generalized to larger exchanges.
- In addition to the earlier types, some types with O blood type patients can be matched!

Lemma (Participation Lemma for All Exchanges)

Fix a multi-donor exchange problem and $n \ge 2$. Then, the only types that could be part of an n-way exchange are

$$O-Y-A$$
, $O-Y-B$, $A-Y-B$, and $B-Y-A$

for all $Y \in \{O, A, B\}$. Furthermore, every n-way exchange must involve one A and one B patient.

Larger Multi-Donor Exchanges

 We will make the following assumption for the remaining results on multi-donor exchange.

Assumption (Long Run Assumption)

Regardless of the exchange technology available, there remains at least one "unmatched" patient from each of the two types O-O-A and O-O-B.

Optimal Two & Three-way Multi-Donor Exchange

Proposition

Consider a multi-donor exchange problem that satisfies the long run assumption, and suppose n=3. Then, there exists an optimal matching that consists of exchanges summarized in the following figure where:

- (1) A regular (non-bold/no dotted end) edge between two types represents a 2-way exchange involving those two types.
- (2) A bold edge between two types represents a 3-way exchange involving those two types and a O-O-A or O-O-B type.
- (3) An edge with a dotted end represents a 3-way exchange involving two types from the dotted end, and one type from the non-dotted end.

Optimal Two & Three-way Multi-Donor Exchange

Three-way exchanges (in the Proposition)

• with A - O - B types (Kind 2 in Proposition)

$$A - O - B$$
 $A - O - B$
 $B - A - B$ and $B - A - A$
 $O - O - A$ $O - O - B$

• with 1 A - B - B and 2 B - A - A types (Kind 3 in Proposition)

$$A - B - B$$
$$B - B - A$$
$$B - B - A$$

• Symmetrically defined for B - O - A and B - A - A types

Sequential Two & Three-Way Multi-Donor Exchange Algorithm

- Step 1: Carry out the 2 & 3-way exchanges in Proposition among A-A-B, A-B-B, B-B-A, and B-A-A types to maximize the number of transplants subject to the following constraints (*):
 - (1) Leave at least a total of

$$\min \left\{ n(A-A-B) + n(A-B-B), n(B-O-A) \right\}$$

$$A - A - B$$
 and $A - B - B$ types unmatched.

(2) Leave at least a total of

$$\min \left\{ n(B-B-A) + n(B-A-A), n(A-O-B) \right\}$$

B-B-A and B-A-A types unmatched.

Two & Three-Way Multi-Donor Exchange Algorithm

Step 2: Carry out the maximum number of 3-way exchanges in Proposition involving A - O - B types and the remaining B - B - A or B - A - A types.

> Carry out the maximum number of 3-way exchanges in Proposition involving B - O - A types and the remaining A - A - B or A-B-B types.

Step 3: Carry out the maximum number of 3-way exchanges in Proposition involving the remaining A - O - B and B - O - A types.

Optimal Two & Three-Way Multi-Donor Exchange

Theorem (Optimal Two & Three-way Multi-Donor Exchange)

Given a multi-donor exchange problem satisfying the long run assumption, the sequential two & three-way multi-donor exchange algorithm maximizes the number of transplants through two and three-way exchanges.

Sufficiency of 6-way Exchange

Theorem (6-way Sufficiency Theorem)

Consider a multi-donor exchange problem satisfying the long run assumption. Then, there exists an optimal matching which consists only of exchanges involving at most 6-way exchanges.

Lack of Sufficiency of Less than 6-way Exchanges

Example

There are

- 3 blood type O patients and 6 blood type O donors,
- 2 blood type B patients and 4 blood type B donors, and
- 1 blood type A patient and 2 blood type A donors.

Hence, for optimality, each patients receives a graft from each of two donors of exactly his own blood type, and all are matched.

Triple types are:

1.
$$A - O - B$$

needs to be in the same exchange as both Patients 2 & 3

2.
$$B - O - A$$

3.
$$B - O - A$$

4.
$$O - O - B$$

5.
$$O - O - B$$

6. $O - O - B$

The blue argument along with the red arguments imply that a 6-way exchange is necessary. • Simulations

Optimal Exchange

Theorem (Maximum Number of Patients Matched)

The number of patients matched in an optimal matching is given by

$$\overline{m} - \mathbf{i} + \min\{n(A - O - B), \overline{s}_B\} + \min\{n(B - O - A), \overline{s}_A\},$$

where $\mathbf{i} \in \{0, 1\}$, and

 $\overline{m} := \overline{m}_A + \overline{m}_B$ where $\overline{m}_A := \min \{ n_A \mid \frac{d_A + d_O}{5} \mid \overline{5} \mid$

 $\overline{m}_A := \min\{p_A, \lfloor \frac{d_A + d_O}{2} \rfloor, \overline{s}_B\}$

 $\overline{s}_B := 2n(B-O-A) + n(B-A-B) + 2n(B-A-A)$

 \overline{m}_B and \overline{s}_A symmetrically defined.

 \overline{m}_A : #A patients that can be matched,

 \overline{s}_B : Max. #A patients that can be potentially matched with the help of B patients,

 p_A : #A patients, and d_X : #X donors

Dual-Graft Liver Exchange Simulations									
Sample Size	1-Donor Direct		1-Donor Exchange	2-Donor Direct	2-Donor Exchange				
250	59.998	2-way	+35.032 (7.5297)	+48.818 (7.1265)	+26.096 (5.8167)				
	(6.9937)	2&3-way	+49.198 (10.37)	+43.472 (7.1942)	+34.796 (8.2052)				

Table: Using Korean data, 500 simulations

Lung Exchange Simulations									
Sample	Direct	Exchange Technology							
Size	Donation	2-way	2&3-way 2-4-wa		2-5-way	Unrestricted			
10	1.256	+0.292	or +0.452	or +0.506	or +0.52	or +0.524			
	(1.0298)	(0.72925)	(1.0668)	(1.1987)	(1.2445)	(1.2604)			
20	2.474	+1.128	or +1.818	or +2.176	or +2.396	or +2.668			
	(1.4919)	(1.4183)	(2.0798)	(2.4701)	(2.7273)	(3.1403)			
50	6.31	+4.956	or +8.514	or +10.814	or +12.432	or +16.506			
	(2.2962)	(2.9759)	(4.5191)	(5.3879)	(5.9609)	(7.1338)			

Table: Using Japanese Data, 500 simulations

Welfare Gains from Simultaneous Liver-Kidney Exchange

Simultaneous Liver-Kidney Exchange Simulations												
SLK Patient Sample			Direct			Exchange Regime						
Fraction in	Sizes		Donation		Isolated			Integrated				
Liver Pool	KA	SLK	LA	KA	SLK	LA	KA	SLK	LA	KA	SLK	LA
7.5%	535	35 n = 100	430 0	244.09 (11.783)	2.426 (1.5222)	67.982 (7.8642)	+151.34 (14.841)	+1.352 (1.5128)	+53.26 (9.5101)	or +154.48 (14.919)	+7.468 (2.4366)	+54.264 (9.5771)
15%	518	72 n = 100	410 0	236.23 (11.605)	5.076 (2.2646)	64.874 (7.5745)	+146.18 (14.758)	+4.108 (2.6883)	+50.084 (9.3406)	or +152.17 (14.986)	+14.74 (3.5175)	+52.376 (9.3117)

Table: Using Korean Data, 500 Simulations

Conclusion

- We introduce a new transplant modality to the attention of scientific community: multi-donor organ exchange
- We model multi-donor organ exchange as matching problems to
 - characterize the maximum number of patients that can be saved under different institutional constraints and
 - find simple algorithms to find optimal exchanges.
- We simulate gains from exchange for dual-graft livers, simultaneous liver-kidney, and lungs to show that
 - **Dual-graft liver exchange** results gains **comparable** with single-graft liver exchange and dual-graft direct donation
 - Lung exchange can quadruple the number of patients who receive live donor lung donation, much more than kidney exchange.
 - An integrated SLK exchange program can triple gains of an isolated SLK exchange; and quadruple the number of SLK transplants even under 2&3-way exchanges.

Current Direction

- Incentive problems in liver exchange
- Dual-graft liver exchange/single-lobe exchange integration: model, ethical issues.
- Implementation: Japan