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�Address: Koç University, College of Administrative Sciences and Economics, Department of Economics,
Rumeli Feneri Yolu, Sarõyer, 80910 úIstanbul, Turkey. E-mail: uunver@ku.edu.tr



1 Introduction

Traditional models of asymmetric auctions1 assume that agents� values are believed to be

drawn from heterogeneous distributions that are common knowledge. This is a strong as-

sumption for real-life applications, where an agent might not be aware of the exact distribu-

tion of his opponents� values (even if it is believed that this value is distributed differently

from his own). On the other hand, symmetric value auctions assume that agents believe

that opposing bidders have values that are drawn from the same distribution as their own.

This is a weak assumption in asymmetric settings, since agents can usually infer more than

this in a real-life situation.

For instance, in the recent privatization of the PCS spectrum in the United States, it

was known that the PaciÞc Bell Telephone Company had a distinct comparative advantage

over other Þrms in the Los Angeles area and had a greater valuation for the frequency bands

than the other participating Þrms: it was already in the wireless business in that area, had

a reputable brand name, and had a database of the local customers. Moreover, the auction

format helped them to win the auction at a low price. It was a hybrid of the second-price

auction (SPA).

In the recent Glaxo and Wellcome merger, Glaxo publicly made clear that Wellcome was

a very important investment before Wellcome was sold in the auction. All but a few potential

bidders were deterred from entering the auction. Because of the auction format (i.e., open

ascending auction), Glaxo won the auction easily at a low price (Klemperer (2002)).

We consider a model in which bidders draw their values from the same distribution, but

in which the ranking of these values is common knowledge. So, while the belief structure in

the auction is exante symmetric, the revelation of the ranking makes it expost asymmetric.

In most of the real-life auctions (including the examples above), the auctioneer sets a

reserve price. It is well-known that the reserve price increases the expected revenue of

the auctioneer by preventing the object from being sold at a low price (Myerson (1981)).

However, the assumptions of the revenue equivalence theorem2 (RET) do not hold in en-

vironments like ours involving the Þrst-price auction (FPA) and SPA (Maskin and Riley

1An auction is referred to as �asymmetric� if the bidders� belief functions (i.e., conditional densities)
concerning their opponents� values are not the same as the bidders� own (examples are given in Maskin
and Riley (2000a); Marshall et al. (1994)). The terminology is somewhat different from that of the private
information game literature, which uses �asymmetry� when referring to the private information structure.

2The RET was independently derived by Myerson (1981) and Riley and Samuelson (1981) using as
principal assumptions risk neutrality, independence of bidders� reservation prices, lack of collusion among
bidders, and symmetry of buyers� beliefs.
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(2000a) and Lebrun (1998)). Landsberger et al. (2002) develop a model similar to what we

consider below. For this model, the FPA dominates the SPA when the seller�s reserve price

is zero.3

Our contribution is to extend the Landsberger et al. (2002) model by introducing reserve

prices and provide a well-outlined algorithm for the computation of the equilibrium bid

functions for the FPA. We then determine the optimal reserve price.4 The existence of a

unique equilibrium in the FPA follows from convergence of the numerical algorithm. We

provide numerical evidence for the proposition that the FPA can raise as much, or even

more, revenue as the SPA, when optimal reserve prices are set. The FPA with common

knowledge about the ranking of values introduces inefficiency into the auction. However,

we Þnd evidence that a positive reserve price reduces this inefficiency when the object is

allocated. Beyond these numerical inspections, we analytically derive conditions for which

the FPA would be more desirable than the SPA for small reserve prices. We pin down the

behavior of the bid functions of the FPA in detail. Our Þndings suggest why the SPA was

not very successful for sellers in the above examples with reserve prices.5

3Landsberger et al. (2002) point out that this particular relationship between bidders� valuations will give
rise to an asymmetric auction with affiliated private values where the FPA dominates the SPA. However,
Milgrom and Weber (1982) arrive at a different conclusion (i.e., SPA dominates FPA) under the affiliation
assumption for a symmetric model.

4It is not a trivial exercise to introduce a reserve price in a FPA model with asymmetric dependent beliefs
about private valuations. The behavior of the ordinary differential equations that are used to analyze the
equilibria change substantially in presence of a reserve price.

5The model considered here is different from Maskin and Riley�s (2000a), Marshall and Schulenberg�s
(1998) and Marshall et al.�s (1994) models in the following aspects. First, Maskin and Riley consider
several models with asymmetry of beliefs due to buyers� private valuations (technically, bidders� valuations
are believed to be drawn from independent heterogeneous distributions). These differences may be due to
different opportunity costs of completing a project in the case of contract bidding or pre-existing different
budget constraints in the case of major art auctions. Second, Marshall et al. and Marshall and Schulenberg
consider models with asymmetries arising from bidders� coalitions (this is equivalent to considering a model
with two bidders with asymmetric beliefs about private valuations, which are independent.) Here, we consider
a model with exante independent valuations from the same densities, but with expost asymmetric beliefs after
the ranking is revealed for the dependent private valuations. The characterization of equilibria substantially
changes in existence of asymmetric but dependent beliefs about valuations over the cases where the beliefs
are asymmetric and independent. Therefore, our case is not a subclass of problems handled by Maskin and
Riley, Marshall et al., Marshall and Schulenberg or any other paper in the literature. Lizzeri and Persico
(2000) and Maskin and Riley (2000b) also consider some asymmetric auction settings which differ from our
model at certain points.
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2 The FPA model with a positive reserve price

2.1 The basic model

A single object is to be auctioned to two bidders. Both bidders have risk neutral utility

functions and independently drawn private values. These values V1 and V2 are exante iden-

tically distributed according to a differentiable probability density function g : [0, 1]→ R++

in the support set [0, 1]. Assume that the seller has set a reserve price, r ∈ [0, 1]. Let

G : [0, 1] → [0, 1]6 be the cumulative probability distribution of a value v in [0, 1]. Both

G and r are common knowledge to the bidders. Each bidder j also knows whether she has

the higher or the lower value, although she does not know her opponent�s exact value. The

ranking of values is also observable by the seller, who sets the reserve price.

Let H be the bidder with the higher value, vH = max{v1, v2}, and L be the bidder with
the lower value, vL = min{v1, v2}. For the case when r = 0, Landsberger et al. (2002)

prove that there exists a unique equilibrium in pure strategies for the FPA that is strictly

increasing with respect to values. Moreover, Landsberger et al. (2002) show that if r = 0

and G is the uniform distribution, then both bid functions, bL and bH , are greater than the

symmetric independent private value bid function, bS (i.e., bj(v) > bS(v), j = L,H).

The expost asymmetric FPA under uniform density therefore dominates both the expost

asymmetric SPA (which has the same equilibrium bid functions as the symmetric SPA) and

the symmetric FPA in terms of the expected revenue generated by the seller. Landsberger

et al. (2002) prove these results only for the case of reserve price equal zero (i.e., r = 0). We

shall show that the introduction of a relatively high positive reserve price, r > 0, changes

the properties of the system substantially at the initial boundary point.

For each r, the low-value bidder�s equilibrium bid function, bL, and the high-value bidder�s

function, bH , satisfy bL(v) > bH(v), ∀v ∈ (r, 1). This result implies inefficiency in the FPA
(i.e., the low-value bidder getting the object with positive probability).

In this model, VL and VH each has a strictly positive marginal density in the interval

[0, 1] such that the joint density (with a triangular support) is f(vH , vL) = 2g(vH)g(vL) for

vH≥vL and (vH ,vL) ∈ [0, 1] × [0, 1].7 Landsberger et al. (2002) point out that since values
are stochastically dependent, VH and VL can be viewed as affiliated à la Milgrom and Weber

(1982). That is, a higher value of the item for one bidder does not in general imply lower

6Landsberger et al. (2002) also assume, as a technical requirement, that G has a Taylor expansion around
zero (i.e., G(v) = αv + βv2 + ..., with α > 0).

7Note that marginal densities are fH(v) = 2G(v)g(v) and fL(v) = 2(1−G(v))g(v) for all v ∈ [0, 1].
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values for the other bidder. While the affiliation is between symmetric distributions of signals

for Milgrom and Weber, this model can be seen as a special affiliated private-value model

that considers a speciÞc asymmetric (triangular) distribution of signals.

2.2 Analysis of pure strategy equilibrium for the FPA given a
positive reserve price

We start by conjecturing the existence and uniqueness of equilibrium. This will help to

illustrate the analytical difficulties with the model.

We seek a strictly increasing equilibrium (bH , bL) where bH : [r, 1] → [r, tr] is the differ-

entiable bid function of the high-value bidder, and bL : [r, 1] → [r, tr] is the differentiable

bid function of the low-value bidder, both having as an argument the bidder�s own value,

vi. Note that these functions also depend on r. Assume that such an equilibrium exists.

Let l : [r, tr] → [r, 1] be the inverse bid function of the bidder L with respect to her value,

v, at the reserve price, r (i.e. l(bL(v)) = v ∀ v). Similarly let h : [r, tr] → [r, 1] be the

inverse bid function of the bidder H with respect to her value, v, at the reserve price, r (i.e.

h(bH(v)) = v ∀ v).
At the equilibrium with probability G(l(b))

G(vH)
bidder H gets the object if she bids b and has

a value of vH . Hence, the problem for the high-value bidder is to maximize the following

function:

max
b
G(l(b))(vH − b) (1)

Bidder L wins the auction with probability (G(h(b))−G(vL))
(1−G(vL)) with value vL if she bids b at

the equilibrium. Hence the maximization problem of the bidder L is the following:

max
b
(G (h (b))−G (vL)) (vL − b) (2)

Notice that in equilibrium vL = l(b) when L bids b and vH = h(b) when H bids b;

therefore, both equations (1) and (2) have a unique maximum. By the Þrst-order necessary

conditions, both maximization problems can be reduced to the following system of differential

equations with two boundary conditions. Consider the following notation: Gi = G ◦ i for
i = l, h.
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G0l(b) =
Gl(b)

G−1(Gh(b))− b (3)

G0h(b) =
Gh(b)−Gl(b)
G−1(Gl(b))− b (4)

Gl(r) = Gh(r) = G(r) (5)

∃ tr ∈ [r, 1] such that Gl(tr) = Gh(tr) = 1 (6)

where G−1 is the inverse cumulative distribution function of G.

The Þrst boundary condition, (5), follows from the fact that a bidder does not have

incentives to decrease her bid below r at equilibrium when values are equal to r. In either

case, she has zero utility. Since bidding above her value is weakly dominated by bidding

exactly her value, condition (5) characterizes an equilibrium boundary condition. Note that

at equilibrium, bidders do not submit bids when their values are below r. This is also true

for the SPA. Note that bidding the value is a weakly dominant strategy and constitutes an

equilibrium in the SPA.

The second boundary condition, (6), can be explained as follows: if the bids are not equal

to each other at equilibrium, when the values are close to 1, the owner of the higher bid can

lower her bid slightly and still can win the auction. Then, there exists some bid tr such that

at v = 1 both bid functions are equal to this bid.

A solution to equations (3), (4), (5), and (6) characterizes the equilibria for the FPA. Our

conjectures are (i) that there exists a unique tr for each r satisfying (3), (4), (5), and (6);

(ii) that all pure strategy equilibrium bid functions acquire the same values in the interval

[r, 1]; and (iii) that they are strictly increasing such that bL(v)≥bH(v) for all values of r and
v. If the numerical algorithm me provide converges, this will be the numerical proof of the

conjecture for the used probability density function g.

We use numerical methods to solve the system for each r > 0. The special feature of

our model comes from information conditional on what each bidder knows: that is, whether

they have the lower or higher value. The following conjecture justiÞes our effort to construct

equilibrium bid functions in the FPA. Here we consider the Þrst-order ordinary differential

equation system (FOODES) described by (3), (4), and (6) and show that only one tr of these

solutions satisÞes (5).

Conjecture 1 There exist equilibria of the FPA game in pure strategies, and all the pure

strategy equilibria are increasing and the same in the value interval [r, 1] for each r ∈ [0, 1).
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3 Expected revenue comparison at the equilibrium for

small reserve prices

In this section, we try to derive general sufficient conditions regarding the expected revenue

comparisons under both the FPA and the SPA. To make a general assessment, we need to

do the following analysis:

Consider the following model: V1 and V2 are drawn identically and independently from G.

The rankings are not revealed. In this model, let bS : [r, 1]→ [r, tsr] be the unique equilibrium

increasing bid function, where tsr is the highest possible bid. Suppose that σ : [r, t
s
r]→ [r, 1]

denotes the equilibrium inverse bid function when the FPA is played by symmetric bidders

with values drawn from G. Then, each bidder solves the following problem, since she wins

the object with probability G(σ(b)):

max
b
G(σ(b))(v − b) (7)

We need to introduce some further notation. Suppose that Gσ = G ◦ σ, then

G0σ(b) =
Gσ(b)

G−1(Gσ(b))− b (8)

Gσ(r) = G(r) (9)

∃ tsr ∈ [r, 1] such that Gσ(tsr) = 1 (10)

by the Þrst-order conditions.

We now consider the case when r = 0. Let�s introduce the following notation: δ∗ = Gσ
Gl
,

and δ∗∗ = Gl
Gh
. By the Þrst-order conditions, the following lemmata apply:

Lemma 1 If r = 0, then (i) ∃ ε > 0 such that bS(v) < bL(v) ∀ v ∈ (0, ε). Moreover, (ii)
∃ ε > 0 such that bS(v) < bH(v) ∀ v ∈ (0, ε) if and only if g0(0) ≤ 0.

Proof. See Appendix.

Lemma 2 If r = 0, then bS(v) < bL(v) ∀ v ∈ (0, 1).

Proof. See Appendix.

Lemma 3 If r = 0, then ∃ ε > 0 such that. bS(v) < bH(v) ∀ v ∈ (1− ε, 1).

Proof. See Appendix.
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Lemma 4 If r = 0 and δ∗∗ is increasing at each point, then bS(v) < bH(v) ∀ v ∈ (0, 1].

Proof. See Appendix.

Corollary 1 If r = 0 and δ∗∗ is increasing at each point, then the FPA at the unique

pure strategy equilibrium generates higher expected revenue to the seller than the SPA at the

weakly dominant pure strategy equilibrium (i.e., δ∗∗
0
(b) > 0 ∀ b ∈ (0, t0] ⇒ ERFPA(r = 0) >

ERSPA(r = 0))

Proof. By Lemma 4, the FPA under the symmetric setting generates less expected rev-

enue than the FPA of our model. By the RET of Myerson (1981), the SPA under symmetric

setting generates the same expected revenue as the FPA under the symmetric setting. Note

that the SPA under the symmetric setting raises the same expected revenue as the SPA in

our model because the winning bid, second price and equilibria are identical. Therefore, the

FPA in our model generates more expected revenue than the SPA.

When G satisÞes certain conditions, the bid function under the symmetric case is lower

than the bid functions under the asymmetric case for r = 0. There exist distributions that

do not satisfy the condition in the hypothesis of the lemma above. For example, if g0(0) > 0

then δ∗∗0(0+) < 0 : the condition is not satisÞed.

The corollary translates one-to-one for small positive reserve prices by continuity of the

expected revenue functions in r. Continuity of bid functions (and expected revenue) in r

follows from a result for existence of nearby solutions for different initial conditions for the

FPA.

For r >> 0, the analysis is more complicated. It can be shown that bH(v) < bS(v) for

any g for any v sufficiently close to r. We could not Þnd an analytical solution. We give a

numerical algorithm below in order to consider this situation.

4 Numerical analysis to determine the optimal reserve

price

The following conjecture allows us to implement a search technique outlined in this section

for determination of the unique expected revenue-maximizing reserve price.

Conjecture 2 The seller�s expected revenue is strictly quasi-concave in the reserve price.

Therefore, there exists a unique r∗FPA ∈ [0, 1] that maximizes locally the seller�s expected

revenue at equilibria for the FPA.
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It should be noted that the grid search results in a strictly quasi-concave expected revenue

as a function of reserve price. We Þnd evidence for our conjecture in our numerical grid

search. The analysis made in the previous section suggests that as r increases, tr also

increases.

For a given r and t, the equations (3) and (4) are numerically integrated, starting from

the second boundary equation (6). For this purpose, the �backward-shooting algorithm,�

developed by Marshall et al. (1994), is nested within the fourth-order Runge-Kutta method.

This procedure is similar to the one described in Marshall and Schulenberg (1998). However,

some modiÞcations are introduced in order to achieve a higher level of precision. First,

the Runge-Kutta method is implemented using an adaptive-step-searching grid (called the

Runge-Kutta-Fehlberg method). Second, a control variate is introduced in order to generate

an accurate Monte Carlo estimate for the seller�s expected revenue.

For each r considered, the Euclidean distance to the true initial boundary condition

is minimized in the determination of tr. Once the optimal tr is found, the next step is

the construction of the bid functions from the inverse bid functions. These lead to an

approximation of the seller�s expected revenue (denoted bygERFPA(r)) when each bidder uses
the approximate equilibrium bid functions. A statistical Monte Carlo estimate (denoted bydERFPA(r)) is used to estimate this approximation. The Monte Carlo sample size is denoted
as N .

The determination of the optimal reserve price, r∗FPA, is done by maximizing the Monte

Carlo estimate of the seller�s expected revenue with respect to r. Since the objective function

in question is only a statistical estimate rather than an analytical function, a sensitive and

detailed algorithm with control variates is used. The following is the outline of the steps of

the search algorithm:

1. Search to determine the optimal reserve price for the FPA, r∗FPA, in the interval [0, 1]

such that the estimate of the seller�s expected revenue is maximized. To do this, the

search interval for r, (r1n , r2n), is continuously narrowed in the direction where the

average revenue increases. This search continues until |r2n − r1n| < tolr holds for the
maximum tolerance tolr. Notice that this would be possible if Conjecture 2 is correct.

(This is called a golden section search.)

2. Evaluate numerically the inverse bid functions for each attempted value of r in order

to Þnd the highest bid tr that satisÞes the two boundary conditions. For each trial of t,

the inverse bid function is calculated in the interval [r, t]. The criterion is to minimize

8



(lt(r)−r)2+(ht(r)−r)2. The search interval for tr, (t1n , t2n), is continuously narrowed
in the direction where this square of the Euclidean distance decreases. The search

stops when |t2n − t1n| < tolt holds for the maximum tolerance tolt.
8

3. Iterate the Runge-Kutta method �backwards� until the bid bnf at the n
th
f step is within

the tolb neighborhood of r. The system can be re-written as follows for each t consid-

ered:

lt0(b) = pl(b, lt(b), ht(b)) (11)

ht0(b) = ph(b, lt(b), ht(b)) (12)

lt(t) = 1 and ht(t) = 1 (13)

By simply numerically integrating this system of equations, we obtain the Euler method.

After reÞning our steps four times, we yield a single step of the fourth-order Runge-

Kutta method.

4. Calculate the values of the functions ltn+1 and h
t
n+1 from their previous values, ltn and

htn, and from the step-size for bn, dbn, which is adjusted by the increments dh
t
n and dl

t
n

within a certain ratio of reference values. This maximum tolerance ratio is called ε and

the reference values are set �close� to the previous values of the functions. Moreover,

the adaptive step-size becomes larger at the ßat portions of the functions lt and ht.

5. Calculate the inverse bid functions in - at most - K step points backward beginning

from b0 = t. This calculation is done once in every s iteration of the Runge-Kutta

method. The maximum iterations of the Runge-Kutta algorithm is therefore set equal

to K × s. The step size is initially set to db0. The iteration stops when K × s values
are calculated, n = K × s, or bn is in tolb - neighborhood of r for n ≤ K × s. The
squared distance to the smallest bid r is calculated at the last values found, lt(bnf ) and

ht(bnf ), where nf ≤ K × s is the Þnal calculated point index.

6. Finally, calculate a Monte Carlo estimate of the average revenue by simulating the

FPA at reserve price r with bidders playing the equilibrium strategies. In order to

reduce the variance of this estimate, the following control variate is used (Davidson

and MacKinnon, 1993):

c = RSPA(vL, vH , r)−ERSPA(r) (14)
8Marshall et al. (1994) suggest that the nonexistence of Nash equilibrium would typically manifest itself

in the form of cycles in the numerical search for tr.

9



0 2 4 6 8
0

2

4

6

8

(b) FPA bid functions for optimal r=0.91

t
r
=1.89

value

bi
d

b
H

(v)
b

L
(v)

0 2 4 6 8
0

2

4

6

8

(a) FPA bid functions for r=0

t
0
=1.76

value

bi
d

b
H

(v)

b
L
(v)

Figure 1: The equilibrium bid functions of the bidders in the FPA when r = 0 (Graph a)
and r = r∗FPA (Graph b). The example uses exponential density.

This control variate represents the difference between the revenue under the SPA,RSPA,

and the expected revenue under the SPA, ERSPA, at the weakly dominant strategy

equilibrium. It is straightforward to verify that

RSPA(vL, vH , r) =

 vL if vL, vH ≥ r
r if vL < r and vH ≥ r
0 otherwise

(15)

We set for our purposes the following parameters:

ε tolr tolt tolb dx0 s N K
10−18 10−7 10−7 10−7 −10−4 5 106 104

The numerical analyses of the FPA derived for the optimal reserve price in the FPA,

r = r∗FPA, for the optimal reserve price in the SPA, r = r∗SPA, and for zero reserve price,

r = 0, are shown in Table 1 for exponential density. Figure 1 shows the bid functions of the

FPA derived for r = 0 (Graph a) and r = r∗FPA (Graph b).
9

9For the numerical analysis, Pascal implementation of Press et al. (1996) and Borland Delphi compiler
are used on an IBM PC compatible Pentium microprocessor-based machine. The program is available from
the authors upon request.
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Table 1: Numerical analysis of the FPA for exponential density

FPA - Equilibrium r = r∗FPA r = r∗SPA r = 0

Reserve Price (r) 0.9111 1 0
Highest Bid (t∗r) 1.8853 1.9144 1.7605

Seller

Average Approx. Revenue 0.6806 0.6788 0.5955
(0.0002263) (0.0002095) (0.0004030)

High-Value Bidder

Average Approx. Payoff 0.5524 0.5220 0.7575
(0.0009864) (0.0001004) (0.0001012)

Approx. Prob. of Winning 0.5523 0.5221 0.7575
(0.0004973) (0.0004995) (0.0004536)

Low-Value Bidder

Average Approx. Payoff 0.03741 0.03308 0.07987
(0.0004737) (0.0004624) (0.0005734)

Approx. Prob. of Winning 0.08972 0.07813 0.2425
(0.0002858) (0.0002684) (0.0004286)

Approx. Allocative Inefficiency 0.1397 0.1302 0.2425

Table 2: Equilibrium analysis of the SPA for exponential density

When bj(vj) = vj , the weakly dominant strategy
SPA - Equilibrium r = r∗SPA r = r∗FPA r = 0

Reserve Price (r) 1 0.9111 0
Seller

Expected Revenue 0.6681 0.6662 0.5
High-Value Bidder

Expected Payoff 0.6004 0.6425 1
Prob. of Winning 0.6004 0.6425 1

Table 3: Seller�s expected revenue comparison

ERSPA(r
∗
SPA)dERFPA(r∗FPA) ERSPA(0)dERFPA(0)

0.9816 0.8396
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Figure 2: The average revenue in the FPA and the SPA (Graph a), the allocative efficiency
of the FPA (Graph b), the average payoff of the high value bidder in the FPA and in the
SPA (Graph c), and the average payoff the low value bidder in the FPA ( Graph d). This
numerical example uses exponential density.
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4.1 An example for which the FPA dominates the SPA at equi-
librium

We derive expected revenue for the seller, the probability of H winning the object, and

expected payoff of H in the SPA at equilibrium. We also determine the optimal reserve

price, r∗SPA.

Tables 1 and 2 show the analyses of expected revenue for exponential density with speed

parameter 1 (i.e., g(v) = exp(−v) for each v ∈ [0,+∞) and zero otherwise) in the FPA and
the SPA.10 Our algorithm converges, therefore this is a numerical veriÞcation of Conjecture

1.

In our example, the optimal reserve price for the SPA, r∗SPA, is greater than the optimal

reserve price for the FPA, r∗FPA (i.e., r
∗
SPA > r

∗
FPA). We Þnd that the FPA generates more

expected approximate revenue than the SPA, once optimal reserve prices are calculated

for the auction with exponential density (i.e., gERFPA(r∗FPA) > ERSPA(r
∗
SPA)). The null

hypothesis that gERFPA(r∗FPA) = ERSPA(r
∗
SPA) is rejected (t−stat= 55.23, p < 0.0001).

Table 3 shows the ratio of the revenue in the SPA to that in the FPA. Optimal reserve price

increases the ratio, nevertheless it is still less than 1. Graph a in Figure 2 shows the seller�s

expected revenue for both auction formats with respect to r. For the FPA, it is found that

the curve is strictly quasi-concave as was conjectured.

The usage of t−test can be justiÞed by the fact that the average approximate revenuedERFPA(r∗FPA) is a Monte Carlo estimate and is asymptotically normally distributed with
the mean expected approximate revenue gERFPA(r∗FPA) (obtained at equilibrium with the

approximated equilibrium bid functions). Its mean and its variance are estimated by the

mean and variance in the Monte Carlo simulation. We are testing the null hypothesis thatgERFPA(r∗FPA) = ERSPA(r∗SPA). We are not testing whether the �exact� expected revenue
in the FPA, ERFPA(r

∗
FPA), is equal to the expected revenue in the SPA, ERSPA(r

∗
SPA), as

we do not have a statistical estimate of the precision of the approximation.

The degree of allocative inefficiency can be deÞned as Pr{L wins the object | object is
allocated}. Under these conditions, it is shown that efficiency increases with the introduction
of reserve prices. For exponential density, the probability of allocative inefficiency decreases

from 0.24 to 0.14. So, the introduction of a reserve price can be used to increase allocative

efficiency in the FPA. These results are described in Table 1. Graph b in Figure 2 also

displays the efficiency rate of the FPA with respect to r in case the object is allocated.

10In numerical analysis, we assume that the support of valuations is limited to the interval [0, u] for
u = 9.2103 (where G(u) = 0.9999).
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The high-value bidder prefers the SPA over the FPA, where she might lose the auction

to the low-value bidder with positive probability. This can be seen in Figure 2 Graph c,

which shows the high-value bidder�s expected payoffs in the FPA and SPA with respect to r.

On the other hand, it can be established that the low-value bidder prefers the FPA over the

SPA, for which she has zero expected revenue. This can be seen in Figure 2 Graph d, which

is the plot of average approximate payoff of the low-value bidder in the FPA with respect to

r. Also the values of the payoffs are given in Tables 1 and 2 for the reserve prices considered.

In an extended working paper (Elbittar and Ünver (2001)), we analyze different under-

lying density distributions in the existence of more bidders. In each case, the Þndings are

similar to the example above. The FPA is more desirable than the SPA for zero reserve

price. For the optimal reserve price setting the FPA continues to be at least as desirable as

the SPA for the seller.

5 Conclusion

In designing real-life auctions, the symmetry assumption is often unreasonable due to differ-

ent demographies of bidders. In this study, given the existence of a particular asymmetry,

we Þnd evidence that the FPA is still at least as desirable as the SPA, once optimal reserve

prices are set. Furthermore, we show that allocative inefficiency of the FPA is reduced after

imposing a positive reserve price. This gives strong generality to Landsberger et al.�s (2000)

results.

Finally, we explicitly give an algorithm that can be used for solving equilibria for models

of auctions. Two important points should be noted: the application of an adaptive-step

method, which shows more accuracy than Þxed-step integration methods, and the intro-

duction of a control variate as a variance reduction technique, which helps to increase the

accuracy of the numerical results signiÞcantly. We believe that these improvements and our

calculations will enhance our comprehension of different auction environments with positive

reserve prices that seem analytically intractable. In our case, it has helped us to numerically

probe and formulate conjectures for reserve prices greater than zero.

Appendix

Lemma 1 Proof. We will prove this lemma by comparing Þrst a couple of terms of the

expansions of the functions in consideration around 0. Now, by l�Hbopital�s rule σ0(0) = 2.
Similarly, by l�Hbopital�s rule h0(0) = 2 and l0(0) = 4

3
. Now σ(0) = h(0) = l(0) = 0.
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(i) Therefore, the following is trivial by continuity of σ and l in a neighborhood of zero

(excluding zero):

l(b) =
4

3
b+ ... < σ(b) = 2b+ ... (16)

by expansions around zero. So bS(v) < bL(v) in a neighborhood of zero.

(ii) Consider the second derivatives of the inverse bid functions:

l00(b)
l0(b)

=
2− h0(b)
h(b)− b −

g0(l(b))l0(b)
g(l(b))

(17)

h00(b)
h0(b)

=
2− l0(b)− g(l(b))l0(b)

g(h(b))h0(b)

l(b)− b − g
0(h(b))h0(b)
g(h(b))

(18)

σ00(b)
σ(b)

=
2− σ0(b)
σ(b)− b −

g0(σ(b))σ0(b)
g(σ(b))

(19)

So by l�Hbopital�s rule at b = 0, h00(0) = −12
13
g0(0)
g(0)

and σ00(0) = −4
3
g0(0)
g(0)
. If g0(0) < 0 then in a

neighborhood of 0 (excluding zero)

h(b) = 2b− 12
13

g0(0)
g(0)

b2 + ... < σ(b) = 2b− 4
3

g0(0)
g(0)

b2 + ... (20)

by series expansions around 0. Then, bS(v) < bH(v) in a neighborhood of zero - excluding

zero - if g0(0) < 0. Now also note that when g0(0) = 0, Landsberger et al. (2002) prove

that bS(v) < bH(v) in a neighborhood of zero by excluding zero. Conversely, suppose that

bS(v) < bH(v) in a neighborhood of zero - excluding zero. Suppose that g
0(0) > 0. Then the

above inequality is reversed, a contradiction.

Lemma 2 Proof. Suppose that Gσ(b
∗) = Gl(b∗) for some b∗ > 0. Now recall that δ∗ = Gσ

Gl

and δ∗0(b∗) is positive: δ∗0(b∗) = δ∗(b∗){Gσ0
Gσ
− G0l

Gl
} = δ∗(b∗){ 1

σ(b∗)−b∗ − 1
h(b∗)−b∗} > 0 since

Gh(b
∗) > Gl(b∗) = Gσ(b∗). Hence, there exists ε > 0 such that l(b) > σ(b) ∀ b ∈ (b∗ − ε, b∗).

Because of the previous lemma, suppose that δ∗(b∗ − ε) = 1. But with a similar argument,
we approach arbitrarily close to 0 (i.e., δ∗(0+) = 1). This is a contradiction to Lemma 1.

Lemma 3 Proof. Now the maximum bid when r = 0 with symmetric bidders is lower than

the maximum bid within the asymmetric model. To see this, suppose that t0 ≤ tS0 . Then

Gl(t0) = 1 ≥ Gσ(t0). This is a contradiction to Lemma 2. So t0 > tS0 . Now Gσ(tS0 ) = 1 >
Gh(t

S
0 ). So in a right neighborhood of t

S
0 Gσ(b) > Gh(b) by continuity.

Lemma 4 Proof. Rewrite high-value bidder�s maximization problem when the opponent

plays an equilibrium strategy and assuming that bH(s) = b :
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max
s
G(l(bH(s)))(v − bH(s)) (21)

The Þrst-order necessary conditions imply that, when s = v at the equilibrium,

d

dv
[G(l(bH(v)))bH(v)] = v

dG(l(bH(v)))

dv
(22)

Integrating both sides we obtain:

bH(v) =

R v
0
sdG(l(bH(s)))

G(l(bH(v)))
(23)

Similarly, rewriting the symmetric model bidder maximization problem when the opponent

plays an equilibrium strategy and assuming that bS(s) = b :

bS(v) =

R v
0
sdG(s)

G(v)
(24)

Now, bH(v) > bS(v) ∀ v ∈ (0, 1] if the distribution G(l(bH(s)))
G(l(bH(v)))

Þrst-order stochastically domi-

nates G(s)
G(v)

: that is, if G(s)
G(v)

> G(l(bH(s)))
G(l(bH(v)))

∀ s < v ⇐⇒ bH(v) > bS(v) ∀v ∈ (0, 1] if G(l(bH(v)))G(v)
is

increasing at each v ∈ (0, 1] ⇐⇒ by h(b) = v, bH(v) > bS(v) ∀ v ∈ (0, 1] if δ∗∗(b) = G(l(b))
G(h(b))

is increasing at each b ∈ (0, t0].
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[3] Elbittar, A. A., Ünver, M. U. (2001) Reserve-Price Auctions with a Strong Bidder.
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