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When dancing, one follows the rhythm 
without much conscious control, while also 
singing, entertaining a conversation, plan-
ning intricate sequences of steps, or esti-
mating the time until the end of the song. 
Processing of rapid beats, in the sub-second 
range seems to be done automatically and 
doesn’t appear to interfere with timekeep-
ing in the range of seconds or minutes, 
required for planning the steps, or estimat-
ing the duration left until the end of the 
song. This may be because the processing 
of rapid beats and slow sequences is split 
between different timing mechanisms and/
or the left and the right hemispheres of our 
brain (Hancock, 2011).

Relatively distinct brain circuits process 
time in the millisecond, seconds-to-min-
utes, or circadian range (Buhusi and Meck, 
2005), but the distinction blurs around 1-s 
intervals. Circadian timing, which oper-
ates over roughly 24 h, and controls func-
tions such as the sleep–wake cycle and the 
metabolic processes, is based on a molecu-
lar clock in the suprachiasmatic nucleus 
(Gallego and Virshup, 2007; Allman and 
Meck, 2011). Millisecond timing engages 
a variety of specialized local circuits in 
the cerebellum (De Zeeuw et al., 2011), 
for fast and fine movement control, or in 
the auditory cortex, for speech processing 
(Nourski and Brugge, 2011). Finally, plan-
ning and motor control in the seconds range 
engages the cortico-striatal circuits, motor, 
parietal, and prefrontal cortices, both in ani-
mals (Meck et al., 2008; Buhusi and Meck, 
2009) and humans (Coull et al., 2004, 2011; 
Stevens et al., 2007). The relative separation 
of these circuits explains why one can deal 
with different attributes simultaneously, 
but also raises the possibility of conflicts 
or cooperation between these circuits for 
time intervals around 1 s.

The question of whether sub- and 
supra-second timing engages distinct 
brain circuits was recently investigated in 
patients with unilateral hemispheric lesions 

(Gooch et al., 2011). Rather than selecting 
patients by lesion, the study used voxel-
based lesion-symptom mapping (Bates 
et al., 2003) in patients with various lesions, 
and evaluated the contribution of each voxel 
for the overall performance in all patients, 
thus tapping into the circuits critical for 
timing without using a priori assumptions 
regarding the location of interest.

Three findings bear noting. First, patients 
with lesions in the frontal or parietal cor-
tices were less accurate than controls, thus 
supporting neurobiological models of 
timing suggesting that cortico-striatal cir-
cuits (Matell and Meck, 2004; Buhusi and 
Meck, 2005; Oprisan and Buhusi, 2011) 
and parietal circuits (Leon and Shadlen, 
2003) develop neural representations of 
time. Second, the right hemisphere was 
involved in timing both sub- and supra-
second timing, consistent with previous 
studies implicating right cortical regions 
in interval timing (Schubotz et al., 2000; 
Rubia et al., 2003; Smith et al., 2003; Coull 
et al., 2004; Meck and Malapani, 2004; 
Lewis and Miall, 2006; Bueti et al., 2008), 
and supporting the hypothesis that right 
dorsolateral prefrontal cortex is crucial for 
timekeeping (Lewis and Miall, 2006; Meck 
et al., 2008). Instead, the left temporal lobe 
was involved in timing sub-second dura-
tions only, consistent with its implication 
in processing fast, auditory information. 
Thus, whereas all durations required the 
same circuitry in the right hemisphere, only 
the shortest intervals (<1 s) involved addi-
tional left-hemisphere structures, suggest-
ing millisecond timing may have a special 
status in the brain.

This distinction between short (sub-sec-
ond) and longer intervals (supra-second) 
is not unique to time. Remarkable parallels 
exist between counting and timing, such 
that it has long been thought that count-
ing may tap into similar cognitive and 
neural mechanisms as that of time (Meck 
and Church, 1983; Walsh, 2003; Feigenson, 

2007; Cantlon et al., 2009). Timing and 
counting abilities are found in a diverse 
range of non-human animal species, from 
honeybees and rats to dolphins and mon-
keys (Meck and Church, 1983; Cantlon and 
Brannon, 2007; Cordes et al., 2007; Dacke 
and Srinivasan, 2008), and they share strik-
ing similarities, including Weber’s law: The 
ease with which two durations or num-
bers are discriminated is based upon their 
ratio, not their absolute difference (Meck 
and Church, 1983; Cantlon and Brannon, 
2007). All species share a system for repre-
senting time and number that must have 
arisen early in evolutionary history and 
is present early in development (Xu and 
Spelke, 2000; vanMarle and Wynn, 2006; 
Brannon et al., 2007, 2008 – see Gallistel, 
1990). In fact, time and number may even 
be represented using a common metric, in 
which the representation of one count is 
equivalent to 200 ms of time (Meck and 
Church, 1983; but see Balci and Gallistel, 
2006). Support for the claim that repre-
sentations of time and number are derived 
from the same mechanism is also provided 
by neurobiological studies of numerical 
processing, which like those of temporal 
processing, implicate parietal areas and, at 
least early in development, this activation 
is unique to the right hemisphere (Rivera 
et al., 2005; Cantlon et al., 2006) as in the 
case of time.

Furthermore, whereas both behavioral 
and neural evidence suggests a distinc-
tion between sub-second and supra- 
second timing, a similar distinction exists 
between representations of small (<4 or 5) 
sets and larger sets. Behavioral data from 
adults, infants, non-human primates, and 
even mosquitofish reveal that small sets 
are treated differently than large sets (e.g., 
Trick and Pylyshyn, 1994; Hauser and 
Carey, 2003; Agrillo et al., 2008; Cordes 
and Brannon, 2009a,b). For example, 
when asked to rapidly identify the num-
ber of items in a set, adults reveal little to 
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