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The efficacy of a computer science curriculum for early 
childhood: evidence from a randomized controlled trial in K-2 
classrooms
Dandan Yang , Zhanxia Yang and Marina Umaschi Bers

Boston College, Lynch School of Education and Human Development, Chestnut Hill, USA

ABSTRACT
Background and context: Despite the growing importance of 
computer science (CS) education, high-quality CS curricula for stu-
dents in kindergarten to lower elementary grades are lacking. It is 
also unclear how students from underrepresented groups such as 
female students, students from low socioeconomic status, and 
students with disability respond to CS curriculum at this age range.
Objective: This study is aimed to examine the effectiveness of 
a novel CS curriculum (Coding as Another Language – ScratchJr) 
on the development of programming and computational thinking 
skills for students in kindergarten to second grade classrooms.
Method: We conducted a randomized controlled trial with 1057 
students and used multilevel regression analysis to examine the 
impact of the CAL curriculum on students’ coding and computa-
tional thinking skills, as well as moderation analysis to investigate 
how students’ demographic characteristics including gender, socio-
economic status, English learners and disability interacted with the 
intervention effectiveness.
Findings: The CAL curriculum was effective in improving students’ 
programming skills, but no significant differences were detected for 
students’ computational thinking skills. Students with limited 
English proficiency and students from low socioeconomic back-
grounds achieved similar gain in coding skills but students with 
disabilities and female students did not demonstrate the same 
improvements as their peers.
Implications: These findings shed light on the educational efficacy 
of CAL as a promising CS curriculum for young children and under-
score the importance of understanding how underrepresented 
minority students respond to the curriculum in order to better 
guide the development and design of the CS programs.
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Introduction

The field of computer and information technology (CIT) has seen significant growth in 
recent years, with increasing applications in various industries such as healthcare, finance, 
and transportation. According to data from the federal Bureau of Labor Statistics (BLS), in 
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2018, the median annual salary for CIT-related occupations was $86,320, significantly 
higher than the median salary of $38,640 for all occupations (Wurman & Donovan, 2020). 
The BLS projects a 12% growth in the CIT industry from 2018 to 2028, resulting in the 
creation of half a million new jobs, far surpassing the average for all occupations (Wurman 
& Donovan, 2020).

As the demand for computer and information technology professionals continues to 
rise in the digital economy, educators, parents, researchers, and policymakers have placed 
a greater emphasis on computer science (CS) education in the K-12 education system. In 
2016, former President Obama introduced the Computer Science for All initiative, with the 
goal of providing all students with hands-on computer science and math classes that 
would prepare them for job opportunities upon graduation (Computer Science for All,  
2016). This initiative, along with similar efforts at the state and local level (Code.org 
Advocacy Coalition, 2017; National Science Board, 2018), aims to ensure that students 
have access to the computational skills and knowledge necessary to succeed in an 
increasingly digital world. Furthermore, CS education can provide students with critical 
thinking, problem-solving, and creativity skills which are not only valuable in the tech 
industry but also in various other fields (Papert, 1980; Wing, 2006). The increasing avail-
ability of CS education in K-12 schools provides students with the opportunity to explore 
potential career paths, prepare them for higher education, and equip them with the skills 
required to succeed in the 21st century.

One concern of current CS programs is that most are designed for older children, such 
as middle school students and above, disregarding the fact that early childhood is 
a critical period for children’s development. Early childhood learning provides the oppor-
tunity for children to acquire foundational learning skills, cognitive abilities, and social- 
emotional skills (Friedman-Krauss et al., 2021; Ruhm & Waldfogel, 2012). Research shows 
that well-designed early childhood educational programs and interventions can have 
both short-term and long-term positive impacts on children’s social competence, intel-
lectual, and academic performance. For instance, a study by Friedman-Krauss et al. (2021) 
found that high-quality preschool programs can have significant positive effects on 
children’s academic and social-emotional development, including improved school readi-
ness, higher test scores, and reduced special education placements. Most early childhood 
education programs, however, focus on language arts and mathematics, with few includ-
ing CS, a subject also suitable for early childhood education. Well-designed CS programs 
can provide a learning environment where young children can “play to learn while 
learning to play” (Bers et al., 2018, p. 146). This approach aligns with the way young 
children learn and allows them to develop computational thinking (CT) skills, problem- 
solving skills, creativity, and socio-emotional skills in a fun and engaging way (Sarama & 
Clements, 2009; Papert, 1980).

The K-12 Computer Science Framework (undefined) recommends that by the end 
of second grade, students should have a basic understanding of key concepts such as 
software, algorithms, variables, control structures, and modularity, as well as skills such as 
debugging. However, the lack of high-quality and developmentally appropriate CS pro-
grams for early childhood education makes it challenging for teachers to effectively 
integrate CS into their existing curriculum and for students to acquire the necessary CS 
and CT skills by the end of the second grade. This, in turn, hinders their ability to be better 
prepared for more advanced CS curricula in later stages of their education.
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This is problematic as learners from historically disadvantaged groups, such as students 
with limited English proficiency (referred to as LEP in this paper, Jacob et al., 2022), 
students with disabilities (Bouck & Yadav, 2022; Israel et al., 2015), students from low 
socioeconomic status (SES, Chachashvili-Bolotin et al., 2016), and female students 
(Cheryan et al., 2015), are underrepresented in the STEM fields. This lack of diversity not 
only limits the pool of potential talent but also perpetuates stereotypes and biases that 
can further discourage underrepresented groups from pursuing STEM careers. Thus, it is 
important to understand how students from diverse backgrounds respond to CS pro-
grams in order to guide future instruction, research, and policy.

CAL is a CS program for K-2 students developed by the CAL Research Group at Boston 
College (Bers et al., 2023). This curriculum introduces the powerful ideas from CS inte-
grated with literacy in a developmentally appropriate, structured, creative, and playful 
way. The CAL curriculum includes 24 lessons with unplugged and plugged activities using 
the most popular programming language ScratchJr among young children across the 
world (Bers, 2018; Bers & Sullivan, 2019; Flannery et al., 2013; Portelance et al., 2015). 
Although early evidence indicates the promise of this curriculum (Bers et al., 2023), there 
are no experimental research studies that systematically examine the educational efficacy 
of this program on the coding and CT skills for children from kindergarten to second 
grade.

To this end, the current study fills the gaps in the literature by examining the effec-
tiveness of the CAL curriculum in children’s programming and CT skills through 
a randomized controlled trial. We also explore how economically, linguistically, and 
physically underrepresented students interact with the curriculum. As the first study to 
systematically examine the efficacy of the CAL curriculum for children in K-2 grades 
through experimental design, our results will yield critical evidence about the educational 
effectiveness of the CAL program. The potential findings on how underrepresented 
students (e.g. those with low SES, English learners, and those with disabilities) performed 
during the intervention highlight implications for educators and researchers in develop-
ing and improving early childhood CS programs to better meet the needs of the under-
represented student body and promote inclusive excellence in STEM education. The 
following research questions guided our study design and data analysis:

(1) What is the impact of the CAL curriculum on children’s coding skills?
(2) What is the impact of the CAL curriculum on children’s CT skills?
(3) How are child characteristics (grade level, socioeconomic status, gender, disability 

status, language status) and the number of lessons completed associated with the 
effectiveness of the CAL intervention on both children’s coding skills and CT skills?

(4) How do child characteristics moderate the effectiveness of the CAL intervention on 
children’s coding skills and CT skills?

Computer programming and computational thinking

In recent years, the focus on CS education has expanded from teaching computer 
programming to fostering higher-level cognitive and analytical skills, known as computa-
tional thinking (Fayer et al., 2017, US Department of Education, Office of Educational 
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Technology, 2017; Wing, 2006, 2011). Jeannette Wing first defined “computational think-
ing” as a “fundamental skill for everyone” that involves “solving problems, designing 
systems, and understanding human behaviors, by drawing on the concepts fundamental 
to computer science” (Wing, 2006).

Drawing from the constructionist learning theory (Papert, 1980), some leading 
researchers in CS education view CT as a vehicle for creation and expression through 
applications and artifacts that are relevant and meaningful to individuals and are share-
able with social networks (Brennan & Resnick, 2012; Bers, 2022; Kafai & Burke, 2014). In this 
framework, learning to program using a particular language allows children to develop 
their abstract thinking, logical reasoning, and problem-solving skills, as well as engage in 
creative design processes, bringing programs and applications of personal relevance and 
self-expression.

One criticism of current CS programs is that most focus more on teaching children how 
to code using a programming language, while failing to incorporate CT training into their 
curriculum (Fayer et al., 2017). Some researchers argue that this narrow focus on coding 
can lead to a lack of understanding of the broader concepts of CS and the ability to apply 
these concepts to problem-solving in other fields. Recognizing this limitation, some 
researchers in CS education started to develop age-appropriate curriculums that go 
beyond coding and incorporate activities targeting higher-level cognitive abilities, such 
as CT and problem-solving (Bell & Lodi, 2019). For example, a CS curriculum for PreK 
to second-grade students (CAL-KIBO, Bers, 2022) was developed using the KIBO robot, 
which introduces powerful ideas from CS, in combination with literacy in a playful, 
structured, and developmentally appropriate way. Evidence from an experimental study 
has shown that the CAL-KIBO curriculum was effective in improving both coding skills 
measured by Coding Stages Assessment-KIBO and unplugged CT skills measured by 
TechCheck for first and second graders (Bers, 2022).

Underrepresented groups in STEM education

Significant evidence indicates that inequality exists in the current K-16 STEM education 
(e.g. Baber, 2015; McGee, 2021; Xie et al., 2015). Researchers and educators have pointed 
out that most of the existing STEM curricula are not inclusive or, in other words, do not 
adequately represent the diversity of the student population (National Science Board,  
2018). Students from historically underrepresented groups, such as female students 
(Cheryan et al., 2015), students from low SES backgrounds (Chachashvili-Bolotin et al.,  
2016; Su et al., 2023), students with limited English proficiency (Jacob et al., 2022), and 
students with disabilities (Bouck & Yadav, 2022; Israel et al., 2015), tend to have more 
limited access to resources, face extra challenges, and are less likely to succeed in STEM 
education starting from early childhood.

Specifically, research has pointed out that socioeconomic disparities universally exist in 
STEM education, starting as early as preschool and early elementary years (Betancur et al.,  
2018). Both household income and parental education contribute to the gaps in science 
achievement through limited access to informal science learning opportunities both 
inside and outside of the home environment (Betancur et al., 2018). These science 
learning opportunities include but are not limited to advanced STEM courses and pro-
grams, as well as opportunities for extracurricular activities and competitions related to 
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STEM (Betancur et al., 2018; Blums et al., 2017). Moreover, their parents are also less likely 
to get involved in and provide support for their children’s education (Milner-Bolotin & 
Marotto, 2018; Thomas et al., 2020), which includes not only STEM education but also 
other subjects such as math and literacy. Betancur and colleagues found that lower 
achievement in math and literacy mediates the relationship between low SES and 
students’ disadvantaged STEM education outcomes (Betancur et al., 2018).

Female students in STEM education tend to face societal stereotypes and gender bias. 
Studies have shown that girls are often exposed to negative stereotypes about their 
abilities in STEM subjects and are less likely to be encouraged to pursue careers in STEM 
fields (Cheryan et al., 2015; Jiang et al., 2020). These stereotypes can lead to girls under-
valuing their abilities and having lower expectations for themselves in STEM subjects.

Similar patterns have been observed for students with limited English proficiency and 
those with disabilities, including but not limited to any mental and physical impairment or 
developmental delays. One of the main barriers that children with disabilities face in STEM 
education is a lack of access to accommodations, such as assistive technology (Hwang & 
Taylor, 2016; Klimaitis & Mullen, 2021). Due to their disability, these students are some-
times not included in general education STEM classes, or even if they receive instruction in 
general education classrooms, the teaching methods and pedagogy may not necessarily 
be appropriate for their needs (Hwang & Taylor, 2016; Klimaitis & Mullen, 2021).

Additionally, students with limited English proficiency and English language learners 
may struggle with understanding STEM content presented in English, which can impede 
their ability to fully engage in STEM learning and activities (Buxton & Lee, 2014; Jacob 
et al., 2022). They may have difficulty understanding key concepts and vocabulary, 
making it challenging for them to participate in class discussions and complete assign-
ments (Buxton & Lee, 2014). This can result in a lack of engagement and motivation in 
STEM subjects, negatively impacting their performance and achievement.

In conclusion, given the aforementioned equity issues, it is important for researchers 
and educators to understand how students from underrepresented groups perform and 
respond to STEM programs compared to their peers. This information is crucial for 
adjusting and improving the current curriculum to better suit their needs and for devel-
oping programs that support inclusive excellence for all students.

The CAL curriculum

Guided by the pedagogical premise that coding is a new literacy of the 21st century, the 
CAL Curriculum was developed by the CAL Research Group over a three-year period using 
a design-based research approach (Cobb et al., 2003). The CAL curriculum incorporates 
literacy instruction in teaching coding, with the ultimate goal of nurturing global citizens 
with powerful intellectual tools, including literacy, math, and programming, to verbalize, 
express, innovate, and thrive in the 21st century.

The CAL curriculum was developed guided by the Positive Technological Development 
framework (Bers, 2006, 2012). It includes classroom activities that engage children in 
a coding playground by providing opportunities to design and code their own personally 
meaningful projects, interact with others, and grow socially and emotionally by learning 
how to use a new language (a.k.a ScratchJr) for expressive and communicative purposes 
(Bers et al., 2023). The 24 lessons in the curriculum are structured around six powerful 
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ideas from both CS (algorithms, design process, representation, debugging, control struc-
tures, modularity, and hardware/software) and literacy (sequencing, the writing process, 
alphabet and letter-sound correspondence, editing and audience awareness, literary devices, 
phonological awareness, and tools of communication and language) respectively. More 
details about the six powerful ideas, as well as the lessons associated with them in the 
first-grade curriculum, can be found in Table 1.

The ScratchJr app is utilized in the CAL Curriculum as the coding language and plat-
form. ScratchJr, co-developed by the Devtech Research Group led by Marina Umaschi 
Bers, the LifeLong Kindergarten group led by Mitchel Resnick, and the PICO company, is 
an introductory programming language designed for children aged 5–7 to create their 
own stories and games (Portelance et al., 2015). With a graphical programming environ-
ment, children can create animated and interactive scenes and stories while engaging in 
age-appropriate problem-solving and computer programming. As a free downloadable 
app used by over 38 million children worldwide, ScratchJr has been shown to be devel-
opmentally appropriate for young children with low floor and high ceiling features 
(Flannery et al., 2013; Stamatios, 2022; Unahalekhaka & Bers, 2021).

Building on ScratchJr, the CAL Curriculum consists of 24 lessons (18 hours of instruc-
tion) and has three adaptive versions for kindergarten, first grade, and second grade, 
respectively. As the grade level increases, although the number of lessons and the total 
instruction time remain the same, the levels of difficulty and complexity of the class 
activities and teaching materials increase accordingly (see Supplementary). For each 
lesson, multiple classroom activities guide and allow children to explore the powerful 
ideas of coding and literacy in a collaborative, creative, and playful manner. These class-
room activities include warm-up activities, opening & closing circles, structured chal-
lenges, expressive collaborations, unplugged time, word time, and more. For example, 
in lesson 6 of the first-grade curriculum, students will learn the Repeat Forever block and 

Table 1. Powerful ideas from computer science and literacy in CAL.
Powerful Ideas from 
Computer Science

Powerful Ideas from 
Literacy Connecting the Powerful Ideas

Algorithms 
(Lessons 2, 5, 6, 7, 9, 17, 19, 
20, 22, 23, 24)

Sequencing 
(Lessons 2, 5, 6, 7, 9, 19, 

20, 24)

A set of instructions or steps for solving a specific problem 
or achieving a specific task

Design Process 
(Lessons 5, 6, 7, 8, 10, 11, 
19, 20, 21, 22, 23, 24)

Writing Process 
(Lessons 7, 8, 10, 11, 19, 

21, 22, 23, 24)

Creative, iterative, cyclic processes that involve imagining, 
planning, making, revising, and sharing

Representation 
(Lessons 1, 3, 4, 10)

Alphabet and Letter- 
Sound Correspondence 

(Lesson 4)

Symbols with various attributes as methods of 
representation

Debugging 
(Lessons 10, 11, 12, 22)

Editing and Audience 
Awareness 

(Lessons 6, 10, 11, 12)

Systematic analysis, testing, and evaluation to improve 
communication to the intended audience

Control Structures 
(Lessons 14, 15, 16, 17, 18)

Literary Devices 
(Lessons 14, 15, 16, 17, 

18)

fundamental building blocks for expressing a group of 
thoughts

Modularity 
(Lessons 20, 21)

Phonological Awareness 
(Lessons 5, 6, 12, 20, 21)

Decomposition, or breaking down a complex task into 
smaller tasks.

Hardware and Software 
(Lessons 3, 13)

Tools of Communication 
and Language 

(Lessons 1, 3, 13, 17)

Communicating abstract ideas through tangible means.

Note: Literary devices are referred to the specific techniques and tools used by writers to create a more engaging and 
impactful piece of literature. .
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the Pop block in ScratchJr, while exploring the powerful ideas of algorithms and design 
processes in CS, as well as the powerful ideas of Sequencing, Phonological Awareness, 
Editing, and Audience Awareness in literacy. The following classroom activities are inte-
grated into this lesson:

● Warm-up activity where the students dance the Hokey-Pokey (5 min);
● Opening tech circle where the teacher will explain to the children that they will be 

revising their Hokey-Pokey programs by adding more blocks and finishing their 
programs. (5 min)

● Structure challenge where the teacher will introduce the Repeat Forever and Pop 
blocks to the students (10 min)

● Expressive explorations where students are encouraged to continue to code their 
Hokey-Pokey using the two new blocks (15 min)

● Closing tech circle where the students will share their projects in small groups, 
explain how they improved their programs (10 min)

A visual presentation of a CAL lesson in the kindergarten curriculum can be found in 
Figure 1, and a more detailed lesson plan can be found in Supplementary. Below (see 
Figure 2) is a picture of the children working on a programming project using ScratchJr 
during a CAL lesson.

Methods

Study procedures

To evaluate the impact of the CAL curriculum on students’ coding skills and CT skills, 
a randomized control trial with a delayed treatment was conducted among 26 public 

Figure 1. A visual presentation of a CAL lesson in kindergarten curriculum.
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elementary schools in two sites on the East Coast of the United States. The CAL curriculum 
was developed for kindergarten, first, and second-grade students, so only these three 
grade levels were included in the study. At the beginning of the study, the participating 
schools underwent a randomization process and were assigned to either the treatment 
group, where the curriculum was implemented immediately, or the control group, where 
the curriculum was implemented in the following school year. The randomization 
occurred at the school level, meaning that all the participating classrooms in one school 
were assigned to the same treatment condition.

During the randomization, a stratified random sampling technique was employed to 
obtain representative and comparable samples in demographics and grade levels for the 
treatment and control groups. Specifically, in site A, schools were randomly assigned 
within three strata identified based on the poverty quartile, while in site B, schools were 
randomly assigned within three strata formed based on the number of participating 
classrooms within the three grade levels. This resulted in 13 schools (7 from site A and 
6 from site B) in the treatment condition and 13 schools in the control condition (6 from 
site A and 7 from site B).

Before the intervention began, all students underwent the Coding Stages Assessment 
(CSA) and TechCheck from the late Fall semester of 2021 to the beginning of the Spring 
semester of 2022. During the study, students in the treatment group received the CAL 
curriculum intervention during the Spring semester of 2022, while the students in the 
business-as-usual control group did not receive any intervention beyond their regular 
school curriculum. Post-tests of CSA and TechCheck were administered to all the students 
before the end of the Spring semester of 2022. The pre-test was administered 0–6 weeks 
before the start of the coding intervention, and the posttest 0–3 weeks after the last 

Figure 2. A picture of a teacher working with the students in a CAL classroom.
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lesson of the coding intervention. The fidelity of the CAL curriculum implementation for 
the treatment group was tracked by collecting teachers’ lesson logs, post-implementation 
surveys, and teacher interviews. Due to the pandemic, researchers were not allowed to 
conduct classroom visits, so information about treatment fidelity was self-reported by the 
teachers. Similarly, the research team did not have access to information regarding the 
regular school curriculum for both groups and how the CAL curriculum was incorporated 
into the existing curriculum in the treatment schools. It is worth noting that site 
B (accounting for approximately 20% of the whole sample) started the intervention two 
months later than site A due to administrative reasons. Therefore, while most of the 
classrooms completed the entire curriculum in site A, the average number of lessons 
completed in site B was only approximately 9, ranging from 4 to 20 total completed 
lessons.

Before the experiment began, consent forms were collected from all participating 
teachers and the students’ parents by our site coordinators. The Institutional Review 
Board (IRB) approval was obtained at the authors’ university. Consent forms were gath-
ered from a total of 1507 students, and the analytical sample of the current study included 
1057 students who completed the intervention with pre and post assessments. Attrition 
was due to various reasons: (1) Implementation constraints during the COVID-19 pan-
demic, including safety concerns, sick leave, and remote assessment procedures. (2) 
Teachers not completing the intervention due to job changes, illness, or maternity 
leave. (3) Missing pre-test or post-test scores due to technical issues or administrative 
reasons.

Teacher professional development training

All the teachers in the treatment group participated in professional development (PD) 
training hosted by an experienced trainer (Kapoor et al., 2023). The PD training was 
divided into two parts, each lasting a total of four hours: the introduction of programming 
with ScratchJr and the CAL curriculum. Teachers engaged in these two 2-hour synchro-
nous PD sessions with an experienced trainer via Zoom. The first part began with 
introductions, followed by an introduction to ScratchJr. This was succeeded by guided 
explorations, a brief break, an overview of advanced ScratchJr features, a session on 
recreating a story using ScratchJr, sharing their created projects, and closing with 
a Q&A session. The second part included an exploration of four powerful metaphors 
(coding as a playground, coding as another language, coding as a bridge, and coding as 
a palette of virtues), followed by an introduction to the CAL curriculum. This was followed 
by a brief break, an in-depth exploration of one lesson, reflection time, a discussion on the 
logistics of the research study, and closing with another Q&A session.

Participants

In total, the analysis sample included 237 students in kindergarten, 348 students in the 
first grade, and 472 students in the second grade. Female students accounted for 51.37% 
of the entire sample. There were 124 students who received an Individualized Education 
Plan, and 127 students were identified as having Limited English Proficiency. A total of 248 
students qualified for free or reduced lunch. Regarding racial ethnicity, the majority of 
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students were Caucasian (63.86%), followed by Hispanic (16.93%) and African American 
(8.89%). Only 4.26% of the students were Asian, and 5.49% were of mixed race or from 
other ethnicities. Detailed student demographic information for the treatment and con-
trol groups can be found in Table 2.

Measures

Coding stages assessment
The Coding Stages Assessment (CSA) is a validated assessment (de Ruiter & Bers, 2021) 
used to evaluate coding skills using the ScratchJr programming language for children in 
kindergarten through lower elementary grades. During the assessment, the child is 
prompted with a series of questions and either responds verbally or solves a coding 
task using ScratchJr. The CSA consists of 25 question items distributed across five stages: 
Emergent, Coding and decoding, Fluency, New knowledge, and Purposefulness. In each 
stage, if the child fails to answer more than two questions correctly, the test ends after 
the last question of that stage; otherwise, the test continues until completion.

Due to the pandemic, the CSA was administered remotely via Zoom. Trained research 
assistants scheduled Zoom meetings with the participants and administered the CSA on 
a one-on-one basis while the students were at school. Students did not receive any 
assistance from either their teachers or parents during the assessment administration. 
Each CSA question was originally scored as 1 for a correct answer and 0 for an incorrect 
answer, with the scores then weighted based on the difficulty level of the questions. The 
split-half reliability for the CSA is Guttman’s Lambda 6 = .94(de Ruiter & Bers, 2021).

TechCheck
As the measure of computational thinking in this study, TechCheck has been validated 
and used among kindergarten, first, and second graders (Relkin et al., 2020). The 
TechCheck is an unplugged assessment that includes 15 multiple-choice questions 
addressing six domains of computational thinking (algorithms, control structure, debug-
ging, hardware/software, modularity, representation). Example questions are provided in 
Supplementary. In the present study, the assessment was administered using computers 

Table 2. Demographic information for the students in the treatment and control group.
Treatment Control

N Percentage N Percentage

Gender (Female) 279 50.82% 264 51.97%
Ethnicity

White 341 62.11% 334 65.75%
Hispanic 102 18.58% 77 15.16%
African American 37 6.74% 57 11.22%
Asian 29 5.28% 16 3.15%
Other 34 6.19% 24 4.72%

Grade Level
Kindergarten 141 25.68% 96 18.90%
Grade 1 153 27.87% 195 38.39%
Grade 2 255 46.45% 217 42.72%

Disability 61 11.11% 63 12.40%
Limited English Proficiency 77 14.03% 50 9.84%
Low SES 130 23.68 118 23.23
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and tablets, but the format of the assessment, not the mode of administration, is what 
makes it unplugged. The child answers the prompts by selecting one of four options. Each 
correct answer earns one point, with a maximum score of 15 points. The assessment 
begins with two practice questions to familiarize students with the format, but these are 
not included in the scoring. All questions must be answered to complete the assessment. 
The TechCheck assessment typically takes about 13 minutes for children to complete.

Analysis

To answer our research questions, we conducted descriptive statistical analysis and 
correlational analysis to gain a comprehensive understanding of the variables, as well as 
the relationship between them. Considering the nested nature of the data, a series of 
multilevel linear regression analyses was conducted to establish baseline equivalence and 
examine the impact of the CAL curriculum on the CSA (models 1, 2, and 3) and TechCheck 
post-tests (models 5, 6, and 7). We used a two-level mixed effects linear regression with 
schools at level 2 and students at level 1, recognizing that students were nested within 
schools and that teaching assignments and administrations within schools varied signifi-
cantly. We created four moderation terms with the demographic measures and the 
intervention condition (e.g. gender*condition) to investigate how students’ gender, SES, 
LEP, and disability status (those who qualified for the Individualized Education Plan, IEP) 
moderated the learning outcomes measured by the CSA post-test (model 4) and 
TechCheck post-test (model 8). Additionally, we controlled for the number of lessons 
completed in models 3, 4, 7, and 8 to account for the potential influence of treatment 
validity on the results. All data analysis was conducted using R Studio version 2022.07.2.

Results

Table 3 summarizes the descriptive statistics of the CSA and TechCheck pre and post 
scores for the students in the treatment and control groups. Specifically, the CSA scores 
increased from 3.78 (SD = 2.89, Min = 0, Max = 26) to 11.43 (SD = 6.56, Min = 1.1, Max = 39) 
for the students in the treatment group, and from 3.51 (SD = 2.19, Min = 0, Max = 13.9) to 
5.58 (SD = 3.28, Min = 0, Max = 26) for the students in the control group. For TechCheck, 
students in the treatment group scored an average of 7.31 (SD = 2.52, Min = 1, Max = 15) 
at pre-test and 8.69 (SD = 2.67, Min = 1, Max = 15) at post-test, while students in the 
control group scored an average of 7.32 (SD = 2.41, Min = 0, Max = 14) at pre-test and 
8.71 (SD = 2.51, Min = 2, Max = 15) at post-test.

Table 3. Descriptive statistics of the assessment scores.
Treatment (549) Control (508)

Mean SD Min Max Mean SD Min Max

CSA Pre-test 3.78 2.89 0.00 26.00 3.51 2.19 0.00 13.90
CSA Post-test 11.43 6.56 1.10 39.00 5.58 3.28 0.00 26.00
CSA Gain 7.65 5.89 −5.80 32.10 2.07 2.66 −3.40 15.20
TechCheck Pre-test 7.31 2.52 1.00 15.00 7.32 2.41 0.00 14.00
TechCheck Post-test 8.69 2.67 1.00 15.00 8.71 2.51 2.00 15.00
TechCheck Gain 1.38 2.49 −5.00 7.00 1.38 2.40 −5.00 7.00
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We first conducted unconditional multilevel regression models on students’ CSA and 
TechCheck pre-test scores with school ID as the nested level. The Intraclass Correlation 
Coefficient (ICC) was .27 for the CSA pre-test model and .05 for the TechCheck pre-test 
model. This suggests that 27% of the variance in CSA pre-test scores and 5% of the 
variance in TechCheck pre-test scores are related to the schools that the students were 
nested in, indicating the preference for multilevel modeling.

To establish baseline equivalence, conditional multilevel models were conducted with 
individual students being level 1 and schools being level 2. Our results showed that at pre-test, 
the CSA scores did not differ significantly between the treatment group and control group (β  
= .81, SE = .59, p = .18), although descriptive statistics indicate that the treatment group, in 
general, scored 0.3 higher than the control group. Similarly, we did not detect significant 
between-group differences for the TechCheck pre-test scores (β = .01, SE = .30, p = .98).

RQ1: what is the impact of the CAL curriculum on children’s coding skills?

Following similar procedures, we ran a multilevel regression analysis (Model 1) with the 
individual students being level 1 and schools being level 2. We included the treatment 
condition as a level 1 variable to investigate whether there were any between-group 
differences for CSA post-test scores. Model 1 suggests that students in the treatment 
group, in general, scored 5.52 points higher than the students in the control group (p  
< .001). The effect size for this impact is large with a Cohen’s d = 1.22. Considering the 
variance in the pre-test CSA scores, we ran a second model controlling for students’ pre- 
test scores. Model 2 shows that, after controlling for students’ pre-test scores, the treat-
ment group scored 4.81 points higher than the children in the control group (p < .001). 
Details of the fixed results can be found in Table 4.

RQ2: what is the impact of the CAL curriculum on children’s CT skills?

Similar analysis procedures were taken to answer the second research question. 
The results from model 5 indicated that the CAL curriculum did not have 
a significant impact on children’s CT skills, measured by TechCheck (β = −.11, p  

Table 4. Fixed effects of the multilevel regression models predicting the CSA post-test.
Model 1 Model 2 Model 3 Model 4

Intercept 5.83*** 2.01*** 3.57*** 2.96***
Treatment Condition 5.52*** 4.81*** 1.33 2.51**
CSA Pre-test 1.03*** 0.90*** 0.90***
Grade − 2 0.37 0.40
Grade - K −1.97*** −1.97***
Limited English Proficiency (LEP) −0.87 −0.30
Gender −0.72** −0.13
Individualized Education Program (IEP) −1.40** −0.43
Free or Reduced Lunch (SES) −0.63 −0.37
# Lessons Completed 0.23*** .23***
IEP*Condition −1.93*
LEP*Condition −.97
Gender*Condition −1.16*
SES*Condition −0.45
N 1057 1057 1051 1051

Note: * p<.05, ** p<.01, *** p<.001. .
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= .77). And the null effect of the intervention remained consistent when controlling 
for students’ TechCheck pre-test (β = −.08, p = .75). Model 6 also suggested that 
students who scored higher on the TechCheck pre-test tended to perform better 
on the TechCheck post-test (β = .54, p < .001). Details of the fixed effect results can 
be found in Table 5.

RQ3: how are child characteristics and the number of lessons completed 
associated with the effectiveness of the CAL intervention on both children’s coding 
skills and CT skills?

Analysis results of the multilevel regression model on CSA post-test (Model 3) 
shows that controlling for the intervention condition and students’ pre-test 
scores, second graders performed similarly to children in the first grade (β = .37, 
p = .27), while students in kindergarten in general scored 1.97 points lower than 
their first-grade peers (p < .001). We also found that regardless of the treatment 
condition, girls performed worse than boys (β = −.72, p = .01), and students with 
disabilities performed worse than their typical developing peers (β = −1.41, 
p < .001).

For TechCheck, Model 7 shows that regardless of the intervention condition and 
their pre-test scores, girls (β = −.48, p < .001), students with disabilities (β = −.84, p  
< .001) and students from low SES backgrounds (β = −.44, p = .01) scored signifi-
cantly lower than their counterparts on the TechCheck post-test. Similar to the 
CSA, kindergarten students scored significantly lower than the first graders’ 
TechCheck scores (β = −.66, p = .001).

In addition, we found that the treatment fidelity, measured by the number of lessons 
completed by the teachers, significant predicted students’ CS post-test scores (β = .23, p  
< .001) but did not yield a significant impact on students’ TechCheck post-test scores (β  
= .03, p = .11).

Table 5. Fixed effects of the multilevel regression models predicting the TechCheck post-test.
Model 5 Model 6 Model 7 Model 8

Intercept 8.51*** 4.64*** 5.60*** 5.56***
Treatment Condition −0.11 −0.08 −0.46 −.41
TechCheck Pre-test 0.54*** 0.51*** 0.51***
Grade − 2 −0.24 −0.23
Grade - K −0.66** −0.64**
Limited English Proficiency (LEP) −0.11 0.01
Gender −0.48*** −0.28
Individualized Education Program (IEP) −0.84*** −0.72*
Free or Reduced Lunch (SES) −0.44* −0.77**
# Lessons Completed .03 .03
IEP*Condition −0.27
LEP*Condition −0.20
Gender*Condition −0.43
SES*Condition 0.64
N 1057 1057 1051 1051

Note: * p<.05, ** p<.01, *** p<.001..

COMPUTER SCIENCE EDUCATION 13



RQ4: to what extent do child characteristics moderate the effectiveness of the CAL 
intervention on children’s coding skills and CT skills?

We also conducted a moderation analysis to investigate how students’ demographic 
characteristics interact with the effectiveness of the CAL curriculum. Based on the results 
of Model 4, students with disabilities in general scored 1.93 points lower than their non- 
disabled peers (p = .02) and girls in general scored 1.16 points lower than boys (p = .03) in 
response to the CAL curriculum. No statistically significant differences were found for 
children with limited English proficiency and those from low SES backgrounds.

For TechCheck scores, based on the results of Model 8, we did not find any statistically 
significant differences in the post-test scores for students with different characteristics. 
However, it is worth noting that there is a borderline effect for students from low SES 
backgrounds. Students from low SES families scored .64 points higher than their wealthier 
peers (p = .07).

Discussion

The effectiveness of the CAL curriculum on students’ coding and computational 
thinking

While educators and researchers are increasingly paying more attention to CS education, 
most of the existing CS programs are designed for older children and teenagers, and high- 
quality, evidence-based CS curricula for young children are lacking (Bers & Sullivan, 2019). 
To the best of our knowledge, our study is the first experimental study that provides 
evidence that the CAL curriculum was effective in improving the programming skills for 
students from kindergarten to second grade. These findings are consistent with the 
positive findings from the previous pilot studies on the CAL-related curriculum (Bers 
et al., 2023). It is worth noting that not all classrooms participating in the study completed 
all the 24 lessons in the curriculum due to the constraints created by COVID-19. This 
implies that the effect sizes of the CAL curriculum generated in the current study might be 
smaller than the real effect size if all 24 lessons in the curriculum are implemented. 
Analysis results from Model 3 also indicated that the number of lessons completed by 
the teacher significantly predicted students’ coding skills at the post-test. Future research 
is warranted to replicate the results and further investigate the effect sizes of the CAL 
when all lessons are implemented.

In addition, a larger effect size on the CSA was found for students in the first 
and second grades compared to kindergarten. This is probably due to the fact that 
the CAL curriculum is adaptive to grade levels, meaning that the curriculum for 
first and second grades is designed to be more challenging than that for the 
kindergarteners. For example, the most advanced ScratchJr skill introduced in the 
kindergarten curriculum is adjusting parameters, while in the second grade, stu-
dents also learned more advanced skills such as parallel programming, next repeat 
loops, and sending messages using multiple colors. It is entirely possible that the 
students in kindergarten did not learn the advanced coding blocks during the 
intervention that were tested in the CSA. Future research should examine whether 
students in kindergarten learn as much as the students in the first and second 
grade if they were given the same curriculum. Another possible but less likely 
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reason for this large effect size is that students in elementary school are more 
cognitively and mathematically ready to learn coding than children in kindergar-
ten. Evidence suggests that early childhood is a key developmental period char-
acterized by rapid cognitive development (Campbell et al., 2001), and educational 
investment in early childhood education, particularly pre-K and kindergarten pro-
grams, such as the Head Start, has the highest economic value compared with 
programs at higher grade levels (Garces et al., 2002). However, most of these 
studies only focused on language arts and cognitive capability benchmarks. 
Coding is more cognitively demanding compared to most of the early language 
arts instructions and it also relies on math skills such as counting, addition, 
subtraction, and multiplication, which are often not introduced until elementary 
grades. Future studies need to be conducted to examine in further detail how 
children in different grade levels respond to the curriculum in the classroom to 
better guide future curriculum design and policy.

Conversely, we did not find any significant differences in students’ CT scores. As 
previously stated in this paper, compared with coding and programming, CT involves 
higher-level cognitive and metacognitive skills, which may require longer exposure to 
elicit growth and development (García Peñalvo et al., 2016). Although various aspects of 
CT, such as abstract thinking, logical reasoning, and problem-solving, could be developed 
while learning to code, it does not necessarily mean that students who are proficient in 
coding using a specific programming language can always be successfully transferred to 
significant improvements in their CT skills.

The CAL curriculum was designed to have 24 lessons, each lasting 45 minutes. 
However, this study was carried out during the COVID-19 pandemic under many 
constraints, and due to the tight schedule of some schools, not all participating 
teachers completed the 24 lessons using 45-minute blocks. According to the lesson 
logs and interviews from the teachers, some of the classrooms, especially those from 
site B, only implemented less than half of the lessons before the post-tests. This level 
of intervention intensity may be enough to improve children’s coding skills using the 
ScratchJr app but may not be sufficient for developing higher-level cognitive skills 
related to CT.

The second explanation for this null finding is that although the students in the control 
group did not receive the CAL curriculum, they may have been exposed to other 
unplugged CS curricula that were regularly implemented in their school. This may have 
led to a natural growth in computational thinking skills for the control group, as shown in 
the descriptive statistics. Learning to code using ScratchJr is not the only approach where 
young children can develop their CT skills, after all. It is entirely possible that while the 
treatment group received the CAL curriculum, students in the control group were 
exposed to other STEM activities which were also helpful for developing their CT abilities. 
In addition, it is possible that the increase in both groups on TechCheck from pre to post- 
test was due to a test-retest effect.

Future research with larger sample sizes and higher fidelity of implementation is 
warranted to replicate the findings and provide more evidence regarding the impact of 
the CAL curriculum on students’ CT skills. Study designs where the control group receives 
a non-CS related curriculum are also encouraged to better understand the efficacy of the 
current curriculum.
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The interaction between student demographic characteristics and intervention 
outcomes

Research has found that students from low SES backgrounds and those who are English 
learners are usually disadvantaged in CS programs due to reasons such as lack of 
resources, teacher stereotypes, and language issues (Jacob et al., 2018; Santo et al.,  
2019; Su et al., 2023). However, based on the findings of the current study, while receiving 
CAL instruction, students from low SES and LEP backgrounds gained equal achievements 
in their coding skills compared with their peers. These findings could be explained by the 
following reasons.

First, evidence has shown that students from low SES backgrounds are more likely to 
have lower cognitive and academic skills (Dotson et al., 2009; White, 1982). However, the 
ScratchJr programming language is low-floor-high-ceiling, enabling students with various 
cognitive, mathematical, and analytical skills to engage, learn, and grow (Flannery et al.,  
2013). This means that the CAL curriculum created equal opportunities and space for 
improvement for all students, regardless of their baseline cognitive and academic skills 
and family socioeconomic status.

Second, previous studies have emphasized that one of the major challenges for English 
learners in learning to code is that most programming languages are text-based with 
strict syntactic rules, which can be unintuitive for emerging readers, especially language 
learners, and can add more frustration during debugging. In contrast to most other 
programming languages on the market, ScratchJr is a block-based programming lan-
guage that is much more intuitive and self-explanatory. With the different shapes, 
symbols, and colors of the blocks, syntactic demands are lowered. These factors conse-
quently decrease frustration and confusion while increasing the engagement and moti-
vation for the learners, particularly those who may struggle with articulating themselves 
in the dominant language in the classroom during troubleshooting (Jacob et al., 2018).

These findings are encouraging because they provide critical pieces of evidence that 
the CAL curriculum is promising in providing equal opportunities for CS education for 
English learners and students from low SES backgrounds. The finding that students with 
low SES tended to develop more than their more affluent peers in CT skills sheds light on 
the potential of the CAL curriculum to close the achievement gap in CS education for 
students from various social classes.

It is also worth noting a borderline effect where students from low SES backgrounds 
may have achieved greater growth in CT skills than their more affluent peers over the CAL 
implementation. This may be because students from less affluent families tended to lack 
the necessary exposure to and experiences with technology and related STEM education 
resources that are key to developing CT skills (Grover et al., 2016). During the intervention, 
the CAL curriculum introduced some key CT concepts such as abstraction and modularity, 
which might be brand-new for students with low SES backgrounds but already familiar 
concepts for students from affluent backgrounds. Given that this finding is a borderline 
effect, no conclusions can be drawn at this point, and future research should be con-
ducted to replicate the study with larger samples to provide more solid evidence with 
greater statistical power to guide educational practice, research, and policy.

In addition, we found that although students with disabilities and female students 
achieved similarly in CT, they had smaller gains in coding compared with their peers. The 
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CAL curriculum was designed to break gender stereotypes in CS fields by making the 
curriculum culturally responsive and introducing stories about female coders and women 
in CS and STEM, such as the inclusion of Grace Hopper: Queen of Computer Code in 
the second-grade curriculum.

One possible explanation for the finding on the interactions with gender and disability 
is teacher belief and bias. Prior studies have pointed out that teachers often have lower 
expectations for girls in STEM (Newall et al., 2018) and for students with disabilities in 
nearly all subjects (Rousso, 2003). The CAL curriculum includes activities where students 
create their own projects and teachers walk around the class to help and assist. Lower 
expectations may lead teachers to spend less time with certain students or may set up 
goals that are easier to reach for certain students. The lack of individualized instruction, 
along with less exposure and practice with more advanced blocks, may have contributed 
to the smaller growth observed.

Another possible reason that might have led to the interaction with students’ disability 
status is that ScratchJr may be more difficult for students with certain types of disabilities 
to access, such as blindness. The limited access to assistive technologies and software may 
have created additional difficulties for this student population to engage in class and with 
the curriculum.

The finding on the gender difference is consistent with the majority of studies in this 
line of research, which suggest that boys tend to outperform girls in STEM learning (see 
a review study by Su et al., 2023). However, it contradicts a recent experiment on robotics 
programming programs for preschoolers, where researchers did not find any gender 
differences in computational thinking outcomes (Yang et al., 2023). The current study 
uses ScratchJr as the programming language, which is screen-based, while the study by 
Yang and colleagues used Matatalab, a screen-free coding robot kit. It is possible that girls 
and boys responded differently to the various coding instructions, activities, and learning 
dynamics between these two programs.

These findings highlight the importance of further research to explore the impact of 
gender on children’s STEM learning and teaching in different contexts using different 
educational tools. Qualitative research that explores how female students and students 
with disabilities interact with teachers, compared to their peers, during the curriculum 
implementation may also yield important insights. More importantly, more effort and 
attention should be directed towards the improvement of current CS curriculums and the 
development of future CS curriculums that promote inclusive excellence.

Limitations

Several limitations must be considered while interpreting the aforementioned 
findings. First, the COVID-19 pandemic presented unexpected challenges during 
the study’s implementation. For instance, the pre- and post-assessments had to be 
conducted remotely, and students at site B (20%) were unable to complete all 24 
lessons before the post-assessments due to administrative reasons. Second, due to 
safety and health concerns at the schools, researchers were not allowed to go to 
the classrooms for observations during the study. As a result, it was challenging for 
the researchers to gather detailed data on how the CAL curriculum was implemen-
ted in the treatment schools, the regular curriculum used by the schools in the 

COMPUTER SCIENCE EDUCATION 17



control group, or monitor the intervention’s validity in day-to-day instructions. 
However, to ensure implementation fidelity, all participating teachers received 
professional development training and completed the CSA assessment before the 
program started. Moreover, other sources of data were collected, including the 
lesson logs from the teachers and teacher interviews after the study.

Conclusion

The current study conducted a randomized controlled trial to examine the efficacy 
of a CS curriculum CAL on the programming and CT skills for students in kinder-
garten, first, and second-grade classrooms. Our findings revealed that the CAL 
curriculum was effective in improving children’s programming skills using the 
ScratchJr coding language, and a larger effect was found for first and second 
graders compared to kindergarteners. However, we did not find a statistically 
significant difference in students’ CT skills between the treatment and the control 
groups. By examining the interaction between students’ demographic characteris-
tics and the intervention condition, we found that students from disadvantaged 
groups, such as students with disabilities or female students, did not learn as much 
as their peers. In addition, students with limited English proficiency and those from 
low SES backgrounds achieved similar gains in coding as their peers. These find-
ings shed light on the potential of the CAL curriculum as an effective and devel-
opmentally appropriate CS curriculum for children in kindergarten to second-grade 
classrooms in improving their programming skills. The results also provide concrete 
ideas for future studies, the results of which could contribute to the development 
of more inclusive STEM curricula and instructions that strive for inclusive excellence 
for all students.
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