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Recent research suggests that fraction understanding is predictive of algebra ability;

however, the relative contributions of various aspects of rational number knowledge are

unclear. Furthermore, whether this relationship is notation-dependent or rather relies

upon a general understanding of rational numbers (independent of notation) is an open

question. In this study, college students completed a rational number magnitude task,

procedural arithmetic tasks in fraction and decimal notation, and an algebra assessment.

Using these tasks, we measured three different aspects of rational number ability in both

fraction and decimal notation: (1) acuity of underlying magnitude representations, (2)

fluencywithwhich symbols aremapped to the underlyingmagnitudes, and (3) fluencywith

arithmetic procedures. Analyses reveal that when looking at the measures of magnitude

understanding, the relationship between adults’ rational number magnitude performance

and algebra ability is dependent upon notation. However, once performance on

arithmetic measures is included in the relationship, individual measures of magnitude

understanding are no longer unique predictors of algebra performance. Furthermore,

when including all measures simultaneously, results revealed that arithmetic fluency in

both fraction anddecimal notation each uniquely predicted algebra ability. Findings are the

first to demonstrate a relationship between rational number understanding and algebra

ability in adults while providing a clearer picture of the nature of this relationship.

Understanding rational numbers is a critical building block for advanced scientific and

mathematical thinking. Even when controlling for other math abilities, fraction and

decimal knowledge is a unique predictor of arithmetic proficiency andmore general math
achievement (Bailey, Hoard, Nugent, & Geary, 2012; Schneider, Grabner, & Paetsch,

2009; Siegler&Pyke, 2013; Siegler, Thompson,& Schneider, 2011). Furthermore, rational

number understanding has been linked specifically to algebra readiness (Booth &

Newton, 2012) and algebra ability in high school (DeWolf, Bassock, & Holyoak, 2015;

Siegler et al., 2012). However, the nature of this relationship is not fully understood.

Clearly, algebra ability relies upon a number of important skills – an ability to manipulate

symbols, a firm understanding of the number system, and a strong conceptual

understanding of how arithmetic works (e.g., Carraher, Schliemann, & Brizuela, 2000;
Fuchs et al., 2008; Linchevski, 1995) – all skills that are strengthened through working

with rational numbers. However, whether the relationship between rational number

understanding and algebra ability rests primarily upon a better conceptual understanding

of the procedures involved in higher-order mathematics or instead upon a deeper

understanding of the continuous nature of our numerical magnitude system is a relatively
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open question. In line with suggestions from the National Mathematics Advisory

Panel (2008) and the Common Core State Standards (National Governors Association

Center for Best Practices, 2010) which outline the importance of understanding the

relationship between rational number magnitude understanding, arithmetic ability, and
algebra ability, in this study we investigate the relative importance of rational number

magnitude processing (both precision in the underlying representation and fluency in

understanding how symbols are mapped to numerical magnitudes) and of rational

number procedural competence in predicting algebra ability in young college students.

Rational number magnitude understanding

Onepossibility is that algebraic achievementmay rely upon aprecise understanding of the
continuous numerical magnitudes that fall between integer values (i.e., rational number

magnitudes) and/or fluency with mapping between symbolic notation (decimal and/or

fraction notation) and the analog mental magnitudes they represent. These abilities,

which are generally assessed using number comparison tasks in which participants are

asked to rapidly judge which of two numerical symbols is larger and/or with number-line

tasks in which participants are asked to place a number along a line with two numerical

end points, have been shown to be strongly predictive ofmathematical achievement (e.g.,

Bugden & Ansari, 2011; Holloway & Ansari, 2009). For example, 1st and 2nd grade
children’s symbolic whole-number comparison performance has been shown to predict

their more general math achievement (Bugden & Ansari, 2011). However, the link

between performance on magnitude tasks and math achievement is not constrained to

whole-number magnitudes; more recently, rational number magnitude judgements have

also been shown topredict generalmath ability. For example,whenparticipants are asked

to indicate where a fraction or decimal falls on a number line (with end points of 0 and 1)

and/or to rapidly compare the relative magnitude of two fractions or decimals,

performance on thesemagnitude tasks is often related tomore general math achievement
(Booth & Siegler, 2008; Fazio, Bailey, Thompson, & Siegler, 2014; Schneider et al., 2009;

Siegler & Pyke, 2013; Siegler et al., 2011) as well as algebra readiness (Booth & Newton,

2012; Booth, Newton, & Twiss-Garrity, 2014).

Butwhat exactly is it about performance on these tasks that tap into latermathematical

understanding? Importantly, both number-line and comparison tasks arguably assess two

distinct aspects of magnitude processing: (1) the precision in the underlying represen-

tation of rational numbers (i.e., numerical acuity) and (2) the automaticity or fluencyof the

mapping between numeric symbols (i.e., fractions, decimals) and the numerical
magnitudes that they represent. Previous research has linked both of these aspects of

magnitude processing to general math ability for whole numbers (Castronovo & G€obel,
2012; De Smedt, Verschaffel, &Ghesquiere, 2009; Geary, 2011; Mundy &Gilmore, 2009).

In this study, we explore the potential contribution of each of these aspects of rational

number magnitude processing to algebra achievement, in particular.

Magnitude acuity

Number magnitude acuity, or the precision in the underlying representation of number

magnitude, has repeatedly been found to correlatewith formalmathmeasures. The acuity

of underlying magnitude representations is typically measured via number comparison

tasks in which individuals are asked to rapidly judge which of two numbers is largest.

Numerical comparisons of whole numbers and non-whole numbers obey Weber’s law,
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such that the discriminability of two values is dependent upon their ratio (e.g., Hurst &

Cordes, 2016;Moyer&Landauer, 1967, 1973); that is, the closer two values are, the longer

it takes to identify the larger value. This ratio dependence of numerical discriminations

gives rise to ‘ratio effects’ in the behavioural data, assessed as the slope (i.e., b estimate) of
the line relating response time to the ratio of the two values being compared.1 Prominent

models of numerical representation posit that individual ratio effects serve as a proxy for

the precision in the underlying representation of numerical magnitudes, with strong ratio

effects reflecting less precision in the underlying representation (e.g., Holloway & Ansari,

2009; Moyer & Landauer, 1967, 1973).

In line with the hypothesis that representational precision is important for math

achievement, many studies have shown that strong individual whole-number ratio effects

negatively correlate with math achievement (e.g., Castronovo & G€obel, 2012; De Smedt
et al., 2009; Geary, 2011; Halberda, Mazzocco, & Feigenson, 2008; Holloway & Ansari,

2009; Mundy & Gilmore, 2009) and positively correlate with math anxiety (Maloney,

Ansari, & Fugelsang, 2011). Furthermore, having a precise representation of numerical

magnitudes is posited to be important for accurately approximating answers to basic

arithmetic (e.g., Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Gilmore, McCarthy, &

Spelke, 2007). However, whether individual ratio effects obtained from rational number

magnitude tasks are similarly predictive of algebra performance is an open question.

Recentwork also suggests that, beyond the point estimate of an individual’s ratio effect
(i.e., slope, b), variability in the measurement of each individual’s ratio effect (i.e., the

standard error (SE) of each individual’s slope estimate) may also be important for

predictingmath ability (Lyons, Nuerk,&Ansari, 2015). Thismeasure, a distinct but related

measure of precision in the individual’s underlying representation of number, has been

shown to be a more consistent predictor of arithmetic ability in children than the point

estimate of their ratio effect in the case of whole numbers. Thus, given that both ratio

effects and the variability in ratio effect measurements of whole numbers have been

shown to predict general math achievement, and other work has shown a link between
rational number understanding and algebra ability, it may be that a precise representation

of rational numbermagnitudes is similarly important for algebra performance, reflecting a

better understanding of the continuum of rational numbers and thus a better sense of the

range of values that unknown variables may represent.

Furthermore, adults’ understanding of rational number magnitudes may not be

equivalent across distinct notations. In particular, evidence suggests that it is substantially

easier to access magnitude information from decimals than from fractions (DeWolf,

Grounds, Bassok, & Holyoak, 2014; Hurst & Cordes, 2016), and thus, magnitude
understanding in these two notations may not be equally predictive of algebra ability. For

example, although fraction notation may be a more complicated symbol (given its

componential nature that is very different from the typical place-value system),

understanding magnitude information using decimals may provide adults with a more

direct understanding of rational number magnitudes. In this study, we explore this

possibility by determining whether rational number magnitude acuity (as assessed via

ratio effects (slope, b) and variability in ratio effects (standard error, SE) in numerical

1 The ratio of values was computed as the larger value/smaller value, with higher ratios involving greater relative differences
between the values presented (resulting in faster comparisons).Whenmeasured in this way, ratio effects (i.e., slopes) are negative
values, however throughout the current manuscript we will refer to “strong” ratio effects as being those values that are highly
negative (i.e., far away from zero in the expected direction).
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comparison task data) in decimal notation and in fraction notation, together or separately,

predicts algebra ability.

Symbolic magnitude fluency

Regardless of the level of precision in the underlying magnitude representation, to work

with rational number notation, a fluent mapping between the symbolic numerals (i.e.,

fractions, decimals) and the underlying numericalmagnitudes that they representmust be

acquired. That is, working with rational numbers requires a sense of what numerical

magnitude is denoted by, for example ‘5/8’. As such, symbolic magnitude fluency has

been assessed as howwell an individual is able tomap between a symbol and the symbol’s

representation (e.g., as the average speed in a numerical comparison task). Importantly,
whole-number symbolic mapping has been found to predict math achievement

(Castronovo & G€obel, 2012) even when controlling for other aspects of magnitude

understanding (Mundy & Gilmore, 2009). It is quite possible a similar relationship may

hold between rational number symbolic magnitude fluency and algebraic ability,

particularly due to the complex notation used for rational numbers (involving both

Arabic numerals and non-numerical symbols [i.e., the period in decimals and the vinculum

or dividing line in fractions]). Thus, an automatic mapping from the complex fraction and

decimal notation to the underlying representation of magnitude requires a flexible use of
symbols and symbol formation, a skill also required for symbolic manipulation in algebra

(Swafford&Langrall, 2000). As such, rational number symbolicmagnitude fluencymay be

an important predictor of algebraic skill, as they both reflect an ability to think about the

meanings behind abstract symbols. In this study, we explore this relationship.

Rational number arithmetic procedural fluency

In addition to magnitude understanding of rational numbers, it may be that the ability to
execute procedures with fractions and decimals is predictive of algebra ability. Some

evidence does suggest that performance on fraction arithmetic assessments is related to

general math ability (Bailey et al., 2012), but it is unclear whether this relationship holds

when predicting more advanced mathematical thinking, such as algebra. However, there

is reason to think that performance on rational number arithmetic assessments may be

particularly important for algebra. Algebra requires an ability to quickly and flexibly

manipulate symbols in order to manipulate equations and perform calculations. As such,

algebra scores have been found to correlate with non-numerical symbolic abilities,
including those necessary for understanding the syntax of language (MacGregor & Price,

1999), suggesting an ability to follow abstract rules and/or manipulate even non-

numerical symbols is an important contributor to algebra ability. Furthermore, beyond

pure symbol manipulation, successfully performing arithmetic with fractions and

decimals requires substantial conceptual understanding of the way arithmetic works, a

skill that is also important for solving complex algebra. Thus, in this study,we also explore

the contribution of procedural understanding, for decimal arithmetic and fraction

arithmetic, in predicting algebraic performance.

Educational experience

Notably, previous reports of a link between rational number understanding and algebra

achievement (DeWolf et al., 2015; Siegler et al., 2012) have been limited to exclusively
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exploring this relationship in children, who are still in the process of acquiring these

mathematical concepts. Given that mathematical learning is a slow, extended process

throughout adolescence, it is important to determine whether, once rational number and

basic algebra course instruction is complete by the time students reach college, the
relationship between rational number understanding and algebra still holds. On the one

hand, by adulthood, individuals may have developed strategies that help them to

circumvent the limitations brought on by poor fraction understanding, for example,

relying more heavily upon decimal notation when performing advanced mathematics. If

so, these alternative strategiesmaymute the strength of the relationship between fraction

understanding and fluencywith basic algebra. On the other hand, given that difficulties in

rational number processing (in both fraction and decimal notation) persist into college-

aged students (e.g., DeWolf et al., 2014; Ni & Zhou, 2005), there is reason to believe that
the relationship between fraction knowledge and algebra abilities established in

childhood may be indicative of an overall competence with advanced mathematical

concepts, and as such, the relationship should hold into adulthood with basic algebra

fluency. Thus, investigating themechanisms involved in the relationship between rational

number understanding and algebra in a group of young college-educated adults may

provide important insights into the strategies and performance patterns shown in

experienced learners, who have completed formal schooling in these topics.

The current study

In this study, we aimed to further specify the relationship between rational number

understanding and basic algebra achievement using three specific measures of rational

number understanding in a group of educated adults. Using amagnitude comparison task,

we assessed (1) the fluency of the mapping between fraction and decimal symbolic

notation and the magnitudes they represent (symbolic magnitude fluency) and (2) the

precision of the underlying magnitude representation (numerical acuity, both via ratio
effect slopes (b) and variability in the ratio effect estimates [SE]). In addition, adults

completed measures of fraction and decimal arithmetic to assess rational number

arithmetic fluency in these distinct notations. As previous work has rarely investigated

both decimal and fraction notation within the same study, we included measures of both

notations to determine the relative contributions of rational number knowledge in each

symbolic notation. This research addresses four open questions: (1) Does the relationship

between rational number ability and algebra hold in young college-educated adults even

after learning the required math content? (2) Does the relationship between magnitude
understanding and algebra fluency depend on the type of magnitude understanding

(symbolic magnitude fluency vs. precision) and/or the notation of the symbolic

magnitude representation (fractions vs. decimals)? (3) Does the relationship between

rational number arithmetic and algebra depend on the notation used? And (4) when both

magnitude and arithmetic measures are included in the relationship to predict algebra

fluency, what is the relative contribution of each measure?

Method

Participants

Fifty-one college students (M = 19.4 years, range: 17–24 years, 37 females) participated

for $10 or course credit and were included in all analyses. Data from an additional twelve
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participants were excluded for experimenter or computer error (3), for not meeting the

required criteria on the number comparison task (6), or for not meeting the required

criteria on the assessments (3), see ‘Data analysis’ for details of exclusion criteria.

Stimuli and apparatus

Algebra assessment

Twelve basic algebra questions were adapted from the released questions for the Trends

in International Mathematics and Science Study, Grade 8 level assessment (TIMSS, 2003,

2011, see Appendix for a complete list of questions) by removing the multiple-choice

options, making them open-ended response questions. Questions included simplifying or

solving expressions (e.g., simplify: 4x–x + 7y–2y; solve 2a+3(2–b) given a = 3, b = �1)

and understanding relations (e.g., given a table of x and y values, write the equation re-

lating y to x). The entire assessment had a Cronbach’s a of .77 (based on time to complete

each question). Questions were presented in a random order. Importantly, none of the
algebra questions included any non-integer rational number knowledge (i.e., did not

involve fractions or decimals).

Number comparison task

Thenumber comparison taskwas presented on a SensoMotoric Instruments (SMI; Boston,

MA,USA)mobile EyeTracker,with a 1400.08 cm2 (22-inch) screen (1024 9 768px). The

task involved three distinct blocks of trials, in which participants were required to
compare the relative magnitude of two fractions (FvF block), two decimals (DvD block),

or two whole numbers (NvN block). To measure an individual’s precision with which

they represent rational number magnitudes, we manipulated the ratio between the two

to-be-compared numbers, allowing us to measure ratio effects (e.g., DeWolf et al., 2014;

Moyer & Landauer, 1967; Schneider & Siegler, 2010), which are reported elsewhere

(Hurst & Cordes, 2016). Thus, each block of notation-specific comparisons included four

unique comparisons from each of four approximate ratio bins: 1.125 bin (range 1.11–
1.17), 1.25 bin (range 1.24–1.27), 1.5 bin (range 1.35–1.67), and 2.5 bin (range 2.2–2.92).
Each unique comparison was shown twice (once with the largest value on the right and

once with the largest value on the left), resulting in 32 trials in each of the FvF, DvD, and

NvN blocks (4 ratios 9 4 unique comparisons 9 2 [shown twice]), making a total of 96

trials (32 9 3 blocks) across all three blocks of trials.

All numerical stimuli were created in Arial regular font size 72pt (approximately 2 cm

high). The fixation cross was in 32 pt font (1 cm2). The fraction stimuli were designed to

prevent the use of overt whole-number strategies on the fraction components (i.e.,

comparing only numerators or only denominators; Schneider & Siegler, 2010). In
particular, no fraction pair contained the same natural number in more than one

component, meaning each fraction comparison contained four distinct natural numbers

ranging from 1 to 15 (e.g., 3/4 vs. 4/7 would not occur). Furthermore, fraction pairs were

congruent with the numerators (i.e., the larger fraction was consistent with the larger

numerator) on 14 of the 32 trials and incongruent on the other 18 trials, making

exclusively numerator-based comparison strategies unreliable. For the decimal stimuli, all

numbers contained a whole number before the decimal point and two digits after the

decimal point (e.g., .20; 1.56) to prevent responding based on decimal length. Notably,
however, because decimal lengthwas not manipulated, this may have allowed for the use
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of other, non-magnitude-based strategies, such as whole number-based processing (i.e.,

treating a decimal value as a whole number, such as treating the comparison .51 vs. .38 as

51 vs. 38). Decimal values ranged from .20 to 22.50, and fraction values ranged from1/5 to

15/2.

Fraction and decimal arithmetic

The assessmentswere presented in two separate blocks, with each arithmetic assessment

containing eight items (two items each of addition, subtraction, multiplication, and

division). On the decimal assessment, one problem of each arithmetic type (4 total)

involved two decimals to the hundredths digits (e.g., 1.27 + .89) and the other problem

involved one decimal to the hundredths digit and the other to either the tenth or
thousandths digit (e.g., .5 + .13; 1.74–1.321; 4 problems total of mixed length). On the

fraction assessment, none of the problems contained fractions with the same denomi-

nator. Answers to all problems resulted in positive values. Questions were presented in a

random order.

Procedure

Participants were seated alone in a quiet room. The experimenter entered the room to
explain the instructions and answer questions at the beginning of each task and then left

during the tasks. Participants completed the tasks in the following order: (1) Algebra

assessment, (2) Number Comparison task, and (3) Fraction and Decimal Arithmetic

assessments (order counterbalanced). For all tasks, participants were encouraged to

perform as quickly and accurately as possible.

For the threemath assessments, participantswere seated in front of aMacintosh laptop

computer and given a pen and a blankworkbook. Questionswere presented one at a time

on thecomputer screen,butparticipantswereprovidedwith aworkbookandpen towork
out the solution and provide the answer. To advance to the next question, the participant

clicked a button on the computer screen. Participants were told they had as much time as

they needed, but that they were being timed and to work as quickly as they could.

The comparison task was performed on a different computer that also recorded eye

movements and began with an eye-tracking calibration procedure (eye-tracking data

presented elsewhere; Hurst & Cordes, 2016). Participants were presented with a set of

three blocks of notation-specific trials in which they compared two fractions (FvF; e.g.,

1/2 vs. 3/4), twodecimals (DvD; e.g., .50 vs. .75), or twowholenumbers (NvN; e.g., 5 vs. 2)
andwere asked to selectwhich of the twonumberswas larger as quickly and accurately as

possible. No feedbackwas provided. Participantswere also presented another set of three

blocks of 32 trials each involving across-notation comparisons (i.e., decimal vs. fraction;

decimal vs. whole number; whole number vs. fraction). Data from those additional blocks

are discussed elsewhere (Hurst & Cordes, 2016). These additional blocks were either

performed before or after the set ofwithin-notation blocks (order counterbalanced across

participants).2

Using their right hand, participants selected one of the two neighbouring keys on the
keyboard to respond to which number was larger. Participants advanced to the next trial

2 There was no difference in performance on the FvF, DvD, or NvN blocks when they were presented in the first half versus in the
second half of the six blocks (p’s > .4), suggesting that these additional blocks did not impact performance.
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using their left hand to push the F4 key on the keyboard. Participants were instructed to

keep both hands on the keyboard throughout the session. Numbers remained on the

screen until the participant advanced to the next trial. Between each trial, a fixation cross

appeared in the middle of the screen to direct attention back to the middle. Participants
performed two non-numerical practice trials in which they rapidly selected the side

containing an image of a circle. In addition, each block of test trials began with two

condition-specific practice trials, with feedback from the computer.

Data analyses

Algebra and procedural assessments

Accuracy on all assessments was fairly high with relatively low variability (Fraction

Arithmetic (score out of 8) M = 7.04, SD = 1.3; Decimal Arithmetic (score out of 8)

M = 6.08, SD = 1.3; Algebra (score out of 12)M = 10.44, SD = 1.39). In particular, over

50% of participants obtained a perfect score on the Fraction Arithmetic. Thus, for each of
the assessments, the total time spent on the assessment (Completion Time; CT) was used

as ameasure of fluency and the dependent variable. In order for this measure of fluency to

be a valid proxy for ability, participants who provided incorrect responses on more than

half of the problems in each assessment were excluded from the analysis (resulting in

three excluded participants).3

Number comparison task measures

Weobtained three differentmeasures from themagnitude comparison task: twomeasures

of magnitude acuity (ratio effect point estimate, (slope, or b), and variability of this

estimate [SE] as in Lyons et al., 2015) and onemeasure of symbolicmagnitude fluency (an

adjusted average reaction time). For all calculations, only reaction times (RT) from correct

responses and those within three standard deviations of the individual’s mean for that

block were included.

Tomeasure magnitude acuity, a regression analysis was performed for each individual

participant, treating each trial as an observation. RT was regressed onto ratio bin for each
notation separately (decimal [DvD trials] and fraction [FvF trials]) to get a point estimate of

the individual’s ratio effect (b) for each notation as well as a measure of variability of this

point estimate (SE: the standard error of b). To be included in the slope measures,

individuals needed to have at least two useable RT measures and to have scored above

chance for at least 3 of the 4 ratio bins. In otherwords, if datawere excluded formore than

one ratio bin, that participant’s ratio effect and SE of ratio effect were not calculated. This

resulted in the exclusion of data from five individuals. One additional participant was

excluded for having excessively long RTs on the majority of trials (>50% of responses on
Fraction trials were longer than 10 s).

Symbolic magnitude fluency was measured as the speed with which individuals

processed rational number values. To isolate the variation in performance specific to

fraction and decimal symbols (and not from magnitude fluency more generally), we

controlled for general magnitude processing by subtracting each individual’s speed of

processing (average RT) on the whole-number comparison task from their speed of

3Moreover, when accuracy and completion time are combined to form an IES score (Townsend & Ashby, 1983) the pattern of
results obtained is very similar.
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processing (average RTs) on the decimal and fraction comparison tasks. To compute this

measure, average RT in responding (across the four ratio bins) for FvF, DvD, andNvN trials

were calculated separately. Then, to isolate rational number magnitude processing over

and above basic processing speed, we calculated an adjusted RT (RTadj) measure for DvD
and FvF trials by subtracting the individual’s average RT on NvN trials (a proxy for basic

magnitude comparison and processing speed) from the DvD and FvF trials (FvF

RTadj = [FvF RT] – [NvN RT]; DvD RTadj = [DvD RT] – [NvN RT]). Thus, any variability in

the resulting RTadj measures can be accounted for by difficulty in processing numerical

magnitudes presented in decimal or fraction notation and does not represent differences

in fine motor control and/or basic processing speed.

Outliers

At the group level, any values that were identified as being more than three standard

deviations away from the group mean were replaced with the next value that was within

the three standard deviation criterion. This occurred for five data points (two Decimal

Arithmetic CTs and one data point in each of the decimal magnitude measures (b, SE,
RTadj).

Results

Both FvF and DvD comparisons resulted in significant ratio effects (significantly negative

slopes; details reported in Hurst & Cordes, 2016) suggesting that on average, adults

accessed the approximate magnitudes represented by the symbols during the magnitude

comparison task, and as anticipated, performance was more difficult for narrower ratios.

First, we looked at the pattern of bivariate correlations (presented in Table 1, along
with descriptive statistics) for each of the three magnitude measures (b, SE, and RTadj) for

fractions and decimals separately. For fractions, all three measures were significantly

correlated. In particular, people with stronger ratio effects had higher variability in their

ratio effects (SE) and lower symbolicmagnitude fluency (i.e., longer RTadj). Thus, stronger

ratio effects for fractions seem to correspondwith slower and less consistent responding,

consistent with the notion that stronger ratio effects are indicative of poorer

understanding.

Decimals, on the other hand, showed a different pattern. Consistent with fractions,
lower symbolicmagnitude fluency (i.e., longer RTadj) was associatedwithmore variability

in responding (higher SE). However, ratio effects (b) for decimals were not significantly

correlated with any other magnitude measures (symbolic magnitude fluency [RTadj] or

variability [SE]).

Correlations with algebra fluency revealed that all rational number measures except

FvF b were significantly correlated with algebra fluency. In particular, adults with lower

arithmetic fluency (i.e., took longer to complete both arithmetic assessments), lower

symbolic magnitude fluency (higher response times on both comparison tasks; RTadj),
higher variability in their ratio effects (higher SE) for both decimal and fraction notation,

and lower decimal (but not fraction) ratio effects (i.e., slope [b] closer to zero) took longer
to complete the Algebra assessment. Fraction ratio effects were not significantly related to

algebra fluency.

Notably, the measures of variability in ratio effects (SE) for both fraction and decimal

notationwere highly correlatedwith symbolicmagnitude fluency (RTadj; fractions: r = .9;
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decimals: r = .6), consistent with previous research (Lyons et al., 2015). Because these

high correlations (particularly for fractions) would have led to issues with multicollinear-

ity in the regression and because previous research has shown that average RT is a better

predictor ofmathperformance than SE (Lyons et al., 2015),we includedRTadj, but not the
SE measures, in the combined regression analyses.

Thus, to investigate the relative contribution of various measures of fraction

understanding to algebra ability, we used a regression analysis using the magnitude

measures (Model 1) and the arithmetic measures (Model 2) as predictors of Algebra

fluency. Table 2 provides all of the statistics for both individual models and the combined

model.

First, to test the additional contribution of the two arithmeticmeasures over and above

themagnitudemeasures, we entered themagnitudemeasures (DvD RTadj, FvF RTadj, DvD
b, FvF b) in the first step and entered the arithmetic measures (Decimal and Fraction

Arithmetic fluency) in the second step. Results indicated that the model including only

magnitude measures was statistically significant, with both decimal measures (DvD b and

DvD RTadj) providing unique statistical significance (p < .05; and marginally FvF RTadj,

p = .066). Importantly, however, the addition of the arithmetic measures was also

significant, DR2 = .307, F(2, 44) = 16.8, p < .001.

Second, to investigate the additional contribution of the set of magnitude measures,

over and above the arithmetic measures, we conducted a second regression in which we
entered the arithmetic predictors in the first step and added the set ofmagnitudemeasures

in the second step. Not surprisingly, the model with only the arithmetic measures was

significant, with both decimal and fraction arithmetic each explaining statistically

significant unique variance (p’s < .001). The addition of the set of magnitude measures

Table 1. Descriptive statistics for all measures (N = 51)

Mean (SD)

Correlation coefficients (r)

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Algebra

CT (sec)

568 (196.5) –

(2) Fraction

Arithmetic

231 (101.7) .575** –

(3) Decimal

Arithmetic

417 (137.6) .579** .347* –

(4) Fraction

RTadj (ms)

2243

(1178.8)

.337* .099 .29* –

(5) Decimal

RTadj (ms)

229 (90.1) .358* .07 .274 .15 –

(6) Fraction

b (ms)

�294

(537.2)

�.11 �.07 �.128 �.440** �.06 –

(7) Decimal

b (ms)

�44 (68.4) .391** .183 .26 .22 .203 �.164 –

(8) Fraction

SE (ms)

464 (322.3) .297* .06 .27 .922** .192 �.352* .17 –

(9) Decimal

SE (ms)

62 (23.2) .389** .12 .44** .34* .62** .004 .255 .39**

Bivariate Pearson correlations are shown with two-tailed significance indicated as **p < .006; *p < .05.
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resulted in statistically significant change in the amount of variance explained by the

model overall, DR2 = .103, F(4, 44) = 2.8, p = .037.

Finally, beyond the overall impact of the set of magnitude measures and the set of

arithmetic measures, we investigated the impact of each individual measure on algebra

performance by looking at the unique contribution of each measure in the overall,
combined model. None of the individual magnitude measures explained significant

unique variance, when controlling for all the others, although both decimal measures

showed small, marginally significant effects (p < .1). On the other hand, both fraction and

decimal arithmetic fluency explained significant unique variance (p’s < .05) above and

beyond the magnitude measures as well as each other.

Discussion

The relationship between rational number understanding and algebra ability is complex.

Our aim was to further characterize this relationship by exploring the relative

contribution of various aspects of rational number understanding. In doing so, our

results demonstrate novel predictors of algebra ability that are dependent upon the format

of the symbolic notation used to measure them.
First, our results reveal that the relationship between rational number arithmetic and

algebra previously reported in children (e.g., Siegler et al., 2012) also holds in educated

adults (college students) who have completed their schooling in rational number and

basic algebra concepts. Rational number understanding thus remains an important

predictor of algebra ability long after these skills have been acquired, suggesting that this

relationship is not dependent upon recent instruction of these concepts.

More importantly, our findings further clarify the relationship between rational

number understanding and algebra performance by suggesting that the relationship does
depend on the type of knowledge being measured and the notation being used. When

Table 2. Results from the regression analyses

Variable b Statistic

Model 1: R2 = .29, F(4, 46) = 4.7, p = .003

Model 1: Magnitude measures DvD b .292* t(50) = 2.25, p = .029

DvD RTadj .263* t(50) = 2.06, p = .045

FvF b .076 t(50) = .54, p = .59

FvF RTadj .266 t(50) = 1.88, p = .066

Model 2: R2 = .495, F(2, 48) = 23.495, p < .001

Model 2: Arithmetic measures Fraction arithmetic fluency .426* t(50) = 3.89, p < .001

Decimal arithmetic fluency .431* t(50) = 3.94, p < .001

Model 3: R2 = .590, F(6, 44) = 10.54, p < .001

Model 3: All measures DvD b .172 t(50) = 1.69, p = .099

DvD RTadj .19 t(50) = 1.89, p = .065

FvF b .079 t(50) = .74, p = .466

FvF RTadj .178 t(50) = 1.60, p = .117

Fraction arithmetic fluency .416* t(50) = 4.1, p < .001

Decimal arithmetic fluency .296* t(50) = 2.68, p = .01

There was a significant change fromModel 1 to Model 3,DR2 = .307, F(2, 42) = 16.8, p < .001, and from

Model 2 to Model 3, DR2 = .103, F(4, 44) = 2.81, p = .037.
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looking at magnitude predictors, we found that overall rational number magnitude

understanding (as assessed by RTadj and b for both decimals and fractions) significantly

predicted algebra fluency – however, only decimal (not fraction) magnitude acuity and

symbolic magnitude fluency were uniquely predictive. In particular, higher algebra
fluency was associated with a higher fluencywith symbolic decimal magnitudes andwith

stronger decimal ratio effects. That is, adults who were quicker at the algebra assessment

were faster at processing decimal notation and were more impacted by the ratio of the

magnitudes involved in the comparison task. The direction of this relationship with ratio

effects is in contrast to typical results with whole numbers, such that weaker whole-

number ratio effects (typically attributed to more precise representations) are associated

with better math ability (Holloway & Ansari, 2009) and lower math anxiety (Maloney

et al., 2011). Although this findingmaybe counterintuitive, it opens up thepossibility that
the interpretation of ratio effects for whole-number magnitudes may not be equally

applicable for rational number comparisons. In particular, the existence of ratio effects for

decimals comparisons has only recently been explored, with several studies showing that

other, non-magnitude-based strategies may interfere withmagnitude dependent respond-

ing (Bonato et al., 2007; Desmet, Gr�egoire, & Mussolin, 2010; Kallai & Tzelgov, 2014;

Varma&Karl, 2013). For example, whereas the goal of amagnitude comparison task is for

participants to compare the numerical magnitudes associated with the given numbers,

when presented with two decimals, it is possible for participants to engage in strategies
such as comparing the length of decimal values or comparing the values of individual

digits (i.e., comparing tenths, then hundredths), which may obscure any possible ratio

effects in magnitude judgements. In our sample, we found approximately 30% of

participants had a weak or non-existent decimal ratio effect (i.e., a positive or near-zero b
value). It is possible that these participants engaged alternative strategies that did not rely

exclusively upon numerical magnitude. On the other hand, those individuals with

stronger ratio effects may have consistently usedmagnitude-based strategies. If so, then in

contrast to ratio effects observed inwhole-number comparisons, which are thought to be
ameasure of precision of the underlying representation, decimal ratio effects may instead

indicate whether or not the individual used magnitude-based processing. As such, it may

be that fraction and decimal ratio effects follow a U-shaped curve with positive or near-

zero ratio effects indicative of non-magnitude-based responding (associated with poor

math performance) and highly negative ratio effects indicative of imprecision in the

representation of rational numbermagnitudes (again, associatedwith poor performance),

with some ‘ideal’ level of ratio dependent responding falling in-between. This theory may

be most appropriately explored through future developmental investigations. Most
importantly, this pattern of findings further highlights the need for investigating the

representation of magnitudes presented across distinct notations simultaneously to shed

light on how symbolic notation may convey magnitude information in different ways.

In the current study, we used a numerical magnitude comparison task to provide a

measure of rational numbermagnitude precision and fluency. Although comparison tasks

are widely used in the literature to assess whole-number magnitude understanding, many

researchers have also employed number-line tasks, inwhich individuals are asked to place

a number along a line with two numerical end points (e.g., Iuculano & Butterworth,
2011). While substantial research and debate have focused on what aspects of numerical

magnitude understanding number-line estimation tasks are measuring (e.g., the format of

the underlying mental representation- versus proportion-based responding; e.g., Barth &

Paladino, 2011; Cohen & Blanc-Goldhammer, 2011; Hurst, Monahan, Heller, & Cordes,

2014; Opfer, Siegler, & Young, 2011), similar to the results from the current study using a
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comparison task, performance onnumber-line tasks has also been shown to relate tomore

advanced math ability, including algebra (Booth & Newton, 2012; Siegler et al., 2011).

Thus, future research should further investigate performance on a variety of magnitude-

based tasks, using different notations, and presenting them in different formats (e.g.,
different length decimals, same length decimals, different denominators, same denom-

inators) to provide converging evidence to further our understanding of how people

approach rational number values in each of these contexts and how performance may be

associated with better or worse understanding.

Interestingly, although there was some evidence that measures of rational number

magnitude understanding were predictive of algebra ability, once arithmetic fluency

measures were controlled for, magnitude measures provided only a small amount of

additional variance (about 10%) in predicting algebra ability and none of the individual
magnitude measures uniquely predicted algebra ability. Thus, it may be that, once

arithmetic ability was controlled for, our magnitude measures served as a proxy for a

general understanding of non-integer, rational number values, in which the format of the

notation was irrelevant.

On the other hand, the arithmetic measures accounted for 31% of the variance in

algebra fluency, even after controlling for the magnitude measures. One explanation for

why arithmetic fluency accounted for such a high amount of variance in algebra ability

may be that the arithmetic fluencymeasures also encompassed some aspect ofmagnitude
understanding. That is, rational number arithmetic fluency requires some of the same

abilities to process rational number notation and potentially to approximate magnitudes

that a comparison task may entail. Thus, our measure of arithmetic fluency may have also

partially accounted for measures of magnitude understanding. In addition, unlike our

magnitude measures in which we adjusted for general speed of processing of numerical

information, we did not have a measure of whole-number arithmetic fluency to subtract

from the rational number arithmetic measures, thus confounding our rational number

arithmetic measures with general arithmetic processing (i.e., the speed with which
individuals perform arithmetic, regardless of the format of the numbers involved). Future

research should also include general measures of arithmetic andmagnitude processing to

account for the potential overlap in these tasks. In general, however, these findings do

suggest that the fluency and flexibility with complex notations involving fractions and

decimals asmagnitudes and in performing arithmetic may be key variables involved in the

relationship between rational number understanding and algebra ability.

Importantly, the algebra assessment did not require any computations involving

fraction or decimal values, suggesting that the obtained relationship between algebra and
rational number arithmetic was not solely driven by the individual’s ability to

arithmetically manipulate fractions and decimals specifically. Moreover, as both fraction

and decimal arithmetic fluencymeasureswere significant predictorswhile controlling for

the other, the underlying relationship was not entirely due to factors that are shared

between both fraction and decimal arithmetic. Thus, the relationship is not solely due to

arithmetic fluency and the memorization of procedures in general, because this would be

a shared skill between fraction and decimal arithmetic (although these findings do not rule

out that this skill is involved, just that it is likely not the only relevant factor). Instead,
factors unique to fraction arithmetic fluency and unique to decimal arithmetic fluency are

likely each related to algebra fluency. For example, fraction arithmetic requires

knowledge about denominators and ratios, and decimal arithmetic requires knowledge

about place-value, both factors that may play a role in algebra learning.
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Although algebra performance appears to uniquely rely upon aspects of fraction

arithmetic and of decimal arithmetic, more research is needed to clarify what aspects of

arithmetic processing is crucial for algebraic understanding. In particular, arithmetic

relies upon both conceptual knowledge of arithmetic processes (e.g., understandingwhy
common denominators are required for addition, but notmultiplication) and a procedural

understanding of the actions to be carried out (e.g., knowing the procedure for finding

common denominators). Furthermore, conceptual learning and procedural learning

within the domain of rational numbers tend to be very intertwined; for example, an

improvement in one type of knowledge can often lead to an improvement in the other

(Rittle-Johnson, Siegler, & Alibali, 2001). Thus, it is still unclear whether it is primarily the

conceptual knowledge required to have arithmetic fluency or whether it is about

executing the specific procedures.
In addition, it has been argued that ‘algebra’ may not be a singular mathematical

construct and instead involves a diverse range of conceptual and procedural knowledge

(e.g., Kilpatrick & Izsak, 2008; Magruder, 2012). Thus, one limitation of our study is our

singlemeasure of algebra fluency,which leaves open the question of how rational number

understanding may be related to various aspects of algebra ability. For example, algebra

involves manipulating equations and understanding variables (e.g., Kilpatrick & Izsak,

2008), having an understanding of the equal sign (e.g., Knuth, Stephens,McNeil, &Alibali,

2006), having an understanding of the real number system (e.g., Christou & Vosniadou,
2012), and so on. Although our algebra assessment covered a variety of algebraic tasks, it

may be that some aspects of rational number knowledge are more relevant for particular

aspects of algebra knowledge than others. In particular, given that different aspects of

algebra understanding may differentially rely upon procedural and conceptual compe-

tences, it may be that some aspects of algebra are more directly related to the procedural

aspects of fraction and decimal understanding (e.g., solving step-by-step linear equations;

Rittle-Johnson&Star, 2007),while other aspects of algebramaybemore directly related to

conceptual aspects of fraction and decimal understanding (e.g., having a strong
understanding of equivalence, including equivalent magnitudes). Thus, this lack of

specificity in our measure of algebra fluency may limit the interpretations we can make

about what aspect(s) of algebra ability may be reliant upon specific aspects of rational

number understanding.

Moreover, the current study did not include measures of more general cognitive

abilities, like working memory or verbal abilities. Substantial research suggests that

working memory may be related to rational number ability in particular (Jordan et al.,

2013; Vukovic et al., 2014), leaving open the question of whether these general
cognitive abilities may also play a role in the relationship between rational number

understanding and algebra ability. Given that we included multiple individual measures

in our regression model, which likely correlate with domain-general measures, and still

found some of these measures to uniquely predict algebra ability, our findings do point

to a strong relationship between rational number understanding and algebra ability.

However, future research should include general cognitive measures to rule out the

influence of these domain-general aspects of cognitive functioning in contributing to

the pattern of results obtained.
Lastly, the current study leaves open the question of whether developmental

differences may exist in the relative contribution of arithmetic andmagnitude knowledge

in both fraction and decimal notation in predicting algebra ability. The relative

contributions of different types of rational number knowledge may depend on the

educational stage of theparticipants aswell as the type of notation used. Inparticular, how
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arithmetic ability and magnitude knowledge of rational numbers may relate to algebra

ability when the child first begins learning algebra, as well as how the relationship may

change throughout the learning of algebra is an important open question that may shed

light on both the learning of algebra and of rational numbers.
In conclusion, results from the current study suggest that the relationship between

rational number knowledge and algebra ability holds even in educated adults and is driven

by fractionand decimal arithmetic fluency, aswell as amore generalized understanding of

rational number magnitudes and the symbols used to represent them. The unique roles of

fraction and decimal notation highlight that more research is needed to directly compare

the use of the two notations for understanding rational number magnitudes and

procedures to promote both rational number understanding and algebra learning in the

classroom.
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Appendix : Complete list of the 12 Algebra questions

Question:

There are two pipes. The first pipe is xmetres long. The second pipe is y times as long as

the first one. How long is the second pipe?

Question:

In Zedland, total shipping charges to ship an item are given by the equation y = 4x + 30

where x is the weight in grams and y is the cost in zeds. If you have 150 zeds, how many

grams can you ship?

Question:

Simplify the expression 2(x + y) – (2x � y)

Question:

Give two points on the line y = x + 2

Question:

Simplify the expression 2a2 9 3a

Question:
The table below shows a relation between x and y

x 1 2 3 4 5

y 1 3 5 7 9
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What is the relation between x and y?

Question:

3(2x � 1) + 2x = 21 What is the value of x?

Question:
The number of jackets that Haley has is 3 more than the number Anna has. If n is the

number of jackets Haley has, how many jackets does Anna have in terms of n?

Question:
a = 3 and b = �1 What is the value of 2a + 3(2 � b)?

Question:

Joe knows that a pen costs 1 zedmore than apencil. His friend bought 2pens and 3pencils

for 17 zeds. How many zeds will Joe need to buy 1 pen and 2 pencils?

Question:

Simplify the expression 4x � x + 7y � 2y

Question:

If x
3
[ 8, then what does x equal?
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