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We study how barter exchanges should be conducted through a centralized mechanism in
a dynamically evolving agent pool with time- and compatibility-based preferences. We derive the
dynamically efficient two-way and multi-way exchange mechanisms that maximize total discounted
exchange surplus. Recently several live-donor kidney exchange programmes were established to swap
incompatible donors of end-stage kidney disease patients. Since kidney exchange can be modelled as
a special instance of our more general model, dynamically efficient kidney exchange mechanisms are
derived as corollaries. We make policy recommendations using simulations.

1. INTRODUCTION

There are about 79,000 patients waiting for a kidney transplant in the UnitedStates as of
March 2009. In 2008, about only 16,500 transplants were conducted, about 10,500 from
deceased donors and 6000 from living donors, while about 32,500 new patients joined the
deceased donor waiting list and 4200 patients died while waiting for a kidney.1 Although
there is a substantial organ shortage, buying and selling an organ is illegal in many coun-
tries in the world, making donation the only source for kidney transplants. Especially in the
last decade, the increase in the number of kidney transplants came from the utilization of
live donors, who are typically relatives, friends, or spouses of the patients and are willing
to donate one of their kidneys. However, many living donors still cannot be utilized, since
the potential donor may not be able to donate to her loved one due to blood-type incompat-
ibility or tissue rejection. The medical community has proposed innovative ways to utilize
these living donors through live-donor kidney exchanges (Rapaport, 1986). In a live-donor
kidney exchange, recipients with incompatible donors swap their donors if there is cross-
compatibility. Since 1991, kidney exchanges have been done mostly in an ad-hoc manner
in different countries around the world. Live-donor kidney exchanges accounted for at least
10% of all live donor transplants in Korea and the Netherlands in 2004 (see Park et al., 2004;
de Klerk et al., 2005). The medical community has endorsed the practice of live-donor kid-
ney exchanges as ethical (Abecassis et al., 2000). Unlike Korea and the Netherlands, in the
United States there is no national system to oversee kidney exchanges as of 2009. Different
transplant centres around the country have recently started kidney exchange programmes. For
example, New England Program for Kidney Exchange (NEPKE) is an initiative of the trans-
plant centres in New England together with economists (see Roth, Sönmez and Ünver, 2005b),
and Alliance for Paired Donation (APD) is an initiative of Dr Michael Rees at University
of Toledo and the authors of the above studies. APD has already convinced a large number

1. According to SRTR/OPTN national data retrieved at http://www.optn.org on 17 May 2009.

372
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of transplant centres all around the United States to participate. United Network for Organ
Sharing is at the stage of launching the national kidney exchange programme in the United
States.2

In many of these programmes, a major objective has been to conduct as many transplants
as possible. However, one question has frequently arisen in the implementation stage: How
often and how exactly should the exchange be run? Roth, Sönmez and Ünver (2004, 2005a)
have recently proposed mechanisms to organize kidney exchanges in a Pareto-efficient and
dominant strategy incentive-compatible fashion under different constraints on exchange sizes
and preferences of the recipients for a static recipient population.

The above studies address the matching aspect of the problem. However, they do not con-
sider the dynamic aspects of the exchange pool evolution.3 From a more general perspective,
in the matching literature in economics, although there is a significant amount of work on
mechanism design in static environments, there is virtually no study on mechanism design
for dynamically changing populations, two recent exceptions withstanding.4 A recent paper
by Bloch and Cantala (2009) analyses house allocation problems in an overlapping generations
framework. In their model, they analyse assignment mechanisms that are fair, efficient, and
independent. Seniority-based assignment rules characterize these properties when agents are
homogeneous. However, when the types of agents are random, efficient and fair rules only
exist with two agent types. Independence and efficiency are incompatible in this case. Unlike
our model, objects are not attached to agents in their model. Hence, they study assignment
rather than exchange. In their model, objects remain in the problem after agents leave the
problem. Thus, assignment of an object is not final. Moreover, their general preference struc-
ture is not compatibility-based, although they characterize Markovian assignment rules only
for a dichotomous model. The second paper related to ours is by Kurino (2008). He studies an
overlapping generations model like the Bloch and Cantala paper. However, he does not have
random types in his model. Moreover, he introduces property rights. He finds extensions of well-
known static mechanisms in the dynamic setting that are individually rational, strategy-proof,
and efficient under restrictions of general preferences. Another closely related domain to ours
is dynamic allocation setting with changing populations and monetary transfers. For example,
Gershkov and Moldovanu (2009a,b) and Said (2009) introduce optimal dynamic mechanisms

2. In Europe, other than the Netherlands, paired kidney exchange programmes have not yet been well organized.
The United Kingdom has only recently passed a law that makes kidney exchanges legal. France and Germany have
stricter laws, and it is illegal to have a transplant from an unrelated and emotionally distant live donor, making paired
exchanges illegal. Spain has an excellent deceased-donor programme. Therefore, live donation is seen as of secondary
importance, although there is overwhelming evidence that the long-run survival rates of live-donor organs are far
better than deceased-donor organs.

3. In the operations research literature, Zenios (2002) considers a dynamic model with only two types of
patient–donor pairs and different outside options. In this model, pairs arrive continuously over time but not in a
discrete process like ours. Moreover, since there are only two types of patient–donor pairs and the outside options
are different, this model is substantially different from ours. Our model addresses the matching aspect of the dynamic
kidney exchange problem. On the other hand, Duenyas, Keblis and Pollock (1997) inspect a specific dynamic matching
problem for combining parts of a product produced on an assembly line. In the transplantation context, Su and Zenios
(2005) introduce a mechanism design approach for allocating deceased-donor kidneys to patients, when the waiting
patients have heterogenous preferences over arriving kidneys and have voluntary participation constraints.

4. There is a vast economics literature on the allocation or exchange of indivisible goods, initiated
by Shapley and Scarf (1974); Roth and Postlewaite (1977); Roth (1982); Abdulkadiroğlu and Sönmez (1999);
Ergin (2000); Papai (2000); Ehlers (2002); Ehlers, Klaus and Papai (2002); Kesten (2004); Sönmez and Ünver
(2005, 2006). None of these works focuses on the stochastic dynamic problem, although Ergin (2000); Ehlers,
Klaus and Papai (2002); Sönmez and Ünver (2006) inspect the problem with static exchange rules under varying
populations.
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when agents arrive over time under Poisson processes in different environments under different
objectives.5

We consider a general dynamic problem from the point of view of a central authority (e.g.
a health authority). Each agent (e.g. a recipient) arrives with an object to trade (e.g. a donor).
Waiting in the pool for an exchange is costly. The agent has a need type and objects have
object types. The desirability of an object is determined by its type and the need type of the
agent. This compatibility relation is a partial order. That is, each agent finds an object with
a type that is better than or the same as her own type (other than her own attached object)
desirable. Thus, each pair is represented by a pair type determined by the need type of the agent
and type of her paired object. Each pair type arrives with a stochastic Poisson arrival process.

The central authority’s objective is to minimize the long-run total discounted waiting cost.
We make an assumption in the derivation of the efficient two-way matching mechanism. We
assume that in the long run, there is an arbitrarily large number of underdemanded types of
pairs, whose object types are not compatible with the needs of recipients’ need types. (Later,
we show that this assumption is consistent with real-life arrival probabilities of different pairs
for the case of kidney exchanges.) We show that an interesting characteristic of an efficient
two-way matching mechanism is that it conducts the maximum number of exchanges as soon
as they become available; that is, there is no need to sacrifice one or more currently feasible
exchanges for the sake of conducting future exchanges (Theorem 1). However, this theorem
no longer holds when larger exchanges are feasible, and we derive the efficient multi-way
matching mechanism as a threshold matching mechanism under one additional assumption
(Theorems 2 and 3, also see Remark 1 in Appendix B). In the simplified version of the model,
when there are no self-demanded types participating exchange, i.e. types of pairs with the same
agent need and object type, a threshold mechanism relies on a single threshold vector. Suppose
W1 and W2 are two object types that are not comparable under the compatibility partial order;
that is, neither W1 is better than W2, nor W2 is better than W1. Then, the efficient mechanism
considers the number of W1 –W2 type pairs (W1 type agents and W2 type paired-objects) and
reciprocal W2 –W1 type pairs together. Depending on the frequencies of arrival of different
pairs, one of the two types of threshold mechanisms is efficient. In the first possible solution,
the efficient mechanism conducts the maximum size exchanges as soon as they become avail-
able as long as there are no W2 –W1 type pairs. However, if there are some W2 –W1 type
pairs already available in the exchange pool, and their number does not exceed a threshold
number, then the authority should not use the W2 –W1 type pairs other than matching W1 –W2

type pairs. In this case, it should avoid involving them in larger exchanges that do not have
W1 –W2 type pairs. Only when the stock of W2 –W1 type pairs exceeds the threshold number
should the authority conduct the largest possible exchanges as soon as they become available,
and possibly use W2 –W1 type pairs in exchanges without W1 –W2 type of pairs. The second
possible solution is just the symmetric version of the first solution, and instead treats W1 –W2

type pairs as the stock variable. The mechanism takes into account all such non-comparable W1

and W2 types. We show that decisions regarding each incomparable object type W1 and W2

are independent from those regarding other incomparable object types (Propositions 2 and 6).

5. A recent paper by Abdulkadiroğlu and Loertscher (2006) inspects the dynamic preference formation in
house allocation problems. In other domains, there are several recent studies on optimal mechanisms in dynamic
settings. For example, Jackson and Palfrey (1998) study optimal bargaining mechanisms in a dynamic setting,
and Skreta (2006) studies optimal dynamic mechanism design when the designer cannot commit to a mechanism in
the future. Another topic that is attracting recent attention is optimal auction design when valuation signals of agents
evolve over time (e.g. Bergemann and Välimaki, 2006; Athey and Segal, 2007).

© 2009 The Review of Economic Studies Limited
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Our constraints in the general model are consistent with the medical and institutional
constraints of the kidney exchange problem.

First, in the medical literature, Gjertson and Cecka (2000) and Delmonico (2004) pointed
out that a recipient is indifferent between two live-donor kidneys as long as they are both
compatible with the recipient. We adopt this assumption in our current study and assume
that the preferences of the recipients fall into three indifference classes: being matched to a
compatible kidney, being unmatched, and being matched to an incompatible kidney.6 We also
introduce time preferences of recipients into the dynamic setting. This is consistent with our
general model’s assumptions.

Second, the practice of kidney exchange has started by conducting exchanges that include
only two recipients and their incompatible donors. More complicated exchanges that include
three or more recipients (and their donors) will take place less frequently, because all trans-
plants of a single exchange cycle should take place simultaneously. Otherwise, some donors
could potentially back out after their recipients receive transplants given the legal constraint that
it is illegal to force a donor to sign a contract that would commit him to donation. Neverthe-
less, Roth, Sönmez and Ünver (2007) have shown that larger exchanges, especially three-way
exchanges including three recipient–donor pairs, would substantially increase the gains from
exchange. In the current paper, we separately derive efficient dynamic matching mechanisms
that conduct two-way exchanges and multi-way exchanges, which is consistent with our general
derivation.

Since blood-type compatibility needed for kidney donations is a special case of the above
compatibility partial order, the efficient kidney exchange mechanism is a special instance of
the general mechanism under certain assumptions. We compute the efficient mechanism under
different pair arrival rates and time discount rates. Additionally, we conduct policy simulations
and observe that the gains under the efficient multi-way kidney exchange mechanism are
significantly higher than those under the efficient two-way mechanism.

2. THE GENERAL DYNAMIC EXCHANGE MODEL

2.1. Exchange pool

We consider an exchange model in which each agent arrives at the exchange pool with an (indi-
visible) object to trade through barter exchange. A pair i consists of an agent ai and her object
oi . There is a requirement type for each agent over the objects and each object belongs to one of
these types. Let T be the finite set of requirement/object types. Since each agent’s requirement
and each object belongs to one of these types, there are |T|2 permutations for each pair. We call
each of these permutations a pair type. The type of a pair is denoted as X–Y where X, Y ∈ T
and X is the requirement type of the agent and Y is the type of her object. Let P = T × T be
the set of pair types. For any pair type X–Y ∈ P, let pX–Y be the probability of a random pair
being of type X–Y. We refer to pX–Y as the arrival probability of pair type X–Y ∈ P. We have∑

X–Y∈P pX–Y = 1. For any X–Y∈ P, we refer to Y–X as the reciprocal pair type of X–Y.
We define a universal binary relation � over T as follows: for any X, Y ∈ T, X � Y means

that an object of type X can be consumed by an agent of requirement type Y, and we refer to
this as X is compatible with Y.

We make some restrictions on the compatibility relation �. We assume that � is a partial
order, i.e. it is reflexive, transitive, and antisymmetric.

6. We have the same assumption in Roth, Sönmez and Ünver (2005a, 2007).

© 2009 The Review of Economic Studies Limited
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A1 A2 Level 1

B Level 2

C Level 3

D1 D2 Level 4

E Level 5

Example (a)

O Level 1

A B Level 2

AB Level 3

Example (b)

Figure 1
Example (a) T = {A1, A2, B, C, D1, D2, E} such that A1, A2 � B � C � D1, D2 � E; A1 �� A2; A2 �� A1; D1 �� D2;

and D2 �� D1. Example (b) In kidney exchange, T = {O, A, B, AB} is the set of blood types of recipients and

donors such that kidney compatibility relation � satisfies O � A, B � AB; A �� B; B �� A

Though � is not a complete relation (i.e. not a linear order), for simplicity, we assume that
for any type X ∈ T, there exists at most one type in Y ∈ T that is not comparable with X. That
is, for any X ∈ T, there exists at most one Y ∈ T such that neither X � Y nor Y � X is true.7

Based on the compatibility relation, we can partially order types in levels. Let the level
set L = {1, 2, . . . , |L|} be the partition of T such that for all K,L ∈ {1, 2, . . . |L| − 1} with
K < L, if X ∈ K and Y ∈ L , then X � Y. In this case, we say that X is at a better com-
patibility level than Y. Observe that for any L ∈ L, X, Y ∈ L with X �= Y imply X �� Y and
Y �� X. For each compatibility type X ∈ T, let LX ∈ L be the compatibility level of X, i.e.
X ∈ LX. Though both notations, levels, and binary relation �, can be used interchangably, we
will stick to the latter in most parts of the paper. We will use levels to quantify the magnitude
of difference between levels of different types. See Figure 1 for two examples of feasible type
sets and compatibility partial orders.

An agent cannot consume her own object. Each agent would like to consume another pair’s
object that is compatible with her. We assume that pairs arrive over time with a stochastic
(discrete) Poisson arrival process in continuous time. Let λ be the arrival rate of the pairs, i.e.
the expected number of pairs that arrive per unit time. Thus, each type X–Y arrives with a
Poisson arrival process with rate pX–Yλ. The exchange pool is the set of the pairs that arrived
over time whose agent has not yet been assigned an object.

Each agent has preferences over objects and over time of waiting in the pool. Compati-
ble objects are preferred to being unmatched. In turn, being unmatched is preferred to being

7. This assumption is the minimal structure needed to generate a result as in our Theorem 2.

© 2009 The Review of Economic Studies Limited
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matched to incompatible objects.8 Moreover, time spent in the exchange pool is another dimen-
sion in the preferences of agents: waiting is costly. We will model the waiting cost through a
fixed cost.

2.2. Exchange

An exchange is a list of pairs (i1, i2, . . . , ik) for some k ≥ 2 such that for any � < k, object oi�

is assigned to agent ai�+1 , and object oik is assigned to agent ai1 . We will sometimes refer to an
exchange by the types of the participating pairs, i.e. as (A1 –O1, . . . , Ak –Ok) where A� –O� is
the pair type of i�. A matching is a set of exchanges such that each pair participates in at most
one exchange. A matching or an exchange is individually rational if it never matches an agent
with an incompatible object. From now on, when we talk about an exchange or a matching,
it will be individually rational. A matching is maximal if it matches the maximum number of
pairs possible at an instance of the pool.

A (dynamic) matching mechanism is a dynamic procedure such that at each time t ≥ 0 it
selects a (possibly empty) matching of the pairs available in the pool. Once a pair is matched at
time t by a matching mechanism, it leaves the pool and its agent receives the assigned object.

Let A(t) represent the set of pairs that arrived at the pool until time t . If a matching
mechanism φ is executed (starting time 0), φ (t, A) is the set of pairs matched by mechanism
φ under the flow A. There are |A(t)| − |φ (t, A)| pairs available at the pool at time t .

2.3. Dynamically efficient mechanisms

There is a central authority that oversees the exchanges. For each pair, we associate waiting in
the pool with a monetary cost and we assume that there is a constant unit time cost c > 0 of
waiting for an exchange.9

Suppose that the central authority implements a matching mechanism φ. For any time t ,
the current value of expected cost at time t under matching mechanism φ is given as10

Et

[
Cφ (t, A)

] =
∫ ∞

t

cEt [|A(τ)| − |φ (τ ,A)|] e−ρ(τ−t)dτ , (1)

where ρ is the discount rate.
For any time τ , t such that τ > t , we have Et [|A(τ)|] = λ (τ − t) + |A(t)|, where the first

term is the expected number of pairs to arrive at the exchange pool in the interval [t, τ ] and
the second term is the number of pairs that arrived at the pool until time t . Therefore, we can
rewrite Et

[
Cφ (t, A)

]
as

Et

[
Cφ (t, A)

] =
∫ ∞

t

c
(
λ (τ − t) + |A(t)| − Et [|φ (τ, A)|] e−ρ(τ−t)

)
dτ .

8. In the context of kidney transplantation, Gjertson and Cecka (2000) point out that each compatible live-donor
kidney will last approximately the same amount of time as long as the donor is not too old and in relatively in good
health.

9. In the context of kidney exchanges, the alternative option of a transplant is dialysis. A patient can undergo
dialysis continuously. It is well known that receiving a transplant causes the patient to resume a better life (cf. Overbeck
et al., 2005). Also healthcare costs for dialysis are more than those for transplantation in the long term (cf. Schweitzer
et al., 1998). We model all the costs associated with undergoing continuous dialysis by the unit time cost c.

10. Et refers to the expected value at time t .

© 2009 The Review of Economic Studies Limited
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Since
∫∞
t

e−ρ(τ−t)dτ = 1
ρ

and
∫∞
t

(τ − t) e−ρ(τ−t)dτ = 1
ρ2 , we can rewrite Et

[
Cφ (t, A)

]
as

Et

[
Cφ (t, A)

] = cλ

ρ2
+ |A(t)|

ρ
−
∫ ∞

t

cEt [|φ (τ ,A)|] e−ρ(τ−t)dτ . (2)

Only the last term in equation (2) depends on the choice of mechanism φ. The previous terms
cannot be controlled by the central authority, since they are the costs associated with the number
of pairs arriving at the pool. We refer to this last term as the exchange surplus at time t for
mechanism φ and denote it by

ESφ (t, A) =
∫ ∞

t

cEt [|φ (τ ,A)|] e−ρ(τ−t)dτ . (3)

We can rewrite it as

ESφ (t, A) =
∫ ∞

t

c (Et [|φ (τ ,A)| − |φ (t, A)|] + |φ (t, A)|) e−ρ(τ−t)dτ

= c |φ (t, A)|
ρ

+
∫ ∞

t

c (Et [|φ (τ ,A)| − |φ (t, A)|]) e−ρ(τ−t)dτ . (4)

The first term above is the exchange surplus attributable to all exchanges that have been done
until time t and at time t , and the second term is the future exchange surplus attributable to
the exchanges to be done in the future. The central authority cannot control the number of
past exchanges at time t either. Let nφ (τ ,A) be the number of matched recipients at time τ

by mechanism φ, and we have11

|φ (t, A)| =
(∑

τ<t

nφ (τ ,A)

)
+ nφ (t, A) . (5)

We focus on the present and future exchange surplus, which is given as

ẼSφ
(t) = cnφ (t, A)

ρ
+
∫ ∞

t+
c (Et [|φ (τ,A)| − |φ (t, A)|]) e−ρ(τ−t)dτ . (6)

A dynamic matching mechanism φ is efficient if for any t , it maximizes the present and
future exchange surplus at time t given in equation (6). We look for solutions of the problem
independent of initial conditions and time t .12

3. DYNAMICALLY EFFICIENT TWO-WAY MATCHING MECHANISMS

In this section, we derive the dynamically efficient two-way matching mechanism. A two-way
exchange is an exchange involving only two pairs. A matching is a two-way matching if all
exchanges in the matching are two-way exchanges. It will be useful to introduce the following
concepts about two-way exchanges. We say that two pairs i and j are mutually compatible if
object oi is compatible with agent aj and object oj is compatible with agent ai .

11. For each finite time t , since with probability 1 the arrival interval between each arrival is finite and bounded
from below, almost surely the total arrivals will be a finite number. However, at the limit t = ∞, this may not be
correct. Thus, we will use a steady-state representation to handle the limit case.

12. We will define a steady-state formally. If such solutions exist, they depend only on the “current state of the
pool” (defined appropriately) but not on time t or the initial conditions.

© 2009 The Review of Economic Studies Limited
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The following observation states the important individual rationality constraints that need
to be respected in our derivation of an efficient matching mechanism:

Observation 1. A pair of type X–Y can participate in a two-way exchange only with a
mutually compatible pair, i.e. a pair of type W–Z such that Y � W and Z � X.

We partition the set of pair types into four sets PO,PU, PS, and PR as follows:
We refer to the set

PO = {X–Y ∈ P : Y � X and X �= Y} (7)

as the set of overdemanded pair types. Since Y � X, in two-way exchanges these pairs can
save pairs of other W–Z types with Y � W and Z � X. These W–Z types can satisfy (a)
W � Z with W �= Z, (b) W �� Z and Z �� W, (c) W = Z, and (d) Z � W with W �= Z. Class
(d) W–Z types are also included in PO. We will create other sets for W–Z types in classes
(a), (b), and (c) as follows:

We refer to the set

PU = {X–Y ∈ P : X � Y and X �= Y} (8)

as the set of underdemanded pair types X–Y, which can participate in two-way exchanges
with pair types W–Z with Y � W and Z � X. Since W � Z and W �= Z, by transitivity Y � X
and X �= Y. Hence, underdemanded types can only be matched with certain overdemanded pair
types.

We refer to the set

PS = {X–X ∈ P} (9)

as the set of self-demanded pair types. Self-demanded types X–X can only be matched with
X–X type pairs or types W–Z with Z � X � W and Z �= W, which are certain overdemanded
pairs.

We refer to the set

PR = {X–Y ∈ P : X �� Y and Y �� X} (10)

as the set of reciprocally demanded types. They can only be matched with their reciprocal types
Y–X and certain pairs W–Z with Z � X, Y � W and Z �= W, which are certain overdemanded
pairs.13

Throughout this section we will maintain one assumption:

Assumption 1 (Long-run assumption). Under any dynamic matching mechanism, in the long
run, there is an arbitrarily large number of underdemanded pairs from each pair type in the
exchange pool.14

13. We will typically use the notations X–Y, Z1 –Z2, V–V, and W1 –W2 to denote a generic overdemanded,
underdemanded, self-demanded, and reciprocally demanded pair type, respectively. When it is not ambiguous, we
will use X–Y and W–Z also to denote generic pair types.

14. When we discuss the example of kidney exchanges, we will show that regardless of the two-way matching
mechanism used, this assumption will hold under realistic arrival probabilities for the pairs in our application for
kidney exchange.

© 2009 The Review of Economic Studies Limited
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Since we are interested in maximizing the exchange surplus and cannot control the inflow
of the pairs, this assumption will not harm our objective, even though under cost minimization
this assumption leads to ∞ cost for any matching mechanism.

We state the following Lemma directly using the construction of sets PO,PU,PS,PR and
their properties stated above (we skip its proof for brevity):

Lemma 1. In a static population of pairs under Assumption 1, where nX–Y denotes the
number of pairs of any type X–Y ∈ P, the maximum number of pairs matched through two-way
exchanges is given by15∑

X–Y∈PO

2nX–Y +
∑

V–V∈PS

⌊nV–V

2

⌋
+

∑
W1 –W2∈PR

min
{
nW1 –W2

, nW2 –W1

}
.

We are ready to state our main result of this section:

Theorem 1. Let dynamic matching mechanism ν be such that it matches only X–Y type
pairs with their reciprocal Y–X type pairs immediately when such an exchange is feasible. Then,
under Assumption 1,

• mechanism ν is a dynamically efficient two-way matching mechanism; and
• any dynamically efficient two-way matching mechanism conducts a two-way exchange

whenever one becomes feasible.

Let dynamic two-way matching mechanism ν be defined as in the hypothesis of Theorem 1,
that is, for any arriving pair of any type X–Y ∈ P, mechanism ν matches this pair immediately
with an existing Y–X type pair if such a mutually compatible pair exists in the pool, and does
not perform any exchanges, otherwise.

We will prove Theorem 1 using the following proposition:

Proposition 1. Under Assumption 1, within any time interval τ , mechanism ν matches the
maximum number of pairs possible under any two-way matching mechanism.

Proof of Proposition 1. Suppose that Assumption 1 holds. Suppose that mechanism ν is
used for the exchange. Consider a time interval τ > 0 in the long run. Let t0 be the start of
this time interval and t1 = t0 + τ be the end of this time interval. Since each type is matched
with its reciprocal type under mechanism ν, in the long run we have,
(1) for any type Z1 –Z2 ∈ PU, by Assumption 1, there will be an arbitrarily large number of
type Z1 –Z2 pairs available;
(2) for any type X–Y ∈ PO, since there is an arbitrarily large number of type Y–X pairs
available (by Statement 1 above), for any incoming X–Y type pair i there will exist at least
one Y–X type pair that is mutually compatible, and mechanism ν will immediately match
these two pairs, implying that no type X–Y pairs will remain available;
(3) for any type V–V ∈ PS, whenever x type V–V pairs are available in the exchange pool,
mechanism ν will match 2� x

2 � of these pairs with each other, implying that there will be 0 or
1 type V–V pair available;
(4) for any W1 –W2 ∈ PR, there is either no W2 –W1 pair in the pool or there are finitely
many. If there is a W2 –W1 type pair, this pair and the incoming pair are mutually compatible

15. For any real number x, �x� represents the greatest integer less than or equal to x.
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and mechanism ν will immediately match these two pairs. In the pool, there will be either
(1) no W1 –W2 type pair and no W2 –W1 type pair remaining, (2) no W2 –W1 type pair and
some W1 –W2 type pairs remaining, or (3) no W1 –W2 type pair and some W2 –W1 type pairs
remaining.

Clearly, the maximum number of exchanges in the interval [t0, t1] is performed by not
conducting any exchanges in interval [t0, t1) and then conducting the maximal exchange at
time t1. Since time interval τ is finite, Statement 1 above is still valid at any time t ∈ [t0, t1],
regardless of which exchanges are conducted in [t0, t1). Therefore, by Lemma 1, the maximum
number of transplants that can be conducted in interval [t0, t1] is∑

X–Y∈PO

2nX–Y +
∑

V–V∈PS

⌊nV–V

2

⌋
+

∑
W1 –W2∈PR

min
{
nW1 –W2

, nW2 –W1

}
(11)

where nX–Y is the number of type X–Y pairs that are available at time t1, if no exchange has been
conducted in interval [t0, t1). Moreover, for any X–Y ∈ P, this number in equation (11) can be
achieved by matching each X–Y type pair with a reciprocal type pair, as long as it is possible.

Next consider the scenario in which mechanism ν is used in interval [t0, t1). Statements
1–4 above are valid for any time t ∈ [t0, t1] under mechanism ν. Therefore, under mechanism
ν, the number of matched pairs in interval [t0, t1] is

• ∑
X–Y∈PO 2nX–Y for the overdemanded and underdemanded pairs by Statements 1 and 2,

• ∑
V–V∈PS� nV–V

2 � for the self-demanded types by Statement 3, and
• ∑

W1 –W2∈PR min
{
nW1 –W2

, nW2 –W1

}
for the reciprocally demanded types by Statement 4,

and their sum is exactly equal to the expression given in equation (11), completing the proof
of Proposition 1. ‖

Theorem 1 can be proven using Proposition 1.

Proof of Theorem 1. Suppose that Assumption 1 holds. Fix time τ in the long run. For
any mechanism φ and any time t > τ , |φ (t, A)| − |φ (τ , A)| is the total number of recip-
ients matched between time τ and t under mechanism φ when the flow function is given
by A, and is maximized by the mechanism ν by Proposition 1. Since |φ (t, A)| − |φ (τ , A)|
is ex-post maximized for φ = ν for any t ≥ τ , Eτ [|φ (t, A)| − |φ (τ , A)|] is maximized
by φ = ν, as well. Moreover, mechanism ν conducts the maximum possible number of
exchanges at any given point in time as 0 or 2 (permitted by the two-way exchange restric-
tion). Therefore, nφ (τ , A) is also maximized by φ = ν. These imply ES∗φ (τ ) = cnφ(τ ,A)

ρ
+∫∞

τ
cEτ [|φ (t, A)| − |φ (τ , A)|] e−ρ(t−τ)dt is maximized for φ = ν, implying that ν is an effi-

cient two-way matching mechanism. Moreover, it conducts the maximum number of transplants
at each time, completing the proof of Theorem 1. ‖

Note that since we can roughly define an efficient mechanism ν independent of the state
of the pool, we did not introduce an explicit state space for the pool. It turns out that under
multi-way exchanges, an efficient mechanism explicitly depends on the state.

4. DYNAMICALLY EFFICIENT MULTI-WAY MATCHING MECHANISMS

In this section, we consider matching mechanisms that allow not only two-way exchanges, but
larger exchanges as well. We maintain Assumption 1 throughout this section. Hence, there are
arbitrarily many underdemanded pairs in the exchange pool in the long run.
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We state Proposition 2 as follows:

Proposition 2 (Necessary and sufficient conditions for matching underdemanded,
self-demanded, and reciprocally demanded types in multi-way exchanges). Suppose that
there exists exactly one overdemanded pair in the exchange pool, and it is of some type
X–Y ∈ PO. Then:

• An underdemanded pair of type Z1 –Z2 ∈ PU can be matched in a multi-way exchange if
and only if X �� Z2 and Z1 �� Y and we use the overdemanded pair; if Y �� Z1, then we
use an additional reciprocally demanded pair of type Y–Z1 ∈ PR; and if Z2 �� X, then we
use an additional reciprocally demanded pair of type Z2 –X ∈ PR.

• A self-demanded pair of type V–V∈ PS can be matched in a multi-way exchange if and
only if

– we use another pair of type V–V,
or

– X �� V and V �� Y and we use the overdemanded pair; if Y �� V, then we use an
additional reciprocally demanded pair of type Y–V∈ PR; and if V �� X, then we
use an additional reciprocally demanded pair of type V–X∈ PR.

• A reciprocally demanded pair of type W1 –W2 ∈ PR can be matched in a multi-way
exchange if and only if

– we use a reciprocal W2 –W1 type pair,
or

– Y � Z1 and Z2 � X and we use the overdemanded pair of type X–Y.

The proof of the above proposition is in Appendix A. We also state and prove Proposition 6,
which is in regard to the sizes of maximal exchanges in Appendix A. These two propositions
bring several simplifications to the optimization problem.

Suppose that X–Y∈ PO is the pair type of an arriving overdemanded pair, i.e. Y � X and
yet Y �= X. Instead of matching this pair and serving one underdemanded pair (as in two-way
exchanges, for example, by matching it with a pair of type Y–X), we can potentially use
this pair in larger exchanges to serve more underdemanded pairs, if multi-way exchanges are
allowed.

It could also be the case that there are multiple reciprocally demanded pairs of different
compatibility levels existent in the exchange pool when the X–Y type overdemanded pair
arrives. Without loss of generality, we can assume that no two of these types are at the same
compatibility level. If they were, we could have matched the pairs of these types with each
other in two-way exchanges until one of them has no more pairs left. It could also be the case
that there are multiple self-demanded pairs at different compatibility levels in the exchange
pool. Without loss of generality, we can assume that no two of these pairs have the same pair
type (since otherwise, if there are k > 1 pairs of type V–V, we could serve them in a k-way
exchange as V–V,V–V, . . . ,V–V).

We will refer to the pairs satisfying the conditions in Proposition 2 to be matched using
an overdemanded pair as matchable pairs. We state the following corollary to Proposition 6
about matchable pairs:

Corollary 1. Under Assumption 1, when there is a single overdemanded type pair of type
X–Y, under an efficient mechanism,

• we match LX –LY underdemanded pairs; and
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• decisions regarding matchable self-demanded and reciprocally demanded pairs with
object and agent types located at different compatibility levels of the partial order �
are independent from each other.

That is, under an efficient mechanism, not only can we match the maximum number of pos-
sible underdemanded pairs, but we can always enlarge an exchange by squeezing in a matchable
reciprocally demanded or self-demanded pair belonging to a different compatibility level than
the ones in the exchange, at the cost of replacing only underdemanded pairs in the exchange with
different ones. Suppose an exchange E has been fixed with a single overdemanded pair. Then
we can squeeze in a reciprocally demanded pair (if the conditions in Proposition 2 are satis-
fied) without affecting the rest of the overdemanded, reciprocally demanded, and self-demanded
pairs in E, and match the same number of underdemanded pairs as E does. We can almost
do the same thing using a self-demanded pair except if there is already another self-demanded
pair of a compatibility type that is incomparable to this pair. In the latter case, a new recipro-
cally demanded pair belonging to this compatibility level is also needed (see Footnote 32). The
new exchange may replace at most two underdemanded pairs of E with new ones. Since by
Assumption 1 underdemanded pairs are abundant, this minimal change will have no effect on
optimization. An example of such insertions is given below using the type sets in Figure 1(a).

An example regarding overdemanded type pairs helping out other pairs in multi-way
exchanges: Consider the types in Figure 1(a). Suppose that an E–A1 type overdemanded pair
arrives under Assumption 1. E–A1 can be used to match all underdemanded, self-demanded,
and reciprocally demanded pairs. Figure 2 shows a number of exchanges that can be conducted
through the E–A1 type pair. Exchange (a) is conducted to match the maximum number of
underdemanded pairs, which is LA1 − LE = 4. In Exchange (b), we squeeze in an A1 –A2 type
reciprocally demanded pair by replacing pair 3 in Exchange (a) with pair 7. In Exchange (c),
we additionally squeeze in a D2 –D2 type self-demanded pair by replacing pairs 4 and 5 in
Exchange (b) with pairs 8 and 10, respectively. In Exchange (d), we squeeze in a D1 –D1 type
self-demanded pair. However, there is already another pair at the same compatibility level,
namely pair 9 of type D2 –D2. Thus, we need an additional D1 –D2 or D2 –D1 type reciprocally
demanded pair to accommodate this new pair together with pair 9. In the figure, we use pair 12
of type D1 –D2 as a “bridge pair” between D1 –D1 and D2 –D2 type pairs. In this case, we also
replace underdemanded pair 8 with pair 4.

All the above results assume that there exists at most one overdemanded pair in the pool.
However, if we do not match an overdemanded pair immediately, there can be more than one.
We state one other assumption, which will ensure that an overdemanded pair will never be
kept in the pool.

Suppose that W1 –W2 and W2 –W1 are two reciprocally demanded pair types at the same
compatibility level. We show that as long as the difference between W1 –W2 and W2 –W1 type
arrival frequencies is not large, overdemanded type pairs will be matched immediately under
the efficient mechanism. The proof of this proposition is given in Appendix A.

Proposition 3. Suppose Assumption 1 holds. If for all W1 –W2 and W2 –W1 ∈ PR, pW1 –W2

and pW2 –W1 are sufficiently close to each other, then under any dynamically efficient multi-
way matching mechanism, overdemanded type pairs are matched as soon as they arrive at the
exchange pool.

We state the hypothesis of this proposition as an assumption.
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Figure 2
Examples of multi-way exchanges that can be conducted through an E–A1 type overdemanded pair for the pair

types given in Figure l(a)

Assumption 2 (Assumption on generic arrival rates of reciprocally demanded types). For
all W1 –W2 and W2 –W1 ∈ PR, pW1 –W2 and pW2 –W1 are sufficiently close to each other so that
all overdemanded pairs are matched immediately under an efficient mechanism.

Under Assumptions 1 and 2, since an overdemanded pair will be matched immediately
when it arrives, we will only need to make decisions in situations in which multiple exchanges
of different sizes are feasible. Thus, using multi-way exchanges, we can benefit from not
conducting the largest feasible exchange currently available and holding onto some of the pairs,
which can currently participate in an exchange, in the expectation of saving more pairs sooner.

For example, consider a situation in which an overdemanded X–Y type pair arrives at the
pool, while a reciprocally demanded W1 –W2 type pair which can be matched using the X–Y
type pair is also available.
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By Corollary 1, the decisions regarding the W1 –W2 type pair are independent from
decisions regarding other reciprocally demanded pair types except type W2 –W1.16 Since by
Assumption 1 there is an excess number of underdemanded type pairs in the long run, by
Corollary 1 there are two candidates for an optimal exchange: for some number n

• an n-way kidney exchange without the W1 –W2 type pair or
• an (n + 1)-way exchange including the W1 –W2 type pair.17

Which exchange should the central authority choose?
We answer this question by converting the problem to an embedded Markov decision

process with a state space consisting of |P| dimensional integer vectors that show the number
of pairs in the pool belonging to each pair-type.18,19 There is additional structure to eliminate
some of these state variables under Assumptions 1 and 2:

• For the overdemanded types: If an overdemanded pair i of type X–Y ∈ PO arrives, by
Proposition 3, pair i will be matched immediately in some exchange. Hence, the number
of overdemanded pairs remaining in the pool is always 0.

• For the underdemanded types: By Assumption 1, there will be an arbitrarily large number
of underdemanded pairs. Hence, the number of underdemanded pairs is always ∞.

• For the self-demanded types: Whenever a self-demanded pair i of type V–V ∈ PS is
available in the exchange pool, as an implication of Corollary 1, the decisions may be
complicated by the existence of other self-demanded and reciprocally demanded type
pairs in the same compatibility level. Selection of other pairs in an exchange may
affect which self-demanded type pairs will be used if different type pairs are simultane-
ously available. A self-demanded type can never save an underdemanded or reciprocally
demanded pair without the help of an overdemanded or reciprocally demanded pair(s)
by Proposition 2. On the other hand, if there is more than one such type of a pair, then
we can match all such pairs together in an exchange. This and the above observations
imply that under an efficient matching mechanism, for any V–V ∈ PS, at steady-state
there will be either zero or one V–V type pair.
Therefore, self-demanded types’ effect to the reduced state space will be reflected by four
additional state variables, each getting values of either 0 or 1. We first derive the efficient
dynamic matching mechanism by ignoring the self-demanded type pairs; then we will
reintroduce the self-demanded types to the problem and comment on the dynamically effi-
cient matching mechanism for our leading example of kidney exchanges in Appendix B.

Assumption 3 (No self-demanded types assumption). There are no self-demanded types
available for exchange and pV–V = 0 for all V–V ∈ P.

• For the reciprocally demanded types: By the above analyses, there are no overdemanded
and self-demanded type pairs available and there are infinitely many underdemanded type

16. When there is a W2 –W1 type pair, we can immediately match this pair with the W1 –W2 type pair. Thus
suppose that there is no W2 –W1 pair available in the pool.

17. If there are also W1 –W1 and W2 –W2 type pairs existent in the pool, then the decision is between

– an n-way exchange without a W1 –W2 type pair and with one of the two self-demanded pairs, and
– an n + 2-way exchange that additionally matches a W1 –W2 type pair and the other self-demanded pair.

18. See Puterman (1994) for an excellent survey of continuous-time and discrete-time Markov decision processes.
19. Since the pairs arrive according to a Poisson process, which is memory-less, solving the problem only for this

Markov decision process with |P| variables will also provide a solution of the original problem stated in equation (6).
Moreover, this solution will be independent of other characteristics such as the inflow and match history of the
exchange, time, and initial conditions.
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pairs. Therefore, the state of the exchange pool can simply be denoted by the number
of reciprocally demanded pairs. On the other hand, any reciprocally demanded pairs of
types W1 –W2 and W2 –W1 ∈ PR can be matched in a two-way exchange. Moreover,
by Proposition 2, a reciprocally demanded type pair cannot save an underdemanded pair
in an exchange without the help of an overdemanded pair. Hence, the most efficient
use of W1 –W2 and W2 –W1 type pairs is to be matched with each other in a two-way
exchange. Therefore, under the efficient matching mechanism, a W1 –W2 and W2 –W1

type pair will never remain in the pool together, but will be matched via a two-way
exchange.
Let PR∗ ⊆ PR be fixed such that for all W1 –W2 ∈ PR

W1 –W2 ∈ PR∗ ⇐⇒ W2 –W1 �∈ PR∗
. (12)

That is, for each compatibility level with two object types W1 and W2, only one pair
type W1 –W2 is in PR∗

.
By the above observation, we can simply denote the state of the exchange pool by an
integer vector s = (

sW1 –W2

)
W1 –W2∈PR∗ , such that for all W1 –W2 ∈ PR∗

, if sW1 –W2 > 0,
then sW1 –W2 refers to the number of W1 –W2 type pairs in the exchange pool, and if
sW1 –W2 < 0, then

∣∣sW1 –W2

∣∣ refers to the number of W2 –W1 type pairs in the exchange
pool. Formally, sW1 –W2 is the difference between the number of W1 –W2 type pairs and
W2 –W1 type pairs in the pool, and only one of these two numbers can be non-zero. Let

S = Z
|PR∗ | be the state space.

In our running example explored in Figure 1(a), we can set PR∗ = {A1 –A2, D1 –D2} and
S = Z

2.

4.1. Markov chain representation

In this subsection, we characterize the transition from one state to another under a dynamically
efficient matching mechanism by a Markov chain when Assumptions 1, 2, and 3 hold:

Fix W1 –W2 ∈ PR∗
. By Corollary 1, the decisions regarding pairs of types W1 –W2 and

W2 –W1 are independent from decisions regarding other reciprocal types. Therefore, we focus
just on W1 –W2 and W2 –W1 type pairs. Hence, we consider the state (component) of the pool
regarding W1 –W2 and W2 –W1 types, sW1 –W2 . Suppose that sW1 –W2 > 0, i.e. there are only
W1 –W2 type pairs in the pool, but no W2 –W1 type pairs. We define the following partition
of the overdemanded pairs:

PO (W1 –W2) =
{

X–Y ∈ PO : W2 � X and Y � W1

}
,

PO (˜ W1 –W2) = PO\PO (W1 –W2) .
(13)

By Proposition 2, PO (W1 –W2) is the set of overdemanded pairs that are required to match
W1 –W2 type pairs; and PO (˜ W1 –W2) is the set of remaining overdemanded pairs.

Next, we will analyse decisions regarding W1 –W2 type pairs:
Assume that an X–Y type pair arrives. Three cases are possible regarding X–Y:

1. X–Y∈ PO: By Assumption 2 and Proposition 3, we need to match the X–Y type pair
immediately. Moreover, we need to match LX –LY underdemanded type pairs in such
an exchange; otherwise, such an exchange will not be efficient by Assumption 1 and
Corollary 1. We isolate ourselves from all decisions regarding any type of reciprocally
demanded pairs, but W1 –W2 and W2 –W1 type pairs. Suppose that E is a feasible n-way
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exchange for some n ≥ 2 that can match LX –LY underdemanded pairs, the X–Y type
pair i, and possibly some reciprocally demanded pairs in an efficient way, but no W1 –W2

type pairs. We have two cases regarding the decision for W1 –W2 type pairs:

• X–Y∈ PO (˜ W1 –W2): By Proposition 2 and the fact that there are no W2 –W1

pairs in the pool, there is no feasible exchange that can match a W1 –W2 type pair.
Thus, exchange E is an efficient exchange.

• X–Y∈ PO (W1 –W2): By Corollary 1, instead of exchange E, we can conduct an
(n + 1)-way exchange, E′, including the overdemanded and reciprocally demanded
type pairs, the same number of underdemanded type pairs, and one more recip-
rocally demanded pair from the W1 –W2 type. In this case, we have two possible
actions: conduct exchange E (smaller exchange) or conduct exchange E′ (larger
exchange). If E′ is conducted, the state component for W1 –W2 and W2 –W1 type
pairs decreases to sW1 –W2 − 1, since one fewer W1 –W2 type pair will remain in
the exchange pool.

2. X–Y ∈ PU: By Assumption 2 and Proposition 3, there are no overdemanded pairs avail-
able in the pool. And by Proposition 2, no exchanges are feasible.

3. X–Y ∈ PR: Three cases are possible:

• X–Y = W1 –W2: Since there are no W2 –W1 type pairs, and no overdemanded
pairs (by Assumption 2 and Proposition 3), by Proposition 2, there are no feasible
exchanges, and the state component for W1 –W2 and W2 –W1 type pairs increases
to sW1 –W2 + 1.

• X–Y = W2 –W1: A two-way exchange can be conducted using a W1 –W2 type
pair in the pool and the arriving X–Y type pair i. This is the only feasible type of
exchange. Since matching a W2 –W1 type pair with a W1 –W2 type pair is the most
efficient use of these types of pairs, we need to conduct such a two-way exchange.
The state component for W1 –W2 and W2 –W1 type pairs decreases to sW1 –W2 − 1.

• X–Y �∈ {W1 –W2, W2 –W1}: By Proposition 2, there is no feasible exchange regard-
ing W1 –W2 type pairs.

Figure 3 summarizes how the state of the pool regarding W1 –W2 and W2 –W1 type pairs
evolves for sW1 –W2 > 0.

For sW1 –W2 < 0, i.e. when |sW1 –W2 | W2 –W1 type pairs are available in the exchange pool,
we observe the symmetric version of the above evolution. For sW1 –W2 = 0, i.e. when there are
no W1 –W2 and W2 –W1 type pairs available in the exchange pool, the evolution is somewhat
simpler. Figure 4 summarizes the transitions from state component sW1 –W2 = 0. The only state
transition regarding sW1 –W2 occurs when a W1 –W2 type pair arrives (to state component
sW1 –W2 = 1), or when a W2 –W1 type pair arrives (to state component sW1 –W2 = −1).

4.2. Bellman equations

In this subsection, we derive the Bellman equations that will be used to find the efficient
matching mechanism. Let τ 1 be the time between two arrivals. Since the arrival process is a
Poisson process with arrival rate λ, where λ is the expected number of arrivals in unit time,
then τ 1 is distributed with an exponential distribution with parameter λ, that is, the probability
density function of τ 1 is λe−λτ1 . Then, the expected total discounting that occurs until a new
pair arrives is given by

E
[
e−ρτ1

] =
∫ ∞

0
λe−ρτ1e−λτ 1dτ 1 = λ

λ + ρ
. (14)
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Figure 3

Transitions with arrivals when sW1 –W2 > 0

When a pair is matched in the exchange pool, the surplus related to the pair is∫∞
0 ce−ρτ dτ = c

ρ
.20

Using the analyses in the previous subsection, under Assumptions 1, 2, and 3, we can
state Bellman equations for the reduced continuous time Markov process. By Proposition 2
and Corollary 1, ES (s), the total surplus at state s ∈ S under the efficient rule can be written
as the sum of surpluses regarding each type:

ES (s) =
∑

X–Y∈PO

ESX–Y +
∑

V–V∈PS

ESV–V +
∑

W1 –W2∈PR∗
ESW1 –W2

(
sW1 –W2

)
(15)

where

• ESX–Yfor each type X–Y ∈ PO is equal to λpX–Y
ρ

(LX−LY+1) c
ρ

where
∑∞

m=1(
λpX–Y

λpX–Y+ρ

)m= λpX–Y
ρ

is the expected total discounting related to all future incoming
X–Y type pairs, LX − LY is the number of underdemanded type pairs, and 1 is the
number of the overdemanded pair that can be matched regardless of the reciprocally
demanded pairs matched. Since underdemanded types cannot be matched without the help
of overdemanded types (by Proposition 2), we incorporate their surplus to the surplus of
overdemanded types.

• ESV–V = 0 for all V–V∈ PS by Assumption 3.
• ESW1 –W2

(
sW1 –W2

)
is the surplus related to reciprocally demanded types W1 –W2 and

W2 –W1, for each W1 –W2 ∈ PR∗
and sW1 –W2 ∈ Z. It can be maximized independently

from other surpluses ESW3 –W4

(
sW3 –W4

)
for all W3 –W4 ∈ PR∗\ {W1 –W2} and sW3 –W4 ∈

Z by Corollary 1.

20. We will later observe that the optimal matching mechanism is independent of how this individual surplus is
calculated. Thus, it is robust to the interpretation of surplus.
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Figure 4

Transitions with arrivals when sW1 –W2 = 0

From now on, we focus on the exchange surplus related to reciprocally demanded types.
Fix W1 –W2 ∈ PR∗

. For sW1 –W2 > 0, exchange surplus for types W1 –W2 and W2 –W1 is
stated as

ESW1 –W2

(
sW1 –W2

)

= λ

λ + ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ ∑
X–Y∈PO(˜ W1 –W2)∪PU∪PR\{W1 –W2,W2 –W1}

pX–Y

⎞⎠ESW1 –W2

(
sW1 –W2

)
+
⎛⎝ ∑

X–Y∈PO(W1 –W2)

pX–Y

⎞⎠max
{
ESW1 –W2

(
sW1 –W2

)
, ESW1 –W2

(
sW1 –W2 − 1

)+ c
ρ

}
+pW1 –W2ESW1 –W2

(
sW1 –W2 + 1

)+ pW2 –W1

(
ESW1 –W2

(
sW1 –W2 − 1

)+ 2c
ρ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

On the right-hand side of equation (16) (1) the first row considers the case when an overde-
manded pair that cannot be used in matching a W1 –W2 type pair or an underdemanded pair or
a reciprocally demanded pair of types other than W1 –W2 and W2 –W1 arrives; (2) the second
row considers the case when an overdemanded pair that can be used in matching a W1 –W2

type pair arrives, leading to a decision of either matching the W1 –W2 type pair or not together
with the efficient size exchanges decided for other types; and (3) the third row considers the
case when a W1 –W2 type pair arrives, leading to an increase in the state component, and when
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a W2 –W1 type pair arrives, reducing the state component by conducting a two-way exchange
and matching one W2 –W1 and one W1 –W2 type pairs.

We can rewrite equation (16) by dividing both sides of the equation by c
ρ

and setting
ES∗

W1 –W2
(sW1 –W2) = ρ

c
ESW1 –W2(sW1 –W2) as follows:

ES∗
W1 –W2

(
sW1 –W2

)

= λ

λ + ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ ∑
X–Y∈PO(˜ W1 –W2)∪PU∪PR\{W1 –W2,W2 –W1}

pX–Y

⎞⎠ES∗
W1 –W2

(
sW1 –W2

)
+
⎛⎝ ∑

X–Y∈PO(W1 –W2)

pX–Y

⎞⎠max
{
ES∗

W1 –W2

(
sW1 –W2

)
, ES ∗

W1 –W2

(
sW1 –W2 − 1

)+ 1
}

+pW2 –W1ES∗
W1 –W2

(
sW1 –W2 + 1

)+ pW1 –W2

(
ES∗

W1 –W2

(
sW1 –W2 − 1

)+ 2
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(17)

Note that since by Assumption 3, pV–V = 0 for all V–V∈ PS, we have∑
X–Y∈PO(˜ W1 –W2)∪PU∪PR\{W1 –W2,W2 –W1}

pX–Y = 1−
( ∑

X–Y∈PO(W1 –W2)

pX–Y

)
−pW1 –W2−pW2 –W1 .

Similarly, we can write the Bellman equation for state components sW1 –W2 < 0 as follows:

ES∗
W1 –W2

(
sW1 –W2

)

= λ

λ + ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ ∑
X–Y∈PO(˜ W2 –W1)∪PU∪PR\{W1 –W2,W2 –W1}

pX–Y

⎞⎠ES∗
W1 –W2

(
sW1 –W2

)
+
⎛⎝ ∑

X–Y∈PO(W2 –W1)

pX–Y

⎞⎠max
{
ES∗

W1 –W2

(
sW1 –W2

)
, ES∗

W1 –W2

(
sW1 –W2+1

)+1
}

+pW2 –W1ES∗
W1 –W2

(
sW1 –W2 − 1

)+ pW1 –W2

(
ES∗

W1 –W2

(
sW1 –W2 + 1

)+ 2
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

For state component 0, the Bellman equation is

ES∗
W1 –W2

(0) = λ

λ + ρ

⎡⎢⎢⎢⎣
⎛⎝ ∑

X–Y∈PO∪PU∪PR\{W1 –W2,W2 –W1}
pX–Y

⎞⎠ES∗
W1 –W2

(0)

+pW1 –W2ES∗
W1 –W2

(1) + pW2 –W1

(
ES∗

W1 –W2
(−1)

)
⎤⎥⎥⎥⎦ . (19)

The following observations will be useful for our analysis in the next section. They follow
from the formulation of the problem.

Observation 2. If an overdemanded pair that can be used to match a W1 –W2 pair arrives
and yet the smaller exchange without any W1 –W2 type pair is chosen at a state component
sW1 –W2 > 0, then ES∗

W1 –W2
(sW1 –W2) ≥ ES∗

W1 –W2
(sW1 –W2 − 1) + 1. If the larger exchange with

a W1 –W2 type pair is chosen, then ES∗
W1 –W2

(sW1 –W2) ≤ ES∗
W1 –W2

(sW1 –W2 − 1) + 1.

Observation 3. If an overdemanded pair that can be used to match a W2 –W1 pair arrives
and yet the smaller exchange without any W2 –W1 type pair is chosen at a state component
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sW1 –W2 < 0, then ES∗
W1 –W2

(sW1 –W2) ≥ ES∗
W1 –W2

(sW1 –W2 + 1) + 1. If the larger exchange with
a W2 –W1 type pair is chosen, then ES∗

W1 –W2
(sW1 –W2) ≤ ES∗

W1 –W2
(sW1 –W2 + 1) + 1.

The solution for ES∗
W1 –W2

(sW1 –W2) in equations (17), (18), and (19) gives the normalized
efficient exchange surplus regarding W1 –W2 and W2 –W1 type reciprocally demanded pairs.
Does a solution exist to these equations, and if so, is it unique? The following proposition
answers this question affirmatively. It is proven in Appendix A.

Proposition 4. For any W1 –W2 ∈ PR∗
, there exists a unique solution ES∗

W1 –W2
: Z → R+

to the Bellman equations given in equations (17), (18), and (19).

4.3. The efficient matching mechanism

A (deterministic) Markov matching mechanism φ is a matching mechanism that chooses the
same action whenever the Markov chain is in the same state. In our reduced state and action
problem, a Markov matching mechanism makes multiple decisions at a state depending on the
type of an arriving pair and the number and the types of reciprocally demanded pairs in the pool.
For each reciprocally demanded type W1 –W2 existing in the pool, when an overdemanded type
pair that can be used to match a W1 –W2 type pair arrives, the two decisions are (a) conduct an
exchange without a W1 –W2 pair, but with the maximum possible number of underdemanded
pairs (action do-not-match), or (b) conduct an exchange with a W1 –W2 pair and the maximum
possible number of underdemanded pairs (action match). The remaining choices of the
Markov mechanism are straightforward: it chooses an exchange with the maximum number
of underdemanded pairs when such an exchange becomes feasible as outlined in Figure 3 for
positive states, Figure 4 for state zero, and the symmetric version of Figure 3 for negative

states. Formally, φ : S → {do-not-match, match}|PR∗ | is a Markov matching mechanism.

A Markov matching mechanism φs,s : S → {do-not-match, match}|PR∗ | is a threshold
matching mechanism with thresholds s, s ∈ S with s ≤ 0 and s ≥ 0, if for any W1 –W2 ∈ PR∗

,

φ
s,s

W1 –W2
(s) =

{
do-not-match if sW1 –W2

≤ sW1 –W2 ≤ sW1 –W2

match if sW1 –W2 < sW1 –W2
or sW1 –W2 > sW1 –W2

, (20)

where φs,s (s) = (
φ

s,s

W1 –W2
(s)
)

W1 –W2∈PR∗ .
When an overdemanded pair arrives, a threshold matching mechanism conducts the largest

exchange that does not use existing W1 –W2 or W2 –W1 type pairs (do-not-match option) as
long as the number of W1 –W2 or W2 –W1 type pairs is not greater than the threshold numbers,
sW1 –W2 and |sW1 –W2

|, respectively; otherwise, it conducts the largest possible exchanges
including the existing W1 –W2 or W2 –W1 type pairs (match option).

Our main theorem of this section is as follows:

Theorem 2. Suppose Assumptions 1, 2, and 3 hold. There exist s∗
W1 –W2

= 0 and

s∗
W1 –W2

≤ 0, or s∗
W1 –W2

≥ 0 and s∗
W1 –W2

= 0 for each W1 –W2 ∈ PR∗
such that φs∗,s∗

is a
dynamically efficient multi-way matching mechanism.

The proof of Theorem 2 is in Appendix A. Through this theorem, we show that there exists
a dynamically efficient matching mechanism, which is a special kind of a threshold mechanism.
It stocks W1 –W2 or W2 –W1 type pairs, and does not use them in larger exchanges as long as
the stock of the control group is less than or equal to s∗

W1 –W2
or |s∗

W1 –W2
|, respectively. Either
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the number of W1 –W2 type pairs or W2 –W1 type pairs is the state variable, but not both.
Under the first type of solution, the number of W2 –W1 type pairs is the state variable. As long
as the number of W2 –W1 type pairs in the pool is zero, regardless of the number of W1 –W2

type pairs, when the next arrival of an overdemanded pair occurs, the first type of efficient
mechanism conducts the maximal size exchanges possible. If there are W2 –W1 type pairs and
their number does not exceed the threshold number |s∗

W1 –W2
|, then these pairs are exclusively

used to match incoming W1 –W2 type pairs in two-way exchanges. On the other hand, if the
number of W2 –W1 type pairs exceeds the threshold number |s∗

W1 –W2
|, they should be used in

maximal exchanges which can be (1) a two-way exchange involving a W1 –W2 type pair if
the incoming pair type is W1 –W2, or (2) a multi-way exchange involving an overdemanded
pair in PO (W2 –W1). The other types of maximal exchanges are conducted by the efficient
mechanism as soon as they become feasible. The second possible solution is the symmetric
version of the above mechanism taking the number of W1 –W2 type pairs as a state variable.

Next, we specify the efficient mechanism more precisely.

Theorem 3. Suppose Assumptions 1, 2, and 3 hold. Let W1 –W2 ∈ PR∗
. Suppose that

φs∗,s∗
is an efficient multi-way matching mechanism.

• If pW1 –W2 ≥ pW2 –W1 , that is, the W1 –W2 type arrives at least as frequently as the W2 –W1

type, and
∑

X–Y∈PO(W1 –W2)pX–Y <
∑

X–Y∈PO(W2 –W1)pX–Y, that is, the overdemanded
types that can match W1 –W2 type pairs in larger exchanges arrive less frequently than
those for the W2 –W1 type, then s∗

W1 –W2
≤ 0 and s∗

W1 –W2
= 0.

• If pW1 –W2 = pW2 –W1 and
∑

X–Y∈PO(W1 –W2)pX–Y = ∑
X–Y∈PO(W2 –W1)pX–Y, then s∗

W1 –W2
=

0 and s∗
W1 –W2

= 0, i.e. maximal size exchanges are conducted whenever they become
feasible.

• If pW1 –W2 ≤ pW2 –W1 , and
∑

X–Y∈PO(W1 –W2)pX–Y >
∑

X–Y∈PO(W2 –W1)pX–Y, then s∗
W1 –W2

=
0 and s∗

W1 –W2
≥ 0.

Proof of Theorem 2. Let Assumptions 1, 2, and 3 hold. Let W1 –W2 ∈ PR∗
.

• Let pW1 –W2 ≥ pW2 –W1 and
∑

X–Y∈PO(W1 –W2)pX–Y <
∑

X–Y∈PO(W2 –W1)pX–Y. By

Theorem 2, threshold mechanism φs∗,s∗
is efficient. Hence, we have s∗

W1 –W2
= 0 and

s∗
W1 –W2

≤ 0, or s∗
W1 –W2

≥ 0 and s∗
W1 –W2

= 0 such that φs∗,s∗
is a dynamically effi-

cient multi-way matching mechanism. If we conducted maximal number of exchanges
at every state, there will be excess W1 –W2 type pairs on average remaining at the pool.
Suppose s∗

W1 –W2
> 0. We will have even more excess W1 –W2 type pairs on average,

since we do not always match them in larger exchanges. Therefore, the expected sur-

plus under mechanism φ

(
s∗
−(W1 –W2)

,0
)
,
(
s∗
−(W1 –W2)

,0
)

is higher than under mechanism φs∗,s∗
,

contradicting the claim that the latter one is efficient. Thus, s∗
W1 –W2

= 0. By Theorem 2,
s∗

W1 –W2
≤ 0.

• Let pW1 –W2 = pW2 –W1 and
∑

X–Y∈PO(W1 –W2)pX–Y = ∑
X–Y∈PO(W2 –W1)pX–Y. Then, the

Bellman equations stated in equation (17) for positive states and in equation (18)
for negative states are completely symmetric, implying that ES∗

W1 –W2
(sW1 –W2) =

ES∗
W1 –W2

(−sW1 –W2) for any sW1 –W2 ∈ Z. Suppose that s∗
W1 –W2

< 0. Then at state
component –1 regarding W1 –W2 types, the do-not-match option is executed. By
Observation 3, we have ES∗

W1 –W2
(−1) ≥ ES∗

W1 –W2
(0) + 1. Then, ES∗

W1 –W2
(1) =

ES∗
W1 –W2

(−1) ≥ ES∗
W1 –W2

(0) + 1 as well, implying together with Observation 3 that
the do-not-match option is executed for W1 –W2 type pairs at state component 1, and that
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s∗
W1 –W2

> 0. However, s∗
W1 –W2

< 0 and s∗
W1 –W2

> 0 contradict Theorem 2. Therefore,
s∗

W1 –W2
= 0. With the symmetric argument, we show that s∗

W1 –W2
= 0.

• Let pW1 –W2 ≤ pW2 –W1 and
∑

X–Y∈PO(W1 –W2)pX–Y >
∑

X–Y∈PO(W2 –W1)pX–Y. The sym-
metric argument of the first part of the proof holds. ‖

The intuition behind Theorem 3 can be stated as follows: W1 –W2 (W2 –W1) type pairs are
most efficiently used in matching W2 –W1 (W1 –W2) type pairs in two-way exchanges. This
is true because, by Proposition 2, these two reciprocally demanded pair types cannot be used
to save any underdemanded type pairs. Moreover, the use of overdemanded pairs exclusively
to save W1 –W2 and W2 –W1 type pairs is costly, since they can instead be used to save
underdemanded pairs which are abundant. Consider a situation in which pW1 –W2 ≥ pW2 –W1 and∑

X–Y∈PO(W1 –W2)pX–Y <
∑

X–Y∈PO(W2 –W1)pX–Y, that is, the types that can be used to serve
W1 –W2 type pairs arrive less frequently than the types that can be used to serve W2 –W1 type
pairs. Under these two conditions, W 2 –W 1 type pairs do not arrive as frequently as W 1 –W2

type pairs, and W 2 –W1 type pairs can be used more frequently in larger exchanges. Consider
a positive state component of the pool regarding W1 –W2 and W2 –W1 types, i.e. there are
W1 –W2 type pairs. Since W2 –W1 type pairs arrive on average less frequently than W1 –W2

type pairs for two-way exchanges, whenever an overdemanded pair that can serve a W1 –W2

type pair arrives, the W1 –W2 type pairs can safely be used in larger exchanges. On the other
hand, if the state component of the pool regarding W1 –W2 and W2 –W1 types is negative, i.e.
there are W2 –W1 type pairs, since W1 –W2 type pairs arrive on average more frequently for
two-way exchanges, this means that the average arrival process is interrupted, and we end up
with some excess W2 –W1 type pairs. So, we have a higher option value for keeping W2 –W1

type pairs than matching them in larger exchanges. We should have a positive stock of W2 –W1

type pairs in hand to match them exclusively with future coming W1 –W2 type pairs.21 On the
other hand, if pW1 –W2 = pW2 –W1 and

∑
X–Y∈PO(W1 –W2)pX–Y = ∑

X–Y∈PO(W2 –W1)pX–Y, on
average W1 –W2 and W2 –W1 types arrive at the same rate exclusively for two-way exchanges.
Therefore, using existing W1 –W2 or W2 –W1 type pairs in larger exchanges instead of matching
with incoming reciprocal pairs has no expected future costs. Thus, we do not need to worry
about carrying a positive stock of W1 –W2 or W2 –W1 type pairs.

5. DYNAMICALLY EFFICIENT KIDNEY EXCHANGE

The kidney exchange problem is a special case of the general model that we considered above.
In this problem, we refer to an object–agent pair as a recipient–donor pair. The type space for
kidney needs is defined through blood- and tissue-type compatibility.

Before a donor is deemed compatible with a recipient, two tests are required: a blood-type
compatibility test and a tissue-type compatibility test (or cross-match test). There are four blood
types, O, A, B, and AB. An O blood type recipient can only receive a transplant from an O
donor, an A blood type recipient can only receive a transplant from an O or an A donor, a B
blood type recipient can only receive a transplant from an O or a B donor, and an AB blood
type recipient can receive a transplant from all donors. A recipient and a donor are blood-type
compatible if the donor can feasibly donate a kidney to the recipient based on their blood types.

21. Since there is discounting and the number of W2 –W1 type pairs can only be an integer, sometimes the
threshold can be 0 instead of a positive number.
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Blood-type Compatibility Relation

O Level 1

A B Level 2

AB Level 3

Figure 5

Blood-type compatibility relation (also see Figure 1(b))

Observe that the blood-type compatibility relation forms a partial order with three levels of
compatibility. The O blood type is located at the highest level at level 1, the A and B blood
types are located at level 2, and the AB blood type is at level 3 (see Figure 5).

There is yet another type of incompatibility for kidney recipients. Sometimes a recipient
cannot receive a kidney from a blood-type compatible donor due to tissue-type incompatibility.
There are six proteins on human DNA that determine the tissue type of a person. Some tissue
types can be rejected by a recipient’s immunological system. A formal test is done by mixing
the blood of the donor and the recipient for testing tissue-type incompatibility prior to the
transplant. If antibodies form in the recipient’s blood against the donor’s tissue antigens, then
there is positive cross-match between the recipient and the donor, meaning that the donor and
the recipient are tissue-type incompatible. A donor is tissue-type compatible with a recipient
if there is negative cross-match between them. A donor is compatible with a recipient if he
is both blood- and tissue-type compatible with the recipient. A recipient can receive a kidney
only from compatible donors.

Usually, when a donor is compatible with his paired recipient, such a pair does not
participate in exchange since the donor directly donates his kidney to the recipient. Hence,
a blood-type compatible pair becomes available for exchange if and only if the pair is tissue-
type incompatible. For tissue-type incompatibility between the donors and patients of different
pairs, we will make an additional assumption. This will give us an idea on limits of kidney
exchange (see Roth, Sönmez and Ünver, 2007):

Assumption 4 (Limit assumption). No recipient is tissue-type incompatible with the donor of
another pair.

Recipients can be tissue-type incompatible with their own donors, and we assume that
pc > 0 is the probability for that to happen. This ensures that blood-type compatible pairs
arrive at the pool. On the other hand, recipients will never be tissue-type incompatible with
donors of other pairs under Assumption 4; thus, two pairs will be mutually compatible if and
only if they are mutually blood-type compatible. Note that average tissue-type incompatibility
(positive cross-match) probability is reported as pc = 0.11 by Zenios, Woodle and Ross (2001).

We will continue to maintain Assumptions 1, 2, and 3 for kidney exchanges as well.
In Section 5.2.1, we show that these assumptions are plausible for kidney exchange. We
also comment on what happens when these assumptions are relaxed in Section 5.2.1 and in
Appendix B.

© 2009 The Review of Economic Studies Limited
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5.1. The efficient kidney exchange mechanism

We are ready to present the pair type space for kidney exchanges. The blood types give the
compatibility type of each recipient and donor (under Assumption 4). Therefore, the type of a
pair is represented by the blood type of the recipient and the blood type of the donor in the
pair. There are 16 pair types. We state the overdemanded, underdemanded, self-demanded, and
reciprocally demanded types as follows:

PO = {A–O, B–O, AB–O, AB–A, AB–B}
PU = {O–A, O–B, O–AB, A–AB, B–AB}
PS = {O–O, A–A, B–B, AB–AB}
PR = {A–B, B–A} .

(21)

Since there are only two reciprocally demanded types, we can represent the reduced Markov
chain using a single integer s representing the number of A–B type pairs if s > 0 and the
number of B–A type pairs if s < 0. Hence, the state space is the set of integers, i.e. S = Z.
In Figures 6 and 7, the exchange options and their trade-offs in the decision problem are
depicted when there are B–A type pairs in the pool and an overdemanded pair in PO (B–A) =
{A–O,AB–B,AB–O} arrives. Also, note that PO (A–B) = {B–O,AB–A,AB–O}. The options
regarding the case with A–B type pairs are just the symmetric versions of the options with
B–A type pairs.

By Theorem 2, under Assumptions 1, 2, 3, and 4, the efficient mechanism is given by a
threshold Markov mechanism, φs∗,s∗

: Z →{do-not-match, match} , with s∗ ≥ 0 and s∗ = 0
or s∗ = 0 and s∗ ≤ 0.

The real-life arrival probabilities derived from unrelated recipient–donor matching for a pair
(also used in the simulations section below) dictate pB–A ≤ pA–B and

∑
X–Y∈PO(A–B)pX–Y <∑

X–Y∈PO(B–A)pX–Y. In this case, by Theorem 3, the efficient exchange mechanism is a
threshold Markov mechanism that takes the B–A type pair number as the relevant state variable,
i.e. mechanism φ0,s∗

for some threshold s∗ ≤ 0. Option do-not-match in Figures 6 and 7 is
executed whenever there are |s| B–A type pairs with s∗ ≤ s ≤ 0 and an overdemanded pair in

Figure 6
Kidney exchange options when an A–O∈ PO (B–A) type pair arrives and there are B–A type pairs in the exchange

pool. When an AB–B∈ PO (B–A) type pair arrives, option do-not-match will involve a two-way exchange between

AB–B and B–AB type pairs, and option match will involve a three-way exchange among AB–B, B–A, and A–AB

type pairs
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Figure 7
Kidney exchange options when an AB–O∈ PO (B–A) type pair arrives and there are B–A type pairs in the

exchange pool. Note that another feasible exchange for option do-not-match is a three-way exchange with AB–O,

O–A, and A–AB type pairs

PO (B–A) arrives. Under all other states and arrivals, the maximal exchanges are conducted.
For example, when B–A types are available and an overdemanded pair in PO (B–A) arrives,
option match in Figures 6 and 7 is conducted.

5.2. Computation of the efficient multi-way kidney exchange mechanism

In this subsection, we first formulate the underlying arrival process of incompatible pairs to the
exchange pool. For any pair type X–Y ∈ P, let qX–Y be the probability of a random pair being
of type X–Y. We refer to qX–Y as the arrival probability of pair type X–Y ∈ T. We have∑

X–Y ∈T qX–Y = 1. A compatible pair does not become available for exchange. Recall that pc,
the probability of tissue-type incompatibility, is the probability of a blood-type compatible pair
being available for exchange, and 1 is the probability of a blood-type incompatible pair being
available for exchange. We derive the exchange arrival probabilities of each type X–Y, pX–Y,

as follows. For each self-demanded and overdemanded type X–Y∈ PO ∪ PS, we have pX–Y =
pcqX–Y

κ
, and for each underdemanded and reciprocally demanded type X–Y∈ PU ∪ PR, we have

pX–Y = qX–Y
κ

where κ =∑
X–Y∈PO∪PSpcqX–Y +∑X–Y∈PU∪PRqX–Y. Thus,

∑
X–Y∈PpX–Y = 1.

5.2.1. Plausibility of the assumptions for kidney exchange. We comment on the
efficient kidney exchange mechanism when Assumption 3 is relaxed in Appendix B, i.e. the
case when self-demanded types participate in kidney exchange.

Next, we comment on the plausibility of our Assumptions 1, 2, and 4 for kidney exchange:

• Assumption 1 concerns the underlying arrival probabilities of the pairs and the applied
matching mechanism. We first show that Assumption 1, i.e. having arbitrarily many
underdemanded pairs in the exchange pool in the long run, is a realistic assumption:

Proposition 5. Suppose that pc (qAB–O + qX–O) + min {pcqY–O, qX–Y} < qO–X for all
{X,Y} = {A,B}, pc (qAB–O + qAB–X) + min {pcqAB–Y, qY–X} < qX–AB for all {X,Y} = {A,B} and
pcqAB–O < qO–AB. Then, Assumption 1 holds in the long run regardless of the multi-way
dynamic kidney exchange mechanism used.
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Proof of Proposition 5. By Proposition 2, underdemanded type O–A can only be matched
in a two-way exchange with its reciprocal type, in an exchange using an AB–O type pair, or
in an exchange using a B–O type pair and an A–B type pair such as (B–O, O–A, A–B) (see
also Roth, Sönmez and Ünver, 2007). Since

pc (qAB–O + qA–O) + min {pcqB–O, qA–B} < qO–A, (22)

even if all of these types, O–A, AB–O, or B–O and A–B, are used exclusively to match
O–A type pairs, there will still be arbitrarily many O–A pairs left in the pool in the long run.

Similarly, an underdemanded type B–AB pair can only be matched in a two-way exchange
with its reciprocal type pair, an AB–O type pair, or in an exchange using an AB–A type pair
and an A–B type pair such as (AB–A, A–B, B–AB) (see also Roth, Sönmez and Ünver,
2007). Since

pc (qAB–O + qAB–B) + min {pcqAB–A, qA–B} < qB–AB, (23)

even if all of AB–O, AB–B, or AB–A together with A–B type pairs are used exclusively to
match B–AB type pairs, arbitrarily many B–AB type pairs will remain in the exchange pool
in the long run.

Symmetric versions of these observations hold for O–B and AB–B.
By Proposition 2, an O–AB pair can only be matched using an AB–O pair. Since

pcqAB–O < qO–AB, (24)

even if AB–O type pairs are used exclusively to match AB–O type pairs, arbitrarily many
underdemanded type pairs will remain in the long run.

Moreover, all these results are true regardless of the matching mechanism used. ‖

The hypotheses of the above proposition are very mild, and will hold for sufficiently
small tissue-type incompatibility (i.e. cross-match) probability pc. Moreover, they
hold for real-life blood frequencies. For example, assuming that the recipient
and her paired-donor are blood-unrelated, the arrival rates reported at the end
of this subsection satisfy these assumptions, when the cross-match probability is
pc = 0.11, as reported by Zenios, Woodle and Ross (2001).

• Assumption 2 limits the arrival rates of A–B and B–A type pairs to be close to each
other. However, it does not give a measure of closeness. There is no literature reporting
these rates except Terasaki, Gjertson and Cecka (1998) who report that the arrival rates
of A–B and B–A type pairs as qA−B = 0.05 and qB−A = 0.03 but do not explain from
which sample these are obtained. Under independent sampling conditions, we would
expect these rates to be equal to each other.

• Assumption 4 is a limit assumption. However, it is also a somewhat realistic assumption
for certain cases. If the recipient is female and has previously borne the child of her
paired-donor, then her body is more likely to reject her paired-donor’s kidney than other
random kidneys due to tissue-type incompatibility (cf. Zenios, Woodle, and Ross, 2001).

If we eliminate these assumptions, the structure of the dynamic programming problem will
change. Even then, we can create object types and their compatibility relation as a general
partial order. Hence, we can classify the pair types as underdemanded, overdemanded, self-
demanded, and reciprocally demanded. Using results in dynamic programming, it can be shown
that an efficient deterministic Markov mechanism exists.
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5.2.2. Computational approximation for the efficient kidney exchange mechanism.
The threshold values of the efficient multi-way kidney exchange mechanism cannot be solved
analytically. In this section, using different parameters for λ

λ+	
and using pc, {qX–Y}X–Y∈P

values reported in the medical literature, we numerically compute the efficient matching mech-
anism’s threshold values under Assumptions 1, 2, 3, and 4. Then we use these threshold values
to approximate the thresholds when Assumption 3 does not hold and self-demanded types can
participate in exchange (see Remark 1 in Appendix B), for subsequent policy simulations.

The algorithm used to compute the efficient threshold values uses Theorem 2 and the value
iteration formula in Theorem 4 in Appendix A (see Puterman, 1994, p. 259 for a one-sided
threshold version of the algorithm). The algorithm makes a 6001 state approximation (3000
negative and 3000 positive states, and state 0) of the infinite countable state space. The cross-
match probability is reported as pc = 0.11 by Zenios, Woodle and Ross (2001). We also use this
number. The medical literature is not precise about the arrival probabilities of the pairs. We have
chosen the following way to construct these probabilities. The blood type frequencies of people
are widely reported for the US population as follows: For O blood type qO = 0.45, for A blood
type qA = 0.40, for B blood type qB = 0.11, and for AB blood type qAB = 0.04.22 We assume
that the pairs are blood-type unrelated (such as spouses), and hence the donor and recipient
blood types are independently distributed. That is, for any X–Y∈ P, we have qX–Y = qXqY.

We also compute the mechanism when qA–B and qB–A are not equal to each other. Terasaki,
Gjertson and Cecka (1998) report that A–B and B–A blood type pairs do not arrive at the same
frequency. They report that qA–B = 0.05 and qB–A = 0.03. In our computation, additionally, we
use two different probability pairs: (1) qA–B = 0.049 and qB–A = 0.039 and (2) qA–B = 0.054
and qB–A = 0.034.

Since we assume in our initial efficient mechanism derivation that self-demanded types are
not included, we find the conditional probabilities using the above formula such that arriving
pairs are not self-demanded.

Since we do not have a clear prediction of the values of ρ and λ, we use different values
in the computation. In particular, we choose different values for λ

λ+ρ
and derive the efficient

mechanism. The set of values we use for λ
λ+ρ

is given as23

{0.999995, 0.99999, 0.99995, 0.9999, 0.9995, 0, 999, 0.995, 0.99, 0.95} .

First, note that in all cases s∗ ≤ 0 and s∗ = 0. We report the threshold value for the stock
of B–A type pairs to conduct the smaller exchanges, |s∗| in Table 1. For the number of B–A
type pairs in the pool larger than |s∗|, the efficient mechanism requires the largest exchanges.

We observe that, under the most plausible λ
λ+ρ

values,

{0.999995, 0.99999, 0.99999, 0.99995, 0.9999, 0.9995, 0, 999} ,

the efficient mechanism requires a positive stock of B–A blood type pairs before conducting
the largest possible exchanges. Only an unrealistic value such as λ

λ+ρ
= 0.995 and lower

22. For example, see the webpage of the Association of American Blood Banks, http://www.aabb.org, retrieved
on 27 February 2007.

23. For example, λ
λ+ρ

= 0.999995 can be generated by λ = 10,000 and ρ = 0.05, which corresponds to 10,000

pairs arriving per year and an annual discount rate of 5%. On the other hand, λ
λ+ρ

= 0.9999 can be generated by
λ = 10,000 and ρ = 0.10. We can roughly assume that the discount rate is 5–10%. Expectations for λ nationwide is
around 10,000, given that the annual number of conducted live kidney donations is in the 6000–7000 range in the last
few years. The lower values for λ

λ+ρ
can also be expected in regional smaller programmes. For example, λ

λ+ρ
= 0.999

can be generated through λ = 50 and ρ = 0.05.
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TABLE 1
The threshold number of B–A type pairs for conducting smaller exchanges in the optimal rule

λ
λ+ρ

|s∗| 0.999995 0.99999 0.99995 0.9999 0.9995 0.999 0.995 0.99 0.95

qB–A = qA–B = 0.044 2 2 2 2 1 1 0 0 0
qB–A = 0.039 and qA–B = 0.049 292 161 46 28 9 6 2 1 0
qB–A = 0.034 and qA–B = 0.054 2773 1387 278 147 30 15 3 2 0

(requiring only 10 pairs arriving per year at 5% discounting for ρ) may require conducting the
largest possible exchanges all the time. We also observe that the threshold value increases with
increasing (qA–B − qB–A) and increasing λ

λ+ρ
. For example, when λ

λ+ρ
= 0.999995 (with an

average of 10,000 compatible and incompatible pairs arriving per year and an annual discount
rate ρ = 5%), qB–A = 0.034 and qA–B = 0.054, the largest exchanges involving B–A type
pairs will be conducted if and only if there are more than 2773 B–A type pairs in the pool.

5.2.3. Simulations on expected exchange surplus. In this subsection, we relax
Assumption 3 again, and assume that self-demanded types can participate in exchange. We
compute the expected 1-year exchange surplus (normalized by the two-way exchange regime)
at null state (having no A–B or B–A type pairs, and no self-demanded type pairs) for two
different matching mechanisms. We use

• Regime 1: The single-state variable, one-threshold approximation of the dynamically

efficient multi-way matching mechanism, φ̂
s∗,s∗

(cf. Appendix B).
• Regime 2: Dynamically efficient two-way matching mechanism ν.

We used the following technique in our simulation. We roughly calibrated our parameters
using the US data. We chose λ =10,000 (given that 6570 live donor transplants are conducted
per year, and assumed that 10,000 pairs arrive per year) and ρ = 0.05 (that is, the discount rate
is 5%) with λ

λ+ρ
= 0.999995. We set qB–A = 0.034 and qA–B = 0.054, as reported by Terasaki,

Gjertson and Cecka (1998). We assumed that there were arbitrarily many underdemanded pairs
(Assumption 1) and that there was no tissue-type incompatibility between two different pairs
(Assumption 4). We simulated the pool for the next arriving 10,000 pairs (approximately for
1 year) and calculated the normalized surplus raised taking the two-way exchange as numéraire.
We ran this simulation 5000 times. The averages and standard errors of the averages for the
1-year normalized exchange surplus were taken over these 5000 markets (see Table 2). We
observed that the efficient multi-way exchange raises about 6.6% more expected surplus than
the efficient two-way exchange. This difference is significant at the 1% level using a z-test.

We report the number of pairs matched in 1 year under the two different regimes. We
also report the number of pairs that could have been matched if all exchanges were run at the
end of the year in a static population. Under the efficient multi-way mechanism, about 6.7%
more pairs are matched than the efficient two-way mechanism. This difference is significant
at the 1% level using a z-test. Even though the efficient exchange is conducted dynamically,
the numbers of pairs matched is close to the maximal possible number (see Table 3). This is
an expected result. By Proposition 1, we know that the efficient two-way matching mechanism
matches the maximum number of pairs possible, and this table shows that. On the other hand,
under the efficient multi-way mechanism, this observation may not be true, since some B–A
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TABLE 2
Policy simulations for 1-year normalized exchange surplus taking two-way regime numéraire starting from the null
state under the two regimes, Regime 1: the one-threshold approximation of the optimal rule, Regime 2: the optimal

two-way matching rule

λ = 10,000 and ρ = 0.05

One-year exchange surplus taking two-way regime numéraire qB–A = 0.034 and qA–B = 0.054

Regime 1: Multi-way 106.59 (0.0004694)
Regime 2: Two-way 100 (0.0004325)

TABLE 3
Policy simulations for number of pairs matched in exchanges starting from the null state under the two regimes. With
λ = 10, 000, on average 4267 pairs enter the exchange. On average, 6733 pairs are compatible and their recipients

receive a transplant immediately from their own donors

λ = 10,000 and ρ = 0.05

Number of pairs matched in 1 year qB–A = 0.034 and qA–B = 0.054

Regime 1: Multi-way 1791.51 (0.79)
Regime 2: Two-way 1680.77 (0.73)
Static: Multi-way 1794.39 (0.80)
Static: Two-Way 1680.77 (0.73)

TABLE 4
Average number of exchanges of different sizes in Regime 1

λ = 10,000 and ρ = 0.05

Number of exchanges in Regime 1: Unrestricted qB–A = 0.034 and qA–B = 0.054

2-way 492.62 (0.32)
3-way 180.51 (0.17)
4-way 49.04 (0.096)
5-way 11.36 (0.047)
6-way 1.83 (0.019)
7-way 0.11 (0.0047)
8-way 0.0016 (0.00056)

or A–B type pairs may remain in the pool at the end of the year, and those could have been
matched in a static exchange run at the end of the year.24

We also report the number of exchanges of different sizes under Regime 1: Efficient multi-
way exchange in Table 4 (in approximately 1 year). These are the average numbers found in
the above simulation. We observe that the majority of the exchanges are two-way exchanges,
though we observe a substantial number of three-way and four-way exchanges. The numbers
of larger exchanges are substantially less (less than 2% of all exchanges). We observe that
67% of all exchanges conducted are two-way, 25% are three-way, and only 7% are four-way
exchanges. Therefore, the efficient multi-way mechanism does not create a large burden in
terms of large exchanges.

24. Note that this is only an artifact of our simulation environment, which is terminated after 1 year. Since the
time horizon in reality is infinite, surely these remaining pairs will be matched in the next year.
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6. CONCLUSIONS

Having a partial order compatibility structure (which is not a linear order) is the necessary
requirement for multi-way dynamically efficient mechanisms having state-dependent features
and being different from statically efficient mechanisms. We use a minimal partial order struc-
ture to derive dynamically efficient exchange mechanisms in a general exchange model.

We observe three important properties of dynamically efficient mechanisms. They (for both
two-way and multi-way matching) are not affected by the magnitude of the unit waiting cost
c. They conduct at most one exchange at a time. Moreover, whenever an exchange becomes
feasible, they conduct it immediately.

In a static setting, Roth, Sönmez and Ünver (2007) showed that n-way exchanges usually
suffice to obtain all benefits from an exchange domain with n object types under a partial
order compatibility relation and mild assumptions. In our study, for kidney exchanges, when
self-demanded type pairs participate in exchange, the largest possible exchange size is 8 instead
of 4 as predicted by the above result, since in a dynamic setting some of the assumptions of
the above study do not hold. In the simulations conducted, we showed that exchanges larger
than four-way are extremely rare in a dynamic setting.

The policy simulations show that the threshold values of the efficient kidney exchange
mechanism are quite sensitive to the changes in arrival probabilities of A–B and B–A type
pairs. Therefore, for our mechanism to have a realistic application, the health authority should
measure these arrival rates, precisely, and these rates should be close to each other.

A final note about incentive properties of dynamically efficient mechanisms will be useful.
We can refine the definition of efficient mechanisms as follows. If an X–Y type pair is going
to be matched in an exchange and there are multiple X–Y type pairs available in the pool,
then the mechanism selects the earliest arriving pair. Suppose that a pair of type X–Y∈ P
can manipulate its type and announce it as W–Z∈ P with W�X and Y�Z.25 It is easy to
show that announcing X–Y is the weakly dominant strategy for the pair, i.e. the mechanisms
are strategy-proof.26 Entry timing can be another strategic tool. Suppose that each pair, after
becoming available, can delay its entry to the pool as a strategic variable. In this case, the
above dynamically efficient two-way and multi-way matching mechanisms are delay-proof, i.e.
no pair will benefit by delaying its entry to the pool.

APPENDIX A. PROOFS OF RESULTS

Proof of Proposition 2. Suppose that pair i of type X–Y∈ PO is the only overdemanded pair in the pool, j �= i

is a type Z1 –Z2 ∈ P pair in the pool, and E = (j, j1, . . . , jk) is an exchange that matches pair j . Let A� –O� be
the type of each pair j� in E. We have Z2 � A1, O� � A�+1 for all � ∈ {1, . . . , k − 1}, and Ak � Z1. Two cases are
possible:

• Type of j ∈ PU: Since Z1 � Z2 and Z2 �= Z1, by acyclicity of �, there exists one pair j� with O� � A� and
O� �= A�, i.e. there exists an overdemanded pair j� ∈ E. Since i is the single overdemanded pair in the pool,
j� = i. By transitivity of � and by the fact that there are at most two object types at a compatibility level
of �, we have (1a) Z2 � X or (1b) Z2 �� X and X �� Z2, and yet there exists some jm ∈ E with m < � such
that jm is of type Z2-X (so that E is individually rational). Similarly, we have (2a) Y � Z1 or (2b) Z1 �� Y

25. Observe that announcing Y �� Z or W �� X may result with individually irrational exchanges. Hence, we
assume that such manipulations are not possible.

26. In the context of kidney exchange, since blood types exclusively determine the compatibility between a
recipient and a donor of another pair, and since manipulating blood types is extremely difficult, it is almost impossible
for a pair to use “compatibility” as a strategic tool to manipulate the dynamic system.
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and Y �� Z1, and yet there exists some jm ∈ E with m > � such that jm is of type Y–Z1.
27 This proves

necessity.

– If (1a) and (2a) are satisfied, we can always choose E (in terms of types of pairs) as (Z1 –Z2, X–Y) .

– If (1b) and (2a) are satisfied, we can choose E as (Z1 –Z2, Z2 –X, X–Y) .

– If (1a) and (2b) are satisfied, we can choose E as (Z1 –Z2, X–Y, Y–Z1) .

– If (1b) and (2b) are satisfied, we can choose E as (Z1 –Z2, Z2 –X, X–Y, Y–Z1) .

These prove sufficiency.
• Type of j ∈ PS: Since Z2 = Z1, when there is another pair h of type Z1 –Z1, a two-way exchange consisting of

types (Z1 –Z1, Z1 –Z1) is an individually rational exchange, and E could be chosen using these types. Suppose
that there is no other pair of type Z1 –Z1 in the pool. Then by acyclicity of �, there exists some pair j� with
O� � A� with O� �= A�, i.e. there exists an overdemanded pair j� ∈ E. Since i is the single overdemanded pair
in the pool, j� = i. By transitivity of � and by the fact that there are at most two object types at a compatibility
level of �, we have (1a) Z1 � X or (1b) Z1 �� X and X �� Z1, and yet there exists some jm ∈ E with m < � such
that jm is of type Z1 –X (so that E is individually rational). Similarly, we have (2a) Y � Z1 or (2b) Z1 �� Y and
Y �� Z1, and yet there exists some jm ∈ E with m > � such that jm is of type Y–Z1. These prove necessity.

– If (1a) and (2a) are satisfied, we can always choose E (in terms of types of pairs) as (Z1 –Z1, X–Y) .

– If (1b) and (2a) are satisfied, we can choose E as (Z1 –Z1, Z1 –X, X–Y) .

– If (1a) and (2b) are satisfied, we can choose E as (Z1 –Z1, X–Y, Y–Z1) .

– If (1b) and (2b) are satisfied, we can choose E as (Z1 –Z1, Z1 –X, X–Y, Y–Z1) .

These prove sufficiency.
• Type of j ∈ PR: We have Z2 �� Z1 and Z1 �� Z2. Suppose there is a pair h of type Z2 –Z1. Then a two-way

exchange consisting of types (Z1 –Z2, Z2 –Z1) is an individually rational exchange, and E could be chosen
using these types. Suppose that there is no pair of type Z2 –Z1 in the pool. Then by acyclicity of �, there exists
some pair j� with O� � A� with O� �= A�, i.e. there exists an overdemanded pair j� ∈ E. Since i is the single
overdemanded pair in the pool, j� = i. By the fact that there are only two types in the compatibility levels
of Z1 and Z2, there are no possible reciprocal types other than Z1 –Z2 and Z2 –Z1. Since Z2 –Z1 type pair
does not exist, there is no other pair of the same compatibility level with in Z1 –Z2 in the exchange E,and by
acyclicity we have Z2 � X and Y � Z1 i.e. Z–Y and Z1 –Z2 are mutually compatible types, proving necessity.
The types of pairs in E can be chosen as (Z1 –Z2, X–Y) whenever Z2 � X and Y � Z1, proving
sufficiency. ‖

Proposition 6 (Maximal exchange composition using overdemanded types). Under Assumption 1, suppose

that X–Y∈ PO is the type of an overdemanded pair that arrives at the exchange pool. Then, we can conduct an

(n + k + � + 1)-way exchange serving

• the overdemanded pair of type X–Y;

• a maximum of n = LX − LY underdemanded pairs;

• one pair from each of the distinct reciprocally demanded types W1 –W2,W3 –W4, . . . , W2k−1 –W2k ∈ PR such

that W1, W2 � W3, W4 � · · · � W2k−1, W2k (i.e. these pair types are not reciprocal of another and are ordered

according to their compatibility levels), Y � W1 and W2k � X.

• one pair from each of the distinct self-demanded types V1 –V1, . . . , V� –V� ∈ PS such that (1) V1 �� V2 ��
· · · �� V�, (2) Y � V1 or W1 –W2 = Y–V1, (3) V� � X or W2k−1 –W2k = V�-X, and (4) if there exists some

d ∈ {1, . . . , � − 1} such that Vd and Vd+1 are at the same level then there exists some index cd ∈ {1, . . . , k}
such that W2cd−1 –W2cd

=Vd –Vd+1;

whenever such reciprocally demanded and self-demanded pairs exist in the pool.

Proof of Proposition 6. Suppose the hypothesis of the proposition holds. For notational purposes, let Z−1 = X,
Z0 = Y, Z2n+1 = X, and Z2n+2 = Y. Under Assumption 1, there exists n underdemanded pairs belonging to pair types

Z1 –Z2, Z3 –Z4, . . . , Z2n−1 –Z2n ∈ PU

27. Equivalently, we could have written Condition (1) as “X �� Z2 and if Z2 �� X then there exists some jm ∈ E

with m < � such that jm is of type Z2 –X” as in the hypothesis of the proposition. A similar equivalence is also valid
for Condition (2). Thus, these are equivalent to the conditions given in the hypothesis of the proposition.
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such that

• for each m ∈ {1, 2 . . . , n}, there are m levels between Z2m and Y, that is LZ2m
= LY + m;

• for each c ∈ {1, 2 . . . , k} , there exists an index mc ∈ {1, 2 . . . , n} such that Z2mc = W2c−1 and Z2mc+1 = W2c;
• for each d ∈ {1, 2 . . . , �} with Vd−1 �Vd (whenever Vd−1 exists) and Vd �Vd+1 (whenever Vd+1 exists),

there exists an index m′
d ∈ {1, 2 . . . , k} such that Z2m′

d
= Vd ; and

• for each m ∈ {1, 2 . . . , n − 1} \ {m1, . . . , mk}, Z2m = Z2m+1.

Thus, the exchange E′ consisting of pairs belonging to pair types⎛⎜⎜⎝X–Y, Z1︸︷︷︸
=Y

–Z2, Z3︸︷︷︸
=Z2

–Z4, . . . , Z2mc−1 – Z2mc︸︷︷︸
=W2c−1

, W2c−1 –W2c, Z2mc+1︸ ︷︷ ︸
=W2c

–Z2mc+2, . . . , Z2n−1︸ ︷︷ ︸
=Z2n−2

– Z2n︸︷︷︸
=X

⎞⎟⎟⎠
for all c = 1, 2, . . . , k.

is a feasible (k + n + 1)-way exchange.
We can enlarge exchange E′ by inserting the given self-demanded type pairs in order to obtain exchange E′′ as

follows:

• Recall that for each d ∈ {1, . . . , � − 1} with same level Vd+1 and Vd , there exists some index cd ∈ {1, . . . , k}
such that W2cd−1 –W2cd

= Vd –Vd+1. In the exchange E′ above, we can insert

– the Vd − Vd type pair between the Z2mcd −1 − Z2mcd︸ ︷︷ ︸
=W2cd−1

type pair, and W2cd−1 − W2cd
type reciprocally

demanded pair; and
– the Vd+1 − Vd+1 type pair between the W2cd−1 − W2cd

type reciprocally demanded pair and the
Z2mcd +1︸ ︷︷ ︸
=W2cd

− Z2mcd +2 type pair.

• For each d ∈ {1, . . . , �} with Vd−1 �Vd (whenever Vd−1 exists) and Vd � Vd+1 (whenever Vd+1 exists), since
the object type Z2m′

d
is chosen as Z2m′

d
= Vd , we can insert the Vd –Vd type self-demanded pair, in exchange

E′, between the pairs Z2m′
d

−1 –Z2m′
d

and Z2m′
d

+1︸ ︷︷ ︸
=Z2m′

d

–Z2m′
d

+2.

Thus, the newly formed exchange E′′ serves all of the n + k + � + 1 pairs including the ones given in the
hypothesis of the proposition. ‖

Proof of Proposition 3. Suppose Assumption 1 holds. Let an overdemanded pair i of type X–Y ∈ PO arrive at
the exchange pool. We will show that the opportunity cost of holding onto the X–Y type pair and underdemanded
pairs, which could be matched immediately, with the expectation of creating a larger exchange in the future is larger
than any alternative decision.

First note that pair i will not be used in matching an underdemanded pair that will arrive in the future. Since
all underdemanded pairs exist abundantly by Assumption 1, by Corollary 1 we can use it to match LX − LY

underdemanded pairs in an exchange E immediately. Moreover suppose that we can match in total n pairs in this
exchange (possibly including some reciprocally demanded and self-demanded pairs). In the future, LX − LY is the most
underdemanded pairs we can match through pair i, thus we do not hold onto i to match future underdemanded pairs.

We will show that pair i will not be used in matching a self-demanded type pair that will arrive in the future, either.
Suppose that V–V is a self-demanded type and a pair of this type can be inserted in exchange E (see Proposition 6
and its proof). Hence, if pair i is used to wait for a V–V type pair to arrive, n pairs in exchange E will wait until the
V–V type pair arrives, instead of being matched immediately. A V–V type pair can be matched in several ways. It
can be matched with another V–V type pair in a two-way exchange. Or it can be inserted in other exchanges between
two pairs such that the object of the first pair is compatible with V and the requirement of the agent of the second
pair is also compatible with V. Consider the case in which we match it exclusively with a future V–V type pair j .
For the same expected duration that pairs in exchange E wait for pair j to arrive, pair j will wait until the next V–V
type pair arrives. Thus, the cost of this exchange is making a future V–V type pair j wait for the same expected
duration for a new V–V type pair. This second alternative is less costly than making n (which is larger than 1) pairs
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of the exchange E wait for the same expected duration; therefore an X–Y type pair i will not be used to match an
expected V–V type pair in the future.

Next, we show that pair i will not be used in matching a reciprocally demanded type pair that will arrive in the
future. Suppose that instead of exchange E, we use the type X–Y pair to match one reciprocally demanded pair k

of type W1 –W2 that will arrive in the future. Moreover, by Proposition 2, pairs in E (other than pair i) cannot be
matched without i. Thus, suppose that we would like to use pair i to serve also this first pair k which will arrive in
the future. This causes the exchange E not to be conducted immediately and forces n pairs to wait. By Corollary 1,
we can match n + 1 pairs (including k) immediately when k arrives, if we do not conduct exchange E now.

We will find an upper-bound for exchange surplus regarding these n pairs and all W1 –W2 and W2 –W1 type
pairs that will arrive in the future. Then, we will find a lower-bound for exchange surplus when n pairs are instantly
matched within exchange E and the overdemanded type pair i is not held on to. Then, we will show that when
pW1−W2 and pW2−W1 are sufficiently close to each other, the second surplus is greater than the the first one.

Observe that the expected time difference between arrival of W1 –W2 type pairs, τ 1, follows an exponential
distribution with density function λpW1−W2e

−λpW1−W2
τ1 , and the expected discounting between those two arrivals

is E
[
e−ρτ1

] = ∫∞
0 e−ρτ1λpW1−W2e

−λpW1−W2
τ1dτ 1 = λpW1−W2

λpW1−W2
+ρ

. Similarly, the expected discounting until a

W2 –W1 type arriving is
λpW2−W1

λpW2−W1
+ρ

, and a W1 –W2 or W2 –W1 type arriving is
λ
(
pW1−W2

+pW2−W1

)
λ
(
pW1−W2

+pW2−W1

)
+ρ

(since

the arrival of a W1 –W2 or W2 –W1 type pair is a Poisson with rate λpW1−W2 + λpW2−W1 ). For simplicity of
notation, until the end of the proof, we use

λ1 ≡ λpW1−W2 and λ2 ≡ λpW2−W1 .

Also observe that the upper-bound of total expected surplus assuming that all W1 –W2 type pairs are matched as
soon as they arrive is given as:(

λ1

λ1 + ρ

)
c

ρ
+
(

λ1

λ1 + ρ

)2
c

ρ
+ · · · +

(
λ1

λ1 + ρ

)m
c

ρ
+ · · · = λ1

ρ

c

ρ
.

Similarly, the upper-bound of total expected surplus assuming that all W2 –W1 type pairs are matched as soon as they
arrive is given as

λ2
ρ

c
ρ

.

• First, we find an upper-bound of surplus (regarding pairs in E and all future W1 –W2 and W2 –W1 type pairs)
from waiting and not conducting exchange E immediately:

ρ

c
ES

1 = λ1 + λ2

λ1 + λ2 + ρ

[
λ1

λ1 + λ2

{
(n + 1) + λ1

ρ
+ λ2

ρ

}
+ λ2

λ1 + λ2

{
n + 1 + λ2

ρ
+ λ1

ρ

}]
= λ1 + λ2

λ1 + λ2 + ρ

[
(n + 1) + λ1

ρ
+ λ2

ρ

]
where in the first line

λ1+λ2
λ1+λ2+ρ

is the discounting that occurs until either a W1 –W2 or W2 –W1 pair arrives
and

– probability
λ1

λ1+λ2
refers to the pair arriving being of type W1 –W2 and normalized (by ρ

c
) surplus

n + 1 refers to the fact that we conduct the (n + 1)-way exchange using the W1 –W2 type pair and the
waiting n pairs, normalized surplus

λ1
ρ

+ λ2
ρ

is an upper-bound of all future matches regarding W1 –W2

and W2 –W1 type pairs;
– probability λ2

λ1+λ2
refers to the pair arriving being of type W2 –W1 and normalized surplus n refers to

the fact that we conduct exchange E at that instance, and 1 + λ1
ρ

+ λ2
ρ

is the surplus of matching the
W2 –W1 pair immediately (an upper-bound assumption) and all other future W1 –W2 and W2 –W1 type
pairs as soon as they arrive (another upper-bound assumption).28

• Second, we find a lower-bound for the efficient surplus (regarding pairs in E and all future W1 –W2 and
W2 –W1 type pairs) when we conduct exchange E immediately:

ρ

c
ES2 = n + 2

min {λ1, λ2}
ρ

28. This is not a tight upper-bound and smaller upper-bounds can be found.
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where n refers to the normalized immediate exchange surplus regarding n pairs in conducted exchange E

and 2
min{λ1,λ2}

ρ
refers to the lower-bound of surplus found by matching W1 –W2 type pairs exclusively with

W2 –W1 type pairs in the future.29

We observe that when λ1 is sufficiently close to λ2, ρ

c
ES2 >

ρ

c
ES

1
. Thus, overdemanded pair i will be

immediately matched in n-way exhange E for efficient matching.30 ‖

Theorem 4 (The Existence and Uniqueness Theorem). Let Z be a countable state set. Let F be a finite action
set. Let V be the set of bounded functions defined from Z to R. Let 0 ≤ δ < 1. For any z ∈ Z, let

v (z) = δ max
f ∈F

{
r (z, f ) +

∑
σ∈Z

p (σ |z, f ) v (σ )

}
, (A1)

where (i) for all σ ∈ Z and all f ∈ F , p (σ |z, f ) ≥ 0, and for all f ∈ F ,
∑

σ∈Cp (σ |z, f ) = 1, and (ii) for all f ∈ F ,
r (z, f ) ∈ R is bounded. Then:

1. Function v ∈ V exists and is uniquely defined as the limit of the sequence {vm} ⊆ V (under the sup norm),31

where v0 is arbitrary, and for any m > 0,

vm (z) = δ max
f ∈F

{
r (z, f ) +

∑
σ∈Z

p (σ |z, f ) vm−1 (σ )

}
. (A2)

2. There exists a (deterministic) Markovian mechanism φ : Z → F such that for all z ∈ Z,

v (z) = δ

{
r (z, φ (z)) +

∑
σ∈Z

p (σ |z, φ (z) ) v (σ )

}
. (A3)

We will use the above theorem in our proof of Proposition 4.

Proof of Proposition 4. Let W1 –W2 ∈ PR∗
. Let F = {do-not-match, match} and f1 =do-not-match, f2 =

match. Consider the Bellman equations given in equations (17), (18), and (19). Let the normalized surplus for choosing
the smaller exchanges (action f1) regarding W1 –W2 be given by

r
(
sW1 –W2 , f1

) =
⎧⎨⎩

2pW2 –W1 if sW1 –W2 > 0
0 if sW1 –W2 = 0

2pW1 –W2 if sW1 –W2 < 0
, (A4)

and the normalized surplus for choosing larger exchanges (action f2) be given by

r
(
sW1 –W2 , f2

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2pW2 –W1 +
∑

X–Y∈PO(W1 –W2)

pX–Y if sW1 –W2 > 0

0 if sW1 –W2 = 0

2pW1 –W2 +
∑

X–Y∈PO(W2 –W1)

pX–Y if sW1 –W2 < 0

. (A5)

When smaller exchanges (action f1) are chosen, the transition probabilities are given by

p
(
sW1 –W2 − 1 | sW1 –W2 , f1

) = pW2 –W1 ,

p
(
sW1 –W2 | sW1 –W2 , f1

) = 1 − pW1 –W2 − pW2 –W1 , (A6)

p
(
sW1 –W2 + 1 | sW1 –W2 , f1

) = pW1 –W2 .

29. This is not a tight lower-bound, and bigger lower-bounds can be found.
30. The situations in which pair i can be used in matching multiple reciprocal type pairs in different levels is

very similar to this case and skipped for brevity.
31. For all v ∈ ν, ‖v‖ = sups∈S |v (s)| is the sup norm of v.
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When larger exchanges (action f2) are chosen, the transition probabilities are given by

p
(
sW1 –W2 − 1 | sW1 –W2 , f2

) =

⎧⎪⎨⎪⎩
pW2 –W1 +

∑
X–Y∈PO(W1 –W2)

pX–Y if sW1 –W2 > 0

pW2 –W1 if sW1 –W2 ≤ 0

,

p
(
sW1 –W2 | sW1 –W2 , f2

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − pW1 –W2 − pW2 –W1 −
∑

X–Y∈PO(W1 –W2)

pX–Y if sW1 –W2 > 0

1 − pW1 –W2 − pW2 –W1 if sW1 –W2 = 0

1 − pW1 –W2 − pW2 –W1 −
∑

X–Y∈PO(W2 –W1)

pX–Y if sW1 –W2 < 0

, (A7)

p
(
sW1 –W2 + 1 | sW1 –W2 , f2

) =

⎧⎪⎨⎪⎩
pW1 –W2 if sW1 –W2 ≥ 0

pW1 –W2 +
∑

X–Y∈PO(W2 –W1)

pX–Y if sW1 –W2 < 0 .

Let V = {v : Z → R+ such that v is bounded} be the set of Markov surplus functions for W1 –W2 types. Let
v0 ∈ V. For all m ∈ {1, 2, 3, . . .} (≡ Z++), let vm ∈ V be defined through the following recursive system,

vm
(
sW1 –W2

) = max
f ∈{f1,f2}

wm
(
sW1 –W2 , f

)
(A8)

with wm : Z × {f1, f2} → R+ defined for all f ∈ {f1, f2} as follows:

wm
(
sW1 –W2 , f

) = λ

λ + ρ
[r
(
sW1 –W2 , f

)+
sW1 –W2

+1∑
σ=sW1 –W2

−1

(
p
(
σ
∣∣sW1 –W2 , f

)
vm−1 (σ )

)
]. (A9)

The state component space for W1 –W2 and W2 –W1 types, Z, is countable. Action space F = {f1, f2} is finite.
Since λ > 0 and ρ > 0, we have 0 < λ

λ+ρ
< 1. Observe that by equations (A6) and (A7), for any sW1 –W2 ∈ Z and

f ∈ F , p
(
σ |sW1 –W2 , f

) ≥ 0 for all σ ∈ Z, and,
∑sW1 –W2

σ=sW1 –W2
−1 p

(
σ |sW1 –W2 , f

) = 1. By equations (A4) and (A5),

for any sW1 –W2 ∈ Z and f ∈ F , r
(
sW1 –W2 , f

)
is bounded. Since equations (A4)–(A9) are directly obtained from the

Bellman equations (17), (18), and (19), by the Existence and Uniqueness Theorem, there is a unique ES∗
W1 –W2

∈ V
such that under the sup norm, for all s ∈ S,

ES∗
W1 –W2

(
sW1 –W2

) = lim
m→∞ vm

(
sW1 –W2

)
. ‖ (A10)

The following Lemmata prove Theorem 2:

Lemma 2. There exist s∗ ≥ 0 and s∗ ≤ 0 for some s∗, s∗ ∈ S such that φs∗,s∗ is a dynamically efficient multi-way

matching mechanism.

Proof of Lemma 1. Fix W1 –W2 ∈ PR∗
. Let F = {do-not-match, match} and f1 = do-not-match, f2 =

match. Let

h∗ ≡ ES∗
W1 –W2

and

z ≡ sW1 –W2

for notational convenience. The state component space regarding W1 –W2 and W2 –W1 types is given by Z. We
rewrite the Bellman equations (17), (18), and (19) as follows: For any z ∈ Z,

h∗ (z) = max
f ∈{f1,f2}

w (z, f ) , (A11)
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where

w (z, f ) = λ

λ + ρ
[r (z, f ) +

z+1∑
σ=z−1

p (σ |z, f ) h∗ (σ )], (A12)

and r (z, f ) is defined by equations (A4) and (A5), and p (σ |z, f ) is defined by equations (A6) and (A7). For all
z ∈ Z,

f z = arg max
f ∈{f1,f2}

w (z, f ) (A13)

such that

if w (z, f1) = w (z, f2) , then f2 = arg max
f ∈{f1,f2}

w (z, f ) . (A14)

For all z ∈ Z, let

�h∗ (z) = h∗ (z) − h∗ (z − 1) . (A15)

We prove Lemma 2 using the following four claims: ‖

Claim 1. Suppose that z > 0 is such that f z = f2, and f z+1 = f1. Then there is no k ≥ 1 such that f z+k+1 = f2.

Proof of Claim 1. Let z > 0 be such that f z = f2, and f z+1 = f1. We prove the claim by contradiction. Suppose
there exists some k ≥ 1 such that

f z+2 = f1, . . . , f
z+k = f1, f z+k+1 = f2.

Therefore, by Observation 2 and definitions in equations (A13), (A14), and (A15),

�h∗ (z) ≤ 1,�h∗ (z + 1) > 1, . . . , �h∗ (z + k) > 1, and � h∗ (z + k + 1) ≤ 1. (A16)

By definitions in equations (A11), (A12), (A13), and (A15); for r (z, f ) in equations (A4) and (A5); and for
p (σ |z, f ) in equations (A6) and (A7), we obtain

� h∗ (z + 1)

= h∗ (z + 1) − h∗ (z) = w(z + 1, f1) − w(z, f2)

= λ

λ + ρ

⎡⎢⎣
∑

X–Y∈PO(W1 –W2)

pX–Y (�h∗ (z) − 1) + pW2 –W1 � h∗ (z)

+ (
1 − pW1 –W2 − pW2 –W1

)� h∗ (z + 1) + pW1 –W2 � h∗ (z + 2)

⎤⎥⎦
≤ λ

λ + ρ

[
pW2 –W1 + (

1 − pW1 –W2 − pW2 –W1

)� h∗ (z + 1) + pW1 –W2 � h∗ (z + 2)
]

since, by f z = f2, we have � h∗ (z) ≤ 1 (in Inequality System (A16))

<
[
pW2 –W1 + (

1 − pW1 –W2 − pW2 –W1

)� h∗ (z + 1) + pW1 –W2 � h∗ (z + 2)
]
. (A17)

since
λ

λ + ρ
< 1

We rearrange terms in Inequality (A17) to obtain

�h∗ (z + 1) <
pW2 –W1

pW1 –W2 + pW2 –W1

+ pW1 –W2 � h∗ (z + 2)

pW1 –W2 + pW2 –W1

. (A18)

For all � such that k ≥ � > 1, by definitions in equations (A11), (A12), (A13), and (A15); for r (z, f ) in
equations (A4) and (A5); and for p (σ |z, f ) in equations (A6) and (A7), we obtain

� h∗ (z + �)

= h∗ (z + �) − h∗ (z + � − 1) = w(z + �, f1) − w(z + � + 1, f1) (A19)

= λ

λ + ρ

[
pW2 –W1 � h∗ (z + � − 1) + (

1 − pW1 –W2 − pW2 –W1

)� h∗ (z + �) + pW1 –W2 � h∗ (z + � + 1)
]

< pW2 –W1 � h∗ (z + � − 1) + (
1 − pW1 –W2 − pW2 –W1

)� h∗ (z + �) + pW1 –W2 � h∗ (z + � + 1) (A20)

since
λ

λ + ρ
< 1 .
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We rearrange terms in Inequality (A20) to obtain

�h∗ (z + �) <
pW2 –W1 � h∗ (z + � − 1)

pW1 –W2 + pW2 –W1

+ pW1 –W2 � h∗ (z + � + 1)

pW1 –W2 + pW2 –W1

. (A21)

Using Inequality (A21) for � = k, and the fact that �h∗ (z + k + 1) ≤ 1 (in equation (A16)), we have(
pW1 –W2 + pW2 –W1

)� h∗ (z + k)

< pW2 –W1 � h∗ (z + k − 1) + (
1 − pW1 –W2 − pW2 –W1

)� h∗ (z + k) + pW1 –W2 � h∗ (z + k + 1)

≤ pW2 –W1 � h∗ (z + k − 1) + (
1 − pW1 –W2 − pW2 –W1

)� h∗ (z + k) + pW1 –W2 . (A22)

We rearrange terms in Inequality (A22) to obtain

�h∗ (z + k) <
pW2 –W1 � h∗ (z + k − 1)

pW1 –W2 + pW2 –W1

+ pW1 –W2

pW1 –W2 + pW2 –W1

. (A23)

We claim that for any � ∈ {1, 2, . . . , k − 1} , we have

�h∗ (z + �) <
pW1 –W2g (� − 1) � h∗ (z + � + 1)

g (�)
+

p�
W2 –W1

g (�)
, (A24)

where

g (�) =
�∑

i=0

pi
W1 –W2

p�−i
W2 –W1

. (A25)

We will prove that Inequality (A24) holds using Inequalities (A18) and (A21) by induction.

• Let � = 1. Observe that g (0) = 1 and g (1) = pW1 –W2 + pW2 –W1 using the definition of g (in equation (A25)).
Therefore, by Inequality (A18),

�h∗ (z + 1) <
pW1 –W2g (0) � h∗ (z + 2)

g (1)
+ pW2 –W1

g (1)
. (A26)

• Let � ∈ {2, . . . , k − 1}. In the inductive step, assume that �h∗ (z + � − 1) <
pW1 –W2

g(�−2)�h∗(z+�)

g(�−1)
+

p�−1
W2 –W1
g(�−1)

. We substitute the right-hand side of this inequality for �h∗ (z + � − 1) in Inequality (A21) to obtain

� h∗ (z + �)

<
pW2 –W1

pW1 –W2 + pW2 –W1

(
pW1 –W2g (� − 2) � h∗ (z + �)

g (� − 1)
+

p�−1
W2 –W1

g (� − 1)

)
+ pW1 –W2 � h∗ (z + � + 1)

pW1 –W2 + pW2 –W1

.

(A27)

We rearrange terms in Inequality (A27) to obtain

�h∗ (z + �) <
pW1 –W2g (� − 1) � h∗ (z + � + 1) + p�

W2 –W1[(
pW1 –W2 + pW2 –W1

)
g (� − 1) − pW2 –W1pW1 –W2g (� − 2)

] . (A28)

Using the definition of g in equation (A25), we observe that(
pW1 –W2 + pW2 –W1

)
g (� − 1) − pW2 –W1pW1 –W2g (� − 2) = g (�) . (A29)

Substituting g (�) for the left-hand side of equation (A29) in Inequality (A28), we obtain

�h∗ (z + �) <
pW1 –W2g (� − 1) � h∗ (z + � + 1)

g (�)
+

p�
W2 –W1

g (�)
, (A30)

completing the induction.
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We have �h∗ (z + k − 1) <
pW1 –W2

g(k−2)�h∗(z+k)

g(k−1)
+

p
k−1
W2 –W1
g(k−1)

by Inequality (A24). We substitute the right-hand side
of this inequality for �h∗ (z + k − 1) in Inequality (A23) to obtain the following inequality:

�h∗ (z + k) <
pW2 –W1

pW1 –W2 + pW2 –W1

(
pW1 –W2g (k − 2) � h∗ (z + k)

g (k − 1)
+

pk−1
W2 –W1

g (k − 1)

)
+ pW1 –W2

pW1 –W2 + pW2 –W1

. (A31)

Rearranging terms in Inequality (A31), we obtain

�h∗ (z + k) <
pk

W2 –W1
+ pW1 –W2g (k − 1)(

pW1 –W2 + pW2 –W1

)
g (k − 1) − pW2 –W1pW1 –W2g (k − 2)

. (A32)

Using the definition of g (in equation (A25)), we observe that

pk
W2 –W1

+ pW1 –W2g (k − 1) = g (k) and (A33)(
pW1 –W2 + pW2 –W1

)
g (k − 1) − pW2 –W1pW1 –W2g (k − 2) = g (k) . (A34)

Substituting g (k) for the left-hand side terms of equations (A33) and (A34), Inequality (A32) can be rewritten as

�h∗ (z + k) < 1. (A35)

However, Inequality (A35) through Observation 2 contradicts the claim that f z+k = f1 and �h∗ (z + k) > 1 (stated
in Inequality System (A16)). We showed that for any z > 0 whenever f z = f2 and f z+1 = f1, there is no k ≥ 1 such
that f z+k+1 = f2, completing the proof of Claim 1. ‖

Claim 2. There exists z′ ≥ 0 such that for all z > z′ we have f z = f2.

Proof of Claim 2. Consider a scenario in which there are infinitely many W1 –W2 type pairs available at the
exchange pool. That is, the state component is z = ∞. Every incoming overdemanded pair of one of the types in
PO (W1 –W2) can be used in an exchange that matches a W1 –W2 type pair. After such an exchange, there will still
be infinitely many W1 –W2 type pairs, implying that incoming W2 –W1 type pairs are not affected by the previous
decision of choosing largest possible exchanges. Therefore, at state component z = ∞, the efficient action is f2 (option
match, conducting largest possible exchanges). Therefore, every incoming W2 –W1 type pair will be matched in a
two-way exchange with a W1 –W2 type pair, and every incoming pair of one of the types in PO (W1 –W2) will be
matched efficiently serving a W1 –W2 type pair. Since we are discussing the next incoming pairs, this surplus should
be discounted with E

[
e−ρτ1

] = λ
λ+ρ

The exchange surplus for the first matched W1 –W2 or W2 –W1 type pair in this
scenario is

h
1 = λ

λ + ρ

⎡⎢⎣ ∑
X–Y∈PO(W1 –W2)

pX–Y

(
c

ρ

)
+ pW2 –W1

(
2

c

ρ

)⎤⎥⎦ . (A36)

Similarly, the current value of the exchange surplus for the second matched W1 –W2 or W2 –W1 type pair is
h

2 = λ
λ+ρ

h
1
, . . ., and the current value of the exchange surplus for the kth matched W1 –W2 or W2 –W1 type pair is

h
k = ( λ

λ+ρ
)k−1h

1
. Therefore, the total exchange surplus of state component ∞ is

h (∞) =
∞∑

k=1

h
k =

∞∑
k=1

(
λ

λ + ρ

)k−1

h
1 = 1

1 − ( λ
λ+ρ

)
h

1

= λc

ρ2

⎛⎜⎝ ∑
X–Y∈PO(W1 –W2)

pX–Y + 2pW2 –W1

⎞⎟⎠ . (A37)

By normalizing h (∞) by c
ρ

, we obtain

h∗ (∞) = λ

ρ

⎛⎜⎝ ∑
X–Y∈PO(W1 –W2)

pX–Y + 2pW2 –W1

⎞⎟⎠ . (A38)

© 2009 The Review of Economic Studies Limited



410 REVIEW OF ECONOMIC STUDIES

Clearly, the normalized exchange surplus at state component ∞ is an upper-bound for the normalized efficient exchange
surplus for z → ∞. Suppose that there is no z′ > 0 such that for all z > z′, f z = f2. By Claim 1, there exists some
z′ > 0 such that for all z > z′, f z = f1 and h∗ (z) ≥ h∗ (z − 1) + 1 (by Observation 2). Therefore, for any z > z′,

h∗ (z) ≥ (
z − z′)+ h∗ (z′) . (A39)

Then as z → ∞, h∗ (z) → ∞, contradicting the fact that h∗ (∞) is bounded. This and Claim 1 imply that there exists
some z′ > 0 such that for all z > z′, f z = f2. ‖

We state the following two claims, whose proofs are symmetric versions of the proofs of Claims 1 and 2:

Claim 3. Suppose that z < 0 is such that f z = f2, and f z−1 = f1. Then there is no k ≥ 1 such that f z−k−1 = f2.

Claim 4. There exists z′′ ≤ 0 such that for all z < z′′ we have f z = f2.

By Claims 1 and 2, there exists s∗
W1 –W2

≥ 0 such that f z = f2 for all z > s∗
W1 –W2

and f z = f1 for all
0 ≤ z < s∗

W1 –W2
. By Claims 3 and 4 there exists s∗

W1 –W2
≤ 0 such that f z = f2 for all z < s∗

W1 –W2
and f z = f1

for all 0 ≥ z ≥ s∗
W1 –W2

. Since W1 –W2 ∈ PR∗
is arbitrary, the threshold mechanism φs∗,s∗ is an efficient matching

mechanism.

Lemma 3. For each W1 –W2 ∈ PR∗
,

ES∗
W1 –W2

(0) <
λ

ρ

(
pW1 –W2 + pW2 –W1

)
. (A40)

Proof of Lemma 3. Fix W1 –W2 ∈ PR∗
. Consider the state component z = 0. If W1 –W2 and W2 –W1 type

pairs could be matched as soon as they arrived at the exchange pool, the decision problem of the health authority
would be trivial and it would match the overdemanded type pairs in the largest possible exchanges. That is, since no
W1 –W2 or W2 –W1 type pairs remain in the pool unmatched, whenever an X–Y ∈ PO (W1 –W2) ∪ PO (W2 –W1)

type overdemanded pair arrives at the exchange pool, it will be matched in an exchange without a W1 –W2 or
W2 –W1 type pair that matches the maximum number of underdemanded pairs possible and possibly some other
reciprocally demanded pairs. Let the associated exchange surplus with this process be ESW1 –W2 (0). Since in reality
W1 –W2 and W2 –W1 type pairs are not matched as soon as they arrive, ESW1 –W2 (0) > ESW1 –W2 (0). The exchange
surplus related to a pair is c

ρ
. Since we are discussing the next incoming pair, this surplus should be discounted with

E
[
e−ρτ1

] = λ
λ+ρ

, implying that the associated exchange surplus is

ESW1 –W2
1 = λ

λ + ρ

[(
pW1 –W2 + pW2 –W1

) c

ρ

]
. (A41)

Similarly, the exchange surplus associated with the second incoming pair is ESW1 –W2
2 = λ

λ+ρ
ESW1 –W2

1
, . . ., and

the exchange surplus associated with the kth incoming pair is ESW1 –W2
k = ( λ

λ+ρ
)k−1ESW1 –W2

1
. Therefore,

ESW1 –W2 (0) =
∞∑

k=1

ESW1 –W2
k =

∞∑
k=1

(
λ

λ + ρ

)k−1

ESW1 –W2
1 = 1

1 − ( λ
λ+ρ

)
ESW1 –W2

1

= λc

ρ2

(
pW1 –W2 + pW2 –W1

)
. (A42)

Recall that ES∗
W1 –W2

(0) = ρ

c
ESW1 –W2 (0). Hence,

ES∗
W1 –W2

(0) = ρ

c
ESW1 –W2 (0) <

ρ

c
ESW1 –W2 (0) = λ

ρ

(
pW1 –W2 + pW2 –W1

)
. ‖ (A43)

Lemma 4. For each W1 –W2 ∈ PR∗
, we have s∗

W1 –W2
≥ 0 and s∗

W1 –W2
= 0, or s∗

W1 –W2
= 0 and s∗

W1 –W2
≤ 0.
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ÜNVER DYNAMIC KIDNEY EXCHANGE 411

Proof of Lemma 4. Fix W1 –W2 ∈ PR∗
. We prove the lemma by contradiction. Suppose that there exist some

s∗
W1 –W2

> 0 and s∗
W1 –W2

< 0 such that φs∗,s∗ is efficient. Since s∗
W1 –W2

> 0, action f1 (do-not-match W1 –W2

type pair and choose the smaller exchange option) is chosen at state component 1, whenever an action needs to
be taken. By the Bellman equation (17), the normalized exchange surplus related to action f1 is ES∗

W1 –W2
(1),

the normalized exchange surplus related to action f2 (match W1 –W2 type pair and choose the larger exchange
option) is ES∗

W1 –W2
(0) + 1, and we have ES∗

W1 –W2
(1) ≥ ES∗

W1 –W2
(0) + 1 (by Observation 2 and since in case

of equality f2 is chosen). Similarly, since s∗
W1 –W2

< 0, action f1, that is, the smaller exchange, is chosen at state
component –1, whenever an action needs to be taken. By the Bellman equation (18), the normalized exchange surplus
related to action f1 is ES∗

W1 –W2
(−1), the normalized exchange surplus related to action f2 (the larger exchange)

is ES∗
W1 –W2

(0) + 1, and we have ES∗
W1 –W2

(−1) ≥ ES∗
W1 –W2

(0) + 1 (by Observation 3). We recall the Bellman
equation for state component 0 as follows (equation (19)):

ES∗
W1 –W2

(0) = λ

λ + ρ

⎡⎢⎢⎢⎢⎣
⎛⎜⎝ ∑

X–Y∈PO(W1 –W2)∪PU∪PR\{W1 –W2,W2 –W1}
pX–Y

⎞⎟⎠ES∗
W1 –W2

(0)

+pW1 –W2ES∗
W1 –W2

(1) + pW2 –W1

(
ES∗

W1 –W2
(−1)

)
⎤⎥⎥⎥⎥⎦ . (A44)

We replace ES∗ (1) by the smaller number ES∗ (0) + 1 and ES∗ (−1) by the smaller number ES∗ (0) + 1 in the
above expression to obtain the following inequality:

ES∗
W1 –W2

(0) ≥ λ

λ + ρ

⎡⎢⎢⎢⎣
⎛⎜⎝ ∑

X–Y∈PO(W1 –W2)∪PU∪PR\{W1 –W2,W2 –W1}
pX–Y

⎞⎟⎠ES∗
W1 –W2

(0)

+pW1 –W2 (ES∗ (0) + 1) + pW2 –W1 (ES∗ (0) + 1)

⎤⎥⎥⎥⎦ . (A45)

Arranging the terms in the above inequality, we obtain

ES∗
W1 –W2

(0) ≥ λ

ρ

(
pW1 –W2 + pW2 –W1

)
, (A46)

contradicting Lemma 3. Therefore, we have s∗
W1 –W2

≥ 0 and s∗
W1 –W2

= 0, or s∗
W1 –W2

= 0 and s∗
W1 –W2

≤ 0. ‖

Proof of Theorem 2. The proof follows directly from Lemmata 2, 3, and 4. ‖

APPENDIX B. ON THE EFFICIENT KIDNEY EXCHANGE MECHANISM WHEN
SELF-DEMANDED TYPES PARTICIPATE IN EXCHANGE

In this appendix, we retain Assumptions 1, 2, and 4, and relax Assumption 3, that is, we assume that self-
demanded type pairs also participate in exchange. When there are self-demanded types in the exchange pool, under
Assumptions 1, 2, and 4, the full state of the matching mechanism should be denoted not only by the difference
between the number of A–B and B–A type pairs but also by four other variables that denote the number of O–O,
A–A, B–B, and AB–AB type pairs. Next, we outline the intuition behind the derivation of the structure of the efficient
mechanism under Assumptions 1, 2, and 4. A formal derivation using Bellman equations is complicated because of
the high dimensionality of the state space. However, we can make use of the underlying structure of the problem and
our results in the previous subsection in explaining the intuition:

Let φs∗,s∗ be the efficient matching mechanism under Assumptions 1, 2, and 4. Without loss of generality,
let s∗ ≥ 0 and s∗ = 0. Suppose Assumptions 1, 2, and 4 still apply, while self-demanded types can participate in
exchange. Two cases can arise in the pool:

• When a self-demanded type pair arrives: Suppose this pair is of type X–X. If there is another type X–X
pair available in the exchange pool, then we obtain a two-way exchange by matching these two pairs together
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immediately. Observe that this exchange is efficient, since self-demanded pairs cannot save any underdemanded
pairs by Proposition 2. Therefore, under the efficient mechanism, there will be 0 or 1 self-demanded type pairs
in the pool.

• When a non-self-demanded type pair arrives: Let E = (i1, . . . , ik) be a feasible exchange without any self-
demanded types (let ik+1 ≡ i1). If there exists a self-demanded X–X type pair i available in the exchange
pool such that there are pairs i� and i�+1 with X blood-type donor and X blood-type recipient, respectively,
then we can insert pair i between pairs i� and i�+1 and obtain a feasible exchange E′. This exchange is better
than E, since (1) self-demanded types cannot save any underdemanded types, (2) overdemanded types are
most efficiently used in saving underdemanded types, and finally, (3) self-demanded types can otherwise be
matched with only same-type pairs if they are not inserted in larger exchanges. So, we need to enlarge the
exchanges as much as possible by inserting all possible existing self-demanded type pairs.
By the above argument, and given the fact that efficient mechanism under Assumptions 1, 2, 3, and 4 is
a threshold mechanism, the efficient mechanism under Assumptions 1, 2, and 3 is a generalized threshold
mechanism, with a threshold number of A–B (or B–A type pairs) to conduct smaller exchanges (the largest
exchanges without the A–B or B–A type pairs), where the threshold number depends on the existence or
absence of self-demanded type pairs at each state.
Let ES be the possible smaller exchange and EL be the possible larger exchange without any self-demanded
type pairs. We have the following possibilities for the pair types in ES and EL:

State s Pair types in ES Pair types in EL

s < 0 (A–O, O–A) (A–O, O–B, B–A)

When |s|B–A type (AB–B, B–AB) (AB–B, B–A, A–AB)

pairs exist (AB–O, O–A, A–AB), (AB–O, O–B, B–AB) (AB–O, O–B, B–A, A–AB)

s > 0 (B–O, O–B) (B–O, O–A, A–B)

When s A–B type (AB–A, A–AB) (AB–A, A–B, B–AB)

pairs exist (AB–O, O–A, A–AB), (AB–O, O–B, B–AB) (AB–O, O–A, A–B, B–AB)

Three cases are possible:

– X–X ∈ {O–O, AB–AB}: Observe that type X–X pair can be inserted in ES if and only if it can be
inserted in EL in each case. Therefore, the existence of 1 X–X type pair or the absence of X–X type
pairs has no effect on the thresholds, since in either case the marginal gain of the larger exchange is
only one pair. Therefore, whenever such an X–X type pair exists, inserting the X–X type pair in ES

or EL, whichever is chosen under the thresholds s∗ and s∗, is the efficient action.
– X–X = A–A: Consider the case when there is 1 A–A type pair. If s∗ < 0 let the pair types of ES be

(AB–B, B–AB) and the pair types of EL be (AB–B, B–A, A–AB), and if s∗ > 0, let the pair types
of ES be (B–O, O–B) and the pair types of EL be (B–O, O–A, A–B). In each case, the A–A pair
cannot be inserted in the smaller exchange, but it can be inserted in the larger exchange. Therefore, the
marginal gain of the larger exchange is two pairs (with A–A type pair). Recall that when no A–A pair
exists, the marginal gain of the larger exchange is only one pair. Therefore, the threshold for smaller
exchanges with an A–A type pair cannot exceed the threshold without an A–A type pair in absolute
value,

∣∣s∗∣∣ or s∗, whichever applies. For all other possibilities for ES and EL pair types, the A–A type
pair can be inserted in ES if and only if it can be inserted in EL; hence the threshold

∣∣s∗∣∣ or s∗ is still
valid for smaller exchanges.

– X–X = B–B: The symmetric argument for the case X–X = A–A applies by interchanging the roles
of A and B blood types.

Based on this intuition, we state the following remark:

Remark 1. Suppose Assumptions 1, 2, and 4 hold, i.e. self-demanded type pairs can also participate in exchange.
Let φs∗,s∗ be the dynamically efficient kidney exchange mechanism under Assumptions 1, 2, 3, and 4. Consider the
case s∗ > 0 and s∗ = 0. Then, there exist thresholds 0 ≤ s∗

A–A ≤ s∗ and 0 ≤ s∗
B–B ≤ s∗ such that under an efficient

mechanism whenever a decision is required between two exchanges–the largest exchange with an A–B type pair
(option match) or the largest exchange without an A–B type pair (option do-not-match)–the smaller exchange is
chosen if and only if the number of A–B type pairs, s, satisfies

• s∗
A–A ≥ s ≥ 0, if an A–A type pair exists and a B–O type pair arrives,
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• s∗
B–B ≥ s ≥ 0, if a B–B type pair exists and an AB–A type pair arrives,

• s∗ ≥ s ≥ 0, otherwise.

If these conditions are not satisfied, the largest exchanges are conducted as soon as they become feasible. The
efficient mechanism is symmetrically defined for the case s∗ = 0 and s∗ < 0 with thresholds s∗, 0 ≥ s∗

A–A ≥ s∗, and
0 ≥ s∗

B–B ≥ s∗.32

We can state a single state variable approximation of the efficient mechanism as follows under Assumptions 1,
2, and 4 with s∗

A–A = s∗
B–B = s∗ and s∗

A–A = s∗
B–B = s∗:

• When a self-demanded type pair arrives: Suppose this pair is of type X–X. If there is another type X–X pair
available in the exchange pool, then we obtain a two-way exchange by matching these two pairs together
immediately.

• When a non-self-demanded type pair arrives: Let E = (i1, . . . , ik) be the efficient exchange according to
the efficient mechanism φs∗,s∗ without taking the existence of self-demanded types into consideration (let
ik+1 ≡ i1). If there exists a self-demanded X–X type pair i available in the exchange pool such that there are
pairs i� and i�+1 with an X blood-type donor and an X blood-type recipient, respectively, then we can insert
pair i between pairs i� and i�+1 and obtain a feasible exchange E′. We repeat the process with E′ until no
feasible self-demanded type pair remains to be inserted. We conduct the final exchange obtained.

Let this mechanism be called φ̂
s∗,s∗

. We conduct policy simulations using this mechanism.

Acknowledgements. I would like to thank especially Tayfun Sönmez, and also David Abraham, Murat Fadıloğlu,
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Neşe Yıldız, participants at SAET Conference at Kos, Matching Workshops at Barcelona and Caltech, seminars at
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ABDULKADIROĞLU, A. and SÖNMEZ, T. (1999), “House Allocation with Existing Tenants”, Journal of Economic
Theory, 88, 233–260.

ABECASSIS, M., ADAMS, M., ADAMS, P., ARNOLD, R. M., ATKINS, C. R., BARR, M. L., BENNETT, W. M.,
BIA, M., BRISCOE, D. M., BURDICK, J., CORRY, R. J., DAVIS, J., DELMONICO, F. L., GASTON, R. S.,
HARMON, W., JACOBS, C. L., KAHN, J., LEICHTMAN, A., MILLER, C., MOSS, D., NEWMANN, J. M.,
ROSEN, L. S., SIMINOFF, L., SPITAL, A, STARNES, V. A., THOMAS, C., TYLER, L. S., WILLIAMS, L.,
WRIGHT, F. H. and YOUNGNER, S. (2000), “Consensus Statement on the Live Organ Donor”, Journal of the
American Medical Association, 284, 2919–2926.

ATHEY, S. and SEGAL, I. (2007), “An Optimal Dynamic Mechanism” (Working Paper, Harvard University and
Stanford University).
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