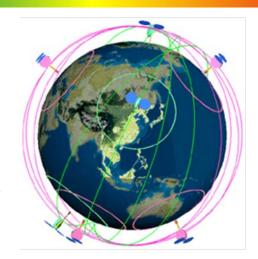
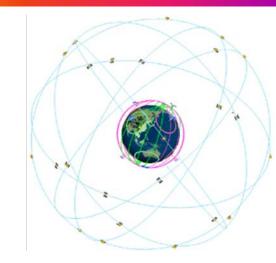
Validation of Ionospheric Models using COSMIC TEC Measurements

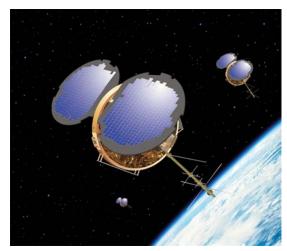
K. F. Dymond, S. A. Budzien, C. Coker, C. Metzler, and S. E. McDonald Space Science Division Naval Research Laboratory Washington, DC

Introduction

- Assessed ionospheric models against slant TEC (STEC) to assess model accuracy
 - Most ionospheric studies validate ionospheric model output against vertical total electron content (TEC)
 - STEC is a more stringent test of the models because it assesses the model's horizontal AND vertical gradients
- Used occultation slant TEC measurements
- ➤ Time interval of study: 2012 days 126-172 (May 5 June 20)
 - Time interval was an arbitrary choice based on GAIM data availability from runs made at NRL
 - Runs using ground-based GPS, ionosondes, and COSMIC-RO
- Models tested:
 - GAIM NRL runs assimilating ground-based GPS, ionosondes, and COSMIC-RO
 - IRI 2007 & 2012
 - NeQuick European model
 - SAMI-3 runs (different time period Oct-Dec 2011)



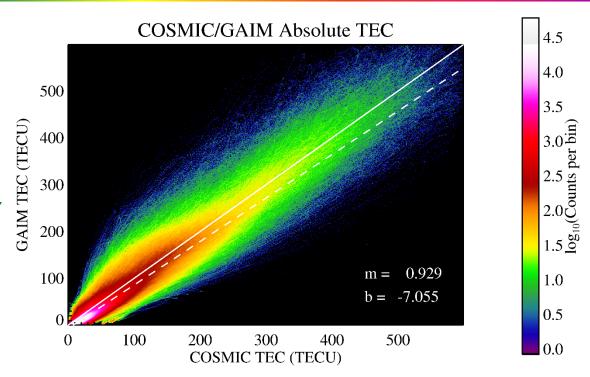



COSMIC Satellites

Constellation Observing System for Meteorology, Ionosphere, & Climate

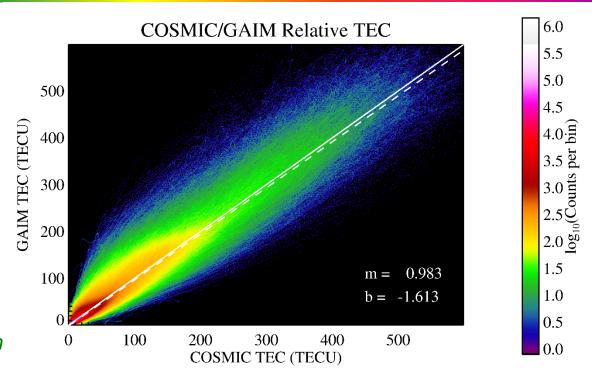
- COSMIC is a joint mission between the US and Taiwan, (Republic of China)
 - 6-satellites launched into LEO orbit on April 14, 2006
- Principal instrument is the GPS Occultation Experiment (GOX)
 - ~2500 occultations made per day
 - Slant TEC routinely inverted to produce electron density profiles
 - Products are available online at the UCAR CDAAC website

COSMIC STEC vs. Models


- The Slant Total Electron Content for each model studied was calculated for each line of sight from all occultations
- There were 44,872 COSMIC occultations available during this time interval
 - For a total of 20,834,046 lines-of-sight
 - Complete global and local time coverage
- To minimize model representation error and to better intercompare models
 - All models run on GAIM spatial and temporal grid: resulting in similar representation errors between models
 - Electron density interpolated onto line of sight using tri-cubic Catmull-Rom spline interpolators and integrated
 - 8th order Simpsons' rule integrations were used with 101 points along the LOS to minimize representation error
 - Testing indicated line-of-sight integration error <0.1%

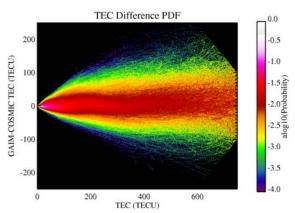
GAIM-NRL/COSMIC Comparison Absolute TEC

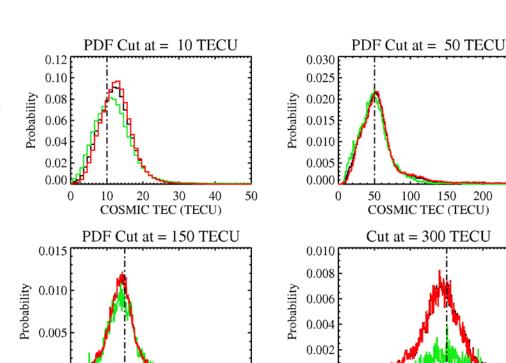
- Base 10 logarithm of the frequency of occurrence of pairs of TEC values is shown
 - Tends to enhance the outliers and TEC pairs with low frequency of occurrence
 - Solid white line indicates unity slope – perfect correlation
 - Dashed line indicates trendline
- High degree of correlation between GAIM and COSMIC TECS
 - There is a TEC bias present indicates TEC from plasmasphere
 - Trend line slope is less than unity – GAIM is underestimating TEC by ~7%


The Scatter-plot comparison tells you how well GAIM data assimilation is doing in reproducing the observed ionosphere and any biases present

GAIM-NRL/COSMIC Comparison Relative TEC

- Topside TEC at 0° elevation is subtracted from each profile
 - Removes some of the plasmasphere bias
 - White line indicates unity slope – perfect correlation
- High degree of correlation between GAIM and COSMIC TECS
 - TEC bias much smaller than it was for absolute TEC
 - Trend line slope indicates
 GAIM underestimating TEC
 by ~2%


The Scatter-plot comparison tells you how well GAIM data assimilation is doing in reproducing the observed ionosphere



TEC Probability Distribution Functions

- Since the COSMIC and GAIM TECs were correlated with trendline slope of unity
 - Can take differences in TFC to determine the width of the distribution
 - Panel below shows the result
- Panels at right show cuts through the probability distribution at various TEC values
 - HWHM of distributions is about 15-20% for all TEC values

Black – all, green – nighttime, red – daytime

0.000

0

300

400

500

200

COSMIC TEC (TECU)

100

150

200

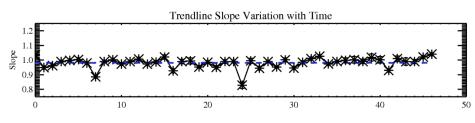
250

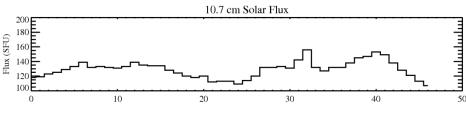
0.00

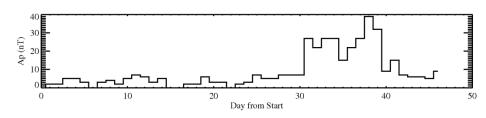
200

COSMIC TEC (TECU)

100

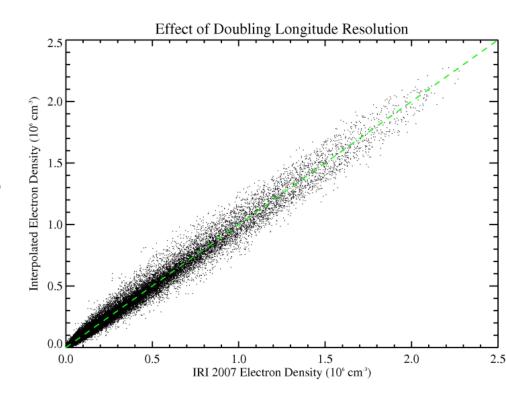

300


400


500

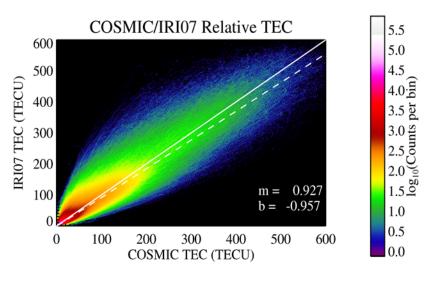
Day to Day Scatter and Causes

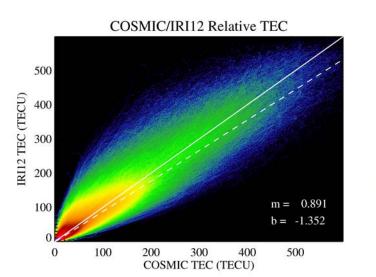
- Tested three potential causes of scatter
 - Geomagnetic and solar variability
 - Day-to-day variability of space weather
 & data availability
 - Model resolution (next page)
- Top plots show variation of trend line slope as a function of time starting from May 5, 2012
 - Top panel shows variation of trend line slope with time, uncertainty in the slope is smaller than plot symbols
 - Center panel shows 10.7 cm solar flux variability – affects photochemical creation of the ionosphere
 - Bottom panel shows a_p (in nano-Teslas) geomagnetic index – an indicator of variations in plasma transport due to magnetospheric influences


No correlation is evident between geomagnetic indices and trendline slope → scatter is not caused by geomagnetic or solar activity

Model Spatial Resolution

- Plot shows the effect of model resolution on the scatter
 - IRI2007 was used as a proxy for GAIM as its gradients should be similar to those in GAIM
 - IRI2007 was run at 7.5° longitude resolution and compared to interpolations of IRI2007 run at the 15° resolution of GAIM
- Results indicate the model spatial resolution is one of the primary causes of the scatter





Results: Model Comparisons

- GAIM model showed excellent performance typically within 2% of COSMIC sTEC
- > SAMI-3 model underestimated the TEC by ~6%
- Climatology models also performed well against COSMIC:
 - IRI 2007: -7%
 - IRI 2012: -11%
 - NeQuick: -16%
 - Might be improved by adjusting 10.7 cm solar flux proxy used as model driver

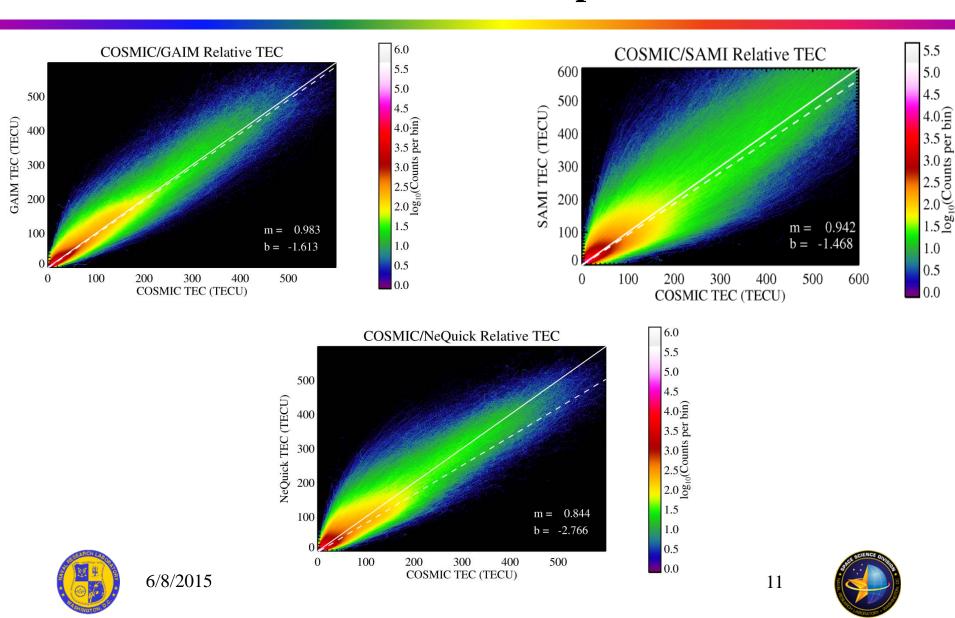
5.5

5.0

4.5

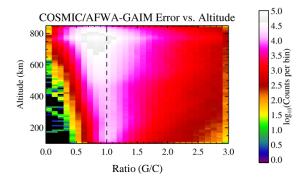
4.0 E 3.5 E 3.5 E

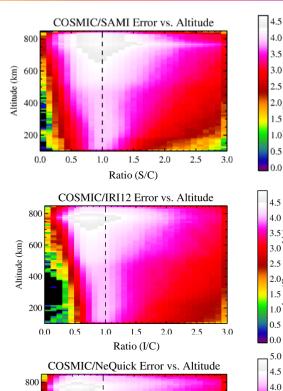
3.0 Counts I 2.5)000 2.0 O

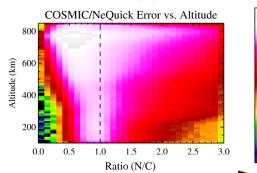

1.5

1.0

0.5


0.0


Results: Model Comparisons



Topside and TEC Error

- All models underestimating topside sTEC
 - GAIM: -15%SAMI-3: -5%
 - IRI 2007 & 2012: -25%
 - NeQuick: -40%
 - GAIM vertical correlation length modified to ingest SSULI data
 - Improved spatial structure in model, raised peak height might have improved topside
 - Might have improved vertical profiles driven by ingestion of COSMIC radio occultation TEC
- Underestimation of scale-height should cause underestimate of vTEC
 - However, other studies have shown GAIM to reproduce vTEC accurately
 - Low scale height can be compensated for by increased peak density or by other adjustments to the plasma distribution

Summary (1 of 2)

- The GAIM model agreed very well with the measured COSMIC RO and DORIS slant TECs
 - The absolute sTEC showed an additive bias of -7 TECU and a multiplicative bias of 0.93
 - This was substantially reduced by correcting for the plasmasphere to an additive bias of -1.6 TECU and a multiplicative bias of ~0.98 or essentially zero error!
- However, the scatter between the measurements and the model is problematic
 - This is approximately 15% at all TEC values
 - A 1-σ error of 15 TECU at 100 TECU
 - Poor spatial resolution and few sources for ingested data cause this error
- ➤ Also, there is a topside bias of ~-15% → this can lead to vertical TEC and nmF2 errors
 - Might have been fixed when the vertical correlation length was increased to accommodate SSULI data

Summary (2 of 2)

- The other models agreed reasonably well with the measured COSMIC RO slant TECs
 - Additive biases were a few TECU
 - Multiplicative biases were 6-15%
- However, the scatter between the measurements and the models is problematic
 - The scatter was larger than GAIM's 15% at all TEC values → especially for SAMI-3
 - Results might be improved by tweaking the model inputs to adjust to the geomagnetic and solar conditions
- Also, there are a topside biases present
 - These are from 25-50% → these can lead to vertical TEC and nmF2 errors

Acknowledgements

- COSMIC data were downloaded from the UCAR CDAAC (COSMIC Data Analysis and Archive Center) website, which is sponsored by the National Science Foundation
- The Chief of Naval Research also supported this research through Naval Research Laboratory (NRL) 6.1 Base Program.

