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Abstract. Suppose that E is a vector bundle on a smooth projective variety X. Given a
family of curves C on X, we study how the Harder-Narasimhan filtration of E|C changes
as we vary C in our family. Heuristically we expect that the locus where the slopes in the
Harder-Narasimhan filtration jump by µ should have codimension which depends linearly
on µ. We identify the geometric properties which determine whether or not this expected
behavior holds. We then apply our results to study rank 2 bundles on P2 and to study
singular loci of moduli spaces of curves.

1. Introduction

Let X be a smooth projective complex variety and let E be a locally free coherent sheaf
on X. Given a dominant family of curves C on X, we analyze how the Harder-Narasimhan
filtrations of the restrictions E|C change as we vary C. Results which bound the behavior
of E|C are known as “restriction theorems”; such theorems have played a key role in the
theory of slope stability since the work of [Bar77] and [Hul79] on jumping lines in Pn. (In
this paper “stability” will always refer to “slope stability with respect to a nef curve class”
as first developed by [CP11]; see Notation 2.3.)

Most restriction theorems – such as the Mehta-Ramanathan theorem ([MR82, MR84]) or
the Grauert-Mulich theorem ([GM75, Spi79, FHS80, Mar81, PRT20, LRT23b]) – address the
case when C is general in its parameter space. Our focus will be on non-general curves C:

Motivating Question 1.1. Suppose W ⊂ Mg,0(X, β) parametrizes a dominant family of
curves s : C → X. Can we bound the codimension of W in terms of the difference in
slopes between the Harder-Narasimhan filtration of s∗E and the “expected value” given by
the Harder-Narasimhan filtration of E with respect to the numerical class s∗[C]?

In this paper we will analyze Motivating Question 1.1 using techniques from stability
theory. Throughout we aim for the maximal possible generality: our main theorem will
describe the qualitative behavior of restrictions of vector bundles to dominant families of
curves. Loosely speaking, we show that when the evaluation map over W has connected
fibers then the codimension of W is bounded by a linear function in the difference in slopes
for the Harder-Narasimhan filtrations. Conversely, when the evaluation map does not have
connected fibers one cannot always obtain a linear bound.

Motivating Question 1.1 has found many applications in the literature; we present two in
this paper. First, we use our work to bound the codimension of the singular locus of the
moduli spaces of curves. The same argument establishes geometric analogues of arithmetic
conjectures of [Pey17]. Second, we analyze jumping loci for rank 2 bundles on P2, an impor-
tant classical subject that continues to play a role in modern research (for example in Terao’s
Conjecture or the Weak Lefschetz Property for Artinian algebras). Our results explain when
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the ideal jumping behavior does or does not happen based on the geometry of the families
of jumping curves.

1.1. Main result. We will need to precisely quantify the difference in slopes between two
filtrations of a vector bundle. We will use the following definition:

Definition 1.2. Let X be a smooth projective variety and let α ∈ Nef1(X) be a nef curve
class. Suppose that E is a non-zero torsion-free sheaf of rank r. Write

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = E
for the α-Harder-Narasimhan filtration of E . The slope panel SPX,α(E) is the r-tuple of ra-
tional numbers consisting of the union over all indices i of rk(Fi/Fi−1) copies of µα(Fi/Fi−1)
arranged in non-increasing order:

SPX,α(E) = (µα(F1/F0), . . .︸ ︷︷ ︸
rk(F1/F0) copies

, µα(F2/F1), . . .︸ ︷︷ ︸
rk(F2/F1) copies

, . . . , µα(Fs/Fs−1), . . .︸ ︷︷ ︸
rk(Fs/Fs−1) copies

)

For a curve C, we write SPC(E) for the slope panel with respect to the class of a point on
C.

Returning to our motivating question, suppose that U → W is a family of curves equipped
with a dominant evaluation morphism ev : U → X. [LRT23b] shows that the global slope
panel SPX ,s∗[C](E) is the “expected value” of the slope panel for the restriction of E to a
curve. Suppose that the slope panel for the general curve s : C → X parametrized by W
differs from the expected value by µ, that is,

∥ SPX ,s∗[C](E)− SPC(s
∗E)∥sup = µ.

If W parametrizes every curve whose difference in slope panels is µ, then basic deformation
theory provides an upper bound on the codimension of W that is linear in µ. In some
situations we can also obtain lower bounds on the codimension of W that are linear in µ
(e.g. when the map from W to the versal deformation space of s∗E is smooth near s).

Our main theorem identifies a set of mild assumptions which guarantee that there is indeed
a lower bound on the codimension of W that is linear in µ. It applies to all curves whose
classes are contained in any slightly smaller subcone C ⊂ Nef1(X).

Theorem 1.3. Let X be a smooth projective variety and let E be a non-zero locally free
coherent sheaf on X. Fix a genus g, an ample divisor H on X, and a closed cone C ⊂ N1(X)R
such that C\{0} is contained in the interior of Nef1(X). Then there are affine linear functions
S : R → R and L : R → R with positive leading coefficients which have the following property.

Let W → Mg,0(X) be a generically finite morphism from an irreducible variety and let
evν : Uν → X denote the evaluation map on the normalization Uν of the universal family
over W . Define

µ = ∥ SPX ,s∗[C](E)− SPC(s
∗E)∥sup

where s : C → X is a general curve parametrized by W . Suppose that:

• evν is dominant with connected fibers,
• the general map parametrized by W is birational onto its image, and
• the class of the curves parametrized by W is contained in the cone C.

Then the codimension of the image of W satisfies either
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(1) codim(W ) ≥ S(µ), or
(2) codim(W ) ≥ L(H · s∗C).

The second bulleted assumption in Theorem 1.3 is natural: if every morphism s parametrized
by W factors through an intermediate curve s′ : C ′ → X then we should analyze s∗E by
first understanding s′∗E . The third bulleted assumption is used in our proof but we are not
sure whether it is necessary. The first bulleted assumption is essential as explained in the
following remark.

Remark 1.4. In Theorem 1.3 it is necessary to assume that evν has connected fibers. If evν

fails to satisfy this property then by using Stein factorizations one can construct a generically
finite morphism f : Y → X such that evν factors rationally through f . We can only expect –
and indeed Theorem 1.3 proves – that s∗E is controlled by the stability of f ∗E on Y instead
of the stability of E on X. (Note that there are typically many different curve classes α′ on Y
which pushforward to a given curve class α on X, so the Harder-Narasimhan filtration of f ∗E
can be very different from that of E depending on α′.) See Example 8.5 for a demonstration
of this phenomenon.

When X is a Fano variety it is possible to understand dominant families of curves whose
evaluation map has disconnected fibers using the theory of accumulating maps developed
by [LRT23b]. In Theorem 7.4 we combine both approaches to prove a more comprehensive
result for Fano varieties.

1.2. Applications.

1.2.1. Rank 2 bundles on P2. Since Theorem 1.3 is aiming for maximal generality, it is not
reasonable to expect our bounds to be sharp. However, in specific examples one can emulate
our approach with more careful estimates to obtain precise information. In Section 8 we
carry out this program for rank 2 bundles on P2.
Mathematicians have studied the jumping behavior for many special types of Fano vari-

eties, including Fano varieties ruled by lines (see [MnOSC12] and the references therein).
However the most well-studied examples are vector bundles on Pn, especially rank 2 vector
bundles on P2. There is the classical theory of jumping lines (which has too many appli-
cations to list here) and also work on the jumping locus of higher degree curves ([Sm84],
[Man90], [Ran01], [Vit04], [Mar24]). Much of the previous work has been example-based,
studying the jumping loci for particular vector bundles and observing whether they did or
did not have the expected dimension.

Our work identifies precisely the geometric obstructions to obtaining the expected behavior
for special families of curves on P2. The cleanest result is for rational curves: we show that
families of rational curvesW have the expected codimension unless there is a clear geometric
reason why they cannot (see cases (a) and (b) in Theorem 1.5 below). Furthermore, we show
these exceptional geometries only occur when the codimension of W is large relative to the
degree.

Theorem 1.5. Let E be a stable rank 2 bundle on P2. There is an explicit constant ζ
depending on the Chern classes of E such that the following holds.

Fix a constant µ and suppose that V ⊂ M0,0(P2) is an irreducible component of the locus
of degree d maps s : C → P2 satisfying

∥ SPP2,s∗[C](E)− SPC(s
∗E)∥sup = µ.
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Let W → V be a generically finite dominant morphism from a variety.
Assume that the general map s : C → P2 parametrized by W is a birational immersion.

Then either

(1) codim(W ) has the expected value sup{2µ− 1, 0}, or
(2) codim(W ) ≥ ζd.

Furthermore, the only way (1) can fail is when either (a) the evaluation map for the nor-
malization of the universal family over W fails to have connected fibers or (b) there is a
birational model ϕ : X ′ → P2 flattening the family of curves V such that ϕ∗E fails to be
semistable with respect to the strict transforms of the curves.

This result systematizes and generalizes various examples in the literature which demon-
strate that Theorem 1.5.(1) can fail (see Example 8.5 and Example 8.6).

Remark 1.6. In a different direction, [Bog94] and [Kop20] show that the restriction of
a stable bundle to a smooth curve of sufficiently high degree will always be stable. In
contrast, the behavior of singular curves is more complicated and cannot admit such a
simple description. Note that if we fix a genus g then most plane curves of genus g will be
singular.

1.2.2. Locus of non-free curves. When studying the moduli space of curves Mor(C,X) on
a Fano variety X, it is crucial to develop a good understanding of the singular locus of
the moduli space. For example, singularities can affect the computation of the Kodaira
dimension of Mor(C,X) (as in [Sta03, dJS17]). Since a curve s : C → X can only be
contained in the singular locus if H1(C, s∗TX) ̸= 0, we can bound the codimension of the
singular locus of X by studying the Harder-Narasimhan filtration of the restricted tangent
bundle.

More generally, recall that a curve s : C → X is said to be m-free if µmin(s∗TX) ≥ m+2g.
(The singular locus of Mor(C,X) is a subset of the curves which fail to be 0-free.) For certain
types of variety the locus of m-free curves has been analyzed in detail, including projective
space ([Asc88], [Ram90], [HK96], [BR97], [Hei00], [Ran01], [GHI13], [AR15], [Lar16], [CR18],
[Asc22]), Grassmannians ([BR00], [Man19]), and hypersurfaces ([BS23]). Our work allows
us to bound the dimension of the locus of curves which fail to be m-free for arbitrary Fano
varieties.

Our results are motivated by analogous questions in arithmetic geometry. In [Pey17]
Peyre makes a number of compelling conjectures about the behavior of arithmetic slopes of
rational points on Fano varieties. More precisely, he gives a variant of the counting problem
in Manin’s Conjecture based on slopes and conjectures this modified counting problem still
has the expected asymptotic behavior. Loosely speaking, Peyre’s conjectures suggest that
“most” rational points should have large slopes.

Analogously, we can expect that for “most” curves on a Fano variety the restricted tangent
bundle has large minimal slope. As usual in Manin’s Conjecture, we must remove an “ex-
ceptional set” of curves which have pathological behavior. For this purpose we will use the
theory of accumulating maps as developed by [LRT23b] (see Definition 7.2). By combining
Theorem 1.3 with the results of [LRT23b], we show that the codimension of the locus of
curves which fails to be m-free grows linearly in the degree unless the curves come from an
accumulating map. This establishes a geometric analogue of the arithmetic conjectures of
[Pey17].
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Theorem 1.7. Let X be a smooth Fano variety. Fix a genus g, a positive constant m, and
a closed cone C such that C\{0} is contained in the interior of Nef1(X). There is an affine
linear function T : R → R with a positive leading coefficient which satisfies the following
property.

Let W be a variety equipped with a generically finite morphism W → Mg,0(X) and let
evν : Uν → X denote the evaluation map on the normalization Uν of the universal family
over W . Assume that the class of the curves parametrized by W is contained in the cone C.
If the general morphism s : C → X parametrized by W fails to be m-free, then one of the

following properties holds:

(1) codim(W ) ≥ T (−KX · s∗C),
(2) the evaluation map evν factors rationally through an accumulating morphism f : Y →

X, or
(3) the image of the general map s : C → X parametrized by W is a rational curve of

anticanonical degree ≤ 2.

1.3. Strategy. Retaining the notation of Theorem 1.3, suppose that we have a generically
finite morphism W → Mg,0(X) such that evν is dominant with connected fibers. The best
situation is when the evaluation morphism satisfies an additional property: the general curve
s : C → X in our family is contained in the locus where evν is flat. In this case, the Grauert-
Mulich theorem of [LRT23b] gives excellent control on the codimension of W . When this
condition does not apply then we choose a birational model ϕ : X ′ → X such that the strict
transforms of the curves parametrized by W define a flat family of curves on X ′. Letting
s′ : C ′ → X ′ denote a strict transform curve, the Grauert-Mulich theorem relates s∗E to the
s′∗[C

′]-Harder-Narasimhan filtration of ϕ∗E on X ′.
The key challenge is to understand how the stability of E changes when we pass from

the class s∗[C] on X to the class s′∗[C
′] on X ′. Although stability is preserved by pullback

of curve classes, it usually changes under the strict transform of curve classes. To obtain
Theorem 1.3 in full generality, we must develop a systematic theory of how stability changes
under birational maps. This study makes up the technical core of the paper.

We leverage the following tension. Suppose that Q is a rank r quotient of E such that the
induced map ϕ∗E → (ϕ∗Q)tf is α′-destabilizing for some class α′ ∈ Nef1(X

′) which pushes
forward to α ∈ Nef1(X). The difference between µα(Q) and µα′((ϕ∗Q)tf ) is controlled by the
rth Fitting ideal of Q. If Q has small slope compared to E , then the Fitting ideal of Q must
be comparatively simple so that the difference in slopes will be small. If Q has large slope
compared to E , then the Fitting ideal can be more complicated but also a larger change in
slope is required for Q to become destabilizing.
We prove Theorem 1.3 by bounding the log canonical threshold of the rth Fitting ideal of

Q. Using the log-canonical threshold, we can relate the relative anticanonical degree of α′

with the change in α′-slope induced by the Fitting ideal. In turn, the relative anticanonical
degree allows us to control the codimension of the corresponding family of curves.
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2. Background

We work over the ground field C. Throughout all our schemes will be assumed to be
separated schemes and every connected component will have finite type over the ground
field. A variety is a scheme that is reduced and irreducible. Given a coherent sheaf F on a
variety V , we denote by Ftors the torsion subsheaf of F and by Ftf the quotient of F by its
torsion subsheaf. We say that a morphism is generically finite if it is generically finite onto
its image.

When X is a projective variety, we let N1(X)R denote the space of R-Cartier divisors up
to numerical equivalence and N1(X)R denote the dual space of R-curves up to numerical
equivalence. We let N1(X)Z and N1(X)Z denote the lattices of Z-classes in these two vector
spaces. We define Nef1(X) to be the nef cone of curves, i.e. the set of R-curve classes α which
satisfy E ·α ≥ 0 for every effective divisor E. Given a curve C, we denote its numerical class

by [C]. We also define Eff
1
(X) to be the pseudo-effective cone of R-Cartier divisors.

We let Mg,n(X) denote the Kontsevich moduli stack of stable maps and let Mg,n(X) ⊂
Mg,n(X) denote the open substack parametrizing maps with smooth irreducible domain.

2.1. Slope stability. Let X be a smooth projective variety and let E be a torsion-free
coherent sheaf on X. We briefly review the notion of slope stability of E with respect to nef
curve classes α as developed in [CP11].

Definition 2.1. Let X be a smooth projective variety and let E be a torsion-free coherent
sheaf on X of rank r. The first Chern class of E , denoted by c1(E), is any divisor representing
the line bundle

[r]∧
E :=

(
r∧
E

)∨∨

.

Note that c1(E) is only well-defined up to linear equivalence; in practice this mild abuse of
notation will be harmless.

For any coherent sheaf E ′, we can define the first Chern class by taking a finite resolution of
E ′ by locally free sheaves and defining c1(E ′) as an alternating sum of the first Chern classes
of these sheaves. Note that these two definitions of the first Chern class are compatible.

Definition 2.2. Let X be a smooth projective variety and let α ∈ Nef1(X). For any
non-zero torsion-free sheaf E on X, we define the α-slope

µα(E) =
c1(E) · α
rk(E)

.
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We say that E is α-semistable if for every non-zero torsion-free subsheaf F ⊂ E we have
µα(F) ≤ µα(E).

As explained by [CP11, GKP14, GKP16], this notion of α-semistability naturally leads to
α-Harder-Narasimhan filtrations.

Notation 2.3. Let X be a smooth projective variety and let E be a non-zero torsion-free
coherent sheaf of rank r on X. Fix an α ∈ Nef1(X). The α-Harder-Narasimhan filtration of
E is the unique sequence of subsheaves

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = E .
such that each Fi/Fi−1 is α-semistable and the α-slopes of the quotients Fi/Fi−1 are strictly
decreasing in i.
We denote by µmaxα (E) the maximal slope of any torsion-free subsheaf, i.e., µmaxα (E) =

µ(F1). We denote by µminα (E) the minimal slope of any torsion-free quotient, i.e., µminα (E) =
µ(E/Fs−1).

Given a filtration of E (possibly different from the Harder-Narasimhan filtration), we will
need a notation which describes the slopes of the graded pieces of the filtration. We define
the slope panel in the analogous way:

Definition 2.4. Let X be a smooth projective variety, let E be a non-zero torsion-free
coherent sheaf on X, and let α ∈ Nef1(X ). Suppose that

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gt = E
is a sequence of distinct saturated subsheaves of E . We define the slope panel SPX,α(E ;G•)
of E with respect to the sequence G• as follows.

SPX,α(E ;G•) = (µα(G1/G0), . . .︸ ︷︷ ︸
rk(G1/G0) copies

, µα(G2/G1), . . .︸ ︷︷ ︸
rk(G2/G1) copies

, . . . , µα(Gt/Gt−1), . . .︸ ︷︷ ︸
rk(Gt/Gt−1) copies

)

Recall from the introduction that the slope panel SPX,α(E) (with no mention of a filtra-
tion) simply means the slope panel of E with respect to the α-Harder-Narasimhan filtration.
Our next goal is Lemma 2.6 which gives a combinatorial characterization of the α-Harder-
Narasimhan filtration.

Lemma 2.5. Let X be a smooth projective variety and let E be a torsion free coherent sheaf
on X. Suppose F ,G ⊂ E are saturated subsheaves. Then F ∩G is a saturated subsheaf of G.

Proof. We have an injection E/F ∩ G → (E/F) ⊕ (E/G), showing that E/F ∩ G is torsion
free. Thus the subsheaf G/F ∩ G is also torsion-free. □

Lemma 2.6. Let X be a smooth projective variety, let E be a non-zero torsion-free coherent
sheaf on X of rank r, and let α ∈ Nef1(X). Fix a sequence of distinct saturated subsheaves

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gt = E .
Set

(a1, . . . , ar) = SPX,α(E)
(b1, . . . , br) = SPX,α(E ;G•)
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For any 1 ≤ ℓ ≤ r, we have

ℓ∑
i=1

ai ≥
ℓ∑
i=1

bi and
r∑

i=ℓ+1

ai ≤
r∑

i=ℓ+1

bi.

Proof. Since
∑r

i=1 bi = c1(E) =
∑r

i=1 ai, the second statement is a consequence of the first
and so we may focus on the first statement. Let

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = E

denote the α-Harder-Narasimhan filtration of E . For every index 1 ≤ j ≤ t, consider the
filtration

0 = Gj ∩ F0 ⊂ Gj ∩ F1 ⊂ . . . ⊂ Gj ∩ Fs = Gj

where some of the entries are possibly equal. Lemma 2.5 shows that each Gj∩Fk is saturated
in Gj; thus two successive terms will have the same rank if and only if they are equal. Let
(vj•) denote the vector of length s whose kth entry is rk(Gj ∩Fk)− rk(Gj ∩Fk−1). Note that

s∑
k=1

vjk = rk(Gj) and
s∑

k=1

vjkµα(Gj ∩ Fk/Gj ∩ Fk−1) = c1(Gj).

Next we inductively define the vectors (wj•) of length s by setting (w1
•) = (v1•) and defining

(wj•) = (vj•)− (vj−1
• ) for 2 ≤ j ≤ t. We have

(2.1)
t∑

j=1

wjk = v1k +
t∑

j=2

(vjk − vj−1
k ) = vtk = rk(Fk/Fk−1).

Finally we inductively construct a vector (c•). Suppose we have constructed the first
rk(Gj−1) entries of (c•). We then append the next rk(Gj/Gj−1) entries as follows: for every

1 ≤ k ≤ s we include wjk copies of µα(Fk/Fk−1) to (c•) and then arrange these rk(Gj/Gj−1)
entries in non-increasing order.

By Equation (2.1) we see that (c•) is a rearrangement of (a•). Since (a•) is arranged in
non-increasing order, for every 1 ≤ ℓ ≤ r we have

ℓ∑
i=1

ai ≥
ℓ∑
i=1

ci.

Thus it suffices to prove

ℓ∑
i=1

ci ≥
ℓ∑
i=1

bi.
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We first prove this when ℓ = rk(Gj) for some j. In this case we have

ℓ∑
i=1

ci =

j∑
m=1

s∑
k=1

wmk µα(Fk/Fk−1)

=
s∑

k=1

vjkµα(Fk/Fk−1)

≥
s∑

k=1

vjkµα(Gj ∩ Fk/Gj ∩ Fk−1)

= c1(Gj)

=
ℓ∑
i=1

bi

where we use the semistability of Fk/Fk−1 at the inequality step. This proves the claim for
the special case ℓ = rk(Gj).
For other values of ℓ, we note that for the indices satisfying rk(Gj−1) < i ≤ rk(Gj) the

entries of (b•) are constant while the entries of (c•) are non-increasing. Since we have the
desired inequality when ℓ = rk(Gj−1), rk(Gj) we must also have it for the intermediate values
of ℓ. □

2.2. Bounded families of sheaves.

Definition 2.7. Let X be a smooth projective variety. A finite-type family of torsion-free
sheaves on X consists of a finite-type scheme S over our ground field and a coherent sheaf G
on X×S that is flat over S such that for every point s ∈ S the restriction G|Xs is torsion-free.
We say that a set of torsion-free sheaves {Ei} on X is a bounded family if there is a

finite-type family of torsion-free sheaves such that every Ei is parametrized by the family.

Often our bounded families of sheaves will all be quotients of a fixed coherent sheaf.

Definition 2.8. Suppose X is a smooth projective variety and E is a torsion-free sheaf
on X. A finite-type family of torsion-free quotients of E consists of a finite-type family of
torsion-free sheaves G ′ on X×S equipped with a surjection π∗

1E → G ′ where π1 : X×S → X
is the projection.

We say that a set of torsion-free quotients {E → Qi} on X is a bounded family if there is
a finite-type family of torsion-free quotients such that every E → Qi is parametrized by the
family.

Using standard properties of the Quot scheme, we have:

Lemma 2.9. Let X be a smooth projective variety and let E be a torsion-free coherent
sheaf on X. Suppose G is a bounded family of torsion-free sheaves on X. Then the set of
all quotients E → Q such that Q is parametrized by G is a bounded family of torsion-free
quotients of E.

We also use the following result which is a variant of a theorem of Grothendieck.
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Theorem 2.10 ([HL97, Lemma 1.7.9], [GKP16, Theorem 2.30]). Let X be a smooth pro-
jective variety and fix a compact set T contained in the interior of Nef1(X). Let E be a
torsion-free sheaf on X. Fix a constant R and consider the set of torsion-free quotients
E → Q such that µα(Q) < R for some α ∈ T . This is a bounded family of torsion-free
quotients of E.

Proof. Since there is a surjection OX(L)
⊕d → E for some divisor L and some positive integer

d, it suffices to prove the statement for OX(L)
⊕d. In fact, after twisting we may assume

that our initial sheaf is O⊕d
X . One can then repeat the argument of [GKP16, Theorem 2.30]

with essentially no change to show that c1(Q) lies in a bounded subset of N1(X)Z. The
boundedness of the set of quotients then follows from [HL97, Lemma 1.7.9] and Lemma
2.9. □

2.3. Log canonical thresholds. In this subsection we give a brief reminder of the definition
and basic properties of the log canonical threshold of an ideal.

Definition 2.11. Let X be a smooth projective variety and let I be a coherent ideal sheaf
on X. Let ϕ : X ′ → X denote a log resolution of I and set O(−F ) = ϕ−1I · OX′ . The log
canonical threshold lct(I) is defined to be the infimum over all real numbers c such that

ϕ∗OX′(KX′/X − ⌊cF ⌋) ⊊ OX .

If the subscheme defined by I has codimension at least 2 in X, then lct(I) is equivalently
the maximum over all real numbers d such that KX′/X +Excϕ ≥ dF where Excϕ denotes the
sum of all reduced ϕ-exceptional divisors (see [Laz04b, Example 9.3.16]).

Note that if we have an inclusion of ideal sheaves I ⊂ J then we also have an inequality
lct(I) ≤ lct(J ). We will use this fact repeatedly in what follows.

The next theorem gives a useful bound on the value of the log canonical threshold. This
result is certainly well-known to experts; for example, some version of this statement appears
in [BHJ17, Proof of Theorem 9.14].

Theorem 2.12. Let X be a smooth projective variety. Fix a curve class β ∈ N1(X)Z which
lies in the interior of Nef1(X). There is a positive constant υ (which depends on X and β)
with the following property.

Let I be an ideal sheaf on X. Let D be an effective Cartier divisor such that OX(−D) ⊂
OX is contained in I. Then

lct(I) ≥ 1

υ(D · β)
.

Since we could not find a version of this statement that could be clearly cited we will give
a proof here, following the strategy of [BHJ17].

Proof. We first define the constant υ. By Lemma 2.13 there is an ample Cartier divisor H
with the following property: for every positive integer d, we have H0(X,OX(dH − B)) > 0
for every effective Cartier divisor B satisfying B · β ≤ d. We claim that there is a constant
υ such that for every positive integer d and every effective divisor L ∼ dH we have

sup
x∈X

ordx(L) ≤ υd.

10



Indeed, suppose that ϕ : X ′ → X is the blow-up of a point x ∈ X and let E denote the
exceptional divisor. By Seshadri’s criterion (see [Laz04a, Theorem 1.4.13]) there is some
ϵ > 0 (depending on X,H but not on x) such that ϕ∗H − ϵE is ample. Then

Ln = ϕ∗L · (ϕ∗L− ϵdE)n−1 ≥ ordx(L)E · (ϕ∗L− ϵdE)n−1

= dn−1ϵn−1 ordx(L)

Thus υ = Hn

ϵn−1 satisfies the claim above.
We next verify that υ has the desired property. First recall that if we have an inclusion

of ideals J ⊂ I then lct(J ) ≤ lct(I). In particular, lct(D) ≤ lct(I).
Set r = D · β. The defining property of H implies that there is some effective Cartier

divisor F such that F +D is linearly equivalent to rH. Note we have lct(D) ≥ lct(F +D).
In turn, [Kol97, Lemma 8.10] shows that

lct(F +D) ≥ inf
x∈X

1

ordx(F +D)

≥ 1

υr

We conclude that lct(I) ≥ 1
υr

as desired. □

The following well-known lemma was used in the previous proof.

Lemma 2.13. Let X be a smooth projective variety and let C ⊂ Eff
1
(X) denote a compact

subset. There is a ample divisor H with the following property: for any positive integer d and
any Cartier divisor B whose numerical class lies in dC ∩N1(X)Z we have H0(X,OX(dH −
B)) > 0.

Proof. Since C is bounded, there is an effective ample divisor A such that A−C is contained
in the ample cone of X. By [Nak04, Corollary V.1.4] there is an ample divisor L such that
H0(X,OX(L+D)) > 0 for every pseudo-effective Cartier divisor D.

Set H = A+ L. Then for any divisor B as in the statement, we have

dH −B = L+ (d− 1)L+ (dA−B).

Since (d− 1)L+ (dA−B) is pseudo-effective, dH −B has a non-vanishing section. □

We will use the log canonical threshold to control the anticanonical divisor.

Lemma 2.14. Suppose that ϕ : X ′ → X is a birational morphism of smooth projective
varieties that resolves an an ideal sheaf I on X which defines a subscheme of codimension
≥ 2. Write ϕ−1I · OX′ = OX′(−D).

Let α′ be any nef curve class on X ′. Then

KX′/X · α′ ≥ 1

2
lct(I)(D · α′).

Proof. By definition of the log canonical threshold, we have

KX′/X + Excϕ ≥ lct(I) ·D
where Excϕ denotes the sum of the ϕ-exceptional divisors with coefficients 1. Since X ′ and
X are smooth, every exceptional divisor appears in KX′/X with coefficient at least 1. Thus

2KX′/X ≥ KX′/X + Excϕ.
11



Combining we see that 2KX′/X − lct(I) ·D is effective. Thus the claim follows from the fact
that α′ is nef. □

3. Birational geometry of Fitting ideals

This section is devoted to a number of results and constructions involving the Fitting ideal
of a coherent sheaf on a smooth projective variety.

3.1. Fitting ideals. Let X be a smooth projective variety and let Q denote a torsion-free
sheaf on X. We would like to find a birational morphism ϕ : X ′ → X such that (ϕ∗Q)tf is
locally free. The construction of such a morphism ϕ is given by the theory of Fitting ideals,
which we now recall.

First suppose we take an open affine Spec(A) ⊂ X and that S is a coherent A-module
with a presentation

Ad
M−→ An → S → 0

Then the jth Fitting ideal Fitj(S) on Spec(A) is generated by the (n − j)-minors of the
matrix M . It turns out that the resulting ideal sheaf Fitj(S) is independent of the choice of
presentation of S. This construction globalizes to give a Fitting ideal for a coherent sheaf Q
on X. Fitting ideals have the following important properties:

• The formation of the jth Fitting ideal commutes with base change.
• SuppFitj(Q) = {x ∈ X| dimκ(x)(Q⊗ κ(x)) > j}.

The following result shows that the birational morphism ϕ which makes a torsion-free sheaf
Q locally free is the same as the resolution of a Fitting ideal.

Theorem 3.1 ([Ray72, Chapter 4, §3, Lemma 1]). Let X be a smooth projective variety and
let Q be a coherent sheaf on X of rank r. Let ϕ : X ′ → X denote the a smooth birational
model resolving Fitr(Q). Then (ϕ∗Q)tf is locally free of rank r.

The following lemma identifies the geometric meaning of the divisor resolving the Fitting
ideal.

Lemma 3.2. Let X be a smooth projective variety and let Q be a coherent torsion-free sheaf
on X of rank r. Suppose that ϕ : X ′ → X is a birational morphism from a smooth projective
variety that resolves the rth Fitting ideal Fitr(Q). Write ϕ−1 Fitr(Q) · OX′ = OX′(−D) for
some effective ϕ-exceptional divisor D. Then

D = ϕ∗c1(Q)− c1((ϕ
∗Q)tf ).

Proof. Consider the exact sequence

0 → (ϕ∗Q)tors → ϕ∗Q → (ϕ∗Q)tf → 0.

Note that the rightmost term is locally free of rank r by Theorem 3.1. In particular
Fitj((ϕ

∗Q)tf ) is 0 for j < r and is OX′ for j ≥ r.
Choose an open cover of X ′ by open affines Spec(A) ⊂ X ′ so that the restriction of (ϕ∗Q)tf

to Spec(A) is a projective A-module. In particular the restriction of the exact sequence above
to Spec(A) splits. Applying [Sta, Tag 07ZA], we see that on Spec(A) we have

Fitr(ϕ
∗Q) =

∑
i+j=r

Fiti((ϕ
∗Q)tors) Fitj((ϕ

∗Q)tf )

= Fit0((ϕ
∗Q)tors).

12



Of course this local equality for every Spec(A) implies that we also have a global equal-
ity. Since Fitting ideals are compatible with base-change, we conclude that OX′(−D) ∼=
Fit0((ϕ

∗Q)tors).
It only remains to show that the first Chern class of Fit0((ϕ

∗Q)tors) can be identified
with c1((ϕ

∗Q)tf ) − ϕ∗c1(Q). Equivalently, we must show that the first Chern class of
Fit0((ϕ

∗Q)tors) is the negative of the first Chern class of (ϕ∗Q)tors. Consider an exact se-
quence

E2
ψ−→ E1 → (ϕ∗Q)tors → 0

where E1 and E2 are locally free sheaves. They must necessarily have the same rank t and
furthermore since ψ is generically injective, it is injective. We conclude that c1((ϕ

∗Q)tors) is
equal to c1(E1)− c1(E2).
On the other hand, by taking top exterior powers in the exact sequence above we see that

Fit0((ϕ
∗Q)tors) is the ideal sheaf corresponding to the effective divisor F defining the map

of line bundles
t∧
ψ :

t∧
E2

·F−→
t∧
E1

We conclude that F is also equal to c1(E1)− c1(E2), finishing the proof. □

Our next result will rely on the following lemma:

Lemma 3.3. Let X be a smooth projective variety and let Q denote a non-zero torsion-free
coherent sheaf on X of rank r. Suppose that L is a Cartier divisor and d is a positive integer
such that there is a surjection OX(L)

⊕d → Q. Then c1(Q) − rL is (linearly equivalent to)
an effective divisor.

Proof. Taking rth exterior powers and a double dual, we obtain a non-zero morphism
OX(rL) → OX(c1(Q)). Thus the difference between these divisors is effective. □

Our main result in this subsection constructs functions in the Fitting ideal of bounded
degree. We will use it to estimate the log canonical threshold of Fitting ideals.

Theorem 3.4. Let X be a smooth projective variety and let Q be a torsion-free sheaf on X
of positive rank r. Suppose that L is a Cartier divisor and d is a positive integer such that
we have a surjection OX(L)

⊕d → Q. Then Fitr(Q) contains OX(−D) ⊂ OX for an effective
divisor D satisfying

D ∈ |(d− r)r · (c1(Q)− rL)| .

Proof. For notational convenience we write F := OX(L)
⊕d. We denote the kernel of the

surjection F → Q by K. Consider the composition

ϑ : F ⊗
r−1∧

F →
r∧
F →

(
r∧
Q

)∨∨

First suppose we look at the open locus U ⊂ X where Q is locally free. Note that a
local section s of F on U will be contained in the kernel K if and only for every element
t ∈
∧r−1F(U) we have that ϑ(s⊗ t) = 0. In other words, if we define the induced map

ψ : F →

(
r−1∧

F∨

)
⊗OX(c1(Q)).
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then K|U is the same as (kerψ)|U . Since both Q and the image of ψ are torsion-free, both K
and the kernel of ψ are saturated subsheaves of F . Since these subsheaves agree on U , they
are equal on all of X. In other words, Q is isomorphic to the image of a map

OX(L)
⊕d N−→ OX(c1(Q)− (r − 1)L)⊕(

d
r−1)

defined by a matrix N of forms in H0(X,OX(c1(Q)− rL)).
We know that the restriction of the matrix N to the generic point of X has rank r. Let A

be an r×r submatrix of N such that the restriction to the generic point has full rank and let
G be the r×d submatrix of N whose rows have the same indices as A. Letting adj(A) denote
the adjugate matrix, if we take the product adj(A) ·G then there is an r× r submatrix equal
to det(A) · Idr. For each of the d − r columns not in this submatrix, we obtain an element
in the kernel of adj(A) ·G which has entries in H0(X, det(A)) by comparing it against the r
columns in the submatrix adj(A) ·G. Furthermore, these d− r elements span the kernel of
the restriction of adj(A) · G to the generic point, which by construction is the same as the
kernel of the restriction of N to the generic point.

Since the line bundle det(A) is the same as OX(r(c1(Q)−rL)), altogether the construction
above yields an injective morphism

ϕ : OX (L− r · (c1(Q)− rL))⊕d−r → O(L)⊕d

whose image is a full-rank subsheaf of the kernel K. Note that ϕ is defined by a matrix B
whose entries lie in H0 (X,OX (r · (c1(Q)− rL))).

Next, choose some other locally free sheaf T equipped with a morphism ρ : T → O(L)⊕d

such that the image of

T ⊕ OX (L− r · (c1(Q)− rL))⊕d−r
ρ⊕ϕ−−→ O(L)⊕d

is exactly equal to K. We can locally compute Fitr(Q) by taking (d − r)-minors of the
matrix defining ρ ⊕ ϕ. In particular, the (d − r)-minors of the matrix B defining ϕ will
be contained in Fitr(Q). In this way we see that Fitr(Q) contains OX(−D) where D ∈
H0 (X,OX ((d− r)r · (c1(Q)− rL))). □

Corollary 3.5. Let X be a smooth projective variety. Fix a curve class β ∈ N1(X)Z which
lies in the interior of Nef1(X). There is a positive constant υ (which depends on X and β)
with the following property.

Let Q be a torsion-free sheaf on X of positive rank r. Suppose that L is a Cartier divisor
and d is a positive integer such that we have a surjection OX(L)

⊕d → Q. Then

lct(Fitr(Q)) ≥ 1

υ(d− r)r((c1(Q)− rL) · β)
.

Proof. Define υ as in Theorem 2.12. Theorem 3.4 shows that Fitr(Q) contains OX(−D)
where D is a divisor satisfying

D ∈ |(d− r)r · (c1(Q)− rL)| .

Theorem 2.12 provides the desired bound on the log canonical threshold. □
14



3.2. Resolving Fitting ideals in families. Finally, we will need a construction of a
bounded family of birational maps which simultaneously resolves a family of Fitting ideals.

Construction 3.6. Let X be a smooth projective variety. Suppose that G on X × S is a
finite-type family of torsion-free sheaves on X (in the sense of Definition 2.7).

Recall that Fitting ideals are compatible with base change: for every positive integer r the
restriction of Fitr(G) to a fiber Xs is the same as Fitr(G|Xs). In particular, since the rank
of G|Xs is constant in S, the restriction of the top Fitting ideal for G will be the top Fitting
ideal for G|Xs .

We claim that there is a finite stratification of S into locally closed subvarieties S = ⊔iSi,
a collection of birational morphisms ψi : Yi → X × Si, and a locally free sheaf Gi on Yi

satisfying the following properties for every i:

(1) the induced morphism Yi → Si is smooth projective with connected fibers and the
restriction of ψi to the fiber over any closed point of Si is birational,

(2) Gi is isomorphic to (ψ∗
i G|X×Si

)tf .

We construct this stratification of S by Noetherian induction. We first construct a smooth
birational model Y → X ×S that resolves the top Fitting ideal of G. The morphism Y → S
is generically smooth; we let S0 ⊂ S denote the open locus over which the map is smooth
and let Y0 be the preimage of S0. It is clear that ψ0 resolves the top Fitting ideal of G|X×S0 .
It is also clear that for each point s ∈ S0 the map Y0,s → Xs is birational and resolves the
top Fitting ideal of G|Xs . Thus ψ0 : Y0 → X ×S0 satisfies both desired properties. We then
repeat the construction on the irreducible components of X × (S\S0).

4. Sequences of quotients

Our main theorems involve sequences of quotients of sheaves (often arising from Harder-
Narasimhan filtrations). In this section we describe some basic constructions involving se-
quences of quotients.

Suppose we have a sequence (Q•) of torsion-free quotients of a torsion-free coherent sheaf
E :

E = Qs → Qs−1 → . . .→ Q1 → Q0 = 0.

This contains the same information as the sequence of saturated subsheaves (G•) of E defined
by Gs−i = ker(E → Qi). In this setting we define SPX,α(E ;Q•) = SPX,α(E ;G•). Henceforth
we will work exclusively with sequences of quotients and not filtrations.

4.1. Birational transforms. We first discuss how to push sequences of quotients back and
forth over birational morphisms of smooth projective varieties.

Definition 4.1. Let ϕ : X ′ → X be a birational morphism of smooth projective varieties.
Suppose that E is a torsion-free coherent sheaf on X and we have a sequence of torsion-free
quotients

E = Qs → Qs−1 → . . .→ Q1 → Q0 = 0.

The birational transform of the sequence Q• is the sequence of torsion-free quotients of
(ϕ∗E)tf defined by

Q′
i := (ϕ∗Qi)tf .
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Remark 4.2. When we discuss the birational transform of a Harder-Narasimhan filtration
of E , this should be interpreted as applying the construction to the corresponding sequence
of torsion-free quotients of E . Note that the torsion free parts of the pullbacks of subsheaves
defining the filtration may not filter the torsion free part of the pullback of E .

4.2. Birational pushforwards. Suppose we have a birational morphism ϕ : X ′ → X and
a sequence of torsion-free quotients of a sheaf on X ′. We would like to turn this into a
sequence of sheaves on X. The basic construction is the following.

Lemma 4.3. Let X be a smooth projective variety and let E be a torsion-free sheaf on X.
Suppose that ϕ : X ′ → X is a birational morphism from a smooth projective variety X ′. For
every torsion-free quotient (ϕ∗E)tf → Q′, there is a unique torsion-free quotient E → Q such
that there is an isomorphism of quotients

(ϕ∗E)tf //

%%

(ϕ∗Q)tf

∼=
��

Q′

Proof. We define Q to be the image of the composed morphism

E → ϕ∗ϕ
∗E → ϕ∗Q′.

Since torsion-freeness is preserved by pushforward, ϕ∗Q′ and thus also Q are torsion-free.
We define F to be the kernel of E → Q and define F ′ to be the kernel of (ϕ∗E)tf → Q′.
Note that the image of ϕ∗F → (ϕ∗E)tf agrees with F ′ when restricted to the open locus

where ϕ is an isomorphism. Since F ′ is saturated, we obtain an induced morphism ϕ∗F → F ′

whose cokernel is torsion. Applying the kernel-cokernel sequence to the diagram

ϕ∗F //

��

ϕ∗E //

��

ϕ∗Q //

��

0

0 // F ′ // (ϕ∗E)tf // Q′ // 0

shows that the induced morphism ϕ∗Q → Q′ has torsion kernel and trivial cokernel. Thus
(ϕ∗Q)tf → Q′ is an isomorphism.

It only remains to show the uniqueness of Q. Suppose that Q1,Q2 are two torsion-free
quotients with this property. For i = 1, 2 let Fi denote the kernel of E → Qi. On the
open set U where ϕ is an isomorphism, we have F1|U = F2|U as subsheaves of E|U . There
is a unique saturated subsheaf of E whose restriction to U agrees with this subsheaf. Since
Q1,Q2 are torsion-free we conclude that F1 = F2 as subsheaves of E . □

Definition 4.4. Let ϕ : X ′ → X be a birational morphism of smooth projective varieties.
Suppose E is a torsion-free sheaf on X and we are given a sequence

(ϕ∗E)tf = Q′
s → Q′

s−1 → . . .→ Q′
1 → Q′

0 = 0

of torsion-free quotients of (ϕ∗E)tf . The birational pushforward of (Q′
•) to X is given by

repeatedly applying Lemma 4.3 to construct successive quotients of E . Precisely, we apply
Lemma 4.3 to Q′

s → Q′
s−1 to construct E → Qs−1, then apply Lemma 4.3 to Q′

s−1 → Q′
s−2

to construct Qs−1 → Qs−2, and so on.
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Lemma 4.5. Let ϕ : X ′ → X be a birational morphism of smooth projective varieties and
let E be a torsion-free sheaf on X.

(1) Suppose (Q•) is a sequence of torsion-free quotients of E. Then the birational push-
forward of the birational transform of this sequence (Q•) is the same as the original
sequence.

(2) Suppose (Q′
•) is a sequence of torsion-free quotients of (ϕ∗E)tf . Then the birational

transform of the birational pushforward of this sequence is the same as the original
sequence.

Proof. (1) Follows from the uniqueness of the quotient Q constructed in Lemma 4.3.
(2) Follows immediately from the definitions. □

4.3. Graded pieces. When working with sequences of quotients (Q•), often we care not just
about the quotients but also about the graded pieces Ti := ker(Qi → Qi−1). The following
lemma indicates how to “improve” the graded pieces of a sequence of quotient sheaves by
taking birational transforms.

Lemma 4.6. Let X be a smooth projective variety and let E be a torsion-free sheaf on
X. Let (Q•) be a sequence of torsion-free quotients of E. There is a birational morphism
ϕ : X ′ → X from a smooth projective variety X ′ such that each of the birational transforms
Q′
i := (ϕ∗Qi)tf and each of the graded pieces T ′

i := ker(Q′
i → Q′

i−1) is locally free.

Proof. By inductively resolving Fitting ideals, we can first find a birational morphism ψ :

X̃ → X such that each birational transform Q̃i := (ψ∗Qi)tf is locally free. Let T̃i denote the
kernel of Q̃i → Q̃i−1. Now suppose that ρ : X ′ → X̃ is any smooth birational model and
consider the exact sequence

ρ∗T̃i // ρ∗Q̃i
// ρ∗Q̃i−1

// 0

The leftmost arrow factors through (ρ∗T̃i)tf . Since the induced morphism (ρ∗T̃i)tf → ρ∗Q̃i

is a generically injective morphism of torsion-free sheaves, it is injective. In other words,

the kernel of ρ∗Q̃i → ρ∗Q̃i−1 is exactly the birational transform of T̃i. Thus we can finish

the construction by choosing a birational morphism ρ : X ′ → X̃ from a smooth projective

variety X ′ that resolves the appropriate Fitting ideals of the sheaves T̃i. □

4.4. Families of quotient sequences. Our next topic is families of quotient sequences,
extending our earlier discussion of families of torsion-free sheaves.

Definition 4.7. Let X be a smooth projective variety and let E be a torsion-free coherent
sheaf on X. A finite-type family of sequences of torsion-free quotients of E consists of:

• a finite-type separated scheme S over our ground field, and
• for every connected component Sj of S a sequence of quotients (Qi,j) of the sheaf
π∗
1E on the product X × Sj, where π1 : X × Sj → X is the projection map

such that

(1) for every connected component Sj of S and every index i the sheaf Qi,j is flat over
Sj, and

(2) for every connected component Sj, for every point s ∈ Sj, and for every index i the
restriction Qi,j|Xs is torsion-free.
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We say that a set of sequences of torsion-free quotients is bounded if there is a finite-type
family of sequences of torsion-free quotients that parametrizes every sequence in our set.

We will need a boundedness criterion for families of sequences of quotients.

Lemma 4.8. Let X be a smooth projective variety and let E be a torsion-free coherent sheaf
on X. Suppose G on X × S is a finite-type family of torsion-free quotients of E. Then the
set of sequences of torsion-free quotients (Q•) of E such that each Qi is parametrized by G
is also a bounded family.

Proof. We have an inclusion of relative Quot schemes Quot(G/S) → Quot(π∗
1E/S) ∼= Quot(E)×

S where π1 : X×S → X is the projection. For every positive integer 1 ≤ t ≤ rk(E), consider
the product X × S×t equipped with the projection maps pj : X × S×t → X × S onto the
product of X with the jth factor of S×t and r : X × S×t → X. We can construct the set of
all sequences of quotients of total length t as the closed subscheme R of S×t such that for
every 1 ≤ i < j ≤ t the map Quot(p∗jG/S×t)|R → Quot(r∗E/S×t)|R factors through the map
Quot(p∗iG/S×t)|R → Quot(r∗E/S×t)|R. □

Finally, we discuss how to improve families of quotient sequences using birational mor-
phisms.

Construction 4.9. Let X be a smooth projective variety and let E be a torsion-free sheaf
on X. Suppose we have a finite-type family of quotient sequences of E consisting of

• a finite-type separated scheme S and
• for every connected component Sj of S a sequence of torsion-free quotients (Qi,j) of
the sheaf π∗

1E on the product X × Sj.

Then there exists a stratification of S into locally closed subvarieties S = ⊔kSk and a
collection of smooth schemes Yk equipped with:

• surjective morphisms πk : Yk → Sk which have smooth projective connected fibers
and

• birational morphisms ψk : Yk → X ×Sk whose restriction to every fiber over a point
in Sk is birational

that satisfies the following properties.

(1) For every connected component Sk and for every quotient Qi,k in the quotient se-
quence restricted to X × Sk, the birational transform sheaf Q′

i,k on Yk is locally free
and

(2) for all indices i, k the restriction of ker(Q′
i,k → Q′

i+1,k) to the fibers of Yk → Sk is a
locally free sheaf.

Indeed, first suppose we are given a single quotient sequence (Q•) of E . Then Lemma 4.6
shows that by repeatedly resolving Fitting ideals we can construct a single birational map
ϕ : Y → X such that both the birational transforms of the quotients and their successive
kernels are locally free. Since one can resolve Fitting ideals in families by Construction 3.6,
a repeated application of Construction 3.6 in the analogous way allows us to construct the
desired Yk.
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5. Uniform bounds on birational stability

Suppose we have a birational morphism of smooth projective varieties ϕ : X ′ → X. Let
α′ be a nef curve class on X ′ and set α = ϕ∗α

′. Given a locally free sheaf E on X, our goal
in this section is to analyze the difference between the α′-slope panel of ϕ∗E and the α-slope
panel of E .

5.1. Birational behavior of stability. There is one situation in which Harder-Narasimhan
filtrations are compatible under birational transforms.

Lemma 5.1 ([GKP16, Proposition 2.8]). Let ϕ : X ′ → X be a birational morphism of
smooth projective varieties. Let α ∈ Nef1(X) be a non-zero nef curve class. Suppose that
E is a torsion-free sheaf on X and let (Q•) be the sequence of quotients defined by the α-
Harder-Narasimhan filtration of E.

Then the ϕ∗α-Harder-Narasimhan filtration of (ϕ∗E)tf is given by the birational transform
of (Q•).

Of course if α′ ∈ Nef1(X
′) satisfies ϕ∗α

′ = α but α′ ̸= ϕ∗α then in general there is no
reason to expect the α′-Harder-Narasimhan filtration of (ϕ∗E)tf to be directly related to the
α-Harder-Narasimhan filtration of E . However we have the following basic inequality.

Lemma 5.2. Let ψ : X̃ → X be a birational morphism of smooth projective varieties.

Suppose that E is a torsion-free sheaf on X and α̃ ∈ Nef1(X̃). Define α = ψ∗α̃ and Ẽ =
(ψ∗E)tf . Then we have

µα̃(Ẽ) ≤ µα(E).
Proof. We know that ψ∗c1(E)− c1((ψ

∗E)tf ) is an effective divisor. Thus

c1((ψ
∗E)tf ) · α̃ ≤ ψ∗c1(E) · α̃

= c1(E) · α
leading to the desired inequality. □

5.2. Bounds on birationally destabilizing sheaves. Our first technical result is the fol-
lowing. Loosely speaking, it shows that if the nef class α′ ∈ Nef1(X

′) is “more destabilizing”
for ϕ∗E than ϕ∗α

′ is for E , we obtain a lower bound on the relative canonical degree of α′.

Theorem 5.3. Let X be a smooth projective variety and let E be a non-zero torsion-free
sheaf of rank n on X. Fix a curve class β ∈ N1(X)Z in the interior of Nef1(X). Fix a
positive integer r. Fix a surjection OX(L)

⊕d → E where L is a Cartier divisor and d is a
positive integer. There is a bounded family G of torsion-free quotients of E and a positive
constant ρ (which depend on X, E , β, r, L, d) such that the following property holds.
Suppose we fix a non-zero curve class α ∈ Nef1(X). Then every surjection E → Q onto a

torsion-free sheaf of rank r satisfies one of the following properties:

(1) Q is parametrized by the bounded family of torsion-free quotients G, or
(2)

(
c1(Q)− r

n
c1(E)

)
· β > 0 and for every birational morphism ϕ : X ′ → X from a

smooth projective X ′, for every constant R, and for every α′ ∈ Nef1(X
′) satisfying

ϕ∗α
′ = α such that 1

r
c1((ϕ

∗Q)tf ) · α′ ≤ 1
n
c1(E) · α− 1

r
R we have

KX′/X · α′ ≥ ρ

(
c1(Q)− r

n
c1(E)

)
· α +R(

c1(Q)− r
n
c1(E)

)
· β
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Proof. Since β lies in the interior of Nef1(X), the set of torsion-free quotients Q such that

c1(Q) · β ≤ sup
{(

2
r

n
c1(E)− rL

)
· β, r

n
c1(E) · β + 1

}
is a bounded family by Theorem 2.10. We let G denote this bounded family of quotients.
Also, we apply Theorem 2.12 to our fixed curve class β to obtain a positive constant υ.

Suppose Q is a torsion-free rank r quotient of E not parametrized by G. Corollary 3.5
shows that

lct(Fitr(Q)) ≥ 1

υ(d− r)r((c1(Q)− rL) · β)
Suppose that ϕ : X ′ → X is a birational morphism from a smooth projective variety,
α′ ∈ Nef1(X

′) pushes forward to α ∈ N1(X), and E → Q is a rank r quotient satisfying
the intersection inequality 1

r
c1((ϕ

∗Q)tf ) · α′ ≤ 1
n
c1(E) · α− 1

r
R. By Lemma 5.2 if we replace

X ′ by any higher birational model the slope of the torsion-free pullback of Q still satisfies
this condition. Furthermore if we replace α′ by its pullback to a higher birational model
the intersection against the relative canonical divisor does not change. Thus we may replace
X ′ by any higher birational model. In particular, we may assume Q′ is locally free, or
equivalently, ϕ resolves the rth Fitting ideal of Q. Letting D denote the divisor defined by
the inverse image ideal sheaf of Fitr(Q), Lemma 2.14 shows

KX′/X · α′ ≥ 1

2
lct(Fitr(Q))(D · α′) ≥ D · α′

2υ(d− r)r((c1(Q)− rL) · β)
Lemma 3.2 shows that

D · α′ = (ϕ∗c1(Q)− c1(Q′)) · α′

≥
(
c1(Q)− r

n
c1(E)

)
· α +R

where the second line follows from our assumption on Q. Thus

KX′/X · α′ ≥
(
c1(Q)− r

n
c1(E)

)
· α +R

2υ(d− r)r((c1(Q)− rL) · β)
Note that the denominator is positive since c1(Q)− rL is pseudo-effective by Lemma 3.3.

By the inequality of intersection numbers we used to define G, we know that

(c1(Q)− rL) · β ≤ 2
(
c1(Q)− r

n
c1(E)

)
· β.

Setting ρ = 1
4υ(d−r)r we conclude that

KX′/X · α′ ≥ ρ

(
c1(Q)− r

n
c1(E)

)
· α +R(

c1(Q)− r
n
c1(E)

)
· β

The denominator is still positive due to the intersection inequalities which define G. □

In order to apply Theorem 5.3 in practice, we must control the relationship between the
intersection number

(
c1(Q)− r

n
c1(E)

)
· α and the intersection number

(
c1(Q)− r

n
c1(E)

)
· β.

In particular, if we assume that α is “not too close” to the boundary of Nef1(X) then we
can find a universal lower bound on the ratio between these two quantities. The following
theorem is the result of this computation.
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Theorem 5.4. Let X be a smooth projective variety and let E be a non-zero torsion-free
sheaf on X of rank n. Fix a big and nef divisor H on X. Fix a closed cone C ⊂ N1(X)R
such that C\{0} is contained in the interior of Nef1(X) and C contains a class β ∈ N1(X)Z
that is in the interior of Nef1(X). There is a bounded family G of torsion-free quotients of
E and a positive constant ρ (which depend on X, E , H, C, β) with the following property.

Fix a non-zero curve class α ∈ C. Suppose that there is a birational model ϕ : X ′ → X
from a smooth projective variety X ′, a class α′ ∈ Nef1(X)Z satisfying ϕ∗α

′ = α, and an
α′-destabilizing quotient (ϕ∗E)tf → Q′. If we denote by Q the torsion-free quotient of E
obtained by applying Lemma 4.3 to Q′, then either

(1) Q is parametrized by the bounded family of torsion-free quotients G, or
(2) KX′/X · α′ ≥ ρ(H · α).

Note that if E is not semistable, then every destabilizing quotient on X will be included in
the bounded family G. In practice Theorem 5.4 is most useful when E is α-semistable since
in this case the condition on the slopes of Q′ is more restrictive.

Proof. Fix a surjection OX(L)
⊕d → E . For each possible rank r = 1, 2, . . . , n, applying

Theorem 5.3 to our chosen data with R = 0 yields a bounded family of sheaves Gr and a

constant ρr. We let G denote the union of the bounded families ∪rk(E)
r=1 Gr and set ρ′ = infr ρr.

We next enlarge C slightly: choose a closed convex full-dimensional cone C ′ ⊂ N1(X )R such
that C ′\{0} is contained in the interior of Nef1(X ) and C\{0} is contained in the interior of
C ′. Let T ′ denote all the classes γ ∈ C ′ satisfying H ·γ = 1. Since this set is compact, c1(E) ·γ
achieves its maximum as we vary γ ∈ T ′ and we define V = sup{0,maxγ∈T ′ c1(E) · γ}. By
applying Theorem 2.10 we see that there is a bounded family of quotients Q of E satisfying
c1(Q) ·γ ≤ V for some non-zero γ ∈ T ′. We enlarge G by including such quotients. Note that
for every γ ∈ T ′ and every Q not parametrized by G we have 1

rk(Q)
c1(Q)·γ > 1

n
V ≥ 1

n
c1(E)·γ.

Since the slope is homogeneous with respect to rescaling γ, we conclude that µγ(Q) > µγ(E)
for every non-zero γ ∈ C ′ and every quotient Q not parametrized by G.

Let T = T ′ ∩ C. There is some positive constant q such that γ − qβ ∈ C ′ for every γ ∈ T .
In particular, this means that(

c1(Q)− rk(Q)

n
c1(E)

)
· γ ≥ q

(
c1(Q)− rk(Q)

n
c1(E)

)
· β

for every γ ∈ T and every quotient Q not parametrized by G. Rescaling to allow H · γ to be
arbitrary, we see that for every non-zero γ ∈ C and every quotient Q not parametrized by G
we have (

c1(Q)− rk(Q)
n
c1(E)

)
· γ(

c1(Q)− rk(Q)
n
c1(E)

)
· β

≥ q(H · γ).

Suppose we have an α′-destabilizing torsion-free quotient Q′ of (ϕ∗E)tf of rank r as in the
statement of the theorem. In particular this means that

µα′(Q′) < µα′((ϕ∗E)tf )
≤ µα(E)

where the second inequality is a consequence of Lemma 5.2. Applying Theorem 5.3 with
R = 0 to the quotient E → Q corresponding to Q′ as in Lemma 4.3, we find that either:
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(a) Q is parametrized by our bounded family of torsion-free quotients G, or
(b) we have

KX′/X · α′ ≥ ρ′
(
c1(Q)− r

n
c1(E)

)
· α(

c1(Q)− r
n
c1(E)

)
· β

≥ ρ′q(H · α)

We conclude by setting ρ = ρ′q. □

5.3. Controlling bounded families of quotients. In both Theorem 5.3 and Theorem 5.4
there is a bounded family of quotients E → Q to which our bounds do not apply. We next
prove several lemmas intended to handle this bounded family. The key result is Corollary
5.8 which shows that for any bounded family of quotients there exists a single exceptional
divisor E on a family of birational models of X that controls the birational difference in
slope panels.

Suppose we have a birational morphism ϕ : X ′ → X of smooth projective varieties and a
sequence of quotients on X:

E = Qs → Qs−1 → . . .→ Q1 → Q0 = 0

Let (Q′
•) denote the birational transform on X ′. As discussed earlier, the graded pieces

of (Q′
•) on X ′ may not be the the torsion-free parts of the pullbacks of the graded pieces

of (Q•) on X. However we can bound the differences in slope between these two different
constructions.

Lemma 5.5. Let X be a smooth projective variety and let E denote a non-zero torsion-free
sheaf on X. Suppose that ϕ : X ′ → X is a birational map from a smooth projective X ′ and
that α′ ∈ Nef1(X

′) is non-zero. Set α = ϕ∗α
′ and E ′ = (ϕ∗E)tf .

Let (Q′
•)
s
i=1 denote a sequence of quotients of E ′ and let (Q•)

s
i=1 denote the birational

pushforward sequence on X. Define

• T ′
i = ker(Q′

i → Q′
i−1),

• Ti = ker(Qi → Qi−1),

• T̃i to be the birational transform of Ti on X ′.

Then

∥ SPX,α(E ;Q•)− SPX′,α′(E ′;Q′
•)∥sup ≤

s∑
i=1

(
s−1∏
k=i

rk(Qk)

)
rk(Ti) · |µα(Ti)− µα′(T̃i)|.

Note that the left-hand side of the equation above is the same as supi{|µα(Ti)− µα′(T ′
i )|}

so that the theorem does indeed control the difference in slopes between the graded pieces

T ′
i of the birational transform and the birational transforms T̃i of the graded pieces.

Proof. We prove this by induction on s. For the base case s = 1 we have T ′
1 = (ϕ∗E)tf = T̃1

and the statement is immediately true. For a fixed s > 1, we prove by induction that for
1 ≤ j ≤ s we have

|µα′(T ′
j )− µα(Tj)| ≤

j∑
i=1

(
j−1∏
k=i

rk(Qk)

)
rk(Ti) · |µα(Ti)− µα′(T̃i)|.
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These inequalities for 1 ≤ j ≤ s collectively imply the desired statement. For the base case

j = 1 we have T ′
1 = Q′

1 = T̃1 implying the statement.
In general, consider the diagram with exact rows

ϕ∗Tj
ψ

��

// ϕ∗Qj

��

// ϕ∗Qj−1

��

// 0

0 // T ′
j

// (ϕ∗Qj)tf // (ϕ∗Qj−1)tf // 0

Note that:

(1) Tj, T ′
j , and T̃j all have the same rank (since they are isomorphic over an open subset).

(2) The map ψ factors through (ϕ∗Tj)tf ∼= T̃j. Since the sheaves T̃j and T ′
j have the same

rank and are torsion-free, the induced (ϕ∗Tj)tf → T ′
j is injective.

By combining the logic above with the Snake Lemma, we conclude that the cokernel of

T̃j → T ′
j is a torsion sheaf which admits a surjection from (ϕ∗Qj−1)tors. Thus

|µα′(T ′
j )− µα(Tj)| ≤ |µα′(T ′

j )− µα′(T̃j)|+ |µα′(T̃j)− µα(Tj)|

≤ rk(Qj−1)

rk(Tj)
· |µα′(Q′

j−1)− µα(Qj−1)|+ |µα′(T̃j)− µα(Tj)|

By applying the combinatorial Lemma 5.6 where ai = c1(Ti) · α, a′i = c1(T ′
i ) · α′, and

bi = rk(Ti), we obtain |µα′(Q′
j−1) − µα(Qj−1)| ≤ ∥ SPα′(Q′

j−1,Q′
•) − SPα(Qj−1,Q•)∥sup.

Continuing the chain of inequalities:

|µα′(T ′
j )− µα(Tj)| ≤

rk(Qj−1)

rk(Tj)
· ∥ SPα′(Q′

j−1,Q′
•)− SPα(Qj−1,Q•)∥sup + |µα′(T̃j)− µα(Tj)|

≤ 1

rk(Tj)

j∑
i=1

(
j−1∏
k=i

rk(Qk)

)
rk(Ti) · |µα(Ti)− µα′(T̃i)|.

where the last line follows from the induction assumption on s. Since rk(Tj) ≥ 1, this finishes
the inductive step. □

Lemma 5.6. Suppose we have sets {(ai, bi)}si=1 and {(a′i, bi)}si=1 where the ai, a
′
i are integers

and the bi are positive integers. Then∣∣∣∣∑s
i=1 a

′
i −
∑s

i=1 ai∑s
i=1 bi

∣∣∣∣ ≤ sup
i=1,...,s

|a′i − ai|
bi

.

Proof. Choose the index j ∈ {1, . . . , s} which maximizes the value of
|a′j−aj |
bj

. This implies

that for every i we have bj|a′i − ai| ≤ bi|a′j − aj|. Thus

bj

∣∣∣∣∣
s∑
i=1

a′i −
s∑
i=1

ai

∣∣∣∣∣ ≤
s∑
i=1

bj|a′i − ai|

≤
s∑
i=1

bi|a′j − aj|
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Rearranging gives ∣∣∣∣∑s
i=1 a

′
i −
∑s

i=1 ai∑s
i=1 bi

∣∣∣∣ ≤ |a′j − aj|
bj

= sup
i=1,...,s

|a′i − ai|
bi

.

□

Next suppose we take a sheaf E and its birational transform E ′. The following lemma
allows us to control the difference in slope panels between E , E ′ using the difference in slope
panels of the graded pieces of their Harder-Narasimhan filtrations.

Lemma 5.7. Let X be a smooth projective variety and let E denote a non-zero torsion-free
sheaf on X of rank n. Suppose that ϕ : X ′ → X is a birational map from a smooth projective
X ′ and that α′ ∈ Nef1(X

′) is non-zero. Set α = ϕ∗α
′ and E ′ = (ϕ∗E)tf .

Let (Q′
•)
s
i=1 denote the α

′-Harder-Narasimhan filtration of E ′ and (Q•) denote the birational
pushforward quotient sequence on X. Let (R•)

t
i=1 denote the α-Harder-Narasimhan filtration

of E and let (R′
•) denote the birational transform quotient sequence on X ′. Define

N = sup {∥ SPX,α(E ;Q•)− SPX′,α′(E ′;Q′
•)∥sup, ∥ SPX,α(E ;R•)− SPX′,α′(E ′;R′

•)∥sup}
Then

∥ SPX,α(E)− SPX′,α′(E ′)∥sup ≤ (2n − 1)N.

Proof. For convenience we define

(a1, . . . , an) = SPX,α(E ,R•)

(b1, . . . , bn) = SPX,α(E ;Q•)

(a′1, . . . , a
′
n) = SPX′,α′(E ′,R′

•)

(b′1, . . . , b
′
n) = SPX′,α′(E ′;Q′

•)

We prove inductively that for any 1 ≤ j ≤ n we have

|aj − b′j| ≤
(
2j − 1

)
N

To prove an upper bound on aj − b′j, we apply Lemma 2.6 on X ′ to conclude that

j∑
i=1

(b′i − a′i) ≥ 0.

Rearranging, we obtain

a′j − b′j ≤
j−1∑
i=1

(b′i − a′i) =

j−1∑
i=1

(b′i − ai) +

j−1∑
i=1

(ai − a′i)

≤

(
j−1∑
i=1

(b′i − ai)

)
+ (j − 1)N

Combining with the induction assumption, we see that

aj − b′j ≤ N + a′j − b′j ≤ jN +

j−1∑
i=1

(2i − 1)N = (2j − 1)N
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To prove a lower bound on aj − b′j, we apply Lemma 2.6 on X to conclude that

j∑
i=1

(ai − bi) ≥ 0.

Arguing as before, we have

aj − bj ≥
j−1∑
i=1

(bi − ai) =

j−1∑
i=1

(b′i − ai)−
j−1∑
i=1

(b′i − bi)

≥

(
j−1∑
i=1

(b′i − ai)

)
− (j − 1)N

Thus

aj − b′j ≥ aj − bj −N ≥ −jN −
j−1∑
i=1

(2i − 1)N = −(2j − 1)N

□

Combining Lemma 5.5 and Lemma 5.7, we obtain a result which allows us to control the
changes in slopes of Harder-Narasimhan filtrations corresponding to any bounded family
of quotients of E . As mentioned before, the key is the existence of the single divisor E
controlling the differences on slope panels.

Corollary 5.8. Let X be a smooth projective variety and let E be a non-zero torsion-free
sheaf on X. Fix a bounded family of sequences (Q•) of torsion-free quotients of E and a
finite set {(Rℓ

•)}ℓ∈L of torsion-free quotients of E. Let ψ : Y → X × S denote the family of
birational models obtained by applying Construction 4.9 to construct locally free birational
transforms of the sheaves in the bounded family (Q•) (where we use the shorthand S = ⊔Sj
and Y = ⊔Yj). Then there is an effective ψ-exceptional divisor E on Y satisfying the
following property.

Suppose that for some closed point s ∈ S there is a non-zero nef class αs ∈ Nef1(Ys) with
the following properties:

• The αs-Harder-Narasimhan filtration of (ψ∗
sE)tf is given by the birational transform

(Q′
s,•) of a quotient sequence (Q•) in our bounded family.

• Setting α = ψs∗αs, the α-Harder-Narasimhan filtration of E is given by one of the
sequences (Rℓ

•).

Then we have

∥ SPX,α(E)− SPYs,αs((ψ
∗
sE)tf )∥sup ≤ E|Ys · αs.

Proof. Let E ′ = (ψ∗π∗
1E)tf and let (R′ℓ

• ) denote the birational transform on Y of the pullback
(π∗

1Rℓ
•) under the projection map π1 : X × S → X. We also let

• Ti,j := ker(Qi,j → Qi−1,j) on X × Sj,

• T̃i,j := (ψ∗Ti,j)tf on Yj,
• Hℓ

i = ker(π∗
1Rℓ

i → π∗
1Rℓ

i−1) on X × S,

• H̃ℓ
i = (ψ∗Hℓ

i)tf on Y.
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As we vary i, j the divisors ψ∗c1(Ti,j) − c1(T̃i,j) form a finite set of effective ψ-exceptional
divisors on Y which we denote by {Fk}. Similarly, as we vary ℓ, i the divisors ψ∗c1(Hℓ

i) −
c1(H̃ℓ

i) form a finite set of effective ψ-exceptional divisors on Y which we denote by {Gp}.
By Lemma 5.7 we have

∥ SPX,α(E)− SPYs,αs((ψ
∗
sE)tf )∥sup ≤ (2rk(E) − 1)N

where

N = sup
{
∥ SPX,α(E ;Q•)− SPYs,αs(E ′

s;Q′
s,•)∥sup, ∥ SPX,α(E ;Rℓ

•)− SPYs,αs(E ′
s;R′ℓ

s,•)∥sup
}

In turn, Lemma 5.5 shows that N is bounded above by intersections of αs against certain
linear combinations of Fk|Ys and Gp|Ys . Since αs is nef, it suffices to choose E to be an
effective ψ-exceptional divisor that is more effective than all of the finitely many possible
linear combinations of the various divisors Fk and Gp obtained by combining the results of
Lemma 5.5 and Lemma 5.7. □

5.4. Canonical degree bound. We are finally prepared to prove the main theorem which
gives us control of the relative canonical degree of a nef class α′ for which E admits a
destabilizing quotient.

Theorem 5.9. Let X be a smooth projective variety and let E be a non-zero torsion-free
sheaf on X. Fix a big and nef divisor H. Fix a closed convex cone C such that C\{0} is
contained in the interior of Nef1(X) and C contains a class β ∈ N1(X )Z. There are positive
constants ρ, η which satisfy the following property.

Let ϕ : X ′ → X denote a birational morphism from a smooth projective variety and let
α′ ∈ Nef1(X

′) be a non-zero nef class such that α := ϕ∗α
′ lies in C. Define the constant µ as

µ = ∥ SPX,α(E)− SPX′,α′((ϕ∗E)tf )∥sup.

Then

KX′/X · α′ ≥ min{ρ(H · α), ηµ}.

Proof. By enlarging C slightly we may suppose that it is a rational polyhedral cone that is
still interior to Nef1(X). By [Neu09, Lemma 3.3.3] there is a finite set of filtrations of E which
can occur as Harder-Narasimhan filtrations as we vary α ∈ C. We denote the corresponding
finite set of quotient sequences by {(Rℓ

•)}ℓ∈L.
Apply Theorem 5.4 to E to obtain a positive constant ρ and a bounded family of sheaves

G. According to the conclusion of Theorem 5.4, one of the three following possibilities must
hold:

• (ϕ∗E)tf is α′-semistable,
• if (ϕ∗E)tf → Q′ is an α′-destabilizing quotient, then Q′ is the birational transform of
a quotient parametrized by G, or

• KX′/X · α′ ≥ ρ(H · α).
We add the trivial quotient E → 0 to the bounded family of sheaves G. Referring to the
three possible outcomes of Theorem 5.4, we see that either:

(1) every quotient (Q′
•) in the α′-Harder-Narasimhan sequence of (ϕ∗E)tf is the birational

transform of a quotient parametrized by the bounded family G, or
(2) KX′/X · α′ ≥ ρ(H · α).
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It suffices to prove the desired linear lower bound on KX′/X · α′ separately in each of these
two cases. This statement is transparently true in case (2).

In case (1), we apply Lemma 4.8 to the bounded family of sheaves G to get a bounded
family of quotient sequences of E whose terms lie in G. We then apply Construction 4.9 to
this bounded family of quotient sequences to get a family of smooth birational models ψ :
Y → X×S (where we use the shorthand S = ⊔Sj andY = ⊔Yj). Recall that for each closed
point s ∈ S the birational transform of the corresponding quotient sequence (Qi,j) to Ys

consists of locally free sheaves Q′
i,j such that the successive kernels ker(Q′

i,j|Ys → Q′
i−1,j|Ys)

are also locally free. Furthermore, by applying Lemma 4.6 to pass to a higher birational
model, we may also assume that the birational transforms of every quotient Rℓ

i and every
successive kernel of the birational transforms are locally free.

Suppose ϕ : X ′ → X is a birational map and α′ ∈ Nef1(X
′) as in the statement of the

theorem and that the α′-Harder-Narasimhan filtration of (ϕ∗E)tf is given by some sequence
of quotients (Qi)

s
i=1 parametrized by our bounded family. In particular the quotient sequence

(Q•) corresponds to a closed point s in our parameter space S. Let ψs : Ys → X denote

the corresponding birational map and choose a birational model X̂ with birational maps

g1 : X̂ → X ′ and g2 : X̂ → Ys.
Define the nef curve class αs = g2∗g

∗
1α

′. [GKP16, Proposition 2.8] shows that stability
is compatible with pullbacks so that SPX′,α′(E ′) = SPX̂,g∗1α′((g∗1E ′)tf ). In turn, since every

successive quotient in the Harder-Narasimhan filtration of (g∗1E ′)tf is locally free and thus
pulled back from Ys, we have SPX̂,g∗1α′((g∗1E ′)tf ) = SPYs,αs((ψ

∗
sE)tf ). Thus we have

µ = ∥ SPX,α(E)− SPX′,α′((ϕ∗E)tf )∥sup
= ∥ SPX,α(E)− SPYs,αs((ψ

∗
sE)tf )∥sup

By Corollary 5.8 there is an effective ψ-exceptional divisor E (not depending on ϕ : X ′ →
X) such that

∥ SPX,α(E)− SPYs,αs((ψ
∗
sE)tf )∥sup ≤ E|Ys · αs.

Next we choose a positive constant ζ such that ζKY/X×S ≥ E. Thus

µ ≤ ζKYs/X · αs
= ζg∗2KYs/X · g∗1α′

≤ ζKX̂/X · g∗1α′

= ζKX′/X · α′

We obtain the desired statement by setting η = 1/ζ. □

6. Jumping loci for dominant families with connected fibers

Let X be a smooth projective variety, let E be a locally free sheaf on X , and let M be
an irreducible component of Mg,0(X). Given a variety W equipped with a generically finite
morphism W →M , our goal is to give a lower bound on the codimension of the image of W
based on the positivity of s∗E where s : C → X is a general curve parametrized by W .
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6.1. Grauert-Mulich.

Definition 6.1. Let Y be a variety and let E be a globally generated vector bundle on Y .
The syzygy bundle ME is the kernel of the evaluation map OY ⊗H0(E) → E .

We will use the following result of [But94] describing syzygy bundles on curves.

Theorem 6.2 ([But94]). Let E be a globally generated locally free sheaf on a curve C of
genus g and let ME be its syzygy bundle.

(1) Fix a constant k ≥ 2. If µmin(E) ≥ kg then µmin(ME) ≥ − k
k−1

.

(2) If µmin(E) < 2g then µmin(ME) ≥ −2g rk(E)− 2.

Proof. [LRT23b, Theorem 6.8] carefully explains how Butler’s work implies (2) and implies
(1) when either g = 0 or when k = 2. [But94, 1.3 Corollary] proves case (1) in the remaining
situations g ≥ 1 and k > 2. □

The Grauert-Mulich theorem of [LRT23b] bounds the difference between the expected
and actual values of the Harder-Narasimhan filtration of E|C . It relies on several geometric
assumptions about the evaluation map: it should be dominant with connected fibers and it
should be flat along a general curve.

Theorem 6.3 ([LRT23b, Corollary 6.6]). Let X be a smooth projective variety and let E be
a non-zero torsion free sheaf on X of rank r. Let W be a variety equipped with a generically
finite morphism W → Mg,0(X). Let p : Uν → W denote the normalization of the universal
family over W with evaluation map evν : Uν → X. Assume that evν is dominant with
connected fibers and that a general fiber of p is contained in the locus where evν is flat.

Let C denote a general fiber of Uν → W equipped with the induced morphism s : C → X.
Let t be the length of the torsion part of the normal sheaf Ns, let G be the subsheaf of (Ns)tf
generated by global sections, and let V be the tangent space to W at s. Let q be the dimension
of the cokernel of the composition

V → TMg,0(X),s = H0(C,Ns) → H0(C, (Ns)tf ).

Then we have

∥ SPX,[C](E)− SPC(s
∗E)∥sup ≤

1

2

(
(q + 1)µmax(M∨

G ) + t
)
(rk(E)− 1).

6.2. Codimension of flat families of curves. Our next goal is to bound the codimension
of families which satisfy an extra flatness assumption. We first need a couple lemmas.

Lemma 6.4. Let X be a smooth projective variety. Let M be an irreducible component of
Mg,0(X) parametrizing a dominant family of maps. Then

−KX · C + (dim(X)− 3)(1− g) ≤ dim(M) ≤ −KX · C + dim(X) + 2g − 3.

Proof. In general the expected dimension of M is χ(Ns) and this gives a lower bound on
dim(M). An upper bound on dim(M) is given by h0(C,Ns). Since M parametrizes a
dominant family we know that Ns is generically globally generated. Thus [LRT23b, Lemma
2.8] shows that

h1(C,Ns) ≤ g(dim(X)− 1)

leading to the result. □
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Lemma 6.5. Let X be a smooth projective variety. Let W be a variety equipped with a
generically finite morphism W → Mg,0(X). Let p : Uν → W denote the normalization
of the universal family over W with evaluation map evν : Uν → X. Assume that evν is
dominant and that the general morphism s : C → X parametrized by W is birational onto
its image. Then the torsion part of Ns satisfies

h0(C, (Ns)tors) ≤ g(dim(X)− 1) + codim(W ).

Proof. Since s : C → X is a general point of W , we know that W is smooth at that point.
By [AC81, Corollary 6.11], the image of the map

TW,[s] → TMg,0(X),[s] = H0(C,Ns)

has zero intersection with the subgroup H0(C, (Ns)tors). Letting M denote an irreducible
component of Mg,0(X) containing the image of W , we have

h0(C, (Ns)tors) ≤ dim(TMg,0(X),[s])− dim(TW,[s])

=
(
dim(TMg,0(X),[s])− dim(M)

)
+ (dim(M)− dim(W ))

≤ h1(C,Ns) + codimM(W ).

Since W defines a dominant family we know that Ns is generically globally generated. Then
[LRT23b, Lemma 2.8] shows that h1(C,Ns) ≤ g(dim(X)− 1). □

We can now prove the main theorem in this subsection.

Theorem 6.6. Let X be a smooth projective variety. Let W be a variety equipped with a
generically finite morphism W → Mg,0(X). Let p : Uν → W denote the normalization of
the universal family over W with evaluation map evν : Uν → X. Assume that

• evν is dominant with connected fibers,
• a general map parametrized by W is birational onto its image, and
• a general fiber of p is contained in the locus where evν is flat.

Let E be a non-zero torsion-free sheaf on X . Define

µ = ∥ SPX,s∗[C](E)− SPC((s
∗E)tf )∥sup

where s : C → X is a general map parametrized by W . Letting M denote an irreducible
component of Mg,0(X) containing the image of W , we have

codimM(W ) ≥ µ

(γ + 1)(rk(E)− 1)
− γ

where γ = g(dim(X)− 1) + 1.

Proof. Letting t denote the length of (Ns)tors, Lemma 6.5 implies that

t ≤ g(dim(X)− 1) + codimM(W ).

For s general in W the normal sheaf Ns is generically globally generated. Thus [LRT23b,
Lemma 2.8] shows that h1(C,Ns) ≤ g(dim(X)−1). We conclude that dim(M) ≥ dim(TM,[s])−
g(dim(X)− 1). Since a general map s : C → W will define a smooth point of W , we have

dim(M)− dim(W ) + g(dim(X)− 1) ≥ dim coker(TW,[s] → TM,[s]).
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SinceH0(C,Ns) → H0(C, (Ns)tf ) is surjective, the dimension of the cokernel of the composed
map

TW,[s] → TMg,0(X),s = H0(C,Ns) → H0(C, (Ns)tf )

is also bounded above by the sum codimM(W ) + g(dim(X)− 1).
Finally, letting G denote the globally generated subsheaf of (Ns)tf , Theorem 6.2 shows that

µmin(MG|C) ≥ −2γ. Putting all the bounds together, Theorem 6.3 shows that ∥ SPX,s∗[C](E)−
SPC(s

∗E)∥ is bounded above by

1

2

(
(codimM(W ) + g(dim(X)− 1) + 1)(2γ) + g(dim(X)− 1) + codimM(W )

)
(rk(E)− 1).

Rearranging shows that

codimM(W ) ≥ 2µ

(2γ + 1)(rk(E)− 1)
− 2γ2 + γ − 1

2γ + 1

which is slightly stronger than the given statement. □

If we add a few more assumptions on the curves, we can get much nicer bounds:

Corollary 6.7. Suppose we are in the setting of Theorem 6.6. Furthermore assume that a
general s : C → X parametrized by W satisfies

• s is an immersion, and
• the normal sheaf Ns has µ

min(Ns) ≥ kg for some constant k ≥ 2.

Then

codimM(W ) ≥ 2(k − 1)

(rk(E)− 1)k
· µ− 1.

Proof. Note that our two additional assumptions will also hold true for the general map
parametrized by M , and in particular, M must be smooth of the expected dimension. By
assumption Ns is torsion-free. By repeating the argument in Theorem 6.6 and appealing to
Theorem 6.2 for an improved bound on the slope of the syzygy bundle we obtain the desired
statement. □

6.3. Codimension of nonflat families of curves. By combining Grauert-Mulich with
Theorem 5.9, we can prove our most general statement addressing the codimension of a
family of curves based on slope panels.

Construction 6.8 (Flattening construction). Let X be a smooth projective variety. Let W
be a variety equipped with a generically finite morphism W → Mg,0(X). Let p : Uν → W
denote the normalization of the universal family over W with evaluation map evν : Uν → X.
Assume that evν is dominant.

Then there is a birational map ϕ : X ′ → X from a smooth projective variety X ′ and
an open subset W ◦ ⊂ W such that the preimage Uν,◦ := p−1W ◦ admits a flat morphism
ev′ : Uν,◦ → X ′ satisfying evν |Uν,◦ = ϕ◦ev′. This follows from standard facts about flattening
birational maps (see [LRT23a, Construction 4.2] for details).

Theorem 6.9. Let X be a smooth projective variety and let E be a non-zero torsion-free
sheaf on X. Fix a big and nef divisor H. Fix a closed convex cone C such that C\{0} is
contained in the interior of Nef1(X) and C contains a class β ∈ N1(X)Z. There are affine
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linear functions L, S : R → R with positive leading coefficients which satisfy the following
property.

Let W be a variety equipped with a generically finite morphism W → Mg,0(X). Let
p : Uν → W denote the normalization of the universal family over W with evaluation map
evν : Uν → Z. Let s : C → X be a general map parametrized by W . Assume that

• evν is dominant with connected fibers,
• s is birational onto its image, and
• s∗[C] is contained in the cone C.

Define
µ = ∥ SPX,s∗[C](E)− SPC((s

∗E)tf )∥sup.
Letting M denote an irreducible component of Mg,0(X) containing the image of W , we have

codimM(W ) ≥ min{L(H · C), S(µ)}.

Proof. Let ϕ : X ′ → X be a birational morphism from a smooth projective variety X ′ that
flattens the family parametrized by W (in the sense of Construction 6.8). Let W ′ ⊂ W
be an open subset parametrizing the strict transforms s′ : C ′ → X ′ of the general maps
parametrized by W .
The first step is to apply Grauert-Mulich to the family of curves W ′. Let M ′ ⊂ Mg,0(X

′)
denote an irreducible component which containsW ′ and maps toM under pushforward. Set

µ′ = ∥ SPX′,s′∗[C
′]((ϕ

∗E)tf )− SPC′(s′∗(ϕ∗E)tf )∥sup.
By Theorem 6.6 we have

codimM ′(W ′) ≥ µ′

(γ + 1)(rk(E)− 1)
− γ

where γ = g(dim(X)− 1) + 1. Set

µ′′ = ∥ SPX,s∗[C](E)− SPX′,s′∗[C
′]((ϕ

∗E)tf )∥sup.
Theorem 5.9 shows that under the conditions of the theorem, there are positive constants
ρ, η such that

KX′/X · s′∗C ′ ≥ min{ρ(H · α), η · µ′′}.
Combining, we see that

codimM(W ) = codimM ′(W ′) + dim(M)− dim(M ′)

≥
(

µ′

(γ + 1)(rk(E)− 1)
− γ

)
+ dim(M)− dim(M ′)

Applying Lemma 6.4 to estimate dim(M) and dim(M ′), we find

codimM(W ) ≥
(

µ′

(γ + 1)(rk(E)− 1)
− γ

)
+KX′/X · C ′ + (dimX − 1)g.

Since the curves s′ : C ′ → X ′ form a dominant family, for a general curve s : C → X
parametrized by W and for its strict transform s′ we have (s∗E)tf ∼= (s′∗(ϕ∗E)tf )tf . Thus the
triangle inequality shows that µ ≤ µ′ + µ′′. We conclude

codimM(W ) ≥ min

{
ρ(H · α),min

{
η,

1

(γ + 1)(rk(E)− 1)

}
µ

}
+ ((dimX − 1)g − γ) .
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The two possibilities for the outermost minimum yield the two linear functions L(H ·C), S(µ).
□

Proof of Theorem 1.3. It is the special case of Theorem 6.9 where E is locally free. □

7. Fano varieties

In this section we combine our main results with the theory developed by [LRT23b] to
prove stronger theorems for Fano varieties. The main result of this section is Theorem 7.4,
which is a more general version of Theorem 1.7.

7.1. Fujita invariant and accumulating maps. The Fujita invariant is one of the basic
tools for understanding the geometry of curves on Fano varieties.

Definition 7.1. Let X be a smooth projective variety over a field of characteristic 0 and let
L be a big and nef Q-Cartier divisor on X. The Fujita invariant of (X,L) is

a(X,L) = min{t ∈ R | KX + tL is pseudo-effective }.
If L is nef but not big, we formally set a(X,L) = ∞. If X is singular, choose a resolution
of singularities ϕ : X ′ → X and define a(X,L) to be a(X ′, ϕ∗L). (The choice of resolution
does not affect the value by [HTT15, Proposition 2.7].)

Definition 7.2. Let X be a smooth projective Fano variety. Suppose f : Y → X is a
generically finite morphism that is not birational. We say that f is an accumulating map if
a(Y,−f ∗KX) ≥ a(X,−KX).

The following modification of [LRT23b, Theorem 11.5] connects Fujita invariants to the
geometry of curves.

Theorem 7.3. Let X be a smooth projective Fano variety. Fix a genus g. There is a linear
function R(d) whose leading coefficient is a positive number depending only on dim(X) and
g such that the following property holds.

Let W be a variety equipped with a generically finite morphism W → Mg,0(X). Let
p : Uν → W denote the normalization of the universal family over W with evaluation map
evν : Uν → X.
Let M denote an irreducible component of Mg,0(X) containing the image of W . Then

either:

(1) the codimension of W in M is at least R(d),
(2) evν is dominant with connected fibers, or
(3) evν factors through an accumulating morphism.

Proof. Assume that (2) does not hold for evν . Thus there is a generically finite morphism
f : Y → X that is not birational such that evν factors rationally through f . We construct
a linear function R(d) so that if the codimension of W in M is smaller than R(d) then
a(Y,−f ∗KX) ≥ a(X,−KX).

Starting from W , we can find a fixed genus g curve B and an irreducible subscheme

W̃ ⊂ Mor(B,X) such that the maps parametrized by W̃ are also parametrized by W and

dim(W̃ ) ≥ dim(W ) − (3g − 3). We can equally well think of W̃ as a parameter space for
sections of the projection map π : X × B → B. We now apply [LRT23b, Theorem 11.5] to

the Fano fibration π : X ×B → B and the sublocus W̃ ⊂ Sec(X ×B/B). The conclusion is
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the existence of a linear function R′(d) such that if the codimension of W̃ ⊂ Sec(X ×B/B)
is smaller than R′(d) then a(Y,−f ∗KX) ≥ a(X,−KX). Since the difference between the

codimension of W̃ and the codimension of W is bounded by a constant depending only on
g we obtain the desired statement. □

7.2. Codimension bounds for Fano varieties. Combining results, we obtain a compre-
hensive statement for Fano varieties.

Theorem 7.4. Let X be a smooth projective Fano variety and let E be a non-zero torsion-
free sheaf on X. Fix a closed cone C such that C\{0} is contained in the interior of Nef1(X)
and C contains a class β ∈ N1(X )Z. There are affine linear functions T, S : R → R with
positive leading coefficients which satisfy the following property.

Let W be a variety equipped with a generically finite morphism W → Mg,0(X) and let
p : U ν → W denote the normalization of the universal family over W with evaluation map
evν : Uν → X. Assume that

• a general map parametrized by W is birational onto its image, and
• the class of the general map is contained in the cone C.

Define

µ = ∥ SPX,s∗[C](E)− SPC((s
∗E)tf )∥sup

where s : C → X is a general map parametrized by W . Then one of the following properties
holds:

(1) Letting M denote an irreducible component of Mg,0(X) containing the image of W ,
we have

codimM(W ) ≥ min{T (−KX · C), S(µ)}.
(2) The evaluation map evν factors rationally through an accumulating morphism f :

Y → X.

Proof. If evν is dominant with connected fibers, Theorem 6.9 (applied with H = −KX) gives
linear functions L, S such that

codimM(W ) ≥ min{L(−KX · C), S(µ)}.
If evν is not dominant or does not have connected fibers, Theorem 7.3 gives a linear function
R(−KX · C) such that either (2) holds or

codimM(W ) ≥ R(−KX · C).
Combining we find the result. □

We expect that one can do a little better:

Question 7.5. Let X be a smooth projective Fano variety. Can one prove a version of
Theorem 7.4 that holds for the entire nef cone and not just classes in the smaller cone C?

Recall that a morphism s : C → X is said to be m-free if µmin(s∗TX) ≥ 2g + m. As
an application of Theorem 7.4, we prove Theorem 1.7 showing that the locus of non-m-
free curves in Mg,0(X) has codimension which increases linearly in the degree unless it is
contained in the exceptional set. One can view this result as supporting evidence for Peyre’s
formulation of Manin’s Conjecture in [Pey17].

33



Proof of Theorem 1.7: By enlarging C slightly we may assume that it also contains a class
β ∈ N1(X )Z.

We first recall a few facts about the tangent bundle of X. By [Neu09, Lemma 3.3.3]
there is a finite set of filtrations of TX such that for every α ∈ Nef1(X) the α-Harder-
Narasimhan filtration is a member of our set. Furthermore [Ou23, Theorem 1.4] shows that
every quotient of TX has non-zero pseudo-effective first Chern class. Together, these imply
that µminα (TX) : Nef1(X) → R is a non-negative piecewise linear function on Nef1(X) that
can only vanish along the boundary of the cone. Since C is interior to Nef1(X), we conclude
that µminα (TX) : C → R is bounded below by ζ(−KX · C) for some positive constant ζ.
We apply Theorem 7.4 to TX , C to obtain linear functions T ′, S. Then given a family W

as in the statement, define

µC = ζ(−KX · s∗C)− (m+ 2g).

Since the general curve s : C → X parametrized by W fails to be m-free, we have

∥ SPX,s∗[C](TX)− SPC(s
∗TX)∥sup ≥ µmins∗[C](TX)− (m+ 2g) ≥ µC .

Theorem 7.4 shows that either the evaluation map for W factors rationally through an
accumulating morphism or

codimM(W ) ≥ min{T ′(−KX · C), S(µC)}.
(Since S has positive leading coefficient, the inequality S(∥ SPX,s∗[C](TX)−SPC(s

∗TX)∥sup) ≥
S(µC) holds even if µC is negative.) Since µC depends linearly on −KX · s∗C, we can finish
the proof by choosing a linear function T with positive leading coefficient which is bounded
above by the two linear functions of (−KX · C) in the previous equation.

Next suppose that the general curve s : C → X parametrized by W factors through a
morphism s′ : C ′ → X from a genus g′ curve that is birational onto its image. We write
e for −KX · s′∗C ′ and f for the degree of the cover C → C ′. The dimension of the space
Mg,0(C

′, e) depends on the genus g′:

• If g′ = 0 then the dimension is 2f + 2g − 2.
• If g′ = 1 then the dimension is 2g − 2.
• If g′ ≥ 2 then the dimension is 0.

Let Y ⊂ X denote the subvariety swept out by the images of the curves s′. If a(Y,−KX |Y ) ≥
1 then the inclusion Y → X is an accumulating map and we are in case (2) of the statement
of the theorem. Otherwise, we see that KY − KX |Y has non-negative intersection against
the family of curves s′(C ′). In particular the dimension of the space Mg′,0(X) is bounded
above by

−KY · s′∗C ′ + dim(Y ) + 2g′ − 3 ≤ −KX · s′∗C ′ + dim(X) + 2g′ − 3.

Combining, we see that

dim(W ) ≤ (2f + 2g − 2) + (e+ dim(X) + 2g′ − 3)

=

(
2

e
+

1

f

)
(−KX · s∗C) + (dim(X) + 2g + 2g′ − 5).

By assumption f ≥ 2. If the coefficient of (−KX · s∗C) is ≥ 1, then we see that we must
have e ≤ 2 or f = 2, e ≤ 4 or f = 3, e = 3. Note the latter two cases only occur in low
degree and thus can be accounted for by appropriately modifying the function T in case (1)
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of the theorem statement. If e ≤ 2, then C ′ is a rational curve of anticanonical degree at
most 2 as in case (3). If the coefficient of (−KX · s∗C) is < 1, then it is at most 11/12. By
comparing against Lemma 6.4 we obtain a linear bound on the codimension of W in terms
of the anticanonical degree as in case (1). □

8. Rank two bundles on the projective plane

Since the statements in the earlier portion of the paper are designed for maximal generality,
it is not reasonable to expect them to give sharp bounds. However, the techniques and
perspective can give much better bounds in specific examples. In this section we illustrate
this claim by focusing on what our results say for rank two vector bundles on P2. These have
been studied in many cases in the literature (including [Bar77, Hul79] and many follow-up
papers) and also are the original setting for the Grauert-Mulich theorem [GM75].

Example 8.1. The results of [Ram90] imply that the tangent bundle of P2 behaves as nicely
as possible when restricted to rational curves. [Ram90] shows that:

(1) For the general degree d rational curve s : P1 → P2, the pullback s∗TP2 is as balanced
as possible: s∗TP2 = O(⌈3d

2
⌉)⊕O(⌊3d

2
⌋).

(2) For any constant 0 < c < ⌊d
2
⌋, the sublocus of Mor(P1,P2)deg d parametrizing mor-

phisms s such that

s∗TP2 = O
(⌈

3d

2

⌉
+ c

)
⊕O

(⌊
3d

2

⌋
− c

)
is smooth and irreducible and has the expected codimension (which is either 2c or
2c− 1).

For an arbitrary stable rank 2 vector bundle E on P2, one cannot expect to get the nicest
possible behavior as in the previous example. However, we are able to precisely control the
obstructions. As discussed earlier in the paper, if W parametrizes a dominant family of
curves s : C → P2, then either:

(1) the codimension of W is controlled by the behavior of E|C via the Grauert-Mulich
theorem (as in Example 8.1),

(2) the pullback of E to a birational model ϕ : X ′ → X that flattens the family of curves
parametrized by W becomes unstable with respect to the strict transform of the
curves (as in Example 8.6), or

(3) the evaluation map over W factors through a non-trivial finite morphism f : Y → X
(as in Example 8.5).

The following theorem identifies a mild set of assumptions which allow us to precisely control
the codimension in these three cases.

Theorem 8.2. Let E be a stable rank 2 bundle on P2.
Let W be a variety equipped with a generically finite morphism W → Mg,0(P2) parametriz-

ing a dominant family of curves on P2 of degree d. Suppose that:

• the general map s : C → P2 parametrized by W is a birational immersion, and
• dim(W ) ≥ kg for some k ≥ 2.

Then one of the following conditions holds:

(1) Setting µ = ∥ SPP2,s∗[C](E)− SPC(s
∗E)∥sup, we have codim(W ) ≥ 2(k−1)

k
µ− 1.
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(2) There is a birational morphism ϕ : X ′ → P2 such that ϕ∗E fails to be semistable with
respect to the strict transform of the curves parametrized by W . In this case there is
a explicit constant ζ ′ depending only on the Chern classes of E (defined in Remark
8.12) such that codim(W ) ≥ ζ ′d.

(3) There is a non-trivial generically finite morphism f : Y → X such that the evaluation
map for the normalization of the universal family over W factors rationally through
f . Then we have codim(W ) ≥ d− g.

Remark 8.3. Note that when the codimension of W is small compared to the degree of the
curves then we must be in Case (1) and then we obtain the good bounds coming from the
Grauert-Mulich theorem.

Remark 8.4. Our techniques apply even when the two bulleted assumptions in Theorem
8.2 are not satisfied. However, the constants become somewhat worse. One can find the
most general versions in Remark 8.11 and Remark 8.16.

Case (1) of Theorem 8.2 follows from the results of Section 6.2. Case (2) will be addressed
in Section 8.1 and Case (3) in Section 8.2. Finally, we discuss non-stable rank 2 bundles at
the end of Section 8. As discussed in Theorem 1.5, for rational curves we obtain the best
possible bounds using Theorem 8.2.

Proof of Theorem 1.5: If the curves parametrized by W are rational, then dim(W ) ≥ kg
for every positive integer k. Thus in Case (1) we conclude that the codimension is least the
expected value sup{2µ−1, 0}. On the other hand, in the moduli stack of rank 2 vector bundles
on P1 the locus parametrizing a given splitting type has exactly the expected codimension
(essentially by definition). Thus the preimage of this locus under the classifying map from
W will always have at most the expected codimension so long as it is non-empty. Altogether
we see that in Case (1) the codimension is exactly the expected value.

In Case (2) and Case (3), by setting ζ = inf{ζ ′, 1} we obtain the desired statement. □

Example 8.5. In the setting of Theorem 8.2 there need not be a linear relationship between µ
and codim(W ) when the family of curves factors through a generically finite map f : Y → P2.
We briefly recall the examples of [Sch61] which exhibit this phenomenon.

Let Y be a smooth quadric in P3 and let f : Y → P2 be the projection map. The branch
divisor B is a smooth conic in P2. We let W denote the set of tangent lines for B; note
that the curves parametrized by W are the f -images of the lines in Y . Define the rank two
bundle Ep,q = f∗O(p, q) where p ≥ q + 2. [Sch61, Proposition 2] gives the exact sequence

0 → O(q − 1)⊕p−q−1 → O(q)⊕p−q+1 → Ep,q → 0

and in particular Ep,q(−q − 1) has no global sections. We conclude that every subsheaf
O(k) → Ep,q must have k ≤ q so that Ep,q is stable. [Sch61, Proposition 8] shows that the
jumping lines for Ep,q are parametrized by W and that for any line ℓ parametrized by W
we have Ep,q|ℓ ∼= O(p − 1) ⊕ O(q). In particular W has codimension 1 but the difference µ
between the expected and actual slope panels can be arbitrarily large.

Example 8.6. Suppose E is a stable rank 2 bundle on P2. The papers [Sm84, Man90, Vit04,
Mar24] study the behavior of jumping conics for E . We briefly revisit this setting using our
techniques.
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Suppose thatW ⊂ PH0(P2,O(2)) parametrizes a codimension 1 family of conics such that
the general conic C is smooth. We expect E|C to be isomorphic either to O(a) ⊕ O(a) or
O(a − 1) ⊕ O(a + 1). Theorem 8.2 shows that if the restriction of E to the general curve
parametrized by a codimension 1 locus W does not have the expected behavior then there
must be a birational morphism ϕ : X ′ → P2 such that ϕ∗E fails to be stable with respect to
the strict transforms of the conics C. In particular W must parametrize the conics through
a fixed point.

This phenomenon is illustrated by the following family of examples considered in Section
7 of [Mar24]. Let E be the kernel of the map O(−d)2 ⊕O(−2d + 1) → O with coordinates
(xd, yd, z2d−1). We have the following diagram, where Z is the vanishing locus of (xd, yd).

0 0 0

0 // Q //

OO

O(−2d+ 1) //

OO

OZ
//

OO

0

0 // E //

OO

O(−d)2 ⊕O(−2d+ 1) //

OO

O //

OO

0

0 // S //

OO

O(−d)2 //

OO

IZ //

OO

0

0

OO

0

OO

0

OO

Since the slope of E is −2d + 1
2
, we see that E is stable. There is a codimension 1 family

of conics passing through the point p = [0 : 0 : 1] = SuppZ, and for a general such conic C
we have Q|C = O(−2d+1− d)⊕T , where T is torsion supported at p of length d. Thus, for
large d we see that E|C can become very unstable when restricted to a codimension 1 family
of conics.

Returning to the general situation, suppose that W ⊂ PH0(P2,O(2)) has codimension 2.
If E|C fails to have the expected behavior, Theorem 8.2 identifies an additional possibility:
there is a generically finite morphism f : Y → P2 such that the conics are the images of
curves on Y . A quick argument based on Lemma 8.14 shows that in this case our family must
be obtained from the conics on a quadric hypersurface Y via the projection map f : Y → P2.

We will frequently use the following lemma concerning the curves in Theorem 8.2.

Lemma 8.7. Let X be a surface and let W be a variety equipped with a generically finite
morphism W → Mg,0(X) parametrizing a dominant family of curves on X. Suppose that:

• the general map s : C → X parametrized by W is a birational immersion, and
• dim(W ) ≥ kg for some k ≥ 2.

Then the normal sheaf Ns of the general map s : C → X is a line bundle of degree ≥ kg. In
particular s is contained in the smooth locus of Mg,0(X).

Proof. Since s is an immersion Ns is a line bundle. We have H0(C,Ns) ≥ dim(W ) ≥ kg. By
Riemann-Roch and Serre vanishing we conclude that deg(Ns) ≥ (k + 1)g − 1 if g ≥ 1 and
deg(Ns) ≥ 0 if g = 0. □
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8.1. Dominant families with connected fibers. To control the codimension of W in
this case we must understand the birational properties of stability. An advantage of working
with surfaces is that one can use convexity techniques instead of the log canonical threshold
– this will greatly improve the bounds we obtain. The following theorem is an analogue of
Theorem 5.9 for stable rank 2 bundles on P2 with explicit constants. Recall that for a rank
2 vector bundle E on P2 the discriminant is ∆(E) = 4c2(E)− c1(E)2.
Theorem 8.8. Let E be a stable rank 2 vector bundle on P2. Let ϕ : X ′ → P2 be a birational
map and let α′ ∈ Nef1(X

′) be such that ϕ∗α
′ is the hyperplane class [H]. Let E → Q be

a torsion-free quotient of rank 1 and let Q′ denote the birational transform of Q on X ′.
Suppose that µα′(Q′) ≤ µα′(ϕ∗E). Then

KX′/P2 · α′ ≥

√
1− ∆(E)

4 (c1(Q) ·H − µ(E))2 +∆(E)
.

Note that ∆(E) ≥ 0 by Bogomolov’s inequality. Furthermore c1(Q)·H > µ(E) by stability.
Thus the right hand side is between 0 and 1 and is minimized when c1(Q) is as small as
possible.

Proof. For convenience we set c1(E) = e[H] and c2(E) = f [H2]. We also write c1(Q) = d[H];
note that d is an integer satisfying d > µ(E).
We may assume that Q′ is locally free. Indeed, if this fails to be the case, then we can

precompose ϕ with a birational morphism ψ : X̃ → X ′ that resolves Q′. Set α̃ = ψ∗α′. Then

the hypotheses of the theorem still hold for (X̃, α̃) and the desired statement for (X ′, α′)

follows from the analogous statement for (X̃, α̃).
Let F denote the kernel of E → Q and let F ′ denote the kernel of ϕ∗E → Q′. Since F ,F ′

are saturated subsheaves of a reflexive sheaf they are also reflexive, hence locally free.
We can realize ϕ as a sequence of point blow-ups. We let Ei denote the pullback of the ith

exceptional divisor to X ′. (N.B.: Ei is usually not the strict transform of the ith exceptional
divisor onX ′.) We choose (necessarily non-negative) integers ai, bi so that c1(Q′) = ϕ∗c1(Q)−∑
biEi and α′ = ϕ∗[H] −

∑
aiEi. Note that KX′/P2 =

∑
Ei. By the Cauchy-Schwarz

inequality we have:

KX′/P2 · α′ =
∑

ai

≥
(∑

a2i

)1/2
≥

∑
aibi

(
∑
b2i )

1/2

We will bound
∑
aibi from below and compute

∑
b2i precisely. The first bound follows from

our condition on slopes:

c1(E) · [H]

2
≥ c1(Q′) · α′

= c1(Q) · [H]−
∑

aibi

or equivalently ∑
aibi ≥ c1(Q) · [H]− c1(E) · [H]

2
= d− e

2
.
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The second computation follows from a Chern class argument. Note that

c1(F)c1(Q) + c2(Q) = c2(E)
c1(F ′)c1(Q′) = ϕ∗c2(E)

Also we know that c1(Q) + c1(F) = c1(E) and similarly for F ′,Q′. Thus if we subtract the
pullback of the first line from the second, we obtain∑

b2i = ϕ∗c2(Q) = ϕ∗c2(E)− ϕ∗(c1(E)− c1(Q)) · ϕ∗c1(Q).

Combining with earlier equations, we see that

KX′/P2 · α′ ≥
d− e

2

(d2 − de+ f)1/2
.

The desired inequality is obtained by rearranging the right hand side. □

Example 8.9. Suppose E = TP2 . Keeping the notation used in Theorem 8.8, the result
shows that

KX′/P2 · α′ ≥

√
1− 3

4 (d2 − 3d+ 3)

Since TP2 is stable we must have d ≥ 2. Thus the expression on the right is minimized when
d = 2, yielding

KX′/P2 · α ≥ 1

2
.

Furthermore, the argument shows that equality is achieved precisely when the following
conditions are met:

• The equality
∑
ai =

√∑
a2i shows that there is a single non-zero ai.

• The equality bi = (
∑
b2i )

1/2 shows that there is a single non-zero bi.
• We must have d = 2.

Thus (after ignoring unnecessary blow-ups) ϕ is the blow-up of a point and the quotient has
the form

0 → O(1) → TP2 → I(2) → 0

where I is an ideal sheaf concentrated at the point. By calculating c2 on the right, we see
that in fact I must be the ideal sheaf of the point.

Conversely, suppose ϕ : X ′ → P2 is the blow-up of a point and α′ = ϕ∗H− tE is a nef class
for some 0 ≤ t ≤ 1. The computation above shows that ϕ∗TP2 is semistable for 0 ≤ t ≤ 1

2
.

For 1
2
< t ≤ 1 we have the destabilizing sequence

0 → OX′(H + E) → ϕ∗TP2 → OX′(2H − E) → 0.

where the leftmost term can be interpreted as the relative tangent bundle TX′/P1 for the P1-
bundle structure on X ′ and the leftmost map is the inclusion TX′/P1 → TX′ → ϕ∗TP2 . When
we pushforward this exact sequence to P2 we obtain the sequence identified in the previous
paragraph. Note that we find destabilizing classes α′ such that KX′/P2 ·α′ is arbitrarily close
to 1/2.

Combining with dimension estimates, we get a codimension bound. We will focus on the
version with more assumptions and nicer bounds; the general version is stated in Remark
8.11.
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Theorem 8.10. Let E be a stable rank 2 vector bundle on P2. Suppose that W → Mg,0(P2)
is a generically finite morphism and that the normalization of the universal family defines
a dominant family of curves on P2 of degree d such that the evaluation map has connected
fibers. Furthermore suppose that:

• the general curve s : C → P2 parametrized by W is a birational immersion, and
• dim(W ) ≥ kg for some k ≥ 2.

Define

µ = ∥ SPP2,s∗[C](E)− SPC(s
∗E)∥sup.

where s : C → P2 is a general morphism parametrized by W . Then

codimM(W ) ≥ min

{
2(k − 1)µ

k
− 1, dζ

}
where ζ is defined as an infimum over all quotients E ↠ Q of the constant from Theorem
8.8:

ζ = inf
E↠Q

√
1− ∆(E)

4 (c1(Q) ·H − µ(E))2 +∆(E)
.

Proof. Let ϕ : X ′ → P2 be a birational map flattening the family of curves. Let W ′ denote
the parameter space of the strict transforms C ′ on X ′. Note that the general s′ : C ′ → X ′

parametrized byW ′ is still a birational immersion that moves in dimension ≥ kg. By Lemma
8.7 W ′ is contained in the smooth locus of Mg,0(X

′). Thus the irreducible component M ′

of Mg,0(X
′) containing W ′ must have the expected dimension.

We split into two cases. In the first case, we have that ϕ∗E is [C ′]-semistable. By Lemma
8.7 µmin(Ns′) ≥ kg and so by Corollary 6.7 we have

codimM(W ) ≥ codimM ′(W ′) ≥ 2(k − 1)

k
· µ− 1.

In the second case, we have that ϕ∗E is no longer [C ′]-semistable. Thus there is some quo-
tient E → Q whose birational transform destabilizes ϕ∗E . If we let M denote the irreducible
component of Mg,0(P2) containing the image of W , then

dim(W ′) ≤ −KX′ · C ′ + g − 1

= −KX′/P2 · C ′ + (−KP2 · C) + g − 1

= dim(M)−KX′/P2 · C ′.

so that codimM(W ) ≥ (KX′/P2 · C ′). Applying Theorem 8.8, we conclude

codimM(W ) ≥ dζ.

□

Remark 8.11. By a similar argument (which we omit), one can prove a more general
statement: we can remove the two itemized restrictions on W in Theorem 8.10 at the cost
of weakening the inequality to

codimM(W ) ≥ min

{
2µ

2g + 3
− (g + 1), dζ − g

}
.
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Remark 8.12. We can formulate a version of Theorem 8.10 that only relies on the Chern
classes of E by defining

ζ ′ = inf
d∈Z,d>µ(E)

√
1− ∆(E)

4 (d− µ(E))2 +∆(E)
.

It is clear that ζ ′ only depends on the Chern classes of E and that 0 < ζ ′ ≤ ζ.

Example 8.13. Consider again the tangent bundle of P2 and suppose we have a family W
of curves s : C → P2 whose evaluation map is dominant with connected fibers. Suppose
furthermore that TP2 fails to be semistable with respect to the strict transform family on the
flattening birational model ϕ : X ′ → P2. Combining Remark 8.11 with Example 8.9, we see

that dim(W )
dim(M)

is bounded above by a number that approaches 5/6 as the degree gets large.

8.2. Dominant families with disconnected fibers. We next turn to families of curves
which factor through a generically finite morphism. According to Theorem 7.3, we can bound
the codimension of W using the Fujita invariant of covers f : Y → X. Using some basic
birational geometry, we have:

Lemma 8.14. Let f : Y → P2 be a dominant generically finite morphism of degree ≥ 2
from a normal surface Y . Then a(Y,−f ∗KP2) ∈ [0, 1

3
] ∪ {1

2
, 2
3
}. Furthermore:

(1) If a(Y,−f ∗KP2) = 2
3
then f : Y → P2 is birationally equivalent to either:

(a) the degree 2 map f ′ : Y ′ → P2 obtained by projecting a (possibly singular) quadric
surface, or

(b) a map f ′ : Y ′ → P2 from a ruled surface Y ′ which takes the ruling to lines in P2.
(2) If a(Y,−f ∗KP2) = 1

2
then f is birationally equivalent to a degree 2 morphism f ′ :

P2 → P2.

Proof. Note that a(Y,−f ∗KP2) = 1
3
a(Y, f ∗H) where H is the hyperplane class on P2. By

[Hör10, Proposition 1.3] the possible values of a(Y, f ∗H) in the range [1,∞) are 1, 3
2
, 2, and

3 and the final case could only occur if f were birational. The explicit description of Y and
f is implied by [LT21, Lemma 5.3] and [Hör10, Proposition 1.3]. □

The following lemma clarifies the connection between Fujita invariants and dimension in
this case.

Lemma 8.15. Suppose that W → Mg,0(P2, d) is a generically finite morphism such that
the normalization of the evaluation map is dominant and factors rationally through a non-
birational generically finite morphism f : Y → P2 from a smooth projective variety Y .
Furthermore assume that the general map parametrized by W is a birational immersion and
that dim(W ) ≥ kg for some k ≥ 2.

Let M be an irreducible component of Mg,0(P2, d) containing W . Then

dim(W ) ≤ a(Y,−f ∗KP2) dim(M) + sup{g − 1, 0}.

Proof. The hypotheses of Lemma 8.7 hold both for W and for the induced morphisms sY :
C → Y corresponding to the curves parametrized byW . We conclude that dim(W ) ≤ −KY ·
sY ∗C+g−1 and dim(M) = −KP2 ·s∗C+g−1. Furthermore since KY −a(Y,−f ∗KP2)f ∗KP2
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is pseudo-effective it has non-negative intersection against sY ∗C so that −KY · sY ∗C ≤
−a(Y,−f ∗KP2)KP2 · s∗C. Thus

dim(W ) ≤ −a(Y,−f ∗KP2)KP2 · s∗C + g − 1

= a(Y,−KP2) dim(M) + (1− a(Y,−f ∗KP2))(g − 1)

≤ a(Y,−KP2) dim(M) + sup{(g − 1), 0}.
□

Remark 8.16. If we remove the assumption dim(W ) ≥ kg, then we obtain the weaker
inequality

dim(W ) ≤ a(Y,−f ∗KP2) dim(M) + sup{2g − 1, 0}.

Combining Lemma 8.14 and Lemma 8.15 we obtain:

Lemma 8.17. Suppose that W → Mg,0(P2, d) is a generically finite morphism such that
the normalization of the evaluation map is dominant and factors rationally through a non-
birational generically finite morphism f : Y → P2. Furthermore assume that the general
map parametrized by W is a birational immersion and that dim(W ) ≥ kg for some k ≥ 2.
Let M denote the irreducible component of Mg,0(P2) containing the image of W . Then

dim(W ) ≤ 2

3
dim(M) + g.

Proof of Theorem 8.2. Follows from Theorem 8.10 and Lemma 8.17. □

8.3. Non-stable bundles. Finally we consider the behavior of restrictions when E is a non-
stable rank 2 bundle on P2. It turns out that this case can be handled directly. Consider
the exact sequence

0 → F → E → Q → 0

where F is a maximal destabilizing subsheaf (if E is unstable) or a rank 1 subsheaf with
the same slope as E (if E is strictly semistable). Since Q is torsion-free, F is a saturated
subsheaf of the reflexive sheaf E . This implies that F is reflexive, hence a line bundle.

Lemma 8.18. In the situation above, for a general curve s : C → P2 in a dominant family
then either s∗E is strictly semistable or the quotient s∗E → (s∗Q)tf defines the Harder-
Narasimhan filtration of s∗E.

Proof. We have an exact sequence

s∗F → s∗E → s∗Q → 0

Since the non-free locus of Q has codimension ≥ 2, the curve C meets the locus where the
map F → E is non-zero. Thus s∗F → s∗E is generically injective, hence injective.

Note that c1(s
∗F) ≥ c1(s

∗Q). Thus the kernel F ′ of the map s∗E → (s∗Q)tf also satisfies
c1(F ′) ≥ c1((s

∗Q)tf ). If we have a strict inequality, then this quotient must define the
Harder-Narasimhan filtration of s∗E . If we have equality, then s∗E is strictly semistable. □

Proposition 8.19. Suppose E is a non-stable vector bundle on P2. There is an affine linear
function S with positive leading coefficient such that the following holds.
Let W be a variety equipped with a generically finite morphism W → Mg,0(X) and let

p : U ν → W denote the normalization of the universal family over W with evaluation map
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evν : Uν → X. Assume that evν is dominant. For a general s : C → P2 parametrized by W
set

µ = ∥ SPP2,s∗[C](E)− SPC(s
∗E)∥sup.

Then we have codim(W ) ≥ S(µ).

Proof. Let Q be the minimal destabilizing quotient (if E is unstable) or a torsion-free rank 1
quotient of the same slope as E (if E is strictly semistable). Let ϕ : X ′ → P2 be a birational
map that resolves the top Fitting ideal of Q and write E = ϕ∗c1(Q) − c1((ϕ

∗Q)tf ). Let α′

be the numerical class of the strict transform of the general curve parametrized by W . By
Lemma 8.18 we have µ = E · α′.

We can choose a positive constant ρ such that ρKX′/P2 ≥ E. This readily yields the desired
statement by arguing as in Theorem 6.9. □
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[Ram90] Luciana Ramella. La stratification du schéma de Hilbert des courbes rationnelles de Pn par le
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