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A B S T R A C T   

The ability to track number has long been considered more difficult than tracking continuous quantities. 
Evidence for this claim comes from work revealing that continuous properties (specifically cumulative area) 
influence numerical judgments, such that adults perform worse on numerical tasks when cumulative area is 
incongruent with number. If true, then continuous extent tracking abilities should be unimpeded by number. The 
aim of the present study was to determine the precision with which adults track cumulative area and to uncover 
the process by which they do so. Across two experiments, we presented adults with arrays of dots and asked them 
to judge the relative cumulative area of the displays. Participants performed worse and were slower on incon
gruent trials, in which the more numerous array had the smaller cumulative area. These findings suggest that 
number interferes with continuous quantity judgments, and that number is at least as salient as continuous 
variables, undermining claims in the literature that continuous properties are easier to represent, and more 
salient to adults. Our primary research question, however, pertained to how cumulative area representations 
were impacted by set size. Results revealed that the area of a single item was tracked much faster and with 
greater precision than the area of multiple items. However, for sets with more than one item, results revealed less 
accurate, yet faster responses, as set size increased, suggesting a speed-accuracy trade-off in judgments of cu
mulative area. Results are discussed in the context of two distinct theories regarding the process of tracking 
cumulative area.   

1. Introduction 

Representing quantity is an important skill for human and non- 
human animals alike. Whether you are a human deciding just how 
many apples you will need to make your favorite apple pie, or a mos
quitofish deciding where in the ocean you can find the highest density 
of zooplankton, the ability to represent approximate quantities is im
portant for day-to-day life. However, which quantities we rely upon for 
these important decisions has been a topic of debate (Gebuis & 
Reynvoet, 2012a; Leibovich et al., 2017; Savelkouls & Cordes, 2017). 
Human and non-human animals can represent discrete quantity (i.e. 
number; Humans: e.g., Halberda & Feigenson, 2008; Non-human ani
mals: e.g., Brannon & Terrace, 1998; Meck & Church, 1983) but they 
can also track continuous quantities (also referred to as continuous 
extent1) such as area, volume, length or density (Humans: e.g., Brannon 
et al., 2006; Odic, 2018; Marchant, Simons, & de Fockert, 2013; Non- 
human animals: e.g., Boysen et al., 2001). Not surprisingly, these dis
crete and continuous quantities are strongly correlated with one an
other: e.g., 10 apples are not only more numerous than 5 apples, but 

their cumulative volume, weight, surface area, and density are also 
greater. This naturally strong correlation between discrete and con
tinuous variables has led researchers to question the extent to which we 
track these quantities independently of each other. 

A majority of the research investigating humans' quantitative abil
ities has focused on our ability to represent discrete number. While 
substantial research has supported the idea that infants, children, and 
adults are remarkably good at representing number (Halberda & 
Feigenson, 2008; Odic et al., 2015; Xu & Spelke, 2000), not everyone 
agrees. Proponents of the “Sense of Magnitude” (SoM) theory take a 
neo-Piagetian approach to number representation, suggesting that our 
abilities to track number are fully reliant upon an ability to track 
continuous quantities (Gebuis & Reynvoet, 2012b; Leibovich et al., 
2017). The premise of this argument is that continuous quantities such 
as element area (EA), cumulative area (total area of all items in an 
array; CA) or density (the ratio of the number/area of items and the size 
of the display) are derived from, and dependent upon, the perceptual 
qualities of the display, and thus are significantly easier to track than 
number. In contrast, number is considered to be an abstract quantity – it 
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can be tracked using many different sensory modalities (vision, sound 
and even touch), and even compared across modalities (e.g. it is pos
sible to compare the number of voices heard to the number of people 
seen). As such, the ability to track number has been considered to in
volve much higher order cognitive processes than tracking continuous 
quantities, making it unlikely that number is tracked in the presence of 
other perceptual quantities. 

As a direct test of these claims, researchers have investigated whe
ther we can track number independent of continuous properties. 
Although substantial work reveals that continuous properties can bias 
numerical judgments (Gebuis & Reynvoet, 2012a; Hurewitz et al., 2006;  
Leibovich et al., 2015), researchers have successfully developed para
digms that systematically control for continuous properties that typi
cally correlate with number, providing strong evidence that humans are 
capable of tracking number independent of continuous perceptual 
variables (Halberda & Feigenson, 2008; Lipton & Spelke, 2003;  
Lourenco et al., 2012; Odic et al., 2013; Starr et al., 2013; Xu et al., 
2005; Xu & Spelke, 2000). However, less work has explored the con
verse; that is, how well can we track continuous properties independent 
of number? Are continuous properties easier to track? Notably, as 
posited by the SoM theory, numerical abilities would only be dependent 
upon continuous extent tracking if and only if continuous extent re
presentations are more precise and more salient than numerical ones. If 
our abilities to track continuous properties are less refined than our 
abilities to track number, then it seems unlikely that humans would 
primarily rely upon less precise continuous representations when 
tracking multiple items. Although a myriad of studies have examined 
number discrimination abilities in the context of competing continuous 
extent information (Barth, 2008; Gebuis & Reynvoet, 2012a; Hurewitz 
et al., 2006; Leibovich & Henik, 2014; Salti et al., 2017), little research 
has directly examined our abilities to discriminate arrays on the basis of 
continuous quantity in the context of competing numerical information. 

The aim of the present study was to examine adult abilities to dis
criminate cumulative area (CA) across arrays with differing numerical 
information, in order to shed light on the process by which adults track 
cumulative area. Although there are many different continuous prop
erties we could have chosen to focus on, the current investigation fo
cused exclusively on cumulative area to build upon several previous 
studies. These studies have revealed that humans are sensitive to 
changes in the surface area of items in a display and that cumulative 
area changes may impact number discrimination performance (e.g.,  
Barth, 2008; Cordes & Brannon, 2008; DeWind & Brannon, 2012;  
Gebuis & Reynvoet, 2012a; Hurewitz et al., 2006). We had two goals: 
(1) to determine the precision with which adults track CA across var
ious set sizes and (2) to investigate if and how CA discriminations are 
influenced by numerical information. That is, we aimed to understand 
the process by which we track continuous quantities – are CA re
presentations dependent upon number? This latter question is of the
oretical importance because it can speak to how our representations of 
number and continuous quantities may be related. 

How well do adults discriminate Cumulative Area? 

Most studies that have examined adult CA tracking abilities have 
used discrimination or numerical Stroop type tasks. In these types of 
tasks, on some trials continuous properties and number are incongruent 
with one another (e.g. the array with a greater number of items has a 
smaller CA) and on other trials, number and continuous properties are 
congruent (e.g. the array with the greater number of items also has a 
greater CA). Although explicit instructions are to judge the relative 
numerosity of the displays (i.e., not to attend to cumulative area), 
multiple studies have found that adults consistently perform worse on 
incongruent compared to congruent trials (Barth, 2008; DeWind & 
Brannon, 2012; Gebuis & Reynvoet, 2012a; Hurewitz et al., 2006). This 
has been taken as evidence that even when given explicit instructions to 
pay attention to number, adults automatically process continuous 

properties of the set (even when irrelevant to the task). These findings 
have provided the basis for claims that continuous perceptual proper
ties are more readily and precisely tracked than number. 

However, is it true that adults track CA with relatively greater 
precision than that of number? If numerical judgments were fully de
pendent upon continuous properties, then one would expect our ability 
to track continuous quantities to be more refined than that of number. 
That is, humans should be at least as good at discriminating arrays 
based upon continuous quantities as they are at discriminating arrays 
based upon number. However, very few studies have specifically ex
amined adult abilities to discriminate continuous properties. A handful 
of studies have compared the precision with which infants, children, 
and adults track the area of a single item (e.g., a circle or amorphous 
shape) to their numerical tracking abilities, reporting similar, or even 
more precise area tracking abilities (Anderson & Cuneo, 1978; Brannon 
et al., 2006; Leibovich & Henik, 2014; Lourenco & Bonny, 2017; Odic 
et al., 2013). Yet, critically, the only way to address claims (such as 
those made by SoM theory) that continuous extent is more readily 
tracked over number is to examine the precision of area representations 
in the context of sets where numerical information is available. Im
portantly, studies that have included trials in which number and area 
are incongruent with one another have found performance costs on 
incongruent trials such that CA judgments are less accurate when 
number is incongruent with CA (Barth, 2008; Hurewitz et al., 2006).2 

Other studies that have presented participants with sets of items but 
kept the number of items identical in both sets found that participants 
performed just as well on the area task compared to a number task 
(Lourenco et al., 2012). That is, number may be just as salient as CA 
judgments in the context of sets.3 

There is some evidence to suggest that continuous quantity dis
criminations may be less precise than numerical discriminations, at 
least in human infants. Studies that have investigated 6–7-month-olds' 
abilities to track the size of individual objects (element area, or EA) 
when presented in the context of an array of items, or the CA of an array 
of items, have found that infants needed as much as a 1:4 ratio of 
change in both EA and CA to detect a change. This 1:4 ratio of change is 
notably greater than the 1:2 ratio of change necessary to detect changes 
in number (Brannon et al., 2004; Cordes & Brannon, 2008, 2011). In 
sum, the infant literature suggests that infants are better at tracking 
number than continuous dimensions in the context of sets (i.e., more 
than one item). Which opens up the question – if number interferes with 
an infant's abilities to track CA, by exactly what process is it that we 
track CA? 

Processes involved in CA representation 

So how do we represent CA when presented with an array of items? 
The previous literature has presented us with two mutually exclusive 
theoretical possibilities. 

One possibility, which we will refer to as the ‘Direct Perception’ 
hypothesis, is consistent with assumptions of the Sense of Magnitude 

2 Barth (2008) ran additional models of the data and concluded that this 
decreased performance in incongruent trials was not due to interference be
tween the two dimensions of number, but instead could be explained by the fact 
that participants underestimated individual element areas resulting in more 
difficult discriminations. Importantly, we highlight that these findings are 
consistent with claims that area judgments are more difficult than numerical 
ones. 

3 Note Hurewitz et al. (2006) reported CA interfered with numerical judg
ments more so than number interfered with CA judgments. Importantly, how
ever, the authors did not systematically match the ratio of change across the 
two dimensions, such that numerical differences across displays may have been 
significantly smaller (and thus less salient) than CA differences. As such, it is 
inappropriate to draw conclusions regarding the relative salience of the two 
quantities from their data. 
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(SoM) theory. According to the Direct Perception hypothesis we are 
able to track surface area directly from the perception – that is, we 
directly perceive exactly how much area is covered just as readily as we 
notice the color or luminance of the items. Importantly, this direct 
abstraction does not require extensive cognitive processing, such as 
summing surface area across individual items, and thus does not require 
individuating items in the array. As such, the number of items in the 
display – that is the number of items over which CA is tracked – is 
irrelevant to CA tracking because it involves a single cognitive process 
and thus set size should have no impact on the precision of CA acuity, 
nor the speed with which CA is tracked (i.e., it should take the same 
amount of time to process the CA of a set of 2 items as it does to process 
the CA of a set of 15 items). Moreover, it is also conceivable (though not 
a requirement under this hypothesis) that the precision with which we 
track the area of a single item may in fact be comparable to the pre
cision with which we track the CA of 20 items because again, the areas 
in both cases are simply directly perceived. 

Support for the Direct Perception hypothesis comes from studies 
revealing similar infant CA discrimination abilities for small sets (2–3 
items) as that of large sets (10–15 items),4 suggesting that CA acuity is 
unaffected by set size (Cordes & Brannon, 2008). This Direct Perception 
Hypothesis underlies many neo-Piagetian claims (e.g. Gebuis & 
Reynvoet, 2012b; SoM: Leibovich et al., 2017; Mix et al., 2002) positing 
that continuous extent quantities are directly perceived, at least early in 
development, making them easier to track than more abstract quan
tities, like number. 

On the other hand, according to the ‘Computation’ hypothesis (see  
Barth, 2008), rather than representing CA directly, we may track CA by 
representing the surface area of individual items within an array (likely 
through direct perception of the surface area of individual items) and 
then summing across these representations (e.g. adding representations 
of individual areas together). Because prior research suggests that 
mental summation is not a completely noiseless process (Cordes et al., 
2007; McCrink et al., 2007), each addition process is expected to con
tribute noise to the representation. Thus, precision in the representation 
of CA should decrease as the number of elements in the display in
creases. Moreover, because each additional item requires additional 
processing, arrays with a greater number of elements should take more 
time to process than ones with fewer elements. 

Support for the Computation hypothesis is found in prior research 
revealing infants are significantly better (i.e., more precise) at tracking 
the area of a single item, compared to tracking the CA of multiple items 
(Brannon et al., 2004; Brannon et al., 2006; Cordes & Brannon, 2008). 
Additionally, Barth (2008) compared quantitative models of adult CA 
judgments and determined that a summation account provided the best 
explanation for the data. 

The current study 

Importantly, no studies have directly examined the effect of set size 
on cumulative area tracking abilities in adults. With supporting evi
dence for both the Direct Perception and Computation hypotheses, it is 
still unclear how numerical information may or may not influence our 
ability to track CA. One key distinction between the two hypotheses is 
in the role that number plays in CA discriminations. While the Direct 
Perception hypothesis assumes that number should have no effect on 
CA acuity or reaction times (RTs), the Computation hypothesis predicts 

less CA acuity and increasing RTs with increasing set size. 
In the current study, we presented adults with pairs of dot arrays 

and asked them to judge which array had the greater CA. We ma
nipulated 4 variables: the CA Ratio (the ratio between the CAs of two 
displays – a way of varying the relative difficulty of the comparison to 
provide a means of assessing CA acuity), Congruency (whether the 
display with the larger number of dots had the smaller or greater CA), 
Number Ratio (the ratio between the number of items in the two dis
plays), and Set Size (how many items were in each display). We ex
plored the following issues:  

(1) Numerical Congruency: Building on prior research (Barth, 2008;  
Hurewitz et al., 2006), we aimed to provide clarity on how con
flicting or consistent numerical information impacts CA tracking 
abilities. If (according to the SoM theory) CA is relatively more 
salient than number, then CA acuity should be unaffected by 
whether or not numerical information is congruent or incongruent 
with CA magnitude. On the other hand, some prior work suggests 
that numerical information is automatically processed, even in the 
context of a CA judgment task (Barth, 2008; Hurewitz et al., 2006), 
suggesting both quantities may be similarly salient. If so, then 
congruent numerical information should promote CA discrimina
tion performance and/or incongruent numerical information should 
hinder CA discrimination performance. 

Moreover, in this study, we purposely manipulated the relative 
salience of the numerical differences across arrays to determine whe
ther larger numerical differences produce greater congruency effects. 
To investigate this question, we presented three distinct Number Ratios 
(1 1.33 and 1.5) across trials to explore how numerical differences 
between the displays may make number more or less salient in the case 
of CA judgments. Importantly, through the inclusion of 1 Number ratio 
trials (i.e., in which the number of items in each of the two arrays was 
the same), we were also able to compare performance on these number 
neutral trials to those of congruent and incongruent trials to determine 
whether numerical congruency facilitates, and/or incongruency hin
ders, CA judgments. 

(2) Set Size: The question of how cumulative area judgments are in
fluenced by set size has not previously been addressed. Importantly, 
understanding the influence of set size – in particular, whether the 
precision and speed of CA judgments decreases with increasing 
number - is key to distinguishing between the Direct Perception and 
Computation hypotheses. To address this, we presented participants 
with pairs of arrays composed of either: two single dots, small sets 
(4–7 total dots), medium sets (12–15 total dots), or large sets 
(20–25 total dots). Importantly, given that the question of Set Size 
is independent of the question of numerical congruency, we focused 
this analysis exclusively on trials in which the number of items in 
the two arrays was the same (i.e., number neutral trials). 

Across two experiments, we addressed these research questions by 
asking adult participants to rapidly judge which of two simultaneously 
presented visual arrays had the larger CA. Importantly, number was 
irrelevant to our task demands and should have had no influence on 
performance. 

2. Experiment 1 

Given that few studies have examined adult CA judgments, 
Experiment 1 examined the effect of Set Size on adults' CA dis
crimination performance. Participants completed a discrimination task 
in which they were asked to choose which of two arrays of dots had a 
greater CA. 

4 This study relied upon a standard habituation looking-time paradigm, re
vealing that infants were capable of discriminating a 4-fold, but not a 3-fold, 
change in CA, across exclusively small and exclusively large sets. Because infant 
habituation techniques do not lend themselves to fine-grained assessments of 
discrimination abilities, it is not possible to determine whether discrimination 
capabilities may have varied somewhat as a function of set-size between the 4- 
fold and 3-fold changes. 
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2.1. Methods 

2.1.1. Participants 
Seventy-eight Boston College students participated in our study in 

exchange for cash or course credit (66 female, M = 18.89 years, 
Range = 18–26 years). Informed consent was obtained from all parti
cipants. 

2.1.2. Procedure 
Each participant completed the study on a computer with a 22″ 

monitor. Participants were first presented with an instruction screen 
that informed them that on each trial, they should choose the display of 
dots with the “greater amount of blue, therefore the greater cumulative 
area of blue.” Each trial consisted of two side-by-side displays of blue 
dots and participants made a forced choice judgment about the pre
sented pair of displays by pressing the left or right arrow key on the 
keyboard. They were first presented with a minimum of four practice 
trials; only once they had responded correctly on three of the four 
practice trials did they move onto the test trials (all participants moved 
to the test trials after the first set of practice trials). The practice trials 
were designed to be very easy for the participant, with the CA Ratio 
changing 3-fold across the two displays, and the number of items (set 
size) varying from 2 to 12 dots (this was identical in range to the test 
trials). Next, participants received 190 test trials, with a break every 50 
trials (3 breaks total). Participants were encouraged to look away from 
the computer and talk to the experimenter during the break. The order 
of the trials, as well as which display was presented on the left or right 
side of the screen was randomized for each participant. 

Across trials we manipulated the following variables: CA Ratio 
(1.15, 1.33, 1.45, 1.6, or 1.9), Number Ratio (1, 1.33 or 1.5), 
Congruency (Congruent or Incongruent), and Set Size (Small (4–7 total 
items), Medium (12–15 total items) or Large (20–25 total items) sets) to 
determine how these factors influenced participants' CA judgments (See  
Table 1 for breakdown of trials). Participants experienced a total of 180 
trials involving arrays of multiple items: 5 CA ratios x 3 Number Ratios 
x 2 Congruency × 3 Set Sizes x 2 trials. Importantly, however, trials 
involving the Number Ratio 1 were neutral trials since they were nei
ther congruent nor incongruent. For these neutral trials, we had one 
comparison type for each Set Size (i.e., Small Sets: 2v2, Medium Sets: 
6v6 and Large Sets: 10v10). Lastly, for each CA Ratio, we included two 
trials that were “single” trials in which each display contained only one 
dot (10 single item trials: 2 trials × 5 CA ratios). These trials would 
allow us to compare participants' area discriminations involving a 
single item to CA discriminations involving multiple items (trials with 
small, medium and large set sizes). In total, participants completed 190 
trials. 

Upon completing the test trials, participants were asked two ques
tions regarding their strategies for performing in the task. Given that 
participants' responses on these two questions were not related to their 
actual performance on the task, these questions were dropped from 
further analysis. 

2.1.3. Stimuli 
All stimulus parameters are available on OSF (https://osf.io/ 

ejb9p/?view_only=972b5df13a9548de89cdc39c46e7fbef). Stimuli 
were created using Adobe Illustrator (See Fig. 1 for example stimuli). 
For our CA values, we generated a list of 12 random CA values between 
20 and 45 cm2 (this range was deemed reasonable for our display size, 
ensuring that each individual dot would not become so small that they 
would be hard to see, or so big that they would not fit within the sti
mulus background) and used these 12 values for each Number and CA 
Ratio. These random numbers were then multiplied by the appropriate 
CA Ratio to determine the CA of the comparison display. Thus, across 
all CA Ratios tested, the CA values ranged between 23 and 83.6 cm2. 

To ensure that participants would not be able to use the size of 
individual dots as a cue for discrimination, the dots in each array were 
heterogeneous in size. The individual dot sizes were randomly chosen 
to fall within 35% of the average element area (as per Lidz et al., 2011). 
Moreover, item density was controlled such that the dots were ran
domly placed within an invisible rectangular background that varied in 
size dependent upon the number of items. To do this, the ratio between 
the number of dots in the display and the size of the background was 
computed for one display and used to determine the size of the back
ground for its pair to keep item density within trials. Across trials, the 
dot density varied from 0.009–0.03 items/cm2 (thus, the item back
ground ranged from 226.7 cm2 to 460 cm2). 

2.1.4. Data processing and analyses 
We performed all analyses on both accuracy (percentage correct) 

and reaction time (RT). For accuracy analyses, participants whose 
performance fell 3 standard deviations above or below the mean for 
their overall percentage correct on the task were excluded from any 
analyses (N = 1). We also calculated Weber fractions for each parti
cipant using only the data from the trials with sets greater than 1. 
Weber fractions (w) are defined as the smallest change between two 
quantities that can be reliably be detected. We estimated w using a 
psychophysical model using Gaussian random variables as has been 
done in previous research (Halberda & Feigenson, 2008; Izard et al., 
2008; Moyer & Bayer, 1976). In short, we inputted each participants' 
accuracy on the four hardest CA Ratios (1.15, 1.3, 1.45 and 1.6) and 
manipulated a single free parameter w until we found a Weber curve 
that best fitted the data and that minimized error (Halberda & 
Feigenson, 2008). 

For RT analyses, only trials with correct responses were included. 
All RTs 3 standard deviations above or below the average RT for that 
participant were excluded. Similar to accuracy analyses, participants 
whose performance fell 3 standard deviations above or below the mean 
for their overall RT on the task were excluded from any analyses 
(N = 1). 

2.2. Results & discussion 

On average, participants performed well on our task with 85.76% 
accuracy (Range = 60.53–98.42%). The average Weber fraction across 
all trials with multiple items was w = 0.23, (Range = 0.07–1.2; 
SD = 0.16, SE = 0.018). We compared this Weber fraction to the 
Weber fraction previously reported by Odic et al. (2013) with adults on 
a number discrimination task (w = 0.13, SE = 0.02, SD = 0.057, 
N = 8). Since the two samples varied so widely in their standard de
viations and the number of participants tested, we conducted an in
dependent samples t-test assuming unequal variances using the Welch- 
Satterthwaite procedure for unequal variances. This revealed that the 
weber fraction for our CA discrimination task was significantly higher 
than that reported for numerical discriminations, t(16.22) = 3.35, 
p  <  .01, suggesting that CA acuity in our study was significantly worse 
than prior reports of numerical acuity (a higher weber fraction indicates 
lower acuity). 

Table 1 
Experiment 1: Breakdown of the number of stimuli per variable manipulated.          

Number Ratio 1, 1.33 or 1.5 Single 
Trials Set Size Small Medium Large 

Congruency Cong. Incong. Cong. Incong. Cong. Incong. 

Participants were tested on 5 CA Ratios (1.15, 1.33, 1.45, 1.6, or 1.9). Then for 
each CA Ratio, trials were broken down as illustrated above for the variables of 
Number Ratio, Set Size and Congruency. This resulted in a total of 180 multiple 
items trials (5 CA ratios x 3 Number Ratios x 2 Congruency × 3 Set Sizes x 2 
trials = 180 trials). Additionally, participants were tested on 2 single trials per 
CA Ratio, for a total of 10 single trials. In total, participants therefore were 
presented with 190 trials (180 multiple items trials +10 single trials).  
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2.2.1. Does numerical congruency matter for CA judgments? 
2.2.1.1. Accuracy. To explore the impact of numerical congruency, we 
conducted an ANOVA on accuracy data from those test trials involving 
arrays with more than one item (excluding single item trials) and in 
which the number of items differed across arrays (i.e., where numerical 
ratio did not equal one).5 We ran a 2 (Number Ratio:1.33 or 1.5) x 2 
(Congruency: Congruent vs. Incongruent) repeated measures ANOVA 
on data from those trials. Analyses revealed a main effect of congruency 
(F(1,76) = 87.62, p  <  .001, ηp

2 = 0.54), such that participants 
performed significantly better on congruent (M = 93.55%) compared 
to incongruent trials (M = 71.30%), in line with previous research 
(Barth, 2008; Hurewitz et al., 2006) and in contradiction of predictions 
of the SoM Theory. Analyses also revealed a main effect of Number 
Ratio (F(1,76) = 20.68, p  <  .001, ηp

2 = 0.21) which was qualified by 
a significant Number Ratio x Congruency interaction (F(1,76) = 16.03, 
p  <  .001, ηp

2 = 0.17). Although adults performed better on congruent 
compared to incongruent trials for both numerical ratios (1.33 ratio: t 
(76) = 8.26, p  <  .001, d = 0.94; 1.5 ratio: t(76) = 9.73, p  <  .001, 
d = 1.11), the impact of congruency was greater when the numerical 
difference between the arrays was greater (Mdifference 1.33 
ratio = 19.61%, Mdifference 1.5 ratio = 24.89%; t(76) = 4.00, 
p  <  .001, d = 0.46; see Fig. 2). Furthermore, although there was no 
difference in performance between the two Number Ratios for 
congruent trials (Mdifference = 0.52%; t(76) = 0.81, p = .41, 
d = 0.09) there was for incongruent trials (Mdifference = 5.80%, t 
(76) = 4.85, p  <  .001, d = 0.55). 

2.2.1.2. Reaction time. We conducted the same 2 (Number Ratio:1.33 
or 1.5) x 2 (Congruency: Congruent vs. Incongruent) repeated measures 
ANOVA but this time looking at reaction times. We again found a main 

effect of congruency (F(1,74) = 30.26, p  <  .001, ηp
2 = 0.29), such 

that reaction times were significantly faster on congruent 
(M = 946.31 s) compared to incongruent trials (M = 1087.57 s). 
However, unlike our findings with accuracy, we did not find a 
significant main effect of Number Ratio (F(1,74) = 1.68, p = .20, 
ηp

2 = 0.02). We did find a significant interaction (F(1,74) = 12.22, 
p  <  .001, ηp

2 = 0.14). Reaction times were faster on congruent 
compared to incongruent trials for both numerical ratios (1.33 ratio: t 
(74) = 5.95, p  <  .001, d = 0.94; 1.5 ratio: t(74) = 3.59, p  <  .001, 
d = 1.11). However, the impact of congruency was greater when the 
numerical ratio greater (Mdifference 1.33 ratio = 93.87 s, Mdifference 1.5 
ratio = 188.65 s; t(74) = 3.50, p  <  .001, d = 0.40). Furthermore, 
there was a significant difference in performance between the two 
Number Ratios for congruent trials (Mdifference = 63.67 s; t(74) = 4.07, 
p  <  .001, d = 0.47) but not for incongruent trials 
(Mdifference = 31.12 s; t(74) = 1.49, p  <  .001, d = 0.17). 

Congruency

Congruent Incongruent

Se
t S

iz
e

Sm
al

l 
M

ed
iu

m
L

ar
ge

Neutral Trials

Se
t S

iz
e

Si
ng

le
 

Sm
al

l
M

ed
iu

m
L

ar
ge

A. B.

Fig. 1. Example stimuli pairs for the 1.6 CA Ratio. 
Fig. 1A. Stimuli are broken down by Set Size (Small, Medium or Large) and Congruency (Congruent or Incongruent). All stimuli are of the 1.33 Number Ratio. For 
each stimuli pair, the image on the left with the darker border has the larger CA. 
Fig. 1B. This figure shows trials involving the Number Ratio 1 (i.e., the number neutral trials). Stimuli are broken down by Set Size, including single item trials. 
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Fig. 2. Experiment 1: percent correct as a function of number ratio (1.33 and 
1.5) and congruency (congruent and incongruent). Error bars represent stan
dard error. 

5 Trials involving a Number Ratio of 1 were excluded because there was no 
way to categorize those trials as being congruent or incongruent. 
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2.2.2. Do numerical differences across the displays impact our CA tracking 
abilities? 
2.2.2.1. Accuracy. Next, we examined the impact of numerical 
congruency. That is, relative to neutral trials (trials where the 
number of items was the same in both displays i.e., Number Ratio 1) 
did numerical congruency promote performance, did numerical 
incongruency detrimentally impact performance, or both? We 
performed a repeated measures ANOVA comparing performance 
across all three types of trials (neutral, congruent, incongruent; 
collapsing across all numerical and CA ratios). The main effect of 
congruency was significant, F(2, 152) = 90.86, p  <  .001, ηp

2 = 0.55. 
Paired samples t-tests revealed that performance on the incongruent 
trials (71.30%) was significantly worse than on the neutral trials 
(90.91%, t(76) = 10.93, p  <  .001, d = 1.25) and that performance 
on the congruent trials (93.55%) was significantly better than the 
neutral trials (t(76) = 2.80, p  <  .01, d = 0.32, See Fig. 3). 

2.2.2.2. Reaction time. A repeated measures ANOVA comparing 
reaction times across neutral, congruent, and incongruent trials 
(collapsing across all numerical and CA ratios) also revealed a main 
effect of congruency, F(2, 152) = 31.64, p  <  .001, ηp

2 = 0.30. Similar 
to our findings with accuracy, a paired samples t-test revealed that 
reaction times on the congruent trials (968.02 s) were significantly 
faster than the neutral trials (1036.91 s, t(75) = 5.35, p  <  .001, 
d = 0.62), which, in turn, were significant faster than the incongruent 
trials (1074.19 s; t(75) = 3.08, p  <  .01, d = 0.36). 

Thus, both accuracy and reaction time data suggest that conflicting 
numerical information (i.e., incongruency) detrimentally impacted 
performance relative to neutral trials, but consistent numerical in
formation (i.e. congruency) also facilitated performance relative to 
neutral trials. Although incongruent numerical information appeared to 
detrimentally impact performance significantly more so than congruent 
numerical information benefited performance, it should be noted that 
the high level of performance on congruent trials may have led to 
ceiling effects in performance, limiting the extent to which performance 
could benefit from congruent numerical information. 

2.2.3. How does set size impact CA acuity? 
2.2.3.1. Accuracy. To investigate how differing set sizes impacted CA 
discrimination performance, we ran a repeated measures ANOVA 
comparing performance across the four set sizes (Single item, Small 
set, Medium set, Large set). Importantly because single item trials 
necessarily were number neutral (i.e., a comparison of one item to one 
item cannot involve congruent or incongruent trials) and because 
numerical congruency was unrelated to this question, we limited this 
analysis to only number neutral trials (those trials where number was 

identical in both arrays i.e., Number Ratio 1). Analyses revealed a 
significant effect of set size (F(3,228) = 8.05, p  <  .001, ηp

2 = 0.10), 
driven by significantly better performance on the Single trials 
(M = 94.36%) compared to Small (M = 91.22%), Medium 
(M = 90.26%), or Large sets (M = 89.81%, p's  <  0.001, 
d's  >  0.40). Although performance tended to decrease as a function 
of increasing set size, the difference in performance across Small, 
Medium, and Large set sizes did not reach significance (p's  >  0.15; See  
Fig. 4). 

Because it is conceivable that the processes involved in tracking 
area in our single item trials may have been distinct from those invol
ving more than one item (i.e., direct perception of area of a single item 
versus a potential computation process for tracking CA of a group of 
objects), we performed one additional analysis to explicitly compare 
accuracy as a function of set size for only those trials involving arrays of 
multiple items. We calculated the slope relating performance on small, 
medium, and large set sizes to a dummy variable (coding small as 1, 
medium as 2, and large as 3), examining only performance on the 
neutral trials, with a Number Ratio 1. We found a negative slope of 
−0.006 that did not differ significantly from 0, t(77) = 1.38, p = .17, 
d = 0.15.6 This suggests that although performance decreased as set 
size increased, this trend was not significant. 

2.2.3.2. Reaction time. A repeated measures ANOVA comparing 
reaction times across the four set sizes revealed a significant main 
effect (F(3,222) = 11.68, p  <  .001, ηp

2 = 0.14). Consistent with 
accuracy results, single item trials (M = 923.64 s) were processed 
significantly faster than trials involving arrays with multiple items 
(Small: M = 1067.04 s, Medium: M = 1025.68 s, Large: 
M = 1015.53 s; p's  <  0.001, d's  >  0.39). However, the pattern of 
results across sets containing more than one item was different. In 
particular, reaction times were significantly faster for large sets 
compared to small sets (t(74) = 2.17, p = .03, d = 0.25), although 
reactions times were similar for Small and Medium sets (t(74) = 1.83, 
p = .07, d = 0.21), and Medium and Large sets (t(74) = 0.47, p = .64, 
d = 0.05; See Fig. 5). We return to these results in the General 
Discussion. 

We calculated the slope relating reaction times on small, medium, 
and large set sizes to a dummy variable and found that although the 
slope was negative (−20.68) it was not significantly different from 0, t 
(74) = 1.83, p = .07, d = 0.21. 
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Fig. 3. Experiment 1: percent correct as a function of number ratio (1.33 and 
1.5) and congruency (congruent and incongruent). Error bars represent stan
dard error. 
* p  <  .05, ** p  <  .01, *** p  <  .001 
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Fig. 4. Experiment 1: percent correct as a function of set size (single, small 
(4–7), medium (12–15) or large (20–25)). Error bars represent standard error. 
* p  <  .05, ** p  <  .01, *** p  <  .001 

6 Even when we excluded the easiest 1.9 ratio where participants were per
forming at ceiling, we found a negative slope of −0.005 that did not differ 
significantly from 0, t(76) = 0.87, p = .39, d = −0.10. 
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3. Experiment 2 

Altogether, results from Experiment 1 suggest that CA discrimina
tions in adults are ratio-dependent and hindered by numerical incon
gruency. Furthermore, we found that adults are significantly better 
(faster and more accurate) at discriminating the size of a single item 
compared to discriminating CA across multiple items. However, our 
results regarding how set size influences performance provided con
flicting patterns of results across accuracy and RT, making it difficult to 
distinguish between our competing theories. 

The goal of Experiment 2 was to replicate findings of Experiment 1 
with three small changes. First, in Experiment 1, we controlled for item 
density by holding constant the number of items in the display per unit 
background area. Although this controlled for density of the number of 
items within the display, in retrospect, this did not control for the size 
of the items (and thus the inter-item distance) of the items within the 
display. That is, displays with greater cumulative area (holding number 
constant) necessarily had dots presented closer together in Experiment 
1. Thus, in Experiment 2, we remedied this issue by controlling for area 
density by holding constant the cumulative surface area of the items per 
unit background to ensure that density did not drive our pattern of 
results. Second, in Experiment 2, we eliminated the 1.9 CA Ratio since 
adults performed near ceiling on this ratio, thus Experiment 2 tested 
adults on only 4 CA Ratios: 1.15, 1.3, 1.45 and 1.6. Lastly, we increased 
the number of trials participants completed in Experiment 2, providing 
greater confidence in our performance estimates. 

3.1. Methods 

The methods of Experiment 2 were identical to Experiment 1 except 
for the following: 

3.1.1. Participants 
A total of 54 undergraduate students from Boston College partici

pated in our study in exchange for cash or course credit (41 female, 
M = 19.65 years, Range = 18–26 years). Since the effect sizes we 
obtained in Experiment 1 were larger than expected, we reduced our 
sample size in this experiment. All participants provided informed 
consent. 

3.1.2. Procedure 
Experiment 2 included the following variables and their levels: CA 

Ratio (1.15, 1.33, 1.45, 1.6), Number Ratio (1, 1.33 or 1.5), Congruency 
(Congruent, Incongruent), and Set Size (Small, Medium, Large). Similar 
to Experiment 1, we continued to have 38 trials per CA Ratio (this in
cludes 2 single item trials per CA Ratio), leading to a total of 152 unique 
trials. To increase the precision in our measurement, we presented 

participants with the 152 unique trials 3 times over the course of the 
experiment (yielding 456 trials total). The trials were organized in 
blocks such that a participant was presented with all 152 unique trials 
before the trials would be repeated, with an unlimited break every 100 
trials (5 breaks total). Otherwise, procedures were identical to 
Experiment 1. 

3.1.3. Stimuli 
The only changes made to the stimuli was that we now controlled 

for density by dividing the CA by the size of the display. The density 
was identical across the two displays to be compared in each trial, al
though across trials densities did vary from 0.08–0.15 (CA/background 
area in cm2). Thus, the item background ranged from 193.3–300 cm2. 

3.2. Results & discussion 

Consistent with the fact that we dropped the easiest CA ratio in this 
experiment, performance was significantly less accurate here compared 
to Experiment 1 (t(116) = 2.19, p = .03, d = 0.40), with an average of 
80.19% correct (Range = 50.00–96.05%). Since we suspected that this 
was due to the exclusion of the easiest 1.9 CA Ratio, we performed a 
second independent samples t-test this time comparing performance on 
Experiment 1 and 2 excluding the easiest 1.9 CA Ratio in Experiment 1 
as well (M = 83.47%, Range = 58.55–98.02%) and the difference in 
performance was no longer statistically significant (t(116) = 1.03, 
p = .31, d = 0.19), suggesting that lower performance in this 
Experiment was due to the fact that we eliminated our easiest CA Ratio. 

The average weber fraction across participants was w = 0.32, 
(Range = 0.09–2.1, SD =0.36, SE = 0.05), this was marginally worse 
than in Experiment 1, (t(127) = 1.90, p = .06, d = 0.32). We again 
used the Welch-Satterthwaite procedure for unequal variances to 
compare our weber fraction to that previously reported by Odic et al. 
(2013) and found a significant difference in performance (t 
(54.96) = 3.43, p  <  .01) suggesting that CA acuity in our study was 
significantly worse than prior reports of numerical acuity. 

3.2.1. Does numerical congruency matter for CA judgments? 
3.2.1.1. Accuracy. As in Experiment 1, we examined accuracy on trials 
involving arrays of multiple items in which number was either 
congruent or incongruent. In contradiction of predictions of the SoM 
Theory, a 2 (Number Ratio: 1.33 or 1.5) x 2 (Congruency: Congruent vs. 
Incongruent) repeated measures ANOVA again revealed a main effect of 
Congruency, (F(1,53) = 60.62, p  <  .001, ηp

2 = 0.53) such that 
participants performed significantly better on congruent (M = 91.70%) 
compared to incongruent (M = 62.90%) trials. We also replicated our 
main effect of Number Ratio (F(1,53) = 14.19, p  <  .001, ηp

2 = 0.21) 
with participants performing better on the 1.33 Ratio (M = 78.49%) 
compared to the 1.5 Ratio (M = 76.12%; See Fig. 6). However, unlike 
Experiment 1, we did not find a Number Ratio x Congruency 
interaction, F(1,53) = 2.33, p = .13, ηp

2 = 0.04 (although the 
pattern of results was identical across experiments). 

3.2.1.2. Reaction time. The same 2 (Number Ratio: 1.33 or 1.5) x 2 
(Congruency: Congruent vs. Incongruent) repeated measures ANOVA 
looking at participant reaction times again revealed a main effect of 
congruency (F(1,51) = 21.24, p  <  .001, ηp

2 = 0.29) with faster 
reaction times for congruent (M = 910.67 s) compared to incongruent 
trials (M = 1020.69 s). Similar to Experiment 1, reaction times for both 
Number Ratios were similar (F(1,51) = 0.97, p = .33, ηp

2 = 0.02) and 
we did not find a Number Ratio x Congruency interaction, F 
(1,51) = 1.22, p = .27, ηp

2 = 0.02. 

3.2.2. Do numerical differences across the displays impact our CA tracking 
abilities? 
3.2.2.1. Accuracy. As in Experiment 1, we examined to what extent 
congruency or incongruency between number and CA was helping or 
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Fig. 5. Experiment 1: reaction time as a function of set size (single, small (4–7), 
medium (12–15) or large (20–25)). Error bars represent standard error. 
* p < .05, ** p < .01, *** p < .001 
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hurting performance in this task. Therefore, we ran a repeated measures 
ANOVA comparing performance on the number-neutral trials (trials of 
the Number Ratio 1) with performance of congruent trials and 
incongruent trials (again, collapsing all analyses across the 1.33 and 
1.5 Number Ratio and across all CA ratios; See Fig. 7). Once again, the 
ANOVA was significant, F(2, 106) = 61.29, p  <  .001, ηp

2 = 0.54. 
Paired samples t-tests revealed that performance on congruent trials 
(91.72%) was significantly better than the neutral trials (84.28%, t 
(53) = 4.82, p  <  .001, d = 0.66), performance on the incongruent 
trials (62.90%) was significantly worse than the neutral trials (84.28%, 
t(53) = 8.85, p  <  .001, d = 1.20). Once again, this suggests that 
competing numerical information interferes with CA judgments, and 
consistent numerical information also facilitates CA judgments. 

3.2.2.2. Reaction time. We conducted the same repeated measures 
ANOVA comparing reaction times across neutral, congruent, and 
incongruent trials which revealed a main effect of congruency, F(2, 
104) = 26.83, p  <  .001, ηp

2 = 0.34. Although reaction times on 
congruent trials (934.45 s) were significantly faster than the neutral 
trials (1012.68 s, t(52) = 6.67, p  <  .001, d = 0.92), performance on 
the incongruent trials (1025.77 s) and neutral trials were similar (t 
(52) = 1.17, p = .25, d = 0.16). 

3.2.3. How does set size impact CA acuity 
3.2.3.1. Accuracy. To examine the effect of set size on CA 
discriminations, we again looked at those trials where number was 
held constant within trials but differed across trials. That is, we 
compared performance on Single trials to Small, Medium and Large 
trials involving the 1 Number Ratio. A within-subjects ANOVA again 

revealed a significant effect of set size (F(3,159) = 20.55, p  <  .001, 
ηp

2 = 0.28; See Fig. 8), and follow-up paired samples t-tests revealed 
this was once again driven by the Single trials (M = 90.35%) where 
participants performed significantly better than Small (M = 86.84%), 
Medium (M = 82.94%) or Large trials (M = 83.06%; p's  <  0.001, 
d's  >  1.1). In contrast to Experiment 1, however, we found 
participants performed significantly better on Small compared to 
Medium and Large trials (p's  <  0.001). 

Next, to specifically address the impact of set size on performance 
on trials involving sets, we calculated the slope for performance on 
small, medium, and large set sizes. Here we examined only performance 
on the neutral trials, with a Number Ratio 1, and found a negative slope 
(slope = −0.019) that differed significantly from 0 (t(53) = 3.54, 
p  <  .001, d = −0.48). This suggests that there was a steady decrease 
in performance as set size increased. 

3.2.3.2. Reaction time. Next we examined this same question using 
reaction times. A repeated measures ANOVA comparing reaction times 
across the four set sizes revealed a significant main effect (F 
(3,156) = 15.06, p  <  .001, ηp

2 = 0.14). Consistent with previous 
findings, single item trials (M = 863.76 s) were processed significantly 
faster than trials involving arrays with multiple items (Small: 
M = 1042.59 s, Medium: M = 1026.64 s, Large: M = 966.58 s; 
p's  <  0.001, d's  >  0.51). Similar to our reaction time findings in 
Experiment 1, reaction times for Large sets were significantly faster 
than Small (t(52) = 3.40, p  <  .001, d = 0.47) and Medium sets (t 
(52) = 2.67, p  <  .01, d = 0.37), although reactions times were similar 
for Small and Medium sets (t(52) = 0.50, p = .62, d = 0.07; See  
Fig. 9). The slope of Small, Medium, and Large sets was negative 
(−20.68) and significantly different from 0, t(52) = 3.40, p  <  .001, 
d = 0.47. 

Results from Experiment 2 replicate our findings in Experiment 1 
revealing that CA discriminations abide by Weber's law and that con
gruency between number and CA plays an important role in dis
crimination performance. Once again, our results suggest that number 
is more likely to interfere with CA judgments than to assist them. 
Moreover, Set Size mattered in that adults were significantly better 
(faster and more accurate) at discriminating the size of single items 
compared to the CA of multiple items. Set size, however, impacted 
performance in distinct ways: larger sets were associated with lower 
accuracy but faster responding, indicative of a speed-accuracy trade-off 
as set sizes increased. 

3.2.4. Combined analysis 
3.2.4.1. Accuracy. We combined data from Experiment 1 and 2 and 
compared the average weber fraction across Experiments (w = 0.27, 
Range = 0.07–2.1), to weber fractions previously reported by Odic 
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Fig. 6. Experiment 2: percent correct as a function of number ratio (1.33 and 
1.5) and congruency (congruent and incongruent). Error bars represent stan
dard error. 
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et al. (2013) for adult numerical discrimination tasks (using the Welch- 
Satterthwaite procedure for unequal variances) and once again found a 
significant difference in performance, t(23.17) = 4.09, p  <  .001, with 
participants performing significantly worse on the CA task. 

Given that our results regarding the effect of set size on accuracy 
were inconclusive (we found a significant effect of set size in 
Experiment 2 but not Experiment 1), we combined our data from 
Experiments 1 and 2 to run another slope analysis (excluding data from 
the 1.9 ratio in Experiment 1), again looking only at the neutral trials 
with Number Ratio 1. We found a negative slope of −0.011, which was 
significantly different from 0, t(130) = 2.59, p = .011, d = −0.21 
suggesting that overall, participants did show increasingly worse per
formance as set size increased. 

3.2.4.2. Reaction time. We also combined reaction times data for 
Experiment 1 and 2 and ran the same slope analysis. Here too the 
was negative −27.86 and significantly different from 0, t(127) = 3.45, 
p  <  .001, d = 0.30. 

4. General discussion 

The aim of this study was to investigate if and how CA dis
criminations are influenced by numerical information in adults. 
Although many previous studies have investigated adult abilities to 
discriminate discrete quantity (i.e. number discrimination; Halberda & 
Feigenson, 2008; Odic et al., 2013), very few studies have examined 
adults' performance on discrimination tasks that involve continuous 
properties, such as CA. This is a particularly interesting question given 
the claims made by proponents of the SoM theory that continuous 
quantities should be more easily represented than number because 
unlike number which is abstract, continuous quantities are perceptual 
in nature and are not tied to any specific sensory modality (Gebuis & 
Reynvoet, 2012b; Leibovich et al., 2017). As a direct test of these 
claims, many studies have investigated whether we can track number 
independent of continuous properties, finding that even human infants 
can do so (Halberda & Feigenson, 2008; Lipton & Spelke, 2003; Odic 
et al., 2013; Starr et al., 2013; Xu et al., 2005; Xu & Spelke, 2000). 
However, less work has explored the converse; that is, how well can we 
track continuous properties independent of number? (but see Barth, 
2008; Hurewitz et al., 2006; Yousif & Keil, 2019). 

Our first aim was to examine whether congruency between number 
and area played a role in adults' discrimination performance. If CA is 
significantly more salient and easy to represent than number, then CA 
acuity should be more precise than that of number. This did not appear 
to be the case. In addition to replicating previous findings suggesting 
that CA discriminations were ratio-dependent (Halberda & Feigenson, 
2008; Odic et al., 2013), we also found that the average weber fraction 

associated with CA discriminations was significantly higher than those 
previously reported for number discrimination (Odic et al., 2013), 
contradicting any claims that adults are better at discriminating con
tinuous quantities compared to number (Leibovich & Henik, 2014). 
Moreover, if CA is more salient and easy to represent than number, then 
numerical information should be less likely to interfere with CA re
presentations than vice versa. Again, this did not appear to be the case. 
Across two experiments, we found that participants overwhelmingly 
performed better, and faster, on congruent trials (e.g. when the arrays 
with the larger number of dots also have a greater CA) compared to 
incongruent trials (e.g. when the larger number array has a smaller CA), 
replicating previous findings (Barth, 2008; DeWind & Brannon, 2012;  
Gebuis & Reynvoet, 2012a; Hurewitz et al., 2006). Not surprisingly, 
numerical information had a greater impact on adult performance for 
the most difficult CA judgments. 

Moreover, our study expanded upon previous research by exploring 
whether numerical congruency facilitated CA judgments, whether nu
merical incongruency hindered CA judgments, or both, specifically 
when compared to neutral trials where the number of items in both 
arrays is identical (i.e. trials where the ratio of number was 1). We 
found both to be the case: incongruency between Number and CA sig
nificantly hurt performance and congruency between these two vari
ables boosted performance, suggesting that adults can and will use all 
available quantity information in making quantitative judgments, 
whether or not this information is helpful or hurtful. 

It should be noted that a recent paper has argued that numerical 
congruency may be better explained by a preference to judge Additive 
Area (AA; the sum of the length and width of the items in the array) 
instead of the true Cumulative Area of the displays (Yousif & Keil, 
2019). Unfortunately, because AA nearly perfectly correlates with 
number in our experiments, it is impossible to determine whether 
number or AA provides a better account for our findings. However, 
there are many open questions regarding the AA theory (e.g., How do 
individuals track AA and why would such a tracking system develop? 
How does AA apply to real-world displays containing asymmetrical 
items?), and substantial research revealing number to be a relative and 
salient property of sets, making us cautious to interpret our findings in 
terms of AA at this time. Instead, we think that numerical congruency is 
the most likely account for the pattern seen in our data. 

The final, and most important goal of this study was to understand 
the process by which adults represent CA when presented with an array 
of items. In particular, we compared two possible hypotheses. On the 
one hand, the ‘Direct Perception’ hypothesis assumed that we extract 
how much surface area we see in the display without any reliance upon 
individuating the items in the array, which is consistent with SoM 
theory (Gebuis & Reynvoet, 2012b; SoM: Leibovich et al., 2017; Mix 
et al., 2002). On the other hand, the ‘Computation’ hypothesis proposed 
that adults track the sizes of each individual item within the array and 
perform a summation process to arrive at an estimate of the CA of the 
array (as proposed by Barth, 2008). To distinguish between these two 
accounts, we investigated how set size affected performance on this 
task. Assuming that this summation process contributes error to the 
representation (Cordes et al., 2007), the ‘Computation’ hypothesis 
would predict a decrease in performance as the number of items in the 
array increased since each additional item adds to the error in the 
summation or computation process. The ‘Direct Perception’ hypothesis 
would not predict a relationship between CA acuity and set size. 

On the one hand, both accuracy and RT analyses revealed that 
adults performed significantly more accurately and quicker on trials 
where they were presented with single items (trials that required them 
to make element area comparisons) compared to trials with small (4–7 
dots), medium (12–15 dots), or large (20–25) sets. Although extreme 
predictions of the Direct Perception hypothesis may posit that single 
item trials would be tracked with the same precision and speed as trials 
involving multiple items, this clearly was not the case. Instead, it seems 
likely that the area of a single item is represented via a different process 
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Fig. 9. Experiment 2: reaction time as a function of set size (single, small (2–4), 
medium (6–9) or large (9–15)). Error bars represent standard error. 
* p < .05, ** p < .01, *** p < .001 
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than that of the cumulative area of multiple items. In the former case, 
other continuous quantities – such as the diameter of the item – may 
serve as a more reliable cue for discrimination and thus area may not 
even be tracked under these circumstances. In the case of an array of 
items, though, it is unlikely that successful discrimination can take 
place without tracking the area of the items within the array (although 
see Yousif & Keil, 2019 for an alternative account). 

Moreover, the fact that differences in acuity persist in judging the 
area of a single item versus an array of items emphasizes that if we do 
want to make comparisons between adult abilities to represent discrete 
and continuous properties, or make claims about the saliency of con
tinuous variables in the context of numerical stimuli, it is important 
that we test both in the same context – that is, within arrays of objects. 
Given that tests of numerical discrimination by definition require adults 
to make estimates or computations across multiple items, one should 
similarly examine the representation of continuous dimensions in the 
context of sets, not just single items, in order to provide a fair com
parison. 

Our findings regarding the effect of set size on performance for trials 
involving multiple items, however, are much less clear. In the case of 
accuracy, slope analyses combining data from Experiments 1 and 2 
demonstrated that as set size increased, accuracy in making CA judg
ments decreased. This accuracy finding provides support for the 
Computation Hypothesis, suggesting that when making CA judgments, 
adults represent the surface area of individual items within an array and 
sum across these representations to gain a representation of the array's 
CA. These findings are in line with previous findings by Barth (2008), 
whose computational model suggested that a computational account of 
CA representation provided the best explanation for the data. 

On the other hand, RT analyses revealed an opposite pattern of 
results, such that participants took longer to respond when set sizes 
were small than when sets were large. This pattern was not predicted by 
either the Direct Perception or Computation hypothesis. Coupled with 
the pattern of results for accuracy, our findings suggest a speed-accu
racy trade-off in terms of performance across set sizes. That is, when 
encountering small sets, participants may have felt more confident in 
their ability to judge the CA of the sets, and thus may have taken more 
time to provide more accurate judgments. In contrast, when presented 
with large sets of items, participants may have become discouraged and 
made a quick judgment that was less likely to be accurate. If so, our 
findings do suggest that set size plays a critical role in influencing the 
process of tracking CA, though perhaps not in the ways in which we 
originally hypothesized. Future research should further investigate CA 
judgments across differing set sizes to determine how confidence, and 
differing strategies, may vary across set sizes, and how these distinct 
strategies may provide insight into how CA is processed. 

In conclusion, our results do not align with claims of a SoM theory. 
In particular, our results suggest that CA discriminations – in the con
text of multiple items – are not more precise than that of numerical 
discriminations, and may in fact be even less precise. Moreover, though 
it was completely irrelevant to the task demands and thus not a reliable 
cue for tracking, we find that number is automatically processed in the 
context of CA judgments suggesting that number is at least as salient as 
this continuous quantity. Most interestingly, our data produced op
posing patterns of results when looking at the effects of set size on 
performance, such that responses were both less accurate and faster as 
set size increased, suggesting the implementation of distinct response 
strategies as set size increased. Future work should explore the impact 
of set size on cumulative area, and other continuous extent variables, 
more carefully to determine when and how adults invoke distinct 
strategies, and whether similar patterns are found across development. 
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