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The cultural history of the real numbers began with the positive integers. Kronecker is
often quoted as saying, "God made the integers; all else is the work of man," by which he
meant that the system of real numbers had been erected by mathematicians on the
intuitively obvious foundation provided by the integers. Taken as a statement about the
cultural history of mathematics, this is beyond dispute. But if this is taken as a claim
about the psychological foundations of arithmetic reasoning, then we suggest that here, as
in many other areas of psychology, introspection and intuition are poor guides to the
inner workings of the mind.

We suggest that it is the system of real numbers that is the psychologically
primitive system, both in the phylogenetic and the ontogenetic sense. We review evidence
that a system for arithmetic reasoning with real numbers evolved before language evolved.
When language evolved, it picked out from the real numbers only the integers, thereby
making the integers the foundation of the cultural history of the number. Secondly, we
suggest that this ancestral non-verbal real number system becomes operative in the
prelinguistic child and makes possible the acquisition of language-mediated counting and
language-mediated arithmetic reasoning. It is the foundation on which an individual’s
language-mediated understanding of what numbers are and what may be done with them
rests.

The Formal Relation Between the Integers and the Reals

The number system that can be used to represent continuous (uncountable) quantities is
the system of real numbers. It includes the irrational numbers, like √2, and the
transcendental numbers, like π. It is used by modern humans to represent many distinct
systems of continuous quantity--duration, length, area, volume, density, rate, intensity,
and so on. Because the system of real numbers is isomorphic to a system of magnitudes,
the terms real number and magnitude are used interchangeably. Thus, when we refer to
"mental magnitudes" we are referring to a real number system in the brain. Like the
culturally specified real number system, the real number system in the brain is used to
represent both continuous quantity and numerosity.
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Magnitudes and real numbers have the property that there is no way to pick out a
successor, the next number in the sequence. Given a line of some length, there is no
procedure whereby one could pick out the next longer line. Similarly, given a real number,
like, say, 2, there is no procedure that picks out the next real number, although there is, of
course, a procedure that picks out the next integer. The real numbers are not discretely
ordered but the integers are, so 2 qua real number has no successor, whereas 2 qua integer
does.

The discrete ordering of the natural numbers (the positive integers) makes them
uniquely suited to represent numerosity, that is countable quantity. The positive integers,
however, taken by themselves, rather than as a component of the system of real numbers,
have two serious failings, an algebraic failing and a geometric failing. The algebraic failing is
that they are not closed under the inverse combinatorial operations of subtraction and
division. Subtracting one positive integer from another often fails to yield a positive
integer. If only the positive integers are regarded as legitimate numbers, then subtraction
can be legitimately performed only when it is known to yield a positive integer. But in the
course of algebraic reasoning, it is often desirable to subtract one unknown number from
another. If only positive integers are allowed as numbers, then this maneuver will be of
doubtful legitimacy, because one will not know whether the subtrahend is larger or smaller
than the minuend. The division of one unknown number by another is likewise suspect,
because only rarely does dividing one positive integer by another yield a positive integer.

The lack of closure in the system of natural numbers provided much of the
motivation that drove the cultural expansion of that system to include zero, the negative
integers, and the rational numbers. The rational numbers, include all the numbers that may
be expressed as the proportion between two integers, that is, the fractions, including the
improper fractions like 71/53.

The geometric failing of the integers and their offspring the rational numbers arises
when we attempt to use proportions between integers to represent proportions between
continuous quantities, as, for example when we say that one person is half again as tall as
another, or one farmer has only a tenth as much land as another. These locutions show the
seemingly natural expansion of the integers to the rational numbers, numbers that
represent proportions. This expansion seemed so natural and unproblematic to the
Pythagoreans that they believed that the natural numbers and the proportions between
them (the rational numbers) were the inner essence of reality, the carriers of all the deep
truths about the world. They were, therefore, greatly unsettled when they discovered that
there were geometric proportions that could not be represented by a rational number, for
example, the proportion between the diagonal and the side of a square. The Greeks
proved  that no matter how fine you made your unit of length, it would never go an
integer number of times into both the side and the diagonal. Put another way, they proved
that the square root of two is an irrational number, an entity that cannot be constructed
from the natural numbers by a finite procedure.

As the name they gave to these would-be numbers implies, the Greeks found the
existence of irrational numbers contrary to reason. They sensed that number ought to be
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able to represent geometric proportions like this, and they were right. They were right
because if we follow the impulse to create a closed algebraic system to its natural end,
then we are led to the system of real numbers, indeed, eventually to the system of
complex numbers. The system of real numbers has numbers to represent every geometric
proportion. Thus, in the process of creating the numbers needed to guarantee algebraic
closure, mathematicians created the numbers needed to represent every possible
proportion. Our thesis is that this cultural creation of the real numbers was a Platonic
rediscovery of the underlying non-verbal system of arithmetic reasoning. The cultural
history of the number concept is the history of our learning to talk coherently about a
system of reasoning with real numbers that predates our ability to talk, both
phylogenetically and ontogenetically.

Evidence for the Ancestral Status of the Real Numbers

Other Vertebrates Measure and Remember Uncountable Magnitudes

The common laboratory animals such as the pigeon, the rat and the monkey, measure and
remember continuous quantities, such as duration, as has been shown in a variety of
experimental paradigms. One of these is the so-called peak procedure. In this procedure, a
trial begins when a stimulus signaling the possible availability of food comes on. When
pigeons are the subjects, the stimulus is the illumination of a key on the wall of the
experimental chamber. When the subjects are rats, the stimulus is the extension into the
cage of a lever. On 25-50% of the trials, the key or lever is armed at a fixed latency after
the onset of the stimulus. Pecking or pressing before the key or lever is armed is
pointless, but the first peck or press after the arming delivers food. On the remaining 50-
75% of the trials, however, the key or lever is not armed. On these trials, the key remains
illuminated or the lever remains extended for between 4 and 6 times longer than the arming
latency. Pecking or pressing after the arming latency has elapsed is pointless, because if
there has been no reward at that latency, then there will be none on that trial.

Peak-procedure data come from the unrewarded trials. On such trials, the subject
abruptly begins to peck the key or press the lever some while before the arming latency
(when it judges arming to be nigh) and continues to peck or press for some while after
before abruptly stopping (when it judges that the arming latency has past). The interval
during which the subject pecks or presses brackets its subjective estimate of the arming
latency. Representative data are shown in Figure 1.
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Figure 1. Representative peak procedure data. Rat was the subject. In one block of many
trials, the arming latency was 20 sec; in another, it was 40 sec. A. The original data. B.
Data plotted as a proportion of the arming latency. C. Data plotted as a proportion of the
latency at the mode of the distributions in A. Because the variability in the onsets and
offsets of responding is proportional to the remembered arming latency, the distributions
superimpose when plotted as a proportion of the modal latency.



Gallistel, et al. Page 5

Figure 1A, shows smooth seemingly increases and decreases in response rates on
either side of the arming latency. The smoothness is an averaging artifacts. On any one
trial the onset and offset of responding is abrupt. The temporal locus of these onsets and
offsets varies from trial to trial. Averaging across trials gives these approximately normal
distributions. The curves in Figure 1A are best read as showing the probability that the
subject will be responding as a function of the time elapsed since the warning signal came
on. The mode of the distribution (the latency at which the distribution peaks) is the
latency at which the subject is maximally likely to be responding. This latency does not
necessarily coincide with the actual arming latency, because individual subjects often
show small proportional errors in the mode; they misremember experienced durations by
some multiplicative factor slightly greater or smaller than 1.

The distribution obtained with the 40 second arming latency is broader than the
distribution obtained with the 20 second latency. As shown in Figure 1C, the broadening
of the distribution at longer arming latencies is proportional to the remembered arming
durations (the mode of the distribution), not to the actual arming durations (Figure 1B).
When mean response rates are plotted against the elapsed proportion of the modal
latency, the distributions obtained at different arming latencies superpose (Figure 1C).
Thus, the trial-to-trial variability in the onsets and offsets of responding is proportional
to the remembered latency. Put another way, the probabilities that the subject will have
begun to respond or will have stopped responding are determined by the proportion of
the remembered arming latency that has elapsed. This property of the memory for
durations is called scalar variability.

Scalar variability is a ubiquitous property of remembered mental magnitudes. It
seems to be best explained by the assumption that the neural signals that come from the
reading of a memory show trial-to-trial (reading-to-reading) variability, just as do the
neural signals that come from the action of a stimulus (Gallistel, 1999; Gallistel & Gibbon,
2000). In other words, the reading of a mental magnitude in memory is a noisy process,
and the noise is proportional to magnitude being read.

Other Vertebrates Count and Remember Numerosity

Rats, pigeons and monkeys also count and remember numerosities ( see Dehaene, 1997;
Gallistel, 1990; Gallistel & Gelman, 2000, for reviews; e.g. Roberts, Coughlin, & Roberts,
2000). One of the early protocols for assessing counting and numerical memory was
developed by Mechner (1958) and later used by Platt and Johnson (1971). The subject
must press a lever some number of times (the target number) in order to arm the infrared
beam at the entrance to a feeding alcove. When the beam is armed, interrupting it releases
food. Pressing too many times before trying the alcove incurs no penalty beyond that of
having made supernumerary presses. Trying the alcove prematurely incurs a 10-second
time-out, which the subject must endure before returning to the lever to complete the
requisite number of presses. Data from such an experiment are shown in Figure 2. They
look strikingly like the temporal data. The number of presses at which subjects are
maximally likely to break off pressing and try the alcove peaks at or slightly beyond the
required number, for required numbers ranging from 4 to 24. As the remembered target
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number gets larger, the variability in the break-off number also gets proportionately
greater. Thus, the memory for number also exhibits scalar variability

Figure 2. The probability of breaking off to try the feeding alcove as a function of the
number of presses made on the arming lever and the number required to arm the food-
release beam at the entrance to the feeding alcove. Subjects were rats. Redrawn from
(Platt & Johnson, 1971) by permission of the authors and publishers.

The fact that the memory for numerosity exhibits scalar variability suggests that
numerosity is represented in the brains of non-verbal vertebrates like rats, pigeons and
monkeys by mental magnitudes, that is by real numbers, rather than by discrete symbols
like words or bit patterns. When a device such as an analog computer represents
numerosities by different voltage levels, noise in the voltages leads to confusions between
nearby numbers. If, by contrast, a device represents countable quantity by countable
(that is, discrete) symbols, as digital computers and written number systems do, then one
does not expect to see the kind of variability seen in Figure 2. For example, the bit-pattern
symbol for fifteen is 01111 while for sixteen it is 10000. Although the numbers are
adjacent, the discrete binary symbols for them differ in all five bits. Jitter in the bits
(uncertainty about whether a given bits was 0 or 1) would make fourteen (01110),
thirteen (01101), eleven (01011) and seven (00111) all equally and maximally likely to be
confused with fifteen, because the confusion arises in each case from the misreading of
one bit. These dispersed numbers should be confused with fifteen much more often than
is the adjacent sixteen. Similarly, a scribe copying a handwritten English text is
presumably more likely to confuse "seven" and "eleven" than to confuse "seven" and
"eight". Thus, the nature of the variability in a remembered target number implies that
what is being remembered is a magnitude--a real number.

Numerosity and Duration are Represented by Comparable Mental Magnitudes

Meck and Church pointed out that the mental accumulator model that Gibbon (1977) had
proposed to explain the generation of mental magnitudes representing durations could be
modified to make it generate mental magnitudes representing numerosities. Gibbon had
proposed that while a duration was being timed a stream of impulses fed an accumulator,
so that the accumulation grew in proportion to the duration of the stream. When the
stream ended (when timing ceased), the resulting accumulation was read into memory,
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where it represented the duration of the interval. Meck and Church (1983) postulated that
to get magnitudes representing numerosity, the equivalent of a pulse former was inserted
into the stream of impulses, so that for each count there was a discrete increment in the
contents of the accumulator, as happens when a cup of liquid is poured into a graduate
(see Figure 3). At the end of the count, the resulting accumulation is read into memory
where it represents the numerosity.

The model in Figure 3 is the well known accumulator model for non-verbal
counting by the successive incrementation of mental magnitudes. It is also the origin of
the hypothesis that the mental magnitudes representing duration and the mental
magnitudes representing numerosity are essentially the same, differing only in what it is
they refer to. Put another way, both numerosity and duration are represented mentally by
real numbers. Meck and Church (1983) compared the psychophysics of number and time
representation in the rat and concluded that the coefficient of variation, the ratio between
the standard deviation and the mean, was the same, which is further evidence for the
hypothesis that the same system of real numbers is used in both cases.

Figure 3. The accumulator model for the non-verbal counting process. At each count, the
brain increments a quantity, an operation formally equivalent to pouring a cup into a
graduate. The final magnitude (the contents of the graduate at the conclusion of the count)
is stored in memory, where it represents the numerosity of the counted set. Memory is
noisy, which is to say that the values read from memory on different occasions vary. The
variability in the values read is proportional to the mean value of the distribution (scalar
variability).
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In the course of their work, Meck and Church (1983) were able to estimate the
scale factor relating the mental magnitude scales for numerosity and duration. If the
mental magnitude, ˆ n , representing numerosity, n , is proportional to the numerosity
represented, that is, if ˆ n = k1n , and if the mental magnitude, ˆ d , representing duration, d ,
is proportional to the duration represented, that is, if ˆ d = k2d , then, letting the mental

magnitudes be equal (letting k1n = k2d ), gives n =
k2

k1
d . The scale factor 

k2

k1
 tells us

which numerosities are "mentally equivalent" to which durations, where by, "mentally
equivalent" we mean "represented by real numbers of the same magnitude." Meck and

Church got a value of about 0.2 s-1 for 
k2

k1
, meaning that each unit increase in the mental

magnitude representing numerosity corresponds to the increase generated by prolonging a
duration by 0.2 seconds. Thus, an interval 2 seconds in duration generates a mental
magnitude that, if it were used to represent a numerosity, would represent a numerosity
of 10.

Knowing this scale factor, enabled Meck and Church (1983--see also Meck,
Gibbon and Church, 1985)--to do an experiment directly demonstrating that the mental
magnitudes representing numerosity and the mental magnitudes representing duration
were interchangeable. They first taught rats to choose one lever after hearing a noise of
two seconds duration and the other lever after hearing a noise of four seconds duration.
The rats learned to make this discrimination under partial reinforcement conditions, that
is, on 50% of the trials even a correct choice did not produce reward. Because the animal
is thereby accustomed to not receiving a reward on many of the trials when it makes a
correct choice, this procedure allows the experimenter to give the trained animal
unrewarded "probe" trials. On a probe trials, the animal gets a stimulus different from the
training stimuli (the reference stimuli) and the question is, how will it judge the probe
stimulus? Which reference stimulus will it judge to be "more like" the probe stimulus? Its
judgment is indicated by which lever it chooses. In this case, the reference stimuli are
represented by the mental magnitudes corresponding to durations of 2 and 4 seconds.

The probe stimuli in the experiment were long sequences of noise bursts. The
sequences were much longer than 4 seconds, so the mental magnitudes representing
duration would be much greater than either of the reference magnitudes. If the magnitudes
representing the duration of a probe sequence were compared to the reference magnitudes,
they would be more similar to the greater of those two reference magnitudes, albeit
basically outside the range of the reference magnitudes. However, the number of bursts in
the sequence ranged from 10 to 20, which is to say that the mental magnitudes produced
by the nonverbal counting of these sequences covered the same range of mental
magnitudes produced by durations ranging from 2 seconds to 4 seconds. Meck and
Church hoped that their subjects would make their choice between the levers by
comparing the mental magnitudes generated by counting the bursts to the reference mental
magnitudes, ignoring the fact that the reference magnitudes represented durations while
the magnitudes being compared to them on these trials represented numerosity. This was
the result they obtained: when there were there were 10 or close to 10 noise bursts, the
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rats chose the lever corresponding to the shorter duration; when there were 20 or close to
20 bursts, they chose the lever corresponding to the longer duration. This is strong
evidence that a common system of mental magnitudes is used to represent both
uncountable (continuous) and countable (discrete) quantity.

Other Vertebrates Reason Arithmetically with the Mental Magnitudes Representing both

Countable and Uncountable Quantity

We have repeatedly referred to the real number system because numbers acquire their
representational utility by virtue of the fact that they can be arithmetically manipulated--
added, subtracted, multiplied, divided and ordered. From a formal point of view, if mental
magnitudes could not be arithmetically manipulated, there would be no justification for
calling them numbers. From a formalist perspective, numbers just are entities that are
arithmetically manipulable. Thus, when we refer to the real numbers in the brain we mean
magnitudes that can be arithmetically processed in the brain and that refer to countable
and uncountable quantities.

There is a considerable experimental literature demonstrating that laboratory
animals reason arithmetically with real numbers. They add, subtract, divide and order
subjective durations and subjective numerosities; they divide subjective numerosities by
subjective durations to obtain subjective rates of reward; and they multiply subjective
rates of reward by the subjective magnitudes of the rewards to obtain subjective incomes.
Here we summarize a few of the relevant studies.

Adding numerosities. Boysen and Berntson (1989) taught chimpanzees to pick
the Arabic numeral corresponding to the number of items they observed. In the last of a
series of tests of this ability, they had their subjects go around a room and observe either
caches of actual oranges in two different locations or simply Arabic numerals that
substituted for the caches themselves. When they returned from a trip, the chimps picked
the Arabic numeral corresponding to the sum of the two numerosities they had seen,
whether the numerosities had been directly observed (hence, possibly counted) or
symbolically represented (hence not countable). In the latter case, the magnitudes
corresponding to the numerals observed were presumably retrieved from a memory map
relating the arbitrary symbols for number (the Arabic numerals) to the mental magnitudes
that naturally represent those numbers. Once retrieved, they could be added just like the
magnitudes generated by the non-verbal counting of the caches.

Subtracting durations, numerosities and rates. On each trial of the time-left
procedure (Gibbon & Church, 1981), subjects are offered an ongoing choice between a
steadily diminishing delay, on the one hand (the time left option), and a fixed delay, on
the other hand (the standard option). At some unpredictable point in the course of a trial,
the opportunity to choose suddenly terminates, and the subject must then endure the
delay associated with the option it was exercising at that moment. If it was pecking the
standard key, it is stuck with the standard delay; if it was pecking the time-left key, it is
stuck with the time left. The initial value of the time left--the value at the beginning of a
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trial-- is much longer than the standard delay, but it grows ever shorter as the trial goes
on, because the time left is the initial value minus the time so far elapsed in a trial.
Therefore, the longer a trial persists before the loss of choice, the better the time-left
option becomes relative to the standard. When the subjective time left is less than the
subjective standard, subjects switch from the standard option to the time-left option. The
subjective time left is the subjective duration of a remembered initial duration (subjective
initial duration) minus the subjective duration of the interval elapsed since the beginning
of the trial. Thus, in this experiment subjects' behavior depends on the subjective ordering
of a subjective difference and a subjective standard.

In the number-left procedure (Brannon, et al., in press), pigeons peck a center key
in order both to generate flashes and to activate two choice keys. The flashes are
generated on a variable ratio schedule, which means that the number of pecks required to
generate each flash varied randomly between one and eight. When  the choice keys are
activated, the pigeons can get a reward by pecking either of them, but only after their
pecks generate the requisite number of flashes. For one of the choice keys, the so-called
standard key, the requisite number is fixed and independent of the number of flashes
already generated. For the other choice key, the number-left key, the requisite number is
the difference between a fixed starting number and the tally of flashes already generated
by pecking the center key. The flashes generated by pecking a choice key are also
delivered on a variable ratio schedule.

The use of variable ratio schedules for flash generation dissociates time and
number. The number of pecks required to generate any given number of flashes--and,
hence, the amount of time spent pecking--varies greatly from trial to trial. This makes
possible an analysis to determine whether subjects' choices are controlled by the time
spent pecking the center key or by the number of flashes thus generated.

In this experiment, subjects chose the number-left key when the subjective
number left was less than some fraction of the subjective number of flashes required on
the standard key. Thus, their behavior was controlled by the subjective ordering of a
subjective numerical difference and a subjective numerical standard.

There is also evidence that the mental magnitudes representing duration and rates
are signed, that is, there are both positive and negative mental magnitudes (Gallistel &
Gibbon, 2000; Savastano & Miller, 1998). In other words, there is evidence not only for
subtraction but for the hypothesis that the system for arithmetic reasoning with mental
magnitudes is closed under subtraction.

Dividing Number by Duration. When vertebrates from fish to humans are free to
forage in two different nearby locations, moving back and forth repeatedly between them,
the ratio of the expected durations of the stays in the two locations matches the ratios of
the numbers of rewards obtained per unit of time (Herrnstein, 1961). Until recently, it
had been assumed that this "matching" behavior depended on the law of effect. When
subjects do not match, they get more reward per unit of time invested in one patch than
per unit of time invested in the other. Only when they match do they get equal returns on
their investment. Thus, matching could be explained on the assumption that subjects try
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different ratios of investments (different ratios of expected stay durations) until they
discover the ratio that equates the returns (Herrnstein & Vaughan, 1980).

Despite the plausibility of this explanation, it has never been possible to construct
a model based on this assumption that predicted the details of the behavior at all well (Lea
& Dow, 1984). For one thing, because of the way rewards are scheduled in the customary
experimental paradigm, the return to be expected from a given location increases the longer
that location has gone unvisited. If the subject's decisions to leave one location to sample
the other were sensitive to the returns on its behavioral investments, then the probability
of leaving ought to get higher as the duration of a stay increases, but it does not. The
probability of leaving is Markovian (Heyman, 1979); that is, it looks statistically as if the
subjects repeatedly flipped a coin in order to decide whether to leave (Gibbon, 1995;
Gibbon, Church, Fairhurst, & Kacelnik, 1988), with the outcome of later flips being
independent of the outcome of earlier flips. This discovery led to the suggestion that
matching behavior is an unconditioned response to the experience of a given ratio of rates
of reward (Heyman, 1982).

Recently, Gallistel, et al. (2001) have shown that rats adjust to changes in the
scheduled rates of reward as fast as it is in principle possible to do so; they are "ideal
detectors" of such changes. They could not adjust anywhere near so rapidly as they in
fact do adjust if they were discovering by trial and error the ratio of expected stay
durations that equated their returns. This means that Heyman (1982) was right: matching
behavior is an unconditioned or preprogrammed response to the experience of different
rates of reward. The importance of this in the present context is that a rate is countable
quantity--the number of rewards received in a given interval--divided by an uncountable
quantity--the duration of the duration of the given interval.

Gallistel and Gibbon (2000) review the evidence that both Pavlovian and
instrumental conditioning depend on subjects' estimating rates of reward. They argue that
rate of reward is the fundamental variable in conditioned behavior. The importance of this
in the present context is twofold. First, it is evidence that subjects divide mental
magnitudes. Second, it shows why it is essential that countable and uncountable quantity
be represented by commensurable mental symbols, symbols that are all part of the same
system and can be arithmetically combined without regard to whether they represent
countable or uncountable quantity. If countable quantity were represented by one system
(say, a system of discretely ordered symbols) and uncountable quantity by a different
system (a system of continuously ordered magnitudes), it would not be possible to
estimate rates.

Multiplying Rate by Magnitude. When the magnitudes of the rewards obtained in
two different locations differ, then the ratio of the expected stay durations is determined
by the ratio of the incomes obtained from the two locations (Catania, 1963; Harper, 1982;
Keller & Gollub, 1977; Leon & Gallistel, 1998). The income from a location is the
product of the rate and the magnitude. Thus, this result implies that subjects multiply
subjective rate by subjective magnitudes to obtain subjective incomes. The signature of
multiplicative combination is that changing one variable by a given factor--for example,



Gallistel, et al. Page 12

doubling the rate, changes the product by the same factor (doubles the income) regardless
of the value of the other factor (the magnitude of the rewards). Leon and Gallistel (1998)
showed that changing the ratio of the rates of reward by a given factor changed the ratio of
the expected stay durations by that factor, regardless of the ratio of the reward
magnitudes, thereby proving that subjective magnitudes combine multiplicatively with
subjective rates to determine the ratio of expected stay durations.

Ordering Numerosities. Most of the paradigms that demonstrate mental addition,
subtraction, multiplication and division also demonstrate the mental ordering of the
mental magnitudes, because the subject's choice depends on the ordering of the resulting
magnitudes. Brannon and Terrace (2000) demonstrated more directly that monkeys order
numerosities by presenting simultaneously several arrays differing in the numerosity of
the items constituting each array and requiring their macaque subjects to touch the arrays
in the order of their numerosity. When subjects had learned to do this for numerosities
between one and four, they generalized immediately to numerosities between five and
nine. Perhaps most importantly, it was impossible to teach subjects to touch the arrays in
an order that did not conform to the order of the numerosities. This implies that the
ordering of the numerosities is highly salient for a monkey.

In summary, research with vertebrates, some of which have not shared a common
ancestor with man since before the rise of the dinosaurs, implies that they represent both
countable and uncountable quantity by means of mental magnitudes (real numbers). The
system of arithmetic reasoning with these mental magnitudes is closed under the basic
operations of arithmetic, that is, mental magnitudes may be mentally added, subtracted,
multiplied, divided and ordered without restriction.

Evidence that Humans Represent Numerosity with Mental

Magnitudes

The Symbolic Size and Distance Effects

From an evolutionary standpoint, it would be odd if humans did not share with their
remote vertebrate cousins (pigeons) and near vertebrate cousins (macaques and
chimpanzees) the mental machinery for representing countable and uncountable quantity
by means of a system of real numbers. That humans do represent numbers with mental
magnitudes was suggested by Moyer and Landauer (1967; 1973) when they discovered
what has come to be called the symbolic size and distance effects. When subjects are
asked to judge the numerical order of Arabic numerals as rapidly as possible, their
reaction time is determined by the relative numerical distance: the greater the distance
between the two numbers, the more quickly their order may be judged (the distance
effect), and, for a fixed difference, the greater the magnitude of the two numbers, the
longer it takes to judge their order (the size effect).

Moyer and Landauer suggested that the effects of numerical magnitude on reaction
time implied that Weber's law applied to symbolically represented numerical magnitude.
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Weber's law is that the discriminability of two quantities is a function of their ratio.
Moyer and Landauer (1973) suggested that symbolically represented numbers were
translated into mental magnitudes in order to judge the numerical ordering of the
represented numbers, and that noise in the mental magnitudes made it more difficult to
determine which magnitude was greater. This, together with the assumption that more
difficult discriminations take longer to make, explains the symbolic distance effect.

Weber's law is often taken to imply logarithmic compression in the mapping
between objective magnitude and subjective magnitude. This assumption, together with
the usually implicit (and physically implausible) assumption that the noise in mental
magnitudes is magnitude independent, gives Weber's law, because magnitudes with a given
ratio when mapped onto a logarithmic scale are separated by a given distance.

The assumption of logarithmic compression is, however, inconsistent with the
results of the time-left and number-left experiments discussed above. If mental
magnitudes were proportional to the logarithms of objective magnitudes, then equal
differences in mental magnitudes would correspond to equal ratios between the
corresponding objective magnitudes. Thus, when subjects are asked to compare the
subjective difference between two numbers against some standard, the results should
depend not on the objective difference between the two magnitudes but rather on their
ratio. If the subjective difference between six and three is equal to the subjective
magnitude of three, then the subjective difference between sixty and thirty should
likewise be equal to the subjective magnitude of three, because log(60) - log(30) = log(6) -
log(3) = log(2). This is implausible a priori, and it is contrary to experimental fact. In both
the time-left and number-left experiments, the point of subjective equality increased
linearly with the (objective) difference between the initial and standard magnitudes when
their ratio was held constant.

The just mentioned experimental results imply that the mental magnitudes
representing both numerosity and duration are approximately scalar mappings of the
objective magnitudes. If these mental magnitudes have scalar noise, then this, too, gives
Weber's law: the discriminability of two such magnitudes will depend on their ratio, not
their difference. Thus, the symbolic size and distance effects are consistent with the
assumption that when humans judge numerical order, they represent number by mental
magnitudes with scalar variability, just as do other vertebrates. What is unique in humans
(and a few human-trained laboratory subjects) is that these mental magnitudes can be
evoked by way of a learned mapping from the culturally defined linguistic and graphemic
symbols for the integers to the mental magnitudes that represent numerosity in the non-
verbal or preverbal brain.

Non-verbal Counting in Humans

Given the evidence from the symbolic distance effect that humans represent number with
mental magnitudes, it seems likely that they share with the non-verbal animals in the
vertebrate clade a non-verbal counting mechanism that maps from numerosities to the
mental magnitudes that represent them. If so, then it should be possible to demonstrate
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non-verbal counting in humans when verbal counting is suppressed. Whalen, Gallistel and
Gelman (1999) presented subjects with Arabic numerals on a computer screen and asked
them to press a key as fast as they could without counting until it felt like they had
pressed the number signified by the numeral. The results from humans looked very much
like the results from pigeons and rats (Figure 4): the mean number of presses increased in
proportion to the target number and the standard deviations of the distributions of
presses increased in proportion to their mean, so that the coefficient of variation was
constant.

Figure 4. Representative data from the human non-verbal counting experiment by
Whalen, et al. (1999). The mean number of presses made increased in proportion to the
target number (top panel, left ordinate) and so did the variability (top panel, right
ordinate), so the coefficient of variation was constant (bottom panel). Human non-verbal
counting exhibits the same scalar variability as non-human counting and timing (compare
with Figures 1 and 2).

This result suggests, firstly, that subjects could count non-verbally, and, secondly,
that they could compare the mental magnitude thus generated to a magnitude obtained by
way of the learned mapping from numerals to mental magnitudes. Finally, it implies that
the mapping from numerals to mental magnitudes is such that the mental magnitude given
by this mapping approximates the mental magnitude generated by counting the
numerosity signified by a given numeral.

In a second task, subjects observed a dot flashing very rapidly but at irregular
intervals. The rate of flashing (8 per second) was about twice as fast as estimates of the
maximum speed of verbal counting (Mandler & Shebo, 1982). Subjects were asked not to
count but to say about how many times they thought the dot had flashed. As in the first
experiment, the mean number estimated increased in proportion to the number of flashes
and the standard deviation of the estimates increased in proportion to the mean estimate.
This implies that the mapping between the mental magnitudes generated by non-verbal
counting and the verbal symbols for numerosities is bi-directional; it can go from a symbol
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to a mental magnitude that is comparable to the one that would be generated by non-
verbal counting, and it can go from the mental magnitude generated by a non-verbal count
to a roughly corresponding verbal symbol. In both cases, the variability in the mapping is
scalar.

Whalen, et al (1999) gave several reasons for believing that their subjects did not
count subvocally. We will not review them here, because recent further experiments by
Cordes, Whalen, Gallistel, and Gelman (in preparation) speak more directly to this issue.
Cordes, et al suppressed articulation by having their subjects repeat a common phrase
("Mary had a little lamb") while they attempted to press a target number of times, or by
having subjects say "the" coincident with each press. These manipulations certainly
suppress audible articulation. Cordes, et al. recorded the subjects while they pressed, and
there was no audible counting. These manipulations presumably suppress subvocal
articulation as well, because it does not seem likely that someone can subvocally articulate
one word (a count word) at the same moment they audibly articulate a different, non-
count word. The second of the two manipulations for suppressing articulatory coding--
saying "the" with every press-- was particularly effective in that subjects found it easy to
do and it required them to articulate a non-count word at the very moment when they
would articulate a count word if they were verbally counting.

In control experiments, subjects were asked to count their presses out loud in one
of two ways: the conventional way, fully pronouncing each count word; and a way that
subjects found much easier, which was to use only the single digit count words, silently
keeping track of the tens count. In all conditions, subjects were asked to press as fast as
possible.

The variability data from the condition where subjects were required to say "the"
coincident with each press are shown in Figure 5 (filled squares). As in Whalen, et al.
(1999), the coefficient of variation was constant (scalar variability). The best fitting line
has a slope that does not differ significantly from zero. The contrasting results from the
control conditions, where subjects counted out loud fully pronouncing each count word
are the open squares. Here, the slope--on this log-log plot---does deviate very
significantly from zero. In verbal counting, one would expect counting errors--double
counts and skips--to be the most common source of variability. On the assumption that
the probability of a counting error is approximately the same at successive steps in a
count, the resulting variability in final counts should be binomial rather than scalar. It
should increase in proportion to the square root of the target value, rather than in
proportion to the target value. If the variability is binomial rather than scalar, then when
the coefficient of variation is plotted against the target number on a log-log plot, it should
form a straight line with a slope of -0.5. This is what was in fact observed in the out loud
counting conditions: the variability was much less than in the non-verbal counting
conditions and, more importantly, it was binomial rather than scalar. The mean slope of
the subject-by-subject regression lines in the two control conditions was significantly less
than zero and not significantly different from -0.5. The contrasting patterns of variability
in the counting-out-loud and non-verbal counting conditions considerably strengthen the
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evidence against the hypothesis that subjects in the non-verbal counting conditions were
subvocally counting.

Figure 5. The coefficients of variation (σ/µ) are plotted against the numbers of presses for
the conditions in which subjects counted non-verbally and for the condition in which they
fully pronounced each count word (double logarithmic coordinates). In the former
condition, there is scalar variability, that is, a constant coefficient of variation. The slope
of the regression line relating the log of the coefficient of variation to the log of mean
number of presses does not differ from zero. In the latter, the variability is much less and
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it is binomial; the coefficient of variation decreases in proportion to the square root of the
target number. In the latter case, the slope of the regression line relating the log of the
coefficient of variation to the log of the mean number of presses differs significantly from
zero but does not differ significantly from -0.5, which is the slope predicted by the binomial
variability hypothesis. Data from Cordes, et al. (in preparation).

A second feature of the data from some subjects in the Cordes, et al experiment
further strengthens the evidence against the sub-vocal counting hypothesis: In two of the
subjects, the relation between the target number and the mean number of presses was a
power function with an exponent significantly greater than 1, that is, with a slight upward
curvature (Figure 6). Power functions describe the relation between objective magnitudes
and subjective magnitudes (Stevens, 1970). Their most interesting property is that they
preserve equal proportions. Any two pairs of objective magnitudes that have the same
objective ratio (for example, 3:2 and 30:20) have the same subjective ratio when the
mapping from objective magnitudes to subjective magnitudes is a power function.

This finding is consistent with the scalar version of the magnitude-mapping
hypothesis by which the symbolic distance effect is generally explained, the hypothesis
that number words and numerals map to the same kind of mental magnitudes that
represent continuous quantities like stimulus intensities, and that these remembered
mental magnitudes have scalar noise. It suggests that the mapping is constructed by
arranging the linguistic symbols along one continuum and the numerical magnitudes along
an orthogonal continuum, as in a conventional scatter graph. The locus of points relating
the two continua (the points that define the mapping, that is, the function relating the two
continua) fall on a power curve whose slope is close to but not necessarily equal to 1.
Learning the meaning of the count words, on this hypothesis, involves learning
appropriate parameters for the power function that relates the continuum on which the
symbols are arranged to the continuum that represents numerosity.

On the other hand, it is hard to understand how sub-vocal counting could yield a
power-function relation between the target count and the mean number of presses made
that has a slope different from 1. Presumably with vocally based counting, the subject
articulates each successive count word coincident with each successive press until the
word articulated matches the articulation of the target number. In their haste some
subjects might skip (fail to count) some percentage of the presses they make, so that they
systematically undercount their presses, but this would lead to scalar error not an error in
the exponent. The plot of the log of the mean number of presses against the log of the
target number should still be a straight-line with slope 1, because any scalar relation looks
like this on a log-log plot.

In sum, non-verbal counting may be demonstrated in humans, and it looks just like
non-verbal counting in non-humans. Moreover, mental magnitudes (real numbers)
comparable to those generated by non-verbal counting appear to mediate judgments of the
numerical ordering of symbolically presented integers. This suggests that the non-verbal
counting system is what underlies and gives meaning to the linguistic representation of
numerosity.
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Where the Integers Come From

On our hypothesis, it is the real numbers, not the integers, that are the primitive
foundation of numerical reasoning. The integers are a special case whose prominence in
the cultural history of the numbers derives from the discrete character of language. When a
discrete system like language attempts to represent quantity, it will find it much easier to
represent countable (discrete) quantity than to represent uncountable (continuous)
quantity.

Gallistel and Gelman (1992)argue that the non-verbal domain of numerical
estimation and arithmetic reasoning in animals is operative in the very young child and
provides the foundation on which the child's understanding of verbally mediated
arithmetic estimation and reasoning is based. The non-verbal mechanism for establishing
reference is the accumulator counting mechanism, which produces mental magnitudes that
represent numerosities. By "represent", we mean that the symbols generated (the mental
magnitudes) both refer to numerosities and enter into arithmetic reasoning operations.

Figure 6. The mean number of presses
is plotted against the target number for
the two of the four subjects in Cordes,
et al who responded for targets ranging
from 2 to 32 (double logarithmic
coordinates). For these two subjects,
the points fall on straight regression
lines (thick lines) whose slopes are
slightly but very significantly greater
than 1 (thin lines). Note that this
deviation from a scalar relation (a line
with a slope of 1) is evident even in the
small number range (2- 5). Data from
Cordes, et al. (in preparation).
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The situations that trigger verbal counting also trigger non-verbal counting.
Importantly, the verbal counting process is homomorphic to the non-verbal counting
process. In particular, both processes have effective procedures for defining successor
symbols. Each step in the verbal process summons the next word from the list of count
words. Each count in the non-verbal process defines a next magnitude. Thus, the products
of both processes are discretely ordered, that is, the magnitude that results from the next
step is always one fixed increment greater than the magnitude that results from the
previous step, and the word used in the next verbal count is always one item later in the
list than the preceding word. Finally, the product of the verbal process as a whole, that is,
the word used in the last step, represents the numerosity of the set being counted, as does
the magnitude produced by the final increment in the non-verbal counting process.

Gallistel and Gelman (1992) argue that the child perceives the homomorphism
between the non-verbal and the verbal counting process, and this leads assumes that the
words used in the counting process represent the same aspect of the world as do the
mental magnitudes obtained from the non-verbal counting process. This means two
things: First, it means that the child thinks that the counting words refer to the same
things in the world that the mental magnitudes representing numerosity refer to, namely,
countable quantities. Second, it means that the rules of inference (the rules of operation)
governing the magnitudes will be the rules of inference that govern the use of number
words. This is the structural mapping (homomorphism) between the verbal and the non-
verbal systems.

In short, we suggest that the integers are picked out by language because they are
the magnitudes that represent countable quantity. Countable quantity is the only kind of
quantity that can readily be represented by a system founded on discrete symbols, as
language is. It is language that makes us think that God made the integers, because the
learning of the integers is the beginning of linguistically mediated mathematical thinking
about both countable and uncountable quantity.

The Problem of Exact Equivalence

This hypothesis raises interesting questions about where some of our intuitive
convictions about quantity come from. One of these concerns our concept of exact
equivalence. Empirically, there is no such thing as exact equivalence among uncountable
quantities, as every dressmaker knows. Two measured quantities are never exactly the
same. If we relied simply on our experience of uncountable quantity, we would not have a
concept of exact equivalence, because no two experienced lengths and no two experienced
durations are ever exactly the same.

Nonetheless, we believe that when equals are added to equals, the results are
equal. We believe this despite the fact that it may or may not be true of mental
magnitudes, depending upon whether the non-verbal system for reasoning with
magnitudes recognizes equivalence (substitutability) and how it decides whether two
magnitudes are equivalent (substitutable). On the face of it, the mental magnitude
generated by adding a unit magnitude (the counting increment) to the remembered
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magnitude corresponding to "5" on one occasion will not be exactly the same mental
magnitude obtained by adding a unit magnitude to this "same" remembered magnitude on
another occasion, because the remembered magnitude itself varies from occasion to
occasion. This realization has been an obstacle to the more general acceptance of the
hypothesis that the real numbers are the psychologically primitive system for
representing both uncountable and countable quantity (Carey, 1998, in press; Carey &
Spelke, in press; Hauser & Carey, 1998; Leslie, in press; Leslie, Xu, Tremoulet, & Scholl,
1998).

At least three answers to the problem of equivalence suggest themselves. First, a
notion of quantitative equivalence based on real numbers must be essentially a statistical
notion: two noisy mental magnitudes must be judged to represent equivalent quantities
only if they are not decideably different, that is, if they are not reliably orderable. A
system that works with real numbers cannot determine equivalence by exact comparison,
because, given the noise in the representational system itself, no two mental magnitudes
ever match exactly. Two noisy magnitudes can, however, be so close that repeated
attempts to determine their ordering leads to the conclusion that they cannot be reliably
ordered. This can be taken as equivalent to the conclusion that they are substitutable one
for the other. In other words, if a and b are magnitudes, then a = b just in case neither
a > b nor b > a, or, just in case a ≥ b and b ≥ a. On this account, we believe that when
equals are added to equals, the results are equal because it is a truth about our nonverbal
processing of mental magnitudes, whose processing of order and equivalence is adapted to
the noisiness of the symbols being processed.

A slightly different answer that suggests itself is that the preverbal system of
arithmetic reasoning makes use of computational shortcuts that have implicit in them
principles about the outcomes of arithmetic processing. A system that reasoned
arithmetically with noisy magnitudes might implicitly assume--rather than empirically
test for--the equivalence of adding a unit magnitude to equivalent remembered magnitudes.
When dealing cards, for example, it might not compute through each round the numbers of
cards the players have and whether those numbers are equal. It might take care only to
deal one and only one card to every player on each round. If it operates as if this care
guaranteed numerical equality, then it operates in accord with the principle that when
equals are added to equals the results are equal. This principle forestalls the need to
actually do the sums and compare them at the end of every round. The system does not
have to keep four running sums because it knows that the sums remain equal so long as it
continues to add equal increments to each on every round.

As the above example shows, implicit principles about the outcomes of arithmetic
procedures could effect significant computational and mensurational economies. They
may also guide verbally mediated reasoning about quantity.

A third answer that suggests itself is that the discrete nature of the verbal
representation of countable quantity is the origin of our notion of exact equivalence.
Words are discrete entities: the word "three" is not confusable with an infinite number of
other words that are not really "three" but that are arbitrarily "close" to "three." In fact, it
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is unclear what "close" could mean when it comes to words. Thus, the outcomes of two
carefully done verbal counts of the same set will yield the same count word to represent
the set, as every bank teller knows. As already suggested, the outcomes of two different
non-verbal counts of the same set will not contradict this, because their ordering will not
be reliably decideable. Thus, language might not only pick out the integers, it may also
highlight a discrete notion of exact equivalence. In the absence of language, exact
equivalence may not be an issue. It is not easy to think of a non-algebraic context in which
exact equivalence if of any consequence.

In any case, we do not believe that uncertainty about where our notion of exact
equivalence comes from should blind us to the experimental evidence that human
numerical reasoning uses noisy magnitudes to determine such fundamental things as
numerical order--even when it is given linguistic symbols that represent very small
numerosities. If our underlying non-verbal symbols for twoness, threeness and fourness,
are fundamentally discrete, and if the "4", "3" and "2" acquire their meaning by reference
to these discrete non-verbal symbols, then it is hard to see why it takes us longer to
decide that fourness is bigger than threeness than it does to decide that fourness is bigger
than twoness.

Is There a Discrete Foundation for the Integers in the Perception of Small Numerosities?

It is widely accepted that the symbolic size and distance effects imply that adult humans
map linguistic symbols for number to mental magnitudes and that they rely on the
comparison of those noisy magnitudes to determine numerical order. At least at present,
there is no other explanation for these experimentally well established effects. As already
explained, these effects imply that our underlying representation of numerosity has the
continuous character of the real numbers rather than the discrete character of the integers.
Nonetheless, it is commonly argued that our concept of an integer originates in a preverbal
system for representing numerosity that itself uses countable (discrete) rather than
uncountable (continuous) sets of symbols (Carey, in press; Carey & Spelke, in press;
Leslie, in press; Leslie et al., 1998; Simon, 1999). It is generally assumed that this discrete
system only represents small numerosities (four or less) and that the mapping from small
numerosities to the discrete mental entities that represent them--the so-called subitizing
process--does not employ any form of counting. On this hypothesis, the numerosity of
small sets--oneness, twoness, threeness, and fourness-- is directly perceived--like
orangeness, cowness, treeness, and forkness. Alternatively, It has been suggested that the
numerosity of small sets is implicitly represented by the numerosity of the set of object
files that the perceptual system opens, but that numerosity is not explicitly symbolized
(Carey, in press; Carey & Spelke, in press).

We see several empirical and theoretical problems for this hypothesis. The
existence of a subitizing process for the direct and unvarying apprehension of small
numerosities has often been argued for on the basis of empirically shaky claims about the
form of the reaction time function for rapid numerical estimation (for example Davis &
Pérusse, 1988; Siegler & Robinson, 1982; Trick & Pylyshyn, 1994). It has been claimed
either that this function is flat for numerosities between 1 and 4 or 5, or that there is a
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discontinuity in the slope of this function somewhere at 4 or 5. Neither claim is
consonant with the results from several careful determinations of this function
(Balakrishnan & Ashby, 1992; Folk, Egeth, & Kwak, 1988), which show that the reaction
time to judge a numerosity is longer, the greater the numerosity, and that each increment
in reaction time is greater than the preceding increment (that is, the function accelerates
over the range from 1 to 4). The reaction time function for adult judgments of numerosity
is at least as consistent with a counting model as it is with a direct perception model
(Gallistel & Gelman, 1991). If fourness is like forkness and twoness like cowness, as
some versions of the discrete-origins hypothesis maintain, then one needs to explain why
it takes so much longer to perceive fourness than it does to perceive twoness?

Secondly, if small numerosities were represented differently from large
numerosities, then one would expect to see a discontinuity in the psychophysically
measurable properties of number representations at the point where one form of
representation gives way to the other. The data from the above mentioned experiments by
Cordes, et al. (in preparation) with adults counting key presses while saying "the"
coincident with each press are relevant here. For four of the subjects, the target numbers
included 2, 3, 4 and 5, as well as several larger numbers unequivocally beyond the range of
the putative subitizing process. The coefficient of variation was the same for these small
numbers as for the large numbers (see Figure 5, filled squares). Moreover, in the two
subjects whose mapping from linguistically represented numerosity to mental magnitudes
was systematically distorted, this distortion was continuous between the small and large
number ranges (Figure 6).

Proving continuity experimentally is like proving the null hypothesis, it cannot be
done. However, there is no evidence of discontinuity in the psychophysical evidence
from adult humans, and this is hard to reconcile with the hypothesis that small and large
numbers are represented in fundamentally different ways.

We think the theoretical problems with the hypothesis are at least as great as the
empirical problems. If there are discrete non-verbal representatives of numerosity for
only the small numbers--either non-verbal symbols/percepts for oneness, twoness,
threeness and fourness or implicit representations by sets of mental entities whose
numerosity equals the objective numerosity--then the first question that arises is whether
there is any arithmetic processing of these symbols (or sets of object files). Can the
percept of "oneness" be mentally added to the percept of "twoness" to get the percept of
"threeness"? Can one set of object files be compared to another set of object files to
determine if the two sets have the same numerosity? If so, then to effect the comparison
of two sets of three each, the mind would have to have six object files in play at once, and
this is, as we understand it, thought to be impossible. Can a set of one object file be
combined with a set of two object files to yield a set of three object files? If so, then the
assumption that these discrete symbols exist only for a few small numbers leads
immediately to problems with closure. This system will not be closed even under
addition, because there will be no symbol to represent the results of adding "threeness to
"threeness." Thus, if operations with these very limited sets of mental symbols are the
foundation of numerical understanding, it is a puzzle how we come to believe in the
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infinite extentensability of number, in the fact that you can always add one more
(Hartnett & Gelman, 1998). On the other hand, if these symbols for numerosity--whether
explicit or implicit-- cannot be processed arithmetically, then what justification is there
for saying that these symbols constitute a numerical representation? If a representation
does not enable any of the processes appropriate for numbers, then one must ask why it
may be said to be a representation of number.

The second theoretical problem concerns the relation between the two forms of
numerical representation, one discrete and one continuous. The two systems would seem
to be immiscible for the same reasons that analog and digital computers cannot be
hybridized. Although both do arithmetic, they do it in fundamentally different ways.
Thus, there is no way of adding a digitally represented magnitude (for example, a bit
pattern) to a magnitude represented by a analogical magnitude (for example, a voltage),
because the two forms of representation are immiscible. It is hard to see why this same
problem does not arise in the developing human mind, if it represents some numbers
discretely and others by means of magnitudes. If oneness is represented discretely but
tenness is represented by a mental magnitude, how is it possible to mentally add oneness
to tenness?

This question--the question of where the human conception of an integer comes
from--is currently one of the most controversial in the field of numerical cognition (Carey,
in press; Carey & Spelke, in press; Leslie, in press; Leslie et al., 1998; Simon, 1999).
Clearly, our hypothesis about the relation between mental magnitudes and the
linguistically mediated concept of a number cannot be more widely embraced until
consensus is reached on this central question.

Summary

The evidence from experiments that probe the properties of numerical representations in
non-verbal animals and humans suggest that there exists a common system for
representing both countable and uncountable quantity by means of mental magnitudes
formally equivalent to real numbers. These mental magnitudes are arithmetically
processed without regard to whether they represent countable or uncountable quantity.

Adult human appear to rely on a mapping from the linguistic symbols for number
to these preverbal mental magnitudes, even for answering elementary verbal or written
questions like, "Is 3 > 2?". This has led us to suggest that the non-verbal system for
arithmetic reasoning with mental magnitudes precedes the verbal system both
phylogenetically and ontogenetically and that the verbal symbols for numerosity are given
their meaning by reference to the non-verbal mental magnitudes that represent countable
quantity. If this suggestion is correct, then the real numbers are the psychologically
primitive system, not the natural numbers. The special role of the natural numbers in the
cultural history of arithmetic is a consequence of the discrete character of human language,
which picks out of the system of real numbers in the brain the discretely ordered subset
generated by the nonverbal counting process, and makes these the foundation of the
linguistically mediated conception of number.
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