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Abstract. Campana introduced a notion of Campana rational connectedness for Campana
orbifolds. Given a Campana fibration over a complex curve, we prove that a version of weak
approximation for Campana sections holds at places of good reduction when the general
fiber satisfies a slightly stronger version of Campana rational connectedness. Campana also
conjectured that any Fano orbifold is Campana rationally connected; we verify a stronger
statement for toric Campana orbifolds. A key tool in our study is log geometry and moduli
stacks of stable log maps.
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1. Introduction

One of the major goals in arithmetic algebraic geometry is to understand rational points
on algebraic varieties defined over the function field of a smooth projective curve over an
algebraically closed field. By the valuative criterion, this amounts to studying the spaces of
sections of fibrations over curves. In characteristic 0 [GHS03] showed that any rationally con-
nected fibration admits a section, and moreover by [HT06] we know that weak approximation
holds for such fibrations at places of good reduction.

On the other hand, in arithmetic geometry a major topic of interest is semi-integral
points on Campana orbifolds. Recent activity has focused on the notion of Campana points
which interpolate between rational points and integral points. Many conjectures on ratio-
nal/integral points admit a version for Campana points, e.g., [AVA18, PSTVA21, MNS24].
Some recent works analyzing these conjectures include [BY21, Xia22, Str22, Shu22, PS24,
NS24, CLTBT24, Moe24]. However, there is still only limited evidence supporting these
conjectures and more investigation is required to formulate them precisely. In this paper,
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we study Campana curves/sections and explore the validity of weak approximation in the
setting of Campana sections.

We first lay down the foundation of Campana curves/sections using log geometry and
moduli stacks of stable log maps. Then we reinterpret the notion of orbifold rational con-
nectedness introduced by Campana and show that this notion is equivalent to a stronger
property called Campana rational connectedness. Then we prove that for any fibration
whose general fibers satisfy a version of Campana rational connectedness, weak approxima-
tion for Campana sections at places of good reduction holds. Finally we verify this property
for toric Campana orbifolds.

1.1. Campana curves. Throughout the paper, our ground field is an algebraically closed
field k of arbitrary characteristic p = char k, but for simplicity we assume that k has char-
acteristic 0 in this introduction.

Let X be a smooth projective variety equipped with a strict normal crossings (SNC)
divisor ∆ = ∪i∆i. Let X be the log scheme associated to (X,∆). (See Section 2.1 for its
definition.) To each irreducible component ∆i we assign a weight

εi = 1− 1

mi

,

where mi ≥ 1 is an integer. We then define the effective Q-divisor

∆ε =
∑
i

εi∆i.

The pair (X,∆ε) is called a klt Campana orbifold (in the sense of [Cam04]). Note that for a
Campana orbifold we always assume the pair (X,∆) is log smooth; we include the term klt
to emphasize that the coefficients of ∆ε are smaller than 1.

Definition 1.1. Let (π : C → S, f : C → X) be a stable log map with the canonical log
structure such that S is a geometric log point with the trivial log structure. (This implies
that the underlying scheme C is irreducible and smooth and the image f(C) is not contained
in the boundary ∆.) Let pk be a marked point and ck = (ck,i) be the contact order, i.e., ck,i
is the local multiplicity of f ∗∆i at pk. We say f : C → X is a Campana curve for (X,∆ε) if
ck,i ≥ mi whenever ck,i 6= 0.

Log geometry controls deformations of stable log maps. Since log deformations keep the
contact orders constant, log geometry is particularly useful to understand deformations of
Campana curves. In this paper, we lay down the foundation of Campana curves using log
geometry.

A central theme in our work is the existence of Campana rational curves on Campana
orbifolds. The following definition is a variant of the notions of orbifold uniruledness and
orbifold rational connectedness pioneered by Campana, e.g., [Cam11a, Cam10, Cam11b]:

Definition 1.2. Let (X,∆ε) be a klt Campana orbifold. We say (X,∆ε) is Campana uniruled
if there is a dominant family of genus 0 Campana curves whose underlying curves have non-
trivial numerical class. Moreover, if any two general points on X are contained in a Campana
curve of genus 0 of a dominant family, we say (X,∆ε) is Campana rationally connected.

As in the case of rational curves, we prove that these two notions are respectively equivalent
to the existence of free or very free Campana rational curves.
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Remark 1.3. The “orbifold” notions due to Campana are presented differently but turn
out to be equivalent to Definition 1.2. We discuss the relationship in Remark 7.3.

In [Cam11a, Section 5.4], Campana made several precise conjectures about the relation-
ship between Campana uniruledness and the behavior of the orbifold tangent bundle. We
will primarily be interested in the following conjecture, which is a special case of [Cam11b,
Conjecture 9.10] and provides the main source of examples of Campana rational connected-
ness.

Conjecture 1.4. Assume that k has characteristic 0. Let (X,∆ε) be a klt Fano orbifold,
i.e, (X,∆ε) is a klt Campana orbifold and −(KX + ∆ε) is ample. Then (X,∆ε) is Campana
rationally connected.

Example 1.5 (Campana). Here we introduce examples of Campana rationally connected
orbifolds found by Campana. Let (X,∆ε) be a klt Fano orbifold such that all irreducible
components ∆i have the same multiplicity m ∈ Z≥1. Assume that the boundary divisor
∆ =

∑
i ∆i is divisible by m in Pic(X). Let ρ : Y → X be the degree m cyclic cover of X

totally ramified along ∆. Then since we have

−KY = −ρ∗(KX + ∆ε),

the variety Y is a klt Fano variety. By [Zha06] or [HM07] Y is rationally connected. Then
note that any rational curve on Y is a Campana rational curve on (X,∆ε) after imposing
the canonical log structure, so in particular (X,∆ε) is Campana rationally connected, and
moreover when X has Picard rank 1, X is strongly Campana uniruled. Such a construction
applies when X is a smooth Fano complete intersection in Pn and ∆ is a SNC divisor which
is the restriction of a Cartier divisor on Pn.

1.2. Main results. Let B be a smooth projective curve defined over k with the trivial log
structure. Let X be a smooth projective variety equipped with a flat morphism π : X → B
whose fibers are connected. Let ∆ = ∪i∆i be a SNC divisor on X such that π|∆ : ∆ → B
is flat and let X be the log scheme associated to (X ,∆). By a klt Campana fibration
(X/B,∆ε), we mean the data of a klt Campana orbifold (X ,∆ε) equipped with a fibration
π : X → B as described above. In the setting of a klt Campana fibration, one is interested
in the moduli space of log sections σ : C → X which satisfy the Campana condition.

A Campana jet for (X ,∆ε) is a jet whose local multiplicities satisfy the Campana condition.
(See Definition 6.2 for a precise definition.) Then a natural question is whether analogues
of the existence of a section [GHS03] and weak approximation at places of good reduction
[HT06] hold in the setting of Campana sections. Assuming a slightly stronger version of
Campana uniruledness, we answer these questions affirmatively.

Theorem 1.6. Assume that k is an algebraically closed field of characteristic 0. Let π :
(X ,∆ε) → B be a klt Campana fibration over k such that a general fiber of π is rationally
connected and is strongly Campana uniruled. (See the paragraph after Conjecture 5.9 for
the definition.) Fix a finite number of Campana jets in distinct fibers which are at places of
good reduction of π : X → B. Then this finite set of Campana jets is induced by a Campana
section.

As a corollary, we obtain
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Corollary 1.7. Assume that k is an algebraically closed field of characteristic 0. Let (X,∆ε)
be a klt Campana orbifold over k such that X is rationally connected and (X,∆ε) is strongly
Campana uniruled. Then (X,∆ε) is Campana rationally connected, i.e., there is a family of
Campana curves passing through two general points on X.

Finally, we add to the list of examples where Conjecture 1.4 is known by verifying the
conjecture for toric varieties.

Theorem 1.8. Assume that k is an algebraically closed field of characteristic 0. Let X be
a smooth projective toric variety over k and ∆ be the torus-invariant boundary on X. Let
(X,∆ε) be a klt Campana orbifold. Then (X,∆ε) is strongly Campana uniruled as well as
Campana rationally connected.

Remark 1.9. In characteristic 0, Campana noticed that for toric Campana orbifolds, Cam-
pana uniruledness easily follows by looking at toric rational curves. Here we establish
something stronger so that Theorem 1.6 applies. We should also note that this theorem
is established in positive characteristic too. See Theorem 8.2 for more details.

As a corollary of this theorem, we deduce a version of Theorem 1.6 when the generic fiber
is toric which places no restriction on the fibers containing the jets:

Corollary 1.10. Assume that k is an algebraically closed field of characteristic 0. Let
π : (X ,∆ε)→ B be a klt Campana fibration over k such that the generic fiber (Xη,∆η) is a
smooth projective toric variety with the toric boundary. Fix a finite number of Campana jets
in distinct fibers of π : X → B. Then these finite Campana jets are induced by a Campana
section.

1.3. Related works.

Weak approximation by sections. Existence/weak approximation of sections for rationally
connected fibrations has been extensively studied. As mentioned before, there is a cele-
brated work [GHS03] showing the existence of sections in characteristic 0. This is extended
to separably rationally connected fibrations in arbitrary characteristic in [dJS03]. Weak ap-
proximation at places of good reduction has been established in [HT06] in characteristic 0,
and there are many more results in this direction, e.g., [Xu12a, Xu12b, Tia15, TZ18, TZ19,
SX20, STZ22].

A1-connectedness. As a notion corresponding to integral points, A1-curves and A1-connectedness
have been studied by various authors. This has been first pioneered by Miyanishi and his
collaborators, e.g., [Miy78, GM92, GMMR08], and there is an important work by Keel-
McKernan [KM99] on the existence of free rational curves on quasi-projective surfaces. More
recently A1-curves have been studied by the first author and Yi Zhu using log geometry and
deformation theory for stable log maps ([CZ15, CZ19, CZ18]) Surprisingly log Fano varieties
with a reduced boundary do not need to satisfy A1-connectedness, e.g., the projective plane
with a union of two lines as a boundary. Moreover in characteristic p > 0, dlt log Fano vari-
eties consisting of a projective space of dimension n ≥ p with any smooth degree p boundary
are at best separably A1-uniruled, and fail to be A1-separably connected in general [CC21].
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Weak approximation by Campana points. There are a few papers studying weak approxi-
mation property by Campana points in the arithmetic setting. The paper [NS24] discusses
a relation between weak approximation property and the Hilbert property. [MNS24] is the
first paper studying Brauer-Manin obstructions in the setting of semi-integral points. Finally
[Moe24] addresses the weak approximation property for Campana points and related notions
for split toric varieties.

Campana orbifolds and orbifold rational connectedness. Campana introduced the notion of
Campana orbifolds in his studies of special manifolds, and he developed the theory of orbifold
rational curves and orbifold rational connectedness in [Cam11a, Cam10, Cam11b]. Orbifold
rational connectedness is equivalent to Campana rational connectedness as defined in Defi-
nition 1.2.

1.4. The plan of the paper. In Section 2, we discuss the deformation theory of log maps
and exhibit a few constructions of log gluing and log splitting which are used later. In
Section 3, we develop the deformation theory of log sections. In Section 4, we introduce sep-
arable uniruledness and separable connectedness by rational log curves and show that these
notions are equivalent to the existence of free or very free rational log curves respectively.
In Section 5, we introduce the notion of Campana maps and sections, and we also introduce
the notion of Campana uniruledness and Campana rational connectedness. In Section 6, we
define Campana jets and weak approximation by Campana sections. Then we prove Theo-
rem 1.6. In Section 7, we discuss the case of P1-fibrations and prove Conjecture 1.4 in this
case. We also prove that orbifold rational connectedness is equivalent to Campana rational
connectedness in Remark 7.3. Finally in Section 8, we discuss the case of toric orbifolds and
prove Theorem 1.8 and Corollary 1.10.
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2. Deformation theory for log maps

We work over an algebraically closed field k. In this section we have two goals. First, we
introduce some terminology for log schemes and stable log maps. Second, we discuss the
deformation theory of stable log maps (possibly with added constraints).

2.1. Log maps and their stacks. Let X be a smooth variety and ∆ ⊂ X be a strict
normal crossings divisor. Denote by ∆ = ∪i∆i the decomposition into smooth irreducible
components.

Let X = (X,MX) be the log scheme associated to the pair (X,∆), where MX is the
sheaf of monoids over X defined by

MX(U) := {f ∈ OX(U) | f |U\∆ ∈ O×X(U \∆)}
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for any open subscheme U ⊂ X. The log tangent bundle TX is the subsheaf of TX consisting
of vector fields tangent to ∆. Its dual ΩX = T∨X is the log cotangent bundle consisting of
differentials with at most logarithmic poles along ∆.

Notation 2.1. For any log scheme (or log stack) Y , we denote byMY its log structure and
by MY :=MY /O∗Y the corresponding characteristic sheaf.

For any log morphism f : X → Y between two log schemes or log stacks, the morphism
f [ : f ∗MY → MX (resp. f̄ [ : f ∗MY → MX) denotes the corresponding morphism on the
level of log structures (resp. characteristic sheaves).

Any scheme X can be viewed as a log scheme with the trivial log structure MX = O∗X .
We assume all log structures are fine and saturated, or fs for short, unless otherwise stated.
For the basics of logarithmic structures, we refer to the foundational paper of Kato [Kat89]
and the comprehensive book [Ogu18].

Definition 2.2. A log curve over a log scheme S consists of a pair

(π : C → S, {p1, · · · , pn})
such that

(1) The underlying pair (π, {p1, · · · , pn}) is a family of pre-stable curves over S with n
markings.

(2) π is a proper, log smooth, and integral morphism of log schemes.
(3) If U ⊂ C is the smooth locus of π then MC |U ∼= π∗MS ⊕

⊕n
k=1 pk∗NS.

Here NS denotes the constant sheaf on S with coefficients N.

Let S be a log scheme. A log map over S is a morphism of log schemes f : C → X
such that C → S is a family of log curves. In particular, the underlying family C → S
obtained by removing all log structures is a family of pre-stable curves. It is called stable if
the corresponding underlying morphism f is stable in the usual sense. A log map f is said
to be non-degenerate if S is a log point with the trivial log structure. In this case, C is a
smooth irreducible curve and MC is the divisorial log structure coming from the markings.
Furthermore in this case we can conclude that f(C) 6⊂ ∆.

The theory of log maps of Abramovich–Chen–Gross–Siebert [Che14, AC14, GS13] is one
of the main tools in this paper. Let f : C → X be a non-degenerate log map and let pk ∈ C
be the k-th marked point. Let ck,i be the order of tangency of f with respect to ∆i at pk. The
collection of non-negative integers ck = (ck,i)i is called the contact order at pk. Log geometry
allows us to further extend this definition to all log maps, not only the non-degenerate ones.

We recall the definition of contact orders at a node as described by [Che14, §3.2] and
[AC14, §4.1]. Let f : C → X be a log map over a log point S, and p ∈ C be a node with
image f(p) = x. Define the relative characteristic sheaf MC/S := MC/MS. Recall that

MC/S|p ∼= Z where this isomorphism depends on a choice of sign. Consider the composition

up : MX |x
f̄[|p //MC |p //MC/S|p ∼= Z.

Suppose J = {i |x ∈ ∆i}. Then MX |x ∼= N|J | with the generator δi ∈ MX |x corresponding
to ∆i. Write cp,i := up(δi) if i ∈ J and cp,i = 0 otherwise. As a morphism of monoids, up is
uniquely determined by the collection of integers (cp,i)i. The contact order at the node p is
the collection (cp,i)i. Note that the contact order at a node depends on the choice of sign in
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the isomorphism MC/S|p ∼= Z. However, this difference will not be important in this paper;
we will only care about the divisibility properties of the contact order.

Notation 2.3. Consider a contact order ck = (ck,i)i of a marking or a node. We say that
a contact order is positive if all the entries are non-negative and at least one entry is not
zero. A marking or a node is a contact marking if its contact order is positive; otherwise, it
is called a non-contact marking. For an integer m ∈ N, we wrote ck ≥ m if ck,i ≥ m for all
i. We write char k | ck if char k | ck,i for all i, and write char k - ck otherwise.

For later use, denote by Xck
:= ∩ck,i 6=0∆i with the trivial log structure if ck 6= 0, and

Xck
= X if ck = 0. Further denote by X◦ck ⊂ Xck

the maximal open dense locus such that
X◦ck ∩∆i = ∅ for any index i such that ck,i = 0.

The discrete data of a stable log map to X is the triple

(g, ς = {ck}|ς|k=1, β) (2.1)

where g denotes the genus of the domain curve, β is a curve class on X, |ς| is the number of
markings, and ck is the contact order at the k-th marked point.

Let Mg,ς(X, β) be the category of stable log maps to X with the discrete data (2.1)
fibered over the category of log schemes. It was proved in [Che14, AC14, GS13, Wis16] that
Mg,ς(X, β) is represented by a log algebraic stack, i.e. it is an algebraic stack equipped with
a fine and saturated log structure. Further assuming characteristic zero, then Mg,ς(X, β) is
a proper, log Deligne-Mumford stack. Let M ◦

g,ς(X, β) ⊂ Mg,ς(X, β) be the open sub-stack
with the trivial log structure. Then M ◦

g,ς(X, β) is the stack parametrizing non-degenerate
stable log maps with the discrete data assigned in (2.1).

2.2. Deformations of log maps. For any log stack M, denote by LogM Olsson’s log
stack constructed in [Ols03]: to any underlying morphism S → M the stack associates the
category of morphisms of log stacks S → M. The universal log structure of LogM defines
the tautological morphism of log stacks LogM →M. Consider

Mlog
g,|ς| := LogMg,|ς|

.

where Mg,|ς| is the moduli stack of pre-stable curves equipped with the canonical log structure

[Kat00, Ols07]. The stack Mlog
g,|ς| is log smooth. Hence the locus in Mlog

g,|ς| with the trivial

log structure is open dense and maps isomorphically via the tautological morphism to the
open substack of Mg,|ς| parametrizing smooth curves. In particular, Mlog

g,|ς| is reduced and

irreducible of dimension

dimMlog
g,|ς| = 3g − 3 + |ς|.

Let Cg,|ς| →Mg,|ς| be the universal log curve. Consider the pull-back of log stacks

Clog
g,|ς| := Cg,|ς| ×Mg,|ς| M

log
g,|ς| →Mlog

g,|ς|.

It is a universal family in the following sense. Let C → S be a log curve of genus g with
|ς| markings. Then there is a natural (not necessarily strict) morphism S → Mg,|ς| such
that C → S is the pull-back C = Cg,|ς| ×Mg,|ς| S → S. The functoriality of Olsson’s log

stack implies that S → Mg,|ς| factors through a unique strict morphism S → Mlog
g,|ς| such
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that the family C → S is the pull-back C = Clog
g,|ς| ×Mlog

g,|ς|
S → S. In particular, we obtain a

tautological morphism

Mg,ς(X, β) −→Mlog
g,|ς|, [f : C/S → X] 7→ [C/S] (2.2)

which assigns to a log map its domain log curve.

2.2.1. Deformations of log maps relative to Mlog
g,|ς|. Suppose S is a geometric log point of

Mg,ς(X, β) corresponding to a log map f : C → X. The first-order deformations and

obstructions of the log map relative to Mlog
g,|ς| are controlled by H0(f ∗TX) and H1(f ∗TX)

respectively ([ACGS21, §4]). In particular, the expected relative dimension at [f ] is

exp dim[f ]

(
Mg,ς(X, β)

/
Mlog

g,|ς|

)
= χ(f ∗TX),

yielding the expected dimension

exp dim[f ] (Mg,ς(X, β)) = χ(f ∗TX) + 3g − 3 + |ς|. (2.3)

Example 2.4 (Toric example). Let X be the log scheme associated to a toric variety with
its toric boundary. Then TX ∼= O⊕ dimX by [CLS11, Theorem 8.1.1]. For any genus zero log
map f : C → X over a geometric log point S, we have H1(f ∗TX) = 0. This implies that the
tautological morphism (2.2) is log smooth. Consequently M0,ς(X, β) is also log smooth of
dimension

dim (M0,ς(X, β)) = dimX + |ς| − 3.

2.2.2. Deformations of log maps relative to Log. The morphism of log stacks Mg,|ς| → Spec k
induces a tautological morphism

Mlog
g,|ς| −→ Log := LogSpeck, [C → S] 7→ [S],

hence a tautological morphism by composing (2.2)

Mg,ς(X, β) −→ Log, [f : C/S → X] 7→ [S] (2.4)

For a log map f : C → X over S, consider the complex Nf defined by the distinguished
triangle

TC/S
df−→ TX −→ Nf

[1]−→ (2.5)

Suppose S is a geometric log point. The first-order deformations and obstructions of [f ]
relative to Log are controlled by H0(Nf ) and H1(Nf ) respectively. In general Nf is a
complex rather than a sheaf. We call Nf the normal complex of f .

2.3. The deformation theory of log immersions. We describe a situation where the
complex Nf is represented by a vector bundle. This will allow us to effectively compute
deformations of log maps in many examples.

Definition 2.5. Let f : C → X be a log map over a geometric log point S. We say that f
is a log immersion if

(1) For any node or marking p ∈ C with contact order cp, we have cp 6= 0 and char k - cp.
(2) The underlying morphism f : C → X is an immersion away from nodes and markings.
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Condition (1) implies the images of all nodes and markings are necessarily in ∆. The
following is a generalization of [CZ19, Lemma 4.12] with a similar proof. We provide a
detailed proof for completeness.

Lemma 2.6. Suppose f : C → X is a log immersion. Then df : TC/S → f ∗TX is injective
as a subbundle. Hence the cokernel Nf := Cok df is a vector bundle on C.

Proof. It suffices to prove dually that f ∗ : f ∗ΩX → ΩC/S is surjective and the kernel is locally
free. We verify this locally around a closed point x ∈ C.

Case 1: Smooth non-marked points. Suppose x is a smooth non-marked point. Let
Z ⊂ C be the irreducible component containing x. For a subset J ⊂ {i}, denote by
X◦J := (∩j∈J∆j) \ ∪i 6∈J∆i, and set X◦∅ = X \ ∆ for J = ∅. Thus {X◦J | X◦J 6= ∅} is a
stratification of X such that MX |X◦J is the trivial monoid N|J |. Let Z◦ ⊂ Z be the open
subscheme obtained by removing all nodes and markings. It contains x. Then there is a
unique stratum X◦J 6= ∅ such that the underlying morphism f |Z◦ : Z◦ → X factors through
X◦J . Thus the induced Z◦ → X◦J is an immersion in the usual sense. We have a commutative
diagram

0 // ΩX◦J
|Z◦

��

// ΩX |Z◦

f∗|Z◦
��

// O⊕|J |Z◦
// 0

ΩZ◦
∼= // ΩC/S|Z◦

where the top is an exact sequence by [CZ19, Lemma 4.13] and ΩXJ
is the cotangent bundle

of the underlying scheme. The immersion Z◦ → X◦J implies the surjectivity of f ∗|Z◦ as
needed. Moreover the kernel is locally free in a neighborhood of x because ΩX |Z◦ is torsion
free and x is a smooth point of C.

Case 2: Marked points. Let x be a marked point, defined by a local coordinate z. Thus
the fiber ωC/S|x is generated by a section dz

z
. Let XJ be the unique stratum containing the

image f(x). Thus the fiber ΩX |x contains a set of linearly independent vectors {dδj
δj
|x | j ∈ J},

where δj are defining equations of ∆j locally around f(x). Let cx be the contact order at
x; we write it in the form cx = (cx,j)j∈J where the contact order at x along ∆j is given by
cx,j ∈ N. By assumption, there exists j ∈ J such that cx,j > 0 and char k - cx,j. Thus, by an

appropriate choice of coordinates, we have f ∗(
dδj
δj
|x) = cx,j · dzz 6= 0. Hence f ∗|x is surjective.

As f ∗ is a morphism of coherent sheaves, this implies the surjectivity of f ∗ in a neighborhood
of x. Again the kernel is locally free because x is a smooth point of C.

Case 3: Nodal points. Suppose x is a node. Similar to the case of marked points, it
suffices to prove the surjectivity of f ∗|x and local freeness of the kernel on a neighborhood
of x. Suppose x is a node joining two branches Z1 and Z2 with local coordinates z1 and z2.
Then ωC/S|x is generated by a local section dz1

z1
= −dz2

z2
. Again let XJ be the unique stratum

containing the image f(x). Thus the fiber ΩX |x contains a set of linearly independent vectors

{dδj
δj
|x | j ∈ J} where each δj is the defining equation of ∆j locally around f(x). Let cx be

the contact order at the node x. (The definition was given just before Notation 2.3.) This
means that for each j ∈ J , one of the two branches Zi has contact order cx,j ∈ N along ∆j at
x. The assumption on contact orders implies that there is a j ∈ J and an i ∈ {1, 2} such that
Zi has contact order cx,j > 0 along ∆j such that char k - cx,j. Similarly, by an appropriate
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choice of coordinates, we have f ∗(
dδj
δj
|x) = cx,j · dzizi 6= 0. This implies the desired surjectivity

of f ∗|x. Furthermore, an element
∑

j∈J aj
dδj
δj
|x lies in the kernel of f ∗|x if it satisfies the

linear relation
∑

j∈J cx,jaj = 0. Thus the kernel has codimension 1 so that it is locally free
at x. �

Consider a log map f : C → X over a log point S. There is a natural associated log map
f̄ : C̄ → X over S such that the composition C −→ C̄ −→ X is f where the first arrow is
the forgetful morphism removing all markings with the zero contact order. In particular, f̄
is a log map with only contact markings.

Corollary 2.7. Notations as above, further assume that f̄ is a log immersion and let P
denote the set of non-contact markings of f . Then Nf is a sheaf with torsion-free part

N tf
f = Nf̄ and torsion N tor

f = ⊕k∈PNpk/C.

Proof. Consider the following diagram whose rows are distinguished triangles:

TC/S //

��

f ∗TX //

=

��

Nf

[1]
//

��
TC̄/S // f̄ ∗TX // Nf̄

[1]
//

The injectivity of TC/S → TC̄/S and Lemma 2.6 imply that TC/S → f ∗TX is injective. Hence
Nf is a sheaf. By Lemma 2.6 again, Nf̄ is locally free. The kernel-cokernel sequence shows
that the kernel of Nf → Nf̄ can be identified with the cokernel of the leftmost map, namely
⊕k∈PNpk/C . This implies our assertion. �

2.4. Deformations of log maps with point constraints. For a subset P ⊂ {1, · · · , |ς|}
and a collection of points qk ∈ X◦ := X \∆ for k ∈ P , we introduce the point constraint

fP := {pk 7→ qk | k ∈ P}
sending the k-th marking to qk. A log map f satisfies the point constraint fP iff f(pk) = qk
for k ∈ P . As qk ∈ X◦, we necessarily have ck = 0.

For each k ∈ P , consider the evaluation morphism

evk : Mg,ς(X, β) −→ X, [f ] 7→ f(pk)

induced by the k-th marking. The moduli of stable log maps satisfying the point constraint
fP is

Mg,ς(X, β, fP ) := Mg,ς(X, β)×∏
P X

∏
k∈P

qk (2.6)

with
∏

k∈P evk : Mg,ς(X, β)→
∏

P X.
Consider a log map f : C → X over S satisfying the point constraint fP . As ck = 0 for

k ∈ P , by removing {pk | k ∈ P} from the set of markings, f induces an associated log
map f̄ : C̄ → X over S such that f is given by the composition C → C̄ → X. Consider the
twisted normal complex

Nf,fP := Nf̄

(
−
∑
k∈P

pk

)
(2.7)
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Assuming that S is a geometric log point, then the first order deformations and obstructions
of f relative to Log are given by H0(Nf,fP ) and H1(Nf,fP ) respectively ([ACGS21, §4]).

2.5. Deformation of log maps relative to codimension 1 boundary. The condition
Definition 2.5.(1) leads to a very intuitive geometric picture around contact markings as
observed below.

Lemma 2.8. Let f : C → X be a log map (not necessarily a log immersion) over a geometric
log point S. Suppose p ∈ C is a marking satisfying char k - cp. Further assume that the image
x = f(p) is contained in a unique boundary component ∆i ⊂ ∆. Then there is a natural
isomorphism

T∆i
|x ∼= Nf |p.

Proof. We have the following commutative diagram of solid arrows at p:

0

��

0

��
Op
∼=
��

∼= // Op

��

0

''OOOOOOO

TC/S|p

��

df // TX |p //

��

Nf |p
[1]

//

0

��

// T∆i
|p

��

∼=

77ooooooo

0 0

where the middle row is the pull-back of (2.5) to p and the two columns are obtained by
pulling back corresponding exact sequences in [CZ14, Lemma 4.1]. The same calculation
as in Lemma 2.6, case 2 shows that df is non-zero, inducing the isomorphism Op ∼= Op.
Consequently, we obtain the two dashed arrows, finishing the proof. �

Consider the moduli Mg,ς(X, β, fP ) as in (2.6). Let pk be a contact marking such that
k 6∈ P . Further assume there is an i′ such that char k - ck,i′ 6= 0, and ck,i = 0 for all i 6= i′.
This induces an evaluation morphism

evk : Mg,ς(X, β, fP )→ ∆i′ .

We are interested in the local structure of this morphism along the stratum ∆◦i′ = ∆i′\∪i 6=i′∆i.

Proposition 2.9. Consider a log map [f : C → X] ∈ M ◦
g,ς(X, β, fP )(S) over a geometric

log point S such that x = f(pk) ∈ ∆◦i′. Then there is a natural morphism

d evk |[f ] : H
0(Nf,fP )→ T∆i′

|x.

It is surjective if H1(Nf,fP (−pk)) = 0.

Proof. Consider the exact sequence

0→ OC(−pk)→ OC → Opk → 0
11



Tensoring with Nf,fP , we obtain a distinguished triangle

Nf,fP (−pk)→ Nf,fP → Nf,fP |pk
[1]→

Taking the long exact sequence of cohomology, we have

H0(Nf,fP (−pk))→ H0(Nf,fP )→ H0(Nf,fP |pk)→ H1(Nf,fP (−pk))
Then d ev◦k |[f ] is given by the composition

H0(Nf,fP )→ H0(Nf,fP |pk) ∼= T∆i
|x

with the isomorphism given by Lemma 2.8. When H1(Nf,fP (−pk)) = 0 surjectivity follows
from the long exact sequence. �

2.6. Log gluing along markings. We provide a gluing construction of log maps that can
increase contact orders at a given marking. Similar constructions for A1-curves in different
settings were provided in [CZ15, §4] and [CZ18, §4].

Suppose that for each j = 1, 2, we have a log map fj : Cj → X over a geometric log point
Si, and a marking pj ∈ Cj with contact order cpj contained in an irreducible component
Zj ⊂ Cj such that

S1 = S2, and f1(p1) = f2(p2).

Set x = fi(pi) ∈ X. We further assume that fj(Zj) 6⊂ ∆red for j = 1, 2. For later use, let Mj

denote the set of markings on Cj.
In the following subsections we describe how to construct a log stable map f : C → X

that restricts to the maps f1, f2 along certain irreducible components of C. The construction
depends on how the intersection point x interacts with the irreducible components of the
boundary divisor. We only describe the construction when x lies on at most one irreducible
component.

2.6.1. Gluing along non-degenerate point. First, we assume that x ∈ X◦. In particular
cp1 = cp2 = 0. To glue f1 and f2 along p1 and p2, we first construct the glued underlying
pre-stable map f : C → X such that C = C1 ∪p1=p2 C2 is obtained by identifying p1 and p2,
and f |Cj = f

j
for each j.

Let M be the set of markings on the new prestable curve C → S. It is given by

M := (M1 \ {p1}) t (M2 \ {p2}).
Note that p1, p2 are glued to a node, denoted by p. Let C] → S] be the canonical log curve
over C → S taking into account all markings. Similarly, let C]

j → S]j be the canonical log
curve over Cj → Sj. Over the same underlying point S, we have a splitting

MS] =MS]1
⊕O× Np ⊕O×MS]2

where Np is the canonical log structure smoothing the node p.
Recall that the stable log map Cj → Sj is equivalent to a morphism of log structures

MS]j
→MSj , i.e., this means that Cj → Sj is isomorphic to C]

j×S]j Sj → Sj. We then define

the log point S by setting

MS :=MS1 ⊕O× Np ⊕O×MS2 .

The morphism of log structuresMS] →MS induced byMS]j
→MSj and the identity Np →

Np defines a morphism of log points S → S]. We obtain the log curve C := C] ×S] S → S.
12



Finally, f lifts to a stable log map f : C → X such that the restriction f |Cj is induced by

fj naturally. Note that for every marking p′ ∈ C its contact order is the same as the contact
order of the corresponding marking from fj.

2.6.2. Gluing along markings in codimension 1 boundary strata. Now we assume that there is
an index i such that x ∈ ∆i′ iff i′ = i. In particular, x is contained in the unique codimension
1 boundary stratum of ∆i.

Step 1. The underlying pre-stable map. To glue f1 and f2, we introduce a smooth
rational curve L with three distinct special points p′1, p

′
2, p. We form the underlying pre-stable

curve over S

C = C1 ∪p1=p′1
L ∪p′2=p2

C2

by the corresponding identifications. Denote by qj the node obtained by gluing pj and p′j.
The set of markings on C is given by

M := (M1 \ {p1}) t {p} t (M2 \ {p2}).

The glued underlying pre-stable map f : C → X is defined by

f |Cj := f
j

and f(L) = x.

Step 2. The domain log curve. Next, we construct a stable log map C → S over the
underlying curve C → S as follows. Let C] → S] be the canonical log curve over C → S
with the set of markings M . There is a splitting

MS] =MS]1
⊕O× Nq1 ⊕O× Nq2 ⊕O×MS]2

whereNqj is the canonical log structure on S smoothing the node qj, andMS]j
is the canonical

log structure associated to the underlying curve Cj → S as above.
Since S is a geometric point, we have a (non-canonical) splitting

Nqj ∼= N×O×S .

Define a new log structure N := N × O×S with the structure arrow α : N → OS such that

α(n, u) = 0 if n > 0 and α(n, u) = u if n = 0. Set ` = lcm(cp1 , cp2)1. We fix a morphism of
log structures for each j

Nqj −→ N , (n, u) 7→ (n · `/cpj , u).

We then define S to be the geometric log point with log structure

MS :=MS1 ⊕O× N ⊕O×MS2 .

This leads to a morphism of log structures

MS] →MS

induced byMS]j
→MSj and the fixed morphism Nqj → N above, hence a morphism of log

points S → S]. This defines a morphism of log points S → S], hence a log curve

C := C] ×S] S → S.

1In case cp1
= cp2

= 0, we may set ` = 1, and the following construction still works.
13



Step 3. The log map defined over C \L◦. Denote by L ⊂ C the closed strict subscheme
over L and let L◦ = L \ {q1, q2}. Then we have C \L = C◦1 tC◦2 where C◦j = Cj \ {pj}. The
construction of C → S implies that

MC◦j
=MCj |C◦j ⊕O× N ⊕O×MSj′

,

where j′ 6= j. Thus we naturally define

f |C◦j := fj|C◦j : C◦j → X

for j = 1, 2.
Further recall that fj(Zj) 6⊂ ∆red, i.e. f |Zj intersects the boundary ∆ properly at qj. We

observe that f |C◦j extends uniquely across the node qj to yield a morphism

f |C◦1tC◦2 : C◦1 t C◦2 → X (2.8)

where C◦1 t C◦2 = C \ (L◦). To see this, let sj, tj be the local coordinates around qj on the
components Zj and L respectively. They each lift uniquely to a local section of MC .

On the other hand, let δ be a local section ofOX around x which is a local defining equation
of ∆i. It lifts to a unique local section inMX around x, denoted by δ again. Consequently,
the pull-back log structure f ∗MX around the point qj is generated by a unique section,
denoted again by δ. On the level of underlying morphisms, we have

f ∗(δ) = s
cpj
j

by choosing coordinates properly. As morphisms of log schemes are required to be compatible
with their underlying structures, on the level of log structures locally around qj we have

f [(δ) = cpj · sj, (2.9)

where the right hand side is written as additive monoids.

Step 4. Extending the log map to L \ {q1, q2}. To construct an f over C, it remains
to construct f |L : L → X which is compatible with (2.8) at the two nodes q1, q2. More
precisely, as f(L) = x, f ∗MX |L is generated by the element δ. To define f |L, it suffices to

find f [(δ) ∈MC |L whose fibers at the two nodes agree with (2.9).
We wish to construct the dotted arrows in the following diagram

T � � //

��

f ∗(MX)|L
f[|L //______

��

MC |L

��

{δ̄} � � // f ∗(MX)|L
f̄[|L //______ MC |L

where the middle and right vertical arrows are the quotient by O×L , and the left square is

Cartesian. The above discussion implies that f ∗(MX)|L = NL is the constant sheaf with the

generator δ̄ which is the image of δ. Furthermore T is a trivial O×-torsor.
We first define f̄ [|L by specifying the element f̄ [|L(δ̄) ∈ MC |L. Recall that tj, sj denote

local coordinates at the node qj of L,Zj respectively. Denote by t̄j, s̄j the images of tj, sj in
the characteristic sheaf respectively. Let t be the local coordinate of p which lifts uniquely
to a local section of MC |L, again denoted by t. Let t̄ be the image of t in the characteristic
sheaf.

14



Note that MC |L is constructible with respect to the following strata

q1, q2, p, L \ {q1, q2, p},

along which MC becomes sheaves of constant monoids. Let e be the generator of N . We
define the image f̄ [|L(δ̄) along each stratum as follows

f̄ [|L(δ̄)|qj := cpj · s̄j, for j = 1, 2;

f̄ [|L(δ̄)|p := ` · e+ (cp1 + cp2) · t̄;
f̄ [|L(δ̄)|L\{q1,q2,p}, := ` · e.

(2.10)

We observe that the above assignments glue to an element f̄ [|L(δ̄) ∈MC |L. First note that
the element (` · e + (cp1 + cp2) · t̄) generizes to ` · e since the element t̄ is 0 when restricted
away from p.

To verify that the above construction glues across q1 and q2, it suffices to show that f̄ [|L(δ̄)
is well-defined in the constructible sheaf of groups Mgp

C |L, as all the monoids involved are
fine and saturated. By the construction in Step 2, we have

`/cpj · e = s̄j + t̄j,

hence

cpj · s̄j = cpj · (`/cpj · e− t̄j) = ` · e− cpj · t̄j in Mgp

C,qj
. (2.11)

Note that t̄j is 0 when away from qj. This shows that f̄ [|L(δ̄) ∈MC |L is a well-defined section

on L, hence a well-defined morphism on the characteristic level f̄ [|L : f ∗MX →MC |L.

Consider the O×-torsor T ′ := MC |L ×MC |L {f̄
[|L(δ̄)}. To lift f̄ [|L to a morphism of

log structures f [|L : f ∗MX |L → MC |L, it suffices to find an isomorphism of O×-torsors

T
∼=−→ T ′. Recall that T is a trivial torsor. On the other hand, (2.10) and (2.11) implies

that T ′ consists of sections with poles of order cpj at qj and zeros of order cp1 + cp2 at p, and
no other poles and zeros. In particular, T ′ is also trivial. Thus, any isomorphism T ∼= T ′
defines the morphism f [, hence a log map f : C → X over S as needed.

2.7. Smoothing of the log gluing. Let f : C → X over S be constructed as in Section
2.6.2. We further impose point constraints fPj for fj as in §2.4. This leads to point constraints
fP = fP1 ∪ fP2 for f . We next study the deformation of f with the constraints fP , and prove
the following sufficient condition for smoothing f (and in particular smoothing the two nodes
q1, q2).

Proposition 2.10. Notation as above. Suppose that cp1 , cp2 , cp = (cp1 + cp2) are coprime to
char k, the restrictions H0(Nfj ,fPj

)→ H0(Nfj ,fPj
|pj) ∼= T∆|x are surjective (see Lemma 2.8),

and H1(Nfj ,fPj
) = 0. Then we have H1(Nf,fP ) = 0. In particular, a general deformation of

f with the point constraints fP is non-degenerate.

Proof. Note that H1(Nf,fP ) = 0 implies f is unobstructed relative to Log, see §2.4. Thus,
a general deformation of f is a log map over a point with the trivial log structure, i.e.
non-degenerate. Thus the last sentence of the statement follows from the earlier claims.

For the rest of this statement, we will assume that fP = ∅, hence fP1 = fP2 = ∅. The case
with point constraints is identical but with slightly more complicated notations.
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Consider the following distinguished triangle over C

f ∗ΩX
f∗−→ ΩC/S −→ Lf

[1]−→ . (2.12)

Taking duals and rotating the complex, we obtain a distinguished triangle as in (2.5)

TC/S
df−→ f ∗TX −→ L∨f [1]

[1]−→ (2.13)

with Nf = L∨f [1]. We would like to compute H1(Nf ).
Similarly we define Lfj and Nfj = L∨fj [1] over Cj for j = 1, 2. It follows from the construc-

tion in Section 2.6.2 that (Lf )|Cj ∼= Lfj , hence Nf |Cj ∼= Nfj for j = 1, 2.
To compute the cohomology of (2.13), consider the partial normalization sequence

π : C̃ := C1 t L t C2 → C,

hence a short exact sequence over C:

0 −→ OC −→ π∗OC̃ −→ Oq1 ⊕Oq2 −→ 0.

Applying⊗Nf to the short exact sequence, and taking the corresponding long exact sequence,
we have

0→ H0(Nf )→ H0(Nf1)⊕H0(Nf |L)⊕H0(Nf2)→H0(Nf |q1)⊕H0(Nf |q2)

→ H1(Nf )→ H1(Nf1)⊕H1(Nf |L)⊕H1(Nf2)→H1(Nf |q1)⊕H1(Nf |q2) → · · ·
To prove H1(Nf ) = 0, we compute Nf |L and Nf |qj and their cohomologies as follows.

Consider (Lf )|L which fits in the distinguished triangle

f ∗ΩX |L
f∗|L−→ ΩC/S|L −→ Lf |L

[1]−→ .

Since f contracts the component L to the point x ∈ X, we have f ∗ΩX |L ∼= OnX for n = dimX
since X is log smooth. Select local coordinates y1, · · · , yn−1, yn in a neighborhood U of x
such that ∆ ∩ U is defined by yn = 0. Then

dy1, · · · , dyn−1, d log yn

form a basis of ΩX locally around x. By abuse of notations, we view them as a basis of
f ∗ΩX |L. On the other hand, we observe that

ΩC/S|L = ΩL(q1 + q2 + p) ∼= OL(1)

Since L is contracted, we have f ∗|L(dyk) = 0 for k = 1, · · ·n− 1.
Next we observe that f ∗L(d log yn) ∈ H0(ΩC/S|L) is a non-trivial section that vanishes at

a point away from q1, q2 and p. Indeed, since the contact orders cp1 , cp2 , and (cp1 + cp2) are
all prime to the characteristic of the ground field Equation (2.11) on the characteristic level
implies that locally around qj we have

f ∗|L(d log yn) = uj · (−cpj)d log tj

for some locally invertible function uj, where tj is the local coordinate of L around qj for
j = 1, 2. And similarly around p the second equation of (2.10) implies that

f ∗|L(d log yn) = up · (cp1 + cp2)d log t

for some locally invertible function up, where t is the local coordinate of L around p. As
d log t1, d log t2, and d log t are local generators of ΩC/S|L at q1, q2 and p respectively, the
section f ∗|L(d log yn) does not vanish at the three special points q1, q2, and p. Thus the
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restriction of f ∗|L to the component OL · d log yn ⊂ f ∗ΩX |L is an injection OL → OL(1) ∼=
ΩC/S|L. By degree considerations, the section f ∗|L(d log yn) vanishes at a point other than
q1, q2, and p, say p′.

Taking a dual, the above discussion implies that Nf |L is the cone of the following complex

OL(−1)
df−→ O⊕nL .

In particular, we have Nf |L ∼= O(n−1)
L ⊕Op′ . Noting that y1, · · · , yn−1 form local coordinates

of ∆ around x, by further restricting to qj we have

Nf |qj ∼= T∆|x ∼= O⊕(n−1)
qj

for j = 1, 2. Thus we have the vanishing

H1(Nf |q1) = 0, H1(Nf |q2) = 0, H1(Nf |L) = 0.

Finally, the statement follows from the above calculations and the long exact sequence,
noting that Nfj |pj ∼= Nf |qj . �

2.8. Splitting contact orders. Consider a log smooth variety X with strict normal cross-
ings boundary ∆ = ∪i∈I∆i as above. Consider a non-zero contact order c? = (c?,i) at a mark-
ing, and denote by I? = {i ∈ I | c?,i 6= 0} the set of non-vanishing components of c?. The
total splitting of c? is the collection of non-zero contact orders split(c?) := {uk = (uk,i)}k∈Ic
where uk,i = 0 if i 6= k, and uk,k = c?,k.

Proposition 2.11. Suppose that f : C → X is a non-degenerate, rational log map with
contact orders ς = {ck = (ck,i)}k such that char k - ck for all k, and point constraints fP
at all non-contact markings. Let c? ∈ ς be a non-zero contact order at the marked point p?
satisfying char k - c?,i for all i such that c?,i 6= 0. Assume H1(Nf,fP ) = 0. Then there is a

non-degenerate, rational log map f̃ : C̃ → X with contact orders ς ′ = {ck | k 6= c?}∪ split(c?)
and curve class f∗[C], satisfying the same point constraints fP .

Remark 2.12. In the proof, we will construct a degenerate log map f̃0 : C̃0 → X over S
with contact orders ς ′ and point constraints fP such that H1(Nf̃0,fP

) = 0 and f : C → X

appears as one of its components. Then f̃ is constructed as a general smoothing of f̃0. In

some sense, f̃ can be viewed as a “deformation” of f that splits the contact order c?. By
upper semicontinuity of cohomologies of complexes of coherent sheaves which are flat over
the base (see for example [Har12, Proposition 6.4]), we conclude that a general smoothing

of f̃0 satisfies H1(Nf̃ ,fP
) = 0.

Proof. We will assume in the proof that fP = ∅. The general case is similar but with more
complicated notations, and is left to the readers.

Denote by I? = {i ∈ I | c?,i 6= 0}. If |I?| = 1, then there is nothing to prove. So we assume
d := |I?| ≥ 2. We split the proof into several steps.

Step 1: Construct a degenerate domain curve. Consider R ∼= P1 with a choice of

distinct points q?, q1, q2, · · · , q|I?| ∈ R. Let C̃0 = C ∪ R obtained by identifying p? ∈ C with

q? ∈ R. This pre-stable curve C̃0 has the set of markings {pk}k 6=? ∪ {q1, q2, · · · , q|I?|}. We

obtain a log curve C̃0 → S with the underlying pre-stable curve C̃0 and its canonical log
structure uniquely determined by its underlying structure.
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Step 2: Construct a degenerate log map. Consider the stable map f̃
0
: C̃0 → X such

that f̃
0
|C = f and f̃

0
(R) = f(p?). We will lift f̃

0
to a stable log map f̃0 : C̃0 → X such that

its contact orders at {q1, q2, · · · , q|I?|} are given by split(c?) = {u?,1, u?,2, · · · , u?,|I?|}, where
u?,i mean the non-trivial contact order with respect to ∆i.

For each i ∈ I, denote byXi the log scheme associated to the pair (X,∆i). If i ∈ I?, we may

apply [CZ14, Lemma 3.6] along the component R to obtain a stable log map hi : C̃0 → X†i
such that qi has contact order c?,i. Here X†i is the specialization to normal cone of ∆i ⊂ X

with its canonical log structure and a canonical projection X†i → Xi. Now let f̃0,i be the

stable log map given by the composition C̃0 → X†i → Xi.

If i 6∈ I?, since f̃
0
|C = f is non-degenerate, the underlying structure naturally induces a

log map f̃0,i : C̃0 → Xi. Finally, we define

f̃0 :=
∏
i∈I

f̃0,i : C̃0 → X =
∏
i∈I

Xi

where the product
∏

i∈I Xi is taken over X. Observe that f̃0 has contact orders ς ′.

Step 3: Smoothing of the degenerate log map. We will show that H1(Nf̃0
) = 0.

Hence f̃0 can be deformed to a non-degenerate log map with contact orders ς ′. We work out
the details following the same line of calculation as in Proposition 2.10.

Similar to (2.12) and (2.13), we have two triangles

f̃ ∗0 ΩX

f̃∗0−→ ΩC̃0/S
−→ Lf̃0

[1]−→, TC̃0/S

df̃0−→ f̃ ∗0TX −→ L∨
f̃0

[1]
[1]−→, (2.14)

such that L∨
f̃0

[1] ∼= Nf̃0
. Using the normalization C tR→ C̃0 and arguing as in Proposition

2.10, we obtain a long exact sequence

0→ H0(Nf̃0
)→ H0(Nf )⊕H0(Nf̃0

|R)→H0(Nf̃0
|q?)

→ H1(Nf̃0
)→ H1(Nf )⊕H1(Nf̃0

|R)→H1(Nf̃0
|q?) → · · ·

noting that Nf
∼= Nf̃0

|C . We next compute Nf̃0
|R and its cohomologies.

Select local coordinates y1, · · · , yn−1, yn in a neighborhood U of f(p?) such that ∆i ∩ U is
defined by yi = 0 for i ∈ I?. Then we have a basis of ΩX |U :

{dyi | i 6∈ I?} t {d log yi | i ∈ I?}

By an abuse of notation, we view them as a basis of f̃ ∗0 ΩX |R. Since R is contracted, we
obtain

f̃ ∗0 ΩX |R ∼= O⊕n−|I?|R ⊕O⊕|I?|R

given by the above choice of basis.
We also observe that ΩC̃0/S

|R = ΩR(q? +
∑

i∈I? qi)
∼= OR(|I?| − 1). Since R is contracted,

we have f̃ ∗0 (dyi)|R = 0 for i 6∈ I?. Furthermore, since char k - c?,i for all i, we check that for

each i ∈ I? the section f̃ ∗0 (d log yi)|R ∈ ΩC̃0/S
|R is a local generator at qi, but is not a local

generator at qj for i 6= j. Thus {f̃ ∗0 (d log yi)|R | i ∈ I?} form a basis of H0(ΩC̃0/S
|R). In

particular, the restriction f̃ ∗0 |R is a surjection of vector bundles

f̃ ∗0 ΩX |R ∼= O⊕n−|I?|R ⊕O⊕|I?|R → ΩC̃0/S
|R ∼= OR(|I?| − 1).

18



Taking duals, we obtain an exact sequence

0→ OR(−|I?|+ 1)→ O⊕n−|I?|R ⊕O⊕|I?|R → Nf̃0
|R → 0

realizing Nf̃0
|R as a semi-positive vector bundle over R. In particular, the restriction mor-

phism H0(Nf̃0
|R)→ H0(Nf̃0

|q?) is surjective, and H1(Nf̃0
|R) = 0.

Finally applying the assumption H1(Nf ) = 0 and the long exact sequence, we obtain
H1(Nf̃0

) = 0 as needed. �

3. Deformation theory for log sections

In this section we analyze the sections of a morphism π : X → B where X is a log scheme
defined by a strict normal crossing divisor and B is a curve. The main goal is to understand
the moduli space and deformation theory of sections satisfying various properties.

3.1. Stable log sections and their stacks. Let X be a log scheme such that X is smooth
and the boundary divisor ∆ ⊂ X is strict normal crossings. A flat, generically smooth, and
projective morphism π : X → B with connected fibers is called a log fibration if furthermore
the restriction π|∆ : ∆ → B is flat and generically relatively strict normal crossings. Here
we will only consider the case that B is a proper, smooth, genus g curve equipped with the
trivial log structure.

Let S be a log point. A genus g stable log map f : C → X over S is called a stable log map
of section type of π if the curve class of the underlying pre-stable map of the composition
C → X → B is [B]. It is further called a log section if f is non-degenerate.

Denote by Seclog(X/B) the stack of stable log maps of section type for the log fibration
π : X → B, and Seclog(X/B)+ ⊂ Seclog(X/B) the open and closed substack parametrizing
log maps with only contact markings. The open substacks

Seclog(X/B) ⊂ Seclog(X/B) and Seclog(X/B)+ ⊂ Seclog(X/B)+

with the trivial log structure are the corresponding moduli stacks of log sections. Note that
these open substacks are honest schemes. There is a decomposition into open and closed
substacks

Seclog(X/B) =
⊔
(ς,β)

Secς(X/B, β)

by further specifying the number of markings, contact orders ς, and curve classes β ∈ N1(X )
with π∗β = [B]. We observe that Secς(X/B, β) = Mg,ς(X , β). Similarly we have

Seclog(X/B)+ =
⊔
(ς,β)

Secς(X/B, β)

is the union over ς without non-contact marking.

3.2. Deformations of stable log maps of section type. Let [f ] ∈ Secς(X/B, β)(S) be
an object over a log scheme S. Consider the commutative triangle

X

��
C

f
88ppppppppppppp h // B

(3.1)
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This induces a tautological morphism

Secς(X/B, β)→Mg,|ς|(B, [B]) (3.2)

given by [f : C → X ] 7→ [h : C → B]. Here Mg,|ς|(B, [B]) is the Artin stack of |ς|-marked,
genus g(B) pre-stable log maps to the target B with curve class [B]. It fits in a commutative
diagram with strict top arrows:

Secς(X/B, β) //

((QQQQQQQQQQQQQ
LogMg,|ς|(B,[B])

//

��

Log

��
Mg,|ς|(B, [B]) // Spec k

(3.3)

where Log• is Olsson’s log stack parametrizing log structures over a given log stack • as in
§2.2.

Consider an object [f ] ∈ Secς(X/B, β)(S) as in (3.1) over a log point S. The normal com-
plexes Nf , Nh as in §2.2 fit in the following commutative diagram of distinguished triangles:

TC/S
df

**TTTTTTTTTTTTTTTTTTTT

dh

��99999999999999999

f ∗TX

''OOOOOOOOOOOOO

{{wwwwwwwww

h∗TB

��������������������

##HHHHHHHHH
Nf

wwoooooooooooooo

Nh

ttjjjjjjjjjjjjjjjjjjj

f ∗TX/B[1]

(3.4)

In particular, we have the triangle

f ∗TX/B −→ Nf −→ Nh
[1]−→ (3.5)

By (2.5), we see that the cohomologies of Nf and Nh control the deformations of f and h
relative to Log respectively.

Next, consider the deformations of (3.1) relative to LogMg,|ς|(B,[B]). These are deformations

of [f ] while fixing ([h], S)). In this case the first-order deformations and obstructions of (3.1)
relative to LogMg,|ς|(B,[B]) are given by H0(f ∗TX/B) and H1(f ∗TX/B) respectively.

Under certain conditions the objects in the derived category defined by Equation (3.4) are
represented by sheaves.

Proposition 3.1. Consider a log section [f ] ∈ Seclog(X/B)(S) where S is a geometric point
with the trivial log structure (whose image is thus necessarily a section of π : X → B). Let
{pk}k∈P be the collection of non-contact markings and let f̄ : C̄ → X be log map associated
to f by removing markings in {pk}k∈P , see §2.3. We further assume that char k does not
divide any of the non-zero contact orders of f . Then
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(1) f̄ is a log immersion.

(2) Nf
∼= Nf̄ ⊕

⊕
k∈P Npk/C and Nh

∼= ⊕|ς|k=1Npk/C are sheaves, where {p1, · · · , p|ς|} is the
set of all markings and Npi/C

∼= Opi is the normal bundle of the underlying marking.
(3) Further suppose that f(C) is contained in the locus where π : X → B is log smooth

(where B is equipped with the trivial log structure). Then we have an exact sequence

0 −→ f ∗TX/B −→ Nf −→ Nh = ⊕|ς|i=1Npi/C −→ 0 (3.6)

where Npi/C
∼= Opi is the normal bundle of the underlying marking.

Proof. Noting that the underlying morphism of f is a closed embedding, (1) follows from
Definition 2.5. (2) is a consequence of Corollary 2.7.

(3) We have the following commutative diagram

0 // TC //

=

��

f ∗TX //

��

Nf
//

��

0

0 // TC // TB // ⊕iNpi/C
// 0

Since we are assuming C is contained in the log smooth locus of π, the map f ∗TX → TB is
surjective. The kernel-cokernel sequence shows that the rightmost arrow is also surjective
and has kernel isomorphic to TX/B. �

3.3. Log sections through given points. Consider a finite set of points

{qk}k∈P ⊂ X ◦ = X \ Supp(∆)

such that their images pk = π(qk) are distinct. Denote by

Seclog(X/B, {pk}k∈P ) ⊂ Seclog(X/B)

the moduli of log sections with a specified subset of additional markings with images {pk}k∈P
in B. By a mild abuse of notation, we will use pk to denote the corresponding marking of
the domain curve C (as well as its image in B). Denote by

Seclog(X/B, {qk}k∈P ) ⊂ Seclog(X/B, {pk}k∈P )

the closed substack parametrizing log sections such that the image of the marking pk is qk
for all k. This is the moduli space of log sections through {qk}k∈P ⊂ X . Denote by

Seclog(X/B, {pk}k∈P )+ ⊂ Seclog(X/B, {pk}k∈P})
Seclog(X/B, {qk}k∈P )+ ⊂ Seclog(X/B, {qk}k∈P )

the open and closed substacks such that the markings with zero contact orders are exactly
{pk}k∈P .

Let [f ] ∈ Seclog(X/B, {qk}k∈P )+(S) be a log section over a geometric log point S with the
trivial log structure, and f̄ : C̄ → X be log map associated to f by removing markings in
{pk}k∈P . As in (2.7), we define the twisted normal complex:

Nf,{qk} := Nf̄

(
−
∑
k∈P

qk

)
.

The cohomology groups H0(Nf,{qk}) and H1(Nf,{qk}) control the first-order infinitesimal de-
formations and obstructions of [f ] inside of Seclog(X/B, {qk}k∈P ) relative to Log, see §2.4.
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Further assuming that char k does not divide any of the non-zero contact orders of f , then
Nf̄ and Nf,{qk} are vector bundles by Proposition 3.1.

Lemma 3.2. Fix points {qk}k∈P ⊂ X ◦ with distinct images pk = π(qk) in B.
Suppose that M is an irreducible substack of Seclog(X/B, {qk}k∈P )+ parametrizing a sep-

arable dominant family of log sections such that all of the non-zero contact orders are not
divisible by char k. Then for a general member [f : C → X ] ∈M(Spec k), the vector bundle
Nf,{qk} is generically globally generated.

Conversely, suppose we fix a log section f : C → X through {qk}k∈P such that Nf,{qk} is
generically globally generated and H1(C,Nf,{qk}) = 0. Then there is a unique irreducible com-
ponent M ⊂ Seclog(X/B, {qk}k∈P )+ containing [f ]. Furthermore M parametrizes a separable
dominant family of log sections.

Proof. We first prove the first statement. Let π : U → M be the universal family with the
evaluation map ev : U → X . For a point (f : C → X , p) ∈ U with p ∈ C non-marked, the
tangent space is given by TMf ⊕ TC |p. Since ev is dominant and separable, for a general
choice of f and p we have a surjection

TMf ⊕ TC |p ⊂ H0
(
C,Nf,{qk}

)
⊕ TC |p → f ∗TX |p.

This implies that

H0
(
C,Nf,{qk}

)
→ Nf,{qk}|p

is surjective. Thus Nf,{qk} is generically globally generated.
Next we prove the second statement; the proof is almost backward. For a general non-

marked point p ∈ C,

H0
(
C,Nf,{qk}

)
→ Nf,{qk}|p

is surjective proving that

H0
(
C,Nf,{qk}

)
⊕ TC |p → f ∗TX |p.

is surjective. Furthermore, H1(C,Nf,{qk}) = 0 implies that U is smooth around the point p.
Thus ev : U → X is dominant and separable, proving the claim. �

4. Free log curves

A key tool for understanding rational curves on projective varieties is the notion of a (very)
free curve. The study of free curves is closely tied to the geometric notions of uniruledness
and rational connectedness. In this section we quickly describe the analogous theory in the
log setting. Similar proposals have been put forward by e.g. [KM99, Cam11a, Cam10, CZ15,
CZ19, CZ18].

4.1. Uniruledness and connectedness by rational log curves. We introduce the no-
tation of (separable) uniruledness and rational connectedness of X by log curves.

Definition 4.1. Let X be a log smooth variety with strict normal crossings boundary and
let ς be a collection of non-zero contact orders.

(1) We say X is (separably) ς-uniruled if there is a family of genus zero non-degenerate
stable log maps π : U → W, ev : U → X with contact orders ς such that U = W ×P1,
dimW = dimX − 1, and ev is dominant (and separable).
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(2) We say X is (separably) ς-rationally connected if there is a family of genus zero non-
degenerate stable log maps π : U → W, ev : U → X with contact orders ς such that
U = W × P1 and ev(2) : U ×W U → X2 is dominant (and separable).

Definition 4.2. Notations as in Definition 4.1, let f : C → X be a non-degenerate rational
log curve over a geometric point with contact orders ς. We say that f is ς-free (resp. ς-very
free) if H1(Nf (−1)) = 0 (resp. H1(Nf (−2)) = 0).

Corollary 4.3. Let f : C → X be a non-degenerate rational log curve over a geometric
point with contact orders ς. If f ∗TX is nef (resp. ample), then f is free (resp. very free).

Proof. To show that f is ς-free (resp. ς-very free), one may first apply ⊗OP1(−1) (resp.
⊗OP1(−2)) to (2.5) and then take the corresponding long exact sequence. The statement
then follows from Definition 4.2. �

Proposition 4.4. Let X be a log smooth variety with strict normal crossings boundary and
let ς be a collection of non-zero contact orders not divisible by char k. Then X is separably
ς-uniruled (resp. separably ς-rationally connected) iff it admits a ς-free (resp. ς-very free)
rational log curve.

We postpone the proof to Section 4.3.

4.2. Relatively free log sections. Recall that B is of genus g. The above definition
suggests the following notions of freeness for log sections:

Definition 4.5. Let f : C → X be a log section with only contact markings. Assume
that every contact order is not divisible by char k. It is called relatively generically free
if H1(C,Nf ) = 0 and Nf is generically globally generated. If furthermore Nf is globally
generated, it is called relatively free. Note that it follows from Proposition 3.1 that the
normal complex Nf is actually a sheaf on C.

We call such an f relatively HN-free (resp. relatively HN-very free) if µmin(Nf ) ≥ 2g (resp.
µmin(Nf ) ≥ 2g + 1) where µmin(F) is the minimal slope of a torsion free sheaf F .

Lemma 4.6. Let f : C → X be a log section. Then we have the following implications:

f is relatively HN-free =⇒ f is relatively free =⇒ f is relatively generically free.

In case g = 0, the three notions of freeness are all equivalent. Thus, we say f is relatively
free if one of the three equivalent conditions is satisfied. Furthermore, when g = 0 we say f
is relatively very free if it is relatively HN-very free.

Proof. The second implication is trivial. The first implication follows from Riemann-Roch
and Serre duality. More precisely, it is an immediate consequence of [LRT23, Corollary 2.8];
the cited paper works over C but this argument is valid in arbitrary characteristic. �

Lemma 4.7. Let f : C → X be a log section with only contact markings and assume that all
of the contact orders of f are not divisible by char k. Let M ⊂ Seclog(X/B) be a component
containing f .

(1) Suppose that f is relatively HN-free and let b = µmin(Nf ). Then deformations of C
parametrized by M go through bbc − 2g + 1 general points;

(2) Conversely suppose that our ground field has characteristic 0 and deformations of f
parametrized by M go through 2g + 1 general points. Then a general deformation of
f in M is relatively HN-free.
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Proof. (1) Let p1, · · · , pm be general points on B. Then as long as m ≤ bbc − 2g, the vector
bundle Nf (−p1 − · · · − pm) is globally generated with vanishing H1 by [LRT23, Corollary
2.8]. Thus our assertion follows from Lemma 3.2.

(2) We fix a deformation f ′ : C ′ → X of f going through a set of 2g(B) general points
on X . Let p1, · · · , p2g be the corresponding points on C ′. Then it follows from Lemma 3.2
that Nf ′(−p1 − · · · − p2g) is generically globally generated. [LRT23, Lemma 2.6] shows that
µmin(Nf ′(−p1 − · · · − p2g)) ≥ 0. Thus it follows that µmin(Nf ′) ≥ 2g. �

4.3. (Very) free log curves via (very) free log sections. Next, we relate the notions
of free log curves and log sections in Definitions 4.2 and 4.5.

Given a non-degenerate stable log map f : C → X with contact orders ς over a geometric
point S, it naturally induces a log section of a trivial family:

X × C
π

��
C u

//

ρf :=f×u
77ooooooooooooo
C

where u is the morphism forgetting the log structure. We say the induced log section is

non-trivial if the composition C
ρ−→ X × C π−→ X is not a contraction of the curve. Note

that ρf is non-trivial iff the image f(C) is not a point. In particular ρf is non-trivial if ς is
not entirely zero.

Lemma 4.8. Notation as above. Suppose C is rational and ς consists of non-zero contact
orders which are not divisible by chark. Then f is free (resp. very free) iff ρf is relatively
HN-free (resp. relatively HN-very free).

Proof. Consider the following commutative diagram

TC

))SSSSSSSSSSSSSSSSSSS

��44444444444444444

ρ∗fTX

''NNNNNNNNNNNNN

{{wwwwwwww

f ∗TX

��


















##GGGGGGGGG
Nρf

wwoooooooooooooo

Nf

uukkkkkkkkkkkkkkkkkkk

TC [1]

This provides a distinct triangle

TC −→ Nρf −→ Nf
[1]−→ .

Since C ∼= P1, by applying ⊗OC(−m) to the above distinct triangle for m = 1, 2 and taking
the associated long exact sequence, we obtain an exact sequence

0 −→ H1(Nρf (−m)) −→ H1(Nf (−m)) −→ 0
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Suppose f is free (resp. very free), i.e. H1(Nf (−1)) = 0 (resp. H1(Nf (−2)) = 0) by
Definition 4.2. By the above exact sequence, this is equivalent to H1(Nρf (−1)) = 0 (resp.
H1(Nρf (−2)) = 0). Since C is a rational curve, this is equivalent to assuming that ρf is
relatively HN-free (resp. relatively HN-very free) as in Definition 4.5. This concludes the
proof. �

Lemma 4.9. Let X be a log smooth projective variety with strict normal crossings boundary,
and let π : X × P1 → P1 be the trivial log fibration. Suppose ς consists of non-zero contact
orders not divisible by char k. Then we have

(1) X is separably ς-uniruled if and only if the log fibration π admits a non-trivial, free
log section with contact orders ς;

(2) X is separably ς-rationally connected if and only if the log fibration π admits a very
free log section with contact orders ς.

Proof. (1) Suppose that X is separably ς-uniruled. Then there is a family π : U → W of log
rational curves with contact orders ς such that U = W × P1, dimW = dimX − 1, and the
evaluation map s : U → X is dominant and separable. Let φ : U → P1 be the projection.
We thus obtain a family of non-trivial log sections over W :

X × P1

π
��

U
φ

//

(f,φ)
77nnnnnnnnnnnnnn P1

(4.1)

While this family is not dominant (since dim(U) < dim(X) + 1) we may select a torus
action to sweep out the total space as follows. Fix two distinct points x1, x2 ∈ P1 and an
identification P1 \ {x1, x2} ∼= Gm with a torus. This defines a multiplication morphism

m : Gm × P1 → P1

with two fixed points {x1, x2}. This m is a separable and dominant morphism. Now we
extend (4.1) to the following commutative diagram

X ×Gm × P1

��

// X × P1

π
��

Gm × U //

55kkkkkkkkkkkkkkkk
Gm × P1 m // P1

The composition of the upper arrows gives a family of non-trivial log sections

ẽv : Ũ := Gm × U → X × P1

over W̃ := Gm ×W . Note that ẽv is separable and dominant. Let f : C → X × P1 be a

general log section parametrized by W̃ . Lemma 3.2 implies that Nf is generically globally
generated. Since the underlying curve is a smooth rational curve, we conclude that f is free.

Conversely, suppose that there is a free log section f : C → X ×P1 with contact orders ς.
Let M be the irreducible component of Secς(X × P1/P1) containing f . Let π : U → M be
the universal family over M with the evaluation map ev : U → X × P1. Lemma 3.2 implies
that the evaluation map ev : U → X × P1 is dominant and separable. Moreover since it
parametrizes sections, we have U = M × P1. Then the composition U → X × P1 → X
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with the projection is also dominant and separable. In particular, it is smooth at a general
unmarked point (x, y) ∈ U = M × P1 so that we have a surjection of tangents

TM,x ⊕ TP1,y −→ TX,ev(x,y)

whose kernel does not contain TP1,y. We may choose a general complete intersection W ⊂M
through x of dimension dimX − 1. Then

TW,x ⊕ TP1,y ⊂ TM,x ⊕ TP1,y −→ TX,ev(x,y)

is still surjective so that the composition CW → X × P1 → X is separable and dominant.
Thus our assertion follows.

(2) Suppose that our log variety (X,∆) is separably ς-rationally connected. This will imply
that there is a family π : U → W of log rational curves with contact orders ς and evaluation
map s : U → X such that U = W × P1 and the evaluation map ev(2) : U ×W U → X2 is
dominant and separable. We use a similar construction in (1) but instead of using Gm we

use the 2-dimensional affine group Ga oGm. Thus we construct Ũ → W̃ = (Ga oGm)×W
with the evaluation map s̃ : Ũ → X × P1 using multiplication by a Ga o Gm-action on

P1. Then ẽv(2) : Ũ ×W̃ Ũ → (X × P1)2 is dominant and separable. This will imply that
there is a component M of Secς(X × P1/P1) with universal family π : U → M such that
ev(2) : U ×M U → (X × P1)2 is dominant and separable. Then it follows from Lemma 3.2
that a general f : C → X × P1 parametrized by M is very free.

Conversely suppose that there is a very free log section f : C → X × P1 with contact
orders ς. Let M be a component of Secς(X × P1/P1) containing f . Let π : U → M be the
universal family over M with the evaluation map ev : U → X ×P1. Then since Nf is ample,
for any points p, q on C, H0(C,Nf )→ Nf |p⊕Nf |q is surjective. This means that for general
p, q, we have a surjection H0(C,Nf ) ⊕ TC |p ⊕ TC |q → f ∗TX×P1 |p ⊕ f ∗TX×P1|q. We conclude
that the evaluation map ev(2) : U ×M U → (X ×P1)2 is dominant and separable proving the
claim. �

Proof of Proposition 4.4. This follows directly from Lemmas 4.8 and 4.9. �

5. Campana maps and curves

Here we recall the definitions of Campana curves and Campana sections. First let us
define Campana orbifolds and Campana fibrations:

Definition 5.1. Let X be a smooth projective variety and ∆ =
∑

i ∆i be a strict normal
crossings divisor on X such that ∆i is irreducible. Let X be the log scheme associated to
the pair (X,∆). For each i let mi be either a positive integer ≥ 1 or ∞ and set εi = 1− 1

mi
.

We define

∆ε =
∑
i

(
1− 1

mi

)
∆i

and call the pair (X,∆ε) a Campana orbifold. We say (X,∆ε) is a klt Campana pair if all
mi are positive integers. This is equivalent to saying that the pair (X,∆ε) has only klt
singularities.

A Campana fibration over B is a Campana orbifold (X ,∆ε) with a log fibration π :
(X ,∆)→ B. Similarly we say (X ,∆ε)/B is a klt Campana fibration if all the mi are positive
integers.
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Next we define the notion of Campana maps:

Definition 5.2. Let (X,∆ε) be a Campana orbifold. Suppose ς is a collection of positive
contact orders as in (2.1) for stable log maps to X. As before we will let ck,i denote the
multiplicity of the ith irreducible component ∆i along the kth marked point.

We say that ς is of Campana type if for every irreducible component ∆i of ∆:

(1) when mi <∞, every index k satisfies either ck,i = 0 or ck,i ≥ mi.
(2) when mi =∞, there is at most one index k with ck,i > 0.

A stable log map f : C → X over a log point S is called a Campana map if the collection of
its contact orders are of Campana type. We call f a Campana curve if f is non-degenerate,
or equivalently MS is trivial. Recall that if f is non-degenerate, then C is smooth and
f−1(∆) consists of only marked points.

Next let π : (X ,∆ε) → B be a Campana fibration over a smooth projective curve B of
genus g. A genus g stable log map f : C → X over a geometric log point S is called a
stable Campana map of section type if f is a Campana map to (X ,∆ε), and the composition
C → X → B has degree 1. When C is a Campana curve, we call f a Campana section.

The condition (2) means that when mi =∞ and f(pk) ∈ ∆i, then f(C \ {pk}) ∩∆i = ∅.
In particular, when every multiplicity is ∞ then the A1-curves in X studied in [CZ19] are
examples of Campana curves.

Remark 5.3. In Definition 5.2, the condition on contact orders when mi = ∞ is slightly
different than the typical definition used by arithmetic geometers. The exactly analogous
definition is to fix a finite set S of places on B and to insist that the intersections of ∆i

and f(C) can only happen above these finitely many points. Our definition allows for more
flexibility.

Remark 5.4. An alternative method for dealing with infinite contact orders in Definition 5.2
would be to insist that our curve meets ∪i|mi=∞∆i at only one point. This would be more
closely analogous to the notion of an A1-curve. It has the additional advantage that if we
construct ∆′ε from ∆ε by reducing the multiplicities then a Campana curve for (X,∆ε) can
be transformed into a Campana curve for (X,∆′ε) by taking a finite cover ramified at the
point of intersection with the multiplicity ∞ divisors. On the other hand, this alternative
definition is not as flexible as Definition 5.2.

Remark 5.5. Suppose that (X,∆ε) is a Campana orbifold and that φ : X ′ → X is a
birational morphism. It is natural to equip X ′ with a Campana orbifold structure (X ′,∆′ε)
in a “minimal” way (see [PSTVA21, Section 3.6]). However, with this choice the strict
transform of a Campana curve on X need not be a Campana curve on X ′. In fact, there
does not seem to be a natural way of defining a “birationally invariant” theory of Campana
curves.

Next suppose that π : (X ,∆ε) → B is a Campana fibration. The previous paragraph
shows that the set of Campana sections can really depend on the integral model X and not
just on the generic fiber XK(B). For this reason we will always specify the integral model
(X ,∆) when discussing Campana sections.

5.1. Campana uniruledness and Campana rational connectedness. Here we intro-
duce the notation of (separable) Campana uniruledness and (separable) Campana rational
connectedness:
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Definition 5.6. Let (X,∆ε) be a Campana orbifold.

(1) We say (X,∆ε) is (separably) Campana uniruled if there exist a collection of con-
tact orders ς of Campana type such that X is (separably) ς-uniruled. Furthermore,
when all non-zero contact orders of ς are not divisible by char k, we say (X,∆ε) is
(separably) Campana uniruled by good contact orders.

(2) We say (X,∆ε) is (separably) Campana rationally connected if there exist a collection
of contact orders ς of Campana type such thatX is (separably) ς-rationally connected.
We also define (separably) Campana rational connectedness by good contact orders
in an analogous way.

Lemma 5.7. Let (X,∆) be a Campana orbifold.

(1) A Campana orbifold (X,∆ε) is separably Campana uniruled by good contact orders
if and only if there is a non-trivial free Campana section of contact orders ς on
(X × P1/P1,∆ε × P1) such that every non-zero contact order of ς is not divisible by
char k;

(2) a Campana orbifold (X,∆ε) is separably Campana rationally connected by good con-
tact orders if and only if there is a very free Campana section of contact orders ς on
(X × P1/P1,∆ε × P1) such that every non-zero contact order of ς is not divisible by
char k.

Proof. This follows from Lemma 4.9. �

An important conjecture in this direction, due to Campana, is:

Conjecture 5.8 (Campana). Assume that our ground field has characteristic 0. Let (X,∆ε)
be a klt Fano orbifold, i.e., (X,∆ε) is a klt Campana orbifold such that −(KX+∆ε) is ample.
Then (X,∆ε) is Campana rationally connected.

For our applications, we will need the following conjecture:

Conjecture 5.9. Assume that our ground field has characteristic 0. Let (X,∆ε) be a klt
Fano orbifold. Then there exists a free Campana curve f : C → X such that the class f∗[C]
is in the interior of the nef cone Nef1(X) of curves.

We say (X,∆ε) is strongly Campana uniruled when (X,∆ε) satisfies the assertion of Con-
jecture 5.9. Note that when X has Picard rank 1, being in the interior of the nef cone is
automatic.

Proposition 5.10. Let (X,∆ε) be a klt Fano orbifold. Assume that Conjecture 5.9 holds.
Then for each ∆i, there exists a free Campana curve f : C → X such that f(C) meets with
the codimension 1 stratum of ∆i.

Proof. This follows from Proposition 2.11 and Conjecture 5.9. Indeed, one can split contact
orders inductively as described in Section 2.8. While doing so, freeness will be preserved by
Remark 2.12. �

6. Weak approximation

Weak approximation for Campana sections looks somewhat different than weak approx-
imation for sections. Indeed, by Remark 5.5 the notion of a Campana section depends on
the choice of integral model π : (X ,∆)→ B and not just the generic fiber.
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6.1. Setting up weak approximation for Campana pairs. Let B be a smooth projec-
tive curve over an algebraically closed field. Suppose that (Xη,∆η) is a smooth projective
geometrically integral klt Campana pair over the function field K of B. For any place b of

K, we denote by ÔB,b the completion of the local ring OB,b with respect to the maximal

ideal and by Kb the fraction field of ÔB,b.
Definition 6.1. Let π : (X ,∆ε) → B be a klt Campana fibration. We say that b ∈ B is
a place of good reduction if there exists a regular model π′ : X ′ → SpecOB,b of the generic
fiber X η such that the special fiber X ′b is smooth.

Note that this definition is the same as the usual one and does not rely on the log structure
in any way.

Definition 6.2. Let π : (X ,∆ε) → B be a klt Campana fibration. Let Spec k[t]/(tn+1) be
the n-th jet scheme. We say an n-th jet σ : Spec k[t]/(tn+1)→ X is an admissible n-th jet if
the composition

Spec k[t]/(tn+1)→ X → B

is a closed embedding.
Let Iσ denote the set of indices i such that σ(Spec k) ⊂ ∆i. We say an admissible n-th

jet σ is a Campana n-th jet if it satisfies:

(1) n ≥ maxi{mi}i∈Iσ , and
(2) for i ∈ Iσ the ideal defined by the pullback of ∆i is given by (tm) with m ≥ mi.

We say a Campana fibration π : (X ,∆ε)→ B satisfies weak approximation if for any finite
number of Campana jets sitting in distinct fibers, there is a Campana section f : C → X
which induces the given Campana jets. Similarly, we say that π satisfies weak approximation
at places of good reduction if any finite number of Campana jets sitting in distinct fibers of
good reduction are induced by a Campana section.

6.2. Deformation theory of log sections while fixing jets. In Section 2.4 we discussed
the deformation theory of log sections through fixed points. In this section we extend these
results to discuss sections through fixed jets. The strategy is the usual one (e.g., [HT06,
Section 2.3]): we blow-up to translate jet data into incidence data.

Suppose that π : (X ,∆ε) → B is a klt Campana fibration. Let {(pj, σj)} be a finite set
of admissible jets living in distinct fibers. We assume that these jets are not supported on

the boundary ∆. Suppose that the jet σj lies over the point bj ∈ B. Let B̂b denote the

completion of B at b and let π̂ : X̂b → B̂b denote the base-change of π. By Hensel’s Lemma,

each σj is induced by a jet σ̂j over B̂bj .
We then replace X with the following birational modification. For each jet σj, we repeat-

edly perform point blow-ups in the fiber over bj where at each step we blow-up the point
defined by the strict transform of σ̂j. The result will be a smooth birational model X ′ of X
equipped with a morphism π′ : X ′ → B with the following property: for each j, there is a
distinguished irreducible component Ej of the fiber over bj such that a section C of π will
be tangent to σj if and only if the strict transform of C meets Ej. We say that φ : X ′ → X
extracts the jets {σj}. For an n-th admissible jet, one can construct such a X ′ by blowing
up n+ 1 times.

Lemma 6.3. Let π : (X ,∆ε) → B be a klt Campana fibration. Suppose {σj}rj=1 is a finite
set of admissible jets living in distinct fibers such that the support of jets does not lie on ∆.
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Let φ : X ′ → X be the birational model extracting the jets {σj}. Suppose that C is a log
section of π with the canonical log structure that approximates the jets {σj} and let C ′ be its
strict transform on X ′. Then

NC′/X ′ ∼= NC/X

(
−
∑

njpj

)
In particular the deformation theory of sections C of π approximating {σj}rj=1 is given by
the twisted normal bundle in the equation above.

Proof. Recall that φ is a composition of blow-ups at smooth points. Arguing inductively, it
suffices to compute what happens when φ is the blow-up of a single point p not contained
in ∆. Letting i : E → X ′ denote the inclusion of the exceptional divisor with the trivial log
structure, we have an exact diagram of sheaves

0

��

0

��

0

��
0 // TC′ //

=

��

TX ′|C′ //

��

NC′/X ′ //

��

0

0 // TC′ //

��

φ∗TX |C′ //

��

NC/X //

��

0

0 // i∗TE(E)|C′ =
//

��

K //

��

0

0 0

,

where K is the cokernel of NC′/X ′ → NC/X . We conclude that NC′/X ′ ∼= NC/X (−p) as
desired. �

6.3. Weak approximation in characteristic 0. Our goal in this section is to prove the
following theorem:

Theorem 6.4. Assume that k is an algebraically closed field of characteristic 0. Let π :
(X ,∆ε) → B be a klt Campana fibration over k such that a general fiber of π is rationally
connected and is strongly Campana uniruled. Suppose we fix points p1, . . . , pr ∈ X living in
distinct fibers of good reduction and for each index j we choose a Campana nj-th jet σj at
pj. Then there exists a Campana section approximating the jet data {pj, σj}.

We assume that p1, · · · , ps are contained in ∆ and ps+1, · · · , pr are not contained in ∆.
First we prepare the following lemma:

Lemma 6.5. Assume that k is an algebraically closed field of characteristic 0. Let π : X → B
be a flat projective morphism from a smooth projective variety such that a general fiber is
rationally connected and let ρ ≥ 0 be any non-negative real number. For j = 1, · · · , r, let
{pj, σj} be an admissible nj-th jet such that p1, · · · , pr ∈ X are sitting in fibers of good
reduction. Then {σj} can be approximated by a section f : C → X of π such that

µmin

(
NC/X

(
−
∑
j

njpj

))
≥ ρ+ 2g(B).
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Proof. First let us assume that k is uncountable. We fix ` = dρe + 2g(B) + 1 very general
points q1, · · · , q`. By [HT06], we can find a section f ′ : C ′ → X that approximates our finite
number of jets {σj} and also goes though our ` very general points. Let M be the irreducible
component of the moduli space parametrizing sections which approximate our jets {σj} such
that f ′ ∈M . Since our points are very general, a general section C parametrized by M goes

through ` very general points. This implies that NC/X (−
∑

j njpj −
∑`−1

k=1 qk) is generically

globally generated. Thus it follows from [LRT23, Lemma 2.6] that we have

µmin

(
NC/X

(
−
∑
j

njpj

))
≥ dρe+ 2g(B)

verifying our assertion.
When k is countable, we consider the moduli space M of sections approximating the jet

data (pj, σj). Let k′ ⊃ k be an uncountable algebraically closed field. Then there exists an
irreducible component M1 ⊂M such that M1⊗k′ contains an open subset U parametrizing
sections C such that

µmin

(
NC/X

(
−
∑
j

njpj

))
≥ dρe+ 2g(B).

Since k-valued points on M1 are Zariski dense, one can find a section C defined over k that
satisfies

µmin

(
NC/X

(
−
∑
j

njpj

))
≥ dρe+ 2g(B).

Thus our assertion follows. �

We also need another lemma:

Lemma 6.6. Let π : X → B be a flat projective morphism from a smooth projective variety
with a boundary divisor ∆ = ∪i∆i which is a SNC divisor and flat over B. For j = 1, · · · , r,
let {pj, σj} be an admissible nj-th jet such that each point p1, · · · , pr ∈ X is a smooth point
of the fiber containing it. Suppose that we have a section C approximating these jets and not

contained in the support of ∆. Then there is a birational morphism β : X̃ → X from a smooth

projective variety X̃ such that the strict transform ∆̃ of ∆ is SNC, β is an isomorphism over

X \ {p1, · · · , pr}, and the strict transform C̃ of C does not meet with ∆̃ over π(pj) for any
j = 1, · · · , r.

Proof. It is enough to prove the statement for one section C and a point p ∈ C. If p 6∈ ∆, then
there is nothing to prove. Suppose that p ∈ ∆. Then we successively blow up the support
p of the strict transform of a section f : C → X . Then the local intersection multiplicity

of the strict transform C̃ and the strict transform ∆̃ is strictly decreasing along successive
blow-ups, so eventually it becomes 0, proving the claim. Note that the smoothness of p in
its fiber is also preserved due to the fact that it is the intersection of the fiber with a section.
Also note that if the local intersection of C and ∆i is given by ki, then we need to perform
successive blow ups max{ki}-times. �

Here is our strategy for proving Theorem 6.4. Suppose we fix a finite set of Campana jets
in fibers of good reduction. By [HT06] we can find a section C which induces this finite set of
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jets. Of course C might not satisfy the Campana condition at the other points of intersection
{qk} with ∆. By gluing on π-vertical Campana curves and smoothing (while leaving the jets
fixed), we increase the intersection numbers at the qk to achieve the Campana condition
everywhere.

Proof of Theorem 6.4. Let C be a general section in M obtained in the proof of Lemma 6.5
with ρ = 2g. If at a place b = π(p) of a Campana n-th jet (p, σ), the local intersection
multiplicity of C and ∆i is greater than n for some i, then we may replace (p, σ) by a deeper
jet of C at p so that the local intersection multiplicity of C and ∆i is smaller than n for

any i. Let β : X̃ → X be a birational projective morphism constructed in Lemma 6.6. By

taking the strict transform, we have a stable map f : C → X̃ . Then note that C meets

with the exceptional divisor of β only over points π(pj). We impose the log structure on X̃
associated to the pair (X̃ , ∆̃) where ∆̃ is the strict transform of ∆. We can think of (X̃ , ∆̃ε)

as a Campana pair by equipping each irreducible component of ∆̃ with the same multiplicity
as the corresponding component of ∆. Then we impose the minimal log structure on C → S

so that f : C → X̃ is a log section with only contact markings. Let {qk} denote the set of

marked points on C. By construction f(qk) is a smooth point of ∆̃ and f(C) meets with ∆̃
transversally at those points. Let ` be the number of qk’s where the Campana condition is
not satisfied.

It follows from the proof of Lemma 4.7 that f : C → X̃ goes through 2g+1 general points
while approximating the jet data {(p̃j, σ̃j)} induced by {(pj, σj)}. In particular, this implies
that

µmin

(
Nf

(
−

r∑
j=1

ñj p̃j

))
≥ 2g.

This means that Nf (−
∑r

j=1 ñj p̃j) has vanishing H1 and is globally generated. Let qk be

a marked point on C which does not satisfy the Campana condition for (X̃ , ∆̃ε). By the
construction, f(qk) is a general point in a codimension 1 strata of a general fiber. By
assumption this fiber possesses a free Campana rational curve which is in the interior of
the nef cone. Proposition 5.10 implies that we have a free π-vertical Campana rational
curve passing through f(qk). Then we glue C and T via a contracted component L so

that we obtain a glued stable log map f̃ : C̃ → X̃ using the construction of Section 2.6.

We claim that Proposition 2.10 allows us to smooth f̃ : C̃ → X̃ while approximating the
jet data {p̃j, σ̃j}. Indeed, the assumptions of Proposition 2.10 follow from Lemma 2.8 and

Proposition 2.9. We denote its general smoothing as a log section f1 : C1 → X̃ . Then the
number of marked points qk which does not satisfy Campana condition is ` − 1. Moreover

since f : C → X̃ goes through 2g+1 general points, f1 : C1 → X̃ goes through 2g+1 general
points as well. Thus by repeatedly applying the construction of Section 2.6 to marked points
which do not satisfy the Campana condition and smoothing the resulting stable maps we

can construct a Campana log section f` : C` → X̃ which approximates the jet data {p̃j, σ̃j}.
Then h : C` → X̃ → X witnesses our assertion. �

Remark 6.7. The proof of Theorem 6.4 shows more. When the generic fiber X η satisfies the
usual weak approximation, our proof actually shows that one can find a Campana section
approximating Campana jets at any finite set of places including places of bad reduction.
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Proof of Theorem 1.6. This follows from Theorem 6.4. �

Corollary 6.8. Assume that k is an algebraically closed field of characteristic 0. Let (X,∆ε)
be a klt Campana orbifold such that X is rationally connected and (X,∆ε) is strongly Cam-
pana uniruled. Then (X,∆ε) is Campana rationally connected.

Proof. First let us assume that k is uncountable. Let X = X × P1 and ∆̃ε = ∆ε × P1. We
pick two very general points on X . It follows from Theorem 6.4 that we can find a Campana

section C of ((X , ∆̃ε)/P1) passing through these two points. Since these two points are
very general, C log-deforms to go through two general points on X . It follows from the
proof of Lemma 4.7 that a general log-deformation of C is very free. Thus our assertion
follows. When k is countable, one can reduce to the statement for uncountable fields as in
Lemma 6.5. �

Proof of Corollary 1.7. This follows from Corollary 6.8. �

7. Campana curves for P1-fibrations

Suppose that (P1
η, Dη) is a klt Fano orbifold with a smooth integral model π : S → B.

Explictly, this means that:

• S is smooth and comes equipped with a SNC divisor D that is flat and generically
SNC over B.
• The general fiber of π is isomorphic to P1.

The possible coefficient choices depend on the support of D:

(1) If D consists of a single section or degree 2 multisection, we can assign to it any
integer m ≥ 2.

(2) If D consists of two sections, we can assign to the pair any integers m1,m2 ≥ 2.
(3) If D consists of a single degree 3 multisection, we must assign it the multiplicity

m = 2.
(4) If D consists of a section D1 and a degree 2 multisection D2, we must assign them

the multiplicities (m1,m2) = (m, 2) or (2, 3) where m ≥ 2 is any integer.
(5) IfD consists of three sections, then multiplicities are (m1,m2,m3) = (2, 2,m), (2, 3, 3), (2, 3, 4)

or (2, 3, 5) where m is any integer m ≥ 2.

Our goal of this section is to show Conjecture 5.9 for (P1, D) where D = D|P1 for a general
fiber of π.

7.1. The existence of free Campana rational curves in the absolute case. Assume
that (P1,∆ε) is a klt Fano orbifold. When we have two Campana orbifolds (P1,∆ε) and
(P1,∆′ε) such that ∆ε ≥ ∆′ε, then a Campana curve with respect to ∆ε is automatically a
Campana curve with respect to ∆′ε. So we may assume that

(1) ∆ consists of two points with (m1,m2) = (m,m) where m ≥ 2 is an integer;
(2) ∆ consists of three points with (m1,m2,m3) = (2, 2,m) where m ≥ 2 is an even

integer, or;
(3) ∆ consists of three points with (m1,m2,m3) = (2, 3, 5).

Using this simplification we show:
33



Theorem 7.1. Let (P1,∆ε) be a klt Fano orbifold. Then there exists a stable log map
f : C → P1 of genus 0 such that f is a free Campana curve. Moreover, one can choose f so
that the log normal sheaf of f has degree m where m is any non-negative integer.

Proof. We first assume that our ground field k has characteristic 0. In the case (1), one can
find a degree m cover f ′ : P1 → P1 totally ramified at the support of ∆. If we equip the
domain with the log structure associated to f ′−1(∆) then f ′ is a Campana rational curve.
It is also free since the log normal sheaf has degree 0. Let g : P1 → P1 be a general degree d
cover and equip the domain with the log structure associated to g−1f ′−1(∆). Then f = f ′ ◦g
is a Campana curve and the log normal sheaf has degree 2d − 2. This achieves every non-
negative even degree for the log normal sheaf; for an odd degree, we can instead let g be
simple ramified at one point of g−1f ′−1(∆). Thus our assertion follows.

In the cases (2) and (3), let m = lcm(m1,m2,m3). We claim that there exists a cover
f ′ : P1 → P1 branched at the support of ∆ with branch datum

(m1, · · · ,m1), (m2, · · · ,m2), (m3, · · · ,m3).

In fact, these are classical examples of Belyi maps obtained by taking quotients of P1 by
finite subgroups of PGL2(k). Case (2) corresponds to quotients by a dihedral group and
case (3) corresponds to a quotient by the icosahedral group. It is clear that f ′ defines a
Campana curve and the degree of log normal sheaf is given by 0. Let g : P1 → P1 be a
general degree d cover. Then f = f ′ ◦ g is a Campana curve and the log normal sheaf has
degree 2d− 2. For odd degrees, we may let g simply ramified at one of g−1f ′

1
(∆). Thus our

assertion follows.
We next assume that our ground field k has characteristic p. In the case (1), we can use the

same argument after perhaps increasing the degree of the cover to ensure that it is coprime
to m. In the cases (2) and (3), we can again look for a cover f ′ : P1 → P1 constructed by
taking a quotient by a finite subgroup of PGL2(k). The classification of such subgroups is
presented in [Fab23]: in every characteristic PGL2(k) admits subgroups isomorphic to A5

and to dihedral subgroups of all orders. For A5, a quick computation using Riemann-Hurwitz
shows that the only possible behavior of orbits is the expected one, so that the cover defines
a free Campana curve. For the dihedral group, for simplicity we may increase the size so
that it has the form 2m with m a prime different from p. Again applying Riemann-Hurwitz,
to obtain the desired orbit behavior it suffices to show that in characteristic 2 we can ensure
that there are not two points that are fixed by the entire group. This follows from the
description of [Fab23]. The rest of the argument is the same as in characteristic 0.

�

Remark 7.2. Consider the Campana orbifold (P1,∆ε) with multiplicities (2, 3, 4) in char-
acteristic 2. [Fab23] shows that PGL2(k) does not admit any subgroup isomorphic to A4.
While we can still construct a free curve (P1,∆ε) using an icosahedral subgroup instead, we
do not know whether there exists a free curve cover f ′ : P1 → P1 with the “minimal” possible
ramification behavior.

Remark 7.3. We can now compare Campana’s definition of orbifold uniruledness and orb-
ifold rational connectedness to our notions. Suppose that (X,∆ε) is a smooth klt Campana
orbifold and that f : P1 → X is a morphism whose image is not contained in Supp(∆ε). In
[Cam11b] Campana says that f is an orbifold rational curve if we can give P1 an orbifold
structure (P1,Γε) such that:
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(1) KP1 + Γε is antiample, and
(2) for every point p ∈ P1 and every irreducible component ∆i we have ti,p ≥ mi,p

ni,p

whenever ti,p is positive where ti,p is the local multiplicity of ∆i along p and mi,p, ni,p
are respectively the multiplicities of ∆i in ∆ε and p in Γε.

He then defines orbifold uniruledness and orbifold rational connectedness using the existence
of families of orbifold rational curves through one or two general points respectively.

A priori Campana’s notion of an orbifold rational curve is more general than our notion
of a Campana curve. Correspondingly, Campana’s notions of uniruledness and rational
connectedness are a priori more general than ours. However, by precomposing a map f :
(P1,Γε)→ (X,∆) by a free Campana curve g : P1 → (P1,Γε) as in Theorem 7.1 we see that
composition f ◦ g : P1 → (X,∆) is a Campana curve. In particular, any family of orbifold
rational curves through one (or two) general points yields a Campana curve through one (or
two) general points, showing that the two notions are equivalent.

8. Rational Campana curves in toric varieties

8.1. Log curves in toric targets.

8.1.1. The targets. Let N ∼= Zd be a lattice and M = N∨ be its dual lattice. Write NR =
N ⊗Z R and MR = M ⊗Z R. For a fan Σ in N , define the log scheme XΣ whose underlying
variety is the toric variety XΣ associated to the fan Σ and whose log structure MXΣ

is
associated to the toric boundary ∆Σ ⊂ XΣ. Note that we do not require XΣ to be smooth
in general. However, the log scheme XΣ is always log smooth by [Kat89, Prop. 3.4]. Let
Σ(1) ⊂ Σ be the collection of rays. For a ray ρ ∈ Σ(1), denote by uρ its lattice generator and
let ∆ρ ⊂ XΣ be the corresponding torus invariant divisor. Thus, we have ∆Σ =

∑
ρ∈Σ(1) ∆ρ.

8.1.2. Contact orders. Consider XΣ as the target of log maps. The set of possible contact
orders at a marked point is in bijection with the lattice points in the support of the fan |Σ|.
In particular, if Σ is complete, then a contact order at a marked point can be identified by
an element of N .

In case Σ is a smooth fan, a lattice point c ∈ N specifies a contact order as defined in §2
as follows. Let σ ∈ Σ be the minimal cone containing c, and let σ(1) be the set of rays of σ.
The smoothness of the cone σ implies a unique presentation c =

∑
ρ∈σ(1) cρuρ for a positive

integer cρ by the minimality of σ. Thus c specifies the contact order cρ with respect to ∆ρ

if ρ ∈ σ(1), and 0 otherwise.

Remark 8.1. To any log smooth varietyX (where the underlying varietyX is not necessarily
smooth) one can associate a cone complex ΣX called the tropicalization of X. Then contact
orders at a marked point are given precisely by the integral points of ΣX . In the toric case
X = XΣ as above, one checks that ΣX = Σ as cone complexes. In particular, the set of
lattice points in Σ are precisely the set of integral points of ΣX .

This canonical assignment of contact orders in the general situation is explained in [ACMW17,
§5.2] and [ACGS20, §2.3.8].

Consider a log map f : C → XΣ with the collection of contact orders ς = {ck}. By
intersection theory, this collection ς satisfies∑

ck∈ς

ck = 0 (8.1)
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which is called the balancing condition. Denote by Z · ς ⊂ N the sub-lattice generated by ς.

Theorem 8.2. Let XΣ be a smooth projective toric variety of dimension d corresponding
to the fan Σ with a SNC divisor ∆Σ ⊂ XΣ. Let ς be a collection of positive contact orders
satisfying the balancing condition. Then

(1) XΣ is separably ς-uniruled.
(2) If the sub-lattice Z · ς ⊂ N is of rank d, then XΣ is also rationally ς-connected.
(3) If Z · ς is of rank d, and N/(Z · ς) contains no char k-torsion, then XΣ is separably

rationally ς-connected.

Proof. Let XΣ′ be another toric target of dimension d. We will argue that the above state-
ments for XΣ′ and for XΣ are equivalent. In particular, it suffices to consider the case that
Σ is the fan of a projective space, which then will be verified in Proposition 8.5 below.

Indeed, let π : U → W, ev : U → XΣ be a family of non-degenerate log maps over an
irreducible W with contact orders ς as in Definition 4.1. Note that XΣ and XΣ′ share the
same open dense tori Gd

m with the trivial log structure. For each geometric point s ∈ W , the
non-degeneracy of the fiber evs : Us → XΣ implies that Us \ ev−1

s (Gd
m) consists of precisely

markings. Hence evs induces a non-degenerate log map ev′s : Us → XΣ′ of contact order ς.
Thus, there is an open dense W ′ ⊂ W parametrizing non-degenerate log maps ev′ : U → XΣ′ .
Thus by Definition 4.1, to prove the statements for XΣ it suffices to prove the statements
for XΣ′ . �

Remark 8.3. In Theorem 8.2 above, we restrict our attention to smooth toric varieties with
SNC boundary because we have only defined “ς-uniruled” and “ς-rationally connected” in
this setting. We observe that the argument does not require that the fans Σ and Σ′ are
smooth; suitably interpreted, the claims are true for any (not necessarily smooth) complete
fan Σ. A key point is to interpret contact orders as lattice points of fans as in Remark 8.1.

Since Theorem 8.2 only imposes the the balancing condition on ς, we can find suitable
families of rational curves satisfying any multiplicity conditions. For example:

Corollary 8.4. Suppose (X,∆) is a projective klt Campana orbifold whose corresponding
log scheme is (XΣ,∆Σ) as in Theorem 8.2. Then (X,∆) is separably Campana rationally
connected by good contact orders.

Proof. Set p = char(k). Let mi denote the multiplicity associated to the irreducible compo-
nent ∆i of ∆Σ. Since (X,∆) is klt, the constant m = supi{mi} is finite. Let α be a curve
class such that ∆i · α ≥ 2m + 2 for every irreducible component ∆i. Thus we can write
∆i · α = ti,1 + ti,2 where (1) both ti,1 and ti,2 are at least m, and (2) neither ti,1 or ti,2 is
divisible by p.

We define the contact order ς which has two markings for each torus invariant ∆i and
at these markings we assign either ti,1 or ti,2 to ∆i and 0 to every other torus-invariant
divisor. Since sum of the orders of ς along ∆i agrees with ∆i · α the contact order satisfies
the balancing condition. It is clear that Z · ς has full rank. We claim that N/Z · ς has no
p-torsion. Indeed, suppose we fix a full-dimensional cone and consider the sublattice of Z · ς
spanned by the vectors in ς proportional to these rays. This already has no p-torsion, thus
the same will be true for quotient by the entire sublattice Z · ς.

By Theorem 8.2 we see that (X,∆) is separably rationally ς-connected. Since ς satisfies
the Campana condition this finishes the proof. �
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Proof of Corollary 1.10. Weak approximation for a smooth projective toric variety over k(B)
is known by [CTG04, Theorem 4.3]. Thus our assertion follows from Theorem 8.2 combined
with Theorem 6.4 and Remark 6.7. �

8.2. Theorem 8.2 for projective spaces.

8.2.1. The set-up. For a positive integer d, consider the log scheme Xd = XΣ where the
underlying Xd = Pd is projective space. Let ρ0, ρ1, · · · , ρd be the ray generators of the rays

in Σ(1). These satisfy
∑d

i=0 ρi = 0. By an abuse of notation, we sometimes identify the

generators ρi with the rays that they span. The toric boundary is ∆Xd =
∑d

j=0 Hj where Hi

is the hyperplane corresponding to ρi. The complement Xd\∆Xd = Gd
m is a rank d torus. We

may choose homogeneous coordinate functions [x0 : · · · : xd] of Xd such that Hi = (xi = 0).

8.2.2. Parametrizing log curves in Xd. We fix a rational curve C = P1 with the homogeneous
coordinate functions [s : t] and set b∞ = [1 : 0] ∈ C. The complement C \ {b∞} = A1

s/t =

Spec k[s/t] is an affine line.
To parametrize rational log curves with the fixed underlying domain C, we fix a positive

integer β to be the curve class, and a collection of non-zero lattice points ςd = {ck ∈ N}k
where ck specifies the contact order at the k-th marking pk as described in §8.1.2. Note that
as a lattice point in N , we have

ck =
d∑
i=0

ck,iρi.

The balancing condition (8.1) is a consequence of the intersection-theoretic constraint

|ςd|∑
k=1

ck,i = Hi.β

for every i, which we now impose.
On C we fix a collection of markings

P := {pk = sk/tk}|ςd|k=1 ⊂ A1
s/t. (8.2)

Suppose f : C → Xd is a non-degenerate rational log map with assigned contact orders ςd at
the markings P . On the level of homogeneous coordinates, for each i we have

f ∗xi = λi ·
|ςd|∏
k=1

(t · sk − s · tk)ck,i , (8.3)

for some λi ∈ k× since f is non-degenerate. Inserting b∞ = [1 : 0] to (8.3), we have

f ∗xi(b∞) = λi ·
|ςd|∏
k=1

(−tk)ck,i . (8.4)

Since tk 6= 0, we observe that (λi)i hence f is uniquely determined by the image f(b∞) ∈ Gd
m.

Conversely, any such prescription determines a morphism f : C → Xd with the desired
contact orders.

Denote by
Uς ⊂ (A1

s/t)
|ςd| ×Gd

m (8.5)
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the open subscheme parametrizing |ςd| distinct points in A1
s/t (representing the set of mark-

ings (8.2)) and a point x∞ ∈ Gd
m (representing the image of b∞). Let π : Cς → Uς be the

family of log curves with markings specified by Uς . Note that Cς ∼= C × Uς . We obtain a
family of non-degenerate log curves

fς : Cς → Xd

over Uς , fiberwise determined by (8.3), such that fς(b∞) = x∞.

Proposition 8.5. Theorem 8.2 holds for Xd.

Proof. The balancing condition and the parametrization (8.3) imply the existence of rational
log curves in Xd with contact order ς. Theorem 8.2 (1) for Xd follows by using the Gd

m-action.

Now consider the 2-evaluation map

ev(2) := fς ×Uς fς : Cς ×Uς Cς → Xd ×Xd.

Assume that Z · ς is of rank d. To prove Theorem 8.2 (2) for Xd, we will show that ev(2) is
dominant. It suffices to show that there is an f defined as in (8.3) passing through a general
pair of points x, y ∈ Gd

m. Let b0 = [0 : 1] ∈ C. We will construct such f satisfying

f(b∞) = x, f(b0) = y, b0 6∈ P. (8.6)

Let V ◦ ⊂ (A1
s/t \{b0})|ςd| be the open subscheme parametrizing |ςd| distinct points in A1

s/t \
{b0} as the set of markings (8.2). Consider the locally closed subscheme Vς := V ◦×{x} ⊂ Uς .
By (8.3), the restriction (fς)|{b0}×Vς : {b0} × Vς → Xd factors through Gd

m, and is defined by

(fς |{b0}×Vς )∗xi = λi ·
|ςd|∏
k=1

s
ck,i
k .

As b0, b∞ 6∈ P , we may assume that tk = −1 for all k and sk 6= sk′ for k 6= k′. Hence for
any i, λi is the i-th homogeneous coordinate of x. Interpreting (A1

s/t \ {b0})|ςd| as a torus, we

see that the dimension of the image of (fς)|{b0}×Vς is given by the rank of Z · ς, which is d.
In particular, (fς)|{b0}×Vς is dominant, implying that we can send b0 to a designated general
point y.

To prove Theorem 8.2 (3) for Xd, it suffices to show that

d ev(2) : TCς×Uς Cς → (ev(2))∗TXd×Xd .

is surjective at the point (b0, u, b∞) ∈ Cς ×Uς Cς for some general point u ∈ Uς . To compute
d ev(2), we choose the coordinate functions

t̃, s̃, λ̃1, · · · , λ̃d, s̃1, · · · , s̃|ςd|
around (b0, u, b∞) ∈ Cς ×Uς Cς , and the coordinate functions

x̃1, · · · , x̃d, ỹ1, · · · , ỹd
around the image ev(2)(b0, u, b∞) ∈ Xd ×Xd as follows.

Let t̃ = t/s (resp. s̃ = s/t) be the coordinate around b∞ ∈ Cd (resp. b0 ∈ Cd). Choose a
general u so that for any pk ∈ P , we may assume tk = −1, hence s̃k = sk/tk is the coordinate
around pk ∈ Cd. In particular, we have pk 6= b0 for any pk ∈ P , hence the image ev(2)(b0, u, b∞)
avoids the boundary of Xd. Let x0, · · · , xd and y0, · · · , yd be the homogeneous coordinates
of Xd × Xd. We may assume that the coordinates around ev(2)(b0, u, b∞) ∈ Xd × Xd are
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given by x̃1 = x1/x0, · · · , x̃d = xd/x0 and ỹ1 = y1/y0, · · · , ỹd = yd/y0 and x0 = y0 = 1 at the
point ev(2)(b0, u, b∞). Consequently by (8.4), the coordinate around fς(b∞) ∈ Gd

m is given by

λ̃1 = λ1/λ0, · · · , λ̃d = λd/λ0 with λ0 = 1 at fς(b∞).
Under the above choices of coordinates, using (8.3) we have

(ev(2))∗x̃i = λ̃i·
|ςd|∏
k=1

(s̃k+s̃)
ck,i·

|ςd|∏
k=1

(s̃k+s̃)
−ck,0 , (ev(2))∗ỹi = λ̃i·

|ςd|∏
k=1

(t̃·s̃k+1)ck,i·
|ςd|∏
k=1

(t̃·s̃k+1)−ck,0

(8.7)
around (b0, u, b∞) for i = 1, · · · , d. Now the fiber d ev(2)|(b0,u,b∞) is given by evaluating the
following (2d)× (d+ |ςd|+ 2) Jacobian matrix[

( ∂x̃i
∂λ̃j

)i,j ( ∂x̃i
∂s̃k

)i,k (∂x̃i
∂s̃

)i (∂x̃i
∂t̃

)i

( ∂ỹi
∂λ̃j

)i,j ( ∂ỹi
∂s̃k

)i,k (∂ỹi
∂s̃

)i (∂ỹi
∂t̃

)i

]
at (b0, u, b∞). Note that |ςd| ≥ (d + 1) as Z · ς is of rank d, and ςd satisfies the balancing
condition. It suffices to verify the above matrix is of rank 2d.

A direct calculation shows that(
∂ỹi

∂λ̃j

)
i,j

|(b0,u,b∞) = Id×d

where Id×d is the d× d identity matrix. Next, we compute that

∂x̃i
∂s̃k
|(b0,u,b∞) = (ck,i − ck,0)

λi
s̃k
·
|ςd|∏
`=1

s̃
c`,i−c`,0
`

As the factor λi
s̃k
·
∏|ςd|

`=1 s̃
c`,i−c`,0
` 6= 0, the rank of the matrix ( ∂x̃i

∂s̃k
)i,k|(b0,u,b∞) is the same as the

rank of the d× |ςd|-matrix (
ck,i − ck,0

)
i,k

mod char k, (8.8)

where i runs through {1, 2, · · · , d} and k runs through {1, 2, · · · , |ςd|}.
To compute the rank of (8.8), let Ñ ∼= Zd+1 be the lattice with generators {ρ̃0, · · · , ρ̃d}.

Consider the surjective morphism of lattices

ϕ : Ñ −→ N, ρ̃i 7→ ρi,

where ρi is the lattice generator of the i-th ray of the fan Σ(1). Denote by c̃k =
∑

i ck,iρ̃i ∈ Ñ .

Then observe that ϕ(c̃k) = ck where we view ck ∈ N as the lattice point. Let Z · ς̃ ⊂ Ñ be

the sub-lattice generated by ς̃ = {c̃k}|ς|k=1.

Let M and M̃ be the dual lattices of N and Ñ respectively. Taking the dual of ϕ, we
obtain an injection of lattices ϕ∨ : M ↪→ M̃ . Let {ρ̃∨i }di=0 be the basis of M̃ dual to {ρ̃i}di=0.
Then as a sub-lattice via ϕ∨, M has a basis {ρ∨i := ρ̃∨i − ρ̃∨0 }di=1 dual to the basis {ρi}di=1 of
N . Observe that

ck,i − ck,0 = (ρ̃∨i − ρ̃∨0 )(ck).

Thus, the rank of (8.8) is the dimension of

M |Z·ς̃ = M |Z·ς mod char k. (8.9)
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Here we view M |∗ as the space of linear functions defined on ∗. Finally, as N/(Z · ς) has no
char k-torsion, we observe that (8.9) is of dimension d as needed.

This finishes the proof. �

Proof of Theorem 1.8. This follows from Theorem 8.2 and Corollary 8.4. �
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