
Teaching Computational
Thinking and Coding to
Young Children

Marina Bers
Tufts University, USA

A volume in the Advances in Early
Childhood and K-12 Education
(AECKE) Book Series

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Published in the United States of America by
IGI Global
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2021 by IGI Global. All rights reserved. No part of this publication may be
reproduced, stored or distributed in any form or by any means, electronic or mechanical, including
photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material.
The views expressed in this book are those of the authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Ber, Marina, 1970- editor.
Title: Teaching computational thinking and coding to young children /
 Marina Ber, editor.
Description: Hershey, PA : Information Science Reference, 2022. | Includes
 bibliographical references and index. | Summary: “This book starts with
 an introduction to the topic of computational thinking and young
 children and then presents chapters of different aspects to consider in
 teaching computational thinking to young children,”-- Provided by
 publisher.
Identifiers: LCCN 2021023096 (print) | LCCN 2021023097 (ebook) | ISBN
 9781799873082 (hardcover) | ISBN 9781799873099 (paperback) | ISBN
 9781799873105 (ebook)
Subjects: LCSH: Computer science--Study and teaching (Elementary) |
 Computer programming--Study and teaching (Elementary) | Logic--Study and
 teaching (Elementary) | Problem solving--Study and teaching (Elementary)
 | Computer literacy.
Classification: LCC QA76.27 .T423 2022 (print) | LCC QA76.27 (ebook) |
 DDC 004.071--dc23
LC record available at https://lccn.loc.gov/2021023096
LC ebook record available at https://lccn.loc.gov/2021023097

This book is published in the IGI Global book series Advances in Early Childhood and K-12
Education (AECKE) (ISSN: 2329-5929; eISSN: 2329-5937)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Advances in Early
Childhood and K-12

Education (AECKE) Book
Series

Editor-in-Chief: Jared Keengwe University of North Dakota, USA

Mission

ISSN:2329-5929
 EISSN:2329-5937

Early childhood and K-12 education is always evolving as new methods and tools are
developed through which to shape the minds of today’s youth. Globally, educational
approaches vary allowing for new discussions on the best methods to not only
educate, but also measure and analyze the learning process as well as an individual’s
intellectual development. New research in these fields is necessary to improve the
current state of education and ensure that future generations are presented with
quality learning opportunities.

The Advances in Early Childhood and K-12 Education (AECKE) series
aims to present the latest research on trends, pedagogies, tools, and methodologies
regarding all facets of early childhood and K-12 education.

• Curriculum Development
• Literacy Development
• Head Start and Pre-K Programs
• STEM Education
• Special Education
• Learning Outcomes
• Standardized Testing
• Common Core State Standards
• Early Childhood Education
• Performance Assessment

Coverage

IGI Global is currently accepting
manuscripts for publication within this
series. To submit a proposal for a volume in
this series, please contact our Acquisition
Editors at Acquisitions@igi-global.com or
visit: http://www.igi-global.com/publish/.

The Advances in Early Childhood and K-12 Education (AECKE) Book Series (ISSN 2329-5929) is published by
IGI Global, 701 E. Chocolate Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of
titles available for purchase individually; each title is edited to be contextually exclusive from any other title within the
series. For pricing and ordering information please visit http://www.igi-global.com/book-series/advances-early-childhood-
education/76699. Postmaster: Send all address changes to above address. Copyright © 2021 IGI Global. All rights, includ-
ing translation in other languages reserved by the publisher. No part of this series may be reproduced or used in any form
or by any means – graphics, electronic, or mechanical, including photocopying, recording, taping, or information and
retrieval systems – without written permission from the publisher, except for non commercial, educational use, including
classroom teaching purposes. The views expressed in this series are those of the authors, but not necessarily of IGI Global.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

701 East Chocolate Avenue, Hershey, PA 17033, USA
Tel: 717-533-8845 x100 • Fax: 717-533-8661

E-Mail: cust@igi-global.com • www.igi-global.com

Handbook of Research on Critical Issues in Special Education for School Rehabilitation
Practices
Ajay Singh (Texas A&M International University, USA) Chia Jung Yeh (East Carolina
University, USA) Sheresa Blanchard (East Carolina University, USA) and Luis Anunciação
(Pontifical Catholic University of Rio de Janeiro, Brazil)
Information Science Reference • © 2021 • 590pp • H/C (ISBN: 9781799876304) • US
$245.00

Physical Education Initiatives for Early Childhood Learners
Pedro Gil-Madrona (University of Castilla-La Mancha, Spain)
Information Science Reference • © 2021 • 431pp • H/C (ISBN: 9781799875857) • US
$195.00

Teaching Practices and Equitable Learning in Children’s Language Education
Christina Nicole Giannikas (Cyprus University of Technology, Cyprus)
Information Science Reference • © 2021 • 273pp • H/C (ISBN: 9781799864875) • US
$195.00

Connecting Disciplinary Literacy and Digital Storytelling in K-12 Education
Leslie Haas (Buena Vista University, USA) and Jill Tussey (Buena Vista University, USA)
Information Science Reference • © 2021 • 378pp • H/C (ISBN: 9781799857709) • US
$195.00

Promoting Positive Learning Experiences in Middle School Education
Cherie Barnett Gaines (Lincoln Memorial University, USA) and Kristy M. Hutson (Lincoln
Memorial University, USA)
Information Science Reference • © 2021 • 335pp • H/C (ISBN: 9781799870579) • US
$195.00

For an entire list of titles in this series, please visit:
http://www.igi-global.com/book-series/advances-early-childhood-education/76699

Titles in this Series
For a list of additional titles in this series, please visit:

http://www.igi-global.com/book-series/advances-early-childhood-education/76699

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Table of Contents

Preface.. xv

Acknowledgment.. xxi

Section 1
Deep Dive

Chapter 1
From.Computational.Thinking.to.Computational.Doing.......................................1

Marina Umaschi Bers, Tufts University, USA

Chapter 2
Why.Teach.Coding.to.Early.Elementary.Learners...21

Claudia M. Mihm, Tufts University, USA

Chapter 3
Unplugged.Learning:.Recognizing.Computational.Thinking.in.Everyday.Life...41

Emily Relkin, Tufts University, USA
Amanda Strawhacker, Tufts University, USA

Section 2
Connections

Chapter 4
The.Role.of.Executive.Function.and.Self-Regulation.in.the.Development.of.
Computational.Thinking...64

Elizabeth Kazakoff Myers, WGBH Educational Foundation, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Chapter 5
Rhyme.and.Reason:.The.Connections.Among.Coding,.Computational.
Thinking,.and.Literacy..84

Madhu Govind, Tufts University, USA
Ziva Reimer Hassenfeld, Brandeis University, USA
Laura de Ruiter, Tufts University, USA

Chapter 6
Computational.Thinking.and.Life.Science:.Thinking.About.the.Code.of.Life..107

Amanda L. Strawhacker, Tufts University, USA

Chapter 7
Computational.Expression:.How.Performance.Arts.Support.Computational.
Thinking.in.Young.Children...134

Amanda L. Strawhacker, Tufts University, USA
Amanda A. Sullivan, Tufts University, USA

Section 3
Contexts

Chapter 8
Fostering.Computational.Thinking.in.Homes.and.Other.Informal.Learning.
Spaces...158

Madhu Govind, Tufts University, USA

Chapter 9
Makerspaces.as.Learning.Environments.to.Support.Computational.Thinking..176

Amanda L. Strawhacker, Tufts University, USA
Miki Z. Vizner, Independent Researcher, USA

Chapter 10
Coding,.Computational.Thinking,.and.Cultural.Contexts..................................201

Libby Hunt, Tufts University, USA
Marina Umaschi Bers, Tufts University, USA

Chapter 11
Supporting.Girls’.Computational.Thinking.Skillsets:.Why.Early.Exposure.Is.
Critical.to.Success...216

Amanda Sullivan, Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Chapter 12
Including.Students.With.Disabilities.in.the.Coding.Classroom.........................236

Tess Levinson, Tufts University, USA
Libby Hunt, Tufts University, USA
Ziva Hassenfeld, Brandeis University, USA

Section 4
Evaluation

Chapter 13
TechCheck:.Creation.of.an.Unplugged.Computational.Thinking.Assessment.
for.Young.Children...250

Emily Relkin, Tufts University, USA

Chapter 14
Examining.Young.Children’s.Computational.Artifacts......................................265

Apittha Unahalekhaka, Tufts University, USA
Madhu Govind, Tufts University, USA

Chapter 15
Insights.Into.Young.Children’s.Coding.With.Data.Analytics.............................295

Apittha Unahalekhaka, Tufts University, USA
Jessica Blake-West, Tufts University, USA
XuanKhanh Nguyen, Tufts University, USA

Compilation of References... 318

About the Contributors.. 355

Index... 360

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Detailed Table of Contents

Preface.. xv

Acknowledgment.. xxi

Section 1
Deep Dive

Chapter 1
From.Computational.Thinking.to.Computational.Doing.......................................1

Marina Umaschi Bers, Tufts University, USA

Computer.programming.is.becoming.an.essential.skill.in.the.21st.century,.and.in.
order.to.best.prepare.future.generations,.the.promotion.of.computational.thinking.
and. literacy. must. begin. in. early. childhood. education.. Computational. thinking.
can.be.defined.in.many.ways..The.broad.definition.offered.in.this.chapter.is.that.
computational.thinking.practices.refer.to.techniques.applied.by.humans.to.express.
themselves.by.designing.and.constructing.computation..This.chapter.claims.that.
one.of.the.fundamental.ways.in.which.computational.thinking.can.be.supported.
and.augmented.is.by.providing.children.with.opportunities.to.code.and.to.create.
their.own.interactive.computational.media..Thus,.computational.literacy.will.allow.
children.to.become.producers.and.not.only.consumers.of.digital.artifacts.and.systems.

Chapter 2
Why.Teach.Coding.to.Early.Elementary.Learners...21

Claudia M. Mihm, Tufts University, USA

As.coding.and.computer.science.become.established.domains.in.K-2.education,.
researchers.and.educators.understand.that.children.are. learning.more.than.skills.
when.they.learn.to.code.–.they.are.learning.a.new.way.of.thinking.and.organizing.
thought..While.these.new.skills.are.beneficial.to.future.programming.tasks,.they.
also.support.the.development.of.other.crucial.skills.in.early.childhood.education..
This. chapter. explores. the. ways. that. coding. supports. computational. thinking. in.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

young.children.and.connects.the.core.concepts.of.computational.thinking.to.the.
broader.K-2.context.

Chapter 3
Unplugged.Learning:.Recognizing.Computational.Thinking.in.Everyday.Life...41

Emily Relkin, Tufts University, USA
Amanda Strawhacker, Tufts University, USA

This.chapter.explores.perspectives.on.unplugged.coding.and.computational.thinking.
(CT).in.early.childhood..Concepts,.definitions,.and.research.on.unplugged.learning.
and.its.relationship.to.computer.science.are.considered..Several.examples.illustrate.
how.young.children.can.encounter.powerful.ideas.of.CT.in.both.formal.educational.
settings.and.in.the.process.of.everyday.life..Resources.are.provided.that.aid.in.the.
identification.and.integration.of.unplugged.activities.into.early.childhood.settings..
Finally,.the.authors.advocate.for.further.research.on.teaching.CT.concepts.to.children.
that.includes.both.coding.and.unplugged.approaches.

Section 2
Connections

Chapter 4
The.Role.of.Executive.Function.and.Self-Regulation.in.the.Development.of.
Computational.Thinking...64

Elizabeth Kazakoff Myers, WGBH Educational Foundation, USA

This.chapter.summarizes.theoretical.connections.between.computational.thinking.
through. learning. to. code,. self-regulation,. and. executive. function. and. discusses.
why.it. is. important. to.continue.exploring.the.intersection.of.executive.function,.
self-regulation,.and.computational.thinking,.including.the.need.to.revisit.the.socio-
cultural. underpinnings. of. foundational. self-regulation,. executive. function,. and.
school.readiness.research..As.an.example,.findings.from.a.2014.study.that.explored.
the.relationship.between.self-regulation.and.computational.thinking.when.learning.
to.code.are.shared..Research.supports.the.idea.of.teaching.computational.thinking.
skills.within.an.integrated.early.childhood.curriculum.to.support.the.development.of.
well-prepared.citizens.for.the.21st.century.by.drawing.on.the.connections.between.
executive.function,.self-regulation,.and.computational.thinking.

Chapter 5
Rhyme.and.Reason:.The.Connections.Among.Coding,.Computational.
Thinking,.and.Literacy..84

Madhu Govind, Tufts University, USA
Ziva Reimer Hassenfeld, Brandeis University, USA
Laura de Ruiter, Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

The. chapter. begins. with. an. exploration. of. computational. thinking. (CT). and. its.
relationship.to.computational.literacy,.followed.by.a.summary.of.theoretical.and.
empirical.work.that.aims.to.elucidate.the.connections.among.coding,.CT,.and.literacy..
The.authors.argue.that.these.connections.thus.far.have.been.predominantly.one.of.
support.(i.e.,.unidirectional).and.motivated.by.technological.and.policy.advances,.as.
opposed.to.considering.the.connections.as.mutually.reinforcing.and.developmentally.
coaligned..The.authors.discuss.the.coding.as.another.language.(CAL).pedagogical.
approach,.a.pedagogy.that.presents.learning.to.program.as.akin.to.learning.how.
to.use.a.new.language.for.communicative.and.expressive.functions,.emphasizing.
the.bidirectional.connections.between.the.two.domains..Finally,.the.authors.detail.
various.curricula.that.use.the.CAL.approach.and.discuss.the.implications.of.CAL.
for.teaching.and.learning.in.early.childhood.

Chapter 6
Computational.Thinking.and.Life.Science:.Thinking.About.the.Code.of.Life..107

Amanda L. Strawhacker, Tufts University, USA

Life.science.and.computer.science.share.the.educational.goals.of.fostering.students.
to.engage.in.inquiry-based.learning.and.solve.problems.through.similar.practices.
of.discovery,.design,.and.experimentation..This.chapter.outlines.the.pedagogical.
links.among. traditional. life. science.and.emerging.computer. science.domains. in.
early. childhood. education,. and. describes. an. educational. intervention. using. the.
CRISPEE. technological. prototype.. CRISPEE,. designed. by. a. research. team. of.
developmentalists,. biologists,. educators,. and. computer. scientists,. invites. young.
children. to. use. computational. logic. to. model. design. processes. with. biological.
materials..Findings.are.discussed.as.they.relate.to.new.understandings.about.how.
young.children.leverage.computational.thinking.when.engaged.in.design-based.life.
science,.or.biodesign.

Chapter 7
Computational.Expression:.How.Performance.Arts.Support.Computational.
Thinking.in.Young.Children...134

Amanda L. Strawhacker, Tufts University, USA
Amanda A. Sullivan, Tufts University, USA

In.the.past.two.decades,.STEM.education.has.been.slowly.replaced.by.“STEAM,”.
which.refers.to.learning.that.integrates.science,.technology,.engineering,.arts,.and.
mathematics.. The. added. “Arts”. portion. of. this. pedagogical. approach,. although.
an. important. step. towards. integrated. 21st. century. learning,. has. long. confused.
policymakers,.with.definitions.ranging.from.visual.arts.to.humanities.to.art.education.
and.more..The.authors.take.the.position.that.Arts.can.be.broadly.interpreted.to.mean.
any.approach.that.brings.interpretive.and.expressive.perspectives.to.STEM.activities..
In. this. chapter,. they. present. illustrative. cases. inspired. by. work. in. real. learning.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

settings. that. showcase.how.STEAM.concepts.and.computational. thinking.skills.
can.support.children’s.engagement.in.cultural,.performing,.and.fine.arts,.including.
painting,.sculpture,.architecture,.poetry,.music,.dance,.and.drama.

Section 3
Contexts

Chapter 8
Fostering.Computational.Thinking.in.Homes.and.Other.Informal.Learning.
Spaces...158

Madhu Govind, Tufts University, USA

This. chapter. provides. theoretical. and. practical. insights. for. fostering. children’s.
computational. thinking.(CT). in.homes.and.other. family-friendly.spaces.such.as.
libraries,.museums,.and.after-school.programs..The.family.context—the.kinds.of.
roles,.interactions,.and.opportunities.afforded.by.parents,.caregivers,.and.siblings—is.
essential.for.understanding.how.young.children.learn.and.engage.in.CT..This.work.
is.informed.by.research.on.how.everyday.activities.and.educational.technologies.
(and.the.contexts.in.which.they.are.used).can.be.designed.to.promote.opportunities.
for.CT.and.family.engagement..This.chapter.discusses.ways.to.support.children’s.
CT.by.co-engaging.family.members.in.collaborative.coding.activities.in.homes.and.
other.informal.learning.spaces.

Chapter 9
Makerspaces.as.Learning.Environments.to.Support.Computational.Thinking..176

Amanda L. Strawhacker, Tufts University, USA
Miki Z. Vizner, Independent Researcher, USA

Makerspaces.are.technology-rich.learning.environments.that.can.uniquely.support.
children’s. development.. In. education. communities,. makerspaces. have. become.
sites.to.take.up.explorations.of.personally-motived.problem.solving,.and.have.been.
tied.to.21st.century.learning.outcomes.of.perseverance,.creativity,.persistence,.and.
computational. thinking.. Elsewhere. in. this. book,. Bers. described. computational.
thinking.as.the.set.of.skills.and.cognitive.processes.required.to.give.instructions.
for.a.specific.task.in.such.a.way.that.a.computer.could.carry.it.out..But.Bers.also.
argued.that. the.purpose.of.computational. thinking. is. to.cultivate.a.fluency.with.
technological.tools.as.a.medium.of.expression,.not.an.end.in.itself..Computational.
making.is.part.of.this.expression..This.chapter.explores.the.ways.in.which.tools,.
facilitation,.and.the.physical.environment.can.support.children’s.engagement.with.
powerful.ideas.of.computational.thinking.through.making.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Chapter 10
Coding,.Computational.Thinking,.and.Cultural.Contexts..................................201

Libby Hunt, Tufts University, USA
Marina Umaschi Bers, Tufts University, USA

This.chapter.examines.the.relationship.between.coding,.computational.thinking,.and.
the.contexts.in.which.those.concepts.are.learned..It.recounts.a.pilot.study.where.
a. 12-week. robotics. curriculum. was. taught. in. kindergarten. classrooms. at. eight.
interfaith. and. secular. schools. in.Boston,.United.States. of.America. and.Buenos.
Aires,.Argentina..In.this.chapter,.the.authors.explore.how.teachers.and.students.drew.
from.their.socio-cultural.environments. to. inform.the. language.of.computational.
thinking.and.support. the. internalization.of.computational.concepts.and,. in. turn,.
how.computational.thinking.was.used.as.a.tool.for.deeper.exploration.of.cultural.
traditions.and.beliefs,.meaning-making,.and.creative.expression.

Chapter 11
Supporting.Girls’.Computational.Thinking.Skillsets:.Why.Early.Exposure.Is.
Critical.to.Success...216

Amanda Sullivan, Tufts University, USA

The. representation. of. women. in. technical. fields. such. as. computer. science. and.
engineering.continues.to.be.an.issue.in.the.United.States,.despite.decades.of.research.
and.interventions..According.to.the.most.recent.Bureau.of.Labor.Statistics.reports,.
only.21.1%.of.computer.programmers.are.women,.and.only.16.5%.of.engineering.
and.architecture.positions.are.filled.by.women..This.chapter.discusses. the. long-
term.importance.of.exposing.girls.to.computational.thinking.during.their.formative.
early.childhood.years.(Kindergarten.through.second.grade).in.order.to.set.them.up.
for.equal.opportunities. in. technical.fields. throughout. their. later.educational.and.
career.years..This.chapter.presents.a.case.example.of.a.K-2nd.grade.robotics.and.
coding.curriculum.in.order.to.highlight.examples.of.developmentally.appropriate.
technologies,.activities,.and.strategies.that.educators.can.implement.to.foster.young.
girls’.computational.thinking.skills..Best.practices.and.instructional.strategies.to.
support.girls—as.well.as.young.children.of.any.gender.identity—are.discussed.

Chapter 12
Including.Students.With.Disabilities.in.the.Coding.Classroom.........................236

Tess Levinson, Tufts University, USA
Libby Hunt, Tufts University, USA
Ziva Hassenfeld, Brandeis University, USA

This.chapter.discusses.understandings.of.coding.and.computational.thinking.education.
for.students.with.disabilities..The.chapter.describes.the.special.education.system.in.
the.United.States,.including.limitations.in.how.computer.science.education.is.made.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

available.to.students.receiving.special.education.services..The.chapter.then.provides.
a.summary.of.research.in.computer.science.education.for.students.with.disabilities,.
including.both.high-incidence. and. low-incidence.disabilities..A.case. study.of. a.
young.student.with.a.mild.disability.learning.in.a.general.education.computational.
thinking.program.is.then.presented,.and.the.implications.of.the.case.study.for.future.
research.directions.are.discussed.

Section 4
Evaluation

Chapter 13
TechCheck:.Creation.of.an.Unplugged.Computational.Thinking.Assessment.
for.Young.Children...250

Emily Relkin, Tufts University, USA

This. chapter. describes. the. development. and. validation. of.TechCheck,. a. novel.
instrument.for.rapidly.assessing.computational.thinking.(CT).skills.in.5-9.years.old.
children..TechCheck.assessments.can.be.administered.in.classroom.or.online.settings.
regardless.of.whether.students.have.prior.knowledge.of.coding..This.assessment.
probes.six.domains.of.CT.described.by.Bers.as.developmentally.appropriate.for.
young.children.including.algorithms,.modularity,.control.structures,.representation,.
hardware/software,.and.debugging..TechCheck.demonstrates.good.psychometric.
properties.and.can.readily.distinguish.among.young.children.with.different.CT.abilities.

Chapter 14
Examining.Young.Children’s.Computational.Artifacts......................................265

Apittha Unahalekhaka, Tufts University, USA
Madhu Govind, Tufts University, USA

Computational.thinking.(CT),.in.line.with.the.constructionist.perspective,.is.often.best.
displayed.when.children.have.the.opportunity.to.demonstrate.their.skills.by.producing.
creative.coding.artifacts..Performance-based.or.project.portfolio. assessments.of.
young.children’s.coding.artifacts.are.a. rich.and.useful.approach. to.explore.how.
children.develop.and.apply.CT.abilities..In.this.chapter,.the.authors.examine.various.
rubrics.and.assessment.tools.used.to.measure.the.levels.of.programming.competency,.
creativity,.and.purposefulness.displayed.in.students’.coding.artifacts..The.authors.then.
discuss.the.development.of.ScratchJr.and.KIBO.project.rubrics.for.researchers.and.
educators,.including.examples.to.illustrate.how.these.highly.diverse.projects.provide.
insight.into.children’s.CT.abilities..Finally,.the.authors.conclude.with.implications.
and.practical.strategies.for.using.rubrics.in.both.educational.and.research.settings.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Chapter 15
Insights.Into.Young.Children’s.Coding.With.Data.Analytics.............................295

Apittha Unahalekhaka, Tufts University, USA
Jessica Blake-West, Tufts University, USA
XuanKhanh Nguyen, Tufts University, USA

Over.the.past.decade,.there.has.been.a.growing.interest.in.learning.analytics.for.research.
in.education.and.psychology..It.has.been.shown.to.support.education.by.predicting.
learning.performances.such.as.school.completion.and.test.scores.of.students.in.late.
elementary.and.above..In.this.chapter,.the.authors.discuss.the.potential.of.learning.
analytics. as. a. computational. thinking. assessment. in. early. childhood. education..
They.first.introduce.learning.analytics.by.discussing.its.various.applications.and.
the.benefits.and.limitations.that.it.offers.to.the.educational.field..They.then.provide.
examples.of.how.learning.analytics.can.deepen.our.understanding.of.computational.
thinking.through.observing.young.children’s.engagement.with.ScratchJr:.a.tablet.
coding.app.designed.for.K-2.students..Finally,.they.close.this.chapter.with.future.
directions.for.using.learning.analytics.to.support.computer.science.education.

Compilation of References... 318

About the Contributors.. 355

Index... 360

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Preface

Thinking About Computational Thinking in Early Childhood

My mentor, Seymour Papert, used to say that one cannot “think about thinking
without thinking about something”. Behind this playful phrase hides a deep concern
about epistemology: how do we get to know what we know? How do we gain new
insights about our own cognitive processes and the world around us?

This book is inspired by that quest for gaining new knowledge. In September
2001, I started as a young assistant professor at Tufts University, and I created an
interdisciplinary research group called “Developmental Technologies”, DevTech.
Students with diverse backgrounds: from child development to computer science,
from education to engineering, from cognitive science to anthropology, joined the
group. For the last twenty years, DevTech has focused on understanding how new
technologies that engage in coding, robotics and making can play a positive role in
children’s development and learning. Early on, DevTech’s work focused on older
children, teens and pre-teens, and coding opportunities embedded in virtual worlds.
Later on, as I had my own children, I realized there was a lack of tools for them.
Thus, DevTech’s focus shifted to early childhood.

This fascinating period of development invites us to re-think how we design
interfaces for children who cannot yet read and write, who have short attention span
and working memory, who are honest in expressing engagement and frustration,
who are just learning how to work with others and who are eager to explore the
world by touching, making and breaking. At DevTech we focused on designing and
creating novel programming environments, such as KIBO robotics and ScratchJr, to
be developmentally appropriate. We collaborated with others, such as KinderLab
Robotics, the LifeLong Kindergarten group at the MIT Media Lab and the Scratch
Foundation to make sure these technologies could go out into the world and become
products used by millions, and not only research prototypes. We developed teaching
materials and pedagogical strategies for professional development of early childhood
educators and opportunities for family and community engagement.

xv

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Preface

All of this work is based on the theoretical frameworks that I have developed
over the years, such as Positive Technological Development (Bers, 2012); Coding
as a Playground (Bers, 2018; 2020) and Coding as Another Language (Bers, 2019).
We are conducting studies all over the world to understand how diverse children
learn with and about computer science, how this discipline can help them make
connections to more traditional domains of learning and how it can support the
development of positive human values (Bers, 2022).

Our research involves three dimensions: theoretical contributions, design of new
technologies, and empirical work to test and evaluate the theory and the technologies.
Our long-time commitment is to inspire sustainable and scalable evidence-based
programs for young children that promote the learning of programming with a
playful and developmentally appropriate approach.

As we were busy with our work, a new term in the field started to gain traction:
“computational thinking”. Jeannette Wing popularized it in the mid 2000’s. However,
those of us working within a Constructionist framework (Papert, 1980; Resnick,
2017) recognized the concept immediately from observing the kinds of questions
children engaged with when programming, the kind of problems they encountered
when creating their projects, and the multiple creative solutions they proposed.

Nowadays, there is a push to embed computational thinking throughout the
national and international educational frameworks, to conduct research to better
understand what it means, to package it through curriculum, media and games,
and to assess it. This brings new opportunities for the field of computer science
education to reach mainstream.

In this book, we focus on a particular segment of the population: early childhood.
The fifteen chapters in this book were all written by current or former students in the
DevTech research lab. Thus, all chapters share a similar theoretical and pedagogical
framework, but they each focus on a particular aspect of computational thinking
and early childhood education. The book is organized in four parts: “Deep Dive,”
“Connections,” “Contexts.” and “Evaluation.”

The three chapters in “Deep Dive” set the stage for thinking about computational
thinking and its relationship to coding and unplugged activities. Chapter 1, “From
Computational Thinking to Computational Doing,” by Marina Bers, provides a broad
literature review and positions computational thinking practices as techniques applied
by humans to express themselves by designing and constructing computational
artifacts. This chapter claims that one of the fundamental ways in which computational
thinking can be supported and augmented is by providing children with opportunities
to code and to create their own interactive computational media. Chapter 2, “Why
Teach Coding to Early Elementary Learners,” by Claudia Mihm, explores the ways
in which coding supports computational thinking in young children, and connects
the core concepts of computational thinking to other crucial skills in early childhood

xvi

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Preface

education – such as literacy, numeracy, and organization skills. Chapter 3, “Unplugged
Learning: Recognizing Computational Thinking in Everyday Life,” by Emily Relkin
and Amanda Strawhacker, explores both plugged and unplugged opportunities that,
building on traditional early education experiences and activities, can engage young
children in computational thinking in both formal and informal learning settings.

The four chapters in “Connections” provide examples of the associations and
relationships that come about when computational thinking is explored through the
life sciences, literacy, dramatic arts, and the development of executive functions.
Chapter 4, “The Role of Executive Function and Self-Regulation in the Development
of Computational Thinking,” by Elizabeth Kazakoff-Myers, explores theoretical
connections between computational thinking, coding, self-regulation, and executive
function and presents findings from an early study. Chapter 5, “Rhyme and Reason:
The Connections Among Coding, Computational Thinking, and Literacy,” by
Madhu Govind, Ziva Hassenfeld, and Laura de Ruiter, discusses theoretical and
empirical work to elucidate the connections among coding, computational thinking,
literacy, and language. The authors argue that these connections thus far have been
predominantly one of support (i.e., unidirectional) and motivated by technological
and policy advances, as opposed to considering the connections as mutually
reinforcing and developmentally coaligned. The authors present the Coding as
Another Language (CAL) pedagogical approach and curricula, which addresses
the bidirectional connection between computer science and literacy. Chapter 6,
“Computational Thinking and Life Science: Thinking About the Code of Life,”
by Amanda Strawhacker, outlines the pedagogical links among traditional life
science and emerging computer science domains in early childhood education, and
describes an educational intervention using the CRISPEE prototype that invites
young children to leverage computational thinking when engaged in design-based
life science, or biodesign. Chapter 7, “Computational Expression: How Performance
Arts Support Computational Thinking,” by Amanda Strawhacker and Amanda
Sullivan, explores how in the past two decades, STEM education has been slowly
replaced by “STEAM”, which refers to learning that integrates Science, Technology,
Engineering, Arts, and Mathematics and presents case studies in which painting,
sculpture, architecture, poetry, music, dance, and drama supported the teaching of
computational thinking skills.

The five chapters in “Contexts” present examples of different experiences in
which children and families learn to code by making their own computationally rich
projects and by thinking in computational ways. The diversity of the five chapters in
this part span from a focus on girls, children with disabilities and families, to learning
environments explicitly designed to promote making activities and exploration of
cultural and religious identities. Chapter 8, “Fostering Computational Thinking in
Homes and Other Informal Learning Spaces,” by Madhu Govind, explores the different

xvii

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Preface

kinds of roles, interactions, and opportunities afforded by parents, caregivers, and
siblings when engaging in collaborative coding activities. Chapter 9, “Makerspaces
as Learning Environments to Support Computational Thinking,” by Amanda
Strawhacker and Miki Vizner, explores the ways in which tools, facilitation, and the
physical environment of informal makerspaces can support children’s engagement
with powerful ideas of computer science and the maker movement. Chapter 10,
“Coding, Computational Thinking, and Cultural Contexts,” by Libby Hunt and
Marina Bers, describes a pilot study in eight interfaith kindergarten classrooms in
Boston, United States of America and Buenos Aires, Argentina that set out to explore
different ways a robotics curriculum could promote computational thinking, and,
in turn, how computational thinking was used as a tool for deeper exploration of
cultural traditions and beliefs, meaning-making, and creative expression. Chapter
11, “Supporting Girls’ Computational Thinking Skillsets: Why Early Exposure Is
Critical to Success,” by Amanda Sullivan, discusses the long-term importance of
exposing girls to computational thinking during their formative early childhood years
in order to set them up for equal opportunities in technical fields throughout their
later educational and career years and presents a case study of a K-2nd grade robotics
and coding curriculum that illuminates best practices and instructional strategies.
Chapter 12, “Including Students With Disabilities in the Coding Classroom,” by
Tess Levinson, Libby Hunt, and Ziva Hassenfeld, describes the special education
system in the United States, and how computer science education is made available
to students receiving special education services. It presents a case study of a student
with a mild disability. Implications for future research directions are discussed.

Lastly, “Evaluation” presents three chapters focused on how to evaluate
computational thinking using projects created by children, validated unplugged
assessments and data analytics. Chapter 13, “TechCheck: Creation of an Unplugged
Computational Thinking Assessment for Young Children,” by Emily Relkin, describes
the development and validation of TechCheck, a novel instrument for rapidly
assessing Computational Thinking (CT) skills in 5-9 years old children. Chapter 14,
“Examining Young Children’s Computational Artifacts,” by Apittha Unahalekhaka
and Madhu Govind, examines various rubrics and assessment tools used to measure
the levels of programming competency, creativity, and purposefulness displayed in
students’ coding artifacts, and discusses the ScratchJr and KIBO Project Rubrics for
researchers and educators to evaluate diverse projects. Chapter 15, “Insights Into
Young Children’s Coding With Data Analytics,” by Apittha Unahalekhaka, Jessica
Blake-West, and XuanKhanh Nguyen, discusses the potential of learning analytics
for computational thinking assessment in early childhood education and provides
examples of its use to deepen understanding of computational thinking through
observing young children’s engagement with ScratchJr.

xviii

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Preface

Together, these 15 articles divided in four parts presents a snapshot of some of
the work done over two decades by members of the DevTech research group. As the
field progresses, and more labs and researchers around the country and the world
engage with computer science and early childhood, it is my hope that we will grow
our collective ability to “think about thinking by thinking about computational
thinking”.

REFERENCES

Bers, M. (2006). The role of new technologies to foster positive youth development.
Applied Developmental Science, 10(4), 200–219.

Bers, M. (2020). Coding as a Playground: Programming and Computational Thinking
in the Early Childhood Classroom (2nd ed.). Routledge Press.

Bers, M. (in press). Beyond Coding: How Children learn Values through programming.
MIT Press.

Bers, M. U. (2008). Blocks to robots learning with technology in the early childhood
classroom. Teachers College Press.

Bers, M. U. (2010). Beyond computer literacy: Supporting youth’s positive
development through technology. New Directions for Youth Development, 128, 13–23.

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development:
From Playpen to Playground. Cary, NC: Oxford.

Bers, M. U. (2017). The Seymour test: Powerful ideas in early childhood education.
International Journal of Child-Computer Interaction.

Bers, M. U. (2018). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom. Routledge Press.

Bers, M. U. (2019). Coding as another language: A pedagogical approach for
teaching computer science in early childhood. Journal of Computers in Education,
6(4), 499–528.

Bers, M. U., & Resnick, M. (2015). The Official ScratchJr Book. No Starch Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects,
Passion, Peers, and Play. MIT Press.

xix

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Preface

Sullivan, A., & Bers, M. U. (2017). Dancing robots: Integrating art, music, and
robotics in Singapore’s early childhood centers. International Journal of Technology
and Design Education.

xx

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Acknowledgment

The research presented here is based on the past and present contributions of members
of the DevTech research group directed by Marina Bers at Tufts University. This book
took shape during group meetings, but it would not have been possible without the
careful coordination of Madhu Govind. Thank you, Madhu for your professionalism
in all aspects involved in making this book possible.

xxi

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Section 1

Deep Dive

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

1

DOI: 10.4018/978-1-7998-7308-2.ch001

ABSTRACT

Computer programming is becoming an essential skill in the 21st century, and in
order to best prepare future generations, the promotion of computational thinking
and literacy must begin in early childhood education. Computational thinking
can be defined in many ways. The broad definition offered in this chapter is that
computational thinking practices refer to techniques applied by humans to express
themselves by designing and constructing computation. This chapter claims that
one of the fundamental ways in which computational thinking can be supported
and augmented is by providing children with opportunities to code and to create
their own interactive computational media. Thus, computational literacy will allow
children to become producers and not only consumers of digital artifacts and systems.

A SCENARIO

Henry, 6 years old, is working with the free ScratchJr introductory programming
language on an iPad loaded in his kindergarten class. He is focused on making an
animation of a train. Every so often, he wiggles. Other times, he is frustrated and
watches over his friend Liana’s project to ask her a question. “How did you make
your cat appear and disappear on the screen so many times?” Henry is trying to
program a train that travels into a tunnel. He drew the train and the tunnel with the
paint tool in ScratchJr. He is happy with how they look, but now comes the hardest
part: he needs to program the train to move forward, while making a “choo-choo-

From Computational Thinking
to Computational Doing

Marina Umaschi Bers
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

2

From Computational Thinking to Computational Doing

choo” noise. He has to time it perfectly, so the train disappears as it travels into the
tunnel, but the noise continues to play out.

“Look at my cat! Look at my cat!” Liana is excited to show Henry how to use
new programming blocks, purple blocks to be more specific, called Looks blocks.
She has programmed her ScratchJr kitten to appear and disappear on the screen
ten different times. She has put together a long sequence. Although Liana cannot
read yet, she knows that these programming blocks can make her ScratchJr kitten
show and hide.

Henry wants to do the same thing, except that he wants the train to always hide
while it is inside the tunnel. Slowly, by trial and error, he figures that he will need
to put together a sequence with ten hide blocks. And then, he could put one show
block and the train will become visible again. The problem is that all of this needs
to happen while the train keeps sounding its “choo choo choo” horn. He is not sure
how to do this.

Henry’s teacher hears his call and walks over to him. Henry explains what he
wants. The teacher shows him how to create parallel programs, so two different
events can happen at the same time. Henry is happy to try it. He records the “choo
choo choo” sound with his voice and he creates a sequence that makes the sound
start with the green flag. The same green flag that starts the train moving forward
to go through the tunnel. “It works!” exclaims Henry while jumping up and down.
However, after watching the animation for a few seconds, Henry notices that the
train doesn’t hide for long enough. Self-confident, Henry decides to add a few more
blocks to the hide sequence until he runs out of space in the screen. He is about to ask
Liana again, when he suddenly remembers about the new programming block they
learned a few days ago, a long orange block, called “Repeat.” This block allows for
other blocks to be inserted inside its “loop”. The repeat block then runs the blocks
inside its loop as many times as the programmer decides.

After some trial and error, in which Henry plays with inserting different numbers
of hide blocks inside the “Repeat” block, he figures it out. He can put just one hide
block inside the “Repeat” block and set the number of repetition times to the highest
he needs for the train to be inside the tunnel. He chooses the number 20 and clicks
the “Green flag” to see the animation. The train moves forward on its tracks and
goes into a tunnel while the “choo choo choo” sound plays in the background. Then,
the train disappears and comes out on the other side. After watching the animation,
Henry realizes it is boring to wait for so long for the train to appear again. He goes
back to his code and reduces the number of repetitions to 5. Figure 1 shows Henry’s
code for the train.

During this experience, Henry had fun. He also put his coding skills to work
making a project he cared about. He learned that a programming language has a
syntax in which symbols represent actions. He understood that his choices had

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

3

From Computational Thinking to Computational Doing

an impact on what was happening on the screen. While programming, Henry
encountered some of the most powerful ideas of computer science that are accessible
for a young child. He developed computational thinking. He was able to create a
sequence of programming blocks to represent a complex behavior (e.g., appearing
and disappearing), as well as create parallel sequences so two different events could
happen at the same time (e.g., parallel programming). He used logic in a systematic
way to correctly order the blocks in a sequence and he problem-solved. He exercised
his tenacity and learned how to ask for help from peers and his teacher. Finally,
Henry was able to create a project from his own original idea and turn it into a final
product, a project he chose and to which he was personally attached. He was happy
to revise it when the final outcome did not meet his expectations (i.e., it ended up
being so long that it was boring to watch). He also engaged with mathematical ideas
of estimation and number sense.

To code, Henry used ScratchJr, a programming language specifically designed
for young children and available for free on touchscreen tablets. ScratchJr was

Figure 1. The ScratchJr interface with Henry’s train. In this photo, the train is
programmed with a repeat loop to disappear 5 times while it goes in the tunnel and
then appear at the end.
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

4

From Computational Thinking to Computational Doing

designed by the DevTech Research Group at Tufts University in collaboration
with MIT’s Lifelong Kindergarten group at the MIT Media Lab and the Playful
Invention Company (PICO) company. To date, over 20 million young children all
over the world are using ScratchJr to create their own projects. As children make
computational projects, they develop computational thinking. This involves more
than problem-solving or logical thinking; it means gaining the concepts, skills,
and habits of mind to express themselves through coding. In this approach, doing
and thinking come together, echoing decades of research done by developmental
scientists and educational researchers.

This chapter explores the recent construct of computational thinking as it applies
to young children. First, the chapter provides an overview about computational
thinking, and then it focuses on a limited set of seven powerful ideas of computer
science that are developmentally appropriate. Finally, the chapter discusses the
relationship between computational thinking and coding. Computational thinking
is often thought of as a cognitive activity that involves problem-solving through
both unplugged activities and computer programming. In this chapter, though, the
definition is framed in a broader context. Computational thinking is conceptualized
as an expressive process that involves problem solving. In this perspective, problem
solving is not an end in itself, it is also a means for expression, for making projects.

COMPUTATIONAL THINKING: THEORETICAL FOUNDATIONS

The idea that the “theory of computation” is for everyone, and not only for computer
scientists, dates back to the 1960’s (Perlis, 1962). As technology progressed, computers
became more accessible, but programming languages’ syntax and grammar were
still too difficult to understand and manipulate. In 1982, Perlis, one of the pioneers
in developing the ALGOL programming language wrote “most people find the
concept of programming obvious, but the doing impossible” (Perlis, 1982, p. 10).
What Perlis referred to as the “concept of programming” is close to our current
understanding of computational thinking. Furthermore, Perlis distinguished the
cognitive processes associated with thinking in abstract and logical ways from the
mastery of a programming language. Perlis also observed that, since computer
programming requires logical and creative thought, its teaching needs to start early in
life and become part of everyone’s education. The intuition that even young children
could grasp concepts associated with computational thinking such as sequencing,
patterns, modularity, cause and effect, and problem-solving when presented with
them in a way that made sense, has now been confirmed by extensive research
(Bers, 2018, 2020).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

5

From Computational Thinking to Computational Doing

These insights echoed Seymour Papert’s work, who, at the time, was working on
the development of a programming language that children could use, so the “doing”
would not be impossible, as Perlis had argued. Building on knowledge about human
development from Jean Piaget, Papert collaborated with Wally Feurzeig and others
to create LOGO, the first programming language designed for children to think in
computational ways. Papert argued that this new way of thinking could happened
at its best when children were given tools to create personally meaningful projects.
That is, computational thinking and computational doing could happen hand-in-
hand (Bers, 2010; Papert, 1980). Children who could think like a computer were
children who could use a computer to express themselves in a fluent way to create
computational media, and children who could develop habits of mind such as
persistence (Bers, 2021).

In the process of learning how to use a programming language, one learns to think
and act in different ways. In his writing, Papert did not use the term computational
thinking. Instead, he defined these new ways of thinking by referring to powerful
ideas, central concepts and skills within a discipline, that children could encounter
while using programming languages, such as sequencing, abstraction, modularization,
problem solving and logical thinking (Bers, 2008, 2017, 2020). Those cognitive
mechanisms are associated with what researchers call now computational thinking
(Barr, Harrison, & Conery, 2011; Barr & Stephenson, 2011; Computer Science
Teachers Association, 2020; Lee et al., 2011; Wing, 2006;).

In 2006, Jeannette Wing’s influential article “Computational Thinking” appeared
in the Communications of the ACM (Wing, 2006). Echoing Perlis and Papert, Wing
argued that computational thinking, a broad set of analytic and problem-solving
skills, dispositions, and habits, rooted in computer science, is universally applicable
and therefore should be part of every child’s analytical ability. Wing defined
computational thinking as “solving problems, designing systems, and understanding
human behaviour, by drawing on the concepts fundamental to computer science” (p.
33). At the heart of computational thinking is abstraction (Kramer, 2007), that is the
ability to identify salient pieces of a problem or model and ignore inessential details.

Computational thinking includes mental tools such as thinking recursively, using
abstraction when figuring out a complex task, and applying heuristic reasoning to
discover a solution and to identify potential “bugs” or problems. Wing asserts that
just as the printing press facilitated the spread of the three Rs (reading, writing,
and arithmetic), computers facilitate the spread of computational thinking. The
question is: are computers, per se, facilitating the spread of computational thinking
or is it the ability to program that allows for the development of computational
thinking? This chapter proposes that, although using computers opens the door to
the world of computation, it is through programming them that we develop new
ways of thinking associated with the discipline of computer science. Consuming

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

6

From Computational Thinking to Computational Doing

technology is not the same as producing it. Using a computer doesn’t require the
same kind of thinking as programming a computer. This perspective seems to be in
alignment with Wings later writing in which she defined computational thinking
as a “thought processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be effectively carried out by an
information-processing agent” (Wing, 2011).

Wing’s writing brought newfound light to the importance of computer science
education. However, it also limited the discourse around computational thinking
to a problem-solving process that complements mathematical and engineering
thinking. It does not incorporate the relationship between thinking and doing as a
way of personal expression. Mainstream computational thinking came to represent a
type of analytical thinking that shares similarities with mathematical thinking (e.g.,
problem-solving), engineering thinking (designing and evaluating processes), and
scientific thinking (systematic analysis; Bers, 2010). This perspective easily found
a niche in the K-12 curriculum as it enabled the teaching of computational thinking
outside the context of computer science courses and programming languages.

However, for some researchers, this decoupling is problematic. For example,
Bers (2018) claims the thought processes involved in computational thinking need
to support the creation of computational projects, and vice versa. While Wing
describes the computational thinker as “an information-processing agent,” Bers
refers to this thinker as an “expressive agent.” (Bers, 2020). An expressive agent is
someone who has the internal and external resources and the required fluency with
technological environments to be able to translate ideas into computational projects
to share with others (Bers, 2021). Along this line of thinking, Brennan and Resnick
(2012) broke down computational thinking into a three-dimensional framework that
comprises concepts, practices, and perspectives. At a higher level, computational
thinking practices refer to techniques applied by humans to express themselves by
designing and constructing computation. The ideas presented in this chapter are
aligned with this understanding.

Although computational thinking has received considerable attention over the
past several years, there is little agreement on what a definition for computational
thinking might encompass (Allan et al., 2010; Barr & Stephenson, 2011; Grover &
Pea, 2013; National Academies of Science, 2010; Relkin, 2018; Relkin & Bers, 2019;
Shute, Sun, & Asbell-Clarke, 2017; Grover & Pea, 2013; Guzdial, 2008). However,
there is consensus on the fact that the science of computation must be available to
thinkers of all disciplines, regardless of their ability to program (Guzdial, 2008;
Yadav, 2011). Thus, motivated by a shortage of software engineers and programmers
and the need of diversity in the industry, frameworks and initiatives have been put
in place to promote the teaching of computational thinking in K-12, so to attract a
wider pool of interested students before college (Barr, Harrison, & Conery, 2011).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

7

From Computational Thinking to Computational Doing

This decision is informed by the need to broaden access to the field of computer
science, which has traditionally been populated by white males. Extensive prior work
demonstrates the importance of piquing the interest of girls during their formative
early childhood years before gender stereotypes regarding these traditionally
masculine fields are ingrained in later years (Sullivan, 2019; Metz, 2007; Steele,
1997). In addition, work is done to extend opportunities for participation in computing
communities to black and Latino students (Erete et al., 2017). To this end, computer
science educators have a unique responsibility to promote social justice and combat
systemic inequities in the field of computer science (Vogel et al., 2017). Starting to
teach computer science in the early years is one way to do so. But it must be done
with an age-appropriate pedagogical approach.

Playgrounds for Thinking

Researchers, practitioners, funding institutions, and policy makers have traditionally
associated computer programming and computational thinking with problem-
solving. Thus, when translated into the educational curriculum, computer science
is grouped with science, technology, engineering, and math disciplines: STEM.
When integrated with these programs, computational thinking is defined as a set
of cognitive skills for identifying patterns, breaking apart complex problems into
smaller steps, organizing and creating a series of steps to provide solutions, and
building a representation of data through simulations (Barr & Stephenson, 2011).
When extended to the arts, STEM becomes STEAM and a design component is
usually added. Children are invited to create their own projects. This addition
facilitates the understanding of computational thinking as involved in the process
of creation. However, not everyone agrees on the materials for creation. While some
researchers believe that computational tools and learning how to code are essential,
others pose that it is possible to engage in computational thinking without working
with computers of any kind.

Recently, a low-tech or unplugged approach to computational thinking has been
growing (e.g., Bell, Witten, & Fellows, 1998). For example, computational thinking
can occur in everyday activities, including: sorting LEGO (using the concept of
“hashing” to sort by color, shape, and size), cooking a meal (using “parallel processing”
to manage cooking different types of food at different temperatures for different
amounts of time), and looking up a name in an alphabetical list (linear: starting at
the beginning of the list; binary: starting at the middle of the list). Traditional board
games have also been designed to explicitly support computational thinking. For
example, Robot Turtles (Shapiro, 2015) was designed for young children aged 3–8
years to start thinking in computational ways while playing a traditional turn-based

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

8

From Computational Thinking to Computational Doing

board game, in which there are multiple paths for reaching a goal and for solving
a problem successfully.

The DevTech Research Group at Tufts University has also developed low-tech
strategies to promote computational thinking through the Coding as Another Language
(CAL) curriculum: singing and dancing, card games, bingo, and the Simon Says
game (Bers, 2019). The powerful ideas that children encounter while playing these
games, such as sequencing and debugging, breaking one big problem into smaller
steps, and planning and testing a strategy, all tap into the core of computational
thinking. However, DevTech’s approach, which is presented through the different
chapters in this book, claims that although unplugged activities can support, enable
and augment the development of computational thinking, in order to fully engage
with it, children must experience the activity of computer programming.

Programming languages involve problem-solving, while supporting personal
expression through the making of computational projects. Coding, then, becomes
a vehicle for new forms of thinking and for the expression of the resulting thoughts.

There is a constant interplay between making new things in the world and making
new ideas in our heads. As you make new things and get feedback from others (and
from yourself), you can revise, modify, and improve your ideas. And based on these
new ideas, you are inspired to make new things. (Resnick, 2001, p.3)

In order for children to make computational projects, there is a need for
programming languages. When those are designed in developmentally appropriate
ways, they can become coding playgrounds (Bers, 2012; 2020; 2018). In the coding
playgrounds, children can learn to think computationally, while also making their
own projects. For example, with tools such as KIBO robotics, shown in figure 2,
and the free ScratchJr introductory language, children can create different forms
of computational projects, from screen animations to dancing robots. (Kazakoff,
Sullivan, & Bers, 2013; Portelance & Bers, 2015; Sullivan & Bers, 2015).

Programming languages such as KIBO and ScratchJr are coding playgrounds
that promote problem-solving, imagination, cognitive challenges, social interactions,
motor skills development, emotional exploration, and making different choices.
They provide tools to create projects to express our thinking, to communicate who
we are and what we love. In the process, computational thinking develops. Early
childhood is a wonderful time for discovering new ways of thinking.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

9

From Computational Thinking to Computational Doing

Research shows the economic and developmental impact of interventions that
begin in early childhood. These are associated with lower costs and more durable
effects than interventions that begin later on (e.g., Cunha & Heckman, 2007; Heckman
& Masterov, 2007; National Research Council Committee on Early Childhood
Pedagogy, 2001; Shonkoff & National Research Council, 2000). Thus, if promoting
computational thinking is important in our information age, it needs to be introduced
in early childhood, given the plasticity of young children. However, pedagogical
approaches and programming languages must be consistent with developmentally
appropriate practice (Bredekamp, S, 1987) and must embrace the maturational
stages of children by inviting play and discovery, socialization and creativity (Bers,
2018a). In addition, the powerful ideas of the discipline of computer science must be
developmentally appropriate. It is not enough to copy models used in later schooling.

Research shows that, when beginning in prekindergarten, learning to program
can significantly improve a child’s ability to logically sequence picture stories
(Kazakoff, Sullivan, & Bers, 2013) and to improve executive functioning (Arfé et
al., 2019). These findings are consistent with other research that shows the positive
impact that learning computer programming and computational thinking can have
on skills such as reflectivity, divergent thinking, and cognitive, social, and emotional
development (Clements & Gullo, 1984; Clements & Meredith, 1992; Flannery
& Bers, 2013). In early childhood, the playground approach to coding provides
opportunities to encounter a complex system of ideas that is logically organized and

Figure 2. A KIBO robotics project programmed with wooden blocks
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

10

From Computational Thinking to Computational Doing

utilizes abstraction and representation. In addition, it enables the development of
skills and habits of mind to put those powerful ideas to use—by making personally
meaningful projects (Bers, 2020).

THE POWERFUL IDEAS OF COMPUTATIONAL THINKING

Seymour Papert coined the term “powerful ideas” to refer to a central concept and
skill within a domain (i.e., computer science) that is at once personally useful,
interconnected with other disciplines, and has roots in intuitive knowledge that a
child has internalized over a long period. According to Papert, powerful ideas afford
new ways of thinking, new ways of putting knowledge to use, and new ways of
making personal and epistemological connections with other domains of knowledge
(Papert, 2000).

Papert envisioned the computer as a carrier of powerful ideas and as an agent for
educational change. While school reform is complex, he proposed that the teaching
of computer science could help children encounter powerful ideas about new
disciplines, such as computer science, old disciplines, such as math, and learning
itself. For example, he showed how when children learned how to program a turtle
to create geometrical shapes on the screen with LOGO, they were not only exploring
abstract thinking, modularity, problem solving, and recursion, but also powerful
mathematical ideas such as angles as well as thinking about their own thinking
(Abelson & DiSessa, 1981).

Over the years, a growing community of researchers and educators has used the
term “powerful ideas” to refer to a set of intellectual tools worth learning, as decided
by a community of experts in each of the fields of study (Bers, 2008). However,
different people have used the term in diverse ways and amongst the powerful ideas
community there are divergent opinions about the benefits and dangers of presenting
a unified definition (Papert & Resnick, 1996).

When exploring the concept of computational thinking, it is useful to do it in
such a way to identify the powerful ideas we hope children will encounter and
develop. Powerful ideas of computer science are not tied to a particular programming
environment but to the discipline of computer science and its associated habits of
mind. While most of these ideas can be encountered when engaging in low-tech or
unplugged activities, it is in the activity of programming that they can be further
explored. However, the challenge for early childhood education is that powerful
ideas need to be defined in a developmentally appropriate way and described at
different levels of depth, in a spiral manner, in the sequence of PreK-2. For example,
understanding algorithmic thinking in PreK might focus on linear sequencing, while
in second grade it extends to loops. Children will understand that within a sequence

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

11

From Computational Thinking to Computational Doing

there are patterns that repeat themselves. Inspired by already existing computational
thinking curriculum such as the framework and resources for educators launched
by Google in 2010 (Google for Education, 2010), the work of Karen Brennan and
Mitchel Resnick with Scratch (2012), and previous work with the KIBO robotic
system (Sullivan & Bers, 2015) and with ScratchJr (Portelance, Strawhacker, & Bers,
2015), I propose a framework involving seven developmentally appropriate powerful
ideas for early childhood computer science education: algorithms, modularity, control
structures, representation, hardware/software, design process, and debugging.

• Algorithms refer to a series of ordered steps taken in a sequence to solve
a problem or achieve an end goal. Sequencing is an important skill in early
childhood; it is a component of planning and involves putting objects or
actions in the correct order. For example, retelling a story in a logical way or
ordering numbers in a line is sequencing. Understanding algorithms involves
understanding abstraction (i.e., identifying relevant information to define
what constitutes a step in the sequence) and representation (i.e., depicting
and organizing information in an appropriate form).

• Modularity involves breaking down tasks or procedures into simpler,
manageable units that can be combined to create a more complex process.
This process of decomposition involves subdividing jobs. In early childhood,
decomposition can be taught anytime a complex task needs to be broken
down into smaller units.

• Control Structures determine the order (or sequence) in which instructions
are followed or executed within an algorithm or program. Control structures
provide a window into understanding the computational concept of making
decisions based on conditions (e.g., variable values, branching, etc.). Children
learn about sequential execution first, and later they become familiar with
multiple control structures that involve repeat functions, loops, conditionals,
events, and nested structures. Loops can be used to repeat patterns of
instructions, conditionals to skip instructions, and events to initiate an
instruction. Understanding control structures in early childhood requires
familiarity with patterns.

• Representation is related to the way computers store and manipulate data
and values in a variety of ways. These data need to be made accessible
through different representations. Early on, children learn that concepts can
be represented by symbols. For example, letters represent sounds, numbers
represent quantities, and programming instructions represent behaviors. As
children grow and advance to more complex programming languages, they
learn about other data types, such as variables. The notion that concepts can

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

12

From Computational Thinking to Computational Doing

be represented using symbols is foundational in early childhood and has
strong links to both math and literacy.

• Hardware/Software Systems refer to the fact that computing systems need
both hardware and software to operate and to accomplish tasks, such as
receiving, processing, and sending information. The relationship between
hardware and software becomes increasingly important in understanding the
ways that components affect a system. As children grow they will encounter
the need to understand the complexities of different system.

• Design Process is an iterative process used to develop programs and tangible
artifacts that involves several steps and has similarities with the engineering
design cycle (Ertas & Jones, 1996). The design process starts with asking a
question, planning an approach, proposing prototypes, testing and re-testing
them, revising and sharing the result. Children can begin at any step, move
back and forth between steps, or repeat the cycle over and over (Bers, 2018).
As children become more familiar with the design process, they become
instilled with the ability to iteratively create and refine their work, to give
and receive feedback to others, and to continually improve a project through
experimenting and testing. This leads to iterative improvement, involves
perseverance, and has strong associations with some aspects of executive
functions, such as self-control, planning and prioritizing, and organization
(Bers, 2020)

• Debugging refers to the systematic analysis and evaluation that allows us to
fix problems and involves using skills such as testing, logical thinking, and
problem-solving in an intentional, iterative step-by-step way. As children learn
how to debug their systems, they start to develop common troubleshooting
strategies that can be used on a variety of computing systems. Debugging
teaches the powerful lesson that things do not just happen to work on the first
try, but, in fact, that many iterations are usually necessary to get it right.

In the chapters in this book, these seven powerful ideas of computer science that
are developmentally appropriate will be further explored and examples and case
studies will be presented.

CONCLUSION: FROM THINKING TO DOING

There is debate amongst researchers and educators regarding whether computational
thinking can be classified as a unique category of thought (Gadanidis, 2017; Pei,
Weintrop, & Wilensky, 2018). However, the term has grown popular at a time when

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

13

From Computational Thinking to Computational Doing

schools are starting to incorporate the teaching of computer science in more massive
ways (K–12 Computer Science Framework Steering Committee, 2016).

Thinking is at the core of why we introduce coding in early childhood. Coding
can not only help children think in systematic and sequential ways, but also create
and express themselves in new ways. That is, in computational ways. The power
of computational thinking extends beyond thinking like computer scientists in two
significant ways. First, by engaging children to think about their own thinking, they
can develop metacognition. And that is a useful skill, regardless of the discipline of
study or the job of the future. Second, when children engage in coding or in creating
their own computational projects, they put their thinking at the service of making
by engaging in an activity that requires the application of their abstract thinking in
very concrete ways.

This chapter claims that one of the fundamental ways in which computational
thinking can be supported and augmented is by providing children with opportunities
to code and to create their own interactive computational media. It is in this process,
that the seven powerful ideas described earlier are best encountered.

Thinking implies the ability to make sense, interpret, represent, model, predict
and invent our experiences in the world. Research shows that children learn to think
with and through language (Vygotsky, 1978). Thus, by learning to use a programming
language that involves logical sequencing, abstraction, and problem solving, children
can learn how to think in analytical ways. Wittgenstein argued that the language we
speak determines the thoughts we are able to have. In other words, learning a new
language can make new patterns of thought, new conceptual frameworks, and new
ways of using language (Wittgenstein, 1997). Wittgenstein’s philosophy echoes
Vygotsky’s developmental perspective in terms of the relationship between language
and thinking at the individual level. Programming languages provide opportunities
for new ways of thinking that involve a problem-solving dimension as well as the
use and manipulation of a language, a symbolic representational system, to create
a sharable product that others can interpret (Bers, 2020).

Computer programming is becoming an essential skill in the 21st century. Each
month, there are an estimated 500,000 openings for computing jobs nationwide, and
a lack of adequately trained people to fill them (Code.org, 2018; Fayer, Lacey, &
Watson, 2017). However, the rationale for supporting the introduction of computer
science and computational thinking starting in kindergarten is not the creation of the
future workforce, but the future citizenry (Bers, 2020). Without understanding the
fundamentals of what an algorithm is and how it works, people might not understand
why and how certain data is displayed and become illiterate in the information age.

We understand by doing. Therefore, in this chapter I argue that in order to
promote computational thinking, we should expose young children to learning a
developmentally appropriate programming language with a playful approach. Coding

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

14

From Computational Thinking to Computational Doing

is a new literacy, and as such, those who learn how to code from a young age, will
not only participate in the automated economy, but will also be able to create new
opportunities for civic participation and for living in healthy social communities
(Bers, 2022). Computational literacy will allow children to become producers, and
not only consumers of digital artifacts and systems. They will be able to do, to
change the world, and not only to think about it.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Education [grant U411C190006].

REFERENCES

Abelson, H., & DiSessa, A. (1981). Turtle geometry: The computer as a medium for
exploring mathematics (The MIT press series in artificial intelligence). Cambridge,
MA: MIT Press.

Arfé, B., Vardanega, T., Montuori, C., & Lavanga, M. (2019). Coding in Primary
Grades Boosts Children’s Executive Functions. Frontiers in Psychology, 10, 2713.
doi:10.3389/fpsyg.2019.02713 PMID:31920786

Barrouillet, P., & Lecas, J. (1999). Mental Models in Conditional Reasoning and Working
Memory. Thinking & Reasoning, 5(4), 289–302. doi:10.1080/135467899393940

Bers, M. U. (2008). Blocks to Robots: Learning with Technology in the Early
Childhood Classroom. Teachers College Press.

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development:
From playpen to playground. Oxford University Press. doi:10.1093/acprof:o
so/9780199757022.001.0001

Bers, M. U. (2017). The Seymour Test: Powerful Ideas in early childhood education.
International Journal of Child-Computer Interaction, 14, 10–14. doi:10.1016/j.
ijcci.2017.06.004

Bers, M. U. (2018a). Coding as a playground: Computational thinking and
programming in early childhood. Routledge.

Bers, M. U. (2018b). Coding, Playgrounds and Literacy in Early Childhood Education:
The Development of KIBO Robotics and ScratchJr. IEEE Global Engineering
Education Conference (EDUCON), 2100. 10.1109/EDUCON.2018.8363498

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

15

From Computational Thinking to Computational Doing

Bers, M. U. (2019). Coding as Another Language: “Why Computer Science in Early
Childhood Should Not Be STEM. In C. Donohue (Ed.), Key Issues in Technology
and Early Childhood. Routledge. doi:10.4324/9780429457425-11

Bers, M. U. (2020). Playgrounds and Microworlds: Learning to Code in Early
Childhood. In Designing Constructionist Futures: The Art, Theory, and Practices
of Learning Designs. Academic Press.

Bers, M. U. (2022). Beyond Coding: How Children Learn Human Values through
Programming. The MIT Press.

Bers, M. U., & Resnick, M. (2015). The Official ScratchJr Book: Help your Kids
Learn to Code. No Starch Press.

Blikstein, P. (2013). Digital Fabrication and ‘Making’ in Education: The
Democratization of Invention. In J. Walter-Herrmann & C. Büching (Eds.),
FabLabs: Of Machines, Makers and Inventors. Transcript Publishers. doi:10.14361/
transcript.9783839423820.203

Bowman, B., Donovan, S., & Burns, M. (2001). Eager to learn: Educating our
preschoolers. Washington, DC: National Academy Press.

Bredekamp, S. (1987). Developmentally appropriate practice in early childhood
pro- grams serving children from birth through age 8. National Association for the
Education of Young Children.

Clements, D. H. (2007). Curriculum Research: Toward a Framework for “Research-
based Curricula”. Journal for Research in Mathematics Education, 38(1), 35–70.

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education.
Mathematical Thinking and Learning, 6(2), 81–89. doi:10.120715327833mtl0602_1

Code.org. (2018). 2018 Annual Report. https://code.org/files/annual-report-2018.pdf

Cunha, F., & Heckman, J. (2007). The Technology of Skill Formation. The American
Economic Review, 97(2), 31–47. doi:10.1257/aer.97.2.31

Dalbey, J., & Linn, M. C. (1985). The demands and requirements of computer
programming: A literature review. Journal of Educational Computing Research,
1(3), 253–274. doi:10.2190/BC76-8479-YM0X-7FUA

de Strulle, A., & Shen, C. (n.d.). STEM + Computing K-12 Education (STEM+C).
https://wwwnsf.gov/funding/pgm_summ.jsp?pims_id=505006

DiSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. MIT
Press. doi:10.7551/mitpress/1786.001.0001

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://code.org/files/annual-report-2018.pdf
https://wwwnsf.gov/funding/pgm_summ.jsp?pims_id=505006

16

From Computational Thinking to Computational Doing

Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO Robotics
Kit in Preschool Classrooms. Computers in the Schools, 33(3), 169–186. doi:10.1
080/07380569.2016.1216251

Erete, S., Martin, C. K., & Pinkard, N. (2017). Digital Youth Divas: A program
model for increasing knowledge, confidence, and perceptions of fit in STEM amongst
black and brown middle school girls. In Moving students of color from consumers
to producers of technology (pp. 152-173). IGI Global. doi:10.4018/978-1-5225-
2005-4.ch008

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM
Occupations-Past, Present, and Future. U.S. Department of Labor, Bureau of Labor
Statistics.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The Language
of Programming: A Cognitive Perspective. Trends in Cognitive Sciences, 23(7),
525–528. doi:10.1016/j.tics.2019.04.010 PMID:31153775

Gadanidis, G. (2017). Five affordances of computational thinking to support
elementary mathematics education. Journal of Computers in Mathematics and
Science Teaching, 36(2), 143–151.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State
of the Field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Guzdial, M. (2008). Education: Paving the way for computational thinking.
Communications of the ACM, 51(8), 25–27. doi:10.1145/1378704.1378713

Guzdial, M., & Morrison, B. (2016). Seeking to making computing education as
available as mathematics or science education. Communications of the ACM, 59(11),
31–33. doi:10.1145/3000612

Heckman, J., & Masterov, D. (2007). The Productivity Argument for Investing in
Young Children. Review of Agricultural Economics, 29(3), 446–493. doi:10.1111/
j.1467-9353.2007.00359.x

Hubwieser, P., Armoni, M., Giannakos, M. N., & Mittermeir, R. T. (2014). Perspectives
and Visions of Computer Science Education in Primary and Secondary (K-12)
Schools. ACM Transactions on Computing Education, 14(2).

Janveau-Brennan, G., & Markovits, H. (1999). The Development of Reasoning with
Causal Conditionals. Developmental Psychology, 35(4), 904–911. doi:10.1037/0012-
1649.35.4.904 PMID:10442860

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

17

From Computational Thinking to Computational Doing

Jenkins, T. (2002). On the difficulty of learning to program. https://www.psy.gla.
ac.uk/~steve/localed/jenkins.html

K-12 Computer Science Framework Steering Committee. (2016). K–12 computer
science framework. https://k12cs.org

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking,
and learning in a digital world. Erlbaum.

Kramer, J. (2007). Is abstraction the key to computing? Communications of the
ACM, 50(4), 36–42.

Lockwood, J., & Mooney, A. (2018). Computational thinking in education: Where
does it fit? A systematic literary review. International Journal of Computer Science
Education in Schools, 2(1), 41–60.

Madill, H., Campbell, R. G., Cullen, D. M., Armour, M. A., Einsiedel, A. A.,
Ciccocioppo, A. L., & Coffin, W. L. (2007). Developing career commitment in
STEM-related fields: Myth versus reality. In R. J. Burke, M. C. Mattis, & E. Elgar
(Eds.), Women and Minorities in Science, Technology, Engineering and Mathematics:
Upping the Numbers (pp. 210–244). Edward Elgar Publishing.

Markert, L. R. (1996). Gender related to success in science and technology. The
Journal of Technology Studies, 22(2), 21–29.

National Research Council. (2011). Report of a Workshop of Pedagogical Aspects
of Computational Thinking. National Academy Press.

National Research Council. (2012). A Framework for K-12 Science Education:
Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual
Framework for New K-12 Science Education Standards. Board on Science Education,
Division of Behavioral and Social Sciences and Education. The National Academies
Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

Papert, S. (1987). Computer Criticism vs. Technocentric Thinking. Educational
Researcher, 16(1).

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer
programming. New Ideas in Psychology, 2, 137–168.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.psy.gla.ac.uk/~steve/localed/jenkins.html
https://www.psy.gla.ac.uk/~steve/localed/jenkins.html
https://k12cs.org

18

From Computational Thinking to Computational Doing

Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking
practices and mathematical habits of mind in lattice land. Mathematical Thinking
and Learning, 20(1), 75–89.

Perlis, A. J. (1962). The computer in the university. In M. Greenberger (Ed.),
Computers and the world of the future (pp. 180–219). MIT Press.

Piaget, J. (1952). The origins of intelligence in children. International Universities
Press.

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects,
Passion, Peers, and Play. MIT Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., ... Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM,
52(11), 60–67.

Resnick, M., & Siegel, D. (2015). A Different Approach to Coding. International
Journal of People-Oriented Programming, 4(1), 1–4.

STEM Education Act of 2015, House of Representatives 1020, 114th Congress.
(2015). https://www.congress.gov/bill/114th-congress/house-bill/1020

Strawhacker, A. L., & Bers, M. U. (2015). “I want my robot to look for food”:
Comparing children’s programming comprehension using tangible, graphical, and
hybrid user interfaces. International Journal of Technology and Design Education,
25(3), 293–319.

Sullivan, A. (2019). Breaking the STEM stereotype: reaching girls in early childhood.
Rowman & Littlefield.

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in
Composition Studies, 1(2), 42–64.

Vogel, S., Santo, R., & Ching, D. (2017, March). Visions of computer science
education: Unpacking arguments for and projected impacts of CS4All initiatives. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (pp. 609-614). ACM.

Vygotsky, L. S. (1978). Mind in society: The Development of higher psychological
processes. Harvard University Press.

Vygotsky, L. S. (1987). Thinking and speech (N. Minick, Trans.). In R. W. Rieber
& A. S. Carton (Eds.), The collected works of L. S. Vygotsky (Vol. 1., pp. 39-285).
New York: Plenum Press. (Original work published 1934)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.congress.gov/bill/114th-congress/house-bill/1020

19

From Computational Thinking to Computational Doing

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty:
The failure to teach K-12 computer science in the digital age. The Association for
Computing Machinery and the Computer Science Teachers Association.

Wing, J. (2006). Computational thinking. Communications of Advancing Computing
Machinery, 49 (3), 33-36. Association for Computing Machinery.

Wing, J. (2011). Research notebook: Computational thinking—What and why? https://
www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35. through programming robots in early childhood. Journal of Educational
Computing Research, 50(4), 553–573.

Wittgenstein, L. (1997). Philosophical Investigations (2nd ed.). Cambridge: Blackwell.

ADDITIONAL READING

Bruner, J. (1983). Child’s Talk: Learning to Use Language. W. W. Norton & Company.

Lave, J., & Wenger, E. (1991). Situated learning. Legitimate peripheral participation.
Cambridge University Press. doi:10.1017/CBO9780511815355

Papert, S. (1993). The children’s machine: Rethinking school in the age of the
computer. Basic Books.

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects,
Passions, Peers, and Play. MIT Press. doi:10.7551/mitpress/11017.001.0001

Turkle, S. (1984). The Second Self: Computers and the Human Spirit. Basic Books.

Vee, A. (2017). Coding Literacy: How Computer Programming is Changing Writing.
The MIT Press. doi:10.7551/mitpress/10655.001.0001

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological
processes. Harvard University Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why

20

From Computational Thinking to Computational Doing

KEY TERMS AND DEFINITIONS

Coding: The process or activity of writing computer programs.
Computational Thinking: Techniques applied by humans to express themselves

by designing and constructing computation.
Computer Science: The study of the principles and use of computers.
Constructionism: The theory that learning should be done through student-

centered discovery.
Early Childhood: Period of time between birth and age eight.
KIBO: A screen-free programmable robotics kit for young children with blocks,

sensors, modules, and art platforms.
Learning: The acquisition of knowledge or skills through experience, study or

being taught.
ScratchJr: A free block-based programming application for young children.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

21

DOI: 10.4018/978-1-7998-7308-2.ch002

ABSTRACT

As coding and computer science become established domains in K-2 education,
researchers and educators understand that children are learning more than skills
when they learn to code – they are learning a new way of thinking and organizing
thought. While these new skills are beneficial to future programming tasks, they also
support the development of other crucial skills in early childhood education. This
chapter explores the ways that coding supports computational thinking in young
children and connects the core concepts of computational thinking to the broader
K-2 context.

INTRODUCTION

Steve Jobs once said, “I think everybody in this country should learn how to program
a computer…because it teaches you how to think.” He said this over twenty years
ago, and schools are starting to catch up to his vision (Code.org, 2013). 47% of
public high schools offer coding courses, and there were over 1 million teacher and
36 million student accounts on Code.org at the end of 2018, up from 10,000 and
500,000, respectively, in 2013 (Code.org, 2021a; Code.org, 2021b). In the employment
realm, computer science is projected to make up 67% of new STEM jobs in the
United States by 2028, totaling nearly 600,000 jobs (Code.org, 2021b). However,
only 25.2% of people employed in computing fields in 2020 identified as women,
and less than 35% were non-white (U.S. Bureau of Labor Statistics, 2021). Even

Why Teach Coding to Early
Elementary Learners

Claudia M. Mihm
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

22

Why Teach Coding to Early Elementary Learners

earlier in the computer science career pipeline, only 33% of students who took the
AP Computer Science exam were female in 2020, showing that the gender divide
is already present in high school (Code.org, 2021b). Despite these trends, research
shows that providing students early exposure to computer science helps improve
the gender gaps and overall diversity in tech fields (Bers, 2018; Jungert et al., 2018;
Sullivan & Bers, 2016). By providing students with early exposure to computational
thinking, schools can create opportunities for them to enter this growing field.

Beyond career preparedness, there are several reasons why it is important for early
elementary students to learn how to code. Early coding exposure can help attract
students from historically underrepresented backgrounds to engage in STEM, by
building comfort with engineering concepts and helping young children, and especially
girls, to picture themselves as future engineers and software developers (Jungert et
al., 2018; Sullivan & Bers, 2018). Additionally, engaging with computers can help
children develop a deeper understanding of their own learning, by asking them to
examine their thought processes as they are instructing the computer (Papert, 1980).
Studying computer science has also been shown to improve elementary student’s
performance in other subjects and strengthen their problem-solving abilities (Code.
org, 2020). Finally, learning to code builds up computational thinking skills, which
are transferrable far beyond programming, and include practices that are especially
crucial for early elementary students (Bers, 2018; Yadav et al., 2016). I will spend
this chapter exploring how to teach computational thinking to young children through
programming and discuss the importance of these skills outside the realm of code.

Background

Before continuing to explore computational thinking, I will establish what I mean
by programming. I came to understand how young children can code in my time
working at the DevTech research group, when I was an undergraduate student at Tufts
University. I was majoring in Computer Science, so I was learning conventional,
text-based programming languages like C++. While the K-2 students I was teaching
would have needed significant help to use C++ to program anything, they were
able to create complex programs using developmentally appropriate tools created
at DevTech: ScratchJr and KIBO. ScratchJr is an iPad app where users program
with image-based blocks (see Figure 1), and KIBO is a robotics kit where users
give instructions to a robot by scanning wooden blocks which represent different
actions (see Figure 2) (Portelance et al., 2015; Sullivan et al., 2017). Programming
at its core is the act of giving instructions to a computer or computational device in a
form that both the user and the computer can understand. Both ScratchJr and KIBO
facilitate this through picture-based blocks, which can be put together into sequences

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

23

Why Teach Coding to Early Elementary Learners

to make the on-screen characters or robot execute different actions (Portelance et
al., 2015; Sullivan et al., 2017).

While the tools are different, both the software engineer and the student are
engaging in the same cognitive processes. Both use the tools available to go through
an iterative problem-solving process, leveraging the power of technology and a
programming language, to create a solution. While ScratchJr and KIBO remove certain
barriers to conventional programming, such as literacy requirements, syntax errors
and top-to-bottom sequencing, they still provide access to the core fundamentals
of computer science and computational thinking – such as sequencing, looping,
debugging, and more. As I will demonstrate throughout this chapter, these tools
facilitate mastery of computational thinking concepts, just as traditionally designed
programming languages do. I will explore each powerful idea of computational
thinking, and how it can be taught by using either KIBO or ScratchJr. As someone
who has a degree in computer science and works in the technology field, it has
always been important to me that the ways I teach computational thinking are aligned
with the profession and can set students up to continue succeeding in computational
activities. As I explore each idea, I will pull from my own experience teaching these

Figure 1. A ScratchJr screen displaying a cat character and movement blocks

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

24

Why Teach Coding to Early Elementary Learners

ideas, and also share the broader relevance of the idea for foundational skill building,
beyond becoming an expert programmer.

Powerful Ideas of Computational Thinking

As Bers explains in the first chapter of this book, computational thinking is a way of
thinking that grows out of computer science. At its core, it is a collection of problem-
solving and analytic skills, grounded in practices necessary to program successfully,
but that have far-reaching applications. Bers’ seven powerful ideas of computational
thinking help to illustrate the core concepts that students learn when they learn to
code, with a particular focus on developmentally relevant skills for early childhood
learners (Bers, 2018). The powerful ideas are: Algorithms, Modularity, Control
Structures, Representation, Hardware & Software, Design Process and Debugging
(Bers, 2018). These powerful ideas illustrate skills that are not only important for
mastering programming, but also for navigating the challenges of 21st century, with
its constantly evolving technological landscape, and that are particularly useful for
early elementary learners. By developing these seven areas, learners are equipping
themselves with intellectual tools that have broad applications – from developing

Figure 2. KIBO robot with programming blocks and accessories

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

25

Why Teach Coding to Early Elementary Learners

literacy to problem-solving skills, and much in between (Hassenfeld & Bers, 2020;
Kewalramani et al., 2016; Wilson-Lopez et al., 2017).

The seven powerful ideas, rooted in learning to program, have historically
been challenging to teach to young learners. As with LOGO, Scratch, and other
programming languages designed for elementary and middle-grade children,
ScratchJr and KIBO are programming languages that help younger students engage
with powerful ideas of computational thinking in developmentally appropriate ways
(Flannery et al., 2013; Papert, 1980; Portelance et al., 2015; Sullivan et al., 2017).
Previously, programming – even through block-based platforms like Scratch – was
inaccessible to young children, due to the baseline of motor and cognitive abilities
necessary to utilize those platforms (Flannery et al., 2013). Scratch, for instance,
requires students to be able to read the text on the blocks, use a mouse to move the
blocks around a screen, and understand mathematical concepts like degrees and
percentages. Recently, there have been new approaches to programming technology
that remove those barriers, allowing access for early elementary students (Jacobson,
2016; Portelance et al., 2015; Sullivan et al., 2017). By engaging with these tools,
designed with their motor and cognitive abilities in mind, young learners have access
to a whole realm of knowledge that has previously been inaccessible. The value of
this is not just to get them started earlier as coders, but also to give them access to
a whole new set of skills that may serve useful to them in other areas of learning.
In this chapter, I will explore how we teach these powerful ideas of computational
thinking through KIBO and ScratchJr, illustrate strategies and approaches that facilitate
computational thinking, and discuss why it is important to start in early childhood.

TEACHING THE POWERFUL IDEAS OF
COMPUTATIONAL THINKING

Algorithms

Bers (2018) defines algorithms as “A series of ordered instructional steps taken in a
sequence to solve a problem or achieve an end goal.” By looking at this definition, it
becomes clear that the term algorithm, often attributed to the world of engineering
and mathematics, is simply another word for a sequential plan. We create algorithms
every day, from making a sandwich to planning a walking route. Learning to program
is a concrete way to practice building algorithms, given the logical structure and clear
steps required to instruct a non-sentient machine to carry out a task. ScratchJr and
KIBO are especially helpful tools for young learners to master planning because the
blocks allow for quick iteration, a visual representation of the steps your program
is taking, and a structured environment in which to execute on a plan.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

26

Why Teach Coding to Early Elementary Learners

One successful way that I have found to teach algorithms to young learners is
to ask them to create a story in ScratchJr. While there are many ways to approach
creating algorithms, I have found that asking students to tell a story helps them
build personal connection and relevance. To create the algorithm, they first have to
think of the story they would like to tell, and the conclusion it will reach. By doing
this, it creates a foundation from which to build the algorithm. In my experience, if
there is not a clear end goal it can be incredibly challenging to create the story – and
thus craft an algorithm – without it petering out or continuing beyond the scope of
a meaningful narrative.

Once they have decided on their plot, they must identify the different characters
in the story, and the actions that the characters must take. Only then do I ask them
to start building a sequence, by articulating the order in which these actions take
place, as not everything can happen at once. I often ask the students to write down
or speak the order of actions, and who is performing them, to ensure that they are
creating a structured sequence. By articulating each step, they are learning how to
break something whole – a story – down into component parts, as well as how to
put those parts together into an ordered sequence. By nature of building this story
in ScratchJr, the sequence that they design is reinforced by the block-based, ordered
structure inherent to the platform.

Learning to sequence is an important skill supported by developing algorithms
– if you don’t establish sequence, your algorithm is just an unordered collection.
Sequencing is not just important for developing algorithms, though. It has applications
in reading comprehension – understanding the order that events take place in a story
– writing, and numeracy (Chase et al., 2014). Sequencing is included in reading
and mathematics curricular frameworks for kindergarten and first grade in several
states (e.g. Massachusetts, California) and in the US Common Core framework
(California State Board of Education, 2013; Massachusetts Department of Elementary
and Secondary Education, 2017; National Governors Association Center for Best
Practices, Council of Chief State School Officers, 2010a). Research has found that
engaging with block-based programming also improves early childhood learner’s
scores on evaluations of story-based sequencing ability (Kazakoff et al., 2013).
The evaluations were not tied to programming knowledge, but rather to sequencing
knowledge more broadly. This indicates that while learning sequencing in the context
of programming, young learners are developing skills that will aid them in reading
comprehension and writing production.

Creating algorithms also provides opportunities to practice planning. By learning
how to move from a high-level goal (tell a story) to a step-by-step plan, students are
learning to break down goals into achievable steps, to understand how individual
components work together to create a whole, and to grasp order and sequence.
Whether learning to read, write a story, plan their day, or tackle a word problem,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

27

Why Teach Coding to Early Elementary Learners

understanding how to create and act on algorithms is something that students will
use with throughout their lives.

Modularity

Modularity is defined as “The breaking down of tasks or procedures into simpler,
manageable units that can be combined or re-used to create a more complex process”
(Bers, 2018). Modularity focuses on breaking a problem down into achievable
tasks, and often takes it one step further by repurposing the practice to achieve
something new. In text-based programming languages, functions are a great example
of modularity. It is common practice to package a task as a function, which can be
referenced throughout the program. For example, a “print” function will initiate a
series of smaller sub-tasks to print whatever input it is given on the screen, and can
be used throughout a program without having to write the same sub-task code again.

Let’s look at an example with ScratchJr: say a learner wants to have their character
move diagonally across the screen. There is no “diagonal” block in ScratchJr, so they
will need to combine multiple blocks in order to create the action – in other words,
they will need to create a function. In order to create the function, students must
understand that a diagonal move can be broken down to moving right and moving
up at the same time. Through trial and error, they will eventually learn that they need
to have two parallel programs, or programs that run at the same time, to achieve a
straight diagonal line. One program instructs their character to move right, and the
other instructs their character to move up, starting at the same time (see Figure 3). In
order to create this diagonal function, they breaking down a complex task – moving
diagonally – into two component parts – moving right, and moving up. They are
then repurposing their knowledge of the move right and move up blocks to create
a new action. In order to teach modularity through ScratchJr, I like to make sure
students are grounded in the ScratchJr blocks they can use– if there is not a block
for it, then they’ll need to break the task down another level. Similarly, if they have
already solved the problem somewhere else in the program, it can be helpful to ask
them if they’ve created a solution with blocks elsewhere already.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

28

Why Teach Coding to Early Elementary Learners

An example of modularity outside of programming is understanding base-ten
number concepts, including number decomposition. Number decomposition is a
primary focus in K-2 Common Core Mathematics guidelines – for example, the
understanding that “the numbers from 11 to 19 are composed of a ten and one, two,
three, four, five, six, seven, eight, or nine ones,” or “the numbers 10, 20, 30, 40,
50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens
(and 0 ones)” (National Governors Association Center for Best Practices, Council
of Chief State School Officers, 2010b). As both of these examples show, it is not
just a matter of breaking down a number into units of one, but understanding that
both one and ten are units that all numbers can be broken down to. Just as students
decompose a diagonal move until it takes the form of familiar blocks – in this case,
‘Move Right’ and ‘Move Up’ – they can apply the same approach decomposing
a number into a collection of ones and tens. By equipping them with the tangible
experience of breaking a task down, thinking modularly helps expose them to an
important approach to knowledge they will use for the rest of their lives.

Control Structures

“Control structures determine the order (or sequence) in which instructions are
followed or executed within an algorithm or program” (Bers, 2018). Control
structures are some of the most complex programming features supported by KIBO
and ScratchJr, and so many teachers and curricula will leave them as some of the

Figure 3. ScratchJr blocks demonstrating parallel programs to make a character
move diagonally

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

29

Why Teach Coding to Early Elementary Learners

last blocks to introduce. However, they are incredibly powerful, and open up new
ways to create and express oneself when they are mastered.

In KIBO, control structures take the form of blocks, such as repeat blocks,
conditionals, and events (e.g., “start” blocks). They play an important role in
sequencing, as they disrupt the otherwise linear sequencing pattern that KIBO adopts.
To teach these concepts, it can be helpful to return back to the algorithm. Going
back to the idea of creating a story, which can be just as easily done with KIBO,
if a child wants to code a character to take the same action more than once (say,
they pace back and forth three times), then that can be a great moment to introduce
control structures, specifically the repeat block. While you do not necessarily need
the repeat block in this case – you can just use the same blocks three times in a row
– it simplifies the action, and allows the learner to practice using control structures.

Similarly, learning to leverage control structures can lead to more complex
programs. Take the case of a student who wants to program their dog to bump into
their cat and have the cat say “Ow!” when they are bumped. Their first instinct will
probably be to use a “Wait” block to try to have the cat wait enough time to let the dog
move to them. I have seen many do this, and while it is one solution, it is tedious and
requires a lot of trial and error, especially if the child later decides to add something
to the project that alters the timing (for example, dog saying “Hello!” before walking).
It also does not actually mimic the interactivity that the original story implies, since
the cat and the dog are operating completely independently within the program.
It would make much more sense to say “when the cat is bumped by the dog, then
have the cat say ‘Ow!’.” There is, in fact, an event block in ScratchJr called “Start
on Bump” that allows this exact interaction (see Figure 4). Event blocks allow for
interrelated programs, which opens up the possibility for the logical sequencing of
events. This can also be challenging to teach, but I’ve found it helpful to act out the
event blocks with people – having two students (gently!) reenact the scene helps
them understand the role of the block. In addition, this is another example where
grounding it in a story helps students grasp the concept. Because they are able to
act it out and understand what should happen, it gives them a stronger foundation
for translating actions to code.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

30

Why Teach Coding to Early Elementary Learners

Control structures are relevant outside of computing because they help students
visualize cause and effect. In the example with the dog and the cat, we can see the
contrast between the first and second solutions, and how they can help demonstrate
cause and effect. In the first solution, the student uses a “Wait” block, which
means there is no relationship between the dog’s actions and the cat saying “Ow!”
However, in the second solution, there is a relationship between the two, because
the cat will only say “Ow!” (the effect) when it is bumped by the dog (the cause).
While understanding cause and effect has relevance in many subjects, such as
understanding the plot of a story or color mixing in art, it is also a foundational
skill that has implications for future science learning. Cause and effect is listed as
a cross-cutting subject in the Next Generation Science Standards, indicating its
importance as a foundational science skill, and appears in the standards as early as
kindergarten (NGSS Lead States, 2013). While there has been evidence to show
that younger children can master cause and effect in specific circumstances, despite
developmental claims that they are not able to, it is still a challenging concept to
grasp and teach (Goddu et al., 2020; Springer & Keil, 1991). By engaging with
control structures in a visible way, where you can immediately see the output of
an action, children have the opportunity to build their understanding of cause and
effect in a visual environment, with a finite amount of possible causes and possible

Figure 4. A ScratchJr program showcasing the “Start on Bump” block

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

31

Why Teach Coding to Early Elementary Learners

effects. When children grasp control structures, they are opened up to a whole new
way of looking at programming and logical thinking.

Representation

Bers (2018) introduces representation by saying “programming languages represent
information through the use of a symbol system.” With ScratchJr and KIBO, as
with all programming languages, symbols are used to represent instructions to the
tool. KIBO has blocks that represent movement (e.g., move forward, turn right,
etc.), sound (sing), colors (light up blue), and more. These blocks, when scanned,
translate into an action that the robot takes.

To teach representation, I ask the students to explain or show me what a block
tells the machine to do. For example, I would hand them a “Move Forward” block
and ask them what it does. Often, I will ask them to act it out with their body, to
make sure they really understand what action the block represents. In order to teach
the connection between the symbol (the block) and its meaning (the outcome), I
encourage students to test out what a block does. Because KIBO has such visual
outputs, it is easier for the programmers to see the connection – they can scan the
block, and see what the output is. Through this practice, they learn to connect the
block to the corresponding KIBO action that it represents.

Learning KIBO blocks helps to build a mental model of representation, which
can be hugely beneficial when it comes to equipping students with skills to express
themselves. Tinkering with language and storytelling gives children new, novel
ways to express themselves, and can expand the tools they have for communication
(Maureen, et al., 2020). By learning a new representative system and new storytelling
tool, children are given new ways to communicate their ideas. As we see with some
young people preferring to communicate via spoken word, written work, drawing,
etc., introducing programming as a novel form of communication allows for creative
forms of expression, collaboration and meaning-making.

Additionally, symbolic representation is the foundation of building any sort of
human communication system – be that a programming language or a natural spoken
and written one (Jones, et al., 2012). Numbers and letters, like KIBO blocks, are
objects that represent a larger concept. Building a strong foundation of symbolic
understanding is crucial for future literacy and numeracy endeavors (Berninger et al.,
2002). Therefore, helping students understand how to connect symbols to what they
represent to others in their society is a hugely important skill in developing literacy.
Understanding the connection between a KIBO block and a KIBO movement is a
similar practice to understanding the connection between a letter and the sound it
represents. By learning with KIBO, where they can test out the outcome of a symbol

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

32

Why Teach Coding to Early Elementary Learners

as many times as they need, coding can be a helpful way to build an understanding
of representation.

Hardware and Software

Understanding hardware and software, and the relationship between them, is
crucial for anyone navigating our increasingly digital world. As Bers (2018) states,
“Computing systems need hardware and software to operate. The software provides
instructions to the hardware, which might or might not be visible. Hardware and
software work together as a system to accomplish tasks, such as receiving, processing,
and sending information.” KIBO is an incredibly powerful tool for helping illustrate
the relationship between hardware and software, because of the tangible nature
of the software. With KIBO, the blocks provide the instructions to the robot, and
thus serve as the software. Users can see the hardware of the robot by looking at
the clear bottom, which reveals the wires and other internal workings of how the
robot’s hardware operates.

To introduce the terms of hardware and software, I like to use the metaphor of the
body and the brain. While this is an oversimplification, it helps to ground abstract
mechanical relationships in something the students understand. In this metaphor,
the brain is the software, giving instructions to your body, which acts on those
instructions, making it the hardware. To translate this relationship to KIBO, I ask
the learner to press the “Go” button on KIBO. Nothing happens, because we have
not yet given it any instructions – so they start to understand that the hardware is not
functional without the software. I then ask them to pick a KIBO block and tell me
how to use it, which usually leads to an explanation that you have to scan the block
in order to use it. This illustrates the opposite point, that software is not useful unless
it has hardware to execute the commands. Especially because KIBO is a tangible
tool, this is a helpful way to start the conversation about software and hardware.

We often hear people assume that because young learners are “digital natives,”
things like hardware and software are concepts that they innately understand
(Prensky, 2001). However, while young children might have a level of comfort and
familiarity with a variety of technological devices, this does not necessarily mean
that they have a deeper understanding of how they actually work. It is the difference
between knowing what you can do with your tablet and actually understanding how
your tablet works. Familiarity with the interaction between hardware and software
can serve as a powerful foundation to create interesting, meaningful artifacts, and
to shift from being a consumer of technology to a creator with technology (Kafai,
Fields, & Searle, 2014).

It is important to teach the relationship between hardware and software, in order
to help students begin to view technology as a human-made object, rather than a

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

33

Why Teach Coding to Early Elementary Learners

magical one. The clear base on KIBO helps them to see that it is in fact a collection
of hardware that makes up a robot, rather than a mysterious collection of things they
would never hope to understand. This process leads to an improved relationship with
any sort of technology in their life, and an increased ability to do more interesting
things with it. Additionally, our workforce is requiring increasingly higher levels of
digital abilities and understanding – as of 2016, an analysis of 545 occupations in the
U.S. revealed that 23% of the country’s jobs required high digital ability, and 48%
required medium digital ability (Muro et al., 2017). By pairing use of technology
with a deep understanding of how it works, we are equipping young learners with
the ability to meaningfully engage with and understand the technologies they will
need to use in the future.

Design Process

While there are many different definitions of a design process, the general sentiment
is the same. It is an iterative process that helps move from concept to implementation,
and then cycles through the same steps making improvements. Bers (2018) outlines
the steps as: “ask, imagine, plan, create, test, improve, and share. The process is
open-ended, in that a problem may have many possible solutions.” Below, I explain
each step more.

Ask: you must define a question that you want to answer, or a problem that you
want to solve.

Imagine: in order to answer your question or challenge, you must create multiple
potential solutions to the question that you are asking.

Plan: you move from high-level concept to executable plan, which means getting
more specific about how you will use the tools at your disposal to build the
solution. The plan stage is when you create an algorithm.

Create: in this step, you actually start building. This is not the end of the design
process – while creation is of course a key step, the important iteration happens
after the first round of creation is completed.

Test: once you have created something, you must test if it solves the initial question
you asked yourself in the first step.

Improve: you iterate on your design based on the results of your testing. This also
requires going back to your plan, and adapting it based on what you have learned.

Share: you share your solution and process with others. Sharing is a great way to
synthesize your learnings, get more feedback, and learn from others as they
share their creations with you.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

34

Why Teach Coding to Early Elementary Learners

An important part of all design processes is that they are not linear. While there are
certain steps to move through, a designer will probably loop through them multiple
times and in different orders. It is helpful to understand the steps of the design process
before beginning, because then there is an established vocabulary for referring to
the steps that you are moving through. It also introduces the concept of iteration.

To teach the design process, it is important to actually name the steps of it. At
the DevTech research group, we had a poster that illustrates the process. This helps
to provide a shared vocabulary at the beginning, that can be referenced back to.
For instance, a student I worked with was particularly stuck in the creation phase,
and she kept losing sight of what she was trying to build. In the planning phase,
we had discussed the story that she was trying to tell and mapped out the different
characters and events needed. By revisiting the plan she had put together, she was
able to remind herself of the vision that she had already created. Because we had
a shared vocabulary, and understanding of a progression of steps, it was easier to
discover what her challenge was, and land on a solution.

Learning the design process has been shown to build similar strategies to reading
comprehension (Wilson-Lopez et al., 2017). By becoming familiar with the design
process, students also are developing problem-solving strategies that will be useful to
them in other disciplines. Another important facet of the design process is iteration.
By learning to iterate, one builds comfort with the idea that they are not going to get
it right on the first try. With this approach, failure to achieve a goal becomes not a
failure, but a step in the right direction, and an opportunity to try again with a new
approach. Through programming, students develop emotional intelligence through
overcoming their fear of something not working, which can help build a willingness
to continue through adversity (Kewalramani et al., 2016). While this mental shift is
crucially important for learning to program, iteration is also an important process
outside the realm of programming – any product benefits from multiple rounds of
design, creation, and feedback. Learning to go through the design process with a
structured tool like ScratchJr or KIBO can help students internalize the process and
apply it to other undertakings – such as writing a story, building a block tower, or
solving a math problem.

Debugging

As Bers (2018) defines it, debugging is: “Fixing problems through systematic analysis
and evaluation, while developing troubleshooting strategies.” As you can see from
this definition, while debugging is often relegated to the world of programming, it is
really about creating practices for problem solving. Teaching debugging inherently
comes with teaching programming, as problems will always arise, especially if
students are new to programming. It is especially helpful if the programmer has

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

35

Why Teach Coding to Early Elementary Learners

made a plan – such as an algorithm – because that provides a foundation of what
you are hoping to achieve, which can be compared to what the program is actually
doing. When a student’s program is not doing what is expected, I ask them to start
by comparing the plan of what they want the program to be doing with what it is
actually doing. The goal is to build up a strategy for understanding where things went
wrong, not just that it is not working. One of the strengths of tools like ScratchJr and
KIBO is that they allow for immediate output and rapid tweaking. So, if someone
is stuck, they do not just have to think about what is wrong. They can actually start
changing the program and see what changes.

One of my favorite debugging strategies is to take the sequence apart, and test it
out step by step. For instance, if you are trying to navigate KIBO through a maze,
you take all the blocks off your sequence but the first one. Then, you run KIBO
to make sure that the first block is achieving what you want it to do. You can then
continue to add your blocks back into your sequence, systematically working until
you identify where it is going wrong. This is not only an effective strategy for this
particular instance, but also helps demonstrate a methodical approach to problem
solving more broadly. Rather than giving up, or starting completely over, it models a
step-by-step problem-solving approach that can be used in other challenging situations.

Students have shown more comfort with debugging in programming than in
writing endeavors – in other words, they are more comfortable with editing their
program than with editing their written work (Hassenfeld & Bers, 2020). This has
exciting implications for building up student’s comfort with editing and revision
in other areas of their life. Additionally, Seymour Papert writes about the power
of programming to teach metacognition, and debugging is a wonderful example of
this (Papert, 1980). By going through debugging processes, learners are finding the
gaps in their own knowledge or understanding of their programming language. This
metacognition serves to make them stronger learners, and more self-aware people
(Erdmann & Hertel, 2019). Metacognition is not just useful for debugging – their
awareness of their learning approaches is not just tied to programming languages,
and thus can help them become stronger learners across domains.

CONCLUSION

In this chapter, I show how the benefit of learning to code at an early age far
surpasses any programming skills that may be mastered. Learning to code teaches
computational thinking skills, which in turn, have wide-ranging benefits for students
in K-2 classrooms. Computational thinking is not only a helpful cognitive tool, but
a necessary one to equip our young learners with the skills they need to tackle the
challenges of the 21st Century. The seven powerful ideas developed by Bers and further

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

36

Why Teach Coding to Early Elementary Learners

explored in this chapter, important on their own, boil down to an understanding of
creative problem solving and digital competency that can set students up for success
as they move forward.

It is my hope that in the coming years, we will see an incorporation of programming
into classroom activities. Rather than a separate STEM lesson, I have seen coding bring
a reading or science lesson to life in new ways, engaging learners who felt isolated
or allowing others a new way to understand a concept. Learning to program will be
most powerful if they are aligned with core teaching goals and incorporated into
classroom routines. In short, in order to best leverage the strengths of computational
thinking skills, we must incorporate computational thinking activities into the core
of our classrooms. Computational thinking is a powerful approach to thinking, and
the earlier we can expose our students to it, the better served they will be.

REFERENCES

An, S., Tinajero, J., Tillman, D., & Kim, S. (2019). Preservice Teachers’ Development
of Literacy-Themed Mathematics Instruction for Early Childhood Classrooms.
International Journal of Early Childhood, 51(1), 41–57. doi:10.100713158-019-
00232-9

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM
Inroads, 2(1), 48–54. doi:10.1145/1929887.1929905

Berninger, V. W., Abbott, R. D., Vermeulen, K., Ogier, S., Brooksher, R., Zook,
D., & Lemos, Z. (2002). Comparison of Faster and Slower Responders to Early
Intervention in Reading: Differentiating Features of Their Language Profile. Learning
Disability Quarterly, 25(1), 59–76. doi:10.2307/1511191

Bers, M. U. (2018). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom. Routledge Press.

California State Board of Education. (2013). California Common Core State
Standards: English Language Arts & Literacy in History/Social Studies, Science,
and Technical Subjects. Retrieved from California Department of Education: https://
www.cde.ca.gov/

Chase, M., Son, E. H., & Steiner, S. (2014). Sequencing and Graphic Novels with
Primary-Grade Students. The Reading Teacher, 67(6), 435–443. doi:10.1002/trtr.1242

Code.org. (2013). Steve Jobs on Computer Science. Academic Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.cde.ca.gov/
https://www.cde.ca.gov/

37

Why Teach Coding to Early Elementary Learners

Code.org. (2020a, April 15). CS helps students outperform in school, college, and
workplace. codeorg.medium.com

Code.org. (2020b). CS helps students outperform in school, college, and workplace.
Retrieved from codeorg.medium.com

Code.org. (2021a). Code.org Statistics. Retrieved from Code.org: code.org/statistics

Code.org. (2021b). Why Computer Science? Retrieved from code.org: code.org/
promote

Erdmann, K. A., & Hertel, S. (2019). Self-regulation and co-regulation in early
childhood – development, assessment and supporting factors. Metacognition and
Learning, 14(3), 229–238. doi:10.100711409-019-09211-w

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M.
(2013). Designing ScratchJr: support for early childhood learning through computer
programming. In Proceedings of the 12th International Conference on Interaction
Design and Children. New York, NY: Association for Computing Machinery.
10.1145/2485760.2485785

Goddu, M. K., Lombrozo, T., & Gopnik, A. (2020). Transformations and Transfer:
Preschool Children Understand Abstract Relations and Reason Analogically in
a Causal Task. Child Development, 91(6), 1898–1915. doi:10.1111/cdev.13412
PMID:32880903

Hassenfeld, Z. R., & Bers, M. U. (2020). Debugging the Writing Process: Lessons
From a Comparison of Students’ Coding and Writing Practices. The Reading Teacher,
73(6), 735–746. doi:10.1002/trtr.1885

Jacobson, L. (2016). The Codemakers: J is for Javascript. School Library Journal,
62(4).

Jones, C. D., Clark, S. K., & Reutzel, D. (2012). Enhancing Alphabet Knowledge
Instruction: Research Implications and Practical Strategies for Early Childhood
Educators. Early Childhood Education, 41(2), 81–89. doi:10.100710643-012-0534-9

Jungert, T., Hubbard, K., Dedic, H., & Rosenfield, S. (2018). Systemizing and the
gender gap: Examining academic achievement and perseverance in STEM. European
Journal of Psychology of Education, 479–500.

Kafai, Y. B., Fields, D. A., & Searle, K. A. (2014). Electronic Textiles as Disruptive
Designs: Supporting and Challenging Maker Activities in Schools. Harvard
Educational Review, 84(4), 532–557. doi:10.17763/haer.84.4.46m7372370214783

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://codeorg.medium.com
http://codeorg.medium.com
http://code.org/statistics
http://code.org/promote
http://code.org/promote

38

Why Teach Coding to Early Elementary Learners

Kazakoff, E., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based
intensive robotics and programming workshop on sequencing ability in early
childhood. Early Childhood Education Journal, 41(4), 245–255. doi:10.100710643-
012-0554-5

Kewalramani, S., Palaiologou, I., & Dardanou, M. (2016). Children’s Engineering
Design Thinking Processes: The Magic of the ROBOTS and the Power of BLOCKS
(Electronics). Eurasia Journal of Mathematics, Science and Technology Education,
16(3). Advance online publication. doi:10.29333/ejmste/113247

Massachusetts Department of Elementary and Secondary Education. (2017). English
Language Arts and Literacy. Retrieved from Massachusetts Department of Education:
https://www.doe.mass.edu/

Maureen, I. Y., van der Meij, H., & de Jong, T. (2020). Enhancing Storytelling Activities
to Support Early (Digital) Literacy Development in Early Childhood Education.
International Journal of Early Childhood, 52(1), 55–76. doi:10.100713158-020-
00263-7

Muro, M., Liu, S., Whiton, J., & Kulkarni, S. (2017). Digitalization and the American
workforce. Brookings Institute.

National Governors Association Center for Best Practices, Council of Chief State
School Officers. (2010a). Common Core State Standards: English Language Arts
Standards: Writing, Grade 1. Washington, DC: National Governors Association
Center for Best Practices, Council of Chief State School Officers. Retrieved from
Common Core State Standards Initiative: http://www.corestandards.org/

National Governors Association Center for Best Practices, Council of Chief State
School Officers. (2010b). Common Core State Standards: Mathematics Standards:
Number & Operations in Base Ten, Grade 1. National Governors Association Center
for Best Practices, Council of Chief State School Officers.

NGSS Lead States. (2013). Next Generation Science Standards: For States By
States. Author.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Basic Books.

Portelance, D. J., Strawhacker, A., & Bers, M. U. (2015). Constructing the ScratchJr
programming language in the early childhood classroom. International Journal of
Technology and Design Education, •••, 1–16.

Prensky, M. (2001). Digital Natives, Digital Immigrants Part 2: Do They Really
Think Differently? On the Horizon, 9(6), 1–6. doi:10.1108/10748120110424843

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.doe.mass.edu/
http://www.corestandards.org/

39

Why Teach Coding to Early Elementary Learners

Springer, K., & Keil, F. (1991). Early Differentiation of Causal Mechanisms
Appropriate to Biological and Nonbiological Kinds. Child Development, 62(4),
767–781. doi:10.2307/1131176 PMID:1935342

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in young
children’s performance on robotics and programming tasks. Journal of Information
Technology Education: Innovations in Practice, 15, 145–165. doi:10.28945/3547

Sullivan, A., & Bers, M. U. (2018). Investigating the use of robotics to increase girls’
interest in engineering during early elementary school. International Journal of
Technology and Design Education, 29(5), 1033–1051. doi:10.100710798-018-9483-y

Sullivan, A. A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing, and Coding
with KIBO: Using Robotics to Foster Computational Thinking in Young Children.
Proceedings of the International Conference on Computational Thinking.

U.S. Bureau of Labor Statistics. (2021). Labor Force Statistics from the Current
Population Survey CPS CPS Program Links. Author.

Wilson-Lopez, A., Larsen, V., & Gregory, S. (2017). Reading and Engineering:
Elementary Students’ Co-Application of Comprehension Strategies and Engineering
Design Processes. Journal of Pre-College Engineering Education Research, 6(2),
39–57. doi:10.7771/2157-9288.1116

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All:
Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12
Classrooms. TechTrends, 60(6), 565–568. doi:10.100711528-016-0087-7

ADDITIONAL READING

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM
Inroads, 2(1), 48–54. doi:10.1145/1929887.1929905

Bers, M. U., & Sullivan, A. (2019). Computer science education in early childhood:
The case of ScratchJr. Journal of Information Technology Education: Innovations
in Practice, 18, 113–138.

Education Design Center. (2020). Broadening Participation of Elementary Students
and Teachers in Computer Science. Retrieved from https://www.edc.org/broadening-
participation-elementary-students-and-teachers-computer-science

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.edc.org/broadening-participation-elementary-students-and-teachers-computer-science
https://www.edc.org/broadening-participation-elementary-students-and-teachers-computer-science

40

Why Teach Coding to Early Elementary Learners

Elkin, M., Sullivan, A., & Bers, M. U. (2018). Books, Butterflies, and ‘Bots:
Integrating Engineering and Robotics into Early Childhood Curricula. In Early
Engineering Learning (pp. 225-248). Singapore: Springer Singapore.

Grover, S., & Pea, R. (2013). Computational Thinking in K—12: A Review of the State
of the Field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Resnick, M., & Robinson, K. (2017). Lifelong kindergarten (The MIT Press). The
MIT Press. doi:10.7551/mitpress/11017.001.0001

Sáez-López, J., Román-González, M., & Vázquez-Cano, E. (2016). Visual
programming languages integrated across the curriculum in elementary school: A
two year case study using “Scratch” in five schools. Computers & Education, 97,
129–141. doi:10.1016/j.compedu.2016.03.003

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in young
children’s performance on robotics and programming tasks. Journal of Information
Technology Education: Innovations in Practice, 15, 145–165. doi:10.28945/3547

KEY TERMS AND DEFINITIONS

Code: To create a program in a specific programming language.
Conditionals: A programming command that executes different actions based

on evaluating a condition.
Programmer: One who writes code in a specific programming language.
Programming Language: A formal language consisting of commands that can

be interpreted by a computer.
Robot: A machine that is programmable via a computer and is capable of carrying

out actions automatically.
Sequencing: Putting events, steps, or other individual items in a specific order

in relation to each other.
STEM: The collective field consisting of science, technology, engineering, and

mathematics.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

41

DOI: 10.4018/978-1-7998-7308-2.ch003

ABSTRACT

This chapter explores perspectives on unplugged coding and computational thinking
(CT) in early childhood. Concepts, definitions, and research on unplugged learning
and its relationship to computer science are considered. Several examples illustrate
how young children can encounter powerful ideas of CT in both formal educational
settings and in the process of everyday life. Resources are provided that aid in the
identification and integration of unplugged activities into early childhood settings.
Finally, the authors advocate for further research on teaching CT concepts to children
that includes both coding and unplugged approaches.

INTRODUCTION

In the years before writing this chapter, we have had numerous conversations with
members of the DevTech research group and colleagues about whether computers
are necessary for children to learn computational thinking (CT). Many expressed the
view that computers are an integral and inseparable part of computer science (CS)
education. Although the precise definition of CT and its implications for education
are still debated, in this chapter we attempt to unpack the distinctions between CS,

Unplugged Learning:
Recognizing Computational

Thinking in Everyday Life

Emily Relkin
Tufts University, USA

Amanda Strawhacker
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

42

Unplugged Learning

CT and unplugged learning for the purpose of envisioning a more equitable and
inclusive computational pedagogy.

While it is hard to imagine CS education without computers, the logic, algorithms
and other processes that contribute to CT have always been an important part of
everyday life even before computers came into existence. After all, if it had been
impossible to think “computationally” before the advent of computers, how would
humans have invented them in the first place?

These questions mirror the rise of a national debate about the place of technology
in computer science education. Critics of unplugged learning (notably, Huang &
Looi, 2020) have argued that some CS concepts may be impossible to divorce from
the technological medium of computers, and that school-based curricula that seek
to teach CS concepts without computers are under-researched. We wholeheartedly
agree with Huang and Looi’s conclusion that more research is needed to understand
whether and how “unplugged” learning that takes place without computers or other
technology can support engagement with CS.

However, we argue that the debate is far from settled about whether unplugged
learning can effectively support the development of computational thinking concepts.
In this chapter, we use Bers’ definition of CT concepts as those discipline-agnostic
ideas, such as algorithmic logic and iterative design, that are foundational to CS, but
not necessarily exclusive or unique to it. While education research is still exploring
the relationships among tech tools, unplugged learning, and CS education, we
propose that unplugged activities may engage children in CT skills practice, which
may be beneficial for general development even beyond CS learning. For example,
CS education has long faced criticism for lack of inclusion among girls, minorities,
learners with disabilities, and learners unable to access tech tools and experiences.
These inequities cause early gaps in CS achievement that last throughout a child’s
academic life and even long into adulthood, impacting career opportunities and
contributing to a stratified CS workforce (Brackmann et al., 2017; Margolis et al.,
2017; Wang & Hejazi Moghadam, 2017). By engaging children in unplugged CT
learning, beginning with familiar early childhood activities, children may be able
to build a foundation of CT awareness to mitigate gaps in CS readiness, and even
the playing field for later pre-professional training.

Throughout this chapter we will be referring to concepts of Computer Science
(CS) and Computational Thinking (CT). We will discuss methods and practices
of exploring these domains such as unplugged learning and coding/programming.
Although the meaning of these concepts are still evolving, for the purposes of this
chapter, we will use the following definitions and conceptions: (1) CS is a field of
study explicitly about understanding and utilizing computer technology. The Computer
Science Teachers Association (CSTA) in the US has adopted the Association for
Computing Machinery’s (ACM) definition of CS, as “the study of computers and

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

43

Unplugged Learning

algorithms processes, their principles, their designs, their applications, and their
impact on society” (CSTA, 2021; Tucker et al., 2006). (2) CT is often described
as drawing upon computer science concepts, but CT skills are not exclusive to CS
(Basu et al., 2016; Chen et al., 2017; Wing, 2006). CT broadly represents the set
of thought processes that are required to engage in a range of analytic skills. These
skills include, among other things, the ability to think recursively, apply abstraction,
and use heuristic reasoning to solve a problem or complete a task. The process of
engaging in CT is related to the field of CS but is also applicable to everyday life
(Relkin et al., 2021; Wing, 2006, 2011). (3) We define “unplugged” as any activity
or experience that does not require the child to be actively manipulating a smart
device or computer, but that still promotes engagement with computer science
concepts, skills, and practices. (see table 1). There are many tools and technologies
that are available to introduce learners to CS and CT. New resources for unplugged
computational learning are still emerging. In the following sections we outline the
importance of unplugged opportunities to engage a diverse range of students in
computational learning.

Unplugged Coding vs. Unplugged CT: Not All
Unplugged Learning is Created Equal

One of the original intentions launching CS unplugged initiatives was to teach CS
concepts in a way that made them accessible regardless of the student’s access to
computers. Coding (programming) involves using a set of instructions to solve
problems and tasks with computers and other technologies (McLennan, 2017; Metin,
2020). Some activities that are described as “unplugged” are essentially coding
exercises carried out offline using some of the same symbols and syntax as actual
programming. For example, ScratchJr.org allows print out of large programming
block cards that can be used to play a game called “Programmer Says”. This game
is similar to “Simon Says” but uses ScratchJr programming language instead of the
usual verbal instructions to help students gain familiarity with coding commands.
For the purpose of the present discussion, we will refer to these types of exercises
as unplugged coding activities.

Other resources teach CT-related principles without directly invoking coding
commands. For example, CSunplugged.org’s “Divide and Conquer?” uses animal
playing cards to teach about algorithms and related concepts. We will refer to activities
such as these as unplugged CT activities. While coding is recognized as a means of
acquiring CT skills, unplugged activities provide another route that may be more
accessible to young children, especially those who are pre-literate or without ready
access to computer hardware.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

44

Unplugged Learning

New research is constantly leading to revisions and refinements in educational
practices. This includes how unplugged coding activities (e.g. board game or paper-
based coding) versus unplugged CT activities (e.g. non-coding sorting and pattern
matching) are employed in early childhood education (e.g., see Barr & Stephenson,
2011; Bell & Lodi, 2019; Bell & Vahrenhold, 2018; Upadhyaya et al., 2020). In
the following section we discuss what the evidence currently suggests about how
unplugged activities may contribute to children’s future CS success.

Unplugged Activities as a Foundation
for Computer Science Learning

Unplugged activities were created as a means of teaching Computer Science (CS)
concepts and skills without requiring use of computers or programming (Bell &
Vahrenhold, 2018). This approach was popularized in the early 1990s by a group
of collaborating educators and researchers who coined the term “CS Unplugged”
and shared a free collection of unplugged resources (Bell & Vahrenhold, 2018).
CS unplugged concepts were taken from advanced CS courses and translated into
physical activities where information could be more easily understood (Bell & Lodi,
2019). Since then, engaging students in unplugged activities have become widely
recognized as beneficial for teaching CS concepts to young children. A variety of
newer unplugged activities and curricula are found on websites such as csunplugged.
org, in mainstream coding education initiatives such as www.code.org and https://
www.barefootcomputing.org/ and in books and other resources (Caldwell & Smith,
2016).

Unplugged CS in Early Childhood

Limits to young children’s literacy, numeracy, and abstract reasoning skills place
some constraints on the CS concepts that can be mastered by young children (Bell
et al., 2016). Young children are capable of learning to code but typically require
developmentally appropriate programming platforms that use tangible blocks and
graphical coding interfaces (Strawhacker et al., 2017; Sullivan et al., 2015; Resnick
& Silverman, 2005). Unplugged activities can be used to introduce CS concepts
to young children regardless of their ability to read, write, or count. An unplugged
activity typically involves a set of artifacts and procedures that are well-known to
most children and adults from their everyday lives. By presenting a readily understood
analogy, or challenging students to formulate questions and find solutions, unplugged
activities exercise some of the same skills that are involved in computer programming
without the use of computers.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

45

Unplugged Learning

Past research on the impact of CS unplugged on young children has provided some
contradictory messages. A few researchers have reported that unplugged activities do
not increase interest or knowledge in CS/CT as much as traditional coding activities
(e.g., Black et al., 2013). Other investigators have found that unplugged lessons alone
are just as effective if not better at promoting CT as traditional coding (Hermans
& Aivaloglou, 2017; Metin, 2020; Wohl et al., 2015). Yet another group of authors
have suggested that the most powerful way to promote CT in young children is to
integrate unplugged exercises and coding activities together (Metin, 2020; Huang
& Looi, 2020; Bers, 2020; Thies & Vahrenhold, 2012, 2013).

How Does Computational Thinking Fit
with Unplugged Learning?

The concept of CT was mentioned by Seymour Papert in his 1980 book Mindstorms,
but the concept was more widely popularized by Jeanette Wing in 2006. Wing proposed
that teaching CT should be part of every child’s education. However, long before
Wing (2006) popularized the term “computational thinking”, young children have
practiced sequencing, deconstructing problems, symbolic representation, and other
CT skills in various science and non-technical classes as well as in their daily lives.

There have been several attempts to identify the subdomains of CT in a manner
that conceptually aligned with child development. For example, the Computer
Science Teachers Association (CSTA) and the International Society for Technology
in Education (ISTE) developed a framework for grades K-12 that includes nine
core concepts of CT (CSTA & ISTE, 2011). Dr. Marina Bers has identified seven
developmentally appropriate powerful ideas of Computational Thinking for children
in the range of 4-7 years of age (Bers, 2018; 2020). CSunplugged.org identified 6 CT
subdomains for K-12. Table 1 shows the relationship among these three frameworks.
In this chapter, we primarily employ Bers’ seven powerful ideas because they are
specifically developmentally appropriate for early childhood (ages 4-7).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

46

Unplugged Learning

Unplugged Learning as a Pathway to
Equitable Computational Thinking

CT has gained traction among education practitioners and researchers as a foundational
skill set for CS education. However, research has identified that gaps in children’s
access to devices and technology instruction predict lasting and lowered outcomes
for those students with lowered access to technology (Fraillon et al. 2020). Across
schools, districts, and even nations, gaps are common between students from families
of high and low socioeconomic status (SES), with lower SES correlated to lowered
performance on CT assessments (Karpiński et al. 2021).

In an analysis of data from the 2018 IEA International Computer and Information
Literacy Study (ICILS), which tested over 46,000 students from 14 countries,
researchers found that persistent gaps among students’ CT performance were linked
to their family’s socioeconomic backgrounds (Fraillon et al. 2020; Karpiński et al.
2021). Specifically, results “consistently showed that students from less advantaged
backgrounds had lower levels of computer skills than those from more advantaged
backgrounds, especially in CT” (Karpiński et al. 2021, p. 1).

Table 1. Computational Thinking domains as described by Bers (2018), CSunplugged.
org and CSTA & ISTE (2011) respectively. The “CT Concept or Learning Goal”
column highlights the overlap between these frameworks

Bers’ CT Powerful
Ideas

CS Unplugged
Framework

ISTE & CSTA
Standards CT Concept or Learning Goal

Algorithms Algorithmic
Thinking

Algorithms &
Procedures

Step-by Step sequencing/order used
to achieve a task or solve problems

Modularity Decomposition Problem
Decomposition

Breaking up larger task into smaller
more manageable parts

Control Structures Generalizing and
Patterns Parallelization

Recognizing patterns and repetition,
cause and effect, determining the
order of events, Organize resources

Representation Abstraction Abstraction, Data
Representation

Symbolic Representation, Filtering
to make less complex

Hardware / Software N/A Automation
Smart objects are not magical,
objects are human engineered,
understanding technology

Design Process Evaluation Simulation
Creative problem solving, gathering
information, identifying possible
solutions, iterative editing/ revision

Debugging Logic Data Analysis Identifying problems, Making sense
of data, Error correction

Source: (Bers, 2018; Csunplugged.org; CSTA & ISTE, 2011)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

47

Unplugged Learning

Importantly, preliminary research has shown that unplugged activities may be
useful for addressing these gaps by laying a foundation for later technology-mediated
CS learning (Bers, 2020; del Olmo-Muñoz et al. 2020). Young children aged 4-8
years, with their developmental need for physical, hands-on play and limited screen
engagement, may benefit the most from foundational unplugged CT experiences
(Przybylski & Weinstein, 2019; Saxena et al. 2020). Further, CT already permeates
children’s daily activities and experiences as a cognitive skill set, in and out of
school. It is important to look beyond formal education and explore the possibilities
of democratizing CT by broadening awareness of its impact in everyday life. Given
mounting evidence, we posit that one critical step toward addressing the known gap
in CT performance among children from different backgrounds and with differential
access to technology is to research and promote educational initiatives on aspects
of CT that can be introduced in an unplugged format in formal, informal, and home
learning settings.

By acknowledging and highlighting opportunities for everyday unplugged CT
experiences, there is hope for democratizing foundational CS skills for all children, not
just those whose families can afford it. In this chapter, instead of emphasizing novel
activities and strategies to introduce CT into early childhood learning, we focus on
recognizing how CT already exists in children’s everyday learning. To help highlight
the many opportunities to integrate CT throughout children’s activities at home and
school, we draw on existing definitions of computational thinking concepts, taken
from Bers’ (2020) Powerful Ideas of Computational Thinking. This reference was
chosen for its evidence-based recommendations, developed from empirical research
specifically relating to early childhood (Bers, 2020)

SUPPORTING THE ACQUISITION OF YOUNG
CHILDREN’S CT THROUGH UNPLUGGED LEARNING

In the following sections, we follow a day in the life of a fictional child, Ava, who
is a typically-developing 5-year-old girl. Like most kids her age, she explores and
practices critical cognitive skills in her everyday life, preparing her for foundational
computational thinking tasks before ever working with a computer. The examples
below focus on typical “unplugged” experiences and daily practices that require
problem solving and CT strategies. In each example, we offer evidence-based practice
suggestions for further supporting unplugged engagement with CT.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

48

Unplugged Learning

Waking up With Algorithms

Ava’s father knocks on her bedroom door and calls, “Rise and shine, Sleepyhead!”
Ava stumbles into the bathroom, rubbing her eyes and yawning, and reaches for
her toothbrush. Sometimes she is so sleepy in the morning, she has to stop and
remember what to do first. She checks the list with sticker pictures that she made
with her mother to remind her of the steps:

In this example, Ava is exercising the CT concept of algorithms, a sequential step-
by-step process that can help solve problems or complete tasks (Bers, 2020; ISTE
& CSTA, 2011; CSunplugged.org). In a typical coding task, children might explore
algorithms by creating a sequence of coded instructions for a robot to carry out, or
by using directional steps (e.g. turn left, one step forward) to program an on-screen
character to navigate a maze. Here, Ava applies the same instructional logic to a
non-technological activity, brushing her teeth.

By following a sequence of steps, the activity reinforces the idea that order
matters to assure a process works as intended. Ava also worked with a parent to
create the chart herself, meaning she was engaged in constructing the algorithm,
not just following it. This way, she comes to know that there is meaning to her daily
ritual, and that following the order of her algorithm is important to ensure that her
teeth will be clean and healthy. To help children practice algorithmic thinking, you
can work to build a chart, song, or other mnemonic to connect children’s developing
CT skills to their other daily practices, such as personal hygiene habits.

Figure 1.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

49

Unplugged Learning

Debugging and Mismatched Socks

It’s Ava’s first day of Kindergarten and she’s excited to dress up for the occasion.
Ava picks out her favorite outfit for school and takes a look in the mirror. “Oh no,
my socks don’t match!” When she opens her sock drawer she can’t seem to find a
pair that are the same. Every pair of socks in the drawer is mismatched! She takes
all of the socks out of the drawer and places them on the bed and starts to sort
them. First she puts all the white socks together, then all the red, blue, etc. She then
notices that they are still not matched. She looks at the white socks and sees some
have patterns and some are plain white, so she separates those. She does the same
for the other colors. She pairs up all of the socks by color and pattern only to find
that two of the socks don’t match each other or any others. She calls her father over
to ask what to do. Her father suggests going downstairs to check in the laundry.
She goes downstairs, finds the socks and pairs them up. The problem is solved, and
she remembers to change into a matched pair before she goes to school! They also
agree to keep the socks balled together in the future to avoid this problem.

Debugging is the two-part act of (1) exploring a system for an issue or “bug” that
is causing the smooth functioning of the system to break down, and (2) working to
iterate through solutions until the bug is resolved (Bers, 2020). Although the term
debugging was coined to refer to issues in computational machinery, it also applies
to any system with multiple parts working together for a single function. In this
story, Ava engages in a form of “debugging” in order to solve the problem of her
mismatched socks. The “system” in this case is the flow of her laundry from dirty
to clean to sorted. Ava recognized that something was wrong with the process of
matching socks in her drawer and went through multiple iterations in order to fix
the problem. She completes the debugging process by restoring order to her drawer,
correcting her mismatched socks, and coming up with a plan (with the help of her
father) to prevent a similar problem in the future.

Modularity at the Breakfast Table

After finally picking her outfit, Ava runs to the kitchen - it smells delicious! While
her father finishes cooking and mother is busy helping her brother with homework,
Ava knows it’s her job to set the table. She is so excited to eat that she sets her own
place first - getting a plate, then a fork and knife, and finally a glass and putting
them at her seat. She looks up and realizes that she has walked from the cupboard
to the table three times, and has only set one place - there must be an easier way!
She moves back to the cupboard and this time she stops to think. Her father, mother,
and her brother will all need place settings. She counts out family members on her

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

50

Unplugged Learning

hands - 1, 2, 3. Then, she takes three plates and carefully carries them to the table.
She checks the example place setting she left at her own chair, and comes back
with three forks and knives, and then again returns with three cups. Just as she is
separating out the dishes into three matched place settings, everyone is ready to sit
down to her favorite breakfast - waffles!

When Ava sets the table, she is engaging in an idea similar to algorithms, but a bit
different. Modularity is the process of breaking down tasks or procedures into simpler
units. Modularity makes complex processes easier to manage by decomposing many
steps of a problem. Examples of modularity in technology-mediated activities include
separately coding two units (for example, characters in an animation) to interact with
each other, or breaking down a longer coding process (e.g. code a robot to navigate
across a room) into shorter steps (e.g. code a robot to navigate to the door, then to
the table, etc.). Ava made “modules”, or units, out of each place setting composed
of one plate, one cup, and one set of silverware.

There are many ways you can explore modularity without using screens or
technologies. Activities that involve planning are usually great opportunities to
break down complex tasks. You can help children get excited to plan their birthday
parties - complete with a guest list, invitations, favors, and games, all of which
require children to break down the tasks into smaller steps. You can even explore
modularity by breaking apart steps to a favorite song or dance and thinking about
the repeating “modules” and the order they are sequenced.

Control Structures for Walking to School

Ava leaves with her mother to go to school. She skips, jumps, and runs along the
sidewalk ahead of her mother, but she knows to always stop and wait when she gets
to a crosswalk. At the corner in front of her school, she holds her mother’s hand and
closely watches the crossing guard, Ms. Doyle. She remembers what she learned
last year, when her preschool teacher helped her whole class practice the special
rules for crossing the street: If Ms. Doyle is holding up the red sign, that means
Ava should STOP and wait. If Ms. Doyle holds up the green circle sign, that means
it’s safe to walk. Ava waits patiently while Ms. Doyle shows her red sign and lets
some cars pass. She and her mother do not begin walking until they see Ms. Doyle
holding up her green circle sign.

Control structures, sometimes called event-based codes, determine the order and
timing of events as well as the sequence in which instructions are followed. Machines
that use sensors, such as robotic vacuum cleaners that use distance sensors to navigate
a room, or automatic doors that open when a person activates the infrared sensor, are

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

51

Unplugged Learning

real-world examples of technologies that use control structures. Use of phrases with
words such as when, while, until, and if are clues that children are exploring Control
Structure reasoning. In this unplugged example, Ava shows a good understanding that
traffic signs affect the timing of safe street crossing, which is an exercise in control
processes. In her understanding of the meaning of the signs Ava is also exercising
the CT process of representation which we explore next.

Representation

After hugging her mother goodbye, Ava runs into her new classroom. She gets excited
when she finds her friend Liam from her preschool is in her new class! Mr. Oladeji
tells everyone to find their nametag at a table at the front of the room. Ava and Liam
look at all the nametags - there are so many! Ava looks carefully for any names that
start with the letter “L”. “Liam! I found yours!” Ava waves Liam’s name tag at her
friend, and then keeps looking until she finds the name tag that spells A-V-A, but
is confused when she finds three tags with her name on them. When she asks her
teacher, he tells her there are two other students named Ava in their classroom, so
she and the other Avas should pick a colored sticker so they can tell their name tags
apart. She picks a blue star since blue is her favorite color! That will make it easy
to find every morning. She walks to her seat, ready for the day.

Representation is the notion of an equivalence of symbols with concepts, objects,
shapes, and other things. In computer-based coding, representation might come
out in understanding the specific symbols of a block-based coding language, such
as the color- and shape-based language system used by the Cubetto robot (https://
www.primotoys.com/). It might also come out in text-based coding languages, for
example, in a function or subroutine where typing the command “time” represents
a long series of coding steps in which the computer accesses, sorts, and displays
information about the current time of day. In preschool and Kindergarten, children
learn that letters can be used to represent sounds, numbers represent quantities, and
that other types of symbols (such as stop signs and gendered pictures on bathrooms)
have meanings. In the example here, Ava learns that the symbol of a blue star can also
be a useful representation for herself when letters and words may not be sufficient.

Hardware/Software

During her first day of kindergarten Ava’s teacher asks, “who likes music?” Ava
raises her hand and says, “I love to listen to music when I travel in the car”. The
teacher asks, “can music only come from a radio?” One of Ava’s classmates says
she listens to music on a computer and another hears music on her parents’ cell

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

52

Unplugged Learning

phone. The teacher asks if anyone plays an instrument. Ava says she’s learning to
play piano. The teacher asks, “what’s the difference between music on the radio
and music on the piano?” Ava says, “when I turn on the radio the music just comes
out, but I have to remember which keys to press for the piano to make music.” The
teacher smiles and asks, “Is it the piano that makes the music or is it you?” Ava says,
“I guess it is both”. The piano makes the sounds, but I have to tell it which notes to
play. The teacher says “that is right! The radio, the computer, the cellphone, and
the piano are all types of machines that can make sounds, but we need to tell the
machines what to do in order for it to come out sounding like music.”

Ava’s teacher is helping her to understand an analogous concept to hardware and
software as it relates to music and musical instruments. Children of this age are
learning that technological objects are not magical or alive but in fact need to be
constructed and instructed to perform the way they do. Computers use hardware
and software to run. Hardware is physical devices (e.g., keyboard, computer screen,
motherboard) and software is codes that tell the computer how to operate. In this
example, Ava’s teacher points out that both digital and analog technologies can
function as “hardware”. Coded software or sometimes our physical actions serve
as the inputs needed to control the machine.

Of all the CT concepts explored in this chapter, the relationship between
hardware and software is one of the most challenging for making unplugged
learning connections. This is because computers, with their internal lightning-fast
processors, simplify the hardware/software. This metaphor is made more complex
in the non-digital world by the intervention of our natural processors - the brain.
In Ava’s example, the piano and radio are easily identifiable as the hardware that
“enacts” the musical performance. In the case of the radio, the software is also easily
named - the computer file that stores the music recording. Naming the “software”
guiding a piano performance is more nebulous. Is it Ava, the player striking the
keys? Or, the written music that reminds Ava of the structure and sequence of notes?
Or is it Chopin, the original designer and author of the sheet music sitting on Ava’s
piano? Any of these answers could be argued, although the most precise analogy
to computer code probably points to the sheet music as an analogue for software,
and Ava (the player) is the “processor” translating the written instructions to sounds
on the piano hardware.

Explaining this complex system to children, without the ability to show them
a processing unit inside of a computer, leads to some necessary challenges for the
educator, and probably some confusion in the learner. One way around this is to
use a simplified metaphor, such as comparing it to music and musical instruments.
Although this is an imperfect analogy, it has the benefit of leveraging children’s
natural inclination toward concrete thinking (for a deeper discussion of concrete

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

53

Unplugged Learning

thinking in the context of computer science education, see Papert, 2005). By using a
basic metaphor, children can develop a heuristic that can serve them as a foundation
for later, more advanced exploration of hardware and software.

Design Process

When her mother picks Ava up at school, she can hardly wait to tell her about her
first homework assignment - she gets to build a structure out of marshmallows and
toothpicks! When they get home Ava starts planning the marshmallow structure.
Ava made lots of marshmallow towers at STEM camp this summer, so decides to
challenge herself and build a marshmallow bridge. The only problem is, she can’t
figure out how to make it stay upright without falling down in the middle. She asks
her brother for help. He looks at the table and asks “Where’s your design?” Ava
looks up, curious. “You know,” her brother says, “your plan. Your blueprint. The
picture that you’re using to help you build the whole thing.” Ava’s face lights up.
“You’re right! I forgot, we used to make blueprints at camp!” She runs to get paper
and her pencil box, and begins furiously sketching out her bridge. Her mother smiles
when Ava adds her final touches to the drawing, and offers to hold up her design
while Ava begins to build it. Ava checks the plan, and this time adds a few supporting
marshmallows in the center. Now it looks sturdy! She asks her brother to test it for
her. He picks up the box of leftover toothpicks and places it on the bridge - but it
crashes down! “Oh no! I need to add more middle parts,” Ava says and she picks
up the broken bridge carefully. After two more tests and redesigns, her bridge finally
holds up to the toothpick box test! Her brother offers to help her carry it into school
tomorrow to make sure it doesn’t break before she can share it with her class.

In this example, Ava goes through the various steps of the design process. She first
imagines what she will make and asks a question about how to make a sturdy structure.
She plans using a blueprint, she creates the structure, and tests its sturdiness. She
also improves the structure and shares with her family and classmates. The design
process is an open-ended and iterative process used to create new things. There’s
no official starting or ending point to the design process. Children can begin at
any step, move in any direction and repeat the cycle as many times as they see fit.

In contrast to the CT concept of hardware and software, introducing the design
process is one of the easiest computational thinking skills to integrate into unplugged
everyday life. Design is a human-driven activity, and can take place in almost any
modality and in the context of any topic. Scientists engage in a form of the design
process (they prefer the term “scientific method”) when planning and carrying out
experiments. Writers use the functionally identical “writing process” to brainstorm,
draft, and revise their stories. Computer Scientists learn to engage in the iterative

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

54

Unplugged Learning

process of writing, compiling, running, and debugging their code until it functions
as intended. When children explore robotics for the first time they can design the
hardware that executes their program, the program itself, or a combination of both.
Fortunately for unplugged CT learning, children can explore the steps of the design
process using familiar materials and ideas. Crayons, paper, and chalk can help with
planning and blueprinting, and traditional blocks, craft supplies, or recycled and
found materials are great for modeling their designs. Any activity that engages
children in identifying a problem, formulating a solution, and working to build it
into a reality is a fantastic opportunity to engage in the steps of the design process.

RESOURCES

In this section we list some of the resources that can aid in the implementation of
unplugged learning for early childhood education and allow creation of new activities.

Websites such as www.csunplugged.org, www.code.org, https://www.
barefootcomputing.org/, www.kodable.com, and www.csinsf.org, are excellent
resources for finding unplugged CT as well as unplugged coding activities and
curricula for young children. These websites include unplugged CT activities
that engage children in various subdomains including algorithms, debugging, and
decomposition. Unplugged coding cards for various early childhood technologies
can be found on sites such as https://www.scratchjr.org/ that allows download and
printing of free large ScratchJr unplugged cards. Similar cards for the KIBO robotics
platform can be purchased at https://shop.kinderlabrobotics.com. These coding
cards are an excellent way to introduce children to programming languages for the
first time and may be more accessible to some children than manipulating smaller
blocks. You can also purchase ScratchJr coding cards which includes both interface
and coding as well as unplugged activity ideas for educators.

The DevTech Research Group has created the Coding as Another Language (CAL)
ScratchJr and KIBO curricula for PreK-2nd grade that integrate both traditional
coding, unplugged coding, and literacy activities. You can learn more and download
the CAL curricula for free here: sites.tufts.edu/codingasanotherlanguage.

We and other researchers believe that it is vital that unplugged CS education
connects to children’s everyday lives. Therefore, we encourage educators and
researchers to create their own activities that are personally meaningful to them
and their students.

If you are interested in creating your own activities here are guiding questions
to inspire children’s learning:

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

55

Unplugged Learning

• Introduce Design: Can we make a plan or design for this idea? Can we iterate
through multiple revisions?

• Practice Sequencing: How does order matter? what would happen if we
changed the order of steps?

• Solve Problems by Debugging: Is there a step-by-step approach we could
take to identify the problem? How can we try to fix it?

Many educators find it helpful to start by teaching young children unplugged
coding/CT and then graduate to traditional lessons of coding. Here are some concepts
to keep in mind during that process:

• Consider the age range the tool was designed for. Will it be too simple or too
complex for your learner?
 ◦ Start with tangible coding languages and tools for younger learners

before moving to screen-based ones
 ◦ For pre-readers and beginning-readers, look for coding tools that don’t

rely on text-based language. Draw or print out images of the coding
symbols to use in off-screen games and activities.

 ◦ For children who are ready for a challenge, look for tools that support
open-ended coding experiences, rather than puzzle-style or step-by-step
coding games

• Start small.
 ◦ Introduce a robot without its power source or batteries the first time you

share it with a child.
 ◦ When beginning to learn a coding language, focus on one or two basic

commands to master before moving into more complex instructions.
• Make connections to real-world technology - You can find sensors, cameras,

and computers all around!
 ◦ Point out when doors and sinks motion-activated, or when interactive

vending machines use robotic arms
 ◦ Have discussions about whether certain technologies are robots, with

moving parts that can be programmed (e.g. self-driving cars, motion-
activated doors) and which are non-robotic machines (e.g. typewriters,
televisions, flashlights).

• Finally, consider a mix of both plugged and unplugged experiences to engage
children in all the kinds of learning they might encounter in the real world!
Many libraries, makerspaces, and museums will have tools and technologies
available for children to explore. This can be a great first introduction to the
world of plugged-in CT and CS exploration.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

56

Unplugged Learning

REFLECTING ON THE IMPORTANCE
OF UNPLUGGED LEARNING

Throughout this chapter we have argued that unplugged CT/CS learning can
support children’s later academic success. As we outlined in the beginning of this
chapter, preliminary evidence from research supports the perspective that unplugged
learning can be an important foundation for more formal CS education (Hermans
& Aivaloglou, 2017; Metin, 2020; Wohl et al., 2015). In addition, we propose two
other arguments supporting unplugged learning in early childhood.

First, we can look to other, more established learning domains for examples of
how to introduce young children to life-long concepts. In the field of language and
literacy, educators have long known about the importance of “print awareness,” or
highlighting text and letter symbols through child-accessible signage and books. If
we accept the premise that coding and CS comprise a computational literacy (e.g.,
Bers, 2020), then we might interpret the unplugged activities presented in this chapter
as suggestions for promoting “computational awareness” in learners before being
formally introduced to CS education.

Second, regardless of the impact of unplugged CT learning on children’s later
academic success, research is conclusive about the impacts of early exposure to
novel domains on children’s developing identity awareness (Kuhl et al. 2019;
Sullivan, 2019). Researchers have even demonstrated that early exposure to STEM
domains through playful and hand-on activities has contributed to disrupting the
formation of stereotypes that may inhibit children (particularly those from resource-
stretched backgrounds who are already facing a disadvantage in CS pathways)
from engaging in those professions later in life (Karpiński et al. 2021; Sullivan,
2019). In the face of disheartening gaps, it is critical for educators and families to
explore the use of unplugged CT activities to achieve more equitable CS education.
Unplugged learning might mitigate SES-based discrepancies in student performance
by reinforcing critical CT skills without the need for prohibitively expensive or
rare technologies. Although accessibility issues remain, we agree with others that
a model of unplugged learning outside the formal classroom may still be a useful
starting point to engage learners who have no other recourse to explore CT due to
inaccessible technologies (Manabe et al. 2011). Since unplugged lessons also tend
to be a thoughtful reframing of activities that children and families already do or
know how to do, they can also offer adults a chance to demystify CS concepts for
themselves, leading to more success teaching and modeling this kind of thinking
for children (e.g., Curzon et al. 2014).

Taking these arguments together, we propose that implementing unplugged
activities in early childhood may have lasting benefits in terms of children’s developing
interests, identities, and academic readiness to engage in later CS learning. Unplugged

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

57

Unplugged Learning

learning may even support foundational learning in other domains identified in
research as connected to CT. Our advocacy of unplugged learning does not detract
from our enthusiasm for approaches such as learning to code which can have additive
or synergistic benefits for children’s cognitive development. There is uncertainty
about whether unplugged learning alone achieves the same outcomes as coding
activities in terms of mastery of CT concepts. More research is needed to determine
how to best integrate unplugged and coding approaches into a unified method of CS
education for young children. In addition, further refinement of unplugged curricular
activities is needed so that best educational practices can be identified.

REFERENCES

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What
is Involved and what is the role of the computer science education community? ACM
Inroads, 2(1), 48–54. doi:10.1145/1929887.1929905

Basu, S., Mustafaraj, E., & Rich, K. (2016). CIRCL Primer: Computational Thinking.
In CIRCL Primer Series. Retrieved from https://circlcenter.org/computational-
thinking

Bell, T., & Lodi, M. (2019). Constructing Computational Thinking Without Using
Computers. Constructivist foundations, Vrije Universiteit Brussel. Constructionism
and Computational Thinking, 14(3), 342–351.

Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work?
In H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures between lower
bounds and higher altitudes: Essays dedicated to Juraj Hromkovič on the occasion
of his 60th birthday. Springer International Publishing.

Bers, M. U. (2018). Coding as a playground: programming and computational
thinking in the early childhood classroom. Routledge., doi:10.4324/9781315398945

Bers, M. U. (2020). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom (2nd ed.). Routledge Press.
doi:10.4324/9781003022602

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan, P. W., & Meagher, L. R.
(2013). Making computing interesting to school students: Teachers’ perspectives. In
Proceedings of the 18th ACM Conference on Innovation and Technology in Computer
Science Education. Association for Computing Machinery. 10.1145/2462476.2466519

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://circlcenter.org/computational-thinking
https://circlcenter.org/computational-thinking

58

Unplugged Learning

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., &
Barone, D. (2017). Development of computational thinking skills through unplugged
activities in primary school. Proceedings of the 12th Workshop on Primary and
Secondary Computing Education, 65-72. 10.1145/3137065.3137069

Caldwell, H., & Smith, N. (2016). Teaching computing unplugged in primary
schools: Exploring primary computing through practical activities away from the
computer. Learning Matters.

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers to
computational thinking using unplugged storytelling. Proceedings of the 9th workshop
in primary and secondary computing education, 89-92. 10.1145/2670757.2670767

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020).
Computational thinking through unplugged activities in early years of
Primary Education. Computers & Education, 150, 103832. doi:10.1016/j.
compedu.2020.103832

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Duckworth, D. (2020). Preparing
for life in a digital world: IEA International computer and information literacy
study 2018 international report (Vol. 297). Springer Nature. doi:10.1007/978-3-
030-38781-5

Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch?: A controlled
experiment comparing plugged first and unplugged first programming lessons. In
Proceedings of the 12th Workshop on Primary and Secondary Computing Education.
Association for Computing Machinery. 10.1145/3137065.3137072

Huang, W., & Looi, C. K. (2020). A critical review of literature on “unplugged”
pedagogies in K-12 computer science and computational thinking education.
Computer Science Education, 1–29.

International Society for Technology in Education (ISTE) & The Computer Science
Teachers Association (CSTA). (2011). CT leadership toolkit. Retrieved from
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.
pdf?_ga=2.15251892.309077916.1613247518-1278422219.1611941118

Karpiński, Z., Di Pietro, G., & Biagi, F. (2021). Computational thinking,
socioeconomic gaps, and policy implications. IEA Compass: Briefs in Education
Series (12). Retrieved from: https://www.iea.nl/publications/series-journals/iea-
compass-briefs-education-series/january-2021-computational

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdf?_ga=2.15251892.309077916.1613247518-1278422219.1611941118
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdf?_ga=2.15251892.309077916.1613247518-1278422219.1611941118
https://www.iea.nl/publications/series-journals/iea-compass-briefs-education-series/january-2021-computational
https://www.iea.nl/publications/series-journals/iea-compass-briefs-education-series/january-2021-computational

59

Unplugged Learning

Kuhl, P. K., Lim, S. S., Guerriero, S., & van Damme, D. (2019). How stereotypes
shape children’s STEM identity and learning. In Developing Minds in the Digital
Age: Towards a Science of Learning for 21st Century Education. OECD Publishing.
doi:10.1787/43e5bb4c-en

Manabe, H., Kanemune, S., Namiki, M., & Nakano, Y. (2011). CS unplugged
assisted by digital materials for handicapped people at schools. In Proceedings of
the 5th International Conference on Informatics in Schools: Situation, Evolution
and Perspectives. Springer-Verlag. 10.1007/978-3-642-24722-4_8

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2017). Stuck in the
shallow end: Education, race, and computing. MIT Press.

McLennan, D. P. (2017). Creating coding stories and games. Teaching Young
Children, 10(3). 18-21. Retrieved October 02, 2019 from https://www.naeyc.org/
resources/pubs/tyc/feb2017/creating-coding-stories-and-games

Metin, S. (2020). Activity-based unplugged coding during the preschool period.
International Journal of Technology and Design Education, 1–17.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic
Books.

Papert, S. (2005). You can’t think about thinking without thinking about thinking
about something. Contemporary Issues in Technology & Teacher Education, 5(3),
366–367.

Przybylski, A. K., & Weinstein, N. (2019). Digital Screen Time Limits and Young
Children’s Psychological Well‐Being: Evidence From a Population‐Based Study.
Child Development, 90(1), e56–e65. doi:10.1111/cdev.13007 PMID:29235663

Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to Code and the
Acquisition of Computational Thinking by Young Children. Computers & Education,
169, 104222. Advance online publication. doi:10.1016/j.compedu.2021.104222

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction
kits for kids. Proceeding of the 2005 Conference on Interaction Design and Children
- IDC ’05, 117–122. 10.1145/1109540.1109556

Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W. (2020). Designing Unplugged
and Plugged Activities to Cultivate Computational Thinking: An Exploratory Study
in Early Childhood Education. The Asia-Pacific Education Researcher, 29(1), 55–66.
doi:10.100740299-019-00478-w

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.naeyc.org/resources/pubs/tyc/feb2017/creating-coding-stories-and-games
https://www.naeyc.org/resources/pubs/tyc/feb2017/creating-coding-stories-and-games

60

Unplugged Learning

Strawhacker, A. L., Lee, M. S. C., & Bers, M. U. (2017). Teaching tools, teachers’
rules: Exploring the impact of teaching styles on young children’s programming
knowledge in ScratchJr. International Journal of Technology and Design Education.
Advance online publication. doi:10.100710798-017-9400-9

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo: Engaging young
children in programming and engineering. Proceedings of the 14th International
Conference on Interaction Design and Children (IDC ’15). 10.1145/2771839.2771868

Sullivan, A. A. (2019). Breaking the STEM stereotype: Reaching girls in early
childhood. Rowman & Littlefield Publishers.

The Computer Science Teachers Association (CSTA). (2021). K-12 CS Education
Glossary. https://www.csteachers.org/page/glossary

Thies, R., & Vahrenhold, J. (2012). Reflections on Outreach Programs in CS
Classes: Learning Objectives for” Unplugged” Activities. Proceedings of the
43rd ACM technical symposium on Computer Science Education, 487-492.
10.1145/2157136.2157281

Thies, R., & Vahrenhold, J. (2013). On plugging unplugged into CS classes.
doi:10.1145/2445196.2445303

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006).
A model curriculum for K–12 computer science: Report of the ACM K–12 task force
curriculum committee (2nd ed.). Association for Computing Machinery.

Upadhyaya, B., McGill, M. M., & Decker, A. (2020). A Longitudinal Analysis
of K-12 Computing Education Research in the United States: Implications and
Recommendations for Change. Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, 605-611. 10.1145/3328778.3366809

Wang, J., & Hejazi Moghadam, S. (2017, March). Diversity barriers in K-12
computer science education: structural and social. Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education, 615-620.
10.1145/3017680.3017734

Wing, J. (2011). Research notebook: computational thinking—What and why?
The Link Magazine. Retrieved from: https://www.cs.cmu.edu/link/research-
notebookcomputational-thinking-what-and-why

Wing, J. M. (2006). Computational thinking. CACM Viewpoint, 49(3), 33–35.
doi:10.1145/1118178.1118215

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.csteachers.org/page/glossary
https://www.cs.cmu.edu/link/research-

61

Unplugged Learning

Wohl, B., Porter, B., & Clinch, S. (2015). Teaching computer science to 5–7 year-
olds: An initial study with scratch, cubelets and unplugged computing. Proceedings
of the Workshop in Primary and Secondary Computing Education, 55–60.
10.1145/2818314.2818340

ADDITIONAL READING

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science
unplugged: School students doing real computing without computers. The New
Zealand Journal of Applied Computing and Information Technology, 13(1), 20–29.

Bell, T., Duncan, C., & Atlas, J. (2016). Teacher feedback on delivering computational
thinking in primary school. Proceedings of the 11th Workshop in Primary and
Secondary Computing Education, 100-101. 10.1145/2978249.2978266

Bell, T., Witten, I., & Fellows, M. (2002). Computer science unplugged. Department
of Computer Science, University of Canterbury.

Curzon, P. (2013). cs4fn and computational thinking unplugged. Proceedings
of the 8th workshop in primary and secondary computing education, 47-50.
10.1145/2532748.2611263

Faber, H. H., Wierdsma, M. D. M., Doornbos, R. P., van der Ven, J. S., & de Vette, K.
(2017). Teaching computational thinking to primary school students via unplugged
programming lessons. Journal of the European Teacher Education Network, 12,
13–24.

Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of
linkages between an unplugged activity and the development of computational
thinking. Computer Science Education, 28(3), 255–279. doi:10.1080/08993408.2
018.1533297

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and
validation of an unplugged assessment of computational thinking in early childhood
education. Journal of Science Education and Technology, 29(4), 482–498.
doi:10.100710956-020-09831-x

Thies, R., & Vahrenhold, J. (2016). Back to school: Computer Science unplugged
in the wild. In Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education, 118-123. https://dl.acm.org/doi/
pdf/10.1145/2899415.2899442

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://dl.acm.org/doi/pdf/10.1145/2899415.2899442
https://dl.acm.org/doi/pdf/10.1145/2899415.2899442

62

Unplugged Learning

Zapata-Ros, M. (2019). Computational thinking unplugged. Education in the
Knowledge Society, 20, 1–29.

KEY TERMS AND DEFINITIONS

Coding: Also called programming, coding is the process of designing and
building an executable computer program to accomplish a specific computing result
or to perform a specific task.

Computer Science: The study of computers and computing as well as their
theoretical and practical applications.

Early Childhood Education: Education of children from birth through age eight.
KIBO: A screen-free programmable robotics kit for young children with blocks,

sensors, modules, and art platforms.
Programming: Also called coding, computer programming is the process of

designing and building an executable computer program to accomplish a specific
computing result or to perform a specific task.

ScratchJr: A free block-based programming application for young children
STEM: An integrated educational approach involving disciplines of Science,

Technology, Engineering, and Mathematics.
Unplugged: Describes activities such as games and puzzles that aid the teaching

and learning of computer science but without requiring the use of technology.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Section 2

Connections

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

64

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-7998-7308-2.ch004

ABSTRACT

This chapter summarizes theoretical connections between computational thinking
through learning to code, self-regulation, and executive function and discusses
why it is important to continue exploring the intersection of executive function,
self-regulation, and computational thinking, including the need to revisit the socio-
cultural underpinnings of foundational self-regulation, executive function, and
school readiness research. As an example, findings from a 2014 study that explored
the relationship between self-regulation and computational thinking when learning
to code are shared. Research supports the idea of teaching computational thinking
skills within an integrated early childhood curriculum to support the development of
well-prepared citizens for the 21st century by drawing on the connections between
executive function, self-regulation, and computational thinking.

INTRODUCTION

As other chapters in this book will attest, coding is becoming an increasingly essential
skill. As Bers references in Chapter 1, “there are an estimated 500,000 openings
for computing jobs nationwide, and a lack of adequately trained people to fill them

The Role of Executive
Function and Self-Regulation

in the Development of
Computational Thinking

Elizabeth Kazakoff Myers
WGBH Educational Foundation, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 65

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

(Code.org, 2018; Fayer, Lacey, & Watson, 2017).” While job training and 21st century
skill development is one reason to advocate for coding education, I argue adoption
of a computational thinking curriculum in early childhood by educators, parents,
and children is much more likely when coding is connected to other aspects of the
early childhood curriculum. More specifically, connecting computational thinking
to core academic domains like math and literacy as well as the development of
cognitive skills, such as executive function and self-regulation.

When integrating computational thinking into classroom through educational
technologies, it is important to note that technological tools are artifacts mediated
by social groups and cultural mores (Moll, 2014). Younger children do not provide
themselves with the digital technologies in their lives; parents, families, and schools
are the ones to make the purchases or hand the child the devices (Gutnick, A. L., Robb,
M., Takeuchi, L., & Kotler, J., 2010). The technological tools the child is exposed to
are influenced by societal and cultural factors. Furthermore, socioeconomic status
of families not only underpins digital divide, but is also a predictor of all domains
of executive function (Mulker Greenfader, 2019). Schools can play a key role in
narrowing digital gaps, providing more equal opportunities for technology devices,
exposure to computational thinking, and the development of executive function skills.

My early research focused on connections between coding and literacy (Kazakoff
& Bers, 2012; Kazakoff, Sullivan, & Bers, 2013; Kazakoff & Bers, 2015). My 2014
dissertation, Cats in Space, Pigs Who Race: Does self-regulation play a role when
kindergartners learn to code? was one of the first studies to examine executive
function within the context of the development of computational thinking and coding
skills in early childhood. Self-regulation (controlling ones behaviors) and executive
function (directing ones thoughts and behaviors towards a problem solving goal)
are also skills seen by educators and parents as desirable for traditional ideas of
kindergarten readiness (Center for the Developing Child, n.d.; Finders, et. al., 2021).

My work specifically focused on the consideration of the role self-regulation
plays when learning to code. This work was inspired by several years of interactions
with young children and digital tools, where it became clear to me there were many
factors that determined how well children learned novel technologies and coding
languages. As an illustrative example, take Danielle and Jennifer, whom I met early
in my research.

Danielle and Jennifer were friends and neighbors in the same first grade classroom
and described by their parents as excellent, curious students. Their parents had
signed them up for a research study on a new coding language for young children
where they were able to program a robot’s movements with wooden blocks affixed
with scannable barcodes that translated an action on the block to a movement for

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

66

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

the robot. One Saturday morning, Danielle and Jennifer arrived at the DevTech Lab
research lab presenting with equivalent levels of excitement to learn about robots.

When introduced to the robotics lesson, Danielle and Jennifer had similar ideas
about decorating their robots to be ballerina robots and programming them to move
forward three steps, do three spins, and move backwards three steps. They got to
work on their ideas and decorated their robots with pipe cleaners, construction
paper, and glitter, transforming the robots into whimsical ballerinas. However, when
it came time to code, Jennifer meticulously built and tested each block of code on
her ballerina robot, whereas Danielle skipped coding altogether and insisted on
dancing around the room with her robot in hand -- making her robot dance through
manual effort and not the coding blocks. Danielle expressed interest and excitement
in Jennifer’s robot dancing on its own “like magic” but seeing her friend code was
not enough for Danielle to overcome the instant gratification of dancing with her
robot in the moment instead of programming it to dance on its own.

While every child is different, these two general reactions to learning to code
presented regularly in my early years of building coding languages for children. When
coding with existing programming languages of the time, children of kindergarten
and first grade ages observed in studies varied widely in their abilities to overcome
“instant gratification” activities and interface components (i.e., buttons that would
randomly insert characters or make a character grow big and shrink small) in favor
of systematically programming their great ideas. I hypothesized that self-regulation
was a key developmental area that appeared to be a particular barrier for children
five to seven-year-olds, particularly when using the original version of the Scratch
software (for children ages 8 and older).

As such, my research within the development of ScratchJr explored how
differences in self-regulation impacted computational thinking and learning to code
by examining the possible bi-directional relationship between self-regulation level
and coding ability when using ScratchJr. The hope was that coding languages could
be developed in more inclusive ways to provide access to all young students in all
classrooms, rather than becoming tools only for out-of-school-time enrichment for
students who were developmentally ready for existent computational activities. In
the nearly eight years since I last focused on this work, the importance of coding
and computational thinking for young children has exploded in popularity, as has
the call for more studies to demonstrate causal impact of executive function focused
interventions in classrooms (Jacob & Parkinson, 2015). It is also important to note
that self-regulation and delay of gratification research has grown heavily out of
Mischel, et al’s “Marshmallow Studies” (Mischel, Shoda, & Rodriguez, 1989) which

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

67

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

have recently been revisited and critiqued for their selection bias (Watts, Duncan,
& Quan, 2018).

The purpose of this chapter is to (1) summarize theoretical connections between
computational thinking through learning to code, self-regulation, and executive
function, (2) to summarize findings of a 2014 study which explored the relationship
between self-regulation and computational thinking when learning to code, and
(3) to highlight why it is still important to continue exploring the intersection of
executive function, self-regulation, and computational thinking, including the need
to revisit the socio-cultural underpinnings of foundational self-regulation, executive
function, and school readiness research (which is beyond the scope of this chapter).

COMPUTATIONAL THINKING

ISTE and the Computer Science Teachers Association (CSTA) define computational
thinking as a problem solving process (ISTE & CSTA, 2011) and problem solving
will become a common theme throughout this chapter. While this definition (one of
many) emerged from the computer science education field, computational thinking
is applicable across many disciplines and domains (Digital Promise, 2017). As Bers
states in Chapter 1, “although computational thinking has received considerable
attention over the past several years, there is little agreement on what a definition
for computational thinking might encompass (Allan et al., 2010, Barr & Stephenson,
2011, Grover & Pea, 2013, National Academies of Science, 2010, Relkin, 2018,
Relkin & Bers, 2019, Shute, Sun, & Asbell-Clarke, 2017, Grover & Pea, 2013, &
Guzdial, 2008).”

Brennan and Resnick (2012) defined computational thinking along three specific
dimensions that apply to Scratch (and, in turn, ScratchJr). The dimensions are
computational concepts, computational practices, and computational perspectives.
Computational concepts refer to areas such as: sequencing of programming
instructions; parallel programming by either giving multiple programs to one character
or giving two or more characters programs to act out together; and programming
events, such as “start on green flag” (Brennan & Resnick, 2012). Computational
practices include iterative design, testing and debugging, and abstracting and
modularizing. Computational perspectives refer to the connections children make
between the technological tool and the real world, by asking questions and making
connections with others (Brennan & Resnick, 2012).

This definition of computational thinking, specifically related to Scratch/ScratchJr,
is mentioned to highlight the connections between computational thinking, math,
literacy, and problem solving. Math, literacy, and problem solving have all been
correlated with self-regulation in prior studies (Espy, et. al., 2004; McClelland, et.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

68

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

al., 2007; Zelazo, Carter, Reznick, & Frye, 1997) and it is possible that activities that
utilize and build computational thinking, such as learning to code with ScratchJr,
may also contribute to the development of cross-domain skills in math, literacy,
problem solving, and self-regulation. Of course, there is still much work to be done
in these areas to demonstrate concrete, measurable connections, but these theoretical
connections served as the basis for initial work on connecting self-regulation and
computational thinking through learning to code. Demonstrating that young children
can grasp computational thinking concepts such as sequencing, patterns, modularity,
cause and effect, and problem solving when presented with them in a developmentally
appropriate way has been confirmed by extensive research (Bers, 2018).

EXECUTIVE FUNCTION AND SELF-REGULATION

Computational thinking, as a means of problem solving, taps into similar and
overlapping cognitive functions -- many of which are considered under the umbrella
of executive function, and, by extension, self-regulation. An emphasis can be made on
the connection between self- regulation and learning to code as coding has previously
been defined as problem solving (Brennan & Resnick, 2012; Yelland, 2005) and
problem solving is a self-regulative process in itself (Zelazo, Carter, Reznick, &
Frye, 1997). In particular, executive function plays a role in a child’s capacity to
iteratively revise a hypothesis. Testing and revising hypotheses is a key component
of not only the scientific method but also testing and debugging and computational
thinking while learning to code. Through hypothesis testing, children engage in
meaningful science and engineering exploration in early childhood while working
to build executive function and computational thinking skills through scaffolded
scientific inquiry (Gropen, Clark-Chiarelli, Hoisington, & Ehrlich, 2011).

Broadly, self-regulation refers to an integrative process that governs emotional,
cognitive, and behavioral functioning (Baumeister & Vohs, 2004; Gestdotteir &
Lerner, 2008; McClelland, Ponitz, Messersmith, & Tominey, 2010). Notably, the
Handbook of Self-Regulation (Baumeister & Vohs, 2004) states that all contributing
authors had different definitions of self-regulation but agreed on a common theme:
“self-regulation refers to the exercise of control over oneself, especially with regard
to bringing the self into line with preferred...standards (p. 2)” through controlling
one’s attention, thoughts, emotions, and actions (McClelland & Cameron, 2012).

Examining self-regulation from an education perspective primarily focused on
behaviors, thoughts, and feelings associated with school success (McClelland, Pontiz,
Messersmith, & Tominey, 2010) and is defined by the behavioral aspects of self-
regulation: flexible attention, working memory, and inhibitory control (McClelland
& Cameron, 2011). The separate yet integrated tasks of flexible attention, working

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

69

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

memory, and inhibitory control appear to be most relevant for learning in school,
particularly when following directions or persisting on difficult tasks (McClelland
& Cameron, 2011).

Executive function and self-regulation are related, in that executive function
serves as the construct that unites working memory, attention, and inhibitory control
for the purposes of planning, problem solving and goal-directed activity (Blair
2002; Blair & Razza, 2007). These three aspects of self-regulation specifically and
executive function broadly are critical for success in the early childhood classroom
and predictive of academic success (Diamond, 2002; Sameroff & Hait 1996). Self-
regulation is critical to school success. It predicts school readiness over and above
other factors, such as general cognitive skills and family background (Blair & Razza,
2007) and growth in behavioral regulation predicts growth in math and literacy skills
(McClelland, et. al., 2007). Furthermore, through their early work on a large-scale
study of children using the LOGO programming language, Clements, Battista, &
Sarama (2001) demonstrated that children in Grades K – 6 scored significantly
higher on tests of mathematics, reasoning, and problem solving after learning to
code with LOGO. The researchers theorize that when children engage in coding
activities (through a process which would now be called computational thinking):
creating sequences of commands for the computer to read, the children externalize
their inner thought process. This externalization of inner thoughts may make a child’s
thought process more readily available for reflection and understanding (Clements,
Battista, & Sarama, 2001). Reflection and understanding of one’s thought process is
also known as metacognition, which is a component of executive function (Garon,
Bryson, & Smith, 2008). Perhaps then, learning to code promotes metacognition,
which in turn, could contribute to children’s development of executive function and
self-regulation.

More recently, a 2020 study looked specifically at a correlation between the
BRIEF2 assessment of executive function and debugging in Scratch for 11-year-old
students. The study found that BRIEF2 scores that demonstrated executive function
maturity were strongly correlated with students’ Scratch debugging scores (Robertson,
Gray, Martin, & Booth, 2020). The BRIEF2 (and earlier version, BRIEF) is a
comprehensive, clinical measure of multiple facets of executive function including
working memory, inhibitory control, and (shifting) attention plus emotional control,
initiation, planning, organization of materials, and monitoring (Gioia, Isquith,
Guy, Kenworthy, 2000). The authors conclude that study was another piece of the
puzzle connecting computational thinking and cognitive variables. The authors
also emphasize the need to scaffold students based on executive function levels
and join the literature suggesting that executive function skills could be developed
through motivating and engaging computational thinking activities (Robertson,
Gray, Martin, & Booth, 2020).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

70

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Another small study with first graders in Italy explored the connection between
computational thinking and executive function skills primarily focused on response
inhibition and planning. Children in the study who learned to code improved planning
and inhibition control skills compared to controls. Researchers equated the gains from
one month of coding to seven months for control students in planning and inhibition
tasks. Although small, this study further supports the theory that computational
thinking can boost at least some aspects of executive function in young children
(Arfe, Vardangega, Monturori, & Lavanga, 2019).

A CASE STUDY WITH SCRATCHJR

This section describes the results of a previously unpublished case study. In two
kindergarten classrooms, the relationship between self-regulation and children’s
experiences in learning to code using ScratchJr was explored. Specifically, this work
examined whether initial levels of self-regulation made a difference in ScratchJr
performance during the first eight ScratchJr lessons, and if varied lengths of exposure
to ScratchJr correlated with changes in self-regulation scores. The central research
question was: To what extent does self-regulation have a role in learning to code
with a novel computer programming software in kindergarten classrooms, and does
length of exposure to the programming software correlate with the post-test self-
regulation scores of these kindergarten students?

In learning to code with ScratchJr, children exercise many intersecting concepts
across computational thinking, executive function, and self-regulation described
above. For example, a child may need to: develop a concept (creativity); think about
how to compensate when the exact character they want or need does not exist (out
of the box thinking; working memory); debug code that is not working correctly
(problem solving; staying focused on a task; attention); and continue working on
code despite temptations to explore other areas of a computing device (stay on task;
sustain focus; seek long term reward; inhibition control)..

ScratchJr, was developed with early childhood developmental theory in mind,
paying particular attention to young children’s self-regulation, early math ability,
and early literacy skills. For example, the number of coding blocks children are
presented with in the ScratchJr programming language is limited due to children’s
developing attention and working memory. There are very few words in ScratchJr in
consideration of young children’s developing literacy skills, although children can
add text to practice writing in addition to sequencing their words within “phrases”
or “sentences” of code.

Almost no “instant gratification” buttons (blocks you can click for an immediate
action or reward like a plus sign that make your character grow huge) exist in

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

71

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

ScratchJr, in consideration of young children’s developing inhibitory control. The
lack of such buttons encourages programming over simply clicking for cause and
effect. The number range children can work with in ScratchJr was limited in this study
to 20 horizontally and 15 vertically based on young children’s number sense and
inhibition control (i.e., a limit on how large a number can be input into the software).

Of note, the ScratchJr curriculum used in this study was a pilot version and a
somewhat hybrid approach to curriculum design. Part of the ScratchJr project as
a whole included testing various curriculum with different levels of scaffolding.
The children who took part in this version of the study used the most open-ended,
least-scaffolded version of the curriculum, which included one day of open-ended
exploration, five structured lessons, and two days of semi-structured projects. At
the conclusion of the phase of the ScratchJr project described here, a new and
significantly more structured curriculum was introduced for future ScratchJr studies.

The focus of this study was to understand how to develop novel coding tools
usable by more than the classroom’s top performing, most attentive, or most engaged
kindergarten students. As such, this study focused on how differences in initial levels
of self-regulation and the development of computational thinking skills through
learning to code with ScratchJr might be related and, therefore, how do developers
ensure coding tools for children are developmentally appropriate for all classrooms?

Measures

Self-regulation was measured through the Head Toes Knees Shoulders (HTKS)
assessment (McClelland, et. al., 2007, Cameron, et. al., 2008, Ponitz, McClelland,
Matthews, & Morrison, 2009). The HTKS validly and reliably measures working
memory, inhibition control, and attention through an assessment directly with
children as demonstrated in several prior studies utilizing the measure (McClelland
& Cameron, 2012; Ponitz, McClelland, Matthews, & Morrison 2009; McClelland,
et al., 2007) and scores range from 0-60. Working memory, inhibition control, and
attention are exercised when using ScratchJr in the following ways:

Working Memory. Children must remember their coding project goal, the coding
blocks that correspond to the actions they would like for their characters, and the
series of instructions that they place on each of their characters.

Attentional Flexibility. Children must switch between characters, backgrounds,
and codes for their different characters; switch between categories of coding blocks;
and switch between multiple pages within each coding project.

Inhibition Control. Children need to inhibit a dominant response in favor of a
more productive one, for example, resisting an urge to spend a majority of their time
in the ScratchJr paint tool rather than programming their character.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

72

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Computational thinking and coding skills were measured through several
researcher-developed measures created through video coding of students and their
ScratchJr programs: Programming Score, Goal Completion Score, and Time on
Task Score. Participants received a Programming, Goal Completion, and Time on
Task Score for each ScratchJr coding lesson.

Programming score. Programming score was calculated from a ScratchJr
interface checklist, based on watching the videos of children working with ScratchJr.
Programming score was intended to be a measure of what targeted blocks and
interface elements of the ScratchJr Lesson the child attempted and understood.
Coders watched videos of the participants coding with ScratchJr and completed
checklists of all possible coding blocks and interface elements used and understood
or attempted. Programming scores ranged from 0-5 based on the percent of targeted
blocks and interface elements attempted and understood.

Goal Completion Score. Goal completion scores assessed if the child worked
toward and completed the day’s assigned ScratchJr lesson. The child received a
score of 0 if they did not attempt the lesson, a score of 1 if the child attempted the
lesson, and a score of 2 if the child completed the lesson.

Time on Task Score. Time on Task Score was a calculation (0-100%) of how
frequently a child was focused on the ScratchJr Lesson, another area of the ScratchJr
interface (e.g., the paint editor), or away from the computer. Time on Task was
included as a variable since attention span and staying on task towards goals is
predictive of future success and is related to self-regulation (McClelland, Acock,
Piccinin, Rhea, & Stallings, 2013).

Sample

Participants were members of two kindergarten classrooms located in a densely
populated suburb of Boston, Massachusetts with a range of economic and racial-
ethnic diversity. Participating teachers and parents/guardians of students provided
signed informed consent prior to participation. The initial sample size for this
study was 38 students: 19 in Classroom Pre16 (labeled as such because the students
took a self-regulation pre-test followed by 16 ScratchJr lessons) and 19 students in
Classroom Pre8 (labeled as such because they took a self-regulation pre-test followed
by 8 ScratchJr lessons). The average age at the start of the study was 5.51 years old
(SD = 0.30). For the study year, the participating school reported in this study was
composed of students identified as 40.1% Latinx/Hispanic, 37.1% White, 14.6%
African American, 6.7% Asian, and 1.5% Multi-Race/Non-Hispanic students. About
75% of the school was classified as “high needs,” including students with a first
language other than English (41.2% of the total student population), low-income
students (68.4% of students), students receiving free or reduced lunch (68.2% of

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

73

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

students), and students classified as Special Education (24.7% of students). Consent
forms were completed in English, Spanish, and Portuguese. The classrooms did not
vary significantly in terms of age, sex, or pre-test score on the HTKS.

ScratchJr Coding Lesson Descriptions

Introduction/Free Explore. After a brief overview of the interface of the ScratchJr
software, children were encouraged to explore the tool on their own and discuss
what they had discovered with the researchers, their teachers, and each other.

Airplane Fly Across USA (“Airplane Lesson”). This lesson introduced the “start
on flag” block, motion blocks, and the method for changing number parameters.
Children programmed an airplane to fly across a map of the USA.

Character Race (“Race Lesson”). In this lesson, students programmed three
characters to race against each other at varying speeds. This lesson introduced the
set speed block and reinforced the motion and “start on flag” blocks.

Characters Dance (“Dance Lesson”). The dance lesson introduced the concepts
of multiple scripts on one character and sound blocks. Children programmed one
character to provide both the music and dance steps, while they programmed a

Figure 1. Lesson Three. A screenshot of ScratchJr, Lesson 3, where pig, caterpillar,
and chicken are programmed to race. The “Start on Flag,” “Set Speed,” “Move
Forward,” and “End” blocks are shown.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

74

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

second character to provide just dance steps. This lesson also introduced the “start
on bump” block, which initiates a program when two characters bump into each
other and the “repeat forever” block, which plays a programming script continuously.

Sunset (“Sunset Lesson”). Children programmed a sunset in this lesson. The show,
hide, and go home (reset) blocks were introduced. Start blocks and motion blocks
were reviewed. Children that finished the sunset lesson early had the opportunity
to attempt a “moon rise” lesson.

Characters Greet Each Other (“Greet Lesson”). In this lesson, children learned
how to program characters to have a conversation when they bump into each other.
This lesson reinforced the “start on bump” start block and introduced speech bubble
blocks, “send a message”, and “start on message received” blocks.

“About Me” Project (Project Lesson). Children were instructed to make four
ScratchJr pages about themselves, first brainstorming with paper and crayons. The
four pages were (1) a picture of themselves with their name, (2) a page about school,
(3) a page about home, and (4) a page about what the student wanted to be when
they grew up. This task proved too intense for a two-day project. Final projects were
considered successful if two of these four pages were created and something was
programmed. Children received a lesson on how to use the “add a page” feature
before beginning their projects.

Findings

Children in this study were able to use and understand the ScratchJr interface and
coding blocks (Programming Score) with not significant differences based on
self-regulation pre-test scores. Meaning, ScratchJr appears to be developmentally
appropriate to code in for the wide variety of self-regulation levels found at baseline
in kindergarten classrooms. Working to ensure the software is developmentally
appropriate is working to ensure the software tool itself does not hinder use by
students from variable backgrounds. Baseline levels of self-regulation, as measured
by the HTKS assessment, did not make a statistical difference when the children
were attempting to code with ScratchJr.

Baseline self-regulation levels did matter outside the scope of the ScratchJr
interface when the children progressed to projects that were more open-ended, self-
directed, and goal-oriented (measured by Goal Completion Score). This variable that
heavily relied upon attention and inhibitory control when considering baseline level
of self-regulation. Perhaps it is not necessarily that the children with lower levels of
self- regulation had more difficulty reaching goals, but instead, that the curricular
goals themselves were not motivating enough for students. Substantive anecdotes
where children were more successful at lessons about which they were more excited
and enthusiastic (repeatedly revisiting Race programs or finding Greet program to

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

75

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

be very funny) point to an argument for exploring the importance of engagement
and motivation in the context of computational thinking and the development of
self-regulation and executive function skills. Time on Task data points to the idea
that children can attend more to lessons they find engaging, relevant, and structured,
like the Race lesson, but have more difficulty focusing when a goal is too open-ended
and the lesson plan did not provide enough scaffolding, as in the students’ About
Me projects which were personally meaningful but lacked scaffolding.

IMPACT

Although there was not enough power for significance, the differences in self-
regulation scores between pre-test and post-test for the Pre8 (eight coding lessons)
and Pre16 (sixteen coding lessons) groups are of interest. While self-regulation
scores increased for both groups between pre-test and post-test, and the gains in self-
regulation scores for the Pre16 group were larger than those for the Pre8 group, the
differences between the groups were not significant. Perhaps there is a relationship
where eight lessons were enough to gain some familiarity with coding concepts and
understanding of the blocks in ScratchJr, but a child may need somewhere between
eight and sixteen lessons to begin to work on the computational thinking, problem
solving, and debugging that could lead to marked improvements in self-regulation
and executive function. However, this study was statistically underpowered to see
significant differences in pre-post HTKS self-regulation scores. It is also possible
that each teacher could have had a unique impact on self-regulation gains through
other aspects of their curriculum. Future studies exploring the relationship between
computational thinking and executive function must have numerous treatment and
control groups to account for the likely influence of teachers on development of
both computational thinking and executive function skills.

IMPLICATIONS AND CONCLUDING THOUGHTS

As noted throughout this book, coding is becoming an increasingly essential skill.
A 2017 National Association for the Education of Young Children (NAEYC) blog
post highlighted similarities between computational thinking (CT), higher order
thinking (HOT), and executive functioning (EF) skills because at their core, CT skills
support reasoning, critical thinking, and problem solving (Kaldor, 2017). However,
the American Educational Research Association promoted a 25-year meta-analysis
in 2015 that found no conclusive evidence that interventions designed to develop
students’ executive function skills are causally connected to improved academic

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

76

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

performance and concluded money should not be spent on these interventions
(AERA, 2015; Jacob & Parkinson, 2015). The meta-analysis did conclude, however,
that there is a strong correlation between a children’s executive function skills and
their achievement level (Jacob & Parkinson, 2015) as was explored in the ScratchJr
study reported herein.

In conclusion, even if there is no conclusive causal relationship between
interventions designed to develop executive function skills on the whole and resulting
gains in achievement, it is still worth teaching students interdisciplinary skills that
utilize executive function. Given that executive function is strongly correlated with
academic and life success (albeit a western ideal of success – a topic beyond the
scope of this chapter, see Jaramillo, et. al, 2017 for a discussion), educators should
integrate executive function exercises and executive function supportive skills into
the curriculum. Furthermore, greater focus should be placed on determining causal
relationships of classroom interventions that develop skills within the subdomains
of executive function (such as inhibition control, working memory, or attention)
and outcomes on academic achievement.

Jacob & Parkinson state “Although investing in executive function interventions
has strong intuitive appeal, we should be wary of investing in these often expensive
programs before we have a strong research base behind them” (AERA, 2015). This
seems to ignore the robust and growing early childhood computational thinking
curricula: ScratchJr is free on PBS Kids, for instance, WGBH/PBS are in the process
of developing a computational thinking TV show, with digital tools, and hands-on
materials for young children, and activities that practice story sequencing on paper
or digitally are also low to no cost to families.

Young children grow up surrounded by digital devices and yet know very little
about how these tools work (Bers, 2008). This situation is especially true for children
from families living in poverty or dealing with systemic racism or otherwise facing
education opportunity gaps -- all children whose families have less exposure to new
digital devices on a daily basis (Gee, 2013a; 2013b, Gutnick, Robb, Takeuchi, &
Kotler, 2010). Understanding how different levels of self-regulation may influence a
child’s ability to navigate a digital tool and learn to code can inform the design and
evaluation of digital tools for young children in order to ensure the most universal
access and most successful use of digital devices possible for all children. Given the
preliminary findings about the potential bi-directional relationship between coding
tools, digital devices, computational thinking and executive function, I argue it is
very much worth it to invest in interventions that support multiple facets of a child’s
education in the 21st century.

Perhaps learning to code with tools like ScratchJr is “only” utilizing and building
computational thinking skills, and that, in itself, would be enough. However, students
are likely also building their executive function skills. While more research needs to

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

77

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

be conducted, it would seem to be a disservice to children to advocate for limiting
interventions, especially ones that are multifaceted and cross disciplinary. Teaching
computational thinking skills with an integrated curriculum, rather than one that
separates coding from social and emotional and cognitive processing skills could
potentially create more well-balanced and well-prepared citizens for the 21st century,
which will likely need collaborative, creative, problem-solvers both in school and
in future careers.

REFERENCES

AERA. (2015). (2015, March 5). Study: Little Evidence That Executive Function
Interventions Boost Student Achievement [Press release]. Retrieved from https://www.
aera.net/Newsroom/News-Releases-and-Statements/Study-Little-EvidenceThat-
Executive-Function-Interventions-Boost-Student-Achievement

Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin,
F. (2010). Computational thinking for youth. White Paper for the ITEST Small
Working Group on Computational Thinking (CT).

Arfe, B., Vardangega, T., Monturori, C., & Lavanga, M. (2019). Coding in primary
grades boosts children’s executive functions. Frontiers in Psychology, 10, 2713.
doi:10.3389/fpsyg.2019.02713 PMID:31920786

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What
is Involved and what is the role of the computer science education community? ACM
Inroads, 2(1), 48–54. doi:10.1145/1929887.1929905

Baumeister, R. F., & Vohs, K. D. (2004). Handbook of self-regulation: Research,
theory, and applications. Guilford Press.

Bers, M. U. (2018). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge.

Blair, C. (2002). School readiness: Integrating cognition and emotion in a
neurobiological conceptualization of child functioning at school entry. The American
Psychologist, 57(2), 111–127. doi:10.1037/0003-066X.57.2.111 PMID:11899554

Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and
false belief understanding to emerging math and literacy ability in kindergarten.
Child Development, 78(2), 647–663. doi:10.1111/j.1467-8624.2007.01019.x
PMID:17381795

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.aera.net/Newsroom/News-Releases-and-Statements/Study-Little-Evidence
https://www.aera.net/Newsroom/News-Releases-and-Statements/Study-Little-Evidence

78

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American educational research association (Vol. 1, p. 25).
Academic Press.

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s
mathematics ability: Inhibition, switching, and working memory. Developmental
Psychology, 19(3), 273–293. PMID:11758669

Cameron, C., McClelland, M. M., Jewkes, A., Connor, C., Farris, C., & Morrison,
F. (2008). Touch your toes! Developing a direct measure of behavioral regulation in
early childhood. Early Childhood Research Quarterly, 23(2), 141–158. doi:10.1016/j.
ecresq.2007.01.004

Center for the Developing Child. (n.d.). A Guide to Executive Function. Retrieved
from https://developingchild.harvard.edu/guide/a-guide-to-executive-function/

Clements, D. H., Battista, M. T., & Sarama, J. (2001). LOGO and Geometry. Journal
for Research in Mathematics Education Monograph Series, 10.

Clements, D.H., Sarama, J., Unlu, F., Layzer, C. (2012, March). The efficacy of an
intervention synthesizing scaffolding designed to promote self- regulation with an
early mathematics curriculum: Effects on executive function. Presentation at Society
for Research on Educational Effectiveness (SREE), Washington, DC.

Copple, C., & Bredekamp, S. (2009). Developmentally appropriate practice in early
childhood programs serving children from birth through age 8. National Association
for the Education of Young Children.

CSTA & ISTE. (2011). Operational Definition of Computational Thinking for K-12
Education. http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-
Thinking.pdf

Diamond, A. (2002). Normal development of prefrontal cortex from birth to young
adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & R. T.
Knight (Eds.), Principles of frontal lobe function (pp. 466–503). Oxford University
Press. doi:10.1093/acprof:oso/9780195134971.003.0029

Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn,
T. E. (2004). The contribution of executive functions to emergent mathematic
skills in preschool children. Developmental Neuropsychology, 26(1), 465–486.
doi:10.120715326942dn2601_6 PMID:15276905

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://developingchild.harvard.edu/guide/a-guide-to-executive-function/
http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf
http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf

79

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Finders, J. K., McClelland, M. M., Geldhof, G. J., Rothwell, D. W., & Hatfield, B.
E. (2021). Explaining achievement gaps in kindergarten and third grade: The role of
self-regulation and executive function skills. Early Childhood Research Quarterly,
54, 72–85. doi:10.1016/j.ecresq.2020.07.008

Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive Function in Preschoolers:
A Review Using an Integrative Framework. Psychological Bulletin, 134(1), 31–60.
doi:10.1037/0033-2909.134.1.31 PMID:18193994

Gestsdottir, S., & Lerner, R. M. (2008). Positive development in adolescence: The
development and role of intentional self-regulation. Human Development, 51(3),
202–224. doi:10.1159/000135757

Gioia, I., & Guy, K. (2000). Behavior Rating Inventory of Executive Function.
Psychological Assessment Resources.

Gropen, J., Clark-Chiarelli, N., Hoisington, C., & Ehrlich, S. B. (2011). The importance
of executive function in early science education. Child Development Perspectives,
5(4), 298–304. doi:10.1111/j.1750-8606.2011.00201.x

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state
of the field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Guzdial, M. (2008). Education Paving the way for computational thinking.
Communications of the ACM, 51(8), 25–27. doi:10.1145/1378704.1378713

Jaramillo, J. M., Rendón, M. I., Muñoz, L., Weis, M., & Trommsdorff, G. (2017).
Children’s self-regulation in cultural contexts: The role of parental socialization
theories, goals, and practices. Frontiers in Psychology, 8, 923. doi:10.3389/
fpsyg.2017.00923 PMID:28634460

Kaldor, T. (2017). The T in STEM: Creating Play-Based Experiences That Support
Children’s Learning of Coding and Higher Order Thinking. Retrieved from https://
www.naeyc.org/resources/blog/creating-play-based-experiences

Kamps, D., Abbott, M., Greenwood, C., Wills, H., Veerkamp, M., & Kaufman,
J. (2008). Effects of small-group reading instruction and curriculum differences
for students most at risk in kindergarten: Two-year results for secondary- and
tertiary-level interventions. Journal of Learning Disabilities, 41(2), 101–114.
doi:10.1177/0022219407313412 PMID:18354931

Kazakoff, E. R., & Bers, M. (2012). Programming in a robotics context in the
kindergarten classroom: The impact on sequencing skills. Journal of Educational
Multimedia and Hypermedia, 21(4), 371–391.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.naeyc.org/resources/blog/creating-play-based-experiences
https://www.naeyc.org/resources/blog/creating-play-based-experiences

80

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Kazakoff, E. R., & Bers, M. U. (2014). Put your robot in, Put your robot out:
Sequencing through programming robots in early childhood. Journal of Educational
Computing Research, 50(4), 553–573. doi:10.2190/EC.50.4.f

Kazakoff, E. R., Sullivan, A., & Bers, M. (2013). The effect of a classroom-based
intensive robotics and programming workshop on sequencing ability in early
childhood. Early Childhood Education Journal, 41(4), 245–255. doi:10.100710643-
012-0554-5

Lewin-Bizan, S. G., & Urban, J. B. (Eds.). Thriving in childhood and adolescence:
The role of self-regulation processes. New Directions for Child and Adolescent
Development, 133, 29–44.

McClelland, M. M., & Cameron, C. E. (2011). Self‐regulation and academic
achievement in elementary school children. New Directions for Child and Adolescent
Development, 2011(133), 29–44. doi:10.1002/cd.302 PMID:21898897

McClelland, M. M., & Cameron, C. E. (2012). Self-regulation in early childhood:
Improving conceptual clarity and developing ecologically valid measures. Child
Development Perspectives, 6(2), 136–142. doi:10.1111/j.1750-8606.2011.00191.x

McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M.,
& Morrison, F. J. (2007). Links between behavioral regulation and preschoolers’
literacy, vocabulary and math skills. Developmental Psychology, 43(4), 947–959.
doi:10.1037/0012-1649.43.4.947 PMID:17605527

McClelland, M. M., Ponitz, C. C., Messersmith, E., & Tominey, S. (2010). Self-
regulation: The integration of cognition and emotion. In The Handbook of Life-Span
Development. Vol. 1: Cognition, Neuroscience, Methods (pp. 509–553). Hoboken,
NJ: Wiley.

Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of gratification in children.
Science, 244(4907), 933–938. doi:10.1126cience.2658056 PMID:2658056

Morrison, F. J. (2008). Touch your toes! Developing a direct measure of behavioral
regulation in early childhood. Early Childhood Research Quarterly, 23(2), 141–158.
doi:10.1016/j.ecresq.2007.01.004

Mulker Greenfader, C. (2019). What is the role of executive function in the school
readiness of Latino students? Early Childhood Research Quarterly, 49(4), 93–108.
doi:10.1016/j.ecresq.2019.02.011

Paris, A. H., & Paris, S. G. (2003). Assessing narrative comprehension in young
children. Reading Research Quarterly, 38(1), 36–76. doi:10.1598/RRQ.38.1.3

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

81

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. J. (2009).
A structured observation of behavioral self-regulation and its contribution to
kindergarten outcomes. Developmental Psychology, 45(3), 605–619. doi:10.1037/
a0015365 PMID:19413419

Promise, D. (2017). Computational Thinking for a Computational World. Retrieved
from https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-
v1r5.pdf

Relkin, E. (2018). Assessing Young Children’s Computational Thinking Abilities
(Masters Thesis). Tufts University.

Relkin, E., & Bers, M. U. (2019). Designing an assessment of computational thinking
abilities for young children. In STEM for Early Childhood Learners: How Science,
Technology, Engineering and Mathematics Strengthen Learning. Routledge.

Robertson, J., Gray, S., Toye, M., & Booth, J. N. (2020). The relationship between
executive functions and computational thinking. International Journal of Computer
Science Education in Schools, 3(4), 35–49. doi:10.21585/ijcses.v3i4.76

Rothbart, M. K. (2007). Temperament, development, and personality. Current
Directions in Psychological Science, 16(4), 207–212. doi:10.1111/j.1467-
8721.2007.00505.x

Rothbart, M. K., Sheese, B. E., & Posner, M. I. (2007). Executive attention and
effortful control: Linking temperament, brain networks, and genes. Child Development
Perspectives, 1(1), 2–7. doi:10.1111/j.1750-8606.2007.00002.x

Sameroff, A. J., & Haith, M. M. (1996). The Five to seven year shift: The age of
reason and responsibility. University of Chicago Press.

Schunk, D. H., & Zimmerman, B. J. (1997). Social origins of self-regulatory competence.
Educational Psychologist, 32(4), 195–208. doi:10.120715326985ep3204_1

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142–158. doi:10.1016/j.edurev.2017.09.003

Vohs, K. D., & Baumeister, R. F. (2004). Understanding self-regulation: An
Introduction. In R. F. Baumeister & K. D. Vohs (Eds.), Handbook of Self-Regulation:
Research, theory, and applications (pp. 1–9). Guilford Press.

Yelland, N. (2005). Mindstorms or a storm in a teacup? A review of research with
Logo. International Journal of Mathematical Education in Science and Technology,
26(6), 853–869. doi:10.1080/0020739950260607

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf
https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf

82

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

Zelazo, P. D., Carter, A., Reznick, J. S., & Frye, D. (1997). Early development of
executive function: A problem solving framework. Review of General Psychology,
1(2), 198–226. doi:10.1037/1089-2680.1.2.198

ADDITIONAL READING

Arfe, B., Vardangega, T., Monturori, C., & Lavanga, M. (2019). Coding in primary
grades boosts children’s executive functions. Frontiers in Psychology, 10, 2713.
doi:10.3389/fpsyg.2019.02713 PMID:31920786

Baumeister, R. F., & Vohs, K. D. (2004). Handbook of self-regulation: Research,
theory, and applications. Guilford Press.

Cameron, C., McClelland, M. M., Jewkes, A., Connor, C., Farris, C., & Morrison,
F. (2008). Touch your toes! Developing a direct measure of behavioral regulation in
early childhood. Early Childhood Research Quarterly, 23(2), 141–158. doi:10.1016/j.
ecresq.2007.01.004

Center for the Developing Child. (n.d.). A Guide to Executive Function. Retrieved
from https://developingchild.harvard.edu/guide/a-guide-to-executive-function/

CSTA & ISTE. (2011). Operational Definition of Computational Thinking for K-12
Education. http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-
Thinking.pdf

McClelland, M. M., & Cameron, C. E. (2012). Self-regulation in early childhood:
Improving conceptual clarity and developing ecologically valid measures. Child
Development Perspectives, 6(2), 136–142. doi:10.1111/j.1750-8606.2011.00191.x

Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of gratification in children.
Science, 244(4907), 933–938. doi:10.1126cience.2658056 PMID:2658056

Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. J. (2009).
A structured observation of behavioral self-regulation and its contribution to
kindergarten outcomes. Developmental Psychology, 45(3), 605–619. doi:10.1037/
a0015365 PMID:19413419

Robertson, J., Gray, S., Toye, M., & Booth, J. N. (2020). The relationship between
executive functions and computational thinking. International Journal of Computer
Science Education in Schools, 3(4), 35–49. doi:10.21585/ijcses.v3i4.76

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://developingchild.harvard.edu/guide/a-guide-to-executive-function/
http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf
http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf

83

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

KEY TERMS AND DEFINITIONS

Attentional Flexibility: Ability to shift ones focus and attention.
Computational Thinking: Thinking or problem solving systematically like a

computer.
Executive Function: Cognitive construct that unites working memory, attention,

and inhibitory control for the purposes of planning, problem solving and goal-
directed activity.

HTKS: Heads-toes-knees-shoulders assessment of self-regulation for young
children developed by McClelland, et. al. measuring a child’s working memory,
attention, and inhibition control.

Inhibition Control: Ability to prioritize one’s actions or behaviors and resist
impulses.

Instant Gratification: Immediate availability or action, usually accompanied
by a lack of inhibition control in pursuit of a more substantial or significant reward.

ScratchJr: A digital block-based coding language for young children.
Self-Regulation: The behavioral aspects of executive function, including working

memory, attention, and inhibition control.
Working Memory: Ability to hold and process thoughts or information.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

84

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-7998-7308-2.ch005

ABSTRACT

The chapter begins with an exploration of computational thinking (CT) and its
relationship to computational literacy, followed by a summary of theoretical and
empirical work that aims to elucidate the connections among coding, CT, and literacy.
The authors argue that these connections thus far have been predominantly one of
support (i.e., unidirectional) and motivated by technological and policy advances, as
opposed to considering the connections as mutually reinforcing and developmentally
coaligned. The authors discuss the coding as another language (CAL) pedagogical
approach, a pedagogy that presents learning to program as akin to learning how
to use a new language for communicative and expressive functions, emphasizing
the bidirectional connections between the two domains. Finally, the authors detail
various curricula that use the CAL approach and discuss the implications of CAL
for teaching and learning in early childhood.

Rhyme and Reason:
The Connections Among Coding,

Computational Thinking, and Literacy

Madhu Govind
Tufts University, USA

Ziva Reimer Hassenfeld
Brandeis University, USA

Laura de Ruiter
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 85

Rhyme and Reason

INTRODUCTION

Anyone in the field of computer science education has likely seen or heard the phrase
“Coding is the literacy of the twenty-first century,” but what meaning does it hold
beyond being a lofty metaphor or a catchy marketing slogan? The term “literacy”
is often invoked to emphasize the importance of coding in our modern technology-
rich world. After all, at the turn of the twentieth century, it was difficult to imagine
achieving economic independence or participating in civic society without knowing
how to read and write. As such, we might imagine that in the near future, it may
be difficult to succeed without some knowledge of coding, or at the very least, a
foundational understanding of the computational processes involved in computing.

With the increasing prevalence of technology and the rise of computing jobs
(Code.org, 2020; Fayer, Lacey & Watson, 2017), there is no question that coding
and computational thinking (CT) have been a growing national and international
area of focus. In December 2018, the US White House released a report Charting a
Course for Success: America’s Strategy for STEM Education, in which they named
computational literacy as one of the four pathways to success in STEM (Science,
Technology, Engineering, and Mathematics) education and the promotion of CT as
one of the three objectives for achieving this goal (Committee on STEM Education,
2018). However, there are many unanswered questions about what this pathway
looks like, especially in the early years when young children are actively acquiring
foundational literacy and language skills. We explore in this chapter the bidirectional
and developmentally aligned connections among coding, CT, and literacy. We
conclude by suggesting that early childhood coding education need not repeat
the mistakes of literacy education. It need not promote inequity and status quo by
limiting access or by legitimizing only particular notions of knowledge, truth, and
values. By teaching coding through a pedagogy that centers the child and her funds
of knowledge, we can show the next generation that coding education is for everyone.

Background

Before CT was popularized as a “universally applicable attitude and skillset everyone,
not just computer scientists, would be eager to learn and use” (Wing, 2006, p. 33),
there was the notion of computational literacy (diSessa, 2000). Whereas Wing’s
definition of computational thinking highlighted the universality of the principles
behind computer science (CS) that could be used to promote learning in all areas,
diSessa’s definition of computational literacy extended beyond CS and took into
consideration the material, cognitive, and social dimensions of computing.

Many use the terms computational thinking and computational literacy
interchangeably, sometimes preferring the former in order to clearly differentiate

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

86

Rhyme and Reason

from digital literacy (Grover & Pea, 2013). However, we argue, as have others (see
e.g., Committee on STEM Education, 2018; Li et al., 2020), that the distinction
is meaningful. Computational literacy has a broader scope than CT and much
greater implications regarding how people think, communicate, and make sense of
the world around them. For the purposes of our discussion on the conceptual and
pedagogical connections to young children’s literacy and language development,
we focus specifically on CT.

Given the range of thought on the topic, there is a need for a guiding framework
through which we can situate our work. Jacob and Warschauer (2018) propose a
three-dimensional framework for exploring the relationship between CT and literacy:
1) understanding the connection between CT and literacy from a cognitive and
sociocultural perspective; 2) outlining mechanisms by which existing literacy and
language skills can help augment CT; and 3) exploring ways in which CT skills can
facilitate the development of traditional and new literacies. To put it succinctly, they
see the connection between CT and literacy unfolding in three distinct ways: CT
as literacy, CT through literacy, and literacy through CT. This framework proves
useful for structuring our discussion in this chapter.

Computational Thinking as Literacy

Understanding the connection between CT and literacy from a cognitive and
sociocultural perspective requires a deeper dive into literacy development. There
are two great conversations in the study of reading: decoding and comprehension.
Most research has focused on decoding – how students turn letters on a page into
words. In the last several decades, fierce debates have raged (and continue to rage)
about how best to teach decoding. Some say focus on letter-sound correspondence,
others point to phonemic awareness, and even others look to whole words. But at
a fundamental level, everyone agrees on the rules that govern decoding: the letters
“f” “o” and “x” combine to form the word “fox.”

Comprehension is the process through which students understand what they are
reading. Comprehension is also governed by rules, but there is much less agreement
as to the contours of those rules, in part because the process is far less understood
(see e.g., Smith, Snow, Serry & Hammond, 2020). Despite the various definitions
and conceptions of comprehension, there have been a few consistent perspectives.
The cognitive and psychological perspective posits that comprehension involves a
complex nonlinear dance of mental processes that transform words on a page into
meaning. It includes the application of vocabulary knowledge, but also orthographic,
lexical, syntactic and semantic knowledge (Rumelhart, 1994). For example, a child
comprehending the sentence “The quick brown dog jumped over the lazy fox”
requires the child to convert the code on the page to spoken language, know that

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

87

Rhyme and Reason

“dog” refers to the four-legged barking fluffy animal she sees on leashes in the
street, grasp that “over” after “dog” and before “fox” indicates that the quick dog
was doing the jumping and not the lazy fox, and understand that it makes sense that
a quick dog would jump and a lazy fox would stay put.

This cognitive model of comprehension, however, is critiqued for its detachment
from the cultural and social diversity that students and teachers bring to the classroom.
Oral and written language, critics argue, is not agnostic like computer code, but
always and necessarily a deeply social and cultural phenomenon. Sociocultural
researchers start from the position that all students bring their own funds of
knowledge to the activity of reading (Handsfield, 2016; Moll et al., 2005; RAND,
2002) and that all reading is always dialogical as a result (Bakhtin, 1981). Thus, the
sociocultural view posits that how a child comprehends the sentence “The quick
brown dog jumped over the lazy fox” would have as much to do with their cultural
associations with dogs, foxes, and the term “lazy” as it would with any syntactic or
lexical understanding. For example, you can imagine the adjective “lazy” evoking
triggering and hurtful stereotypes for students from traditionally marginalized and
discriminated communities. Likewise, students coming from cultures and communities
where dogs are not domesticated will draw from a different schema than students
from suburban America where many homes keep their pet on a leash.

At the center of the move to sociocultural models of comprehension is the
acknowledgment that children grow up in a multimodal world raised in multiliteracies
(Serafini & Gee, 2017). The multiliteracies vantagepoint, drawing on semiotic
frameworks, argues that people “read” many things that are not words printed on
paper, such as road signs, artwork, and even videogames (see Gee, 2007). Another
form of text that students are learning to read in the modern moment is computer
programs – that which happens behind the screen to produce the visual and print
texts they see on the screen. The reading connection between learning to program
and learning to decode and comprehend print texts is without question the most
compelling case of CT-related multiliteracies today. And yet the connection is rarely
made. Although the field of literacy has embraced technological tools produced
by coding (see e.g., International Literacy Association, 2021), the field has yet
to consider the bidirectional relationship between coding and literacy except for
a few scant articles (e.g., Jacob & Warschauer, 2018; Vee, 2017). We explore this
bidirectionality further in the next two sections: CT through literacy and literacy
through CT.

Computational Thinking Through Literacy

Efforts to integrate CT into traditional literacy instruction have been largely fueled
by technological and policy advances. The rise of coding tools for young children

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

88

Rhyme and Reason

and the increasing adoption of CS standards and frameworks have propelled the
pedagogical movement of integration through incorporating coding and CT into
traditional literacy instruction. Table 1 illustrates some examples of academic
alignment between computer science and English/Language Arts (ELA) standards
in the United States. In practice, the integration of coding involves educators finding
ways for children to use their existing literacy and language skills and apply them
in the context of programming. For example, the practice of writing pseudocode
encourages students to use their language abilities to think about a problem and
communicate the process—in their natural written and spoken language—for how
that problem might be approached (Pane & Myers, 2001). Rather than getting
bogged down by the nuances of syntax, children leverage their existing language
abilities to think through the logic of the problem, develop their algorithmic plan,
and then iteratively revise the plan to match the appropriate computational syntax.
The integration of CT in early childhood classrooms may or may not necessarily
involve the activity of coding (see Chapter 3 for a longer discussion of unplugged
learning). For example, teachers might use CT vocabulary to reinforce classroom
routines and practices (e.g., introducing a set of instructions on a handout as an
“algorithm” or praising students for their “debugging” skills when they solve a
challenging problem). Although the CT terms may not be used exactly as defined
in a programming context, the practice of reinforcing CT vocabulary in other areas
of instruction helps further the goal of cross-curricular integration.

Using programming languages to construct narratives is another method that
has been used to infuse CT within literacy practices. For example, Burke and Kafai
(2012) explored middle schoolers’ storytelling using the Scratch programming
language during writer’s workshop. Their findings indicated that students’ existing
knowledge and application of the writing process supported their understanding
of CT practices such as designing and debugging. Similar findings were reported
with young children. For instance, Portelance and Bers (2015) found that second
graders displayed CT concepts such as sequencing and parallel programming while
constructing ScratchJr animations and orally sharing their digital artifacts with peers.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

89

Rhyme and Reason

Table 1. Standards alignment between computer science/computational thinking
(CT) and English/Language Arts (ELA)

CT Concept
(Analogous

Literacy/Language
Connections)

Related Computer Science Teachers
Association (CSTA) Standards For K-2

Related Common Core ELA Standards for
First Grade

Algorithms
(Sequencing)

1A-CS-08: Model daily processes by creating
and following algorithms (sets of step-by-step
instructions) to complete tasks.
1A-CS-10: Develop programs with sequences
and simple loops, to express ideas or address a
problem.

CCSS.ELA-LITERACY.RL.1.2: Retell
stories, including key details, and demonstrate
understanding of their central message or
lesson.
CCSS.ELA-LITERACY.W.1.3: Write narratives
in which they recount two or more appropriately
sequenced events, include some details
regarding what happened, use temporal words
to signal event order, and provide some sense
of closure.
CCSS.ELA-LITERACY.W.1.7: Participate
in shared research and writing projects (e.g.,
explore a number of “how to” books on a given
topic and use them to write a sequence of
instructions).

Modularity
(Phonological
Awareness and
Decoding)

1A-CS-11: Decompose (break down) the
steps needed to solve a problem into a precise
sequence of instructions.

CCSS.ELA-LITERACY.RF.1.2: Demonstrate
understanding of spoken words, syllables, and
sounds (phonemes).
CCSS.ELA-LITERACY.RF.1.3: Know and
apply grade-level phonics and word analysis
skills in decoding words.

Representation
(Alphabet and
Letter-Sound
Correspondence)

1A-CS-09: Model the way programs store and
manipulate data by using numbers or other
symbols to represent information.

CCSS.ELA-LITERACY.RF.1.1: Demonstrate
understanding of the organization and basic
features of print.
CCSS.ELA-LITERACY.RF.1.3: Know and
apply grade-level phonics and word analysis
skills in decoding words.

Hardware/
Software (Tools of
Communication and
Language)

1A-CS-02: Use appropriate terminology in
identifying and describing the function of
common physical components of computing
systems (hardware).
1A-CS-03: Describe basic hardware and
software problems using accurate terminology.
1A-CS-16: Compare how people live and work
before and after the implementation or adoption
of new computing technology.

CCSS.ELA-LITERACY.W.1.6: With guidance
and support from adults, use a variety of digital
tools to produce and publish writing, including
in collaboration with peers.

Design Process
(Writing Process)

1A-CS-12: Develop plans that describe a
program’s sequence of events, goals, and
expected outcomes.
1A-CS-15: Using correct terminology, describe
steps taken and choices made during the
iterative process of program development.

CCSS.ELA-LITERACY.W.1.5: With guidance
and support from adults, focus on a topic,
respond to questions and suggestions from
peers, and add details to strengthen writing as
needed.
CCSS.ELA-LITERACY.SL.1.5
Add drawings or other visual displays to
descriptions when appropriate to clarify ideas,
thoughts, and feelings.

Debugging (Editing
and Audience
Awareness)

1A-CS-14: Debug (identify and fix) errors in an
algorithm or program that includes sequences
and simple loops.

CCSS.ELA-LITERACY.SL.1.3: Ask and
answer questions about what a speaker says in
order to gather additional information or clarify
something that is not understood.

Control Structures
(Literary Devices)

1A-CS-10: Develop programs with sequences
and simple loops, to express ideas or address a
problem.

CCSS.ELA-LITERACY.RF.1.4.B: Read grade-
level text orally with accuracy, appropriate rate,
and expression on successive readings.

Source: (IGI, 2021)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

90

Rhyme and Reason

Literacy Through Computational Thinking

The research on how CT can facilitate the development of traditional and new
literacies is currently limited in scope, but some work has been done to examine the
possible transfer effect of programming on literacy. A meta-analysis of 105 studies
that explored the transfer of programming skills to a variety of domains found
very little transfer to students’ literacy skills (Scherer et al., 2018). The authors
concluded that “reading comprehension and writing skills [are] skills that overlap
only marginally with programming,” (p. 783), although noting that only nine of the
105 studies explored the transfer effect on literacy, and those studies’ interventions
were not necessarily tailored to foster literacy through programming.

There is some evidence, however, that learning to code can be leveraged to
promote young children’s language and literacy development. Some studies point
to introductory programming as a way to engage students of varying skill levels,
highlighting improved student outcomes such as metalinguistic awareness, sequencing
and storytelling abilities, and vocabulary and language skills (Burke & Kafai,
2010; Clements, 1999; Fridin, 2014; Movellan, Eckhardt, Virnes, & Rodriguez,
2009; Peppler & Warschauer, 2012). The sequencing and storytelling connection in
particular has been explored with early childhood robotics. Kazakoff and colleagues
(2013) showed that an intensive robotics and programming intervention as short as
one week significantly improved story sequencing abilities among a sample of pre-
kindergarten and kindergarten students. Another study by Westlund and Breazeal
(2015) indicated that preschool children were able to create stories by engaging in
a storytelling game with a social robot. Sullivan and Bers (2015), who conducted a
cross-sectional study with 60 pre-kindergarten to second grade students, found that
children of all grade levels performed well on sequencing-related programming tasks,
with older first and second graders performing slightly better on hard sequencing tasks.

Although these aforementioned studies did not consider literacy as an explicit
focus in their curriculum design, these studies indicate, in alignment with Jacob
and Warschauer’s (2018) framework, that the connections among coding and CT
on the one hand, and literacy and language on the other, may be developmentally
coaligned. In order to support integration of these two curricular domains in a way
that produces meaningful outcomes in both areas, we must first understand the
similarities and differences between natural languages and artificial programming
languages, which we unpack in the next section.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

91

Rhyme and Reason

UNPACKING THE SIMILARITIES AND DIFFERENCES

At their core, both artificial programming languages and natural languages are
symbolic, representational systems with a grammar and syntax that can be used
to convey meaning and to express ideas that others can interpret (Bers, 2019).
Research studies have explored the similarities between programming languages
and natural languages, showing how learning to program might be beneficial for
learning new languages. For instance, Sara Vogel and colleagues (2020) propose
that translanguaging pedagogy—a term used in bilingual education referring to
how students use all of their linguistic resources across and beyond their multiple
languages to learn—might also be applied to computer science pedagogy to engage
children in CT practices alongside supporting their multiple language acquisition.

Some of the recent work at the DevTech Research Group has focused on exploring
the relationship between early elementary students’ literacy levels and programming
skills. Hassenfeld and colleagues (2020), for example, measured 132 second graders’
phonological awareness at the beginning of their school year using the Phonological
Awareness Literacy Screening (PALS), a diagnostic tool that looks at abilities such
as phonemic awareness, alphabet knowledge, letter-sound knowledge and word
recognition. Phonological awareness in the early grades is an important predictor
of later reading achievement (Hogan, Catts, & Little, 2005). The researchers also
assessed students’ programming skills in the KIBO programming language and the
knowledge of programming concepts using an assessment called KIBO Mastery
Challenges (KMCs) at different times over the course of a KIBO robotics curriculum.
They found that there was evidence for a weak, positive correlation (r = 0.3) between
PALS scores and KMC scores. Hassenfeld and colleagues’ findings are in line with
other studies that looked at the relationship between CT (not programming) and
verbal abilities more generally in older children and adolescents (Román-González
et al., 2017). These studies indicate there may be an overlap between language and
literacy ability in children on the one hand and the ability to learn computational
concepts on the other.

In addition to the connections between reading (decoding and comprehension) and
coding, there are also interesting connections between writing and coding. Coding
and writing are both compositional processes, and they share a subset of activities
(Hassenfeld & Bers, 2020). Coding is usually preceded by planning – determining
what the purpose of the program is, for example, by creating a flowchart or thinking
aloud what you want the computer to do. Writing is also usually preceded by planning
and pre-writing, for example, by researching a topic, jotting down notes, or creating
a graphic organizer. Then, both programmer and writer create their first program or
first draft and evaluate (test) it, becoming observers of how their program performs
or how their text reads. This first product is almost never the way the composer had

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

92

Rhyme and Reason

envisioned it. The artifact needs to be debugged (program) or edited and revised
(text). There may be mechanical errors (e.g., forgetting an end block in a program;
missing a punctuation mark after a sentence) or stylistic errors (e.g., using multiple
individual blocks when a repeat loop would be more efficient; using a word that
does not have quite the intended meaning). In an iterative process, the composer
may review their product, identify these errors, and take steps to correct them until
the product matches what they had in mind.

However, editing and revising are often where there are differences between the
two processes, at least as observed in young children. When writing, novice writers
are often reluctant to edit and revise (see, e.g., Applebee et al., 1986; Fitzgerald &
Markham, 1987; Hassenfeld & Bers, 2020). In contrast, novice programmers often
dedicate considerable time to getting their program ‘right’. Potential reasons lie in
the affordances of each medium – with debugging in ScratchJr and KIBO being less
cumbersome than erasing penciled text and rewriting – and the role of feedback.
Unlike a reader of written text, a computer can provide immediate feedback on a
program. The programmer sees right away what is working and what isn’t. In other
words, the programmer can shift their role between producer and consumer of their
computational artifact much more readily (e.g., “Is the character moving as much as
it should? Maybe instead of moving 3 steps to the left, the character should move
5 steps”). On the other hand, the process of writing and reading one’s own writing
for clarity, grammar, and other stylistic aspects requires a qualitatively different
level of audience awareness and role navigation between producer and consumer.

Understanding these similarities and differences between coding and writing
has important implications for teaching and learning. For example, a teacher who
struggles with motivating his students to revise their writing or to compose a story
might introduce a coding application as a supportive tool to help students understand
audience awareness or to inspire students’ story planning (e.g., Delacruz, 2020). In a
different vein, a student who is below grade-level in their reading and writing might
be encouraged to explore block-based programming to express their creative ideas
and produce meaningful computational artifacts (e.g., Peppler & Warschauer, 2012).
These examples push us to consider the reframing of CS education in early childhood
as one that embraces the connections to literacy and language. This perspective, of
course, requires understanding early childhood teachers’ dispositions towards both
disciplines. We might ask, for example, what are early childhood teachers’ views on
and priorities regarding literacy education, and what role can coding play to support
those priorities? To what extent might the broader discourse on CS education (and
the push to fuel the STEM professional pathway) possibly cloud early childhood
teachers’ perceptions of coding as a sense-making creative activity?

These questions set the stage for our current work developing and implementing
a coding and CT curriculum and sustainable professional development model in

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

93

Rhyme and Reason

K-2. Our work actively engages teachers in viewing coding as another language,
exploring cross-disciplinary alignment, and understanding feasible practices for
implementation and integration. In the next section, we examine these topics by
introducing the pedagogical approach developed by Prof. Marina Bers and members
of the DevTech Research Group at Tufts University called “Coding as Another
Language” (CAL).

The Coding as Another Language (CAL) Pedagogical Approach

The CAL pedagogical approach is grounded in three theoretical perspectives for
how young children learn and develop when engaging with computational tools:
1) constructionism (Papert, 1980), 2) positive technological development (Bers,
2012), and 3) dialogic instruction (Clarke et al., 2015; Littleton & Howe, 2010;
Resnick et al., 2018).

1. Constructionist theory, as its root word “construct” implies, is the process-
oriented theory that maintains people learn best when they actively build and
make things that can be shared with others (as opposed to the product-oriented
instructionist approach, in which knowledge is transmitted from instructor to
learner).1 In the context of early childhood coding education, constructionist
theory emphasizes programming as an opportunity for young children to
construct their own programs and make personally meaningful projects.

2. The Positive Technological Development framework proposed by Bers (2012)
identifies six kinds of behaviors that can be fostered in a technology-mediated
learning experience: content creation, creativity, communication, collaboration,
community building, and choices of conduct. These behaviors are not only
supported by the computational tool or activity, but also the context of the
learning environment and the ways in which the activity is presented to children
by the teacher or facilitator. This latter point is emphasized through the third
theoretical perspective: dialogic instruction.

3. In dialogically organized instruction (Nystrand, 1997), the teacher is not
positioned as the sole authoritative expert, nor is the child positioned as the
novice. Instead, teachers engage their students in authentic explorations of
the subject matter and invite open-ended discussions of student ideas and
interpretations. As a result, learning is co-constructed collaboratively and
through active discourse.

We next describe how these three theoretical perspectives are operationalized
into full-length curricula with KIBO robotics and ScratchJr, two block-based
programming tools for young children developed by the DevTech Research Group.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

94

Rhyme and Reason

Operationalization of the CAL Approach
into Early Childhood Curricula

The CAL curricula are organized into grade-level units, all centered around various
children’s books and an introductory programming language for young children
(either the KIBO robotics kit or the screen-based ScratchJr application). Regardless
of the programming language used, each curriculum unit follows a similar structure
and consists of games, songs, design challenges, free play, expressive explorations,
reading and writing activities, and technology circles. Each curriculum unit is aligned
with nationally recognized computer science and literacy standards and frameworks,
including the International Society for Technology in Education (ISTE) Standards
for Students, K-12 Computer Science Framework, Computer Science Teachers
Association (CSTA) K-12 Computer Science Standards, and Common Core ELA
Standards. We next describe the set of curriculum units split by programming
language, first KIBO and then ScratchJr.

The CAL KIBO curriculum uses the KIBO programming language to introduce
young children to foundational concepts of coding, CT, and robotics. Formerly known
as KIWI in its early research prototype form, KIBO is a screen-free robotics set
sold commercially by KinderLab Robotics, Inc. The kit is comprised of a battery-
operated robot with an embedded barcode scanner and the following detachable
parts: wheels and motors; lightbulb and sound recorder modules that enable the robot
to light up and make sounds; sensors that enable the robot to sense light, sound,
and distance; tangible wooden programming blocks with barcode stickers; and art
platforms enabling children to personalize their robots with arts and crafts. The
DevTech Research Group has developed CAL KIBO curricula for Pre-Kindergarten,
Kindergarten, First Grade, and Second Grade. Each grade-level curriculum spans
between 12 to 30 lessons of approximately 30-60 minutes each. The variability in
lesson length and duration takes into account developmental differences of students
and the level of programming complexity introduced at each grade level. However,
as with any curriculum, the content and pacing can be adjusted to particular learning
settings to meet the needs of teachers and students.

The CAL ScratchJr curriculum uses the ScratchJr programming language to
teach children to code. The ScratchJr programming language is an introductory,
visual programming language for children between five and seven years of age.
ScratchJr is a freely available app and, at the time of writing, the most popular free
programming language in the world (Bers, 2020). In the app, children can create
stories and games by putting together graphical programming blocks that represent
different commands, similar to the wooden blocks used with the KIBO robot. All
menu options and instructions are represented by symbols and colors, so children
at all literacy levels can use it as well. The CAL ScratchJr curriculum consists of

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

95

Rhyme and Reason

24 individual lessons of approximately 45 minutes each (totaling 18 hours), but
the pacing can be adjusted to particular learning settings. Individual curricula have
been developed for Kindergarten, First Grade, and Second Grade. The curriculum
provides integration between computer science and programming in the context of
literacy. Throughout the 24 lessons, students learn to explore two books (different
ones for each grade) to write creative, fun programs on ScratchJr. The curriculum
culminates with an open-ended project to share with family and friends.

Table 2 illustrates the different types of activities in the CAL KIBO and ScratchJr
curricula and highlights the CT concepts and skills that are supported throughout
the lessons. The next section describes three example lesson activities from the CAL
curricular units with related CT concepts italicized.

Examples of CAL Lesson Activities

How-To Prompts

Functional texts, or texts used for everyday communication that serve a particular
purpose (e.g., recipes, manuals, instructions, etc.), are an integral aspect of early
elementary literacy education. Children are regularly tasked with following single-
and multi-step directions and communicating how to do something on their own.
How-To prompts are a low-stress entry point into writing and provide children the
opportunity to reflect on the process they undertake to accomplish a task (design
process) and to communicate the steps of that process in a sequential and detailed
fashion (algorithms). There are several activities in the CAL KIBO and ScratchJr
curricular units that engage children in CT through procedural writing or functional
texts. For instance, one prompt in the CAL KIBO First Grade curriculum is “What
are the steps for making a pizza? What toppings will you put on your pizza? Draw or
write these steps in your Design Journal.” Another activity is “Program the Hokey-
Pokey,” in which the class dances to the Hokey-Pokey song and brainstorms a set
of programming actions that would correspond to the physical movements for the
song. Children then program their KIBO robots or ScratchJr characters to dance
the Hokey-Pokey.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

96

Rhyme and Reason

Table 2. Summary of CAL KIBO and ScratchJr curricular activity types

Activity Purpose of
Activity CAL KIBO Example CAL ScratchJr Example

Warm Up
Playfully introduce
or reinforce
concepts

Children sing and dance to
the “Robot Parts” song that
describes how children act
as engineers to connect the
different parts of the KIBO
robot and to program it to move
using the blocks (hardware and
software).

Children are shown a picture
of a street and search for
symbols (STOP signs, zebra
crossings, a shop’s sign). The
activity gets children started in
understanding and expressing
that symbols stand for
something else (representation).

Opening/
Closing
Technology
Circle

Come together to
discuss, share, and
reflect on activities
and concepts

Children gather in a community
circle to share problems they
had while creating and scanning
KIBO programs and discuss
problem-solving strategies
(debugging).

Children gather in a community
circle to talk about the rules
and elements of a race (e.g.,
distance, participants, speed).

Structured
Coding
Challenge

Engage children in
powerful ideas in
computer science
through learning
new coding skills

Children learn about algorithms
and how KIBO will perform
the actions in the same order
that the blocks are assembled
and scanned using the robot’s
embedded barcode scanner
(algorithms).

Children learn what a parameter
is and why parameters are
useful (e.g., instead of using six
turn blocks, they can use just
one turn block and change the
number of times it will be used
to six).

Expressive
Coding
Explorations

Practice learned
coding skills in an
open-ended way

Children engage in an iterative
design process to create their
own version of the Hokey-
Pokey dance using the KIBO
blocks. After planning, testing
and revising their programs,
children share their KIBO
dances with their peers (design
process).

Children apply their knowledge
of the speed blocks to program
their own ScratchJr race
between multiple characters
(control structures).

Unplugged
Time

Promote CT
learning, social
interaction, and
movement without
the use of any
devices

Children play a game of
“Red Light, Green Light” to
reinforce the meanings of the
green Begin block and the
red End block. The activity
aims to promote children’s
understanding of attributes such
as color or symbol being used
to communicate information
(representation).

Children play a game of
“Programmer Says,” similar
to the traditional “Simon
Says” game, in which children
repeat an action (a ScratchJr
command) when instructed
by the programmer (i.e., the
teacher or a child).

Word Time

Engage children
in powerful ideas
of literacy and
language

Children listen to a poem or
song and try to identify the
repeating words or phrases.
This activity is extended into a
discussion about repetition as a
literary device and how we can
use repeat loops in our KIBO
programs (control structure).

Children learn about the
importance of sequencing by
planning their own story using
a planning sheet with three
sections for the beginning,
middle, and end of the story
with lines for writing and space
for drawing (algorithms).

Source: (IGI, 2021)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

97

Rhyme and Reason

Tools of Communication

People can communicate with one another in a variety of ways, for instance, through
oral, gestural, written, and pictorial representations. New technological tools such
as telephones, e-mail, video-chatting platforms, and emojis have further expanded
the ways in which people can communicate (hardware and software). Each form
of communication has its own strengths and limitations and, depending on the
context, might be a preferable method of getting the right message across to the
recipient. Although natural languages might have some flexibility in interpretation,
programming languages do not; without proper syntax and grammar, the computer
will not interpret the programmed instructions appropriately. The CAL KIBO
and ScratchJr curricular units engage children in exploring different tools of
communication and in reflecting on the similarities and differences between natural
and artificial programming languages.

For example, one lesson activity involves a game of “Telephone,” in which one
student thinks of a message and whispers it to the person sitting next to them, who
then whispers to the person next to them, and so on until the message gets to the
last person. The first and last people deliver these messages out loud, and the class
compares and discusses the two messages. Children then play additional modified
rounds, such as with a handwritten message or with a printed or typed message.
Children discuss the experience of receiving and communicating messages in different
forms (representation), and importantly how they would revise their communication
if the recipient is confused. This activity of revising is later connected to the
importance of troubleshooting errors (debugging) when children are programming
with KIBO or ScratchJr.

Creative Writing and Coding Compositions

The final lessons of the CAL KIBO and ScratchJr curricula invite students to
compose creative artifacts through writing and programming. Students first engage
in a book read-aloud, which serves as inspiration for their final project creations.
They ask and imagine an alternative ending for one of the book’s characters or
(in the case of the Pre-Kindergarten KIBO curriculum and the book Pete the Cat:
Robo-Pete by James Dean) what their own robot-friend would look like and do.
Students compose a written artifact about their project idea or orally share their
initial ideas with peers, and then are tasked with programming and designing their
final projects. Once students have the first iterations of their creations, they test out
their designs, troubleshoot bugs, and then share their projects with peers, families,
and community members (design process). Through this process of planning and

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

98

Rhyme and Reason

designing their projects, children engage in computational thinking and making
and are able to experience the unfolding of their unique ideas with each medium.

IMPLICATIONS FOR TEACHING AND LEARNING

For a long time, computer science has been viewed as a talent that people either have
or don’t have, and the computing field has been highly gendered as well (Miller,
2017). However, once the parallels between literacy and coding are appreciated, it
becomes clear that CT is a teachable and learnable skill just like reading and writing.
Recent research using different methodologies has shown that both girls and boys
can improve their CT skills through classroom coding instruction. For example,
Pérez-Marín and colleagues (2018) found that 9 to 12-year-old children who were
taught computer science concepts using metaphors and the Scratch App (a block-
based programming language for children ages eight and up) were able to improve
their scores on standardized multiple-choice CT assessments (Román-González et
al., 2017). Working with even younger children, Relkin and colleagues examined
changes in CT skills in first and second grade students (six- and seven-year-olds)
who had been exposed to the CAL KIBO curriculum compared to children who did
not. Over the course of the study, children who received CAL KIBO improved on
their CT skills as measured by the unplugged CT assessment TechCheck (Relkin
et al., 2020), whereas the control group did not. There were no differences between
boys and girls. Unlike other studies, this study included a control group, a crucial
element for being able to show that the improvements are due to instruction, and not
a result of students improving by themselves or through business-as-usual classroom
instruction. The study adds to the growing body of evidence (Lye & Koh, 2014) that
CT can be taught successfully just like literacy, and that early interventions have
strong potential to help dismantle gender stereotypes about the computing field
(Sullivan, 2019; see Sullivan’s Chapter 11).

CONCLUSION

Just as there is an inextricable, bidirectional link between thought and language
(Vygotsky, 2012), there cannot be a complete conversation about coding and CT
without a discussion of literacy and language. In this chapter, we presented these
two sets of domains as mutually reinforcing and developmentally coaligned. As a
literacy, coding engages children in thinking about “powerful ideas” (Papert, 1980)
from computer science as well as other domains. Through literacy, coding and
CT provide opportunities for children’s sense-making. Through coding and CT,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

99

Rhyme and Reason

children are able to use problem solving as a means towards self-expression and
communication, ultimately becoming able to navigate the digital world around them.

While we see great value in appreciating the connections between CT, coding,
literacy and language, it is important to highlight that there are also several crucial
differences. First and foremost, when children learn to write, they already have spoken
language to start from. They need to learn new symbols (letters, punctuation, etc.),
but they don’t have to learn the grammar or the vocabulary of their language, which
they’ve had years of experience and practice with. In contrast, learning to program
means learning a language that has hardly any connection to the language they speak
(only via the route of written language, such as “start” written on a start block).
There is no spoken language equivalent of the ScratchJr programming language
like there is with human languages (Goswami, 2001). In addition, both written and
spoken language are very accommodating when it comes to errors. We can process
speech effortlessly although most spontaneous utterances are not “grammatical,”
and we can read texts riddled with spelling errors. A program, however, may not
run at all if there is even a single error in it. Language (written and spoken) fulfills
many different functions – we can use it to describe, to question, to praise, to scold,
to plea, to apologize, to congratulate, and so on. We can modulate our tone and the
level of politeness. It’s a complex system that has evolved over thousands of years.
Programs can do many things, but they do not match the functionality of human
language.

These differences notwithstanding, appreciating the parallels can open our eyes
to another important point: literacy is and always has been a deeply political issue.
Literacy has stood at the heart of access, power and hierarchy in our society. The
United States in the twentieth century used literacy as a barrier for people of color,
people of low socioeconomic backgrounds, and women. One of the main ways
that literacy has been manipulated to support the status quo and disenfranchise is
to limit access. At this present moment in time when the country is divided and
hateful rhetoric is at a dangerous high, we cannot afford as a nation to repeat the
mistakes of print literacy with digital literacy. The future of coding education begins
with access. All children deserve to learn how to code and learn from an early age.

However, access is not the only way literacy has been used to disenfranchise.
Literacy instruction has also been used to legitimize particular notions of knowledge,
truth and values. Assessment of literacy in schools has been used to promote
philosophically narrow and biased viewpoints linked to race, class and gender. As
Willis and Harris (2000) explain, “Literacy learning and teaching has never been
ideologically neutral or culturally unbiased. It has been a series of related political acts
of ideological domination and conformity draped under a thick veil of paternalism”
(p. 78). The need for more culturally sensitive pedagogies for literacy is a call that
goes out against an educational landscape in which demographics suggest that future

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

100

Rhyme and Reason

teachers are “most likely to be white monolingual females from suburban and rural
middle-class homes [while] the student population the next century suggest two
out of every three students will be children of color” (Willis & Harris, 2000, p. 76).

CAL begins the corollary work of multiliteracies for computational thinking and
coding. While every child needs access to the new literacy of coding, they also need
instruction in ways that overcome the same narrow, transmissive focused way that
literacy has been taught (and is only now beginning to be transformed). CAL is a
step in the right direction of pedagogical approaches and curricula that no longer
ignore students’ lives, contexts and desire to make meaning with the resources of their
lived experience, and avoids a pedagogy that continues to exclude and marginalize.
Like literacy, coding must start from a pedagogical premise that asks students to
bring their questions, interests, and experiences to the task at hand. Only then will
the full benefits of CT and literacy come to fruition.

ACKNOWLEDGMENT

This research was supported by the U.S. Department of Defense Education Activity
Grant “Breaking the Code for College and Career Readiness” and the U.S. Department
of Education [grant number U411C190006]. The authors also wish to thank Dr.
Olson Pook for copyediting this chapter.

REFERENCES

Applebee, A. N., Langer, J. A., & Mullis, I. V. S. (1986). The Writing Report Card:
Writing Achievement in American Schools. Princeton, NJ: Educational Testing
Service; Washington, DC: Office of Educational Research and Improvement.

Bakhtin, M. M. (1981). The dialogic imagination: Four essays (M. Holquist, Ed.
& Trans.). University of Texas Press.

Bers, M. (2020). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom (2nd ed.). Routledge Press.
doi:10.4324/9781003022602

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth
Development: From Playpen to Playground. Cary, NC: Oxford. doi:10.1093/acpro
f:oso/9780199757022.001.0001

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

101

Rhyme and Reason

Bers, M. U. (2019). Coding as another language: A pedagogical approach for
teaching computer science in early childhood. Journal of Computers in Education,
6(4), 499–528. doi:10.100740692-019-00147-3

Burke, Q., & Kafai, Y. B. (2010). Programming & storytelling: Opportunities for
learning about coding & composition. Proceedings of the 9th International Conference
on Interaction Design and Children. 10.1145/1810543.1810611

Clarke, S., Resnick, L. B., & Rose, C. P. (2015). Dialogic instruction: A new frontier.
Academic Press.

Clements, D. (1999). The Future of Educational Computing Research: The Case
of Computer Programming. In C. Hoyles & R. Noss (Eds.), Learning mathematics
and Logo. Academic Press.

Code.org. (2020). Leaders and Trendsetters Agree More Students Should Learn
Computer Science. https://code.org/promote

Committee on STEM Education, National Science & Technology Council, the
White House. (2018). Charting a course for success: America’s strategy for STEM
education. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-
Education-Strategic-Plan-2018.pdf

Delacruz, S. (2020). Starting From Scratch (Jr.): Integrating Code Literacy in the
Primary Grades. The Reading Teacher, 73(6), 805–811. doi:10.1002/trtr.1909

diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. MIT
Press. doi:10.7551/mitpress/1786.001.0001

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM
Occupations - Past, Present, and Future. https://hdl.handle.net/1813/79240

Fitzgerald, J., & Markham, L. R. (1987). Teaching children about revision in writing.
Cognition and Instruction, 4(1), 3–24. doi:10.12071532690xci0401_1

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for
constructive learning in preschool education. Computers & Education, 70, 53–64.
doi:10.1016/j.compedu.2013.07.043

Gee, J. P. (2007). What Video Games Have to Teach Us About Learning and Literacy.
Cyberpsychology & Behavior, 12(1).

Goswami, U. (2001). Early phonological development and the acquisition of literacy.
Handbook of Early Literacy Research, 111-125.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://code.org/promote
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://hdl.handle.net/1813/79240

102

Rhyme and Reason

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State
of the Field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Handsfield, L. (2016). Literacy Theory as Practice: Connecting Theory and
Instruction in K–12 Classrooms. Teachers College Press.

Hassenfeld, Z. R., & Bers, M. U. (2020). Debugging the Writing Process: Lessons
From a Comparison of Students’ Coding and Writing Practices. The Reading Teacher,
73(6), 735–746. doi:10.1002/trtr.1885

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. (2020). If You Can
Program, You Can Write: Learning Introductory Programming Across Literacy
Levels. Journal of Information Technology Education, 19, 65–85. doi:10.28945/4509

Hogan, T. P., Catts, H. W., & Little, T. D. (2005). The Relationship between
Phonological Awareness and Reading: Implications for the Assessment of
Phonological Awareness. Language, Speech, and Hearing Services in Schools,
36(4), 285–293. doi:10.1044/0161-1461(2005/029) PMID:16389701

International Literacy Association. (2021). Teaching with Tech. https://www.
literacyworldwide.org/blog/digital-literacies/teaching-with-tech

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal
of Computer Science Integration, 1(1). Advance online publication. doi:10.26716/
jcsi.2018.01.1.1

Kazakoff, E., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based
intensive robotics and programming workshop on sequencing ability in early
childhood. Early Childhood Education Journal, 41(4), 245–255. doi:10.100710643-
012-0554-5

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L.
D., & Duschl, R. A. (2020). Computational Thinking Is More about Thinking than
Computing. Journal for STEM Education Research, 3(1), 1–18. doi:10.100741979-
020-00030-2 PMID:32838129

Littleton, K., & Howe, C. (2010). Educational Dialogues: Understanding and
Promoting Productive Interaction. Routledge. doi:10.4324/9780203863510

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech
https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech

103

Rhyme and Reason

Miller, C. C. (2017). Tech’s Damaging Myth of the Loner Genius Nerd. https://
www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-
nerd.html

Moll, L., Amanti, C., Neff, D., & González, N. (2005). Funds of knowledge for
teaching: Using a qualitative approach to connect homes and classrooms. In Funds
of Knowledge: Theorizing Practices in Households, Communities, and Classrooms
(pp. 71-88). Lawrence Erlbaum Associates.

Movellan, J., Eckhardt, M., Virnes, M., & Rodriguez, A. (2009). Sociable robot
improves toddler vocabulary skills. Proceedings of the 4th ACM/IEEE International
Conference on Human Robot Interaction. 10.1145/1514095.1514189

Nystrand, M. (1997). Opening Dialogue: Understanding the Dynamics of Language
and Learning in the English Classroom. Teachers College Press.

Pane, J. F., & Myers, B. A. (2001). The impact of human-centered features on the
usability of a programming system for children. Proceedings of CHI EA’02.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Peppler, K. A., & Warschauer, M. (2012). Uncovering Literacies, Disrupting
Stereotypes: Examining the (Dis)Abilities of a Child Learning to Computer Program
and Read. International Journal of Learning and Media, 3(3), 15–41. doi:10.1162/
IJLM_a_00073

Pérez-Marín, M., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2018). Can computational
thinking be improved by using a methodology based on metaphors and Scratch to
teach computer programming to children? Computers in Human Behavior.

Portelance, D. J., & Bers, M. U. (2015). Code and Tell: Assessing young children’s
learning of computational thinking using peer video interviews with ScratchJr.
Proceedings of the 14th International Conference on Interaction Design and Children
(IDC ’15). 10.1145/2771839.2771894

RAND Reading Study Group. (2002). Reading for Understanding, toward an R&D
Program in Reading Comprehension. RAND.

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and
Validation of an Unplugged Assessment of Computational Thinking in Early
Childhood Education. Journal of Science Education and Technology, 29(4), 482–498.
doi:10.100710956-020-09831-x

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html
https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html
https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html

104

Rhyme and Reason

Resnick, L. B., Asterhan, C. S. C., & Clarke, S. (2018). Next Generation Research
in Dialogic Learning. In G. E. Hall, L. F. Quinn & D. M. Gollnick (Eds.), Wiley
Handbook of Teaching and Learning (pp. 338-323). Wiley-Blackwell.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).
Scratch: Programming for Everyone. Communications of the ACM, 52(11), 60–67.
doi:10.1145/1592761.1592779

Román-González, M., Pérez-González, J., & Jiménez-Fernández, C. (2017).
Which cognitive abilities underlie computational thinking? Criterion validity of
the Computational Thinking Test. Computers in Human Behavior, 72, 678–691.
doi:10.1016/j.chb.2016.08.047

Rumelhart, D. E. (1994). Toward an interactive model of reading. In R. B. Ruddell,
M. R. Ruddell, & H. Singer (Eds.), Theoretical models and processes of reading
(pp. 864–894). International Reading Association.

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2018). The cognitive benefits of
learning computer programming: A meta-analysis of transfer effects. Journal of
Educational Psychology, 111(5), 764–792. doi:10.1037/edu0000314

Serafini, F., & Gee, E. (2017). Remixing multiliteracies: Theory and practice from
New London to new times. Teachers College Press.

Smith, R., Snow, P., Serry, T., & Hammond, L. (2020). The Role of Background
Knowledge in Reading Comprehension: A Critical Review. Reading Psychology,
42(3).

Sullivan, A. (2019). Breaking the STEM Stereotype: Reaching Girls in Early
Childhood. Rowman & Littlefield.

Vee, A. (2017). Coding Literacy: How Computer Programming Is Changing Writing.
The MIT Press. doi:10.7551/mitpress/10655.001.0001

Vogel, S., Hoadley, C., Castillo, A. R., & Ascenzi-Moreno, L. (2020). Languages,
literacies, and literate programming: Can we use the latest theories on how bilingual
people learn to help us teach computational literacies? Computer Science Education,
30(4), 420–443. doi:10.1080/08993408.2020.1751525

Vygotsky, L. (2012). Thought and language. MIT Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

105

Rhyme and Reason

Westlund, J., & Breazeal, C. (2015). The Interplay of Robot Language Level with
Children’s Language Learning During Storytelling. In Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction Extended
Abstracts. ACM. 10.1145/2701973.2701989

Willis, A. I., & Harris, V. (2000). Political acts: Literacy learning and teaching.
Reading Research Quarterly, 35(1), 72–88. doi:10.1598/RRQ.35.1.6

Wing, J. M. (2006). Computational Thinking. CACM Viewpoint, 33-35. http://www.
cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

ADDITIONAL READING

Aguilar, R. (2014, July 30). Your Call: Is coding the new literacy? [Radio broadcast].
KALW. https://www.kalw.org/show/your-call/2014-07-30/your-call-is-coding-the-
new-literacy

Bers, M. U. (2018). Coding as a Literacy for the 21st Century. https://www.edweek.
org/education/opinion-coding-as-a-literacy-for-the-21st-century/2018/01

Bers, M. U. (2019). Coding as another language. In C. Donohue (Ed.), Exploring
key issues in early childhood and technology: Evolving perspectives and innovative
approaches (pp. 63–70). Routledge. doi:10.4324/9780429457425-11

DevTech Research Group. (2021). Coding as Another Language: Teaching
programming as a literacy of the 21st century. https://sites.tufts.edu/
codingasanotherlanguage/

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The Language
of Programming: A Cognitive Perspective. Trends in Cognitive Sciences, 23(7),
525–528. doi:10.1016/j.tics.2019.04.010 PMID:31153775

Hassenfeld, Z. R., & Bers, M. U. (2019). When We Teach Programming Languages
as Literacy. https://www.literacyworldwide.org/blog/literacy-now/2019/05/16/when-
we-teach-programming-languages-as-literacy

Vee, A. (2013). Ideologies of a New Mass Literacy. https://vimeo.com/61820239

Vee, A. (2013). Is coding the new literacy everyone should learn? Moving beyond
yes or no. http://www.annettevee.com/blog/2013/12/11/is-coding-the-new-literacy-
everyone-should-learn-moving-beyond-yes-or-no/

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
https://www.kalw.org/show/your-call/2014-07-30/your-call-is-coding-the-new-literacy
https://www.kalw.org/show/your-call/2014-07-30/your-call-is-coding-the-new-literacy
https://www.edweek.org/education/opinion-coding-as-a-literacy-for-the-21st-century/2018/01
https://www.edweek.org/education/opinion-coding-as-a-literacy-for-the-21st-century/2018/01
https://sites.tufts.edu/codingasanotherlanguage/
https://sites.tufts.edu/codingasanotherlanguage/
https://www.literacyworldwide.org/blog/literacy-now/2019/05/16/when-we-teach-programming-languages-as-literacy
https://www.literacyworldwide.org/blog/literacy-now/2019/05/16/when-we-teach-programming-languages-as-literacy
https://vimeo.com/61820239
http://www.annettevee.com/blog/2013/12/11/is-coding-the-new-literacy-everyone-should-learn-moving-beyond-yes-or-no/
http://www.annettevee.com/blog/2013/12/11/is-coding-the-new-literacy-everyone-should-learn-moving-beyond-yes-or-no/

106

Rhyme and Reason

KEY TERMS AND DEFINITIONS

Access: The ability, permission, or right to use, communicate, or approach
something or someone.

Composition: A musical, artistic, written, or digital artifact created by a person
or a group of people.

Grammar: The structure and system of a language.
Language: A socially and culturally constructed symbolic system of human

communication conveyed using speech, gesture/manual signs, and writing.
Literacy: The ability to read, write, speak, and listen in a way that enables a

person to communicate effectively and make sense of the world around them.
Programming Language: A set of commands, instructions, and symbols that

humans can manipulate in order to communicate with computers.
Syntax: The set of rules, principles and processes of a language that govern the

arrangement of words and phrases.

ENDNOTE

1 Note that constructionism is based on but slightly different from constructivism
as it is used in language acquisition research; the latter refers to the assumption
that children construct meaning collaboratively in an interplay between the
individual and the environment, and specifically other speakers who use
language around them.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

107

DOI: 10.4018/978-1-7998-7308-2.ch006

ABSTRACT

Life science and computer science share the educational goals of fostering students
to engage in inquiry-based learning and solve problems through similar practices
of discovery, design, and experimentation. This chapter outlines the pedagogical
links among traditional life science and emerging computer science domains in
early childhood education, and describes an educational intervention using the
CRISPEE technological prototype. CRISPEE, designed by a research team of
developmentalists, biologists, educators, and computer scientists, invites young
children to use computational logic to model design processes with biological
materials. Findings are discussed as they relate to new understandings about how
young children leverage computational thinking when engaged in design-based life
science, or biodesign.

INTRODUCTION

As part of my research at the DevTech Research Group, I (like all the researchers
in our lab) have spent years collecting data about young children’s engineering,
technology, and programming learning by implementing and evaluating informal
curricular interventions. In the 20 years since the creation of DevTech by Marina
Bers, our collective research experience on running these camps and play sessions

Computational Thinking
and Life Science:

Thinking About the Code of Life

Amanda L. Strawhacker
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

108

Computational Thinking and Life Science

has resulted in a cumulative wealth of knowledge about effective practices for
introducing robotics, coding, and other STEAM-themed topics for the first time to
4- to 8-year-old learners. One of the very first activities that we like to play in our
robot-themed camps is a game called, “Robot or Not?” The premise of the game is
simple: the researcher shows a group of children a picture of an object, and asks “Is
this a robot, or not?” If a child thinks yes, they jump up and down; if their answer
is no, they stand still; and if they aren’t sure or they need more information, they
wiggle from side-to-side. In addition to being a fun game to get some energy out,
Robot or Not? provides an opportunity for children have conversations about what
makes something a robot. We found early on that children exploring robotics for
the first time understandably hold a variety of assumptions and ideas about robots
that range from precocious to erroneous. Robot or Not? offers a low-stakes playful
settting to explore children’s ideas, allowing researchers to address misconceptions
and identify gaps in knowledge.

Conversations get especially rich when players disagree about whether something
is a robot. For example, most children jump up and down when they see a picture
of a famous robot character from a movie, and stand still for a picture of a dog, but
a picture of a stuffed toy stitched to look like a robot is more ambiguous. When we
reach the inevitable point in the game when children are uncertain, the researcher
pauses to invite children to list characteristics that they think robots have, in order to
agree on a shared definition. A common list includes the following criteria: Robots
are made of metal or plastic; They have special parts like gears and motors that non-
robots do not have; These special parts can move and make sounds automatically;
Some robots are built to look like humans; All robots need an engineer or programmer
to tell them what to do. This list may grow or change depending on the children in
the group, but one criterion is common across every conversation that I’ve ever led
or observed with children playing this game: robots are machines, and so they are
definitely not alive. And yet, as advances in biotechnology and genetics change the
very nature of what we mean by “alive”, I find myself questioning this foundational
assumption about machines that even young children understand, and wondering what
it could look like to have that conversation in our early childhood STEAM camps.

Thus, in my doctoral thesis, I set out to explore the relationship between children’s
understanding of computational algorithms, and algorithms in the natural world,
such as DNA—the genetic “code of life”. I wanted to know if we could create tools,
frameworks, and lesson activities to invite children to meaningfully engage with
concepts from genetics and biology in a playful and developmentally appropriate
way, just as we’ve seen successfully in early computer science education (Bers, 2020).
The NSF-funded Making the Invisible Tangible project led at Tufts University and
Wellesley College (CHS-1564019), attempted to explore the pedagogical connections
linking computational thinking to engineering design and life science content

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

109

Computational Thinking and Life Science

(Strawhacker, Verish, Shaer, & Bers, 2020a, 2020b, 2020c; Verish, Strawhacker,
Bers, & Shaer, 2018). We sought to develop a suite of lesson activities and an
educational technology prototype, called the CRISPEE kit, that could bring the
real-world relevance and design creativity of coding into children’s exploration
of microbiology, a historically challenging field for young learners to break into.

In this chapter, I share our experiences testing the CRISPEE learning intervention
with children. I first outline relevant pedagogical connections and priorities among
traditional life science and more recent computer science domains, with a focus on
the emerging STEM-integrated domain of biodesign (using engineering practices
and methodologies to solve biological problems, using biologically-based building
materials). Finally, I describe findings from an educational research intervention with
the novel CRISPEE prototype, to explore whether and how young children can apply
digital learning tools and computational thinking skills to explore biological content.

Science and the STEM Revolution

In the last few decades, the US education community has seen a boom in shifting
tools, attitudes, and priorities surrounding STEM (or “I-STEM”), the catch-all term
for integrated science, technology, engineering, and mathematics content. Whether the
justification is military and federal concern for an economic pipeline of new STEM
jobs needing to be filled (Vossoughi & Vakil, 2018), civic concern over the lack
of diversity and representation in current STEM fields (Sullivan, 2019; Vossoughi
& Vakil, 2018), or novel learning opportunities made by possible by innovations
educational technologies (Bers, 2020; Kafai & Walker, 2020), STEM has become
as ubiquitous in curriculum standards and school district outcomes as the classic
learning goals of “reading, writing, and arithmetic” (Garrett, 2008; McComas &
Burgin, 2020; Sanders, 2008; Sullivan, 2019).

It is beyond the scope of this chapter to delve into the debate surrounding how or
why STEM has launched into national (and international) prominence (see Vossoughi
& Vakil, 2018, for a critical depth examination), but one pronounced trend is that
technology, computer science, and engineering have made sweeping advances as
educational domains. This is partly due to advances in computational technology,
which have contributed to a growing library of innovative, hands-on learning tools
that make previously inaccessible concepts more tangible and accessible than ever
before, especially for the youngest learners in PreK-2nd grade who most benefit
from an integrated, hands-on approach to STEM learning (Chappell, et al., 2021;
Kafai & Walker, 2020; National Research Council, 2000). In many ways, new tool
development has been spurred by a focus on design-based learning approaches, rooted
in the theory of constructionism from the field of computer science education, and
learning pedagogies (e.g. “playground-style” technology use, Bers 2012) that engage

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

110

Computational Thinking and Life Science

learners in creating digital and computational artifacts to visualize learning – in other
words, to use novel platforms and modalities to construct, share, and reinterpret ideas
through design (Bers, 2012; Papert, 1993). But where does this leave science? Why
has the “S” in STEM education seemed to maintain a business-as-usual learning
model in spite of new integrated science standards (Bybee, 2010, 2014; NGSS Lead
States, 2013), introduced during a renaissance of integrated STEM education? For
the purposes of this chapter, I will focus on life science and biology (used more
or less interchangeably) as I unpack these questions and explore potential future
directions for early education.

Bringing K-12 Life Science into the 21st Century

The question of how to reckon traditional life science education with a changing
modern world has been debated in the education community long before the push
for “21st century skills”. In the 1980s and 90s, researchers championed Science,
Technology, and Society (STS), a movement to engage students in leveraging scientific
knowledge in decisions about policy, social, and public life (e.g., Yager, 1996). As
life science approaches a new threshold of change and innovation, these initiatives to
are even more important to prepare future citizens for biology-based dilemmas of the
21st century. Novel design-based methods that leverage living materials and genetic
“re-coding” to engineer solutions to human problems foreshadow new directions
for life science as a field, and thus, new goals for STEM-integrated life science
education and participation (Kafai & Walker, 2020; Walker & Strawhacker, 2021).

Recent decades have seen the emergence of crosscutting and speculative domains
like biodesign (applying engineering practices to the design of biological materials
to solve human problems), leading to such advances as foods bioengineered to be
more shelf-stable (e.g., Arctic Apples, 2020), tactical clothing made with genetically-
engineered spider silk (Cumbers, 2019), and more common bioengineered products
like insulin, medicines, and vaccines (Nawla, 2014). Technology and biology are
converging in a way that outpaces our ability to fully understand it, much less explain
it to children. Still, in the face of such transformative advances in “real” life science
practices, limiting biology education to the same observational tools and methods
of 19th century naturalists feels jarringly outdated.

From an education perspective, critics of integrating life science with other
STEM fields point to clashing epistemologies and philosophies of each discipline
(e.g., Clough & Olson, 2016; McComas & Burgin, 2020; Zeidler et al., 2016). The
argument goes that traditionally, the goal of life science is to observe and explain
phenomena in the natural world, which inherently diverges from engineering and
computer science goals of building things to solve problems (see McComas &
Burgin, 2020 for a depth discussion of life science in relation to integrated STEM

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

111

Computational Thinking and Life Science

education). Further, when we introduce design into any discipline, we inherently
introduce power dynamics about who decides which designs are valuable, who stands
to benefit from designs, and which design challenges are not pursued (e.g. Calabrese
Barton & Tan, 2019). If issues of ethics and access are left unaddressed at the early
education level, emerging 21st century life science pedagogies risk perpetuating
ingrained inequities and injustices (e.g. underrepresentation of minority groups)
currently facing STEM fields like computer science (Vakil, 2018).

My motivation for exploring innovative life science education in this chapter
aligns with a perspective voiced by my former doctoral advisor, Prof. Marina Bers,
about computer science education: “the rationale for supporting the introduction
of computer science starting in kindergarten shouldn’t be the creation of the future
workforce, but the future citizenry” (Bers, 2018, p. 500). Further I agree with
colleague Prof. Justice Walker that a main challenge of life science and biology
education today is that schools use “19th century practices, to teach 20th century
concepts, to create 21st century citizens” (J. Walker, personal communication,
February 15, 2021). I do not argue that we should stop teaching children about the
wonders of the natural world, or the traditional concepts and methods that make up
life science education as we now know it. However, if we accept that an implicit goal
of biology education is to democratize scientific knowledge and methods for the
benefit of cultivating an informed public, capable of making scientifically grounded,
ecologically sustainable, and socially just decisions for our world, then we must
prioritize pedagogies that enable students to engage with relevant, authentic, and
current scientific information and approaches. Further, I argue that a key part of
fostering children’s engagement with ethical 21st century design-based life science,
involves developing their computational thinking skills.

Computational Thinking in Life Science:
The Case for Biodesign

While the debate rages among researchers about how to position K-12 life science
education in an integrated STEM curriculum, pre-professional programs and
universities find themselves facing a different challenge: how to train their early-
stage life scientists to better understand computational thinking?

In the 1950s, when the discovery of the DNA double-helix had just launched
a new field called bioengineering, STEM training programs recognized the need
to offer more biology courses to their engineering students (Naik, 2012; Nebeker,
2002). Today, bioengineering progressively relies not only on natural biological
processes, but also artificial ones, thanks to new advances in computational biology
and nanotechnology (Naik, 2012). As the discipline advances, university educators

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

112

Computational Thinking and Life Science

like Rubinstein and Chor (2014) insist that it is time to address students’ lacking
computational thinking skills, which they see as critical for modern biology training:

Life sciences are going through a dramatic biotechnological revolution. […] Life
sciences curricula, however, have hardly been altered to reflect this revolution...[and]
not enough emphasis is put on developing abstract and algorithmic thinking skills.

This gap presumably starts at the classroom, but it lingers later on. Biology in many
institutes and labs is still primarily a descriptive science with little computational
approaches being used on a daily basis. Computational approaches in this context
are not the mere use of tools, but the integration of computational thinking and
algorithms to experiments design; to data generation, integration, and analyses;
and to modeling (Rubinstein & Chor, 2014, p. 1).

Others have noted this issue as well, and in response, the ecosystem of tools
and technologies for biodesign, bioengineering, and biomaking is growing (as
young field, these nascent terms are still evolving and converging but they all refer
to biology experiences that leverage computational thinking and problem-solving
through design). Most biodesign education programs are targeted at older students
in high school or college (e.g. Kafai, Telhan, Hogan, Lui, Anderson, Walker, &
Hanna, 2017; Kuldell, 2007), but many countries already mandate computer science
and engineering education starting in Kindergarten (Cejka, Rogers, & Portsmore,
2006; Metz, 2007; Pretz, 2014). Life science has been taught to this age range for
decades already, so why should we not introduce biodesign earlier?

Biodesign is currently viewed as too advanced for early education, and using
current models for teaching about microbiology, that is certainly true. However,
research suggests that young children may already hold preconceptions about
genetics and biology, gleaned from popular culture and media aimed at children
and young adults (Elmkesky, 2013; Venville, Gribble & Donovan, 2005). In my
own interviews with over 100 children aged 4-9 years in the greater Boston area,
I found that around 15% of my sample had already heard of concepts like “genes”
and “DNA”, and some could explain these and other advanced biology concepts
(like viruses) with surprising accuracy (Strawhacker, Verish, Shaer, & Bers, 2020b).

There are also overlapping themes that young children explore in early childhood
that are foundational to biodesign. Life science and engineering share similar
methodologies for asking and answering questions (i.e., the scientific method)
and building and testing solutions to human problems (i.e., the engineering design
process). Both involve steps of ideating, designing (experiments or prototypes),
iterating, and refining that young children practice starting in Kindergarten. Similarly,
biology and computer science both rely on computational concepts of abstraction

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

113

Computational Thinking and Life Science

(e.g., of proteins within cells, or subroutines within coded instructions), modularity
(segmentation of organs to make a body, or hardware parts to make a robot), and
algorithmic logic (in genetic codes or computer codes) to understand and model
how systems operate within hierarchical structures to function as a whole. These
computational concepts may sound highly sophisticated, but educational coding
tools like the ScratchJr programming language (www.scratchjr.org), KIBO robotics
kit (www.kinderlabrobotics.com), BeeBot robot (www.terrapinlogo.com), Code-a-
Pillar (www.fisher-price.com), and more all demonstrate how those concepts can
successfully be introduced to children as early as preschool.

From a developmental perspective, integrated STEM is the preferred learning
model for early childhood (Aldemir & Kermani, 2017; Wortham, 2006). Engineering
brings creative agency and hands-on exploration to biology lessons, which can be
abstract and overly-structured for young learners (Ostroff, 2016). Introducing novel
scientific topics of biodesign brings real-world relevance and context to STEM
explorations, connecting children’s learning to topics in their broader community and
society. New technologies offer children a chance to playfully explore topics that were
previously too microscopic, invisible, or time-consuming to engage meaningfully.

Given these findings, that constraints for bringing biodesign into early childhood
would appear to rest more on the side of pedagogical approaches and educational
tools than on children’s developmental capacity. In the following sections, I describe
a research project that set out specifically to address this gap, by designing a learning
intervention and tangible technology supports to engage children in applying
computational thinking concepts to biodesign content.

Design of CRISPEE: A Tangible Tool and Learning
Intervention to Model “Coding with Genes”

The NSF-funded Making the Invisible Tangible project attempted to explore the
pedagogical connections linking computational thinking to engineering design and
life science content (NSF grant no. CHS-1564019). The goal of the project, headed
by Dr. Orit Shear of Wellesley University and Dr. Marina Bers at Tufts University,
was to explore the viability of translating these integrated STEM themes to an
early childhood context, designing tangible technologies and curricular supports as
needed to meet young children’s developmental needs. I participated as a doctoral
student researcher to develop a biodesign learning tool and curriculum, together
with a team of university student researchers trained in a variety of backgrounds, and
expert consultants from fields of biology, ethics, and education. We implemented
this learning tool with over 125 children, families, and teachers in school, museum,
and makerspace settings, and used findings to iteratively redesign the technology
and intervention (Strawhacker, Verish, Shaer, & Bers, 2020a, 2020b, 2020c; Verish,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

114

Computational Thinking and Life Science

Strawhacker, Bers, & Shaer, 2018). Throughout the rest of this chapter, I will share
our experiences testing this technology and curriculum with children, and describe
how these findings highlighted the role of computational thinking in design-based
biology for early childhood.

The Tangible CRISPEE Technology Kit

Inspired by advances in learning and design frameworks for child-computer interaction
(e.g., Antle & Wise, 2013; Horn, Crouser, & Bers, 2012; Lester, Rowe, & Mott,
2013), we set out to test whether young children could explore the computational
and biological ideas we identified as learning goals if we provided them with
tangible tools and story-based contexts to represent learning. After researching
relevant early childhood learning standards and frameworks, we identified a list
of cross-cutting STEM learning goals for our intervention (Strawhacker, Verish,
Shaer, & Bers, 2020c). These goals can be summarized in three steps: (1) introduce
or recall (depending on the child’s experience) the model of coding languages in
machines, and present genes as a kind of coding language for living things; (2)
engage children in designing and testing their own gene codes (using technology to
model this process); and (3) prompt children to apply their newfound gene-design
knowledge to solve speculative and story-based problems. The result of the 4-year
project exploring these learning outcomes is the CRISPEE kit prototype (see Figure
1), and accompanying curriculum for a 15-hour learning intervention.

CRISPEE is modeled loosely on DNA extractor/incubators that use the CRISPR/
Cas-9 gene editing software – the most prominent technological advance to bring
genetic engineering from “tinkering” to “cut and paste editing” (Doudna, 2015).
CRISPEE lets children explore how genes can function like a coding language to
determine the color of a bioluminescent (glowing) animal’s light. The model, based
on real processes of genes and bioluminescent proteins, relies on “gene blocks”
(made with wood, felt, conductive Velcro, and resistors) that turn red, green, and blue
glowing lights “on” or “off”. The “on” light colors then mix according to light-color
physics (in which a regular color wheel begins with different primary colors than
in solid-color mixing) to determine the resulting light color. In addition to letting
children explore fascinating naturally-glowing animals, the mixture of gene colors
also lets children explore the visual arts concept of additive color-mixing with light.
a less-explored companion to subtractive color-mixing with solids, like crayons and
paints. Because this is a universal concept beyond biology, the additive primary
colors (red, green, and blue) always mix to create the same secondary colors, whether
working with CRISPEE, a children’s light table, or cello-paper and flashlights.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

115

Computational Thinking and Life Science

Figure 1. The prototyped CRISPEE Kit for modeling biodesign of bioluminescent
(glowing) animals’ light color includes (1) a tangible interface for building and
testing light codes, (2) various gene blocks with different color controls, (3) a picture
book to introduce how CRISPEE works in a story context, (4) LED-interactive stuffed
animals to display children’s coded lights, and (5) speculative designs for logic-gate
“biosensor” controls to code light changes under certain environmental conditions

Figure 2. Three-step CRISPEE interaction
Source: Verish et al. (2018)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

116

Computational Thinking and Life Science

Figure 2 shows the interaction process to play with CRISPEE. First, a child
selected a detachable faceplate showing the animal they want to use in their model.
We provided four choices of naturally bioluminescent animals: firefly, zebrafish
anglerfish, and jellyfish. Next, they selected three gene blocks to code for the light
color in their animal model, which will determine which colors will be lit up, and
which will remain silenced. I deliberately used computational words like “code”
and “program” to describe their chosen block sequence, in order to highlight the
design-based nature of this step. Finally, children shook the platform vigorously
until several lights indicated CRISPEE was ready to test. Shaking was added for two
reasons. First, it represents the real-life centrifuge process that DNA extractors use
to tease apart DNA, allowing new genetic sequences (programmed by the engineer)
to insert themselves into the genome. While we did not necessarily expect children
to understand the details of this process, children in the curricular intervention
viewed videos of this centrifuge process in laboratory CRISPR machines and made
the connection to CRISPEE’s action. Second, shaking reinforced the idea that the
colors children selected would mix together, creating a single output light color.
After shaking the platform, children finally pressed a button to test their new light,
which glowed out of an oversized lightbulb framed by their animal faceplate.

The CRISPEE Curriculum: A Biodesign
Curriculum for 5-8 Year Old Children

In addition to the technology kit, our research team developed, iteratively implemented,
and refined a 15-hour NGSS-aligned curriculum intervention for 5-8 year old
children to explore biodesign in a developmentally appropriate learning progression.
Included in this curriculum were original learning supports, as well as suggestions
for commercially- and freely-available resources.

Storytelling with picture books is an effective learning device to introduce young
children to science topics that are typically too abstract (experimental methods), distant
(e.g. outer space), or microscopic (e.g. cell biology) for children to meaningfully
explore (Mantzicopoulos, & Patrick, 2011; Monhardt & Monhardt, 2006). I wrote the
Adventures in Bioengineering picture book to introduce concepts like biodesign in the
context of a developmentally-appropriate story, as well as to illustrate the interaction
steps for using the CRISPEE tool (see Figure 3). In the story, a firefly with a genetic
inability to glow is separated from his friends, who cannot locate him without his
light. He seeks the help of a bioengineer, who works with Bob to reprogram his
genes so he can glow and relocate his firefly community. The story presents concepts
and vocabulary words (e.g., bioengineering, genes, bioluminescence) in-text and
in a glossary, and narrates through a problem-design-solution process. This story

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

117

Computational Thinking and Life Science

was important for helping children understand a potential context for what kind of
problems biodesign might be useful to address.

Part of the challenge of introducing biodesign for any age group is the ethically
sensitive nature of work that involves changing the genes of living animals and
organisms. In order to explore these questions without presenting any single
perspective as “ethically correct,” we created an anchor chart called the Ethical
Design Process. This chart was directly inspired by the Engineering Design Process
commonly taught in DevTech Research Group’s camps and interventions, but
included questions that biodesigners ask at each step of the design process to ensure
that their solutions are as ethical and responsible as possible (see Figure 4). The
questions identified on the chart, such as “What are the possible consequences [of
the design]?” and “How can we make our solution less harmful?” were adapted from
or inspired by transcript conversations with young children in my research sample.
Questions were further refined with assistance from expert consultants, including
a biodesign professor at MIT, and a philosophy of ethics professor at Wellesley
College. While this chart represents only a narrow portion of the kinds of ethical
work that ecological conservationists and biodesign scientists must conduct as part
of their professional design initiatives, these questions provided enough provocation
that children could meaningfully consider ethical consequences of their design steps
while engaging with CRISPEE (discussed more in later sections).

Figure 3. Cover art (left) and pages (center, right) from the Adventures in
Bioengineering storybook, an original picture book developed to introduce a story-
context for biodesign, as well as illustrate how to use the CRISPEE tool

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

118

Computational Thinking and Life Science

Children also explored a variety of familiar and traditional curricular supports,
including biology- and engineering-themed picture books, microscopes and slides,
child-sized laboratory equipment and gear (e.g. lab coats, beakers), researcher-
created worksheets and games (e.g. word searches) packaged into individual Design
Journals, and materials for light and color play (see Figure 5). In particular, children
engaged richly with a light table purchased specifically because it used Red, Green,
and Blue primary color knobs to control the color produced by the table. Children
used this tool to explore light mixing, incorporating translucent marbles and toys
into their play, and frequently commented that it mixed colors using the same rules
as CRISPEE.

All of these materials were crafted or chosen specifically to support a concept
relevant to our core learning goals for biodesign engagement. In the following
sections, I describe examples from user testing and curriculum interventions
involving CRISPEE and a small team of my research assistants. Each example
shows how children naturally incorporated aspects of computational thinking into
their biodesign play.

Figure 4. The Ethical Design Process (left) was modeled directly on the DevTech
Research Group’s Engineering Design Process (right)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

119

Computational Thinking and Life Science

Figure 5. Children complete an original worksheet activity using biology-themed
reference picture books

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

120

Computational Thinking and Life Science

COMPUTATIONAL THINKING IN CHILDREN’S CRISPEE PLAY

Algorithmic Logic

CRISPEE was designed intentionally to leverage Kindergarten-appropriate physics
(i.e., light color mixing) and biology topics, as well as to forefront computational
thinking concepts. To make a successful glowing light with CRISPEE, children
needed to understand a few algorithmic concepts. First, they needed to understand
the binary nature of the blocks. For example, CRISPEE has two red blocks, one
marked with an X for “turn red off”, and the other marked with a solid color for
“turn red on”. They cannot be used at the same time, because (as the children often
explained to each other), “CRISPEE doesn’t understand if you tell it ‘yes red’ AND
‘no red’.” Second, children needed to add one of each color block in their sequence,
or CRISPEE would terminate the test, because one color had too many inputs (the
on-and-off problem again). Third, they had to understand that the colors they chose
to turn “on” would mix together to create a new color, while the colors they turned
“off” would remain silenced.

With just these simple coding rules, we found that children made connections
to concepts of order and pattern. Younger children (aged 4 and 5 years) were more
likely than older ones to use CRISPEE blocks to make a repeating color pattern
(e.g., blue-red-blue) purely for aesthetic appeal, which researchers guided into an
exploration of the rules for what blocks CRISPEE will “accept”.

Other children mentioned technological toys and robot kits from their home or
school, and used computational words like “program” and “code” before researchers
introduced them. These children were more likely to test the same program multiple
times in different sequences (e.g., red-green-blue, then blue-green-red) to see if
block sequence would change the output light (see Figure 6). Even though we did
not present CRISPEE as a robot or coding toy, these clues indicate that children
understood CRISPEE as a computational tool for exploring sequencing, patterns,
and algorithms.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

121

Computational Thinking and Life Science

Figure 6 shows a 7-year-old child testing a gene program with three On blocks
(green-blue-red). His plan for the next program is laid out the table in front of him,
with a reversed sequence of colors (red-blue-green) in Off blocks. Out of 28 total
programs that he tested with CRISPEE, 15 were deliberately to explore the effect
of changing the sequence of blocks in the same program.

Debugging and Hardware / Software

Although the debugging process and hardware/software relationships are separate
computational thinking concepts, they were so related in children’s explorations that
I will discuss them together here. Children in my studies spent a good amount of
time identifying and attempting to repair bugs (technical malfunctions) while using
CRISPEE. This included debugging their CRISPEE codes to design a specific color
they wanted (e.g., Strawhacker et al, 2020b), and assisting researchers in exploring
actual bugs in the prototype (e.g., Strawhacker et al, 2020a). As a proof-of-concept

Figure 6. A child tests a CRISPEE program with the state goal of seeing how the
sequence of colors impacts the output light
Source: Strawhacker et al. (2020a)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

122

Computational Thinking and Life Science

research prototype, CRISPEE occasionally malfunctioned, which sparked curiosity
in children about the hardware and how it worked. Children frequently requested
to look inside CRISPEE, and found the internal mechanics as interesting as the
actual interface.

Children also made scientific (evidence-based) observations about the CRISPEE
kit during times when our research team had to repair the tool. For example, one
child noticed that the wood interface “smells like a bonfire” (a byproduct of laser-
cutting the parts), and he closely examined the moving platform to see if it “uses
wheels, like my robot at home”. He was especially curious about how CRISPEE
could produce light when seemed be made of non-electronic materials. When
examining the conductive Velcro on the underside of the programming blocks he
asked, “is that stuff Velcro? How can it do stuff if it’s just cardboard or wood?” In
this instance, he was relating CRISPEE’s interactions (e.g. lights, buttons) to its
interface made of familiar, non-technical materials (e.g. wood, felt, Velcro), and and
trying to reconcile this observation with his understanding of machines that require
computational components to execute software code.

The children’s curiosity inspired me to leave a laptop at the CRISPEE center
with videos running to show how different parts of CRISPEE were made, which in
turn led to further exploration about computational hardware. When I left a video
running about laser-cutting to show why the CRISPEE wood smelled like it was
burned, one girl asked, “What else can that laser thing cut? Can it cut glitter? Can it
cut paper?” Watching researchers fix the CRISPEE prototype and finding new bugs
became a favorite past-time during our CRISPEE curriculum interventions. One
child even began collecting field notes in a hand-drawn bug log when she found a
CRISPEE error, complete with drawings and labels of the specific malfunctioning
CRISPEE code (see Figure 7).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

123

Computational Thinking and Life Science

One collaborative debugging episode occurred while children played with three
different versions of the CRISPEE prototype. They were surprised to find that
the program for a blue light, which everyone knew how to make, was returning a
magenta color on one of the CRISPEEs. Four children and two researchers all worked
together to solve the problem, and eventually discovered that CRISPEE blocks were
not compatible across different prototype versions, a discovery that surprised even
the lead engineer. Without the children’s willingness to explore and test different
solutions, it’s unlikely that this issue would have been resolved, since most of the
researchers gave up before the children did!

Design Process

Children were prompted to engage in steps of an ethical design process through
large-group discussions, activities using their Design Journals, and games and

Figure 7. A free-drawn “bug log” of a malfunctioning CRISPEE program, created
by a 6-year-old girl to add to her Design Journal

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

124

Computational Thinking and Life Science

songs involving the Ethical Design Process anchor chart. One activity, called
Design a Helpful Animal, invited children to imagine a problem they could solve
by biodesigning an animal, and then to consider positive and negative consequences
of that design. Children identified diverse and interesting problems to solve, and
offered creative solutions.

Several children wrote in their design journals about environmental problems
they cared about. For example, during a circle conversation, a 5-year-old girl shared
a memory of a trip she had taken to Florida, where she learned that the sea turtle
population there was becoming threatened due to plastic pollution. The turtles were
eating plastic bags, instead of their normal diet of jellyfish. For her design, this girl
wanted to “give fox ‘smell genes’ to turtles”, so that they could tell the difference
between plastic bags and jellyfish. In addition to the positive consequence of saving
turtle populations, she identified a negative consequence of turtles suddenly starting
to hunt food that foxes eat, as a result of sharing their “smell gene”.

Similarly, a 6-year-old boy spent over an hour imagining, sharing, and revising
a design idea to help cheetahs (his favorite animal) by giving them “more genes” to
be “smarter and faster”. Originally it seems he just wanted to make cheetahs even
faster (see Figure 8), although through conversation with two other intervention
participants (a 7-year-old boy and a teacher, both of whom he knew from school)
he was pressed to justify his design problem. When asked why cheetahs should be
faster, the boy’s answer focused on the dangers of poachers threatening the cheetah
population. The friend and teacher both validated and extended his idea by offering
vocabulary words (e.g., “endangered”) to capture his concern for the cheetah’s welfare
(i.e., “why cheetahs are getting killed”). This example indicates the boy’s conviction
that a biodesign solution should involve serving or helping animals to escape harm, an
ethical purpose that both his friend and his teacher readily understood and accepted.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

125

Computational Thinking and Life Science

Not all children directly engaged with ethical consequences of biodesign. For
example, one 5-year-old girl, inspired by the circle-time story about turtles, drew
pictures of plastic bags floating in an ocean of sea creatures, and wrote a line from
the perspective of the animals: “Don’t litter because I can die.” Although her design
doesn’t suggest a bioengineered solution, it indicates that she was connecting
biodesign to environmental maintenance and ecological stewardship. Other children
wrote story-style narratives and focused more on individual animal characters than
an ecosystem-level issue.

Figure 8. A boy’s design journal page describing his idea to enhance cheetahs with
genes to help them escape poachers

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

126

Computational Thinking and Life Science

Surfacing Computational Thinking in Biodesign Education

Taking up the call from Rubinstein and Chor (2014) to examine the early beginnings
of the gap in students’ computational thinking preparedness for modern-day biology,
this section reflects on the ways that the biodesign curriculum intervention and
tangible CRISPEE tool organically fostered children’s engagement with computational
thinking. In the examples presented earlier, children explored algorithmic logic,
debugging, hardware construction, and the engineering design process, although none
of these concepts was explicitly introduced. Analysis of video transcripts suggests
that these topics emerged spontaneously due to three main factors.

The first factor relates to the CRISPEE technology itself. Because CRISPEE
was a computational object, children leveraged their understanding of machines to
understand how CRISPEE works. Children drew on prior experiences with educational
robotic kits, computer hardware, technology references in children’s media (e.g., tv
and books), and their family members’ professions (e.g., doctor, software engineer)
to make sense of CRISPEE’s novel interactions and interface. This led to hypotheses
when first engaging with CRISPEE about making color patterns with blocks, changing
block sequences to explore the resulting light effect, and voicing theories like, “the
blue blocks are maybe a different coding language than the green ones.” Simply
by using a technological tool, children were cued to engage their prior knowledge
and experiences with technology, suggesting that computational concepts such as
algorithmic logic may serve children in computer-mediated tasks, even when the
task is not inherently related to computation.

The second factor contributing to computational thinking was the expertise of
facilitators in the room during interventions, which emerged during tech malfunctions.
At least one of the engineers who actually helped construct CRISPEE prototypes was
present at each research session. This was a preventive measure, since I expected to
the prototypes to fail occasionally. What I did not expect was that these technology
breakdowns would inspire children’s curiosity about hardware and software, and
engage them in debugging practices of logging failures, observing engineers as
they repaired prototypes, and persisting with tests to determine the nature of bugs.
Children thrilled at the chance to take CRISPEE apart and put it back together again,
and were self-motivated to help in any way they could with the debugging process.
This finding points to the power of surprising tech interactions, including bugs and
malfunctions, to engage children in authentic computational practices.

Third, the researcher-developed curricular tools, particularly the Adventures in
Bioengineering storybook and the Ethical Design Process, supported children’s
engagement in iterative and reflective design cycles. In user tests of CRISPEE
without the curricular components, children played for about 20-30 minutes before
shifting to hardware explorations, discussions about science, or simply moving on

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

127

Computational Thinking and Life Science

to different activities. In contrast, children in the curricular interventions returned
again and again to CRISPEE to try to realize their designs. For example, some
children spent several days learning the logic of the gene blocks in order to recreate
animals they learned about from the biology reference books we provided. When
invited to create their own biodesigned solutions to a problem of their choosing,
one child worked so hard on his design concept about endangered animals that he
skipped free-play time and snack! This finding is most interesting to me, because
it speaks to the ways that computational thinking processes like creative design,
and learning domains like biology, can support children’s engagement in ethical
and altruistic play and learning. The diversity of children’s engagement with ethical
design offers valuable insight for future research in this area. Interestingly, none
of the students in my sample made a biodesign to aid humans, but instead focused
on ways to solve problems that animal might face. This surfaces another ethical
challenge in biodesign education, since in reality, bioengineered organisms are
primarily created to solve human problems. Perhaps children are so altruistic in
their thinking at this age that it simply does not occur to them to view animals as a
resource to serve human needs, or perhaps their attitudes are a product of the fact
that anthropomorphic and empathic animals are commonly cast as protagonists in
children’s media (including the Adventures in Bioengineering picture book used
in my studies). Future research should consider the impact of narrative framing to
explain the purpose of biodesign work as it is actually practiced.

CONCLUSION

While researchers continue to debate the role of computational thinking in the biology
classroom, findings from the CRISPEE research project suggest that biodesign may
be a fruitful way to engage children as young as 5 years old in meaningful, relevant,
and even ethical applications of computational concepts to the natural world. Even
without a novel tool and curriculum, children may leverage computational logic
to understand repeating patterns in nature, distinguish natural and human-made
materials, and consider engineered solutions to environmental problems. As
biodesign continues to emerge as a 21st century domain, I hope that future citizens
and designers carry forward the propensity found in children, to leverage biodesign
as a tool to engineer sustainable, environmentally responsible, and ethical solutions
to problems that face humans and all organisms on our planet.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

128

Computational Thinking and Life Science

ACKNOWLEDGMENT

CRISPEE was developed as part of the Making the Invisible Tangible research project
funded by the National Science Foundation (Grant No. 1564018) and pilot-tested
at early childhood museums and learning settings around the Greater Boston area
from 2017 to 2019. This project is a collaboration between the DevTech Research
Group at Tufts University the Wellesley College Human-Computer Interaction
Lab. Thank you tothe hundreds of children, families, and education professionals
who contributed to the research, as well as the incredible student researchers and
engineers at the DevTech and HCI Labs, without whom this research would not
have been possible without.

REFERENCES

Aldemir, J., & Kermani, H. (2017). Integrated STEM curriculum: Improving
educational outcomes for Head Start children. Early Child Development and Care,
187(11), 1694–1706. doi:10.1080/03004430.2016.1185102

Antle, A. N., & Wise, A. F. (2013). Getting down to details: Using theories of
cognition and learning to inform tangible user interface design. Interacting with
Computers, 25(1), 1–20. doi:10.1093/iwc/iws007

Arctic Apples. (2020). Retrieved from: https://www.arcticapples.com/

Bers, M. U. (2012). Designing digital experiences for positive youth development:
From playpen to playground. Oxford University Press. doi:10.1093/acprof:o
so/9780199757022.001.0001

Bers, M. U. (2019). Coding as another language: a pedagogical approach for
teaching computer science in early childhood. Journal of Computers in Education,
6(4), 499-528.

Bers, M. U. (2020). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge. doi:10.4324/9781003022602

Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and
Engineering Teacher, 70(1), 30.

Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of
Science Teacher Education, 25(2), 211–221. doi:10.100710972-014-9381-4

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.arcticapples.com/

129

Computational Thinking and Life Science

Calabrese Barton, A., & Tan, E. (2019). Designing for rightful presence in STEM:
The role of making present practices. Journal of the Learning Sciences, 28(4-5),
616–658. doi:10.1080/10508406.2019.1591411

Chappell, C., Dabholkar, S., Dilley, C., Heiland, M., Huang, A., Kuldell, N., Kurman,
M., Legault, J., Scheifele, L., Scholze, A., Takara, C., & Tuck, E. (2021, April 8-12).
The BioMaker Ecosystem: Technologies, Spaces and Curricula for K-12 Making with
Biology. American Educational Research Association 98th Virtual Annual Meeting.

Clough, M. P., & Olson, J. K. (2016). Connecting science and engineering practices:
a cautionary perspective. In L. A. Annetta & J. Minogue (Eds.), Connecting Science
and Engineering Education Practices in Meaningful Ways: Building Bridges (pp.
373–385). Springer. doi:10.1007/978-3-319-16399-4_15

Cumbers, J. (2019). New This Ski Season: A Jacket Brewed Like Spider’s
Silk. Forbes Magazine Online. Retrieved from: https://www.forbes.com/sites/
johncumbers/2019/08/28/new-this-ski-season-a-jacket-brewed-from-spider-
silk/#2788fa63561e

Doudna, J. (2015, September). How CRISPR lets us edit our DNA [Video file].
Retrieved from: www.ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_
but_let_s_do_it_wisely#t-686789

Garrett, J. L. (2008). STEM: The 21st century sputnik. Kappa Delta Pi Record,
44(4), 152–153. doi:10.1080/00228958.2008.10516514

Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Tangible interaction and learning:
The case for a hybrid approach. Personal and Ubiquitous Computing, 16(4), 379–389.
doi:10.100700779-011-0404-2

Kafai, Y., Telhan, O., Hogan, K., Lui, D., Anderson, E., Walker, J. T., & Hanna,
S. (2017, June). Growing designs with biomakerlab in high school classrooms.
Proceedings of the 2017 Conference on Interaction Design and Children, 503-508.
10.1145/3078072.3084316

Kafai, Y. B., & Walker, J. T. (2020). Twenty things to make with biology. Proceedings
of Constructionism, 598-606.

Lester, J. C., Rowe, J. P., & Mott, B. W. (2013). Narrative-centered learning
environments: A story-centric approach to educational games. Emerging Technologies
for the Classroom. 223-237.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.forbes.com/sites/johncumbers/2019/08/28/new-this-ski-season-a-jacket-brewed-from-spider-silk/#2788fa63561e
https://www.forbes.com/sites/johncumbers/2019/08/28/new-this-ski-season-a-jacket-brewed-from-spider-silk/#2788fa63561e
https://www.forbes.com/sites/johncumbers/2019/08/28/new-this-ski-season-a-jacket-brewed-from-spider-silk/#2788fa63561e
http://www.ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_but_let_s_do_it_wisely#t-686789
http://www.ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_but_let_s_do_it_wisely#t-686789

130

Computational Thinking and Life Science

Mantzicopoulos, P., & Patrick, H. (2011). Reading picture books and learning
science: Engaging young children with informational text. Theory into Practice,
50(4), 269–276. doi:10.1080/00405841.2011.607372

Monhardt, L., & Monhardt, R. (2006). Creating a context for the learning of science
process skills through picture books. Early Childhood Education Journal, 34(1),
67–71. doi:10.100710643-006-0108-9

Naik, G. R. (Ed.). (2012). Applied Biological Engineering: Principles and Practice.
BoD–Books on Demand. doi:10.5772/2101

National Research Council. (2000). From neurons to neighborhoods: The science
of early childhood development. U.S. National Research Council.

Nebeker, F. (2002). Golden accomplishments in biomedical engineering. IEEE
Engineering in Medicine and Biology Magazine, 21(3), 17–47. doi:10.1109/
MEMB.2002.1016851 PMID:12119874

NGSS Lead States. (2013). Next Generation Science Standards: For States, By
States. The National Academies Press.

Ostroff, W. L. (2016). Cultivating curiosity in K-12 classrooms: How to promote
and sustain deep learning. ASCD.

Papert, S. (1993). The children’s machine: Rethinking school in the age of the
computer. Basic Books.

Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education.
PLoS Computational Biology, 10(11), e1003897. doi:10.1371/journal.pcbi.1003897
PMID:25411839

Sanders, M. E. (2008). Stem, stem education, stemmania. Technology Teacher.

Strawhacker, A., Verish, C., Shaer, O., & Bers, M. (2020c). Young children’s
learning of bioengineering with CRISPEE: A developmentally appropriate tangible
user interface. Journal of Science Education and Technology, 29(3), 319–339.
doi:10.100710956-020-09817-9

Strawhacker, A., Verish, C., Shaer, O., & Bers, M. U. (2020a, April). Debugging
as Inquiry in Early Childhood: A case study using the CRISPEE prototype.
Computational Thinking for Science Learning. Symposium. Annual Meeting of the
American Educational Research Association (AERA).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

131

Computational Thinking and Life Science

Strawhacker, A., Verish, C., Shaer, O., & Bers, M. U. (2020b). Designing with Genes
in Early Childhood: An exploratory user study of the tangible CRISPEE technology.
International Journal of Child-Computer Interaction, 26, 26. doi:10.1016/j.
ijcci.2020.100212

Sullivan, A. A. (2019). Breaking the STEM stereotype: Reaching girls in early
childhood. Rowman & Littlefield Publishers.

Vakil, S. (2018). Ethics, identity, and political vision: Toward a justice-centered
approach to equity in computer science education. Harvard Educational Review,
88(1), 26–52. doi:10.17763/1943-5045-88.1.26

Venville, G., Gribble, S. J., & Donovan, J. (2005). An exploration of young
children’s understandings of genetics concepts from ontological and epistemological
perspectives. Science Education, 89(4), 614–633. doi:10.1002ce.20061

Verish, C., Strawhacker, A., Bers, M. U., & Shaer, O. (2018). CRISPEE: A
Tangible Gene Editing Platform for Early Childhood. Proceedings of the Twelfth
International Conference on Tangible, Embedded and Embodied Interaction (TEI).
10.1145/3173225.3173277

Vossoughi, S., & Vakil, S. (2018). Toward what ends? A critical analysis of militarism,
equity, and STEM education. In Education at war (pp. 117–140). Fordham University
Press. doi:10.2307/j.ctt2204pqp.9

Walker, J., & Strawhacker, A. (Co-chairs). (2021, April 8-12). The Biomaker
Ecosystem: Technologies, Spaces and Curriculum for K-12 Making with Biology
[Symposium]. American Educational Research Association (Virtual Conference).

Wortham, S. C. (2006). Early childhood curriculum: Developmental bases for
learning and teaching. Kevin M.

Yager, R. E. (1996). Meaning of STS for science teachers. Science/technology/
Society: as reform in science education, 16-24.

Zeidler, D. L., Herman, B. C., Clough, M. P., Olson, J. K., Kahn, S., & Newton, M.
(2016). Humanitas emptor: Reconsidering recent trends and policy in science teacher
education. Journal of Science Teacher Education, 27(5), 465–476. doi:10.100710972-
016-9481-4

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

132

Computational Thinking and Life Science

ADDITIONAL READING

Brown, B. A. (2021). Science in the city: Culturally relevant STEM education.
Harvard Education Press.

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking
science to school: Learning and teaching science in grades K-8 (Vol. 500). National
Academies Press.

Elmesky, R. (2013). Building capacity in understanding foundational biology
concepts: A K-12 learning progression in genetics informed by research on
children’s thinking and learning. Research in Science Education, 43(3), 1155–1175.
doi:10.100711165-012-9286-1

Inagaki, K., & Hatano, G. (2006). Young children’s conception of the biological
world. Current Directions in Psychological Science, 15(4), 177–181. doi:10.1111/
j.1467-8721.2006.00431.x

Metz, K. E. (2006). The knowledge building enterprises in science and elementary
school science classrooms. In Scientific inquiry and nature of science (pp. 105–130).
Springer.

Nalwa, H. S. (2014). A special issue on reviews in nanomedicine, drug delivery and
vaccine development. Journal of Biomedical Nanotechnology, 10(9), 1635–1640.
doi:10.1166/jbn.2014.2033 PMID:25992435

Walker, J. T., & Kafai, Y. B. (2021). The biodesign studio: Constructions and
reflections of high school youth on making with living media. British Journal of
Educational Technology, bjet.13081. doi:10.1111/bjet.13081

Walker, J. T., Strawhacker, A., Angleton, C., Allan, J., Konwar, A., Obayomi, O., &
Kong, D. S. (Eds.). 2021. Proceedings of the Global Community Bio Summit (GCBS)
4.0, Cambridge, Massachusetts. Retrieved from: www.biosummit.org

KEY TERMS AND DEFINITIONS

Biodesign: An emerging science movement that applies methods and approaches
of creative and engineering to the design of living materials and systems.

Computational Thinking: Broadly, a set of cognitive skills, processes and
concepts that involve expressing problems and their solutions in ways that a computer
could also execute.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://www.biosummit.org

133

Computational Thinking and Life Science

CRISPEE: A tangible technological prototype and suite of educational materials
designed to engage children in playfully exploring biological algorithms (e.g.,
genetics) through the lens of computer programming.

Early Childhood Education: Education of children from birth through age 8
years.

Life Science: Any fields of science related to biology or the study of life and
living systems.

Programming: Also called coding, computer programming is the process of
designing and building an executable computer program to accomplish a specific
computing result or to perform a specific task.

Sequencing: Arranging elements of a system in a particular order, e.g., commands
in a computer code.

STEM Education: An educational approach that integrates domains of science,
technology, engineering, and mathematics.

Tangible User Interface: A computer interface in which the user manipulates
digital information using physical gestures and interactions.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

134

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-7998-7308-2.ch007

ABSTRACT

In the past two decades, STEM education has been slowly replaced by “STEAM,”
which refers to learning that integrates science, technology, engineering, arts, and
mathematics. The added “Arts” portion of this pedagogical approach, although
an important step towards integrated 21st century learning, has long confused
policymakers, with definitions ranging from visual arts to humanities to art education
and more. The authors take the position that Arts can be broadly interpreted to
mean any approach that brings interpretive and expressive perspectives to STEM
activities. In this chapter, they present illustrative cases inspired by work in real
learning settings that showcase how STEAM concepts and computational thinking
skills can support children’s engagement in cultural, performing, and fine arts,
including painting, sculpture, architecture, poetry, music, dance, and drama.

Computational Expression:
How Performance Arts Support

Computational Thinking
in Young Children

Amanda L. Strawhacker
Tufts University, USA

Amanda A. Sullivan
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 135

Computational Expression

INTRODUCTION

What kind of thinking does it take to write a story, paint a landscape, or put on a
play? How does a poet know how to structure a stanza, or an architect know how
to start designing a memorial statue? Creativity and inspiration are an important
part of the artistic process, but equally important are cognitive and psychosocial
traits that support many creative endeavors such as perseverance, logical reasoning,
abstraction – in other words, computational thinking. Further, just as learners can
and should explore diverse artistic mediums from an early age, young children’s
cognitive and psychosocial development can also benefit from early exposure to
computational thinking. In chapter one of this book, Professor Marina Bers framed
computational thinking as an expressive process that involves problem solving by
thinking like a computer. In this chapter we delve into this” expressive process” to
explore the communicative and creative potential that children can tap into when
they explore foundational computational thinking skills.

In the past two decades, STEM education has been slowly replaced by “STEAM”,
which refers to learning that integrates Science, Technology, Engineering, Arts, and
Mathematics. The added “Arts” portion of this pedagogical approach, although an
important step towards integrated 21st century learning, has long confused policy
makers, with definitions ranging from visual arts to humanities to art education, and
more (Henderson, 2020). We take the position that Arts can be broadly interpreted
to mean any approach that brings interpretive and expressive perspectives to STEM
activities. In this chapter, we will discuss how STEAM concepts and computational
thinking skills can support children’s engagement in a range of liberal and performing
arts, including painting, sculpture, architecture, poetry, music, dance, and drama.
This chapter specifically hones in on how the performing arts (e.g., dance, drama,
music, etc.) are connected to computational thinking. We present descriptive cases
that are inspired by research conducted in early-learning settings over a period of
several years to illustrate the many overlaps between supporting young children’s
exploration of drama and computational thinking.

BACKGROUND

STEAM in Early Childhood

Young children (ages 5-8 years) are at a critical stage in their cognitive, social,
emotional, and physical developmental trajectories. Integrated educational STEAM
experiences allow children to explore diverse approaches, perspectives, and mediums
related to STEM, offering a divergence from the positivist “hard sciences” mindset of

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

136

Computational Expression

20th century science, math, and construction education. Similar to how representation
of diverse religious, cultural, ethnic, and gender backgrounds can support a child’s
developing identity, diverse modes of STEAM education support a child’s developing
identity as one who does – or is able to do – STEM work.

The arts help teachers engage more thoroughly with STEM, as well. Research
shows that despite the global educational trend of bringing novel STEM domains
(e.g., computer science, technology, robotics) into early childhood classrooms
(Sheffield et al., 2018), pre-service and in-service early childhood educators around
the world still indicate insecurity and mixed levels of confidence in their ability
to meaningfully teach these subjects (e.g., Dong & Xu, 2020; Masoumi, 2020). In
contrast, arts integration has a long history in education, and teachers generally
report feeling confident and comfortable with bringing these domains into the early
childhood classroom (Bresler, 2007; Hartman & Dani, 2020; Leung, 2020). Arts
integration makes STEM more accessible to teachers by allowing them to leverage
their experience in arts education to create more engaging and meaningful pathways
into STEAM exploration for students.

With the growing focus on technology and STEM education, some critics of
computers in education have expressed fear that technology may inhibit children’s
natural play and creativity (e.g., Cordes & Miller, 2000; Oppenheimer, 2003). The
STEAM integration approach counters this by demonstrating that the flexibility
inherent in art practices and how naturally this can be applied to STEM content,
therefore making STEM more appealing to young learners as well as accessible for
educators (Robelen, 2011).

Performing Arts in Early STEM Education

In the performing arts, including fields like theater, music, and dance, children
literally embody the emotion or message they are aiming to present. Integrating
STEM content in the performing arts offers children the chance to embody a STEM
identity (e.g., by acting out the role of a scientist wearing a white lab coat), and even
appropriate STEM practices into their “toolbox” for creative and expressive play
(e.g., building and testing props for a dramatic performance).

Over a decade of research has demonstrated that the performing arts can positively
benefit young children’s learning across multiple STEM domains. For example,
Ingram & Reidel (2003) found a significant positive link between in-school arts-
integrated programming (as part of the Arts for Academic Achievement program)
and standardized test scores. Similar research found that children in Chicago arts-
integrated elementary schools performed better on tests than children in control
schools (Catterall & Waldorf,1999). At the early childhood level, Erdoğan and Baran

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

137

Computational Expression

(2009) reported that drama-infused math instruction for Turkish six-year-olds was
linked to mathematics achievement test scores.

The performing arts offer playful and collaborative ways to integrate self-
expression and creativity with traditional STEM content in ways that support
foundational knowledge as well as self-confidence. Research funded by the US
Department of Education indicates that teachers using arts-integrated strategies have
significant positive effect on children’s STEM learning (Ludwig & Song, 2016). In a
randomized controlled study of an early childhood program titled “Early Childhood
STEM Learning Through the Arts” created by the Wolf Trap Foundation for the
Performing Arts, researchers found that students in the program outperformed peers
in control schools on the Early Math Diagnostic Assessment (EMDA). Moreover,
teachers in this study reported that music, movement, and drama was particularly
beneficial for students who were shy, who had never been to school, or who were
speaking another language (Ludwig & Song, 2016). In this way, the performing arts
help teachers connect with children who may otherwise struggle socially. Taken
together, this body of research speaks to the value of integrating the arts with other
curricular areas in order to boost children’s confidence, foster connections, and
even master STEM learning content – in other words, it illustrates the benefits of
adapting a STEAM approach.

Computational Thinking & STEAM

As we have seen, there is a growing body of work on the impact of the performing
arts on STEAM education. The focus of prior work has mainly concentrated on
linking the arts with mathematics achievement (e.g., Erdoğan & Baran, 2009). With
the recent national and international focus on the importance of early childhood
exposure to coding, computational thinking, and engineering, it is useful to look
at how the performing arts can serve to foster new 21st century computing skills
and mindsets.

Computational Thinking (hereafter, CT) has been described as the thought
processes involved in constructing and/or decomposing the sequential steps of a
task so that it can be carried out by a computer (Cuny, Snyder, & Wing, 2010; Aho,
2011; Lee, 2016). In chapter two of this book, Bers (2021) argues that CT is more
than a style or category of thinking. She asserts that the ability to apply CT skills
and practices for the purpose of self-expression through code and technology is
equally important for young children to explore, which nicely aligns with creative,
dramatic, and performing arts education perspectives.

In this chapter, we take the second approach, and further propose that when
children engage in STEAM-integrated dramatic arts and performance, they leverage
CT skills and practices to create a shared experience outside of themselves. Through

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

138

Computational Expression

the arts, students move from mastery or even self-expression through code to
connection with their community and audience. In the process of creating shared
cultural artifacts and experiences with technology, children not only hone their
computational thinking skills and abilities, but also cultivate their creative capacity
and enrich their identities as agents of transformative social experience. In this view,
technology is not just a tool to practice with, a puzzle to solve, or even a language
to learn, but instead becomes an extension of the child’s expressive and artistic
palette, alongside paints, costumes, and musical instruments. In the case vignettes
presented later in this chapter, we offer real example cases of children exploring
STEAM-integrated arts and drama experiences using performative platforms such
as robotics kits and computer programming languages.

Computational Thinking & the Performing
Arts: How Do They Relate?

Offhand, it may seem like the arts and CT have little in common. Surprisingly,
though, the mindsets, skills, and practices from the two domains actually overlap
quite a bit. Modularity and decomposition, for example, are CT skills that involves
breaking a task into smaller, more manageable parts. Decomposition can also be
applied to composing a piece of music with multiple movements or writing a play
with multiple acts. Taking the music example, the composer could choose to work on
each individual “movement” (i.e., a self-contained part of the musical composition)at
a time and then break that down into even smaller sections such as the main melody
and distinct harmonies.

At the early childhood level, it may be difficult for educators to decipher
which CT and performing arts concepts are most important for young children to
focus on. It is important to choose concepts from both domains that will reinforce
foundational early childhood skills that are relevant across all classes and content
matter. Sequencing (i.e., understanding that order matters), for example, is relevant
to CT and drama but is also a foundational early math and literacy skill.

Bers (2020) describes 7 “powerful ideas” from CT that young children should
focus on. These include: algorithms, modularity, control structures, representation,
hardware/software, the design process, and debugging. Table 1 defines each of these
powerful ideas and illustrates how each one relates to the performing arts as well
as foundational early childhood skills.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

139

Computational Expression

THREE CASES OF STEAM ACTIVTIES TO
SUPPORT COMPUTATIONAL THINKING

The previous section explored the powerful ideas of CT young children can begin to
develop, as well as how and how they map on to the arts and traditional early childhood
content. But what does this look like in practice? In this section, we will explore
how these concepts can be brought to life with hands-on robotics kits, interactive
coding applications, and in-person practices. We will present three case studies that
include fictionalized vignettes (all school and child names are pseudonyms) that
are inspired by actual early learning curricula and projects that successfully wove
together the performing arts, technology, and CT. These vignettes are based on real
observations and data collected in the settings described, but include fictionalized
depictions of students.

The first case study will describe a project integrating robotics with music and
dance performance in Singapore preschools. The second explores a curriculum that

Table 1. Mapping early childhood CT concepts with performing arts activities &
early childhood skill

Bers (2020) Computational
Thinking Concepts Performing Arts Activities & Practices Early Childhood Skills

Algorithms – A series of ordered
steps taken in sequence.

Story Arc – Understanding that a play
follows a sequence including a beginning,
middle, and end.

Sequencing
Logical organization

Modularity – Breaking down
tasks and procedures into simpler,
manageable units.

Breaking Down Music - Learning to
play a song one verse at a time.

Breaking down a large
task

Control Structures – Controlling
the sequence in which a program
is executed. Making decisions
based on conditions.

Character Reactions – Exploring if/then
reactions for characters through acting
improvisations.

Pattern Recognition

Representation – Concepts can
be represented by symbols.

Music Notation - Learning to read music
notation and understanding symbols
represent notes, rhythms, etc.

Symbolic representation
of letters & numbers

Hardware/Software - Computing
systems need both hardware &
software to operate.

Lighting & Sound Boards –
Understanding that lighting & sound
boards rely on hardware & software.

Recognizing objects that
are human engineered

Design Process – An iterative
process used to develop programs
& artifacts with multiple steps.

Editing – Iteratively editing a script or
piece of music.

Writing Process
Scientific Method
Editing/Revision

Debugging – Fixing problems in
our programs.

Rehearsals – Using the rehearsal process
to troubleshoot a song that doesn’t sound
quite right, a scene that doesn’t work, or a
lighting cue that is off.

Perseverance
Problem-Solving

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

140

Computational Expression

explores music and computer science. Finally, the third vignette describes a STEAM
summer camp that integrated performance arts practices through rehearsals and a
final performance for families.

Cultural Dances with KIBO

At Sunny Day preschool in Singapore, group partners Nadia, Siti, and Rizwan are all
working hard on their Dancing KIBO robot project. “Can you pass me the motors?”
Nadia asks in English, and Rizwan replies, “here you go” in Malay. Because of
Singapore’s multicultural community, most schools offer bilingual education in
English, and one of the other three national languages: Mandarin, Malay, and
Tamil. Although everyone learns English at Sunny Day, these three children are in
the Malay “Mother Tongue” program. Today, they are excited to test the dancing
KIBO project they have been working on for several weeks. They can’t wait to show
off their special Malay dance to their classmates in their school showcase!

Nadia is nearly done attaching two motors to their KIBO. Meanwhile, Siti is building
their dance program while Rizwan checks their Design Plan Worksheet and gives Siti
instructions. “Begin, Spin, Wait for Clap, Shake, End,” he reads off the code they
wrote yesterday, while Siti touches each block in the program in front of her. “It’s
all here! We’re ready Nadia!” Nadia hands the robot to Rizwan, who carefully holds
KIBO’s flashing scanner light over the barcode on the Begin block. When the robot
beeps loudly, Nadia and Siti shout “Next!” and Rizwan moves to the next block, until
he has scanned all the way down the line. Nadia tests their robot, remembering to
add a sound sensor to hear their clap. Finally, after a few tests, the team decides the
robot is ready to decorate. Siti carefully attaches the decorated platform they had
all worked on last week. She is careful not to crush or tear the tissue paper skirts
of their robot dancer, and makes sure it is sturdy before she takes her hands away.

“Everyone, it’s time to put on your costumes!” their teacher announces. All three
children take out the silky skirts and hats they brought from home. They giggle and
twirl in their special outfits, and take turns dancing next to KIBO. Finally, their
teacher starts the music and nods to their group. Rizwan presses “Start” on the
KIBO, and all three partners line up to dance along with their robot. “Spin, Clap,
Shake” their teacher reads off their Design Plan and acts along in front of them. As
the three children dance side-by-side with their robot, their classmates smile and
nod to the music. Finally, they finish the song and take a bow to a room of applause.
“Well done, Malay team!” their teacher says, and helps them carry their robot to
a table while the Tamil group prepares to practice their dance.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

141

Computational Expression

This case example was taken from a study conducted in 2015, when the government
of Singapore announced a novel initiative called the “PlayMaker Progamme” to bring
a maker-centered, screen-free approach to early childhood technology instruction
(Bers, 2020; Chambers 2015; Digital News Asia 2015; Sullivan & Bers, 2017).
Preschool classrooms across the country used novel technologies like BeeBot (a
programmable floor robot) and Circuit Stickers (paper-thin conductive electrical
components that can be connected to create programmable circuits). Additionally,
several classrooms explored KIBO robotics described in the vignette above through
a research collaboration with the DevTech Research Group at Tufts University
(Sullivan & Bers, 2017).

KIBO is a robotics construction kit designed for children ages 4–7 years to practice
early engineering, programming, and design skills (Sullivan & Bers 2015). KIBO was
created by the DevTech Research Group through funding from the National Science
Foundation and made commercially available through KinderLab Robotics. KIBO
is a robotics construction kit that involves hardware (the robot itself) and software
(tangible programming blocks) used to make the robot move (Sullivan and Bers,
2015). The kit contains easy to connect construction materials including: wheels,
motors, light output, and a variety of sensors. KIBO is programmed to move using
interlocking wooden programming blocks. These wooden blocks contain no embedded
electronics or digital components. Instead, KIBO has an embedded scanner in the
robot used to scan the barcode on each block one at a time (see Figure 1).

Figure 1. KIBO Robot and sample wooden programming blocks

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

142

Computational Expression

Children in the PlayMaker Programme study spent 7 weeks building, coding,
and testing a KIBO robot, as well as learning and rehearsing a meaningful dance
from their unique culture. Just as Rizwan checked their group’s Design Plan to
remember their KIBO program, children spent time matching their dance steps to
KIBO’s coding instructions, creating an algorithm that represented the familiar dance
steps they wanted to perform. Coding with a specific order in mind connects to the
powerful computer science idea of algorithms, or the concept that the sequence
of coded instructions is important for the final product. Children felt intrinsically
motivated to develop and stick to specific algorithms because they knew it would
make their dancing robots perform in a way that matched their initial choreography
and creative vision.

Children also explored the distinction between KIBO’s software, or coded
instructions, and robotic hardware, the physical pieces that are required to make the
robot move. Nadia knew that her KIBO needed special hardware parts, motors and
a sensor, to act out all the instructions in their software (Spin, Wait for Clap, and
Shake). The concept that a machine or computer will only act out the instructions
in its coding software is a complex idea for young children. In comparison, the
idea that your body can only act out a dance if your mind learns the steps is easy to
understand. By exploring coding through the metaphor of a musical performance,
children can embody the hardware/software relationship themselves. They easily
understand the relationship between software instructions and hardware as they
act out the dance steps alongside their robots, perhaps even listing their coding
instructions out loud as they move. Papert, a pioneer of computational thinking in
children, called this body syntonic learning, and argued that it is a natural way for
young children to learn about their world (Papert, 1980).

In this example, children explored coding software and robotic hardware through
the lens of song and dance performance. Children’s cultural connection to their
dance, and their commitment to accurately showing the steps of the dance, added
meaning and creativity to an otherwise straightforward (and common) STEM activity
to code a robot to move in certain direction. In the next vignette, we meet a child
who is exploring concepts of sequencing and patterns through code, in the context
of musical composition.

Coded Musical Compositions

Livvy is 7 years old and is learning how to use the ScratchJr programming app on
her family’s tablet. She has been practicing how to record sounds into coding blocks,
make characters, and write short lines of code. Today, she wants to make a music
video for her little brother of his favorite song, 5 Little Speckled Frogs (see lyrics
below). She tries to record the whole song, but her tune is interrupted! ScratchJr

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

143

Computational Expression

sound record blocks can only hold about 1 minute of song. She erases the recording
and thinks about the lyrics of her song:

“Five Little Speckled Frogs” Song Lyrics
Five little speckled frogs,
Sat on a speckled log,
Eating some most delicious bugs.
Yum!
One jumped into the pool,
Where it was nice and cool,
Then there were four speckled frogs.
Glub glub!
Four little speckled frogs,
Sat on a speckled log,
Eating some most delicious bugs.
Yum!
One jumped into the pool,
Where it was nice and cool,
Then there were three speckled frogs.
Glub!
Three little speckled frogs
(song continues)...

After singing through the song in her head, she says out loud, “most of this
song is the same part over and over. Just the number of frogs changes.” She thinks
a little longer, and then begins to record three new sounds, shown in Table 2. Then
she organizes her blocks into a code, with her verse block repeating in between the
counting down blocks (see Figure 2). Soon, she finishes her first page and proudly
replays it again and again. Just as she is ready to move onto the next part of the song,
she hears her mom calling her to come eat lunch. She runs to the table beaming,
and spends lunch telling her family all about the parts she wants to add to her song
project after she finishes eating.

Livvy was engaging in the computational thinking skill of Algorithmic logic
and sequencing when she worked on her ScratchJr song project. By creating her
song through code instead of simply singing it, she was forced to consider the
repetitive patterns in the song. Music also supports Livvy’s intrinsic motivation to
accurately code the sequence. She and her audience (her little brother) know what
the song sounds like, and if there are changes in the sequence it becomes a musical
reinterpretation – but not the old familiar classic.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

144

Computational Expression

Musicians and computer scientists both share a very important understanding
about the value of algorithmic sequencing. Even people who have never coded before
can understand why it would be important for a computer or machine to carry out

Table 2. Livvy’s sound block recordings

Sound Block Livvy’s Recording

Block 1 (Verse):

Sat on a speckled log,
Eating some most delicious bugs.
Yum!
One jumped into the pool,
Where it was nice and cool,

Block 2: Five little speckled frogs

Block 3: Then there were four speckled frogs.
Glub!

Block 4: Four little speckled frogs

Block 5: Then there were three speckled frogs.
Glub!

Figure 2. Livvy’s ScratchJr Program, which reads “Start on Green Flag, then Play
Recordings in this order: 2, 1, 3, 4, 1, 5”

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

145

Computational Expression

instructions in a specific order to function correctly. We need sensor-automated sinks
to wait to be activated until they turn on the water faucet, and a robot coded to move
straight 3 times and then right will end up in a very different place than if it turned
right 3 times and then moved straight. Similarly, the sequence of notes, phrases,
and stanzas in a musical score is important to creating the mood and emotion that
the composer is trying to evoke, in addition to recreating the rhythm and cadence of
familiar songs accurately. The shared emphasis on sequencing and patterning is part
of the reason that computer science researchers have recently begun to explore AI
(artificial intelligence) algorithms to aid in music composition (e.g., Moruzzi, 2017).

When Livvy breaks up the parts of her song into different sections and pieces
them together again through code, she is also practicing modularity, the practice of
decomposing problems into smaller, constituent parts. This is distinct from breaking
music phrases into stances or couplets, which is more similar to a literacy or poetry
task, but instead requires Livvy to recognize the specific lyrics of the song that
change through each iteration of the verse. As Livvy works through multiple rounds
of testing and refining her project, she may also choose to test specific parts of the
program individually, rather than launching the whole song from the beginning,
which is also a form of modularity. In early childhood, modularity is a challenging
but important skill that sets the foundation for larger and more complex tasks like
writing a lengthy story, exploring complex math concepts, and more.

Livvy’s vignette highlights the importance of using algorithmic logic, modularity,
and debugging to explore musical composition with a technological tool. Moreover,
this vignette demonstrates a simple way that educators can infuse music with
computational thinking through a freely available coding application. the third
and final example in this chapter, we consider how children can apply the same
mindset of debugging and refining a “work in progress”, to the task of rehearsing
and executing a culminating performance about their completed STEAM projects.

Reflecting on Computational Thinking and Performing Arts

“...And now, I’d like to introduce the Robot Campers to share with you their
robotic Zoo Animals! Go ahead and say hello, campers!” Calvin’s camp counselor
announces and the room full of parents, grandparents, siblings, and babysitters
erupts in applause. He is a little nervous, but when his counselor, Lisa, gives him a
big smile and two thumbs up, he stands up with his friends and waves at his family
in the crowd. Lisa moves to the side of the stage area, so Calvin can still see her but
she is not in the way of the audience, and she holds up the poster of the Engineering
Design Process for the campers to see. Then she holds up her fingers to silently
count down “3 – 2 – 1 – GO!” and the campers start singing “the Design Process

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

146

Computational Expression

Song” at the same time. Lisa points to the poster and mouths the words along with
them. Everything is going exactly like they practiced yesterday in rehearsal. Calvin’s
nervousness starts to fade and soon he is smiling and singing loudly. When they get
to the end of the song, he doesn’t even need anyone to point at him to remind him
when to sing his big ending – this is even better than rehearsal!

Next, he gets ready to show-and-tell about his robot. Just like in a school play or
performance, each camper has lines to say at particular times. When it is Calvin’s
turn, Lisa hands him his decorated robot and he holds it out for everyone to see.
“This is my Zebra. Zebras are my favorite animal because they’re kind of like
horses but with better colors.” All the adults laugh and Calvin looks up, confused,
but Lisa nods for him to keep going. She also puts her hands around her mouth as
if she might shout, to remind him to talk louder. He keeps going, raising his voice
to say “My three zebra facts are: Zebras are herbivores because they eat grass,
Zebras live in Africa, and many Zebras together is called a Dazzle. I programmed
my Zebra with many forwards because zebras can travel very far, and I used a light
sensor to make it only move when it’s light outside, because Zebras sleep at night
and are awake during the day. It took me 8 tries to make the sensor work right. Also,
I used black and white streamers for the Zebra stripes.” Calvin places his robot on
the ground and presses the “Play” button to show his moving Zebra robot. When
it stops moving Lisa starts clapping, and then the whole audience claps so loudly
that Calvin jumps. He sees his Mom and brother standing up, clapping loudest of
all. “Thank you, Calvin! Go ahead and take a bow!” Lisa says. Calvin bows like
they practiced that morning, and carried his robot back to his seat.

After the showcase, Calvin walked back to the bus stop with his family, holding his
new Robot Engineer certificate with a picture he remembered posing for earlier
that week, of him holding his Zebra robot. He was so proud that he asked his mom
if they could hang the certificate on the refrigerator at home. “Are you still sad you
didn’t get to take the robot home?” his brother asked. “No,” Calvin said, “this is
even better,” and he held up his certificate, beaming.

Calvin’s experience at his robot showcase is a common scene from the STEAM-
themed camps run at the DevTech Research Group. In addition to being a powerful
way to commemorate the time and effort that children put into their STEAM projects
and invite adults to understand the work they did at camp, performances like these
are wonderful opportunities to practice performance and dramatic arts. Calvin’s
several rehearsals prepared him for large-group public speaking, communicating
through song, gestures, and speech in front of an audience, and coordinating with
a team of other performers to make sure their performance came across as a clear,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

147

Computational Expression

cohesive presentation. The teacher moves made by counselor Lisa are some classic
supports that drama teachers use to guide children to focus and remember their parts,
and remind children that they are not alone. This kind of practice is important for
children’s perseverance and executive functioning, especially during the potentially
overwhelming experience of performing for a crowd.

Another goal of helping children rehearse and refine a staged performance is
that it is another way to practice the Engineering Design Process. This is a multi-
step practice that professional and novice engineers, designers, and builders engage
in when working through a design project. Educators and researchers use various
versions of this cycle (e.g., see Lachapelle & Cunningham, 2007, and Milto,
Portsmore, McCormick, Watkins, and Hynes, 2020), but almost all of them move
through a process of asking a question, brainstorming and testing different solutions,
and iterating on designs until the designer is satisfied. The design cycle commonly
used at DevTech STEAM camps is depicted in figure 3, notably an infinity loop
to signify to children that the process is never fully “done,” and you can constantly
jump around to any stage in the process as you work. This is akin to rehearsing a
staged performance: there are always changes and improvements that can be made.

Figure 3. The engineering design process

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

148

Computational Expression

Calvin’s references to improving on his rehearsal point to another important
practice that he surely explored when building his zebra robot as well: Debugging.
Debugging, the practice of identifying and resolving problems in your work, is a
popular skill to build when creating a STEM project. It’s especially useful when
the program or machine is meant to solve a problem, or is expected to perform in a
very specific way. However, this process is also useful for dramatic performances,
when timing, coordination, and precise execution of lines and actions is important
to expressing a clear, unified message to an audience. Just as Calvin spent “8 tries”
reworking and iterating on his robotic sensor, he also spent several rehearsals
learning his lines for the showcase performance. While debugging with technology
can improve his competence as a technician and builder, debugging his performance
can support his developing confidence in sharing and expressing his design ideas.

Summer Camp STEAM Showcase

The vignettes above demonstrate ways that children can engage with computational
thinking through a STEAM integration approach, with dramatic, performance,
and visual arts playing as important a role in children’s creative design work as
engineering, logic, and technology. In addition to highlighting children’s creative
and expressive potential through computational media, these stories also depicted
adults – parents, teachers, and counselors who put in considerable time and effort
“behind the scenes” to support children’s positive early STEAM experiences. In this
section, we unpack some practical steps that adults can take to increase children’s
chance of success with STEAM-themed performing arts explorations.

We have argued throughout this chapter that computational thinking is just one
among many skillsets that children can leverage during creative STEAM play, but
we have not yet described what other types of learning adults might look for. In
2012, Bers outlined the Positive Technological Development framework, a model of
psychosocial behaviors that children can practice through engagement with technology
(Bers, 2012). This framework drew on extensive research in latent character trait
development to yield six behavioral indicators of children’s psychosocial engagement,
also called the 6 C’s (see figure 4).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

149

Computational Expression

What does this framework mean for CT teaching and learning? The 6 C’s
can be a guiding framework to remind adults of the positive psychological and
prosocial outcomes that children stand to gain through developmentally appropriate,
meaningful, child-directed technology exploration (Bers, 2012). Below, we outline
teaching and mentoring practices that specifically relate to integrating STEAM
and the performing arts. In each example, we use the 6 C’s to highlight aspects of
psychosocial development that are supportive of CT learning:

• Support Children in Giving and Receiving Constructive Feedback. An
important aspect of both art and engineering is respecting the iterative,
flexible, and sometimes unpredictable nature of the design process. In our
curricular work with children, we often encourage children to pause and
celebrate the process through mid-point project shares and requests for help
and feedback, typically in medium or large groups. In addition to helping
children course-correct in the event of technology bugs or challenges, these
conversations give children opportunities to practice communicating their
work and ideas in a way that others can understand. Children who are not
presenting ideas also have learning opportunities, and must practice how to

Figure 4. Positive Technological Development Framework, including (left) general
character assets that children can develop, (center) six corresponding behaviors
(i.e. “6 C’s”) that children exhibit when using technology to indicate they are
developing that asset, and (right) example classroom practices that can support
positive behaviors through technology use

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

150

Computational Expression

provide feedback or opinions in a collaborative and constructive way, without
hurting the presenting child’s feelings. Adults can help children develop
empathic and constructive choices of conduct by offering a simple structure
for feedback, such as naming one aspect of another child’s project that they
admire or enjoy for every suggested change. This type of exercise is common
in performing arts classes after children perform a scene or monologue, but
less common in coding or computer science classes. However, it is especially
helpful for young children because it allows them to observe their peers’
reactions to their words and choices, which important for their developing
social and perspective-taking skills.

• Implement Rehearsals. While we appreciate the worry of over-practicing
and taking the joy out of an expressive experience, rehearsing for a
performance is an important part of the creative process. In STEM, the arts,
and life, there is always room to “improve,” and learn from past failures.
Giving children opportunities to experience failure in low-stakes settings
bolsters their confidence ahead of larger, more intimidating performances.
When adults skip these practice opportunities, children may feel unsure about
their ability to express their creative selves for “real” events and audiences,
leading to stifled creativity and, in the worst-case scenario, stage fright and
fear of failure. Instead, adults can liken rehearsals to the “Test & Improve”
step of the engineering design cycle (see Figure 3). This positions rehearsals
as a necessary step toward content creation, rather than letting small failures
discourage a child from completing their performance. Importantly, rehearsals
also offer low-stakes environments for children to practice respectful listening
as audience members. Adults can invite these children to offer feedback
and encouragement (e.g., through applause) to help them feel involved in
rehearsing for more passive parts of a performance. Positive presentation of
failures can help children outline the next steps for debugging their work,
allowing space for them to explore creative solutions, and ultimately make
their work even better than they originally thought it could be!

• Communicate with Education Stakeholders. Children may have wonderfully
rich performing arts STEAM experiences in the context of a camp or
classroom, but how can we support the transfer of these skills to other settings
and learning contexts? Adults can set children up for STEAM success (in the
performing arts or in any STEAM program) by communicating ideas and
strategies to keep the learning going with other adults and caregivers in the
child’s learning environment, including home and school. Regular notes sent
home to family members, classroom teachers, or other counselors can outline
key concepts, activities, and vocabulary words from the day’s STEAM
lesson, and can even prompt adults with questions or ideas to connect to

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

151

Computational Expression

relevant experiences at home or in the local community. These can easily
be drafted ahead of time, and shared in a timely way at pick-up and drop-
off, or classroom transitions. Connecting STEAM learning to children’s
daily experiences (e.g., at the grocery store, while watching TV, or even
while eating dinner) can cement CT concepts that they will carry into later
academic settings. Perhaps more importantly, this kind of communication
among a child’s entire community of mentors and educators serves to recruit
them as STEAM-allies within the child’s learning network.

• Be a STEAM Role Model. Adults leading STEAM activities have an
opportunity to model all of the 6 Cs by diving in and taking part in the
creative process alongside children! In addition to being a fun and dynamic
way to lead activities, this method allows children to see first-hand how
an experienced STEAM practitioner works through challenges using
perseverance, positivity, curiosity, and passion. Many learning approaches,
especially in early school settings, attempt to “manage” children’s attention,
motivation, and contribution to activities (Rogoff, Paradise, Arauz, Correa-
Chávez, & Angelillo, 2003). By comparison, research has shown that when
children are positioned as responsible contributors to a shared task in which
adults also take part, they exhibit more intrinsic motivation to observe and
participate (e.g., Rogoff, Paradise, Arauz, Correa-Chávez, & Angelillo,
2003). Studies also show that regardless of the teaching approach, children
are constantly observing and learning from adults around them, which leads
to schemas of social understanding (e.g., Sullivan, 2019). For example, if
their female teacher never engages in an engineering project of her own, or
their male caregiver insists that he is not creative, this contributes to children’s
developing understanding (and stereotyping) of gender roles (Sullivan,
2019). Adults can foster a more equitable STEAM narrative by engaging
as collaborators, creators, and experimenters alongside the children they are
mentoring. This can lead to more agency and freedom of creative expression
in children, an important aspect in their arts-integrated learning. Finally,
adults can telegraph expectations and values to children through their praise
and affirmations. Research shows the importance of praising effort, rather
than output, for fostering a resilient growth mindset in children (Dweck,
2008; Sullivan, 2019). For example, telling children that you admire their
pretty decorations cues them to attend to visual output of their work, which
shifts focus from the creative process. Over time, this kind of praise can lead
to perfectionism or performance anxiety in children. Instead, admiring the
effort and time they must have put into their detailed decorations sends the
message that the process of designing is more important than the product, and
reinforces children’s perseverance and initiative.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

152

Computational Expression

CONCLUSION

In the professional world, the line between the arts and computing is becoming
increasingly blurry. Fields like film and video game design, for example, rely heavily
on both artistic and computing abilities. Colleges like Yale are now offering majors
in Computing and the Arts, melding computer science with drama, music, and more.
Why, then, should we teach these fields in isolation at the early childhood level? Both
CT and performing arts activities offer young children new and engaging ways to
build problem-solving skills, express themselves creatively, and build self-confidence.
By integrating the performing arts with CT, it also becomes possible for parents and
educators to reach children who are not typically drawn to STEM or computing.
Through these integrative experiences, children learn that computational skills can
be applied to the arts, and in fact, support them in furthering their artistic endeavors.

REFERENCES

Bers, M. (2020). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom (2nd ed.). Routledge Press.
doi:10.4324/9781003022602

Bers, M. U. (2012). Designing digital experiences for positive youth development:
From playpen to playground. Oxford University Press. doi:10.1093/acprof:o
so/9780199757022.001.0001

Bresler, L. (Ed.). (2007). International handbook of research in arts education (Vol.
16). Springer Science & Business Media. doi:10.1007/978-1-4020-3052-9

Catterall, J. S., & Waldorf, L. (1999). Chicago Arts Partnerships in Education:
Summary evaluation. In E. B. Fiske (Ed.), Champions of change: The impact of the
arts on learning (pp. 47–62). Arts Education Partnership. Retrieved from https://
artsedge.kennedy-center.org/champions/pdfs/ChampsReport.pdf

Chambers, J. (2015). Inside Singapore’s plans for robots in pre-schools. GovInsider.
Retrieved from: https:// govinsider.asia/smart-gov/exclusive-singapore-puts-robots-
in-pre-schools/

Cordes, C., & Miller, E. (2000). Fool’s gold: A critical look at computers in childhood.
Academic Press.

Digital News Asia. (2015). IDA launches $1.5m pilot to roll out tech toys for
preschoolers. Retrieved from: https://www.digitalnewsasia.com/digital-economy/
ida-launches-pilot-to-roll-out-tech-toys-forpreschoolers

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://artsedge.kennedy-center.org/champions/pdfs/ChampsReport.pdf
https://artsedge.kennedy-center.org/champions/pdfs/ChampsReport.pdf
http://https://govinsider.asia/smart-gov/exclusive-singapore-puts-robots-in-pre-schools/
http://https://govinsider.asia/smart-gov/exclusive-singapore-puts-robots-in-pre-schools/
https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-forpreschoolers
https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-forpreschoolers

153

Computational Expression

Dong, C., & Xu, Q. (2020). Pre-service early childhood teachers’ attitudes and
intentions: Young children’s use of ICT. Journal of Early Childhood Teacher
Education, 1–16. doi:10.1080/10901027.2020.1726843

Dweck, C. S. (2008). Mindset: The new psychology of success. Random House
Digital, Inc.

Erdoğan, S., & Baran, G. (2009). A study on the effect of mathematics teaching
provided through drama on the mathematics ability of six-year-old children. Eurasia
Journal of Mathematics, Science & Technology Education, 5(1), 79–85. Retrieved
from https://www.ejmste.com/v5n1/EURASIA_v5v1_SErdogan.pdf

Hartman, S. L., & Dani, D. (2020). Full STEAM Ahead: Creating Interdisciplinary
Informal Learning Opportunities for Early Childhood Teacher Candidates. Journal
of STEM Teacher Education, 54(1), 3. doi:10.30707/JSTE54.1/MNCB7975

Henderson, A. (2020, July 21). So Why Is There An “A” In STEAM? [Blog post].
Retrieved from https://amt-lab.org/blog/2020/5/so-why-is-there-an-a-in-steam

Ingram, D., & Riedel, E. (2003). What does arts integration do for students? University
of Minnesota, Center for Applied Research and Educational Improvement.

Lachapelle, C. P., & Cunningham, C. M. (2007, March). Engineering is elementary:
Children’s changing understandings of science and engineering. ASEE Annual
Conference & Exposition, 33.

Leung, S. K. (2020). Teachers’ belief-and-practice gap in implementing early visual
arts curriculum in Hong Kong. Journal of Curriculum Studies, 52(6), 857–869. do
i:10.1080/00220272.2020.1795271

Ludwig, M., & Song, M. (2016). Evaluation of professional development in the use
of arts-integrated activities with mathematics content: Findings from the evaluation
of the Wolf Trap Arts in education model development and dissemination grant.
American Institutes for Research. Retrieved from https://education.wolftrap.org/
sites/default/files/Full%20WT%20AEMDD%20Report_Final_Jan-2015updated%20
with%20date%2Bappendix.pdf

Masoumi, D. (2020). Situating ICT in early childhood teacher education. Education
and Information Technologies, 1–18.

Milto, E., Portsmore, M., McCormick, M., Watkins, J., & Hynes, M. (2020). Novel
Engineering, K–8: An Integrated Approach to Engineering and Literacy. NSTA Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.ejmste.com/v5n1/EURASIA_v5v1_SErdogan.pdf
https://amt-lab.org/blog/2020/5/so-why-is-there-an-a-in-steam
https://education.wolftrap.org/sites/default/files/Full%20WT%20AEMDD%20Report_Final_Jan-2015updated%20with%20date%2Bappendix.pdf
https://education.wolftrap.org/sites/default/files/Full%20WT%20AEMDD%20Report_Final_Jan-2015updated%20with%20date%2Bappendix.pdf
https://education.wolftrap.org/sites/default/files/Full%20WT%20AEMDD%20Report_Final_Jan-2015updated%20with%20date%2Bappendix.pdf

154

Computational Expression

Moruzzi, C. (2017, November). Creative AI: Music composition programs as an
extension of the composer’s mind. In 3rd Conference on” Philosophy and Theory
of Artificial Intelligence. Springer.

Oppenheimer, T. (2003). The flickering mind: The false promise of technology in
the classroom, and how learning can be saved. Random House Incorporated.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. Basic Books.

Robelen, E. W. (2011). STEAM: Experts make case for adding arts to STEM.
Education Week, 31(13), 8.

Rogoff, B., Paradise, R., Arauz, R. M., Correa-Chávez, M., & Angelillo, C. (2003).
Firsthand learning through intent participation. Annual Review of Psychology, 54.
PMID:12499516

Sheffield, R. S., Koul, R., Blackley, S., Fitriani, E., Rahmawati, Y., & Resek, D.
(2018). Transnational examination of STEM education. International Journal
of Innovation in Science and Mathematics Education (formerly CAL-laborate
International), 26(8).

Sullivan, A., & Bers, M. U. (2015). Robotics in the early childhood classroom:
Learning outcomes from an 8-week robotics curriculum in pre-kindergarten through
second grade. International Journal of Technology and Design Education. Advance
online publication. doi:10.100710798-015-9304-5

Sullivan, A., & Bers, M. U. (2017). Dancing robots: Integrating art, music, and
robotics in Singapore’s early childhood centers. International Journal of Technology
and Design Education. Advance online publication. doi:10.100710798-017-9397-0

Sullivan, A. A. (2019). Breaking the STEM stereotype: Reaching girls in early
childhood. Rowman & Littlefield.

ADDITIONAL READING

Bers, M. U. (2012). Designing digital experiences for positive youth development:
From playpen to playground. Oxford University Press. doi:10.1093/acprof:o
so/9780199757022.001.0001

Bers, M. U. (2017). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge. doi:10.4324/9781315398945

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

155

Computational Expression

Cohrssen, C., & Garvis, S. (Eds.). (2021). Embedding STEAM in Early Childhood
Education and Care. Palgrave Macmillan.

Henderson, A. (2020, July 21). So Why Is There An “A” In STEAM? [Blog post].
Retrieved from https://amt-lab.org/blog/2020/5/so-why-is-there-an-a-in-steam

Ingram, D., & Riedel, E. (2003). What does arts integration do for students? University
of Minnesota, Center for Applied Research and Educational Improvement.

Robelen, E. W. (2011). STEAM: Experts make case for adding arts to STEM.
Education Week, 31(13), 8.

Sullivan, A., & Bers, M. U. (2017). Dancing robots: Integrating art, music, and
robotics in Singapore’s early childhood centers. International Journal of Technology
and Design Education. Advance online publication. doi:10.100710798-017-9397-0

Sullivan, A., Strawhacker, A., & Bers, M. U. (2017). Dancing, drawing, and dramatic
robots: Integrating robotics and the arts to teach foundational STEAM concepts to
young children. In Khine, M.S. (Ed.) Robotics in STEM Education: Redesigning
the Learning Experience. (pp. 231-260). Springer Publishing.

KEY TERMS AND DEFINITIONS

Arts Education: A field of educational research and practice informed by
investigations into learning through arts experiences.

Computer Programming: The process of designing and building a stepwise
list of instructions (program) for a computer or machine to carry out.

Creative Expression: A broad spectrum of using artistic to engage in storytelling
and idea-sharing, sometimes related to expressing aspects of selfhood (e.g., identity,
personal experiences). Methods of creative expression include dance, writing, theater,
drama, acting, singing, music, broadcasting, digital design, and scriptwriting.

Dramatic Arts: The art of the writing and production of plays; drama.
Early Childhood Education: Education of children from birth to age 8 years.
KIBO: A screen-free programmable robotics kit for young children with blocks,

sensors, modules, and art platforms.
Performing Arts: All forms of creative activity that are performed in front of

an audience, such as drama, music, and dance, etc. Also called Performance Arts.
ScratchJr: A programming application for young children to create games,

animations, stories, and more.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://amt-lab.org/blog/2020/5/so-why-is-there-an-a-in-steam

156

Computational Expression

STEAM Education: An approach to learning that integrates science, technology,
engineering, the arts, and mathematics for encouraging student inquiry, dialogue,
and problem-solving.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Section 3

Contexts

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

158

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-7998-7308-2.ch008

ABSTRACT

This chapter provides theoretical and practical insights for fostering children’s
computational thinking (CT) in homes and other family-friendly spaces such as
libraries, museums, and after-school programs. The family context—the kinds of
roles, interactions, and opportunities afforded by parents, caregivers, and siblings—is
essential for understanding how young children learn and engage in CT. This work
is informed by research on how everyday activities and educational technologies
(and the contexts in which they are used) can be designed to promote opportunities
for CT and family engagement. This chapter discusses ways to support children’s
CT by co-engaging family members in collaborative coding activities in homes and
other informal learning spaces.

INTRODUCTION

Parents and caregivers have long played an important role in children’s early learning
and development (NAEYC & Fred Rogers Center, 2012; Rideout, 2014). From birth
onwards, children rely on their caregivers to provide them with the care they need
to be happy and healthy, and to grow and develop in positive ways. Caregivers of
today’s increasingly digital and global landscape are tasked with exposing their
young children to an emerging set of skills that enable them to successfully navigate

Fostering Computational
Thinking in Homes and Other

Informal Learning Spaces
Madhu Govind

Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 159

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

the constantly evolving and technology-rich society in which they live. One set of
these so-called “twenty-first century competencies” is computational thinking, the
focus of this book.

In Chapter 1, Bers describes computational thinking (CT) as a way of thinking
in new ways that invites creativity, collaboration, and critical thinking, among
other important skills. Prior to the 1980s, CT was not a term that was used outside
of the field of computer science (CS), let alone in the homes of young children
and families. In many ways, CT is still largely situated within the CS discipline.
However, as technology continues to grow and young children are increasingly
exposed to a wide range of technological tools, CT is being treated more like the
“universally applicable attitude and skill set” Wing (2006) and others purported
it to be. In line with this perspective, CT can be applied to a variety of problem-
solving situations that do not necessarily require the act of coding or manipulating
digital technologies but can be supported when partnered with them. As such, CT
represents a set of skills that can be learned and fostered through young children’s
everyday play and learning activities, many of which occur in informal spaces in
the presence of family members.

It is important to acknowledge that informal spaces, as described in this chapter,
have less to do with physical location (though that can be a distinguishing factor) but
rather more to do with the kinds of interactions and learning opportunities afforded
to children and other individuals occupying that space. For instance, an after-school
chess club with local community members might take place in a formal school
setting, but the nature of the activity and the participants involved in the activity
make it more of an informal learning context. Callanan, Cervantes and Loomis
(2011) summarize five key dimensions of informal learning: 1) non-didactive, 2)
highly socially collaborative, 3) embedded in meaningful activity, 4) initiated by
learner’s interest or choice, and 5) removed from external assessment. Accordingly,
the informal learning spaces discussed in this chapter refer to environments that
invite multiple pathways for attaining and transmitting knowledge, promote social
and collaborative interactions, and engage children in meaningful and self-driven
activities for the sake of enrichment, not evaluation. Such spaces include children’s
homes, museums, libraries, community centers, after-school enrichment programs,
and other spaces that are accessible to young children and their caregivers.

The goal of this chapter is to provide theoretical and practical insights for fostering
children’s CT in homes and other family-friendly informal learning spaces. The family
context, which is comprised of the various roles, interactions, and opportunities
afforded by parents, caregivers, siblings, and extended family members, is essential
for understanding how young children learn and engage in CT. This work is informed
by research on how everyday activities and educational technologies (and the contexts
in which they are used) can be designed to promote opportunities for CT and family

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

160

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

engagement. After presenting an overview of this literature, I discuss one workshop
model for engaging families in collaborative computing and CT activities in informal
learning spaces. These workshops, called Family Coding Days, utilize two coding
platforms for young children shared in other chapters of this book: the ScratchJr
app and the KIBO robotics kit. The chapter concludes with some practical insights
for families, educators, and practitioners when facilitating such events like Family
Coding Days or other family-oriented opportunities that aim to strengthen young
children’s development of coding and CT skills.

THE ROLE OF CAREGIVERS IN SUPPORTING
CHILDREN’S COMPUTATIONAL THINKING

Long before formal schooling begins, parents and caregivers (hereafter referred to
as “caregivers” to synthesize the various terms used to identify the primary adults
who care and provide for a child) guide young children’s participation in culturally
valued activities and practices (Barron, Martin, Takeuchi, & Fithian, 2009; Lave &
Wenger, 1991; Rogoff, 1999; Vygotsky, 1978). These activities and practices serve
to promote children’s development in a variety of cognitive domains, including but
not limited to early literacy and language, numeracy, scientific thinking, artistic
and musical abilities, and competency with technology, all of which are connected
in some capacity to CT. This section summarizes the literature on caregivers’ roles
as gatekeepers, facilitators, co-learners, and co-designers of children’ coding and
CT experiences.

Although children have some agency in how they explore the world around them,
the role that caregivers play, either implicitly or explicitly, in guiding children’s
participation in cultural and social activities is critical. For instance, caregivers
may provide access to particular toys or media in the home, or they may arrange for
the child to engage in informal learning opportunities outside of the home at local
libraries or other community spaces (Rideout, 2014). Caregivers may also engage
more directly in these activities by attending these informal learning experiences
with their children, co-viewing media, or playing with toys and games together
(Takeuchi & Stevens, 2011). Regardless of the level of involvement caregivers
may have, one thing is clear: caregivers act as “gatekeepers” (The Toy Association,
2019, p. 5) of children’s early play and learning experiences, and thus, of children’s
earliest experiences with multiple dimensions of CT.

Various frameworks and definitions of CT have been proposed over the years
(see Bers’ Chapter 1). This chapter focuses on seven powerful ideas of CT that are
developmentally appropriate for young children: algorithms, modularity, control
structures, representation, hardware/software, design process, and debugging

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

161

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

(Bers, 2018). These seven powerful ideas encompass CT concepts and approaches
that children can exhibit through everyday activities around the home and other
informal spaces. Table 1 illustrates common activities in the home that support
CT. One example of a CT concept that can be fostered through daily activities is
algorithms. Caregivers may support children’s algorithmic thinking by structuring
daily schedules in a logical and step-by-step fashion, such as through morning and
evening routines. Algorithmic thinking is also involved in library and museum
settings when families use maps to navigate from one space to another or plan out
how they will visit multiple exhibits over a span of several hours.

Another example of a CT concept that can be fostered in informal settings without
technological devices is control structures. In programming, control structures are
complex sets of code that determine whether and how other pieces of code are
executed (e.g., repeat loops, events, and conditionals). In the broader sense of CT,
however, control structures can be described as a way of understanding whether and
how everyday activities should be performed. Let’s look at these two statements
as an example: 1) If it is cold outside, then I will wear a jacket, but if it is warm
outside, then I will leave my jacket at home. 2) Because I have two feet, I perform
the action of putting on my sock and then my shoe two times: first for my left foot
and the second time for my right foot. The first statement identifies a situation
for which the outcome will be determined by an external event, the weather. The
second statement represents an activity that involves a step-by-step process that is
repeated a total of two times. These examples illustrate how families may already
be encouraging or supporting children’s understanding of conditionals and repeat
loops but may not be aware of it, possibly because they may lack an understanding
of CT or because the activities do not necessarily involve technology. However, as
Relkin and Strawhacker detail in Chapter 3, there are many unplugged activities
that can help promote children’s CT and can be facilitated by parents or other family
members.

Caregivers may also support young children’s CT development through more
explicit technology-mediated activities that engage children in viewing, manipulating
or producing computational artifacts. Computational artifacts are anything created
by a human using a CT process and a computing device, such as a program, image,
video, audio, presentation, or web page file (K-12 CS Framework, 2016). Although
children may be exposed to viewing computational artifacts from a very young
age using televisions or mobile devices (Rideout, 2014), the act of manipulating
or producing them might be a novel experience. Thus, in addition to their roles
as gatekeepers and resource providers, caregivers can also serve as facilitators of
children’s technology-related experiences. As facilitators, caregivers not only provide
access to opportunities, but they also may be present to provide verbal, emotional,
physical, or cognitive scaffolding to help children understand difficult concepts or
guide their learning (Neumann, 2017; Yelland & Masters, 2007).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

162

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

Table 1. Examples of activities in the home that support computational thinking (CT)

CT Powerful
Idea (Bers, 2020) Activity Example Activity Description

Algorithms
Following daily
routines and
schedules

From the moment children wake up and to the time they get
ready to fall asleep, children often follow a set of routines that
help them understand everyday events and procedures. By co-
constructing schedules with children, guiding them to choose the
order of activities, or asking children to remember the steps for
doing something, caregivers reinforce the idea of algorithms or
sequencing.

Modularity
Setting up the
dining table for
a meal

Each place setting (plate, cup, fork, spoon, knife, etc.) represents a
module that can be duplicated. Caregivers may demonstrate how
to arrange one place setting, and children may follow along and
arrange the remaining dinnerware, displaying their understanding
of decomposition (breaking down a large task into smaller chunks)
and modularity (recreating the module for the other place settings
that day or on a different day).

Control Structures

Choosing what
to wear based on
the activity or
weather

When explaining to children why it would be appropriate to wear
a coat before going outside in the cold weather, caregivers are
introducing children to the idea of decision-making and cause and
effect. These foundational concepts promote understanding of
control structures such as loops and conditionals, which are used
to direct which actions take place and the order in which they take
place.

Representation
Sorting items by
size, color, or
other attributes

Many objects in homes, including young children’s toys and
games, have distinct attributes, such as color, size and shape. Some
of these attributes signify important meanings. For example, the
red button on a TV remote and the red button on a video camera
can both be used to record something. When children recognize
and learn these associations, they are engaging with the idea of
symbolic representation.

Hardware/
Software

Using a remote
to turn on/off
devices

A computing device works by having physical components
(hardware) that are given instructions using programs (software).
When children use remotes to turn on/off devices or to adjust the
volume, brightness, or other settings on the device, children are
engaging with the concepts of hardware and software.

Design Process

Building
structures with
blocks or other
materials

Children’s play activities often involve blocks, building bricks,
or other sturdy objects that can be stacked on top of one another
to create different structures. Children may be provided design
challenges that invite them to think, plan, and test their ideas
and then determine whether their creations successfully met the
challenge. Through the process of building, testing, and improving
on their ideas, children participate in an iterative design process.

Debugging

Finding or fixing
something that is
missing, broken
or incorrect

It is not uncommon for a young child to misplace something
around the home or to act displeased when their favorite toy is
broken. The act of finding solutions to problems can support
children’s debugging skills when they engage with computing
devices. For instance, children may be guided to retrace their steps,
tinker and explore how broken parts can be glued back together,
and persevere through challenging tasks.

Source: (IGI, 2021)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

163

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

The role of caregivers as facilitators is particularly salient in library and museum
settings (Campana, Haines, Kociubuk, & Langsam, 2020; Ehsan, Ohland, Dandridge,
& Cardella, 2018; Swartz & Crowley, 2004). Caregivers may explore these spaces
with their children, pointing out different features of exhibits and encouraging
children to interact with the objects or individuals in the space. For example, a study
by Ehsan et al. (2018) examined five families’ interactions with a computer-based
coding game at an engineering exhibit in a science center. The authors found that
although children could engage in CT independently while playing the game (citing
evidence of children’s algorithmic thinking, debugging, and decomposition, among
other CT skills), parents were able to provide complementary CT competencies
that enabled children to advance to higher game levels. The authors conclude that
children’s engagement in CT can differ depending on the presence and involvement
of parents, and that the role of parents may evolve as children gain more experience
and competence with technology.

Particularly in the context of novel technologies such as tablet-based apps and
creative computing tools, caregivers may also assume the roles of co-learner and
co-designer. The terms participatory learning and joint media engagement (JME)
are often used to characterize how caregivers can co-engage in activities and learn
alongside their children (Clark, 2011). Takeuchi and Stevens (2011) define JME
as “spontaneous and designed experiences of people using media together… [such
as through] viewing, playing, searching, reading, contributing, and creating, with
either digital or traditional media” (p. 9). Whereas many parent-child interactions
might involve the parent teaching or guiding the child in accomplishing a complex
task (“zone of proximal development”, Vygotsky, 1978), novel technologies can
disrupt traditional roles of teacher and learner and enable families to participate more
collaboratively and actively (Barron et al., 2009; Connell, Lauricella, & Wartella,
2015; Takeuchi & Stevens, 2011).

As gatekeepers, facilitators, learners, and designers, caregivers play a variety
of roles in promoting young children’s CT development. Accordingly, a number of
programs and interventions have been aimed at bringing children and their families
together in informal spaces to engage in collaborative STEM (science, technology,
engineering, and mathematics), computing, and making activities. Some examples
of these programs include Family Creative Learning, CS is Elementary, and Be a
Scientist Family Science Program. The Family Creative Learning program consists of
a series of workshops for school-age children and their families to learn and co-create
projects using the Makey Makey invention kit and Scratch programming language
(Roque, 2016; Roque, Lin & Liuzzi, 2014). The CS is Elementary program, formerly
known as Family Code Night, provides free event kits for schools to host large-scale
family learning events for K-5 students and families using Code.org and unplugged
activities (Pearce & Borba, 2017). The Be A Scientist Family Science Program

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

164

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

brings children and parents together for five-week workshops to engage in hands-
on science and engineering-related activities (Pierson, Momoh, & Hupert, 2015).

To provide a closer look at one family workshop model and the ways in which it
can support children’s coding and CT skills, this next section describes a research
project at the DevTech Research Group at Tufts University called Family Coding Days.
This project, like the aforementioned programs, explored how families with young
children engage in unplugged and technology-supported coding and CT activities.
The technologies used in this project were the ScratchJr programming application
and the KIBO robotics kit, both of which are introductory block-based programming
languages developed by the DevTech Research Group that expose young children
to foundational coding and CT concepts. Due to the interface differences between
ScratchJr (screen-based application) and KIBO (tangible robotics set), the project
also explored the ways in which the type of interface may influence how families
interact with the technology and with one another during the workshops.

FAMILY CODING DAYS

The Family Coding Days project at the DevTech Research Group first originated in
the early 2000s as Project Inter-Actions, an exploration of intergenerational learning
with robotics. Children between the ages of 4-7 and their parents attended a series
of five-week workshops, during which they were introduced to programming using
LEGO bricks. The project revealed a number of interesting findings about the ways
in which children and parents learn about technology and engage with powerful ideas
such as sequencing, looping, and debugging (Beals & Bers, 2006; Bers, 2007; Bers,
New & Boudreau, 2004). In particular, the project revealed how these workshops
could generate a multigenerational “community of practice” (Lave & Wenger, 1991)
that encourages families to engage with each other and with new knowledge and
skills by producing creative computational artifacts.

About a decade later, the creation of newer coding technologies for young children
such as ScratchJr and KIBO made it possible to explore family dynamics around
creative computing with a fresh perspective. Anecdotal evidence from informal
community outreach events and pilot workshops at local early childhood centers
and museums indicated that families having the opportunity to code together with
ScratchJr and KIBO could learn together, too. Thus, these 1-2-hour workshops called
“Family Coding Days” were developed and implemented with over 100 families
with young children. A detailed protocol was devised with recruitment strategies,
facilitation tips, sample workshop agendas, activity prompts, and instructions for
research data collection, enabling interested event facilitators around the country to
host their own Family Coding Day workshops in informal learning spaces. A total

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

165

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

of 14 workshops (nine ScratchJr and five KIBO) were facilitated in after-school
programs, libraries, and museums in the local New England area and in several
cities across the United States. The research sample of Family Coding Day attendees
included mostly mothers holding an associate degree or higher with children in the
5-7-year range. Over half of families did not have any prior experience with the
technology (ScratchJr or KIBO) before attending the event, and about one-third had
children who had some exposure to the technology through school.

Each Family Coding Day workshop utilized one type of coding technology
(ScratchJr or KIBO) and consisted of three general types of activities: learning
about the technology, co-creating a coding project, and sharing projects with peers.
Families were together for most of the workshop, except for the introductory learning
activity. Children’s introduction to the coding technology included off-screen games
followed by a play-based tutorial, whereas parents’ introduction consisted of a step-
by-step tutorial followed by an open discussion. When families were rejoined for
the co-creating activity, facilitators provided families with sample prompts for their
projects (e.g., “Program a ScratchJr character or KIBO robot to perform a dance,
be an animal, or act out a scene from a favorite book or movie”) but encouraged
families to come up with their own creative ideas. As families worked on their
projects, facilitators walked around to assist and observed how families interacted
with one another and with the technology.

This next section presents a summary of findings from Family Coding Days,
focusing particularly on findings related to children’s CT engagement. Then, two
illustrative case studies are presented from a small follow-up study, in which individual
parent-child dyads were videotaped while working together on a ScratchJr or KIBO
project together for 20 minutes. Although the context of these individual case studies
was different from the multigenerational community gatherings of Family Coding
Days, the case studies provided unique insight into the kinds of parent-child CT
interactions that can take place around creative computing activities.

Findings from Family Coding Day parent surveys indicated that parents reported
a significant increase in their own coding interest, as well as in their children’s.
Parents also observed children actively exploring CT concepts of algorithms, design
process, and debugging. In addition, parents reported engaging collaboratively
with their children (as opposed to the activity being child- or adult-directed) and
particularly enjoyed watching their children take initiative as planners of their
coding projects. Parents provided a variety of cognitive, affective, and technical
scaffolding support for their children. For example, observed parental behaviors
included asking their children questions about their projects, offering suggestions
and words of encouragement, and showing children where to click or press buttons
(Govind, Relkin, & Bers, 2020; Relkin, Govind, Tsiang & Bers, 2020). No significant
differences in workshop outcomes, as reported by parents, were found between

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

166

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

families who attended ScratchJr workshops and families who attended KIBO
workshops, suggesting that families experienced similar forms of collaboration and
joint engagement regardless of interface (Govind & Bers, 2020).

The follow-up study of parent-child dyadic interactions with ScratchJr and KIBO
shed insight into how families were able to engage collaboratively to create their
computational artifacts. For example, families positioned themselves strategically
so that the tool was equally accessible. In addition, if one person was using the tool
without sharing, the other person would ask to take a turn or make verbal suggestions
to contribute actively to the project. Consistent with our previous study findings,
families’ interactions and behaviors during this 20-minute activity further clarified
parents’ role as coaches and children’s role as planners. The following case studies
illustrate this coach-planner dynamic and how parents, even without having explicit
knowledge of computer programming or CT, were engaging in conversations and
behaviors that seemed to enhance children’s display of CT.

KIBO Case Study: Eye of the Tiger

Jordan (child) and Caroline (parent) are playing with the KIBO robotics kit during a
KIBO family coding play session. Caroline asks whether Jordan would like to make
KIBO into an animal or something else, to which Jordan responds “animal… a tiger!”
Knowing that her son has had extensive experience with KIBO from school, Caroline
lets Jordan take the lead, remarking, “you might have to lead the way because I don’t
know how to do this.” Jordan goes to the crafts table and begins looking through
the various colors of construction paper. They work together to find all the orange
paper in the stack. Seeing the variety of colors to choose from, Jordan thinks about
making a rainbow instead, but Caroline encourages him to stick with the tiger idea.

Caroline begins drawing a face on the tiger and prompts Jordan with questions
about a tiger looks like so that she can draw it properly. She asks, “What color should
the stripes be? Does a tiger have whiskers? Does a tiger have eyebrows? Does a tiger
have eyes?” Jordan gets excited about their project after seeing the tiger drawing.
He asks his mother for help to tape the drawing onto KIBO. They bounce ideas off
of one another to figure out how to ensure the drawing is sturdy and upright so that
it doesn’t fall off the robot. Caroline makes the connection that “it’s like putting a
character on a parade float”. Jordan and Caroline finish taping the tiger body onto
KIBO. As a finishing touch to their decorations, Caroline offers a suggestion to make
a tiger tail out of a rolled-up piece of orange construction paper. Jordan considers the
suggestion but instead decides to cut a zigzag design on a rectangular strip of paper
and tapes it to the back of the KIBO robot. They run out of tape, which prompts
them to move onto the next part of their project: programming KIBO.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

167

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

Caroline asks Jordan for ideas for their program. Jordan at first seems distracted
but then walks over to the blocks and confidently says, “Forward, backward, lights—
these are the eyes blinking—and play sounds.” Jordan points out that there are three
different sounds that can be recorded using the sound recorder module, so he records
the first two tiger growling sounds. Then Caroline asks for the third turn and records
her own growling sound. Jordan independently assembles and scans the full program,
which contains a repeat forever loop, and presses the green triangle on KIBO to play
the program. He remarks to his mother, “Look, I’m scanning these blocks again on
purpose because I want this [forward] to go more than once.” Caroline expresses
her excitement to see their project come alive and gives her son a high-five. When
they showcase their KIBO tiger project to the researcher, Jordan recalls his favorite
part as creating the tiger’s tail. Caroline replies that she enjoyed that too but that
her favorite part was recording the growling sounds. Figure 1 displays Jordan and
Caroline’s collaborative creation, a KIBO tiger.

CT Connections

There are many examples of CT skills displayed by Jordan in this case study. To
illustrate a few of them, I will focus on the following three powerful ideas of CT:
algorithms, representation, and design process. Jordan displays his understanding
of algorithms by successfully assembling and scanning the KIBO program. He
demonstrates to his mother how the blocks of the program represent the tiger’s actions
and even explains how scanning the block multiple times was not an accident but
rather done purposefully to repeat the robot’s actions. When discussing ideas about
how to program their KIBO tiger, Caroline and Jordan choose blocks that would
represent different aspects of a tiger. The light blocks, as Jordan remarks, represent

Figure 1. Jordan (child) and Caroline (parent) co-create a KIBO project: a robotic
tiger that moves around, blinks its eyes, and makes growling sounds
Source: Reprinted from Govind (2019)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

168

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

the tiger’s flashing eyes. The recorded sounds represent the tiger growling. These
associations made between the characteristics of a tiger and the actions that KIBO can
do (i.e., move, turn on its lightbulb, and play sounds) display Jordan’s understanding
of the computational idea of representation. Finally, Jordan and Caroline engage
in an iterative design process to create their KIBO decorations. They imagine what
a tiger’s face looks like, create their drawing, use tape to secure the decoration to
the robot, and improve their design by adding a tiger tail. These design choices are
not independently made by Jordan but rather facilitated by Caroline through asking
questions and offering suggestions.

ScratchJr Case Study: Magic and Mystery

Shaan (child) and Bina (parent) decide they are going to create a play, maybe
something about “dragon avengers” or perhaps a wizard story. They are participating
in a ScratchJr family coding play session. Shaan opens a new ScratchJr project
and begins scrolling through the backgrounds. Because they are making a play,
Shaan selects a stage background and announces that their theme will be “magic
and mystery.” Bina agrees with enthusiasm and points out the wizard as they scroll
through the page of ScratchJr characters. Shaan selects the wizard and navigates
to the paint editor tool to customize the wizard as Gandalf from Lord of the Rings.
Bina sounds out the name Gandalf while Shaan uses his finger to type “Gandolf the
great wizard” as the character’s name. There is extensive trial and error involved in
customizing their Gandalf character, requiring Bina to show Shaan how to use the
“undo” feature on the paint editor tool.

Once their first character is set, Shaan switches back and forth between the
character panel and paint editor to design the other characters for their project.
Laughing at their silly creations, Shaan and Bina create the following Lord of the
Rings characters: Frodo, Treebeard, and Legolas. There seems to be no suitable
character that would be easy to modify into Treebeard or Legolas, so Shaan makes
the Treebeard character from scratch. Bina points out they don’t have a lot of time
left, so instead of creating a completely new character for Legolas, Bina encourages
him to use the fairy and pretend that the wings and heels are “where his bow and
arrow are.”

With only a few minutes left to finish their projects, Bina suggests to Shaan that
perhaps they should move on to programming their characters. Shaan agrees and
decides immediately that he wants to record a story. He selects the green “Record
Sound” block and starts recording, “Once upon a time, there were these... uh hold
on a second… there were these four fighters...” Shaan plays back his recorded sound
and blushes with embarrassment about his pause in the middle. Bina offers the
suggestion of practicing what to say before recording. They notice they only have

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

169

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

about a minute left, so Shaan instead navigates to the blue motion blocks. He swiftly
drags the blocks into the programming area and snaps them together to create a dance.
He asks Bina how he can get the character to dance and play his recorded story at
the same time. Before she could respond, Shaan exclaims that he remembers how
to do that and adds the “Start on Green Flag” block at the beginning of both sets of
code. He then decides to use a “Repeat Forever” block for the movements so that
the characters would keep dancing forever. Bina exclaims and asks, “Forever?! Why
don’t we just make it repeat a couple of times?” Shaan shrugs and proceeds to test
his program, excitedly watching the character jumping around the screen. As Bina
calls over the researcher to look at their project, Shaan copies the dance code to the
other characters so that they are all dancing together on the stage. Figure 2 displays
Shaan and Bina’s collaborative creation, a Lord of the Rings-themed ScratchJr play.

CT Connections

In this case study, Shaan leads most of the activity, but Bina is fully present and
engaged. Their back-and-forth exchanges and giggles throughout the course of
the activity exemplifies the nature of their playful interactions and collaborative
experience. To illustrate the ways in which CT is fostered in this example, I focus on
the following powerful ideas: modularity, debugging, and control structures. Having
chosen a magical and mysterious theme with many different characters, Shaan and
Bina display the concepts of decomposition and modularity in their project. They
break down their project idea (the large, complex novel and book series Lord of
the Rings) into individual characters that they could then customize and program.
At the end of their project, Shaan’s ability to copy the code for one character to the
others demonstrates his understanding that this set of code represents a “dance”
module that could be used in multiple places. Debugging is also present when
Shaan wonders how he can get the recorded sound and movement blocks to play at
the same time. Although he attempts to ask his mother for help, he remembers that
he forgot to include the “Start on Green Flag” block to the beginning of his code.
Finally, Shaan’s decision to use the “Repeat Forever” block rather than the orange
repeat loop block demonstrates his understanding of the difference between infinite
and finite loops, thus indicating his ability to navigate control structures.

These two case studies highlight some of the ways in which caregivers may
promote young children’s engagement in CT. As a practical tip, caregivers seeking
strategies to support children’s CT learning might consider asking the following
kinds of questions while co-engaging in collaborative activities with children:
“Can you show or tell me what you’re doing? What are the steps we need to follow
here? That looks interesting – what do you think will happen if we try this?” Such
questions open the door for children to display their coding knowledge, ask and

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

170

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

answer questions in return, and engage in deeper CT practices. The next section
explores additional practical strategies for families and facilitators.

SETTING FAMILIES AND FACILITATORS UP FOR SUCCESS

In addition to CT concepts and practices that are encompassed in Bers’ (2018)
framework of the seven powerful ideas, Brennan and Resnick (2012) identified that
children participating in creative computing activities can also have CT perspectives.
CT perspectives are defined as “children’s evolving understandings of themselves,
their relationships to others, and the technological world around them” (p. 10). One of
these three perspectives is connecting, which describes how children recognize—and
perhaps grow to appreciate—the power of creating with and for others. The Family
Coding Days project and the related work shared in this chapter aptly point to this
very aspect of CT. When children co-create computational artifacts or co-engage in

Figure 2. Shaan (child) and Bina (parent) co-create a ScratchJr project with
multiple Lord of the Rings characters dancing on a stage and a “Legolas” character
narrating the story
Source: Reprinted from Govind (2019)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

171

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

unplugged CT activities with family members—often the closest people to young
children both physically and social-emotionally—the opportunities to grasp, apply,
and extend their understanding of CT are amplified.

Models that engage young children and families in collaborative activities
are well-aligned with the principles of connected learning. Ito and colleagues
(2013) define connected learning as “broadened access to learning that is socially
embedded, interest-driven, and oriented toward educational, economic, or political
opportunity” (p. 4). Collaborative computing activities, such as the ones described
in the Family Coding Days project, are interest-powered and production-centered,
inviting parents to co-design robotic creations or digital stories that are personally
meaningful and interesting to their children and to themselves. These activities are
also peer-supported and have a shared purpose, welcoming various opportunities
for collaboration, feedback, and community building. Finally, these activities are
academically oriented and openly networked, offering children the opportunity to
learn new skills and connect their learning across different settings.

As recommendations for future research and practice, I offer the following
practical tips and considerations for families and facilitators seeking to promote
young children’s coding and CT engagement:

• Tools for consuming versus creating: The JME literature highlights the
many ways that children of today’s increasingly global and technology-rich
society are interacting with the technological tools around them. However,
not all technology is the same. Some tools are made for consuming (e.g.,
televisions); others are made for creating (e.g., conductive play dough).
Thus, the ways in which families can foster children’s CT through those
technologies should not be the same either. In any space that is considered
to be “family-friendly”, caregivers might consider the following questions:
What might my child do or say while they are navigating this space? What
might I be doing or saying while navigating this space with my child? How
does the technology and the technology-mediated activity enable us to co-
engage in CT? Facilitators and designers of family-friendly environments
might examine the variety of technological tools in their spaces and think
carefully about the kinds of interactions those tools might provide.

• Leveraging community resources: In addition to the kinds of tools, it is
crucial to think about how the community will utilize the space and the
resources needed to make the opportunity accessible and engaging for all
attendees. Facilitators might consider the following questions: Are there
enough robotics kits or materials for all families? How are we supporting
bilingual families or families with children with special rights with this tool
and activity? What resources may be needed to enhance accessibility and

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

172

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

inclusion? Facilitators should be encouraged to leverage the existing resources
within communities when planning workshops, activities, and other events
intended to support families’ coding and CT engagement.

• Facilitating bidirectional home-school connections: One of the primary
goals of this chapter is provide insight on how families can drive their own
learning process about understanding what CT is and how it can be fostered
through unplugged and technology-mediated activities. As computer science
education becomes an increasingly important national and international
priority in schools and other formal learning settings, continuing children’s
coding and CT learning in informal settings through family engagement
initiatives will be increasingly salient. Stakeholders who play a role in
facilitating children’s informal and formal learning experiences might
consider the following questions: What activities might parents already be
doing in homes and informal learning spaces that foster children’s CT, and
how can we empower parents to recognize and extend those activities? What
technological tools might be introduced in school settings and how is that
learning being shared with families? Facilitating bidirectional home-school
connections is essential to developing young computational thinkers in homes
and other family-friendly spaces.

CONCLUSION

Computational thinking is a set of thought processes that can be learned and
fostered through young children’s everyday play and learning activities, many of
which occur in informal spaces in the presence of family members. These activities
do not necessarily require the act of coding or manipulating digital technologies
but can be supported when partnered with them. This chapter bridges together the
theory, research, and practice around families supporting children’s coding and
computational thinking through unplugged and technology-supported activities in
the home and other family-friendly informal learning spaces such as community
centers, museums, and libraries.

ACKNOWLEDGMENT

This research was supported by the National Science Foundation [grant number
DRL-1118664] and the Scratch Foundation.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

173

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

REFERENCES

Barron, B., Martin, C. K., Takeuchi, L., & Fithian, R. (2009). Parents as Learning
Partners in the Development of Technological Fluency. International Journal of
Learning and Media, 1(2), 55–77. doi:10.1162/ijlm.2009.0021

Beals, L., & Bers, M. (2006). Robotic Technologies: When Parents Put Their Learning
Ahead of their Child’s. Journal of Interactive Learning Research, 17(4), 341–366.

Bers, M. (2007). Project Inter-Actions: A multigenerational robotic learning
environment. Journal of Science and Technology Education, 16(6), 537–552.
doi:10.100710956-007-9074-2

Bers, M. (2018). Coding as a playground: Programming and computational thinking
in the early childhood classroom. Routledge Press.

Bers, M., New, B., & Boudreau, L. (2004). Teaching and learning when no one
is expert: Children and parents explore technology. Journal of Early Childhood
Research and Practice, 6(2).

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study
the development of computational thinking in interactive media design [Paper
presentation]. The meeting of the American Educational Research Association,
Vancouver, BC, Canada.

Callanan, M., Cervantes, C., & Loomis, M. (2011). Informal learning. Wiley
Interdisciplinary Reviews: Cognitive Science, 2(6), 646–655. doi:10.1002/wcs.143
PMID:26302414

Campana, K., Haines, C., Kociubuk, J., & Langsam, P. (2020). Making the Connection:
Computational thinking and early learning for young children and their families.
Public Libraries, 59(4).

Clark, L. S. (2011). Parental Mediation Theory for the Digital Age. Communication
Theory, 21(4), 323–343. doi:10.1111/j.1468-2885.2011.01391.x

Connell, S. L., Lauricella, A. R., & Wartella, E. (2015). Parental Co-Use of Media
Technology with their Young Children in the USA. Journal of Children and Media,
9(1), 5–21. doi:10.1080/17482798.2015.997440

Ehsan, H., Ohland, C., Dandridge, T., & Cardella, M. (2018). Computing for the
Critters: Exploring Computational Thinking of Children in an Informal Learning
Setting. Proceedings of IEEE Frontiers in Education Conference. 10.1109/
FIE.2018.8659268

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

174

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

Govind, M. (2019). Families That Code Together Learn Together: Exploring
family-oriented programming in early childhood with ScratchJr and KIBO Robotics
[Unpublished master’s thesis]. Tufts University, Medford, MA, United States.

Govind, M., & Bers, M. U. (2020). Family Coding Days: Engaging Children and
Parents in Creative Coding and Robotics. Proceedings of Connected Learning Summit.

Govind, M., Relkin, E., & Bers, M. U. (2020). Engaging Children and Parents to
Code Together Using the ScratchJr App. Visitor Studies, 23(1), 46–65. doi:10.108
0/10645578.2020.1732184

Ito, M., Gutiérrez, K., Livingstone, S., Penuel, B., Rhodes, J., Salen, K., Schor, J.,
Sefton-Green, J., & Watkins, S. C. (2013). Connected Learning: An Agenda for
Research and Design. Digital Media and Learning Research Hub.

K–12 Computer Science Framework. (2016). K-12 CS Framework. http://www.
k12cs.org

Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation.
Cambridge University Press. doi:10.1017/CBO9780511815355

National Association for the Education of Young Children (NAEYC) & Fred Rogers
Center for Early Learning and Children’s Media. (2012). Technology and Interactive
Media as Tools in Early Childhood Programs Serving Children from Birth through
Age 8. https://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf

Neumann, M. (2017). Parent scaffolding of young children’s use of touch screen
tablets. Early Child Development and Care, 188(12), 1654–1664. doi:10.1080/03
004430.2016.1278215

Pearce, J., & Borba, S. (2017). What Is Family Code Night? https://www.naesp.org/
blog/what-familycode-night

Pierson, E., Momoh, L., & Hupert, N. (2015). Summative Evaluation Report for
the Be A Scientist! Project’s Family Science Program. https://iridescentlearning.org/
wp-content/uploads/2014/01/BAS-2015-Eval-FINAL-3.pdf

Relkin, E., Govind, M., Tsiang, J., & Bers, M. (2020). How Parents Support
Children’s Informal Learning Experiences with Robots. Journal of Research in
STEM Education, 6(1), 39–51. doi:10.51355/jstem.2020.87

Rideout, V. J. (2014). Learning at home: Families’ educational media use in
America. A report of the Families and Media Project. The Joan Ganz Cooney Center
at Sesame Workshop.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://www.k12cs.org
http://www.k12cs.org
https://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf
https://www.naesp.org/blog/what-familycode-night
https://www.naesp.org/blog/what-familycode-night
https://iridescentlearning.org/wp-content/uploads/2014/01/BAS-2015-Eval-FINAL-3.pdf
https://iridescentlearning.org/wp-content/uploads/2014/01/BAS-2015-Eval-FINAL-3.pdf

175

Fostering Computational Thinking in Homes and Other Informal Learning Spaces

Rogoff, B. (1999). Cognition as a collaborative process. In Handbook of child
psychology. New York: Wiley.

Roque, R. (2016). Family Creative Learning: Designing Structures to Engage Kids
and Parents as Computational Creators. In K. Peppler, Y. Kafai, & E. Halverson
(Eds.), Makeology in K-12, Higher, and Informal Education. Routledge.

Roque, R., Lin, K., & Liuzzi, R. (2014). Engaging Parents as Creative Learning
Partners in Computing. Exploring the Material Conditions of Learning, 2, 687–688.

Swartz, M. I., & Crowley, K. (2004). Parent Beliefs about Teaching and Learning
in a Children’s Museum. Visitor Studies, 7(2), 5–16.

Takeuchi, L., & Stevens, R. (2011). The New Coviewing: Designing for Learning
through Joint Media Engagement. The Joan Ganz Cooney Center at Sesame Workshop.

The Toy Association. (2019). STEM/STEAM Formula for Success. https://www.
toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/
stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048

Vygotsky, L. S. (1978). Mind in Society. Harvard University Press.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33–35. doi:10.1145/1118178.1118215

Yelland, N., & Masters, J. (2007). Rethinking scaffolding in the information age.
Computers & Education, 48(3), 362–382. doi:10.1016/j.compedu.2005.01.010

KEY TERMS AND DEFINITIONS

Caregiver: A person, often a parent or adult family member, who is responsible
for the overall supervision, care, and well-being of a child.

Informal Learning: Any form of education that takes place outside of a structured
setting or is embedded within daily life experiences.

Interface: A device that enables a person to communicate with a computer.
KIBO: A screen-free programmable robotics kit for young children with blocks,

sensors, modules, and art platforms.
Scaffolding: A range of instructional techniques used to support a person in the

learning process.
ScratchJr: A free block-based programming application for young children.
Unplugged: Describes activities such as games and puzzles that aid the teaching

and learning of computer science but without the use of technology.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048
https://www.toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048
https://www.toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048

176

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-7998-7308-2.ch009

ABSTRACT

Makerspaces are technology-rich learning environments that can uniquely support
children’s development. In education communities, makerspaces have become sites
to take up explorations of personally-motived problem solving, and have been tied
to 21st century learning outcomes of perseverance, creativity, persistence, and
computational thinking. Elsewhere in this book, Bers described computational
thinking as the set of skills and cognitive processes required to give instructions
for a specific task in such a way that a computer could carry it out. But Bers also
argued that the purpose of computational thinking is to cultivate a fluency with
technological tools as a medium of expression, not an end in itself. Computational
making is part of this expression. This chapter explores the ways in which tools,
facilitation, and the physical environment can support children’s engagement with
powerful ideas of computational thinking through making.

Makerspaces as Learning
Environments to Support
Computational Thinking

Amanda L. Strawhacker
Tufts University, USA

Miki Z. Vizner
Independent Researcher, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 177

Makerspaces as Learning Environments to Support Computational Thinking

INTRODUCTION

Makerspaces have become sites to take up exploration of personally-motived problem
solving, and have been tied to 21st century learning outcomes of perseverance,
creativity, persistence, and--particularly because of the emphasis on creation with
digital tools--computational thinking (e.g. Campbell, Heller, & Goodman, 2018;
González-González & Arias, 2019; Iwata, Pitkänen, Laru, & Mäkitalo, 2020).
Elsewhere in this book, Bers described computational thinking as the set of skills
and cognitive processes required to give instructions for a specific task in such a
way that a computer could carry it out. But Bers also argued that the purpose of
computational thinking is to cultivate a fluency with technological tools as a medium
of expression, not an end in itself. Makerspaces provide informal learning spaces
in which this can happen through computational making.

While the concept of computational making is nascent, we use the term in this
chapter to refer to any creative making or design endeavor in which makers (anyone
who creates or tinkers) leverage computational thinking skills (e.g. as outlined by Bers,
2020), to achieve their creative goals. We do not propose that computational making
is a learning domain or a standard in itself. In much the same way that picking up
and putting down weights isn’t the reason one goes to a gym as much as maintaining
overall health and wellness, and mastering grammar and syntax isn’t the reason to
learn a new language as much as self-expression and communication, we argue that
making is not necessarily an educational goal itself. Rather, we pose in this chapter
that an educational goal of making is to support the maker in developing a suite of
psychosocial behaviors and character traits, including (but not limited to): confidence
to tackle unstructured problems, competence with a range of physical and digital
tools and creative practices, critical thinking skills to evaluate problems and imagine
logical solutions, and creativity and agency to determine which problems to address
that are personally or communally meaningful. By extension, an educational goal
of computational making is to cultivate those same skills and behaviors, but in the
context of projects that incorporate digital and technological tools, computational
thinking skills, and disciplinary practices from fields such as computer science
and engineering. Maker educators are familiar with the phrase, “children should be
creators, and not just consumers of their own digital experiences” (Smith, 1982). By
providing tools, community, and an environment to enable computational making,
a makerspace supports children in creating, rather than consuming.

In the following chapter, we explore research on the educational affordances of
makerspaces, with a focus on opportunities for computational thinking and making in
the early years. Following this, we describe practice-based examples of computational
making inspired by real children and events from our experiences designing and
evaluating early childhood makerspaces. We use these examples to illustrate how

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

178

Makerspaces as Learning Environments to Support Computational Thinking

computational making supports learning in areas such as computational thinking
and creative agency. Finally, we share evidence-based principles for designing and
facilitating a makerspace to support computational making, and conclude with a
reflection about the impact of computational making on children’s ability to create
their own artifacts and ideas.

BACKGROUND

What is a Makerspace?

Soldering irons, 3D Printers, and robots are some examples of tools that people
commonly feel are too complicated for most education settings, especially early
childhood ones. In the early 2000s, the maker movement, branded by Dale Dougherty’s
Make Magazine, began to rise in popularity with the promise to democratize tools,
expertise, and learning models of production (Dougherty, 2012). His conceptualization
of makerspaces was widely interpreted to be in the same spirit of public libraries and
their promise to democratize knowledge and literacy (Lakind, Willett, & Halverson,
2019). As Doughterty defines them, makerspaces are any places where people get
together to make. The content of what is made can vary. It is the mindset of the
community, the affordances of the available tools, and the intended purpose of the
space that defines the unique identity of a makerspace. While the environment,
community expertise, facilitation, and tools may be very different across spaces,
all makerspaces--from very high-tech industry prototyping sites, to school-based
maker labs, to at-home garages--are places where people can go to make things,
and develop their making skills.

Makerspaces and the Environment-as-Teacher

Early childhood educators trained in the Reggio-Emilia approach, a pedagogical
philosophy rooted in supporting children to direct their own learning, often say that
“the environment acts as a third teacher” (Strong-Wilson, 2007). In other words,
the environments that we inhabit inform the ways we think about and engage with
the world. Anita Olds, a leading expert in designing North American childcare
centers, wrote that “our attitudes and beliefs are the legacy we leave our children.
Our thoughts, as reflected in our designs, in turn shape children’s beliefs about
themselves and life” (Olds, 2001).

As designers of computationally-enriched spaces and tools for young children,
we have researched makerspaces in order to learn how the affordances of the
environment can support children’s learning, specifically in areas of computational

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

179

Makerspaces as Learning Environments to Support Computational Thinking

thinking and making. Affordances are properties of objects or environments that
guide users to the actions they can take, simply through their design and interface
(Jones, 2003). For example, a door handle could be designed to invite a user to
push, twist, or pull, depending on the affordances (e.g., shape, size, location) of
the handle. In 2018, we conducted research on the differential impact of the “three
teachers” identified in the Reggio-Emilia pedagogy (Strawhacker & Bers, 2018b).
Specifically, we explored children’s interactions with peers, facilitators, and the
makerspace environment and materials, and looked for differences in key areas
of Positive Technological Development (Bers, 2012), six behaviors that children
can exhibit when using technology that are shown to correlate with psychosocial
development in children. We found that each of these three “teachers” supported
children’s positive technology engagement in related but unique ways. Children and
facilitators supported more social behaviors such as “making pro-social choices of
conduct” and “building community connections,” and the makerspace itself—through
material affordances of the furnishings, materials, and tools, as well as on-display
projects and provocations—supported children’s creativity and content creation
(Strawhacker & Bers, 2018b).

If children’s spaces, tools, and experiences have such a strong impact on learning,
we have an opportunity to set intentions about what we want these environments to
communicate to children. Since beginning our work in 2015, we have maintained
a goal of developing makerspaces to engage children in playful and self-directed
computational thinking and making, in order to empower them as future citizens
and leaders.

What Can Makerspaces Teach Us?

In his theory of loose parts for children’s play, Nicholson wrote that “our education
and culture condition us to believe that creativity is for the gifted few… and this
is a culturally induced and perpetuated lie.” It is this lie that the maker movement
responds to, by promoting a vision of community that is participatory, egalitarian,
and innovative (Hlubinka et al., 2013). Making can be successful for young children,
as well as older youth in middle school, high school, and college (Blikstein, 2013;
Halverson & Sheridan, 2014; Marsh et al., 2019). We chose to focus on early childhood
because we know that children form stereotypes about themselves at a very young
age (Martin & Ruble, 2004, Sullivan, 2016), and so we must ask what educational
tools can we use to combat these harmful biases in the early years? Papert (1980)
asserted that knowledge is constructed by the individual, through interactions with
the real world and with digital worlds. In other words, learning happens by making.
He also posed that the making should be personally meaningful, as evidenced by
children’s willingness to persevere on a project for its own sake in spite of challenges,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

180

Makerspaces as Learning Environments to Support Computational Thinking

a concept he termed “hard fun” (Papert, 2002). We align with his conception of
learning, and maintain that learning happens through playful making.

Play in the early childhood years is dominated by make-believe fantasy play.
For young children, this is serious work; through play, children develop new tools
for thinking, being, and symbolizing (Scarlett, 2005). The maker movement boasts
“If you can imagine it, you can make it” (Hlubinka et al., 2013). We know that,
as with play, children’s motivations to make, experiment, and explore come from
need to understand the world around them, and one of their most trusted tools in the
pursuit of this exploration is their imagination. A space explicitly designed to foster
making and learning through playful, imaginative making seems developmentally
appropriate, if not necessary.

In our own research, we intentionally designed spaces to interrogate the societal
lie of “gifted creativity” by designing rooms with easy access to tools and materials,
open-ended play provocations, and facilitators trained to let children take the
creative lead on their own playful projects. The major distinction that separates
makerspaces from other learning environments is that they offer learners a way to
engage with a wider range traditional and novel tools, technologies, practices, and
forms of expression than are typically acceptable in formal learning environments, for
example, because of mess, limited space, or impractical arrangements (e.g. too few
electrical outlets). Today, there are many technologies that children may encounter
in their daily lives, including tools from their parent’s generation (like phones and
pagers), their grandparent’s generation (like LEGO bricks and polaroid cameras)
and from many generations before that (like pencils and paper). A makerspace offers
children a place where they can form their own community, and engage with the
tools and skills that will become part of their own generation. Today, that includes
programming, robotics, and engineering (Bers, 2008).

Computational Making in Early Childhood

Given the wide range of applications and audiences for makerspaces, we set out to
investigate how to design makerspaces that specifically engage young children in
computational thinking and making. In order to do this, we revisited classic theories
of how children learn by doing and making. Developmentalists have long known
that between ages 5-7 years, young children undergo dramatic transitions in almost
every domain, including cognitive, social, emotional, and physical changes (Sameroff
& Haith, 1996). As their capacity for new understanding grows, patterns emerge in
how children learn, and hands-on play, physical exploration, personal motivation,
and social connection all play a heightened role in children’s knowledge-gathering
about their world. Famed developmental theorist, Piaget, is credited as the first to
propose the idea of constructivism, the theory that children construct their own

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

181

Makerspaces as Learning Environments to Support Computational Thinking

knowledge as they attempt to understand their own interactions with the world,
such as building with block manipulatives to form early conceptions of gravity and
spatial reasoning (Wadsworth 1996). Because of the importance the environment
on children’s learning, constructivist pedagogies argue for cultivating a learning
environment full of provocations and opportunities to test, build, and explore with
a variety of available materials. To support children’s free exploration and idea
construction, teachers can support learning by acting as facilitators and co-explorers
(rather than gatekeepers) of knowledge (e.g. Bada & Olusegun, 2015; Hein, 1991).

Pertinent to makerspaces, new approaches have emerged to describe learning
in technologically-enhanced and digital environments. Papert (1980) proposed
constructionism, an adaptation of constructivism concerned with the unique meta-
cognitive learning opportunities afforded by computer programming. He is perhaps
best known for his idea that “you can’t think about thinking without thinking about
something”, emphasizing the importance of models, representations, and tools to
aid in knowledge construction (Papert, 2005). He argued that when children explore
computer coding, they create digital “microworlds,” or virtual spaces where they have
programmed all the rules and behaviors in that world. When creating (and testing,
and breaking) these programmatic rules, children can learn about how the “real”
world works, and also about their own computational thinking processes (Papert,
1980). Further, he argued that by constructing artifacts to represent their thinking
in the digital world, children can share ideas with peers, and learn from communal
experiences and explorations.

How can a Makerspace Facilitate Computational Making?

What specific elements of the makerspace afforded opportunities to explore
computational thinking and making? In the following section, we describe elements
of space, materials, and facilitation that could be used in any space to engage young
children in developmentally-appropriate computational activities.

Research on makerspaces for early childhood has revealed that the developmental
needs of child makers have important consequences for the purpose and expectations
of the making that occurs there. For example, kindergarten educators who use
makerspaces with their students report that they prioritize learning goals of sensory
and motor exploration, confidence-building, and agency in choosing and pursing
projects (Strawhacker & Bers, 2018b). These goals differ from the purpose of
spaces where professional makers develop prototypes for commercial use, or even
educational spaces for older student makers to cultivate STEM skills and practices
(Gravel, Bers, Rogers, & Danahy, 2018). In a study of the unique affordances of
facilitators and the environment in Early Childhood Makerspace at Tufts University,
the physical environment (including tools, materials, furniture, and layout of space)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

182

Makerspaces as Learning Environments to Support Computational Thinking

accounted mainly for children’s engagement in content creation and creativity
(Strawhacker & Bers, 2018b).

If the goal of an early childhood makerspace is to afford opportunities for
children to explore making, it is important to understand how young children create
and explore artifacts in the world. Researchers have described two distinct but
equally valid ways of making (i.e., engaging in the design process), both of which
are demonstrated in this vignette (Turkle & Papert, 1990; Papert & Harel, 1991;
Worsley & Blikstein, 2013; Resnick, 2006; Vizner & Strawhacker, 2016). One
popular approach is bricolage-style making (sometimes called “tinkering”) in which
the maker “mucks about” and eventually comes to a design conclusion by artfully
or randomly bringing together objects and ideas (Beltagui, Sesis, & Stylos, 2021;
Hatton, 1989). There is also a more top-down structured approach to design, where
the creator follows a defined set of steps to find a solution to their problem (e.g.,
Papert & Harel, 1991; Vizner & Strawhacker, 2016). In order to support children’s
engagement in computational thinking, makerspaces can provide provocations for
engaging in both of these ways of making.

Besides the materials and tools inside the room, children’s space designers know
that the room itself – the decor, furniture, arrangement of space – is important
for helping children feel safe and secure enough to explore creative play. To help
children focus on making, the space should feel as modular and flexible as the loose
parts within it. Figure 1 highlights several design elements to guide the design of
flexible, creative makerspaces. These guidelines were informed by interviews and
observational research with kindergarten educators in diverse early childhood settings
(see Figure 1; Strawhacker & Bers, 2018a; 2018b). For example, makerspaces
should offer tools and materials that children can access and use on their own with
minimal guidance. To support collaborative making, larger furniture or equipment
should be too heavy for one child to lift, but safely movable by pairs or groups
of children. In general, overly bright and colorful furnishings can be fatiguing in
spaces where children prefer to focus (e.g. work tables), so opt for neutral, muted
tones or natural materials, and provide clean, open work spaces (Olds, 2001).
Instead, save that attention-grabbing decor for areas to display children’s made
works, which should also be labelled as often as possible with photos, captions,
and other indicators to humanize and contextualize the children who represent the
makerspace community. Finally, the factor mentioned by almost every educator in
our studies was the importance of children’s freedom and agency within the space,
particularly the freedom to explore methods and materials that would be difficult
to explore in a classroom, such as large-scale, messy, or technologically-mediated
activities (2018a; 2018b).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

183

Makerspaces as Learning Environments to Support Computational Thinking

Computational Making in Practice: Three Vignettes

Bers breaks down computational thinking (the skills, practices, and processes that
comprise computational making) into the following powerful ideas. In the coming
vignettes, we describe how children explored one or more of these concepts and
processes through their making, as well as how the space afforded that exploration
(see Table 1).

Two of the following vignette examples came from the Early Childhood Maker
Space (ECMS) developed by the authors at Tufts University. The authors developed
this space in 2017, with support from the broader Tufts community as a working
laboratory to investigate—amongst other things—computational thinking and
making. The ECMS became a space where engineers, educators, researchers, and
children could come together to co-create the space and tools together. The third
vignette came from the Kindergarten Makerspace (also developed by the authors)
at the International School of Billund, a progressive international children’s school
in Denmark (Gravel, Bers, Rogers, & Danahy, 2018). Both spaces were supported
by the LEGO Foundation, the Eliot-Pearson Curriculum Lab, Tufts University’s
DevTech Research Group, and Tufts’ Center for Engineering Education and Outreach.

Figure 1. Guidelines for designing early childhood makerspaces (Strawhacker &
Bers, 2014)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

184

Makerspaces as Learning Environments to Support Computational Thinking

All vignettes were inspired by or adapted from real events that took place in these
makerspaces. All names presented are pseudonyms. All three vignettes illustrate how
young children can engage in computational making, and emphasize how elements
of space like tools, furnishing, and facilitation came together to support children’s
freedom and agency to pursue computational making.

Vignette 1: Exploring Representation with big-KIBO

In this vignette, we see a child exploring the computational concept of representation,
both in his imaginative play and representation of a toy robot as a non-robotic vehicle
(at times, a truck and a racecar), and his exploration of how to represent his plan
for the robot’s actions using its block coding language. The robot described in this

Table 1. Bers’ Seven Powerful Ideas of Computational Thinking

Powerful Idea Description

CONCEPTS

Algorithms
Series of ordered steps in a sequence to solve a problem or achieve some goal.
Sequencing is an important skill in early childhood. It is at the core of being able to
tell a story, tie one’s shoes, and make a peanut butter and jelly sandwich.

Modularity

The decomposing of a complex task or procedure into more manageable sub-parts,
and an understanding that sub-parts can be put together to make a more complex
entity. The ability to use sub-parts from a solution to one problem with other sub-
parts to solve a new problem.

Control structures

The initiation and order of execution of a set of commands. This includes repeats,
loops, conditionals, events and nested structures. Making decisions based on a set
of conditions. For example, when a button is pressed, do some action or if it is dark
out, turn on a light. Identifying patterns and using structures such as repeats and
loops to execute them efficiently.

Representation

Symbolism develops in early childhood. The ability to represent concepts as
symbols is important for computational thinking. The formal languages of
computer science are representations of the programmer’s thoughts organized in
such a way that a machine can understand them

Hardware/software

Hardware and software are parts of a system. Software is used to control hardware.
Hardware is built to interpret software and do some action. Depending on the
hardware, this may be interpreting large data sets (computer) or navigating a maze
(robot).

PROCESSES

Design Process
A cycle with no explicit beginning or end where a child: asks questions, imagines,
plans, creates, tests and improves, and shares their work. Engaging with and
iterating through these actions is design process

Debugging
A systematic approach to isolating and addressing problems within an existing
piece of work. For example, one might step through a program to find an error or
check all connections on a piece of hardware.

Source: (Bers, 2012; Vizner, 2017)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

185

Makerspaces as Learning Environments to Support Computational Thinking

vignette, called big-KIBO, is an experimental prototype of a scale version of the
commercially-available KIBO robot. KIBO is an educational robot kit designed at
DevTech and now produced and distributed through KinderLab Robotics, Inc. (for
more information about the KIBO robot you can visit www.kinderlabrobotics.com).
Intended to engage young children in developmentally-appropriate experiences with
coding, computer science, and engineering, KIBO is programed with a tangible
programming language consisting of wooden blocks with symbols for pre-readers
(e.g. arrows), capitalized words for early-readers (e.g. FORWARD), and a barcode
for the robot. In order to program KIBO, the child holds the robot over their chain of
blocks—the program—and scans each block one at a time. Throughout this chapter,
we will use written words (e.g. FORWARD) to refer to block-based instructions in
the KIBO language.

One new and exciting tool that came out of the ECMS effort was a life-size
rideable KIBO robot appropriately named big-KIBO (see Figure 2). Big-KIBO was
built by the author to support his thesis work (Vizner, 2017) on investigating the
role of scale in early childhood robotics. Big-KIBO is a replica of KIBO that is 109
times larger. It has a steel frame with a wooden top and acrylic see-through panels
that allow children to see its “guts”, the electrical components that make it work.
It is powered by recycled wheelchair motors, and is strong enough to carry several
full grown adults. Big-KIBO uses the same programming blocks as KIBO, due to its
size children lift each block up to big-KIBO instead of holding it over their program.

As part of the author’s thesis work (Vizner, 2017), Vizner invited two groups
of three kindergartners with their classroom teacher to play with big-KIBO and/
or KIBO in the Early Childhood makerspace. As we see in the following vignette,
children were invited to free-play with big-KIBO while Vizner facilitated these
maker activities as a participant researcher.

Noah and two of his Kindergarten classmates are taking their second visit to the Early
Childhood Maker Space today, and he is excited to continue building a tow-truck.
The first time he visited the space, he tried to make his truck with a regular-sized
KIBO, and was disappointed that it couldn’t carry heavy objects, and that he couldn’t
ride the truck himself. Today, Noah begins to build with big-KIBO and states that
he wants to design a feature to “help big-KIBO tow things.” He uses duct tape, pipe
cleaners and a foam block to construct a rudimentary towing hook, which he calls
a “spoiler”, and tests it by towing a stuffed animal (see Figure 3). He works on his
“spoiler”, and the design evolves to take on additional functions. “I’m going to
make KIBO into a tow-race-car, a race car that tows things,” he explains. He also
decides to add antennas to “help big-KIBO climb.” In the transcript excerpt below,
Noah’s regular classroom teacher asks him about his construction:

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

186

Makerspaces as Learning Environments to Support Computational Thinking

Teacher: Do you want to tell me what that thing is?

Noah: It’s a spoiler that helps tow things [a spoiler is a stabilizing component
typically found on the rear of a racecar]

Teacher: Oh, it tows things

Matt [another child]: Spoilers usually make [it so] cars don’t spin

Teacher: Why does it need a spoiler

Noah: So that KIBO can go fast

Figure 2. Big-KIBO and coding blocks in the ECMS at Tufts University
Source: Reprinted from Vizner (2017)

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

187

Makerspaces as Learning Environments to Support Computational Thinking

Once he is satisfied with his creation Noah begins build a program for big-KIBO:
BEGIN, SHAKE, SHAKE, FORWARD, FORWARD, END. In this transcript segment,
Vizner (researcher) asks Noah about his program:

Researcher: What does it do?

Noah: This one is rock climbing [pointing at the first SHAKE]. This one is rock
climbing [pointing at the second SHAKE]. This one is racing [pointing at the first
FORWARD]. This one is racing [pointing at the second FORWARD].

Noah: But I need more racing [He gets up and looks for more FORWARD blocks]

Figure 3. Noah constructs his towing hook on big-KIBO, and tests it to see if it will
tow his stuffed animal

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

188

Makerspaces as Learning Environments to Support Computational Thinking

In this example, Noah knows that each block represents a command to the robot
and an action that it will do. Each block is a bit (i.e., a small unit of information)
of information. Noah has also encoded an additional personally meaning bit of
information to each block, i.e., climbing and racing. This makes each block a nested
set of representations which big-KIBO is expected to carry out. By turning big-KIBO
into a race car with a “spoiler”, and using programming blocks to symbolize his
robot racing, climbing, and towing, Noah is engaging the computational thinking
concept of representation. The original KIBO robot kit supported his engagement
with computational thinking, but Noah’s engagement in computational making was
much richer with big-KIBO. We argue that this can be attributed to the affordances
of the makerspace, e.g., through experimental materials like the big-KIBO prototype,
which was impractically sized for home or classroom use, as well as the freedom of
the permitted activities in the makerspace that allowed him to pursue his pretend
play goal of creating a ride-able racecar/tow-truck.

The Early Childhood Maker Space supported a “make anything” mindset through
the tools housed there (crafts, novel robots, etc.), which allowed Noah to engage in a
rich play and making experience with a computational thinking concept, motivated
by his own interests. In the following example, we see a child whose making engage
him in the computational thinking process of debugging.

Vignette 2: Engaging in Debugging with a CNC Mill

Another experience that took place in the ECMS was a movie-making camp for 6-8
year olds. The child participants produced stop-motion animation films from start
to finish, including script-writing, prop and set creation, filming, and editing. The
following vignette highlights children engaging in a lengthy and iterative debugging
process in order to prepare the props for their films using a CNC mill. Debugging is
a critical component of computational thinking, and reflects that the child maker (1)
has a clear design goal in mind, and (2) engages in a process of iteratively refining
their design to better achieve their goal. In this vignette, the child is working for
the first time with an unfamiliar machine, a CNC (computer numerical control)
milling machine (colloquially referred to as a CNC), and needs to explore and reuse
the device many times before creating the exact construction he is working on. A
CNC is a digital fabrication tool that uses blades on a rotating cylinder controlled
by a computer to make precise cuts that form a 3D object (described in more detail
below). The work flow for using this otherwise industrial tool was adapted for young
children and supervised by an adult engineer and fellow researcher, allowing them
to engage in the same process of trial and iteration that adult engineers using the
CNC use to refine their designs.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

189

Makerspaces as Learning Environments to Support Computational Thinking

Bobby, 7 years old, has been interested in medieval history ever since his parents
took him to the renaissance festival last spring. When Bobby’s mom told him he
would be going to film making camp this summer, he immediately knew he wanted
to make a movie about knights. He decided that the star of his film would be a
knight who rides a horse and carries a sword. The first step for making his film was
to create the props and characters. His camp counselor explained that they would
be making all of the props themselves out of foam, using a big machine called a
CNC. The counselor explained that a CNC is like a cutting machine that can make
3D objects, and uses pictures to make a program of where to cut. If Bobby drew a
picture of each of the props he needed for his movie on a piece of paper, the computer
could translate it into code that would tell the CNC how to cut out the same shape.
This CNC uses a fast spinning blade which is precisely controlled by the computer
program to move up/down, left/right, and front/back in order to cut the props out of
foam. As it works the CNC creates waste material called swarf—Bobby chuckled at
the sound of this word—which is cleaned by a vacuum as it works—Bobby also liked
the idea that the machine cleans up as it works, so there is no clean-up time! Finally,
his counselor introduced a visiting engineer/researcher, who would be helping the
kids make CNC-created props for their movies. To make his props, Bobby drew a
picture of a knight, a picture of a horse, and a picture of a sword (see Figure 4).
Each picture filled up an entire piece of paper.

The engineer scanned Bobby’s drawings and used a computer software to show how
the CNC would cut his shapes out of the pink foam. Bobby put on safety goggles
so he could watch as the machine cut the foam, and his sword slowly began to take
shape. When the machine finished, Bobby excitedly removed his props from the
CNC—but there was a big problem. The sword and horse and knight were all the
same size! Bobby wanted the knight to be bigger than the sword, and smaller than
the horse. At first, he was upset. It took him a long time to draw each of the pictures
and he wasn’t sure if he could do it again. Just as he was getting so frustrated that
he wanted to quit, the engineer explained to Bobby that he didn’t have to make new
pictures, but instead they could program the computer to change the scale and size
of the drawings he already had. In other words, Bobby could try to debug his design
without losing all his earlier hard work. This is where Bobby got to experience the
“rapid” part of rapid prototyping. Bobby worked with the engineer to change the
size of his props, and even played around with scale factors, which adjusted the size
of the props relative to each other, all on the computer. This debugging process took
several tries. On his first re-scaling attempt, the horse came out way too small and
knight was too big, which made Bobby laugh at “the giant and his tiny pony” (see
Figure 5). On his second try, the sword was too small and the horse was huge. Bobby
and the engineer worked on the computer and tried rescaling again and again until
he was finally happy with the way all three props looked together.

.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

190

Makerspaces as Learning Environments to Support Computational Thinking

Figure 4. Bobby’s sword drawing, ready to be scanned into the computer

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

191

Makerspaces as Learning Environments to Support Computational Thinking

It was finally time to film. Bobby sets up the knight and sword next to the horse and
got ready to turn on the camera. He pressed “record”, looked through the camera
lens, and discovered that his parts were too big to fit in the frame! “No problem,”
Bobby said confidently, and walked back to the computer, ready to work on even
more debugging. While the engineer watched, Bobby typed a few numbers into the
computer to apply a 20% scaling factor to all of his props. He knew that by scaling
their size uniformly instead of individually, the props would all keep the same relative
size, and look the way he wanted when they were propped next to each other. He
loaded a final piece of foam into the CNC and pressed “run.” At the end of the
cutting cycle, he lifted the lid to the CNC, and triumphantly pulled out his props.
He now had the perfect cast for his film!

Bobby’s iterative process highlights the computational thinking practice of the
debugging process. Within the context of making, Bobby was not focused on the
many trials it took him to perfect his design, but instead was motivated to keep
working so that he could realize his ultimate vision of a movie about a medieval

Figure 5. On his first resizing attempt, Bobby’s knight was too big relative to his horse

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

192

Makerspaces as Learning Environments to Support Computational Thinking

knight. While working towards the goal of having appropriately scaled parts he
created, critiqued, and refined several prototypes of his props, engaging in multiple
tests to improve his design. In Bobby’s debugging process, we saw him engage in
both bricolage and top-down design processes. When he arbitrarily sized each part,
he took the bricolage approach. When he scaled them uniformly, he took a step-
by-step approach. The makerspace, and the facilitators, machines, and equipment
within it, afforded Bobby the opportunity to engage with novel tools and processes
that he would be unlikely to encounter in any other setting designed for his age
group. In the very beginning of the process, Bobby very nearly gave up on his first
design, and would have missed out on a rich debugging and refining process that
finally resulted in him proudly using perfected designs of his original prop idea
for his self-made movie This example further highlights the flexibility of digital
fabrication and rapid prototyping tools, and how they can support young children
in computational making and thinking.

Vignette 3: Using the Design Process
During Storybook-Inspired Making

This final vignette took place at the Kindergarten Makerspace at the International
School of Billund. In this example, the affordances of the environment and the moves
of the teacher supported children’s engagement in computational play. Specifically,
the children in this vignette engaged in a lengthy engineering design process to
create a personally-meaningful KIBO robotics project, inspired by their favorite
classroom storybook.

Abbie and Mathilde are partners in Ms. Maria’s Kindergarten class. They are
excited, because today they get to visit the new makerspace again. The makerspace
is located next to the woodshop room, music room, and computer lab – but unlike
all of those spaces, the makerspace has a whole room just for Kindergarteners!

When they first visited the space last week, they couldn’t help running around the
wide open room. The floor was cushy with mat tiles, and there were low benches,
cushions, and “wobble chairs” located around the room. When they were sitting in
a circle, a classmate shouted, “this room is like a gym!” Their teacher, Ms. Maria,
smiled and said, “That’s because we need lots of space to build your big ideas out
of blocks and crafts – and of course, robots!” She brought out a box from behind her
chair, and took out a KIBO robot. She passed it around the circle, showing children
the batteries and wires inside through the clear panel on the back, the motors and
wheels that move on its sides, and the green button that turns on its scanner. After
she introduced KIBO, she divided children into pairs, gave them a robot, and let

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

193

Makerspaces as Learning Environments to Support Computational Thinking

them explore how to build and code with it. Ever since that first visit, Abbie and
Mathilde have been talking about what kind of a robot they would make the next
time they visited the makerspace.

Today, Ms. Maria says there is a special activity waiting for them. When they arrive,
they see all the chairs and cushions have been moved to the side of the room, and
there are ramps, stools, and masking tape paths all around the floor. Today they
will be making obstacle courses for their KIBO robots to navigate. Mathilde gets
started ideating right away, saying “maybe we can make KIBO climb a hill!” She
balances a ramp against a low stool. “I know, I know! We should make KIBO go
on a Bear Hunt!” Abbie exclaims, referring to the story they have been reading at
library time, and Mathilde eagerly agrees. The partners brainstorm about how to
make a robot that acts out their favorite parts of the story, while Ms. Maria lends them
her copy of the Bear Hunt book for inspiration. They are most excited to build the

Figure 6. Children used furniture in the makerspace to build a “cave” environment
as part of their robot obstacle course, inspired by their classroom storybook, Going
on a Bear Hunt

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

194

Makerspaces as Learning Environments to Support Computational Thinking

“gloomy cave”. The girls build a cave-exploring robot and test out several less-safe
dark corners of the room before Ms. Maria suggests that they transform a tall table
with blankets and stools to be a spooky cavern for KIBO to explore (see Figure 6).

While testing their KIBO, Abbie frowns. “It’s too dark in here for the KIBO to help
us find any bears,” she says. Mathilde gets a flashlight from the materials wall to
attach to their robot, but the flashlight is too heavy even when they try to use tape
and rubber bands. They speak to Ms. Maria, who shows them a new KIBO part called
a lightbulb, and some blocks to program different colorful lights for the lightbulb to
shine. They add some light blocks to KIBO’s program, and are confused when it still
doesn’t shine—they can’t figure out what’s wrong with their program. They continue
to troubleshoot by testing different program sequences until Mathilde has the idea
to try attaching the lightbulb to their KIBO. Suddenly, KIBO’s light shines in many
colors and the girls are delighted with their glow-in-the-dark cave-exploring robot!
It wasn’t the program after all, but the robotic parts and hardware that needed to
be changed. Soon the whole class is having fun in their KIBO cave, and Abbie and
Mathilde happily explain to anyone who wants to know how they got KIBO to shine
its light in many colors.

In this vignette, the materials and furniture are used in a way that’s rarely allowed
in a classroom setting, and they become a part of the children’s playful engineering
design process. They are inspired to create a project modeled on their Bear Hunt
storybook, and brainstorm how their KIBO robot will showcase their favorite cave-
exploring scene. They quickly build a robot and begin testing different sites to use
for their cave location. Finally, at the suggestion (and permission) of the teacher,
they end up creating their own test site out of blankets and tables, which spurs them
to engage in a longer process of iteratively refining and testing ways to make their
robot shine a light. Finally, when they are satisfied with their final design, their
enthusiasm spreads to others in the class who want to join in the fun, evidence that
they are engaging in the positive technological behaviors of community building
and communication through their robotic making project (Bers, 2012). The girls
engage in the last step of the design process, sharing with the community, by inviting
their classmates to play in their self-made cave, and sharing their new technical
knowledge with others who are curious about the lightbulb hardware and software
that completed their design. Rather than restricting their play or requiring “proper”
use of this furniture, the teacher in the vignette considered the needs of the children
and responded by simply granting them permission to explore the space in a new,
creative way that also met her requirements for safety. Through the combination of
space and facilitation aligned to support children’s creativity, Abbie and Mathilde
were able to pursue a rich engineering design process, completely motivated by

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

195

Makerspaces as Learning Environments to Support Computational Thinking

their own creative ideas. In the process, they explored the computational thinking
process of the design cycle, as well as concepts of hardware and software (when
changing the code and parts to make their lightbulb shine) and debugging (when
troubleshooting and testing to make their robot flash its lightbulb). Because of the
affordances of the makerspace materials and facilitation that encouraged hands-on,
child-directed play, Abbie and Mathilde were able to engage in rich computational
making.

CONCLUSION

Throughout this chapter we’ve argued for the importance of children’s environments
on their learning. We also expanded on the nascent concept of computational making
as making that leverages computational thinking skills and practices, and proposed
that makerspaces are learning sites uniquely able to engage children in computational
making. Finally, we maintained that our primary goal in pursuing this work was
to empower children to become computationally fluent future leaders and citizens.

What Lies Ahead for Computational Making
and Educational Makerspaces?

If agency and computational fluency are the values that we hope to impart to young
children, then supporting the development of computational thinking and making
are imperative. As our world becomes increasingly mediated by digital experiences,
computational making can empower children to “be protagonists in their own learning”
(Kuh, 2014). In other words, environments that promote computational making and
thinking afford opportunities for children to create and produce artifacts of their
own learning, rather than “consume” ideas through passive digital experiences.

While the educational opportunities inherent in makerspaces are vast, there is
still much work to be done to realize the maker movement’s goals of democratized
knowledge, equipment, and expertise (Dougherty, 2012). Community makerspaces
still struggle to empower makers to engage their own cultural funds of knowledge
to impact designed solutions (Calabrese Barton & Tan, 2018). In a survey of 30
educational makerspaces in K-12 settings around the U.S., researchers from Drexel
identified cultural inclusion as the biggest gap missing from school makerspaces—a
serious omission, given that community-building and inclusive collaboration are
explicit goals of the maker movement (Kim, Edouard, Alderfer, & Smith, 2018).
As the maker movement enters its second decade, we hope to see an emphasis on
shared culture-building take priority over less community-oriented maker goals
such as access to expensive and highly technical equipment. We have shown above,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

196

Makerspaces as Learning Environments to Support Computational Thinking

in other chapters in this book (unplugged activity chapter), and in previous studies
that computation making does not explicitly rely on high tech tools.

Educators can prioritize community-centered making in their own early childhood
makerspaces by attending to the design guidelines introduced earlier in this chapter
(see Figure 1). Specifically, displaying children’s work, and even images of children
working in the space at child’s eye-level can improve a child’s sense of connectedness
to their maker community, even if they do not always play or engage with others
in the space. Further, selecting materials, including reference books, tools, and
craft materials that represent a diversity of maker cultures and histories, can help
children connect to what Dale Dougherty calls the shared human act of making,
passed on from centuries and even millennia of ancestors who were tool makers
and users (Dougherty, 2012). Creating a space that allows young children to create
comfortably and freely sets the stage for computational making.

Additionally, our prior work suggests that makerspaces can be productive sites
for Positive Technological Development, a pedagogical approach that forefronts
development of psychosocial and character traits through engagement with technology
(e.g. Strawhacker & Bers, 2018b). Makerspace designers should incorporate practices
and technologies that support these positive social and independent behaviors, in order
to support children in meaningful and community-engaged computational making.

ACKNOWLEDGMENT

This research would not have been possible without the direction of Dr. Marina
Bers, Dr. Brian Gravel, Dr. Chris Rogers, and Dr. Bruce Johnson of Tufts University.
This work is made possible with generous funding from the LEGO Foundation,
Tufts’ Center for Engineering Education and Outreach, and the Evelyn G. Pitcher
Curriculum Resource Lab. Finally, we thank the many children, families, educators,
and makers who contributed to this research.

REFERENCES

Bada, S. O., & Olusegun, S. (2015). Constructivism learning theory: A paradigm
for teaching and learning. Journal of Research & Method in Education, 5(6), 66–70.

Beltagui, A., Sesis, A., & Stylos, N. (2021). A bricolage perspective on democratizing
innovation: The case of 3D printing in makerspaces. Technological Forecasting and
Social Change, 163, 120453. doi:10.1016/j.techfore.2020.120453

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

197

Makerspaces as Learning Environments to Support Computational Thinking

Bers, M. U. (2012). Designing digital experiences for positive youth development:
From playpen to playground. Oxford University Press. doi:10.1093/acprof:o
so/9780199757022.001.0001

Bers, M. U. (2020). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge. doi:10.4324/9781003022602

Calabrese Barton, A., & Tan, E. (2018). A longitudinal study of equity-oriented STEM-
rich making among youth from historically marginalized communities. American
Educational Research Journal, 55(4), 761–800. doi:10.3102/0002831218758668

Campbell, L. O., Heller, S., & Goodman, B. (2018, March). Fostering computational
thinking and student engagement in the literacy classroom through pop-up
makerspaces. In Society for Information Technology & Teacher Education
International Conference (pp. 3750-3754). Association for the Advancement of
Computing in Education (AACE).

Dougherty, D. (2012). The maker movement. Innovations: Technology, Governance,
Globalization, 7(3), 11–14. doi:10.1162/INOV_a_00135

González-González, C. S., & Arias, L. G. A. (2019). Maker movement in education:
maker mindset and makerspaces. In J. L. Jurado, C. A. Collazos, y L. F. Muñoz
(Eds.), Ingeniería colaborativa, aplicaciones y usos desde la perspectiva de la
Interacción Humano-Computador [Collaborative engineering, applications and uses
from the perspective of Human-Computer Interaction]. Editorial: Universidad San
Buenaventura de Cali. Colombia.

Gravel, B. E., Bers, M. U., Rogers, C., & Danahy, E. (2018). Making engineering
playful in schools. The LEGO Foundation.

Hatton, E. (1989). Lévi‐Strauss’s bricolage and theorizing teachers’ work. Anthropology
& Education Quarterly, 20(2), 74–96. doi:10.1525/aeq.1989.20.2.05x0841i

Hein, G. (1991). Constructivist learning theory. Institute for Inquiry. http://www.
exploratorium.edu/ifi/resources/constructivistlearning.html

Iwata, M., Pitkänen, K., Laru, J., & Mäkitalo, K. (2020). Exploring potentials
and challenges to develop twenty-first century skills and computational thinking
in K-12 maker education. In Frontiers in Education, 5(87), 1-16. doi:10.3389/
feduc.2020.00087

Jones, K. S. (2003). What is an affordance? Ecological Psychology, 15(2), 107–114.
doi:10.1207/S15326969ECO1502_1

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://http://www.exploratorium.edu/ifi/resources/constructivistlearning.html
http://http://www.exploratorium.edu/ifi/resources/constructivistlearning.html

198

Makerspaces as Learning Environments to Support Computational Thinking

Kim, Y. E., Edouard, K., Alderfer, K., & Smith, B. K. (2018). Making culture: A
national study of education makerspaces. Drexel University.

Lakind, A., Willett, R., & Halverson, E. R. (2019). Democratizing the maker
movement: A case study of one public library system’s makerspace program.
Reference and User Services Quarterly, 58(4), 234–245. doi:10.5860/rusq.58.4.7150

Marsh, J., Wood, E., Chesworth, L., Nisha, B., Nutbrown, B., & Olney, B. (2019).
Makerspaces in early childhood education: Principles of pedagogy and practice.
Mind, Culture, and Activity, 26(3), 221–233. doi:10.1080/10749039.2019.1655651

Olds, A. R. (2001). Child care design guide. McGraw-Hill.

Papert, S. (1980). Mindstorms: Computers, children, and powerful ideas. Basic Books.

Papert, S. (2002). Hard fun. Bangor Daily News, 2.

Papert, S. (2005). You can’t think about thinking without thinking about thinking
about something. Contemporary Issues in Technology & Teacher Education, 5(3/4),
366–367.

Sameroff, A. J., & Haith, M. M. (1996). The Five to Seven Year Shift: The Age of
Reason and Responsibility. The University of London.

Smith, M. (1982). Creators not consumers: Rediscovering social education. NAYC.

Strawhacker, A., & Bers, M. U. (2018a). Makerspaces for early childhood education
(principles of space redesign) & Maker values of early childhood educators, organizing
a grassroots space. In B. E. Gravel, M. U. Bers, C. Rogers, & E. Danahy (Eds.),
Making engineering playful in schools (pp. 18–29). The LEGO Foundation.

Strawhacker, A. & Bers, M. U. (2018b). Promoting Positive Technological
Development in a Kindergarten Makerspace: A Qualitative Case Study. European
Journal of STEM Education, 3(3), 9. doi:10.20897/ejsteme/3869

Strong-Wilson, T., & Ellis, J. (2007). Children and place: Reggio Emilia’s environment
as third teacher. Theory into Practice, 46(1), 40–47. doi:10.1080/00405840709336547

Wadsworth, B. J. (1996). Piaget’s theory of cognitive and affective development:
Foundations of constructivism. Longman Publishing.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

199

Makerspaces as Learning Environments to Support Computational Thinking

ADDITIONAL READING

Curtis, D., & Carter, M. (2014). Designs for living and learning: Transforming early
childhood environments. Redleaf Press.

Honey, M., & Kanter, D. E. (Eds.). (2013). Design, make, play: Growing the next
generation of STEM innovators. Routledge. doi:10.4324/9780203108352

Maker Education Initiative. (2015). Youth Makerspace Playbook. https://makered.
org/wp-content/uploads/2015/09/Youth-Makerspace-Playbook_FINAL.pdf

Martin, L. (2015). The promise of the maker movement for education. Journal of
Pre-College Engineering Education Research (J-PEER), 5(1), 4.

Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and
engineering in the classroom. Constructing Modern Knowledge.

Meehan, R. J., Gravel, B. E., & Shapiro, B. A. (2014). Card-sorting task to establish
community values in designing makerspaces. Poster presented at FabLearn.

Nicholson, S. (1971). How not to cheat children: The theory of loose parts (Links
to an external site.). Landscape Architecture, 62, 30–34.

Resnick, M., & Robinson, K. (2017). Lifelong kindergarten: Cultivating
creativity through projects, passion, peers, and play. MIT press. doi:10.7551/
mitpress/11017.001.0001

Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-Priebe, L., &
Owens, T. (2014). Learning in the making: A comparative case study of three
makerspaces. Harvard Educational Review, 84(4), 505–531. doi:10.17763/
haer.84.4.brr34733723j648u

Vossoughi, S., & Bevan, B. (2014). Making and tinkering: A review of the literature.
National Research Council Committee on Out of School Time STEM, 67, 1–55.

KEY TERMS AND DEFINITIONS

Constructionism: A learning theory arguing that learners can construct novel
ideas through engaging with creative technological platforms, such as coding
environments.

Debugging: In computer programming and software development, debugging
is the process of finding and resolving “bugs” (errors) within computer programs,
software, or systems.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://makered.org/wp-content/uploads/2015/09/Youth-Makerspace-Playbook_FINAL.pdf
https://makered.org/wp-content/uploads/2015/09/Youth-Makerspace-Playbook_FINAL.pdf

200

Makerspaces as Learning Environments to Support Computational Thinking

Early Childhood Education: Education of children from birth through age eight.
Engineering Design Process: A common series of steps that engineers use in

creating functional products and processes.
Environment-as-Teacher: A concept from the Reggio Emilia pedagogy that

states, after the peers, educators, and self, the environment is a teacher (imparts
information, values, and opportunities to explore) for young children.

KIBO: A screen-free programmable robotics kit for young children with blocks,
sensors, modules, and art platforms.

Makerspaces: Collaborative spaces where people gather to get creative with DIY
projects, invent new ones, and share ideas (also called hackerspaces, hackspaces,
and fablabs).

Representation: The use of signs that stand in for and take the place of something
else. It is through representation that people organize the world and reality through
the act of naming and assigning meaning to its elements.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

201

DOI: 10.4018/978-1-7998-7308-2.ch010

ABSTRACT

This chapter examines the relationship between coding, computational thinking,
and the contexts in which those concepts are learned. It recounts a pilot study
where a 12-week robotics curriculum was taught in kindergarten classrooms at
eight interfaith and secular schools in Boston, United States of America and Buenos
Aires, Argentina. In this chapter, the authors explore how teachers and students drew
from their socio-cultural environments to inform the language of computational
thinking and support the internalization of computational concepts and, in turn,
how computational thinking was used as a tool for deeper exploration of cultural
traditions and beliefs, meaning-making, and creative expression.

INTRODUCTION

As computer technologies become ubiquitous in society, the call for incorporating
STEM/STEAM education into early childhood classrooms grows louder on a global
scale (Bers, 2019; Modan, 2019; K-12 Computer Science Framework Steering
Committee, 2016), with computational thinking and coding lessons starting as early

Coding, Computational
Thinking, and Cultural

Contexts
Libby Hunt

Tufts University, USA

Marina Umaschi Bers
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

202

Coding, Computational Thinking, and Cultural Contexts

as kindergarten (Sano, 2019; Seow, et al., 2019; Toikkanen and Leinonen, 2017). The
kindergarten classroom is just one of many socio-cultural environments (e.g., home,
school, faith-based settings) that play an integral role in a child’s developmental
process, contributing to the lens through which children view and understand the
world. What does computer science education look like through this lens? How
does cultural context shape the way a robotics-based program is taught and learned?

These ideas were explored as part of an interfaith project called Beyond STEM:
The Development of Virtues in Early Childhood Education Through Robotics, led
by Professor Marina Bers and funded by the Templeton World Charity Foundation.
While the primary focus of the study related to the ways a robotics curriculum could
support character development, this chapter focuses specifically on the relationship
between coding, computational thinking, and the contexts in which those concepts
are learned.

This chapter explores the role socio-cultural environments can play in informing the
language of computational thinking and the internalization of computational concepts,
and, in turn, how computational thinking can be used as a tool for deeper exploration
of cultural traditions and beliefs, meaning-making, and creative expression. In it, we
will demonstrate a number of ways that robotics and computational thinking can be
used to help children strengthen their connections to their own cultural communities,
faith-based or otherwise, and learn about others.

BEYOND STEM PROJECT OVERVIEW

Eight schools, four in Boston in the United States and four in Buenos Aires in
Argentina, participated in the study. Six schools were representative of a major
monotheistic religion in each country: Judaism, Catholicism, and Islam, and two
schools were secular. These schools were selected for having a solid mission statement
citing commitment to values education and character development — elements we
hoped would be fostered throughout the project.

The project was implemented in 12 kindergarten classrooms — 5 in Boston and
7 in Buenos Aires — over a twelve-week period. The numbers are different because
schools in Argentina are bigger and have more than one classroom per grade; this
was the case for only one Boston school. A total of 224 children participated: 64 in
Boston and 160 in Buenos Aires.

Although an increasing number of developmentally appropriate technological
tools are available for children, this study utilized KIBO, a screen-free robotics
kit designed for children ages 4-7 that supports cognitive development, creative
problem solving, fine-tuning motor skills, and social engagement in a playful and
developmentally appropriate manner (Bers, 2018; Lee, Sullivan, and Bers, 2013).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

203

Coding, Computational Thinking, and Cultural Contexts

KIBO was selected because of its hands-on nature, as well as its open-ended platform
that allows children to experiment, express themselves, and share experiences while
actively practicing computational thinking skills.

The KIBO curriculum was developed by the DevTech Research Group into two
different versions to align with frameworks and standards in computer science for
both Massachusetts and the City of Buenos Aires. It consisted of twelve lessons,
from foundational aspects of robotics and programming (e.g., sequencing) to more
complex concepts like control structures, repeats, and conditionals. The curriculum
followed the Coding as Another Language (CAL) approach (Bers, 2019) and built
upon the theoretical framework of Positive Technological Development (PTD)
(Bers, 2008; 2012; 2018) that promotes six positive behaviors (“the 6 C’s”) through
the use of technology: content creation, creativity, communication, collaboration,
community building, and choices of conduct. Each lesson featured a variety of
activities — warm-up games, design challenges, creative projects, “technology
circles” for peer-reflection, and plenty of free-play — that correlated to one of
more of the “C’s.”

A team of researchers in Boston and Buenos Aires were present in the classrooms
for each lesson. Using research instruments created by the DevTech Research Group,
they collected data relating to the students’ computational thinking, coding, and
robotics knowledge, while also observing the ways individual teachers adapted the
lessons to better meet the needs of their own classrooms, their school culture, and
their faith.

Through this project, teachers and children in these two international cities
developed technical skills through a robotics curriculum, while simultaneously
fostering positive character traits, exploring their own cultures/beliefs, and learning
about others. The experience was designed so teachers could present the robotics
curriculum concurrently with discussions about what it means to be human, how
to treat one another, and how to be citizens of the world.

Professional Development

In order for teachers to successfully integrate computational thinking and coding
lessons into their classrooms, it is essential that they themselves understand the
foundation of computational thinking. This does not require high-level expertise —
only the willingness to learn (Govind & Bers, 2019). To ensure this, 31 educators
and 5 administrators from the participating schools attended a one-day professional
development workshop in their respective city. Of those participants, 24 had no prior
coding or robotics experience. Here they learned about the concept of coding as a
new literacy, the robotics curriculum, and the goals of the proposed project, and
were given the chance to connect with one another.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

204

Coding, Computational Thinking, and Cultural Contexts

Most importantly, however, the teachers were given the opportunity to engage
with the KIBOs themselves. The teachers became students. They were encouraged
to play, to make mistakes, to try and try again, and to ask for help when they needed
it. This is the embodiment of the Design Process, a cycle of six steps: ask, imagine,
plan, create, test and improve, and share, that they would later use to teach their
students how an engineer approaches a problem.

Once the teachers had mastered the basics of the KIBO robotics kit, they gathered
to discuss the challenges they had faced working with the KIBOs, the different
values reflected in their individual faiths and school environments, and the ways in
which the KIBO curriculum could be used to enhance the teaching of those values
to their students.

Lastly, the teachers were asked to put their new skills to the test and create KIBO
projects that were representative of their school, their faith, and their values. How
the teachers chose to represent their schools varied — some told stories while others
focused more on recognizable symbols — but at the core of each lay a commonality
that was present throughout the professional development workshops. Amid religious
differences, each participant of the workshop was an educator, and each program
represented what they hoped their students would gain from their school’s style
of education. At the root, what each teacher hoped for was that their students feel
inspired to learn, safe to wonder, and free to play.

CONCEPTUALIZING COMPUTATIONAL
THINKING IN THE CLASSROOM

Engaging With the Design Process

The first lesson of the KIBO curriculum begins with a simple but essential question:
“What is an engineer?” When posed with this question, students had plenty of
guesses. A student at the Catholic school in Argentina said that engineers work
with different types of energy, while another claimed engineers “fix ceilings so they
don’t fall.” Others boasted having an engineer in their family, like one child in the
Boston secular school who announced, “I’m an engineer. My dad is an engineer...
An engineer is fixing problems and if they make mistakes, they try another time.”
Already, through the simple sharing of ideas based on their individual experiences,
students were beginning to engage in two of the 6 Cs of Positive Technological
Development framework- collaboration and communication (Bers, 2012).

Ultimately, the conversation steered to the understanding that engineers build
robots (among other things). The students were all familiar with robots from different
movies they’d seen, books they’d read, or even appliances in their homes. However,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

205

Coding, Computational Thinking, and Cultural Contexts

none had really stopped to consider: “What makes a human different from a robot?
What makes something a robot at all? How does a robot do things?” As students
began to conceptualize these somewhat philosophical questions, we saw the first
instances of how teachers would come to use their different cultural contexts to
make sense of computational thinking.

In each classroom, teachers had pictures of different items: a tree, a flower, a
vacuum, a cell phone, and had their students determine which category the item
belonged to, using cultural or faith-based worldviews to inform their category
options. For the children at one secular school that prioritizes the appreciation
of nature in its overall mission, the distinction was described as something that
was made by humans, or made by nature. In faith-based classrooms, nature-made
objects were described as “God-given.” Students at a Muslim school in Boston
took the discussion even deeper, examining how, because humans were created by
Allah, even human-made items were, in a way, gifts from Allah. Unbeknownst to
these students, they were beginning to actively engage with the engineering design
process: asking big questions.

In a post-implementation workshop, one of the participating teachers described
her students’ grasping of the nature vs. manmade concept as “empowering.” She
had explained to her students, “Without humans, the technology would just be
sitting there.” By exploring the concept through the lens of her classroom’s culture
of autonomy, students could clearly see the role they had to play in making KIBO
work. If the students were in control, what different things could they program
robots to do?

The students’ ideas about what robots could do revealed connections they were
already making between the technological tools and their environment. The following
example shows students engaging with the next stage of the engineering design
process — imagining solutions.

Students are gathered on a colorful carpet, sitting at their teacher’s feet. Many
small hands wave eagerly in the air, waiting to be called on to share their ideas. The
teacher has just asked a most intriguing question: “If there is a bug on the ceiling,
how can I reach the bug and catch it?” More than one head turns to the ceiling to
see if there is a bug there. The teacher calls on the boy nearest to her, who offers that
perhaps they could use a robot with an arm that “goes really high.” And if the arm
couldn’t reach it it? Make the robot arms longer. And if that still doesn’t work? He
considers this a moment, looking to the ceiling, then replies confidently,“Someone
could climb up the arm.”

In Buenos Aires, a similar conversation took place at the secular school. Many
of the students proposed ways to squash the bug. One imaginative girl did not care

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

206

Coding, Computational Thinking, and Cultural Contexts

for this line of thinking. “Instead of killing him,” she said, “I would scare him to
escape.” Her response was strongly influenced by the culture of her school, which
focuses on environmentalism.

The idea that robots exist to help people, paired with faith or school-based
contextual influences, drove many of the students’ early designs. One student
designed a composting robot, while others discussed ways that the robots could help
stop people from cutting down trees. At the Catholic school in Boston, one child
considered the ways a robot could assist in a charitable food drive.

The values displayed in these early designs were not just reflective of school and
faith-based cultures. Some were influenced by the cultures of their homes.

A student at the Catholic school in Buenos Aires used his first design journal
entry to create a robot that would help his mom cook. When a researcher prompted
him, “Why don’t you make a robot to help you store your toys?” he replied simply
that his mom could help him because the robot would be cooking. In addition
to the “helpful” culture of this child’s home environment, here we also see the
multifaceted social-emotional potential of robotics design. This little boy wanted
to help his mother, but he also wanted her to be more available to spend time with
him. In these examples, children envision ways that robots can support empathy,
environmentalism, and family connection.

Multi-Subject Integration

A convenient and impactful way that teachers used contexts to add relevance to
children’s exploration of computational thinking is by incorporating the robotics
lesson into other subjects being learned in the classroom. At the Jewish school in
Boston, KIBO lessons were regularly integrated with Hebrew class. The secular
classroom in Boston programmed their KIBOs to reenact a story they’d read about
a hermit crab. The Catholic school in Buenos Aires used their KIBO project to
explore environmental science, discussing things like energy and ocean pollution.
The secular school in Buenos Aires strove to bring institutionalism to the project by
collaborating with the gym teacher, the librarian, and others, all working together
to integrate taking care of the environment with technology.

Even if the connections weren’t explicitly facilitated by the teachers, students still
found them. One student at the Muslim school in Argentina compared engineers to
beavers because they work together to achieve a goal. Another student, while putting
together a KIBO, noted, “he has electricity like some toys” and “it’s like putting
together a puzzle.” Thinking about what robots can or cannot do, one insightful
child at the Catholic school in Argentina pointed out, “robots cannot eat a tomato,”
while another explained that our brains give instructions to our bodies so we don’t
crash, and that a robot does not have a brain or heart equal to that of a human. This

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

207

Coding, Computational Thinking, and Cultural Contexts

child, methodical and surprisingly advanced in his interests for a kindergartener,
later drew a connection between the unfamiliar language of KIBO robotics and
hieroglyphics, stating that the robot “reads drawings like the Egyptians” (referring
to the bar codes imprinted on KIBO’s wooden programming blocks).

In conceptualizing programming languages, it is helpful for students to draw
connections to images they’ve seen in environments outside of coding. In our study,
students recalled seeing barcodes in grocery stores or on the backs of books, and
connected the red and green of the begin and end blocks to traffic lights. By making
these sorts of connections, the students were internalizing the meaning of a coding
language as familiar, attainable. Students were able to build upon these associations
as they continued to master the KIBO coding language. As with tackling a math
problem or a new word, students found creative ways to approach the challenges
they faced with their programs.

A hunger for answers drove the students’ connections with computational concepts
and powerful ideas. Through their desire to master the KIBOs, they were subtly
mastering the concepts of control structures and modularity and engaging directly
with hardware and software.

In a final reflection, one teacher said, “The kids really grasped the concept
of repeat and using brackets, and the sandwich analogy,” referring to a method
of teaching repeat loops in which repeating actions are placed between brackets,
just like the ingredients on a sandwich go between two slices of bread. Metaphors
were a useful tool for connecting coding concepts to other areas of learning. This
teacher also compared the symbolic numbers of math or letters of a language to
those symbols that make up a coding language, saying, “This is how coding and
literacy are so connected.”

Other teachers found similar connections. The teacher from the Jewish school
in Boston had selected a specific song for their final project because it featured
sequences, repetition, relevant Hebrew vocabulary, and an overarching message
about community. A teacher from the Muslim school in Buenos Aires commented
that her students found a way to mention KIBO in every class. Her students drew
connections between left-to-right writing systems and how the program must be
arranged for KIBO to read it.

Throughout the design process, the students grew increasingly comfortable with
the process of experimentation, from asking initial questions to testing for results.
They learned to be flexible when experiments did not go as planned, to debug by
looking for alternative approaches to their goal.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

208

Coding, Computational Thinking, and Cultural Contexts

Coding and Character Development

Regardless of cultural differences, early childhood classrooms share many of the same
rules - be kind to each other, help your friends, take care of objects in the classroom.
Throughout the study, we found that the classroom environments shaped the way that
students interacted with KIBO and with one another, and that as their confidence
in their own abilities developed, students quickly transitioned to helping others.

The children understood that KIBO was a tool that could break (one child
compared it to her family’s broken computer), and through discussions about caring
for materials, we noticed that values emblematic of their classroom environments
emerged. At the Catholic school in Boston, one young boy offered that we take
care of KIBO because if it breaks, the students next year can’t use it. This forward
thinking shows a level of generosity that seems surprising for a kindergartener, but
he was not the only one.

At each school, students were working with the KIBOs in groups of two or
more. While many students naturally understood that they should treat their peers
with respect, others struggled with collaboration. We observed that in classrooms
where students sat at the same assigned tables every day, they seemed more used
to working in pairs or small groups.

Classrooms with more flexible layouts had successful collaborations when pairs
stayed the same for the whole curriculum, whereas classrooms where partners
changed regularly showed fewer generous moments. In most classrooms, students
were helping one another grow, not only as programmers, but as people.

“You have to be patient,” a boy at the Buenos Aires secular school advised some
peers who were struggling to scan. “I can help you scan!” a boy at the Boston Catholic
school said, eagerly leaving his own project to assist his neighbors. When a student
at the Jewish school in Buenos Aires returned from vacation, his classmate offered
to show him what he had missed. A student at the Muslim school in Buenos Aires
resolved a conflict between two peers who were fighting over KIBO wheels, saying
“There are two wheels, one for you and one for her.”

The sheer act of collaboration incites some conflict, but these students were
learning that to accomplish their goals, they needed to work together. At the start
of the pilot study, students were more eager to engage with the KIBO than with one
another. They hoarded blocks, grabbed robots, and showed little interest in what
other students were doing.

Towards the end of the twelve weeks, however, there was a shift towards more
patient listening, observing one another’s projects, and asking for help from peers.
They shared materials freely. Some students even went out of their way to give
compliments on another student’s successes. They had begun to internalize a sense

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

209

Coding, Computational Thinking, and Cultural Contexts

of community, and recognize the benefits of collaboration, of other perspectives,
to reaching positive outcomes.

EXPLORING CULTURE AND COMMUNITY

Throughout the curriculum, teachers were encouraged to adapt the lessons to better
meet the needs of their classrooms, their school culture, and their faith. Nowhere
was the success of these adaptations more evident than in the planning and execution
of the final project - “Our Treasure.” The theme of treasure was used to emphasize
the value and specialness of whatever they chose to express.

The final projects varied greatly (as shown in the next section), ranging from
treasure hunts to parades to theatrical performances. Whatever approach a teacher
decided, the goal was for students to “think deeply about what makes their school
a unique community” (DevTech, 2018). The lesson that outlines the final project
explains:

This […] will give children the creative agency to choose how to represent the things
that their school finds important through the treasure that they choose […] Children
will be pushed to think about their personal and community identities. Their ideas
of representation will be explored as they find different ways to portray these parts
of their identities in creative and abstract ways.

The final projects of the robotics curriculum served as an opportunity for the
explicit examination of each classroom/school’s culture. Through lengthy discussion
about what made their school unique, students were able to assign meaning to
abstract concepts, reflect on the symbols that represented their environments, and
find creative ways to use their KIBOs to get their messages across.

This section will consist of four vignettes that capture the students’ final projects,
the computational thinking skills that children were engaging with, and the ways that
the projects were representative of the cultures and values of their respective schools.

Vignette 1: Computational Thinking to Overcome Challenges

At the secular school in Boston there is frenzy in the classroom. The previous day,
the students discussed at length the things they valued most within each other and
within the school, calling them “little lights” after the school song - “This Little
Light of Mine.” Topics included kindness and everyone being worthy of respect.
Following the discussion, students wrote letters, drew pictures, and placed them in a
makeshift treasure chest. Today, to their dismay, their “treasures” have been “stolen”

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

210

Coding, Computational Thinking, and Cultural Contexts

and hidden all around the classroom! The students must program their KIBOs to
navigate through winding mazes all around their classroom until their individual
treasures have been found and the chest is filled again.

One girl sets her KIBO down on the floor in front of a table covered in a blanket,
giving the appearance of a tunnel. The task is for the KIBO to move through the
tunnel, then turn right. She presses go. The KIBO zooms forward, but when it turns
right, it hits a table leg and is sent off course into the blanket. Its blue light turns on,
and it shakes as if stuck. She picks KIBO up, and this time places it further into the
tunnel. The program runs again, and this time the KIBO clips the leg of the table
on the other side. The girl thinks aloud. “Maybe we should try four times again?”
referring to the number of “move forward” functions she programmed. “Let’s see,”
she says, and goes back to the blocks to debug. When her KIBO finally runs without
crashing into anything, she is pleased, but not yet satisfied. It moved over the treasure,
when she wanted it to stop, shake, and shine a blue light right on top. She picks her
KIBO back up, matter-of-factly says what she will try next, and moves to do so.

In another part of the classroom, another girl runs to the box of blocks. “We just
need a ‘turn left’ to get my treasure,” she says as she rifles around the box, looking
for the block she needs. She adds the block, rescans, and groans in frustration when
it turns the wrong way. Another rescanning and - “Why did it do light first?!” Back
to the drawing board.

This treasure hunt created ample opportunities for the students to utilize their
programming and debugging skills to complete the task, but also encapsulated the
classroom cultures of divergent thinking and conflict resolution. Frustration gave way
to perseverance, and perseverance gave way to pride as one by one they successfully
reclaimed their treasure and returned it safely to the chest so every light could shine.

Vignette 2: Classroom Culture and Perspective-Taking

The classroom of the secular school in Argentina looks more like a stage, decorated
with colorful props at every turn. In one corner sits a mouth made of poster board,
its teeth made of disposable material, so large a child could sit in it. In another
corner sit three potted plants decorated with paper butterflies. Another section of
the classroom features a cityscape built from painted cardboard. The bottom of one
of the structures reads “Xul Solar,” the name of an Argentinian painter. A projection
playing clips from physical education class hangs above a poster that represents
their digital library. The students have been working hard for this moment. Each
prop represents a classroom project they developed throughout the year — their
treasures. This final project is intended to capture their ability to intertwine the
KIBO curriculum with other aspects of their education (i.e. art, reading, physical
education), values, and with Argentinian culture. Each team of children programs a

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

211

Coding, Computational Thinking, and Cultural Contexts

section of the route KIBO will follow to each display. They discuss their classroom
treasures, comprised not only of the projects they created, but the friendship and
love that were present as they did so.

At the center of the circle of children sits a single KIBO, a GoPro camera affixed
to its body. In small groups, the students select their blocks from a box and work
together to create their program, scan the blocks, and test to see if it works. Later,
after all the blocks have been scanned and the programs run, the students will be
able to look at the GoPro footage and see what the world looks like through KIBO’s
“eyes” — a small but meaningful lesson in different points of view.

Vignette 3: Community Connectedness

Across the floor of a large open room at the Jewish school in Boston, a number of
poster boards are set up. The posters depict colorful cutouts of the KIBO programming
blocks, arranged in different orders. On the floor in front of each poster lies a
“stage” that depicts different aspects of a community (houses, trees, farms). This is
the landscape through which the KIBOs will move. For their final project, they are
embracing the community aspect of the 6 C’s. The students have invited parents
and friends of the community to an expo-style presentation of their KIBO projects.
Students move to their posters and await the visitors who want to see the KIBOs in
action. Throughout the room, students explain their program to visitors, and carefully
show them how to put the robots together. They reference the program laid out on
the poster board, explain what should happen next, and at times even get the visitors
involved. One child has his parent shine a flashlight on the eye attachment of KIBO
while another encourages observers to clap. The KIBOs move from location to
location on their respective maps, and the room buzzes with discussion as visitors
ask questions and students explain their design process, decision points, successes
and frustration. The youngest students in the school confidently have stepped into
the role of experts and active members of their community, sharing all they’ve
learned throughout the curriculum.

Following this portion of the presentation, the students line up and perform the
song that inspired their programs: a popular Israeli children’s song called ‘Eretz
Israel Sheli’ (My Israel). Their teacher explained later at the post-study workshop
that the song “teaches about building community in Israel while reinforcing some
basic Hebrew vocabulary. The repetition and sequencing make it a catchy song and
also support computational thinking,” particularly the skill of algorithmic logic.
This is the culmination of an emphasis throughout the curriculum on integrating
their KIBO lessons with Hebrew language education, a subject at the heart of the
school’s mission.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

212

Coding, Computational Thinking, and Cultural Contexts

Vignette 4: Celebration of Differences

A large blue sheet of paper lies on the floor of a classroom in the Muslim school
in Buenos Aires. Painted atop the blue “sea” of paper are continents, and in the
left-hand corner, the shape of South America. The students, kindergarteners, gather
around the “map,” clustering near the parts of the map they are originally from.
They place their KIBO robots, topped with drawings students made of themselves,
on their respective countries of origin. Then, one by one, the students press the “go”
button on their robot, and watch how their programs run. The first group’s KIBO
spins once, then runs off the blue paper in an unintended direction and stops. The
children pick up the robot and rescan their blocks, before trying again. This time,
the KIBO spins, then zooms across the blue paper to South America, and shakes,
almost as if joyful to have arrived in its intended location. Another KIBO zooms
forward, and sings upon arrival to its spot on the map.

The next pair of students to try their program run into a different issue. Their
KIBO moves too far forward, across the sheet and into the leg of another student.
One of the programmers shakes her head - this isn’t right. She picks it up and they
reconfigure their program. After a few attempts at a working program, running
and rerunning their tests, the KIBO finally lands on South America. The students
are satisfied. Now that the dress rehearsal is over, the students and their KIBOs
get in place, and press the “go” buttons once more. One by one, the KIBOs join in
Argentina. The students applaud and cheer. At the bottom of the map, a large white
caption reads: “Somos un montón de gente todos diferentes y nos encontramos para
aprender jugar juntos.” In English, this means “We are a lot of people, all different,
and we meet to learn and play together.”

Perspective-taking is a theme for this classroom. Their use of treasure as a
metaphor for their students’ immigrant experiences was not only a creative approach
to storytelling - it was a means of celebrating multiple perspectives, respecting
differences, and reflecting more explicitly on how they each were an important part
of their school community and of Argentina, no matter where they’d come from.

CROSS-CULTURAL COLLABORATIONS

In addition to the way computational thinking can provide a context for the exploration
and expression of one’s own cultures, ample opportunity exists for cross-cultural
collaborations. In the professional development workshops, we saw the benefits of
people from different cultures and communities coming together and sharing their
perspectives. It was important that the outcomes of the individual schools’ projects
should not exist in a vacuum — they had all pursued the same curriculum, after all.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

213

Coding, Computational Thinking, and Cultural Contexts

We created a website where teachers could share videos and pictures from their
students’ final projects. They were encouraged to share the projects from other schools
within their own classrooms and leave comments. This created an opportunity for
students not only to glimpse other children’s work, but to have conversations and ask
questions about cultural differences, using their conception of multiple perspectives
to enrich their understanding of the world outside their classroom, home, and faith-
based environments.

Teachers were invited to a final workshop to talk about the challenges, successes,
and interesting moments that arose throughout the curriculum. It was striking how
similar many of their experiences were, and how readily teachers offered suggestions,
resources, and techniques that had worked for them.

The teachers discussed the perspective-taking abilities their students developed
as a more nuanced form of collaboration — working with partners, coordinating,
and compromising, but also, as the teacher from the Boston Jewish school described
it, standing back and saying, “Wow, we all programmed the same song using the
same equipment, but look how different they all are.” Through the development
of computational thinking skills, implicit values were made explicit and multiple
opportunities to exercise these values emerged, all while internalizing programming
concepts.

Each school benefited from seeing the other schools’ approaches, which inspired
conversations among the teachers about the different capacities of their institutions.
Some teachers approached the curriculum from an integrated standpoint and felt
that their students had a well-rounded experience. Others felt that by not integrating
KIBO into other subjects they had missed the opportunity to dig deep into their
values and ultimately their projects were limited. Teachers from schools without a
designated computer teacher reflected on how that might have impacted the lessons.
Teachers who were nervous about implementing the curriculum and had followed the
guidelines strictly expressed that, now they’d grown comfortable with the materials,
next time they would approach the lessons with more creativity and flexibility.

For the students, however, these insecurities went unnoticed. The Boston secular
school’s teacher put it well, stating, “In [children’s] minds there’s no math, there’s
no technology. Everything is part of the learning experience.”

CONCLUSION

This chapter set out to examine the ways that socio-cultural environments inform the
teaching and learning of computational concepts in diverse kindergarten classrooms.
The schools that participated in our study explored how a robotics curriculum
could be taught in an integrated way with their own values, faith and culture, while

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

214

Coding, Computational Thinking, and Cultural Contexts

supporting perspective-taking and learning about others. The experience highlighted
a microcosm of the challenges that face education, where words like integration,
social-emotional growth and STEM get thrown around without much context, and
teachers are constantly asked to find ways to put them together through project-based
experiences. This project attempted to reverse course by saying to teachers: start
with your classroom, your school, your faith tradition, your community, and your
values, and you will find ways to integrate the teaching of robotics.

At the beginning of the project, teachers and researchers alike were uncertain about
what we would find. Over the twelve weeks, however, it was clear that the salient
moments we were looking for were everywhere. We watched students struggle, argue,
ask, and overcome. We watched them help unprompted and share challenges they
faced openly and unashamed. We watched students push their creative boundaries,
question the limits of their programming abilities, and glow with pride when their
program proved successful.

The play that is facilitated by the KIBO curriculum inherently requires problem
solving, collaboration, perspective shifting, and creative approaches. The students
were able to use these computational thinking skills beyond coding, to engage
with the abstract concepts that define the cultures of their classrooms, schools, and
religions, and use their KIBOs to turn those abstract concepts into tangible, creative
expressions.

In this chapter, we saw how culture can be harnessed as a tool to help young
children conceptualize computational concepts, but also, how the culture of the
learning environment influences the problems children see fit to be solved. On a
deeper level, KIBO was a vehicle for imagining other technological tools the students
could build to serve a greater purpose.

ACKNOWLEDGMENT

This research was supported by the Templeton World Charity Foundation.

REFERENCES

Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood
classroom. Teachers College Press.

Bers, M. (2018). Coding as a playground: Programming and computational thinking
in the early childhood classroom. Routledge Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

215

Coding, Computational Thinking, and Cultural Contexts

Bers, M. U. (2012). Designing digital experiences for positive youth development:
From playpen to playground. Oxford University Press. doi:10.1093/acprof:o
so/9780199757022.001.0001

Bers, M. U. (2019). Coding as another language: A pedagogical approach for
teaching computer science in early childhood. Journal of Computers in Education,
6(4), 499–528. doi:10.100740692-019-00147-3

DevTech Research Group. (2018). Our treasure: A KIBO coding curriculum for
emergent readers. Tufts University.

Govind, M., & Bers, M. U. (2019). Parents Don’t Need to Be Coding Experts,
Just Willing to Learn With Their Children. EdSurge. https://www.edsurge.com/
news/2019-12-11-parents-don-t-need-to-be-coding-experts-just-willing-to-learn-
with-their-children

K-12 Computer Science Framework Steering Committee. (2016). K-12 computer
science framework. https://k12cs.org/

Lee, K., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using robotics
to foster social interaction in kindergarten. Computers in the Schools, 30(3), 271–281.

Modan, N. (2019, September 11). 33 states adopted 57 computer science ed policies
since 2018. K-12 Dive. https://www.educationdive.com/news/33-states-adopted-57-
computer-science-ed-policies-since-2018/562530/

Sano, A. (2019, March 27). Coding will be mandatory in Japan’s primary schools from
2020. Nikkei Asia. https://asia.nikkei.com/Economy/Coding-will-be-mandatory-
in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20
Computer%20programming%20will,highly%20sought%20information%20
technology%20skills

Seow, P., Looi, C. K., How, M. L., Wadhwa, B., & Wu, L. K. (2019). Educational
policy and implementation of computational thinking and programming: Case study
of Singapore. In Computational thinking education (pp. 345–361). Springer.

Toikkanen, T., & Leinonen, T. (2017). The coding ABC MOOC: Experiences from
a coding and computational thinking MOOC for Finnish primary school teachers. In
Emerging research, practice, and policy on computational thinking (pp. 239–248).
Springer International Publishing.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.edsurge.com/news/2019-12-11-parents-don-t-need-to-be-coding-experts-just-willing-to-learn-with-their-children
https://www.edsurge.com/news/2019-12-11-parents-don-t-need-to-be-coding-experts-just-willing-to-learn-with-their-children
https://www.edsurge.com/news/2019-12-11-parents-don-t-need-to-be-coding-experts-just-willing-to-learn-with-their-children
https://k12cs.org/
https://www.educationdive.com/news/33-states-adopted-57-computer-science-ed-policies-since-2018/562530/
https://www.educationdive.com/news/33-states-adopted-57-computer-science-ed-policies-since-2018/562530/
https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills
https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills
https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills
https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills

216

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

DOI: 10.4018/978-1-7998-7308-2.ch011

ABSTRACT

The representation of women in technical fields such as computer science and
engineering continues to be an issue in the United States, despite decades of research
and interventions. According to the most recent Bureau of Labor Statistics reports,
only 21.1% of computer programmers are women, and only 16.5% of engineering
and architecture positions are filled by women. This chapter discusses the long-
term importance of exposing girls to computational thinking during their formative
early childhood years (Kindergarten through second grade) in order to set them up
for equal opportunities in technical fields throughout their later educational and
career years. This chapter presents a case example of a K-2nd grade robotics and
coding curriculum in order to highlight examples of developmentally appropriate
technologies, activities, and strategies that educators can implement to foster young
girls’ computational thinking skills. Best practices and instructional strategies to
support girls—as well as young children of any gender identity—are discussed.

Supporting Girls’
Computational

Thinking Skillsets:
Why Early Exposure Is Critical to Success

Amanda Sullivan
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 217

Supporting Girls’ Computational Thinking Skillsets

INTRODUCTION

From smart home devices to cell phone applications, the fields of technology,
engineering, and computer science drive the development of everyday innovations
we all rely on. So what happens when female voices are not represented in these
fields? We see “innovations” like cell phones that fit men’s hands better than women’s
(Tufecki, 2013; Ryan, 2013) and health tracking apps that ignore women’s menstrual
cycles (Duhaime-Ross, 2014). We see virtual assistants that have a harder time
answering women’s questions than men’s – that can suggest help for a heart attack
but not for domestic violence or rape (Chemaly, 2016; Miner et al, 2016). In short,
we see masculine biases in almost all of the technology we engage with on a daily
basis. Although most of the issues in these particular examples have been addressed
by developers since coming to light, they are issues that would have been unlikely
to occur to begin with if female voices had been equally involved and valued during
the development of these technologies.

The problem is that female voices1 are not – and historically, have never
been– well represented in the fields driving innovation. While this issue of female
under-representation in technical STEM (Science, Technology, Engineering, and
Mathematics) fields is not a new one, it is a persistent one. Despite decades of research
and interventions, the disparity between the representation of men and women in
technical fields in the United States continues to persist. According to the most
recent Bureau of Labor Statistics numbers, only 21.1% of computer programmers
are women and only 16.5% of engineering and architecture positions are filled by
women (Bureau of Labor Statistics, 2020).

Although there is a major spotlight on workforce representation of women
in technology, it is important to note that the issue of female representation in
engineering and computing fields begins long before the career years. Beginning
in early childhood and throughout their middle and high school years, girls and
young women are exposed to stereotypes that inform ideas about their identity,
abilities, and interest in STEM fields (e.g., McKown & Weinstein, 2003; Kuhn,
Nash, & Brucken, 1978; Signorella, Bigler, & Liben, 1993; Metz, 2007; Steele,
1997; Sullivan, 2019). By high school, research has shown that male students are
more likely than female students to take the standardized exams closely associated
with the fields of engineering and computing (Corbett & Hill, 2015).

With the rise of the K-12 coding and computational thinking education movement
in recent years, educators have a renewed opportunity to begin addressing this divide
from an early age – and potentially address the gender and STEM gap before it
becomes pronounced. This chapter will explore best practices for gender-inclusive
computational thinking curriculum that can be implemented during the foundational
early childhood years (kindergarten through second grade). While the focus of this

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

218

Supporting Girls’ Computational Thinking Skillsets

chapter is on increasing STEM access to girls and women (and as such the research
and language used will focus on those identifying as girls) the ultimate goal of this
line of work is to encourage researchers and educators to develop curriculum and
technologies that are bias-free, gender-neutral, and equally appealing to all young
children.

Through the lens of a curriculum unit called “Helpful Robots,” this chapter will
highlight suggestions for choosing appropriate tools, curricular themes, and adult
role-modeling practices that can positively engage girls – and all students, regardless
of gender identity– in playful computational learning from an early age, with the
ultimate goal of ensuring all young children are afforded equal opportunities to
succeed in STEM and beyond.

LITERATURE REVIEW

Women in STEM

In the United States, men have consistently outnumbered women in numerous
technical STEM fields, particularly fields like computer science and engineering
(Hill, Corbett, & St. Rose, 2010). The representation of women in science and
engineering education and employment is substantially lower than their representation
in the U.S. population. According to the National Science Foundation (2017), the
fields of computer science, physics, and engineering were all overwhelmingly male.

Today, the Bureau of Labor Statistics (2020) confirms that men continue to
dominate these fields. Women make up only 21.1% of computer programmers, and
only 16.5% of combined engineering and architecture positions are filled by women.
Looking at computer and mathematical sciences combined, women fill only around
a quarter of these positions (25.2%). (Bureau of Labor Statistics, 2020).

Stereotypes & the Importance of Early Exposure

It has been long theorized that a social psychological phenomenon known as
“stereotype threat” may influence the participation of girls and women in STEM.
Stereotype threat refers to the anxiety that one’s performance on a task or activity
will be seen through the lens of a negative stereotype (e.g., Steele, 1997; Steele,
1999; Steele & Aronson, 1995; Spencer, Steele, & Quinn 1999). For example,
Spencer, Steele, & Quinn (1999) found that women performed significantly worse
on a math test if they were first shown information indicating that women do not
perform as highly as men on math tasks (to induce the negative stereotype). If the
negative stereotype was not triggered (i.e. participants were told that there were

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

219

Supporting Girls’ Computational Thinking Skillsets

no gender differences associated with the math test) women and men performed
similarly on the test.

While most research on the influence of stereotype threat has focused on adolescent
and adult research participants, we know that basic stereotypes do begin to develop in
children around two to three years of age (Kuhn, Nash, & Brucken, 1978; Signorella,
Bigler, & Liben, 1993). Children learn to make sense of the vast and confusing world
around them by putting things into neat categories (often stereotypes), based on their
observations of their peers, families, books, and other media they are exposed to. As
children grow older, stereotypes about sports, occupations, and adult roles expand,
and their gender associations become more sophisticated (Sinno & Killen, 2009).
Adults should be aware of these newly forming stereotypes in order to expand on
them (or, disprove them) by providing children with new role-models, experiences,
and media that can help shift children’s belief system.

Early experiences have the potential to play an ongoing role in children’s sense
of belonging and confidence in different STEM activities and their own developing
identity as they grow up. Forming a positive “STEM Identity” (Aschbacher, Li, &
Roth, 2010) during this time can be pivotal to maintaining girls’ interest in these
fields. Prior research has shown that early childhood experiences with technology
and engineering – or lack thereof – can continue to impact young women during
middle school and high school, even those on competitive robotics and programming
teams (Sullivan & Bers, under review; Sullivan & Bers, 2019). Taken together with
the past body of work on stereotypes, it is critical to begin reaching girls (and all
children) with positive, developmentally-appropriate experiences with technical
STEM content from an early age.

Supporting Young Children’s Computational Thinking Skills

We have been focusing on the “technical” STEM fields (i.e., coding, engineering,
etc.) because these are the fields in which women continue to be sorely under-
represented at the professional level. There is great variability across the fields in
these domains, but one thing they have in common is their reliance on computational
thinking (hereafter, CT) skillsets. While “coding” can be considered a technical skill
and “computer science” is typically thought of as an academic discipline, “CT” can
be thought of as a problem-solving process central to computer science that can be
applied more broadly to problem solving and learning in any discipline (Avengine
et al, 2017).

CT was brought into the public discourse by Wing (2006), who asserted that
“computational thinking represents a universally applicable attitude and skillset
everyone, not just computer scientists, would be eager to learn and use” (p. 33).
Wing (2006) went on to define CT as a way of solving problems, designing systems,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

220

Supporting Girls’ Computational Thinking Skillsets

and understanding human behavior that draws on concepts fundamental to computer
science. Since Wing’s pivotal work defining CT, research has shown that CT is, in
fact, applicable across disciplines from the arts to the sciences. Chapter 7 in this book
for example, depicts how CT relates and supports the dramatic arts (Strawhacker
& Sullivan, 2021).

But what does CT look like at the early childhood level? As we will explore
in the following case study, it can look a lot like hands-on play, independent and
collaborative problem-solving, and tinkering with developmentally-appropriate
computing technologies for children. Bers (2020) describes 7 “powerful ideas” from
CT that young children begin to master including: algorithms, modularity, control
structures, representation, hardware/software, the design process, and debugging.
Later in this chapter, we will look at how each of these concepts described by Bers
can be introduced to young girls beginning in pre-kindergarten.

Case Example: “Helpful Robots” Curriculum

This case example will walk through the design and implementation of the Helpful
Robots curriculum which introduced coding, engineering, and CT concepts to
children in K-2nd grade with the goal of increasing girls’ interest in engineering.
It will highlight research on the curriculum’s efficacy and strategies from the unit
that educators can employ in their own early learning settings.

Overview of the Curriculum

The “Helpful Robots” theme was developed in collaboration between the lead
researcher for this project and the participating K-2nd grade teachers at a public
elementary school located in Somerville, Massachusetts. Teachers were interested
in a theme that would foster community, helping, and caring. These behaviors
were also aligned with the Positive Technological Development (PTD) Framework
developed by Bers (2012). The PTD framework was developed as an extension
of the computer literacy and the technological fluency movements to guide the
development, implementation, and evaluation of educational programs that use new
technologies (Bers, 2012). The PTD framework proposes six positive behaviors
(commonly referred to as the “six C’s”) that should be supported by educational
programs that use new educational technologies including: content creation, creativity,
communication, collaboration, community building and choices of conduct (Bers,
2012). These six C’s were used as a theoretical guide when developing the “Helpful
Robots” curriculum.

The teachers and the lead researcher developing the curriculum worked together
to decide upon a theme that they believed would be equally appealing to all young

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

221

Supporting Girls’ Computational Thinking Skillsets

children, regardless of gender. Throughout the curriculum, children learned about
robots that perform helpful jobs in the real world (such as hospital robots, robots that
clean like the Roomba, etc.). As a final project, children worked in groups to create
their own “Helpful Robots” robots using the KIBO robotics kit (described in the
next section) to do helpful classroom jobs, teach important ideas, and demonstrate
respectful behaviors and school rules.

Each week, children spent one hour learning and practicing new CT, engineering,
and robotics concepts such as sequencing, repeat loops, sensors, and conditional
statements. While the same curricular structure was used across classes and grades,
modifications were designed to make the curriculum developmentally appropriate.
For example, younger grades spent more time on new concepts while older grades
moved through the same concepts more quickly (See Table 1).

The exploration of new concepts continued for the first five weeks of the curriculum.
Children always worked in groups ranging from 2-4 children, based on class size
and factors decided upon by the classroom teacher. Children also gathered as a full
group for discussions, games, read-alouds, and/or showcases during each session.
The final two weeks of the curriculum were spent working on final “helpful robot”
creations and culminated in a final showcase of projects.

Technology Used

The Helpful Robots curriculum unit utilized an early prototype version of the KIBO
robotics kit, developed by the DevTech Research Group at Tufts University and now
manufactured by KinderLab Robotics. KIBO is a screen-free robotics construction
kit that children assemble, decorate, and then program using wooden programming
blocks to make the robot move and react to stimuli (Sullivan and Bers 2015). The
kit contains wheels, motors, a light output, and a variety of sensors that are easy for
children to attach to the robot . KIBO is programmed to move using interlocking
wooden programming blocks that each have a unique barcode. KIBO uses an
embedded scanner in the robot body to scan the barcodes one at a time, sending the
program to the robot (see Figure 1).

Technological learning tools like KIBO are perfect for engaging young girls
(and all young children) in CT for a few key reasons. First off, KIBO is designed
for open-ended play that allows girls to make almost anything they want based on
their own personal interests. KIBO can be used to act out a scene from a story or
movie, it can be decorated to look like an animal, it can be a carousel or a fire truck
(Sullivan, 2020). Therefore, it can be used to help explore almost any interest that
a young girl has (see figures 2 and 3 for examples of final Helpful Robot projects).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

222

Supporting Girls’ Computational Thinking Skillsets

Table 1. Scope and Sequence of the Helpful Robots Curriculum as described by
Sullivan (2016) and Sullivan & Bers (2018)

Lesson Kindergarten First Grade Second Grade

1

What is a robot? Who
are engineers? Children
learn the engineering
design process and build
sturdy robots that can
carry a ball of paper to the
recycling bin.

What is a robot? Who are
engineers? Children learn the
engineering design process
and build sturdy robots that
can carry a ball of paper to the
recycling bin.

What is a robot? Who are
engineers? Children learn the
engineering design process and
build sturdy robots that can carry a
ball of paper to the recycling bin.

2

What is a program
(pt. 1)? Children learn
sequencing & program
their robots to dance the
Hokey Pokey.

What is a program? Children
learn sequencing & program
their robots to dance the Hokey
Pokey.

What is a program? Children
learn sequencing & program their
robots to dance the Hokey Pokey.

3

What is a program (pt.
2)? Children continue
to practice sequencing a
program by navigating
masking tape maps on the
floor.

What are sensors? Children
add sound sensors to their
robots and program them to
wait for their clap.

What are sensors? Children add
sound sensors to their robots and
program them to wait for their
clap.

4

What are sensors?
Children add sound
sensors to their robots and
program them to wait for
their clap.

What are repeat loops
with number parameters?
Children practice estimation
while using repeat loops and
number parameters to make
their
robots navigate floor maps.

What are repeats loops with
number parameters and sensor
parameters? Children practice
estimation while using repeat
loops and number parameters to
make their robots navigate floor
maps. Next, children navigate the
same maps using distance and light
parameters.

5

What are repeats
loops with number
parameters? Children
practice estimation while
using repeat loops and
number parameters to
make their robots navigate
floor maps.

What are repeat loops with
sensor parameters?
Children learn about the
distance and light sensors and
program them to work with
their robots using repeat loops.

What are conditional
statements? Children learn about
conditional “if” blocks. They
program their robots to respond to
light and distance sensor input in
order to “decide” what to do.

6

Final Project- Children
plan, build, and begin to
program their Helpful
Robots.

Final Project- Children plan,
build, and begin to program
their Helpful Robots.

Final Project- Children plan,
build, and begin to program their
Helpful Robots.

7

Final Project- Children
finish their projects. In a
final exhibition, they share
their final projects.

Final Project- Children
finish their projects. In a final
exhibition, they share their
final projects.

Final Project- Children finish
their projects. In a final exhibition,
they share their final projects.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

223

Supporting Girls’ Computational Thinking Skillsets

KIBO was explicitly designed to have neutral aesthetic, making it equally appealing
to children of any gender. While many early childhood robots are designed to portray
“character” (think of Beebot’s friendly “bee” aesthetic or Dash’s blue, one-eyed,
robot appearance) KIBO takes the opposite approach, with neutral colored wooden
parts that do not attempt to look like anything until a child builds and decorates it.

With so few truly gender-neutral toys out there (even LEGO has long legacy of
being deemed a “boy’s toy”), neutrally designed kits like KIBO can be useful to
equally reach children in mixed gendered classrooms. Finally, KIBO engages girls
in hands-on building and tinkering as well as CT problem-solving and coding.

Supporting CT in Young Children

Throughout the curriculum, a variety of problem-solving, and specifically CT related,
skills and concepts were taught through the use of KIBO as well as unplugged games
and activities. Although the Helpful Robots curriculum was first designed in 2016,
before the Bers (2020) approach to CT in early childhood was released, it is still useful
to map the curriculum onto each of the 7 powerful ideas of CT presented by Bers.

Figure 1. Example KIBO robot and interlocking wooden programming blocks

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

224

Supporting Girls’ Computational Thinking Skillsets

This helps to illustrate how programmable robotics kits like KIBO can support the
learning of a range of CT skills and concepts that are developmentally appropriate
for young children. Table 2 connects each of the seven CT concepts presented by
Bers (2020) with activities that from in the Helpful Robots unit.

Figure 2. KIBO prototype decorated for the final to remind children to listen. This
was a final project created for the Helpful Robots curriculum

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

225

Supporting Girls’ Computational Thinking Skillsets

Figure 3. A final project designed to help carry school supplies for the Helpful
Robots curriculum

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

226

Supporting Girls’ Computational Thinking Skillsets

Strategies Employed

From the first glance, this may seem like a typical robotics and computer science
curricular unit. And in many ways, it was. However, in its implementation it differed
in a few ways that may have made it especially effective at increasing girls’ interest
in STEM and reducing gender stereotypes of both boys and girls. These include:

• Focusing on female role models – Prior research has shown that role-
modeling may be an important piece of engaging girls and women in STEM
(Amelink & Creamer, 2010). This unit was originally taught by an all-female
teaching team from Tufts University.

• Choosing a gender-neutral tech – The unit used the neutrally designed KIBO
robotics kit, as opposed to stereotypically “girly” materials or a traditionally
masculine STEM products like LEGO, programmable cars, or drones.

• Focusing on collaboration over competition – Prior research has shown
that girls and women may respond more to collaboration than competition
(e.g., Sullivan & Bers, under review; Rusk, Berg, & Resnick, 2005). Still,
many educational robotics initiatives that exist in schools are centralized
around competitive goals. This unit differed by focusing on collaboration in

Table 2. Exploring CT concepts through the Helpful Robots Unit

Bers (2020) CT Concepts “Helpful Robots” Curricular Activities

Algorithms – A series of ordered steps taken in
sequence.

Creating algorithms for the KIBO robot.
Playing unplugged sequencing focused games such as
“Coder Says” (a version of Simon Says).

Modularity – Breaking down tasks and
procedures into simpler, manageable units.

Breaking down Final Project tasks into smaller jobs
(e.g., planning code, creating program in small pieces,
decorating robot, etc.).

Control Structures – Controlling the sequence
in which a program is executed. Making
decisions based on conditions.

Exploring Repeat Loops and Conditional Statements with
KIBO’s block language.

Representation – Concepts can be represented
by symbols.

Learning that each block represents a different action for
KIBO.

Hardware/Software - Computing systems need
both hardware & software to operate.

Learning that KIBO works because of hardware (i.e.
the robot chassis, motors, sensors) and software (block
programming language).

Design Process – An iterative process used
to develop programs & artifacts with multiple
steps.

Children worked iteratively to revise, edit, and improve
their Helpful Robot projects over multiple class sessions.

Debugging – Fixing problems in our programs.
Children worked to solve problems with their robot’s
hardware as well as their syntactical problems with their
code.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

227

Supporting Girls’ Computational Thinking Skillsets

all aspects of the unit, from the theme itself (creating robots that help the
school community), to content taught (e.g., learning about robots that help
in hospitals and other settings), to the set-up activities (all children worked
collaboratively in partners or small groups).

These classroom practices, as well as other best practices for engaging girls in
CT and STEM in general, are explored further later in this chapter.

Efficacy of this Curricular Approach

The efficacy of the Helpful Robots curriculum on increasing girls’ interest in
engineering was published by Sullivan & Bers (2018a) in the International Journal of
Technology & Design Education. In this study by Sullivan & Bers (2018a), findings
from a sample of 105 children in K-2nd grade demonstrated that after completing
the curriculum, students identifying as girls had a statistically significant positive
change in their desire to be an engineer. This change was not present in a control
group from the school that did not receive the curriculum. Prior to the curriculum
intervention, pretest findings also showed that student identifying as boys were
significantly more interested in being an engineer than girls. After completing the
curriculum, there was no longer a significant difference between boys’ and girls’
interest in engineering. Additionally, there were no significant effects for gender
on mastery of CT concepts measured– indicating boys and girls mastered the
computational concepts equally well (Sullivan & Bers, 2018a). This, ultimately,
should be the goal: to create equitable learning situations where children of any
gender are able to demonstrate equal mastery.

It is important to note that in this study, the child participants themselves were
asked to share how they identified (not a teacher or parent). They were given the
opportunity to provide non-binary responses or to say they “didn’t know” however,
in this sample, all children chose to identify as either boys or girls. Future research
should aim to find samples of children that captures non-binary identities as well.

Other work by Sullivan & Bers found that the female teaching team may have
been especially important to the success of the program (Sullivan & Bers, 2018b).
This study demonstrated preliminary evidence that having a female instructor may
positively impact girls’ performance on certain programming tasks and reduce the
number of gender differences between boys and girls in their mastery of programming
concepts.

Taken together, findings suggest that a combination of technology choice, female
role-modeling of instructors, and the actual curricular content itself led to positive
outcomes for increasing girls’ interest in engineering, while supporting children in
mastering computational concepts equally well, regardless of gender.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

228

Supporting Girls’ Computational Thinking Skillsets

Practices to Support Girls’ CT Learning

In the previous case study, we saw that certain practices were successful at increasing
girls’ interest in engineering and teaching computational thinking to all young
children. Table 3 highlights key practices from the case study, as well as other best
practices for positively engaging girls in CT from an early age. The suggestions
presented in Table 3, while rooted in research on girls in STEM, are applicable for
young children of any gender identity.

The case study focused on the use of the KIBO robotics kit, but similar curricular
interventions could be implemented using a range of materials. Sullivan (2019)
explains that when choosing technologies and apps for young girls, one of the most
important factors educators should consider choosing applications that engage girls
as creators of digital content rather than consumers of digital content. Choosing
tools that prompt girls not just to watch but to do. These might include programming
applications like ScratchJr, robotics kits like KIBO or Code-a-Pillar, or DIY kits
from companies like Goldie Blox.

Table 3. Best practices for engaging girls in CT

Best Practices What it Might Look Like in the Classroom…

Choosing the Right Tools

 • Choosing open ended tools or applications that engage
girls as creators rather than consumers of their digital
experiences.
 • Choosing tools that support CT learning, engineering,
and design.

Integrative STEAM Approach
 • Rather than teaching CT concepts or coding as a
“standalone,” integrating CT with the arts, music, culture,
history and more to reach a wider range of students.

Fostering Collaboration

 • Providing girls with opportunities to work in
partnerships, small groups, and large groups.
 • Work toward collaborative STEM events. (i.e.,
showcases) as opposed to competitive ones (i.e., final
competitions or contests).

Breaking/Preventing/Disrupting Stereotypes
 • Talking about stereotypes that are presented in the
shows, books, and movies they are exposed to.
 • Proving examples that contradict negative stereotypes.

Female STEM Role Models

 • Expose all children (including boys and children of any
gender identity) to female STEM role models through books,
media, and real-world introductions.
 • Female educators should be sure to model their own
positive attitudes toward CT and STEM in general.

Language Matters: Choosing Words Wisely

 • Choose gender-neutral terms to talk about robots and
technology (e.g., “it” rather than “he”).
 • Carefully choosing how you talk about STEM concepts,
fields, and professionals.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

229

Supporting Girls’ Computational Thinking Skillsets

One of the key features of the Helpful Robots curriculum was the focus (explicit
and implicit) on collaboration, teamwork, and support. Over the past decade,
robotics competitions have become an increasingly popular way for K-12 students
to become involved with computer science and engineering in a way that has been
thought to increase student interest in math and science and (Hendricks, Alemdar,
& Olgletree, 2012; Petre & Price 2004). However, while robotics competitions may
motivate students to learn more about fields such as computer science, research
also demonstrates that gender gaps persist in these competitive environments and
appear to widen as students grow older and enter more advanced competitions
(Witherspoon, Schunn, Higashi, & Baehr, 2016). By offering opportunities for
children to explore coding, CT, and engineering in collaborative contexts, it may be
possible to increase the number of girls who master CT skills and decide to pursue
computational subjects and fields as they grow up.

The final key component of Helpful Robots curriculum worth highlighting is the
early age of the age of the curricular intervention: Kindergarten through second grade.
There is a growing body of work on the importance of early exposure to coding and
engineering content in order to help pique girls’ interest in technical STEM fields
from an early age (e.g., Sullivan, 2019; Sullivan & Bers, 2018a, Sullivan & Bers,
2018b; Sullivan, 2016). Other work has shown that even beginning in preschool,
children can successfully learn basic CT concepts (e.g., Elkin, Sullivan, & Bers,
2016). So why wait until later in life when stereotypes and beliefs about abilities
are more firmly ingrained? Instead, we should consider early childhood a pivotal
time to begin reaching girls with engaging STEM and CT content, and continue to
support them – and all children – throughout their educational journeys.

CONCLUSION

Five years later and we still have a ways to go in order to truly make CT and computer
science equitable and available for all students. This chapter has highlighted strategies
and approaches that educators can use to begin to address issues of STEM equity
early on. Ensuring that girls are exposed to developmentally appropriate tools that
encourage engineering, computational thinking, and creating from an early age through
collaborative contexts is key for setting the stage for success later on. Additionally,
it is important to expose all young children to female role models from STEM fields
and to carefully choosing gender-neutral terms to talk about technology to children.
Finally, explicitly talking to young children about stereotypes and addressing biases
from books and media will help to tackle the issue of stereotypes head on.

By following these guidelines and encouraging CT exposure early on, with a focus
on consciously choosing teaching tools and themes that will be equally appealing

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

230

Supporting Girls’ Computational Thinking Skillsets

to all students, we can take an important first step toward realizing the vision of
“computer science for all.”

ACKNOWLEDGMENT

The research presented in this chapter was supported by the National Science
Foundation [grant number DRL-1118897].

REFERENCES

Amelink, C. T., & Creamer, E. G. (2010). Gender differences in elements of the
undergraduate experience that influence satisfaction with the engineering major
and the intent to pursue engineering as a career. Journal of Engineering Education,
99(1), 81–92. doi:10.1002/j.2168-9830.2010.tb01044.x

American Psychological Association. (2015). Guidelines for psychological practice
with transgender and gender nonconforming people. The American Psychologist,
70(9), 832–864. doi:10.1037/a0039906 PMID:26653312

American Psychological Association. (2021). APA Resolution on Gender Identity
Change Efforts. American Psychological Association. Retrieved from: https://www.
apa.org/about/policy/resolution-gender-identity-change-efforts.pdf

Angevine, C., Cator, K., Roschelle, J., Thomas, S. A., Waite, C., & Weisgrau, J.
(2017). Computational Thinking for a Computational World. Academic Press.

Bers, M. (2020). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom (2nd ed.). Routledge Press.
doi:10.4324/9781003022602

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth
Development: From Playpen to Playground. Cary, NC: Oxford. doi:10.1093/acpro
f:oso/9780199757022.001.0001

Bureau of Labor Statistics. (2020). Labor Force Statistics from the Current Population
Survey. Retrieved from: https://www.bls.gov/cps/cpsaat11.htm

Chemaly, S. (2016, March 16). The problem with a technology revolution designed
primarily for men. Quartz. Retrieved from https://qz.com/640302/why-is-so-much-
of-our-new-technology-designed-primarily-for-men/

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.apa.org/about/policy/resolution-gender-identity-change-efforts.pdf
https://www.apa.org/about/policy/resolution-gender-identity-change-efforts.pdf
https://www.bls.gov/cps/cpsaat11.htm
https://qz.com/640302/why-is-so-much-of-our-new-technology-designed-primarily-for-men/
https://qz.com/640302/why-is-so-much-of-our-new-technology-designed-primarily-for-men/

231

Supporting Girls’ Computational Thinking Skillsets

Corbett, C., & Hill, C. (2015). Solving the equation: the variables for women’s success
in engineering and computing. The American Association of University Women.

Doerschuk, P., Liu, J., & Mann, J. (2007). Pilot summer camps in computing for
middle school girls. ACM SIGCSE Bulletin, 39(3), 4–8. doi:10.1145/1269900.1268789

Duhaime-Ross, A. (2014, September 25). Apple promised an expansive health
app, so why can’t I track menstruation? The Verge. Retrieved from https://www.
theverge.com/2014/9/25/6844021/apple-promised-an-expansive-health-app-so-
why-cant-i-track

Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO Robotics
Kit in Preschool Classrooms. Computers in the Schools, 33(3), 169–186. doi:10.1
080/07380569.2016.1216251

Gal-Ezer, J., & Stephenson, C. (2009). The current state of computer science in
US high schools: a report from two national surveys. Retrieved from Computer
Science Teachers Association website, https://csta.acm.org/Research/sub/ Projects/
ResearchFiles/StateofCSEDHighSchool.pdf

Hendricks, C. C., Alemdar, M., & Ogletree, T. W. (2012). The impact of participation
in VEX robotics competition on middle and high school students’ interest in pursuing
STEM studies and STEM-related careers. Paper presented at the ASEE Annual
Conference, San Antonio, TX. Retrieved from https://peer.asee.org/22069

Hill, C., Corbett, C., & St Rose, A. (2010). Why so few? Women in science, technology,
engineering, and mathematics. American Association of University Women.

Kafai, Y., & Margolis, J. (2014, October 7). Why the ‘coding for all’ movement
is more than a boutique reform. Washington Post. Retrieved from https:// www.
washingtonpost.com/news/answer-sheet/wp/2014/10/17/whythe-coding-for-all-
movement-is-more-than-a-boutique-reform

Kuhn, D., Nash, S. C., & Brucken, L. (1978). Sex role concepts of two- and three-
year-olds. Child Development, 49(2), 445–451. doi:10.2307/1128709 PMID:679779

McKown, C., & Weinstein, R. S. (2003). The development and consequences of
stereotype-consciousness in middle childhood. Child Development, 74(2), 498–515.
doi:10.1111/1467-8624.7402012 PMID:12705569

Metz, S. S. (2007). Attracting the engineering of 2020 today. In R. Burke & M.
Mattis (Eds.), Women and Minorities in Science, Technology, Engineering and
Mathematics: Upping the Numbers (pp. 184–209). Edward Elgar Publishing.
doi:10.4337/9781847206879.00018

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.theverge.com/2014/9/25/6844021/apple-promised-an-expansive-health-app-so-why-cant-i-track
https://www.theverge.com/2014/9/25/6844021/apple-promised-an-expansive-health-app-so-why-cant-i-track
https://www.theverge.com/2014/9/25/6844021/apple-promised-an-expansive-health-app-so-why-cant-i-track
http://https://csta.acm.org/Research/sub/Projects/ResearchFiles/StateofCSEDHighSchool.pdf
http://https://csta.acm.org/Research/sub/Projects/ResearchFiles/StateofCSEDHighSchool.pdf
https://peer.asee.org/22069
http://https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/whythe-coding-for-all-movement-is-more-than-a-boutique-reform
http://https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/whythe-coding-for-all-movement-is-more-than-a-boutique-reform
http://https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/whythe-coding-for-all-movement-is-more-than-a-boutique-reform

232

Supporting Girls’ Computational Thinking Skillsets

Miner, A. S., Milstein, A., Schueller, S., Hegde, R., Mangurian, C., & Linos, E.
(2016). Smartphone-based conversational agents and responses to questions about
mental health, interpersonal violence, and physical health. JAMA Internal Medicine,
176(5), 619–625. doi:10.1001/jamainternmed.2016.0400 PMID:26974260

National Science Foundation. (2017). Women, Minorities, and Persons with
Disabilities in Science and Engineering: 2017. Special Report NSF 17-310. Available
at www.nsf.gov/statistics/wmpd/

Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning.
Education and Information Technologies, 9(2), 147–158. doi:.0000027927.78380.60
doi:10.1023/B:EAIT

Rusk, N., Berg, R., & Resnick, M. (2005). Rethinking robotics: Engaging girls in
creative engineering. Proposal to the National Science Foundation, Cambridge.
Retrieved from https://www.media.mit.edu/publications/rethinking-robotics-
engaging-girls-in-creative-engineering-2/

Ryan, E. G. (2013, November 8). Smartphones are made for giant man-hands.
Jezebel. Retrieved from https://jezebel.com/smartphones-are-made-for-giant-man-
hands-1461122433

Signorella, M. L., Bigler, R. S., & Liben, L. S. (1993). Developmental differences
in children’s gender schemata about others: A meta-analytic review. Developmental
Review, 13(2), 147–183. doi:10.1006/drev.1993.1007

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s
math performance. Journal of Experimental Social Psychology, 35(1), 4–28.
doi:10.1006/jesp.1998.1373

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity
and performance. The American Psychologist, 52(6), 613–629. doi:10.1037/0003-
066X.52.6.613 PMID:9174398

Steele, C. M. (1999). Thin ice: “Stereotype threat” and black college students.
Atlantic Monthly, 284(2), 44–47, 50–54.

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test
performance of African-Americans. Journal of Personality and Social Psychology,
69(5), 797–811. doi:10.1037/0022-3514.69.5.797 PMID:7473032

Strawhacker, A., & Sullivan, A. (2021). Computational Expression: How dramatic
arts support computational thinking in young children. In M. U. Bers (Ed.),
Computational thinking and coding in early childhood. IGI Global.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://www.nsf.gov/statistics/wmpd/
https://www.media.mit.edu/publications/rethinking-robotics-engaging-girls-in-creative-engineering-2/
https://www.media.mit.edu/publications/rethinking-robotics-engaging-girls-in-creative-engineering-2/
https://jezebel.com/smartphones-are-made-for-giant-man-hands-1461122433
https://jezebel.com/smartphones-are-made-for-giant-man-hands-1461122433

233

Supporting Girls’ Computational Thinking Skillsets

Sullivan, A. (2016). Breaking the STEM Stereotype: Investigating the Use of Robotics
to Change Young Children’s Gender Stereotypes About Technology and Engineering
(Doctoral Dissertation). Tufts University, Medford, MA.

Sullivan, A. (2019). Breaking the STEM Stereotype: Reaching Girls in Early
Childhood. Rowman & Littlefield.

Sullivan, A. (2020). STEM Tools, Games, and Products to Engage Girls in Pre-K
through Early Elementary School. Technological Horizons in Education.

Sullivan, A., & Bers, M. U. (2018a). Investigating the use of robotics to increase
girls’ interest in engineering during early elementary school. International Journal of
Technology and Design Education, 29(5), 1033–1051. doi:10.100710798-018-9483-y

Sullivan, A., & Bers, M. U. (2018b). The Impact of Teacher Gender on Girls’
Performance on Programming Tasks in Early Elementary School. Journal of
Information Technology Education: Innovations in Practice, 17, 153–162.
doi:10.28945/4082

Sullivan, A., & Bers, M. U. (2019). VEX Robotics Competitions: Gender differences
in student attitudes and experiences. Journal of Information Technology Education,
18, 97–112. doi:10.28945/4193

Sullivan, A., & Bers, M. U. (Manuscript submitted for publication). Increasing female
representation on VEX robotics competition teams: Results from a three-year study.
International Journal of Technology and Design Education.

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo: Engaging young
children in programming and engineering. In Proceedings of the 14th International
Conference on Interaction Design and Children (IDC ’15). ACM.

Tufekci, Z. (2013, November 4). It’s a man’s phone. Medium. Retrieved from https://
medium.com/technology-and-society/its-a-mans-phone-a26c6bee1b69

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33–35. doi:10.1145/1118178.1118215

Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Baehr, E. C. (2016). Gender,
interest, and prior experience shape opportunities to learn programming in robotics
competitions. International Journal of STEM Education, 3(1), 18. doi:10.118640594-
016-0052-1

Zweben, S., & Bizrot, B. (2015). 2014 Taulbee survey. Retrieved from the Computing
Research Association website, https://cra.org/wp-content/uploads/2015/06/2014-
Taulbee-Surv

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://medium.com/technology-and-society/its-a-mans-phone-a26c6bee1b69
https://medium.com/technology-and-society/its-a-mans-phone-a26c6bee1b69
https://cra.org/wp-content/uploads/2015/06/

234

Supporting Girls’ Computational Thinking Skillsets

ADDITIONAL READING

Bers, M. U. (2017). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge. doi:10.4324/9781315398945

Corbett, C., & Hill, C. (2015). Solving the equation: the variables for women’s success
in engineering and computing. The American Association of University Women.

Hill, C., Corbett, C., & St Rose, A. (2010). Why so few? Women in science, technology,
engineering, and mathematics. American Association of University Women.

Sullivan, A. (2017). Breaking Gender Stereotypes Through Early Exposure to
Robotics. Education Week: Education Futures: Emerging Trends in K-12.

Sullivan, A. (2019). Breaking the STEM Stereotype: Reaching Girls in Early
Childhood. Rowman & Littlefield.

Sullivan, A. (2019). Supporting Girls’ STEM Confidence & Competence: 7 Tips
for Early Childhood Educators. EdTech Review.

Sullivan, A., & Bers, M. U. (2019). VEX Robotics Competitions: Gender differences
in student attitudes and experiences. Journal of Information Technology Education,
18, 97–112. doi:10.28945/4193

Sullivan, A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing, & Coding with
KIBO: Using KIBO Robotics to Foster Computational Thinking in Young Children:
Proceedings of the International Conference on Computational Thinking Education.
Wanchai, Hong Kong.

KEY TERMS AND DEFINITIONS

KIBO: A screen-free programmable robotics kit for young children with blocks,
sensors, modules, and art platforms.

Stereotype: A widely held but fixed and oversimplified image or idea of a
particular type of person, group, or thing.

Stereotype Threat: A socially premised psychological threat that arises when
one is in a situation for which a negative stereotype about one’s group applies.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

235

Supporting Girls’ Computational Thinking Skillsets

ENDNOTE

1 Use of the words and phrases “female voices,” “women,” “girls,” and “female”
throughout this chapter refers to anyone self-identifying as female. The American
Psychological Association (APA) defines “gender identity” as “a person’s
deep felt, inherent sense of being a girl, woman, or female; a boy, a man, or
male; a blend of male or female; [or another] gender” as well as nonbinary
individuals (APA, 2015, p. 862; APA, 2021). While this chapter focuses on
female-identifying individuals, the best practices and suggestions presented
are applicable to working with young children of any gender identity.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

236

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

DOI: 10.4018/978-1-7998-7308-2.ch012

ABSTRACT

This chapter discusses understandings of coding and computational thinking education
for students with disabilities. The chapter describes the special education system
in the United States, including limitations in how computer science education is
made available to students receiving special education services. The chapter then
provides a summary of research in computer science education for students with
disabilities, including both high-incidence and low-incidence disabilities. A case
study of a young student with a mild disability learning in a general education
computational thinking program is then presented, and the implications of the case
study for future research directions are discussed.

Including Students
With Disabilities in the

Coding Classroom
Tess Levinson

Tufts University, USA

Libby Hunt
Tufts University, USA

Ziva Hassenfeld
Brandeis University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 237

Including Students With Disabilities in the Coding Classroom

INTRODUCTION

Sophie1, a 5-year-old girl enters Ms. Locke’s kindergarten class smiling. She sits
on her spot on the carpet and waits for class to begin. The girls around her argue
over who will sit next to who. She seems intentionally oblivious. At some point,
she is drawn into this seating dance as another student asks if she will move so that
said girl can sit next to another student. She obliges, undisturbed. Soon Ms. Locke
begins class and sings the robot part song. Sophie stands delighted and dances along,
moving side to side: “The body is connected to the motor; the motor is connected to
the... so move robot move.” Today is the day the teacher informs the class they will
finally get to play with the KIBO robot. The teacher has organized and sorted all the
KIBO parts into different storage bins in the “materials” part of her classroom. The
students are broken into pairs and called into a line to collect their materials. Sophie
and her partner, Pete, wait patiently as students mull over the KIBO bins. Finally,
it is their turn. Sophie and Pete take turns filling their tray with all the KIBO parts.

Soon they find a quiet place on the rug and begin building. They work
collaboratively, taking turns, co-constructing a path for the KIBO robot to travel and
the corresponding program that will allow KIBO to travel. Sophie plans her project
in her Design Journal and references that plan as she and Pete create their program.
Instead of becoming discouraged when the scanning of the coding blocks does not
work, they work together to problem-solve, and Sophie scans the coding blocks
with the robot. One would not know from this short snapshot of the classroom that
Sophie does not talk in school. She doesn’t speak out loud to Pete as they build their
program, and her design plan does not include the voice recorder and associated
blocks. Still, she and Pete work together, excited by the possibilities KIBO offers
for creativity and expression. In this chapter we will explore what Sophie’s teacher
did to accommodate her disability so that she could access KIBO learning alongside
her peers. More broadly, we will discuss how computer science education can be
used towards inclusive classrooms and pedagogy.

STUDENTS WITH DISABILITIES AND COMPUTER SCIENCE

Fourteen percent of public-school students in the United States ages 3-21 receive
special education services under the Individuals with Disabilities Education Act
(Congress, 1975) for some form of disability, which can range from specific learning
disorder, to speech or language impairment, to autism spectrum disorder (Students
with Disabilities, 2020). As each student’s individual needs vary, so do the special
education services provided. A student with a high-incidence disability, a category
including but not limited to learning disabilities, emotional and/or behavioral

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

238

Including Students With Disabilities in the Coding Classroom

disorders, and speech or language impairments, may spend most of their day with
their peers in the general education classroom and only receive an hour or so of special
education services for domain-specific instruction (Gage et al., 2012). Students with
disabilities of this nature comprise the majority of students with disabilities (Gage et
al., 2012; National Center for Education Statistics, 2021). In contrast, students with
low-incidence disabilities have disabilities that affect learning across domains, such
as significant sensory or cognitive impairments (Congress, 1975). Depending on
the nature of their disability and needs, students with more-significant intellectual
disabilities or other domain-general disabilities may spend most of the day receiving
special education services, meaning much of their education is provided by the
special education teacher. As suggested by the term, the minority of students with
disabilities have disabilities that are classified as low-incidence.

Over 60% of students with disabilities spend more than 80% of their day in
the general education classroom (National Center for Education Statistics, 2021).
However, students with disabilities do not have equal access to computer science
and computational thinking education as their nondisabled peers, which ultimately
leads to knowledge gaps for students with disabilities in increasingly important
21st century skills. For example, while approximately 10% of students without
disabilities scored below proficient for the National Assessment of Educational
Progress technology and engineering literacy content area, nearly half of students with
disabilities scored below proficient (National Center for Education Statistics, 2021).
Groups and initiatives such as AccessCSForAll and Deaf Kids Code are increasing
access to computer science and computational thinking programming for kids with
disabilities (deafkidscode.org, n.d.; Ladner & Israel, 2016). Additionally, researchers
are developing dedicated educational programs for students with disabilities, as well
as best practices for accommodation, in order to improve the quality of computer
science education for these students.

Many of the specific programs and interventions relating to computer science
and coding instruction for students with disabilities have focused on developing
educational programs for students with low-incidence disabilities and autism (Taylor,
2018). Much of this research focuses on educational pedagogies based around explicit
instruction. In a curriculum based on explicit instruction, a student might learn, for
example two control structures, and then practice them by programming a specific
game. Using evidence-based explicit instruction, computer programming has been
taught to students with Down syndrome, autism, and intellectual disability (Pivetti
et al., 2020). For example, Knight, Wright, and DeFreese (2019) used an explicit
instruction pedagogy to teach an elementary student with autism and significant
behaviors to code using the Ozobot robot. Following the instruction period, the
student was able to generalize the coding skills to new coding challenge (Knight
et al., 2019). However, skills taught through explicit instruction do not necessarily

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

239

Including Students With Disabilities in the Coding Classroom

generalize. This means a child may be able to use a skill within a specific setting but
cannot use the skill in a new setting or to create an unknown program. For example,
Taylor (2018) used explicit instruction to teach preschool, kindergarten, and first
grade students with intellectual disabilities to use the Dash robot, and although all
the students learned to code the robot, no student was able to generalize the skills
to complete a novel coding challenge (Taylor, 2018).

These evidence-based explicit instructionist pedagogies used by special educators
are in tension with the constructionist pedagogies for computational thinking (Bers,
2020). Constructionist models allow for student-driven play to drive learning, whereas
explicit instruction provides a structure for learning. For example, Munoz et al (2018)
taught students with autism to create video games using an instructionist pedagogy
that provided students with the prompt, characters, and code (Munoz et al., 2018).
Through this instructionist video-game learning curriculum, students with autism
learned computational thinking skills such as abstraction, problem decomposition,
and data representation. In contrast, in a constructionist robotics curriculum focused
on cause and effect, students participated in guided free-play involving coding and
sensors (Albo-Canals et al., 2018). The primary goal of Albo-Canals et al.’s (2018)
research was understanding student engagement with educational robots, rather than
computational thinking learning, but the findings suggest that the students gained
some computational thinking knowledge, including sequencing and cause-effect.
There has not yet been research specifically on computational thinking learning
through constructionist curricula for students with disabilities.

Most research on computer science education for students with disabilities has
focused on students with low-incidence disabilities and autism who may receive more
significant accommodations or modifications to their educational materials. However,
the majority of students with disabilities have high-incidence disabilities, and as
mentioned above, most of them receive education at least partially within the general
education setting (Gage et al., 2012; Students with Disabilities, 2020). Services for
students with high-incidence disabilities, which include specific learning disabilities
(e.g., reading disabilities, math disabilities), speech and language impairments,
and emotional and behavioral disorders, are often targeted to a student’s specific
area of need. For example, a student with a specific learning disability in reading
may receive special education services in literacy and language arts but might not
receive individualized attention or accommodations in computer science. Bouck
and Yadav (2020) showed that students with high-incidence disabilities in an upper
elementary school resource room learned computational thinking concepts such as
algorithms through a combination of explicit instruction and unplugged activities.
They also suggest use of instructional methods such as pre-teaching vocabulary
and providing information in multiple formats (Bouck & Yadav, 2020). Israel et
al. (2015) reinforce the use of multiple instructional methods and emphasize the

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

240

Including Students With Disabilities in the Coding Classroom

use of Universal Design for Learning practices, which uses multiple means of
representation, action and expression, and engagement to create an inclusive and
accessible curriculum (Israel et al., 2015).

Here, we describe a case study of a student with a disability served primarily in
the general education classroom, selective mutism. Selective mutism is defined as “a
complex childhood anxiety disorder characterized by a child’s inability to speak and
communicate effectively in select social settings, such as school” (American Speech-
Language-Hearing Association, n.d.). The condition must cause impairment either
academically or socially and must not be explained by another communication or
developmental disorder (Viana et al., 2009). Although speech or language impairment
is classified as high-incidence with regard to special education services, selective
mutism is thought to be a relatively rare diagnosis, with prevalence estimated to be
between 0.47% and 0.76% (Viana et al., 2009). There is no known single cause of
selective mutism, and while there is evidence suggesting an association with anxiety
disorders, some students also express externalizing behaviors or ADHD (Viana et
al., 2009). The complexity and variations of the disorder create further challenges
for a teacher of a student with selective mutism, as there is no single approach to
accommodate a student with this diagnosis. The curriculum presented in this case
study was not intended as a program or intervention to teach computer science
or coding to students with disabilities. Rather, by accommodating the needs of a
student with a disability, the teacher was able to create an inclusive and accessible
constructionist, coding environment. As such, the case study we present explores
exciting new possibilities for using constructionist pedagogies in teaching computer
science with students with high-incidence disabilities.

CASE STUDY: CODING AS ACCESSIBLE COMMUNICATION

At first or even second glance, Sophie’s classroom participation was similar to that
of any other child in her kindergarten class. She sat amid her peers during carpet
circle times, raised her hand during participatory questions, and turned her head to
anyone who addressed her. Sophie has selective mutism and does not speak, but she
was fully included in her class’s computer science programming. Sophie and her
kindergarten class took part in a larger research project investigating how religious
and secular elementary schools used tangible robotics as an opportunity to foster
character development (see Chapter 10 in this book). As a research team, we were
interested in the different ways that kindergarten-age children would interact with
one another in the context of robotics, and how their classroom environment would
influence those interactions.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

241

Including Students With Disabilities in the Coding Classroom

Ms. Locke’s classroom was a place where Sophie’s disability was accommodated
and accepted. Ms. Locke explained Sophie’s disability to the researcher’s when
explaining an accommodation made to the curriculum, and throughout the
implementation of the KIBO tangible robotics curriculum, Ms. Locke made notes
about how she modified discussion-based activities to allow non-verbal participation.
Ms. Locke made turned open-ended questions into “raise your hand if you agree”
questions, allowing her to contribute non-verbally without standing out among
her peers. Ms. Locke also seemed to have an eye out for Sophie. In one classroom
activity we observed, we watched as Sophie began to look a little despondent while
her peers shouted their ideas. Ms. Locke noticed and turned to Sophie, saying,
“Tell me, should we do a dog?” Sophie smiled and nodded. The acceptance and
accommodation of Sophie’s disability modeled by Ms. Locke appeared to translate
to the other students’ acceptance and inclusion of Sophie. In another activity, while
creating underwater scenes with crayons, Sophie’s classmate leaned over the table
to look at her drawing. “I love yours! Look how Sophie did hers!” her classmate
remarked, drawing everyone’s attention to Sophie. “So pretty,” another classmate
said. Sophie did not look up but smiled slightly and continued coloring.

Throughout the tangible robotics curriculum, Sophie had the same partner, her
classmate Pete. In her notes, Ms. Locke writes that Pete “continues to show kindness
and patience towards his partner. Sophie is very quiet, and Pete takes time to explain/
talk with Sophie about KIBO.” In the hands-on robotics activity, Pete and Sophie
worked to build the KIBO robotics kit together. Sophie poked Pete to get his attention.
He never denied her the chance to touch the KIBO robot even when she was having
difficulty scanning the tangible programming blocks. Ms. Locke wrote in her lesson
notes: “Pete didn’t take KIBO away and didn’t do the scanning himself, he just held
his friend’s hands from above and controlled her hand movements.” At another
point in the curriculum, Ms. Locke used Sophie and Pete’s program as an example
for the whole class. Although Pete and Ms. Locke did the verbal presentation, they
consistently used the plural pronouns “them and their” to give ownership to Pete and
Sophie, not just Pete. In another class discussion about who helped other students
work with their KIBOs, Pete raised his hand. Sophie noticed and raised her hand.
Ms. Locke called on Pete. He announced to the class that Sophie had helped him
because she scanned the barcodes of the tangible block program for him. Sophie
smiled big and looked down, but the smile lingered for moments after.

We found through analysis of our ethnographic data and video observations that
Sophie demonstrated more communicative acts during KIBO robotics activities than
during discussion-based activities. She ran from spot to spot with her classmates
during “Robot Corners,” a game about differentiating between items that are or are
not robots, but during sharing circles, she appeared distracted and uninterested.
While this finding may feel intuitive, this serves as a reminder of the role of tactile

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

242

Including Students With Disabilities in the Coding Classroom

and kinesthetic learning tools for students with communication-related disabilities.
The fact that this particular robotics kit, KIBO, centers on student expression and the
teaching of coding as a language for communication, makes this finding even more
promising for future applications of KIBO as a tool for students with communication-
related disabilities to learn computational thinking.

While Sophie offered consistent communicative gestures whenever she was
engaged with the KIBO robotics kit, no activity in the curriculum showed her
engagement with the tangible tool more than her final project. Figure 1 below shows
her planning sheet in her Design Journal for her final project. The assignment asked
the students to create “Gratitude Floats” celebrating things special to the students
and their community: Because this lesson took place close to Thanksgiving, this
was an opportunity for the students to examine the tenets of their school and reflect
on what they were grateful for.

GRATITUDE FLOATS (15 min) Ask students to think about what makes their
school special. Often, things that are special to you have some sort of meaning
that signifies who you are or where you come from. Tell students that today, they
will be making “Gratitude Floats,” similar to a Thanksgiving Parade, celebrating
their school and what makes it special. Ask students: What’s important to you? Is it
important to other people in the school too? What is different about our school than
other schools? Students then should draw images of the things they felt made their
school special. These images will later be used to decorate their Gratitude Floats.

The project continued:

PLAN THE PARADE (15 min) Before giving the students their KIBO, have the
students plan out their parade. They should imagine if they could take their parade
around the school, where they will go (e.g., other classrooms, the cafeteria, the
chapel) and why. If time allows, children could even draw their route in the form of
a map in their Curiosity Journals.

The blocks Sophie circled in her project plan suggest that she had a developing
technical understanding of the KIBO programming language. First, she circled
that she would use both a begin block and end block, both necessary for any
KIBO program. This is significant because it ties into a basic understanding of
the foundations of programming and connects to the powerful idea of algorithms
and sequencing. Second, she circled movement blocks in her program, suggesting
an expanded vocabulary of programming functions. Third, she circled both the
light bulb and the light block, suggesting an emergent understanding of hardware-
software correspondence. Although she did not yet show a mastery of this concept,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

243

Including Students With Disabilities in the Coding Classroom

for example, selecting the light and distance sensors without the corresponding
blocks, this is significant as it connects to the powerful ideas of representation and
multiple tools of communication.

While Sophie’s project planning sheet showed her technical understanding of the
KIBO robotics kit and block programming language, the sheet also revealed that Sophie
saw the KIBO programming language as a language that she could use, express in,
and communicate with. Particularly noteworthy was that Sophie felt empowered to
circle every sensor except the voice recorder. Ms. Locke created a classroom culture
in which Sophie was included and her disability was accommodated, and Sophie
was comfortable in this classroom to express herself using every accommodating
aspect of the KIBO language while rejecting the unaccommodating aspects. Within
the KIBO language, she was able to advocate for and accommodate her own needs,
making the language work for her.

Figure 1. Sophie’s final project plan (IGI, 2021)
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

244

Including Students With Disabilities in the Coding Classroom

CONCLUSION

Sophie’s classroom experience suggests that even young children with disabilities
can access mainstream, constructionist computer science learning environments
with classroom accommodations, and that this opportunity to explore the coding
platform leads to creative expression and classroom communication using the
coding language. Her planning sheet communicates that she felt empowered to use
the KIBO robotics kit to build her “Gratitude Float.” She communicated in her plan
that the program would require use of all the robotic sensors, except one, the voice
recorder. With the classroom accommodations provided by her teacher, she could
compose and self-express using the KIBO robotics language and was able to write
programs expressing and accommodating her individual needs.

Sophie’s successful experience reinforces previous research on students with
disabilities and computer science on how to incorporate Universal Design for Learning
and other accommodations into computer science instruction (Israel et al., 2015).
For example, Israel et al. suggest that teachers give students with disabilities roles
within project groups that allow them to focus on their strengths, while altering
expectations for the student as necessary (Israel et al., 2015). While working with
Pete, Sophie scanned the code (a non-verbal task), while Pete verbally shared their
work with the class. The constructionist tangible robotics curriculum used in Ms.
Locke’s class also used many of Israel et. al.’s suggested practices, for example by
providing the students with a culturally-relevant project or including unplugged
activities to provide for multiple means of action and expression (Israel et al., 2015).
Sophie’s success with this curriculum suggests that teachers can use these practices
to create an inclusive and accommodating coding classroom even for students as
young as Kindergarten.

Computer science education for students with disabilities is important. These
students are entitled to equally access all educational opportunities as their non-
disabled peers, including computer science education (IDEA, 2004). Although
most students with disabilities do not have computer-science or robotics specific
accommodations, previous research suggests applying the supports already in place
for other classroom subjects will lead to successful learning outcomes in computer
science for students with disabilities (Snodgrass et al., 2016). We saw this with
Sophie, who was included, engaged, and ultimately successful in the student-centered
tangible robotics curriculum because her teacher’s existing supports allowed for
alternate methods of communication. For other students, existing supports might
include access to assistive technology, KIBO blocks modified to include braille, or
multiple modes of providing instructions.

Recently, there have been increasing opportunities for students with disabilities
to learn computer science and access computer science curricula. As mentioned

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

245

Including Students With Disabilities in the Coding Classroom

earlier, organizations and initiatives such as AccessCSForAll and Deaf Kids Code
are bringing computer science opportunities to more students with disabilities
(deafkidscode.org, n.d.; Ladner & Israel, 2016). Educational programs in robotics
and computational thinking are being developed and assessed for students with
disabilities using traditional special education practices (Knight et al., 2019; Munoz
et al., 2018; Taylor et al., 2017). As computer science education becomes more
available to young children, students with disabilities have the right to learn these
21st century skills alongside their nondisabled peers. Our work with Sophie suggests
even young students with disabilities can learn computer science in student-centered
learning environments alongside their nondisabled peers, including experiencing
the benefits of the student-centered computer science pedagogy. By expanding their
existing supports to new computer science curricula, teachers can offer inclusive
and exciting computer science opportunities to engage students with and without
disabilities in new ways of thinking and expression.

ACKNOWLEDGMENT

This research was supported by the Templeton World Charity Foundation.

REFERENCES

Albo-Canals, J., Martelo, A. B., Relkin, E., Hannon, D., Heerink, M., Heinemann,
M., Leidl, K., & Bers, M. U. (2018). A Pilot Study of the KIBO Robot in Children
with Severe ASD. International Journal of Social Robotics, 10(3), 371–383.
doi:10.100712369-018-0479-2

American Speech-Language-Hearing Association. (n.d.). Practice Portal: Clinical
Topics: Selective Mutism. American Speech-Language-Hearing Association.
Retrieved February 15, 2020, from https://www.asha.org/Practice-Portal/Clinical-
Topics/Selective-Mutism/#collapse_8

Bers, M. U. (2020). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge. doi:10.4324/9781003022602

Bouck, E. C., & Yadav, A. (2020). Providing Access and Opportunity for
Computational Thinking and Computer Science to Support Mathematics for
Students With Disabilities. Journal of Special Education Technology. Advance
online publication. doi:10.1177/0162643420978564

Congress, U. (1975). The Individuals with Disabilities Education Act–IDEA.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.asha.org/Practice-Portal/Clinical-Topics/Selective-Mutism/#collapse_8
https://www.asha.org/Practice-Portal/Clinical-Topics/Selective-Mutism/#collapse_8

246

Including Students With Disabilities in the Coding Classroom

deafkidscode.org. (n.d.). Our Story. Retrieved February 15, 2020, from https://www.
deafkidscode.org/our-story

Gage, N. A., Lierheimer, K. S., & Goran, L. G. (2012). Characteristics of Students
With High-Incidence Disabilities Broadly Defined. Journal of Disability Policy
Studies, 23(3), 168–178. doi:10.1177/1044207311425385

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia, T. (2015).
Empowering K–12 Students With Disabilities to Learn Computational Thinking
and Computer Programming. Teaching Exceptional Children, 48(1), 45–53.
doi:10.1177/0040059915594790

Knight, V. F., Wright, J., & DeFreese, A. (2019). Teaching Robotics Coding to a
Student with ASD and Severe Problem Behavior. Journal of Autism and Developmental
Disorders, 49(6), 2632–2636. doi:10.100710803-019-03888-3 PMID:30734176

Ladner, R. E., & Israel, M. (2016). For all” in” computer science for all.
Communications of the ACM, 59(9), 26–28. doi:10.1145/2971329

Munoz, R., Villarroel, R., Barcelos, T. S., Riquelme, F., Quezada, A., & Bustos-
Valenzuela, P. (2018). Developing Computational Thinking Skills in Adolescents
With Autism Spectrum Disorder Through Digital Game Programming. IEEE
Access: Practical Innovations, Open Solutions, 6, 63880–63889. doi:10.1109/
ACCESS.2018.2877417

National Center for Education Statistics. (2021). Digest of Education Statistics:
2019. U.S. Department of Education. https://nces.ed.gov/programs/digest/d19/

Pivetti, M., Di Battista, S., Agatolio, F., Simaku, B., Moro, M., & Menegatti, E.
(2020). Educational Robotics for children with neurodevelopmental disorders: A
systematic review. Heliyon, 6(10), e05160. doi:10.1016/j.heliyon.2020.e05160
PMID:33072917

Snodgrass, M. R., Israel, M., & Reese, G. C. (2016). Instructional supports for
students with disabilities in K-5 computing: Findings from a cross-case analysis.
Computers & Education, 100, 1–17. doi:10.1016/j.compedu.2016.04.011

Taylor, M. S. (2018). Computer Programming With Pre-K Through First-Grade
Students With Intellectual Disabilities. The Journal of Special Education, 52(2),
78–88. doi:10.1177/0022466918761120

Taylor, M. S., Vasquez, E., & Donehower, C. (2017). Computer Programming with
Early Elementary Students with Down Syndrome. Journal of Special Education
Technology, 32(3), 149–159. doi:10.1177/0162643417704439

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.deafkidscode.org/our-story
https://www.deafkidscode.org/our-story
https://nces.ed.gov/programs/digest/d19/

247

Including Students With Disabilities in the Coding Classroom

The Condition of Education: Students with Disabilities. (2020). National Center of
Education Statistics. https://nces.ed.gov/programs/coe/indicator_cgg.asp

Viana, A. G., Beidel, D. C., & Rabian, B. (2009). Selective mutism: A review
and integration of the last 15 years. Clinical Psychology Review, 29(1), 57–67.
doi:10.1016/j.cpr.2008.09.009 PMID:18986742

ADDITIONAL READING

Bargagna, S., Castro, E., Cecchi, F., Cioni, G., Dario, P., Dell’Omo, M., Di Lieto, M.
C., Inguaggiato, E., Martinelli, A., Pecini, C., & Sgandurra, G. (2019). Educational
Robotics in Down Syndrome: A Feasibility Study. Technology. Knowledge and
Learning, 24(2), 315–323. doi:10.100710758-018-9366-z

González-González, C. S., Herrera-González, E., Moreno-Ruiz, L., Reyes-Alonso,
N., Hernández-Morales, S., Guzmán-Franco, M. D., & Infante-Moro, A. (2019).
Computational Thinking and Down Syndrome: An Exploratory Study Using the
KIBO Robot. Informatics (MDPI), 6(2), 25. doi:10.3390/informatics6020025

Israel, M., Ray, M. J., Maa, W. C., Jeong, G. K., Lee, C. E., & Lash, T. (2018). School-
Embedded and District-Wide Coaching in K-8 Computer Science: Implications for
Including Students with Disabilities. Journal of Technology and Teacher Education,
26(3), 471–501.

Israel, M., Jeong, G., Ray, M., & Lash, T. (2020). Teaching Elementary Computer
Science through Universal Design for Learning. Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, 1220–1226. 10.1145/3328778.3366823

Knight, V. F., Wright, J., Wilson, K., & Hooper, A. (2019). Teaching Digital, Block-
Based Coding of Robots to High School Students with Autism Spectrum Disorder
and Challenging Behavior. Journal of Autism and Developmental Disorders, 49(8),
3113–3126. doi:10.100710803-019-04033-w PMID:31055684

Ladner, R. E., Stefik, A., Naumann, J., & Peach, E. (2020). Computer Science
Principles for Teachers of Deaf Students. 2020 Research on Equity and Sustained
Participation in Engineering, Computing, and Technology (RESPECT), 1–4.

Stefik, A., Ladner, R. E., Allee, W., & Mealin, S. (2019). Computer Science
Principles for Teachers of Blind and Visually Impaired Students. Proceedings of
the 50th ACM Technical Symposium on Computer Science Education, 766–772.
10.1145/3287324.3287453

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://nces.ed.gov/programs/coe/indicator_cgg.asp

248

Including Students With Disabilities in the Coding Classroom

Wille, S., Century, J., & Pike, M. (2017). Exploratory Research to Expand
Opportunities in Computer Science for Students with Learning Differences.
Computing in Science & Engineering, 19(3), 40–50. doi:10.1109/MCSE.2017.43

KEY TERMS AND DEFINITIONS

Constructionism: A student-directed pedagogy in which students’ learning is
self-directed based on individual questions and interests.

Explicit Instruction: A structured, teacher-directed pedagogy in which teachers
provide direct instruction to students, provide students with a scaffolded learning
environment, and assess student learning based on correctness of answers.

General Education Environment: The learning environment (including
curriculum, teachers, standards, social environment, and physical environment)
provided to children without disabilities.

High-Incidence Disability: A category of disabilities that includes specific
learning disorders, speech or language impairments, ADHD, and emotional and
behavioral disabilities.

Individuals With Disabilities in Education Act: The law that mandates special
education services be provided to students with disabilities, and that students with
disabilities are entitled to a free appropriate public education in the least restrictive
learning environment.

Low-Incidence Disability: A category of disabilities that affect learning
across domains, such as significant sensory impairments or significant cognitive
impairments.

Special Education Services: Services provided by the school or school
district to support students with disabilities, including special education teachers,
paraprofessionals, and specialized curricula.

ENDNOTE

1 All names are pseudonyms.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Section 4

Evaluation

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

250

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-7998-7308-2.ch013

ABSTRACT

This chapter describes the development and validation of TechCheck, a novel
instrument for rapidly assessing computational thinking (CT) skills in 5-9 years
old children. TechCheck assessments can be administered in classroom or online
settings regardless of whether students have prior knowledge of coding. This
assessment probes six domains of CT described by Bers (2018) as developmentally
appropriate for young children including algorithms, modularity, control structures,
representation, hardware/software, and debugging. TechCheck demonstrates good
psychometric properties and can readily distinguish among young children with
different CT abilities.

INTRODUCTION

Numerous studies have demonstrated that children as young as four years of age
are capable of learning to code (Kazakoff & Bers, 2014; Bers, 2018; Clements
& Gullo, 1984; Strawhacker & Bers, 2018). In the process of acquiring coding
skills, children often simultaneously develop a set of thought processes known as
computational thinking (CT) that are useful for framing and solving problems using
computers and other technologies (Wing, 2006; Wing 2011). CT is valuable for
coding but also applicable to other disciplines including problem-solving in everyday

TechCheck:
Creation of an Unplugged Computational
Thinking Assessment for Young Children

Emily Relkin
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 251

TechCheck

life. Promoting the acquisition of CT is accordingly one of the goals of computer
science (CS) education (Grover & Pea, 2013; Lye & Koh, 2014; NRC, 2011). One
of the challenges to achieving this goal has been the lack of availability of suitable
instruments for assessing CT skills in young children (Lockwood & Mooney, 2018;
Grover & Pea, 2013; Lee et al., 2011; Román-González et al., 2019). A reliable and
validated CT assessment tool can be used to monitor young students’ CT progress
and allow educators to gauge the effectiveness of CS lessons. CT assessment can
also be used to identify students in need of extra support as well as those with
exceptional talents. CT assessment can provide new insights into how children’s
CT abilities develop and can assist in the development of new curricula and best
practices for CS education.

Challenges of CT Assessment in Young Children

Assessing CT in young children requires taking into account stages of cognitive
development. A young child’s literacy, numeracy, and abstract reasoning undergo
gradual development (Piaget, 1971). Their developmental stage can impact their
ability to understand certain CS concepts and their readiness for CT assessment
(Chen et al., 2017). A kindergarten student may not be able to fully understand CT
principles such as “if-then” conditionals (Barrouillet & Lecas, 1999; Janveau-Brennan
& Markovits, 1999; Muller et al., 2001). Aspects of abstract representations such
as programming variables may be inaccessible to them. They may express magical
thinking as an explanation for the action of computers and other technology (Flavell
et al., 1993; Mioduser et al., 2009). These and other constraints may affect the design
and implementation of CT assessments for young children.

Instruments for assessing CT in older students and adults have existed for some
time (Fraillon at al., 2018; Werner at al., 2012; Chen at al., 2017). A common
approach involves the use of coding exercises that are designed to elicit the same
type of logic and reasoning that is involved in programming. However, coding-based
assessments require prior knowledge of a coding language and can conflate coding
ability with CT skills (Yadav et al., 2017). Assessments that require knowledge
of coding cannot readily be used to assess baseline CT abilities in coding-naive
students. In addition, research with older children has indicated that coding can
become automatic. Therefore, coding exercises may not be the most effective way
to probe CT (Werner at al., 2014).

It is advantageous to be able to measure CT skills in children regardless of whether
they have past knowledge or experience with computer programming (Grover et al.,
2014). With this in mind, our group began exploring the use of code-free instruments
to assess CT skills in children. Our basis for creating a coding-free CT assessment
was the realization that CT is exercised in the context of many “unplugged” activities

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

252

TechCheck

(Bell & Vahrenhold, 2018; Zapata-Cáceres et al., 2020). Unplugged activities typically
involve puzzles, games and exercises that exemplify CS concepts without requiring
explicit knowledge of coding or the use of computers (see Relkin & Strawhacker,
Chapter 3). Unplugged activities have been used to teach CS concepts for over two
decades (e.g., CSUnplugged.com; code.org) and in recent years have started to be
used for the purposes of assessment. It has been argued that unplugged assessments
offer advantages because they do rely on a particular computer language or curricula
and are therefore purer reflections of CT abilities (Dagiene & Futschek, 2008).

Conceptual Foundations for Unplugged CT Assessment

Unplugged CT activities involve the participation in tasks that exercise analogous
thinking processes to those involved in CT. However, there is a lack of consensus
about the precise definition of CT and its subdomains. A number of definitions have
been put forth, most of which place CT outside of the context of early childhood.
(Aho, 2012; Barr & Stephenson, 2011; Cuny at al., 2010; Grover & Pea, 2013;
Kalelioğlu at al., 2016; Lu & Fletcher, 2009; Shute at al., 2017; Wing, 2006; Wing,
2008; Tang at al., 2020). To operationalize unplugged CT assessment, it is important
to use a conceptual framework that is developmentally appropriate for young children.

To identify CT’s cognitive subdomains in young children, Bers (2018) drew on
Papert’s definition of “powerful ideas” as skills within a domain or discipline that
are individually meaningful and change how we think or perceive the world and
problem solve (Papert, 1980). This led to the formation of the “Seven Powerful Ideas”
that operationalize CT in a developmentally appropriate way that can be taught to
young children through a CS or robotics curriculum (Bers, 2018). These powerful
ideas include algorithms, modularity, control structures, representation, hardware/
software, design process, and debugging (see table 1). To create a coding-free
assessment of CT, we identified unplugged activities that were associated with six
of these domains and confirmed the associations through the consensus of a panel
of child development and computer science professionals.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

253

TechCheck

What Features Should a CT Assessment for
Young Children Ideally Possess?

Assessment of young children requires careful attention to certain elements of
design and content selection that differ from those involved in creating comparable
instruments for adults (Goldstein & Flake, 2016). Assessment instruments for young
children must use developmentally appropriate language, symbols and tasks to
assure that factors such as literacy, numeracy and fine motor skills are not limiting
(Chen et al., 2017; Sattler, 2014). Activities and artifacts employed must be familiar
and non-threatening to young children and as free as possible from cultural biases
(Tang et al., 2020; McMillan, 2013; Mullis & Martin, 2019). In light of the shorter
attention span of young children (Moyer & Gilmer, 1953) and the likelihood of
test fatigue, the duration of the assessment must be kept sufficiently brief to allow
routine use in educational settings (Basu et al., 2016; Werner et al., 2014; Chen et
al., 2017). Educational assessments should not be so lengthy and or complex that
teachers are unable to administer them in routine classroom settings. Likewise, it may
be impractical to require that assessment be carried out one-on-one because of the
constraints of class time. Ideally, teachers who are not particularly skilled at coding
themselves should be able to administer CT assessments. As emphasized above,
the administration should be possible regardless of the student’s past programming
experience. The rating system employed should use simple outcome categories
and/or numeric scores that are straightforward to calculate and interpret (Koretz et
al., 1992). A CT assessment for children should demonstrate good construct and
face validity (essentially, confirmation that the assessment measures what it was
designed to measure) as well as acceptable inter-rater reliability and sensitivity to

Table 1. This table describes each of the developmentally appropriate seven powerful
ideas of Computer Science that were selected by Bers (2018) and used as domains
of CT in TechCheck

Bers’ Seven Powerful Ideas Description

Algorithms A step-by-step sequential process that helps achieve a goal/task

Modularity Breaking up large tasks into smaller parts; reusing modules

Control Structures Recognizing patterns and repetition, cause and effect

Representation Symbolic representation, forming models

Hardware/Software Understanding that smart objects are not magical but are human-
engineered

Debugging Finding and fixing problems, troubleshooting

Design Process An iterative and creative process often involving perseverance

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

254

TechCheck

change. These and other considerations can make the creation of assessments for
early childhood a particularly challenging enterprise (Snow et al., 2008).

Features of the TechCheck CT Assessment

TechCheck is a 15 item, multiple-choice, unplugged CT assessment that was
created at Tufts University in 2018 for children ages 5-9. The assessment is easy
to administer to students regardless of their familiarity with coding. The concepts
behind TechCheck followed from experience with a platform-specific CT assessment
instrument called TACTIC-KIBO that we previously designed. TACTIC-KIBO
required one-on-one administration as well as familiarity with the KIBO robotics
platform (Relkin, 2018; Relkin & Bers, 2019). In contrast, TechCheck is platform-
independent, meaning it does not require knowledge of programming or the use of
a computer to be completed. Six of the “Seven Powerful Ideas” of computer science
(Bers, 2018) that are developmentally appropriate for early childhood are probed
by this instrument. The remaining powerful idea, Design Process, was not included
in the assessment because it is an iterative and open-ended process that does not
lend itself to a multiple-choice format. A multiple-choice format was used because
it simplifies data collection, helps make scoring more objective and facilitates
administration to large numbers of students simultaneously.

TechCheck can be administered one-on-one, to whole classrooms, or even to
geographically distributed groups. It can be printed out or displayed on a device
(the mode of presentation does not alter the “unplugged” nature of the assessment
content). A proctor reads out loud the stem (question/challenge) for each of the 15
items. Children respond by checking off or clicking on one of the answer options.
The children can understand answer options as they have little to no text in them (see
Table 2). Each correct response is awarded one point, with a maximum total score
of 15 points. Two practice questions are included at the beginning of the assessment
to familiarize students with the format but are not included in the scoring. This is
a “forced choice” assessment, meaning all questions must be answered. Students
are instructed to guess if they do not know the answer and informed that there is
no penalty for guessing. The administration time varies by grade but in most cases,
TechCheck can be completed in under 20 minutes. The use of an answer key makes
scoring straightforward. Mean scores and distribution by grade have were determined
in nearly 800 students first and second grade.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

255

TechCheck

Design and Validation

After developing prototypes of TechCheck questions, we assembled a group of
nineteen evaluators (CS researchers, educators and students) with various levels
of expertise in CT to judge whether or not the questions embodied the domains of
Bers’ Seven Powerful Ideas. Inter-rater agreement was then assessed. There was an
average agreement of 81% among raters. Fleiss’ Kappa indicated consensus among
evaluators about the CT domain most associated with each question κ = 0.63 (95% CI)
p < 0.001. Although all prototypes were judged to probe the intended CT domains,
some questions were rejected because their content was judged to fall outside the
common knowledge base of typical 5-to-9-year-olds (Relkin et al., 2020).

We initially validated TechCheck in a cohort of first and second graders participating
in a research study involving the CAL-KIBO curriculum. TechCheck showed good
reliability and validity according to measures of classical test theory (CTT) and item
response theory (IRT). CTT and IRT are models that are commonly used to examine
items on an assessment and individual responses to better understand their relationship
to the underlying concept being measured (Kingsbury & Weiss 1983). TechCheck’s
discrimination between skill levels was found to be adequate. The difficulty was
suitable for first graders and low for second graders. TechCheck scores correlated
moderately with a previously validated CT assessment tool (TACTIC-KIBO).

Figure 1. A Density plot of scores on original TechCheck for first and second grade.
A slight ceiling effect is evident second graders

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

256

TechCheck

In a prospective longitudinal study, Relkin et al., (2021) used TechCheck to
compare children receiving the CAL-KIBO programming curriculum (N=667) to
a control group (N=181) who participated in typical classroom activities without
coding (No-CAL). A sequential regression showed TACTIC-KIBO scores and a
child’s baseline TechCheck score predicted the endpoint TechCheck score (Relkin
& Bers, 2020). Over the course of the study, children who received CAL-KIBO
improved on TechCheck (Mchange= 0.94, p<0.001) whereas the No-CAL group did
not change significantly (Mchange=0.27, p=.07). This change equated to the change
in TechCheck scores estimated to occur over approximately 6 months of typical
development. Generalized Linear Mixed Model (GLMM) and Bayesian analyses
revealed that exposure to the CAL-KIBO curriculum predicted the TechCheck
outcome score, taking into account differences in baseline TechCheck performance
and other demographic and environmental effects. Children who received CAL-
KIBO showed the most improvement in the CT domains algorithms, modularity,
representation. The significant changes observed in TechCheck scores in this study
demonstrates the utility of this measure for longitudinal assessment.

Although results using TechCheck in first and second graders were encouraging,
there was a noticeable ceiling effect in the second-grade cohort manifesting in a smaller
window to observe change compared to the first-grade cohort. The assessment for
second grade children ages 7-9 was subsequently modified to increase item difficulty.
We conducted an item analysis of all the questions and modified those that had low
difficulty, discrimination, and/or point biserial correlations. In the initial pilot test
of the assessment, five experimental questions were also added to test whether any
of the newer questions performed better than the previous ones. All modifications
to original questions and three of the five experimental questions were included in
the final version of TechCheck-2.

When we began administering TechCheck to kindergarten students, we realized that
further modifications were required. Previous research has shown that the working
memory of children of kindergarten age (~5 years old) limits them to hold an average
of three items in immediate memory, compared to children in first and second grade
(~6-9 years old) who can hold an average of four items (Cowan, 2016; Simmering,
2012). This limit can potentially impact kindergartener’s performance on multiple-
choice assessments. Consequently, we reduced the number of response options
from four to three in TechCheck-K (the Kindergarten version). We accomplished
this by systematically eliminating one of a pair of distractors for each item that had
close to the same response probabilities. We followed this procedure in an effort to
maintain the overall difficulty and discrimination levels on a par with the original
version of TechCheck. An example of a TechCheck question for each of the three
grade levels is shown in Table 2. The impact of TechCheck-K and TechCheck-2 on
the score distributions by grade are shown in Figure 2.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

257

TechCheck

Table 2. Sample Debugging Symmetry Problem and Algorithms Missing Symbol
Series questions for kindergarteners, first graders, and second graders

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

258

TechCheck

REFLECTIONS AND FUTURE DIRECTIONS

Our experience to date in the development, validation and research application of
TechCheck has been gratifying. TechCheck has been successfully administered in a
variety of formats including in-person or remotely, online and on paper, to groups
of students and individuals in many countries. The instrument has been translated
into several languages in addition to English (e.g., Spanish, Turkish, Chinese) and
is currently being used in a variety of educational and research settings around the
world.

Despite these successes, TechCheck can be further improved. The multiple-choice
format of the instrument does not lend itself to creative self-expression and open-
ended problem solving which is a significant part of CT. We are currently examining
other testing formats including more naturalistic and open-ended formats that may
better address this shortcoming. Román-González at al., (2019) pointed out that CT
assessments often focus on concepts rather than “practices and perspectives”, and
as a consequence become “static and decontextualized.” To address this concern,
strategies such as game-based assessment may offer a window on CT applied to real-
time problem-solving. Currently, TechCheck is designed for K-2nd grades. There is
potential to extend this to other grades, including preschool and higher elementary

Figure 2. This figure shows a density plot with the distribution of TechCheck scores
by grade for the revised and updated formats of the assessment

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

259

TechCheck

grade levels. Future studies should also explore whether the assessment can be used
with neuro-diverse children and other contexts.

ACKNOWLEDGMENT

I would like to thank the principal investigator of this project, Marina Bers as well
as our Project Coordinators, Angela de Mik and Megan Bennie for their many
contributions to this work. I would like to thank my many colleagues at the DevTech
research group at Tufts University who assisted in the development and field testing
of TechCheck . Lastly, I would like to thank all of the educators, parents, and
students who participated in this study. This work was funded by the Department
of Defense Education Activity (DoDEA) grant entitled “Operation: Break the Code
for College and Career Readiness.” Unique Entity Identifier: “WORLDCL10” and
the Department of Education PR/Award Number: U411C190006

REFERENCES

Barrouillet, P., & Lecas, J. (1999). Mental models in conditional reasoning and working
memory. Thinking & Reasoning, 5(4), 289–302. doi:10.1080/135467899393940

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016).
Identifying middle school students’ challenges in computational thinking-based
science learning. Research and Practice in Technology Enhanced Learning, 11(1),
13. doi:10.118641039-016-0036-2 PMID:30613246

Bell, T., & Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It
Work? In H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures Between
Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the
Occasion of His 60th Birthday. doi:10.1007/978-3-319-98355-4_29

Bers, M. U. (2018). Coding as a playground: Programming and computational
thinking in the early childhood classroom. Routledge.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017).
Assessing elementary students’ computational thinking in everyday reasoning and
robotics programming. Computers & Education, 109, 162–175. doi:10.1016/j.
compedu.2017.03.001

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

260

TechCheck

Clements, D. H., & Gullo, D. F. (1984). Effects of Computer Programming on
Young Children’s Cognition. Journal of Educational Psychology, 76(6), 1051–1058.
doi:10.1037/0022-0663.76.6.1051

Code.org. (2019). Retrieved from https://code.org/

Dagiene, V., & Stupurienė, G. (2016). Bebras–a sustainable community building
model for the concept based learning of informatics and computational thinking.
Informatics in Education, 15(1), 25–44. . doi:10.15388/infedu.2016.02

Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd
ed.). Prentice Hall.

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2018). International
Computer and Information Literacy Study. ICILS 2018: Technical Report.

Goldstein, J., & Flake, J. K. (2016). Towards a framework for the validation of
early childhood assessment systems. Educational Assessment, Evaluation and
Accountability, 28(3), 273–293. doi:10.100711092-015-9231-8

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12.
In Proceedings of the 2014 conference on Innovation & technology in computer
science education (pp. 57-62). ACM. 10.1145/2591708.2591713

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state
of the field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with
causal conditionals. Developmental Psychology, 35(4), 904–911. doi:10.1037/0012-
1649.35.4.904 PMID:10442860

Kazakoff, E. R., & Bers, M. U. (2014). Put your robot in, Put your robot out:
Sequencing through programming robots in early childhood. Journal of Educational
Computing Research, 50(4), 553–573. doi:10.2190/EC.50.4.f

Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive
mastery testing and a sequential mastery testing procedure. In New horizons in
testing (pp. 257–283). Academic Press. doi:10.1016/B978-0-12-742780-5.50024-X

Koretz, D., McCaffrey, D. F., Klein, S. P., Bell, R. M., & Stecher, B. M. (1992).
The Reliability of Scores from the 1992 Vermont Portfolio Assessment Program.
Academic Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://code.org/

261

TechCheck

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J.,
& Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads,
2(1), 32–37. doi:10.1145/1929887.1929902

Lockwood, J., & Mooney, A. (2018). Computational Thinking in education: Where
does it fit? A systematic literary review. International Journal of Computer Science
Education in Schools, 2(1), 41–60. doi:10.21585/ijcses.v2i1.26

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012

McMillan, J. H. (2013). Classroom assessment: Principles and practice for effective
instruction (6th ed.). Pearson/Allyn and Bacon.

Mioduser, D., Levy, S. T., & Talis, V. (2009). Episodes to scripts to rules: Concrete-
abstractions in kindergarten children’s explanations of a robot’s behavior. International
Journal of Technology and Design Education, 19(1), 15–36. doi:10.100710798-
007-9040-6

Moyer, K., & Gilmer, B. V. H. (1953). The Concept of Attention Spans in Children.
The Elementary School Journal, 54(1), 464–466. doi:10.1086/458623

Mullis, I. V., & Martin, M. O. (2019). PIRLS 2021 Assessment Frameworks.
International Association for the Evaluation of Educational Achievement. Retrieved
from https://eric.ed.gov/?id=ED606056

National Research Council. (2011). Report of a workshop on the pedagogical aspects
of computational thinking. National Academies Press.

Piaget, J. (1971). Developmental stages and developmental processes. In D. R.
Green, M. P. Ford, & G. B. Flamer (Eds.), Measurement and Piaget (pp. 172–188).
McGraw-Hill.

Relkin, E. (2018). Assessing young children’s computational thinking abilities
(Master’s thesis). Retrieved from ProQuest Dissertations and Theses database.
(UMI No. 10813994)

Relkin, E., & Bers, M. (2021). TechCheck-K: A Measure of Computational Thinking
for Kindergarten Children. In 2021 IEEE Global Engineering Education Conference
(EDUCON). IEEE. Retrieved from https://sites.tufts.edu/devtech/files/2021/05/1487.
pdf

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://eric.ed.gov/?id=ED606056
https://sites.tufts.edu/devtech/files/2021/05/1487.pdf
https://sites.tufts.edu/devtech/files/2021/05/1487.pdf

262

TechCheck

Relkin, E., & Bers, M. U. (2019). Designing an Assessment of Computational Thinking
Abilities for Young Children. In L. E. Cohen & S. Waite-Stupiansky (Eds.), STEM for
Early Childhood Learners: How Science, Technology, Engineering and Mathematics
Strengthen Learning (pp. 85–98). Routledge. doi:10.4324/9780429453755-5

Relkin, E., & Bers, M. U. (2020). Exploring the Relationship Among Coding,
Computational Thinking, and Problem Solving in Early Elementary School Students
[Symposium]. Annual Meeting of the American Educational Research Association
(AERA), San Francisco, CA.

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and
Validation of an Unplugged Assessment of Computational Thinking in Early
Childhood Education. Journal of Science Education and Technology, 29(4), 482–498.
Advance online publication. doi:10.100710956-020-09831-x

Relkin, E., de Ruiter, L., & Bers, M. U. (2021). Learning to Code and the Acquisition
of Computational Thinking by Young Children. Computers & Education, 169,
104222. Advance online publication. doi:10.1016/j.compedu.2021.104222

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining Assessment
Tools for a Comprehensive Evaluation of Computational Thinking Interventions.
In Computational Thinking Education (pp. 79–98). Springer. doi:10.1007/978-981-
13-6528-7_6

Sattler, J. M. (2014). Foundations of behavioral, social and clinical assessment of
children. Jerome M. Sattler, Publisher, Incorporated.

Snow, C. E., Van Hemel, S. B., & Committee on Developmental Outcomes
Assessments for Young Children. (2008). Early childhood assessment: Why, what,
and how. Washington, DC: National Academies Press.

Strawhacker, A., & Bers, M. U. (2018). What they learn when they learn coding:
Investigating cognitive domains and computer programming knowledge in young
children. Educational Technology Research and Development. Advance online
publication. doi:10.100711423-018-9622-x

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational
thinking: A systematic review of empirical studies. Computers & Education, 148,
103798. doi:10.1016/j.compedu.2019.103798

Werner, L., Denner, J., & Campe, S. (2014). Using computer game programming to
teach computational thinking skills. Learning, Education And Games, 37. Retrieved
from https://dl.acm.org/citation.cfm?id=2811150

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://dl.acm.org/citation.cfm?id=2811150

263

TechCheck

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance
assessment: measuring computational thinking in middle school. Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education, 215–220.
10.1145/2157136.2157200

Wing, J. (2011). Research notebook: Computational thinking—What and why?
The Link Magazine. Retrieved from https://www.cs.cmu.edu/link/research-
notebookcomputational-thinking-what-and-why

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33–35. doi:10.1145/1118178.1118215

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an
emerging competence domain. In Technical and vocational education and training
(Vol. 23, pp. 1051–1067). doi:10.1007/978-3-319-41713-4_49

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020).
Computational Thinking Test for Beginners: Design and Content Validation. In
2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 1905-1914).
IEEE. 10.1109/EDUCON45650.2020.9125368

ADDITIONAL READING

Brennan, K., Haduong, P., & Veno, E. (2020). Assessing Creativity in Computing
Classrooms. Creative Computing Lab.

Clarke-Midura, J., Silvis, D., Shumway, J. F., Lee, V. R., & Kozlowski, J. S. (2021).
Developing a kindergarten computational thinking assessment using evidence-
centered design: The case of algorithmic thinking. Computer Science Education,
31(2), 1–24. doi:10.1080/08993408.2021.1877988

Hogenboom, S. A., Hermans, F. F., & Van der Maas, H. L. (2021). Computerized
adaptive assessment of understanding of programming concepts in primary school
children. Computer Science Education, 1–30. doi:10.1080/08993408.2021.1914461

Relkin, E., & Bers, M. U. (2021). Factors Influencing Learning of Computational
Thinking Skills in Young Children. Virtual Annual Meeting of the American
Educational Research Association (AERA).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.cs.cmu.edu/link/research-

264

TechCheck

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017).
Which cognitive abilities underlie computational thinking? Criterion validity of
the Computational Thinking Test. Computers in Human Behavior, 72, 678–691.
doi:10.1016/j.chb.2016.08.047

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142–158. doi:10.1016/j.edurev.2017.09.003

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational
thinking through Scratch in K-9. Computers & Education, 141, 103607. doi:10.1016/j.
compedu.2019.103607

KEY TERMS AND DEFINITIONS

CAL-KIBO: A KIBO robotics coding curriculum appropriate for children in
preschool through second grade that combines teaching programming skills, self-
expression, and literacy.

KIBO: A screen-free programmable robotics kit for young children with blocks,
sensors, modules, and art platforms.

Powerful Ideas: Skills within a domain or discipline that are individually
meaningful and change how we think or perceive the world and problem solve. Bers’
seven powerful operationalize domains of CT that are developmentally appropriate
for young children.

ScratchJr: A free block-based programming application for young children.
TACTIC-KIBO: A CT measure that requires knowledge of coding with the

KIBO robot. The assessment classifies children into one of four programming
proficiency levels.

TechCheck: A “unplugged” assessment of Computational Thinking (CT)
designed for children in kindergarten, first and second grades. TechCheck- K is for
kindergarteners, TechCheck-1 is for first graders, and TechCheck-2 is for second
graders The TechCheck assessments can be used to assess CT regardless of a child’s
familiarity with coding.

Unplugged: Describes activities such as games and puzzles that aid the teaching
and learning of computer science but without requiring the use of computers and
other technologies.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

265

DOI: 10.4018/978-1-7998-7308-2.ch014

ABSTRACT

Computational thinking (CT), in line with the constructionist perspective, is often
best displayed when children have the opportunity to demonstrate their skills
by producing creative coding artifacts. Performance-based or project portfolio
assessments of young children’s coding artifacts are a rich and useful approach to
explore how children develop and apply CT abilities. In this chapter, the authors
examine various rubrics and assessment tools used to measure the levels of
programming competency, creativity, and purposefulness displayed in students’
coding artifacts. The authors then discuss the development of ScratchJr and KIBO
project rubrics for researchers and educators, including examples to illustrate how
these highly diverse projects provide insight into children’s CT abilities. Finally,
the authors conclude with implications and practical strategies for using rubrics
in both educational and research settings.

INTRODUCTION

Elisa is in first grade. She wants to create a ScratchJr project where she throws a
birthday party in space and invites her classmates to eat a birthday cake with aliens.
Elisa has a complex plan to include multiple scenes in her project. Using the paint

Examining Young Children’s
Computational Artifacts

Apittha Unahalekhaka
Tufts University, USA

Madhu Govind
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

266

Examining Young Children’s Computational Artifacts

editor tool on ScratchJr, she customizes her characters: a girl who looks like and
represents herself, a rocket, aliens, a birthday cake, and friends. The first scene is
at the street in front of her house. Elisa starts her program with the green flag. A
voice recording plays, “Please come to my birthday party,” after which a purple
rocket flies off into space. As soon as the rocket lands on the moon (second scene),
character-Elisa and her friends are greeted by an alien that looks like a jellyfish.
This jellyfish brings out a blue gigantic birthday cake that gets bigger every time
Elisa taps on the cake. After the cake triples in size, it jumps, makes a pop noise
and spins away. The project ends in a bedroom (third scene) where character-Elisa
wakes up, realizes her space birthday party is all a dream, and exclaims with a text
bubble, “That was a strange dream I had!”

In the kindergarten classroom down the hall, Shiro sits down with his KIBO
robotics kit, excited to return to his final project. His teacher had just read aloud the
book Pete the Cat: Robo-Pete and tasked the class with a final project to create their
own KIBO robot-friend. Shiro wonders, “What will my KIBO look like? I like to
play soccer, so I want KIBO to play soccer with me.” He looks at the programming
blocks and begins to assemble a program: Begin, Forward, Turn Left, Turn Right,
Shake, End. Shiro scans each block carefully using the KIBO robot’s embedded
barcode scanner and then runs his program. Shiro’s teacher comes to check on his
progress and asks Shiro about his project idea. Shiro explains how his robot-friend
is moving around on the soccer field to kick the soccer ball into the goal. Shiro’s
teacher comments, “That’s a neat idea! Is there anything you could add to show that
KIBO made the goal?” Shiro thinks for a moment and looks over at his blocks. He
notices the lightbulb module, and a light goes off in his head. He responds, “I’m
going to add a white light at the end to show that KIBO made the goal!” He places
the White Light On block between the Shake and End blocks, inserts the lightbulb
module into one of KIBO’s ports, and scans his revised program. He exclaims, “I
love it! My KIBO scored the winning goal, hooray!”

Millions of computational artifacts like Elisa’s and Shiro’s have been created,
remixed, and shared all around the world. Each of these projects is special in its
own regard comprising unique sequences of coding blocks, but they all share one
thing in common: each project reflects something about the child’s ability to think
computationally. In Chapter 1 of this book, Dr. Bers writes, “As children make
computational media, they develop computational thinking (CT). This involves
more than just problem-solving or logical thinking; it means gaining the concepts,
skills, and habits of mind to express themselves through coding.” In this chapter
we will explore this notion further by examining how children develop and display
their CT abilities through producing creative and personally meaningful projects.

We begin this chapter by presenting existing literature on the assessment of
children’s coding projects. We then introduce two rubrics we developed for ScratchJr

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

267

Examining Young Children’s Computational Artifacts

and KIBO that assess the coding concepts and project design elements displayed
in children’s computational artifacts. Next, we discuss some of the similarities and
differences between the two rubrics, highlighting the CT opportunities afforded
by different interfaces. Finally, we end the chapter with implications and practical
strategies for using project rubrics in educational and research settings.

Background

Questionnaires and task-based assessments are the two most common ways to
assess children’s programming mastery (Shute, Sun & Asbell-Clarke, 2017). These
forms of assessments involve children answering a set of pre-made questions or
performing tasks that typically have one correct solution. However, some studies
have used performance-based assessments to evaluate young children’s programming
competencies from their projects (Basu, 2019; Denner, Werner, & Ortiz, 2012;
Wangenheim et al., 2018; Wilson, Hainey, & Connolly, 2013). Performance-based
assessments allow children to demonstrate their knowledge and skills by making
authentic products that are driven by their individual interests and identities (Chen
& Martin, 2000). These assessments provide insights into how children apply their
acquired cross-disciplined skills into their coding projects.

Performance-based (or often called project portfolio) analysis on children’s coding
projects is a rich and concrete approach to explore how children develop and apply
their understanding of programming concepts. For example, one study conducted
by Brennan and Resnick (2012) compared Scratch (a block-based programming
language for children ages eight and up) project portfolios between a novice child
programmer and an expert child programmer. The expert child experimented with a
wider variety and number of coding blocks across projects compared to the novice
child. The duration of experience with Scratch seemed to affect how these two children
displayed their understanding of programming concepts. The expert programmer
child in the study had been coding with Scratch for three years, whereas the novice
programmer child had just started for one week. Through examining each child’s
Scratch program, researchers could better identify the computational skills and
concepts each child had acquired and displayed through their projects.

One drawback of a performance-based assessment is that it only captures the
product and fails to acknowledge the process of creation. The process of creation, or
design process, is a component of CT needed for young children to create solutions
to problems (Bers, 2020). Brennan & Resnick (2012) acknowledged that after
interviewing the child, the project portfolio analysis did not accurately reflect the
child’s CT. In other words, the use of particular coding blocks in the child’s project
did not necessarily mean that the child could explain how those programming
concepts actually worked. Thus, instead of analyzing final projects exclusively, it

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

268

Examining Young Children’s Computational Artifacts

may be beneficial to include incomplete coding projects in children’s portfolios
(Brennan & Resnick, 2012) or utilize a “system of assessments” (Grover, 2017) to
provide a more holistic view of children’s understanding.

It is important to note that researchers and educators may be interested in
understanding different aspects of students’ coding artifacts, or products created
through the activity of computational making. This next section explores coding
project rubrics that were specifically developed for researchers versus educators.

Project Rubrics for Researchers

A few studies have explored the development and use of coding project rubrics to
assess students’ coding performances. Although each rubric differs in the categories
of criteria, the two most common categories are programming concepts and project
design. Whereas programming concepts refer to concrete skills and computational
thinking practices necessary for students to plan and construct their coding artifacts,
project design refers to the range of aesthetic elements used in the project. The
project design criterion generally includes character and stage customization (Funke
& Geldreich, 2017). For example, Denner et al. (2012) developed a rubric to grade
coding projects on Stagecast Creator software, a visual programming language for
children and adults to create games. In this rubric, the three main criteria are 1)
programming, 2) code organization, and 3) design. Although most rubrics examine
both the programming and design components of projects, some studies focus only
on the programming (Moreno-León & Robles, 2015).

In addition to rubric criteria, another essential component of rubrics is calculating
and interpreting projects’ final scores or mastery levels. Different researchers have
used different approaches to determine final scores. For example, Wangenheim et
al. (2018) calculated the final project scores by adding raw scores from all criteria,
dividing them by the maximum possible score, and categorizing the total scores into
ten competency levels. Other studies, instead of having one final project score, used
percentages to report how many times each concept occurs, which helps researchers
understand the most frequently used concepts (Denner et al., 2012; Wilson et al.,
2013). For example, Wilson et al. (2013) reported that the most common competencies
found in 8-11-year-old children’s projects were sequencing and events (if statements).
The least frequently displayed competencies were random numbers and keyboard
input. Another study by Funke & Geldreich (2017) had an additional rubric criterion
used to determine children’s overall level of understanding, in addition to calculating
the frequency of each competency.

One lacking element from researchers’ rubrics is the design process, which is
more commonly incorporated in educators’ coding rubrics. Why might this be the
case? Although both researchers and educators have similar interests in examining

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

269

Examining Young Children’s Computational Artifacts

children’s computational artifacts, they may have differing aims for how to use the
project scores. For instance, researchers might probe into specific characteristics of
projects or use rubric scores to understand the kinds of programming competencies
exhibited in a project. On the other hand, educators may use rubrics to track students’
design thinking or as an instructional tool to understand how to better support
student learning. In this next section, we discuss coding project rubrics developed
by and for educators.

Project Rubrics for Educators

As computer science education becomes increasingly prevalent in schools,
educators may also find coding project rubrics useful for their classrooms. The
Creative Computing Lab at the Harvard Graduate School of Education shared a
report synthesizing 50 teachers’ highly diverse rubrics used to assess their students’
coding projects (Brennan, Haduong, & Veno, 2020). Similar to the coding project
rubrics used in research, the rubrics used in classrooms also have programming and
project design components. However, some of the classroom rubrics also have extra
elements that capture the working process—for example, students’ iterative process,
time management, and collaboration. Because one key takeaway from this report
was that students should receive feedback on their coding projects from multiple
perspectives (e.g., self, teachers, peers, and family members), additional rubrics
were designed for these various evaluators.

The Creative Computing Lab also developed a rubric to assess students’
development of computational practices through artifact-based interviews (Creative
Computing Lab, n.d.). Computational practices differ from computational thinking,
as computational practices focus more on the process of thinking than on the
concept learned (Brennan & Resnick, 2012). This rubric consists of four sets of
questions related to children’s projects—Experimenting and Iterating, Testing and
Debugging, Reusing and Remixing, Abstracting and Modularizing. For example,
one of the questions under the computational practices of Testing and Debugging
is “Describe a time when your project didn’t run as you wanted.” Each response the
child provides to a question is given a proficiency rating of low, medium, or high.

Connecting Children’s Projects to Computational Thinking

Programming concepts are a component of project rubrics that are most directly
related to computational thinking (CT; Moreno-LeÓn et al., 2020; Seiter & Foreman,
2013). Different researchers define CT differently, but the seven most common
concepts across studies according to Rose et al. (2017) are: 1) using sequences of
steps (algorithms); 2) using if-then statements (conditionals); 3) having more than

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

270

Examining Young Children’s Computational Artifacts

one code running concurrently (parallelism); 4) breaking a big problem into smaller
parts (decomposition); 5) solving problems (debugging); 6) formulating a problem
in an understandable manner (abstraction and generalization); 7) and analyzing
data to solve problems (data collection). Most of these seven common CT concepts
can be found in coding project rubrics, especially under the programming criteria.
However, concepts related to thinking processes, such as debugging, may be harder
to assess from projects alone.

The components of CT mentioned by Rose et al. (2017) apply generally across all
ages of coders. However, some CT concepts in the way they are defined for adults
may not be developmentally suitable for young children. In Chapter 1, Bers outlined
the seven powerful ideas of CT that are relevant and appropriate for young children,
which include algorithms, modularity, control structures, representation, hardware/
software, design process, and debugging. Bers (2020) also connected the seven
powerful ideas to the ScratchJr app and the KIBO robotics kit, two coding platforms
for children ages 4-7 that were developed by the DevTech Research Group. Both
of these coding tools enable children to acquire and display CT abilities, which we
will explore in this chapter by describing the ScratchJr and KIBO Project Rubrics.

Although programming concepts may be most directly related to CT, the design
elements of children’s coding projects also invite children to think in computational
ways. CT is a way of thinking that children can apply to various life situations not
limited to programming (Relkin & Bers, 2019; Wing, 2006). The depth of children’s
project design may also reflect CT. For example, if a child wants to differentiate the
main character in her ScratchJr project, she may experiment with different solutions,
such as enlarging the character or changing the color of the main character. The
process of designing the main character, although not involving programming,
still enables the child to engage with computational practices and concepts. Thus,
the ScratchJr and KIBO Project Rubrics presented in these next sections take into
account both the programming concepts and design elements of coding projects.

SCRATCHJR PROJECT RUBRIC

The ScratchJr Project Rubric was developed by the DevTech Research Group with
the primary goal to assess young children’s purposeful creation with ScratchJr
projects. The rubric, which is outlined in Figure 1, specifically assesses for the
comprehension of coding concepts and the project design ability, while also getting
at the purposefulness of their creations.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

271

Examining Young Children’s Computational Artifacts

The ScratchJr Project Rubric went through multiple iterations until reaching a
high level of agreement between graders. Four research assistants were involved in
testing and revising the rubric over the span of three months. Each grader assessed
245 projects created by children or adults: 176 practice projects and 69 test projects
with a finalized rubric.

Coding Concepts

Coding concepts are the first set of criteria as shown in Table 1 and are based on
previous studies that reported various coding concepts from ScratchJr (Flannery
et al., 2013; Strawhacker & Bers, 2019). This work was also inspired from studies
that used coding rubrics to examine elementary and middle school students’ Scratch
coding projects (Basu, 2019; Moreno-León & Robles, 2015). For example, “Dr.
Scratch” is an example of a project rubric for Scratch that assesses CT development
(Moreno-León & Robles, 2015). The seven programming concepts for Dr. Scratch
are abstraction, parallelism, logical thinking, synchronization, flow control, user
interactivity, and data representation.

Figure 1. ScratchJr Project Rubric domains (Coding Concepts and Project Design)
and their sub-categories
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

272

Examining Young Children’s Computational Artifacts

The six sub-categories of the ScratchJr Coding Project’s coding concepts
criterion include (A1) Sequencing, (A2) Repeat, (A3) Events, (A4) Parallelism,
(A5) Coordination, and (A6) Number parameters. These six sub-categories can be
examined in projects and are connected to the definition of CT by Rose et al. (2017)
and Bers (2020). The rubric explicitly examines sequencing and algorithms, repeat
loops and control structures, events and conditionals.

The ScratchJr project shown in Figure 2 displays all six coding concepts in the
rubric. This project shows programming sequences (A1) of the bird’s movement
and appearance. The bird flies one block down then 15 blocks (A6) to the right.
Simultaneously, the bird repeatedly (A2) gets bigger eight times as it is flying, making

Table 1. ScratchJr Project Rubric criteria

Scoring
Criteria Sub-Categories Description

Programming
Concepts (A)

A1. Sequencing Is the program functional? How many coding blocks
were included (repeated blocks were counted once)?

A2. Repeats Does the program utilize any repeat blocks? If so, to what
complexity are they used?

A3. Events
Does the program utilize any start on tap, bump,
message, or go to page? If so, to what complexity are
they used?

A4. Parallelism Is there more than one program being executed
simultaneously? If so, to what complexity are they used?

A5. Coordination
Does the program utilize any wait, speeding, or stop
blocks? If so, to what complexity and intentionality are
they used?

A6. Number Parameter Is the number bubble being used to execute the action to
a certain number of times?

Project Design
Elements (B)

B1. Character Customization To what extent did the child customize the character?
How many different approaches did the child used?

B2. Background
Customization

To what extent did the child customize the background?
How many different approaches did the child used?

B3. Look Are any of the look blocks used to change the appearance
of the character?

B4. Sound Does the child use any pop block or record sound? Does
the added sound make logical connection to the project?

B5. Number of Characters How many characters with at least one coding block was
included in the project?

B6. Number of Settings Out of the 4 possible pages to add background, how
many different settings did the child choose?

B7. Speech bubbles Is the speech bubble included? Is there only one word, a
few words, a sentence, or an entire conversation?

Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

273

Examining Young Children’s Computational Artifacts

it seem that it flies closer to the screen. Parallel sequences (A4) make it possible for
the bird to move and change in appearance at the same time. The bird then touches,
which triggers (A3) the flower to wait one second (A5) before it enlarges 10 times.

To expand on the coding concepts, this project has sequencing, which is the
ability to create ordered steps to achieve a goal. Repeat block tells a command to
replay, shown in Figure 2 when the bird gets bigger repeatedly. Parallelism is when
there is more than one order executing at the same time, when the bird grows when
moves right. Events is the ability to trigger an if-then command to start, shown in
Figure 2 when a bumping block that tells the flower’s syntax to start playing after
the bird touches the flower. Coordination is when a child programs two or more
characters to interact with one another, shown by the flower that is waiting for the
bird to fly by and starts growing after a few seconds. Lastly, number parameter is the
ability for children to specify the number of times they want each coding block to
play. Number parameters are the white bubbles at the bottom of each coding block.

Project Design

In Table 1, the project design category of the project was inspired from creativity
applications for education and creativity assessment literature (O’Quin & Besemer,
1989; Plucker, Beghetto, & Dow, 2004). The literature describes creativity, in
this context, as having originality, elaboration, and purposefulness through the
process of meaningful creation (O’Quinn & Besemer, 1989; Plucker et al., 2004).
Therefore, we developed a final project rubric for design based on three dimensions:

Figure 2. ScratchJr project example that shows parallel coding sequences for a bird
character and a single coding sequence for a flower character
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

274

Examining Young Children’s Computational Artifacts

originality, elaboration, and purposefulness. Furthermore, we adapted the rubric
sub-categories to be applicable with the ScratchJr functions. Our rubric not only
captures purposefulness in the project design criterion, but it also measures whether
children use coding blocks purposefully.

The project design in the ScratchJr Project Rubric has seven sub-categories in total,
four sub-categories are under originality including (B1) character customization, (B2)
background customization, (B3) look blocks, and (B4) sound. The three remaining
subcategories fall under elaboration, which includes (B5) number of characters,
(B6) number of settings, and (B7) speech bubble. There are limitless ways children
can display their creativity and imagination with ScratchJr. Figure 3 displays how
children can insert photos of their faces, record their voices, insert shapes, write,
draw, paint, and more. Thus, there are a wide variety of project design elements
assessed in the rubric.

Figure 3. ScratchJr project example that has customized characters created using
the draw, paint, and insert shape tools. One cat character is painted red, and the
other cat has long hand drawn hair.
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

275

Examining Young Children’s Computational Artifacts

Projects that contain the same coding concepts and project design sub-categories
may not receive the same final project score. This is because the score of each
subcategory ranges from 0 to 4 points, depending on the mastery level in each area.
For example, a syntax that only uses one coding block in multiple repeat loops
shown on the top of Figure 4 is less complex than a syntax that has a nested loop
shown on the bottom of Figure 4. Therefore, in a repeat coding concept, a project
that has one coding block inside a repeat loop would get a lower score, whereas a
project that has a nested loop would the highest score.

From the final 69 projects that were created by children and adults, sequencing
was the sub-category with the highest mean score, following by number parameter.
All projects had 4-5 coding blocks on average. The lowest mean scores went to
coordination and parallelism, which are the two undeniably most difficult concepts,
both involving high levels of purposefulness and coding mastery. To get the highest
score in coordination, there must be a clear intention that two or more characters
interact by using a certain set of coding blocks (e.g., wait and change speed).

Figure 5 is an example of a project that has a score of 4 for coordination. In
this example, there is intentional coordination between the two cars that are racing
across the city. Both cars’ sequences have an orange speed block; however, the top
sequence has a speed up block, whereas the bottom sequence has a speed down
block. Therefore, the top car ends up winning the race. From the seven powerful
ideas (Bers, 2020), this project displays the CT concepts of algorithms, modularity,
and control structures. The creator of this project formulated coding sequences in two

Figure 4. Both sequences command a character to make the same movement.
However, the bottom sequence is more efficient and displays the advanced concept
of nested loops.
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

276

Examining Young Children’s Computational Artifacts

different chucks for the two cars. Additionally, the speeding blocks in this project
are examples of control structures.

Figure 5. A car racing project which receives the highest score under the coordination
sub-category in the ScratchJr Project Rubric
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

277

Examining Young Children’s Computational Artifacts

Different Types of ScratchJr Projects

During the rubric development, we came across various project types. We originally
tried to group ScratchJr projects into three types: stories, games, and collages.
However, we soon realized that it was impossible to fit the projects into only three
types. We were surprised by the remarkable versatility of ScratchJr projects and
describe several of these creative projects in the following section.

Space Musical Jam

The project in Figure 6 features four characters: Earth, Shooting Star, Rocket, Star.
Using only two coding blocks per character, each has a unique recorded sound that
will start playing when the character is tapped. The rocket has a drum sound, the
star has a piano melody, the earth has a high humming voice, and the shooting star
has a low humming voice. The combination of all four characters’ sounds makes
a complete musical piece. The project exemplifies how the project design aspect
(sound recording) can be highlighted through programming (conditional statements).

Figure 6. A music composition project that will play a different instrumental sound
after tapping on each character
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

278

Examining Young Children’s Computational Artifacts

Lighting Candles

For the project shown in Figure 7, if the user taps on the candle stick, a message is
sent from the candle stick to the flames, which then receive the message and begin
appearing and disappearing. This repeated action mimics a flickering candle. This
project uses sending messages (conditional statement), which is one of the hardest
and thus less frequently used coding blocks for young children.

Holiday E-Card

For the project shown in Figure 8, the creator first took a picture of a snowy Christmas
tree background from the internet and set it as the project background. The author
then painted a Santa Claus character from an existing ScratchJr character. The last
step was to add a speech bubble for Santa Claus to say Merry Christmas. This project
presents the combination of modularity and design process. In the design process
of this project, the creator customized the background and characters using various
paint editor tools.

Figure 7. A candle lighting projects that uses tapping and sending messages blocks
for the flames to flicker
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

279

Examining Young Children’s Computational Artifacts

Score Tracker

The ScratchJr project in Figure 9 functioned as a score tracker board for three players
as shown through the three different color cards. The project was intended to be
used while the children were playing a separate game off-screen, such as an outdoor
playground game. When a player earns a point in the game, the player can tap on
their assigned color card. The score increases by one point with each tap. Once one
of the cards reaches a certain point, six in this case, a congratulating message pops
up. The programming concepts behind this project are fairly complex. To create the
score cards, the child had created multiple card number characters and stacked them
on top of each other, with the lowest score on top. Each card number character is
programmed similarly: start on tap and then become invisible. When the top card
disappears, the next number appears.

Figure 8. This project was created as a holiday e-card with speech bubbles and a
winter Christmas tree background
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

280

Examining Young Children’s Computational Artifacts

KIBO PROJECT RUBRIC

The primary purpose of the KIBO Project Rubric is to assess the programming
concepts and design elements exhibited in a KIBO robotics project. The rubric enables
educators and practitioners to assess children’s mastery of the KIBO programming
language when they are presented with the opportunity to apply their knowledge
and skills to their own personalized project.

A project rubric for the KIBO robotics kit was first developed in 2018 and was
aligned with existing KIBO robotics curricula (DevTech Research Group, 2018).
The rubric outlined criteria such as correct usage of repeat loops and conditionals,
proper sequencing of blocks to accomplish the intended task, and appropriate
placement of sensors and modules, among other general project characteristics. Over
the years, with feedback from researchers and educators, the rubric was revised to
include specific scoring criteria, usability across various curricular activities, and
step-by-step instructions for identifying children’s overall level of programming
mastery exhibited in the project. Versions of the rubric were tested and validated
with over a hundred KIBO projects.

Figure 9. This project works as a score tracker for three players (red, green, pink)
and involves multiple start on tap and invisible blocks
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

281

Examining Young Children’s Computational Artifacts

Similar to the ScratchJr Project Rubric, the KIBO rubric consists of two sets of
scoring criteria: programming concepts and project design elements. Solely learning
how to program the KIBO robot using the blocks does not necessarily constitute a
high display of computational thinking abilities. Therefore, the rubric also takes into
account how children choose to sequence the programming blocks, customize their
robots using arts and crafts materials, and utilize music, dance, or other creative
media to make their robotic creations come alive. These aspects, though not always
related to coding and computer science, are activities that invite children to utilize
general computational thinking abilities and to produce personally meaningful and
purposeful projects. As displayed in Table 2, the two categories of scoring criteria
are each split into five specific sub-categories, which are described in the following
sections.

Programming Concepts

There are five sub-categories of programming concepts, which are (A1) syntactical
accuracy, (A2) repeats, (A3) conditionals, (A4) module use, and (A5) data. When
children display their understanding of programming concepts through their robotic
creations, the thought processes required to carry out the project task invoke the
powerful ideas of computational thinking introduced by Bers in Chapter 1. Syntactical
accuracy, for instance, requires children to assemble KIBO programs in order from left
to right, thereby engaging their use of algorithmic thinking. Repeats and conditionals
are examples of control structures. When children use repeat and if blocks in their
projects, they display an understanding of what control structures are and how these
blocks impact the way their KIBO programs run. The use of appropriate modules
and sensors necessitate children’s understanding of hardware and software and how
both are required to make the robot function. Storing data in the form of recorded
sounds also involves hardware and software. For example, a child presses different
buttons on the sound recorder module to record different sounds (hardware) and
subsequently scans the corresponding sound blocks (software) to hear their sounds
play aloud. Data are also present in the form of subroutines, or single blocks that
are used to represent a whole sequence of actions. The use of subroutines not only
invokes children’s understanding of symbolic representation, but these blocks also
engage children in modular thinking. The subroutine blocks can be treated like a
module that can be used in multiple places throughout the program.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

282

Examining Young Children’s Computational Artifacts

To further examine the programming concepts assessed in the KIBO Project
Rubric, let’s take a look at the KIBO project displayed in Figure 10. A child scans
her block sequence with her KIBO robot, which she has adorned with a handmade
puppet. The first scoring criterion is syntactical accuracy (A1), referring to whether
the constructed sequence represents a functional program. In this example, if the
blocks were scanned in order, the KIBO robot would indeed perform the sequence

Table 2. KIBO Project Rubric criteria

Scoring
Criteria Sub-Categories Description

Programming
Concepts (A)

A1. Syntactical Accuracy

Is the program functional? When the blocks are scanned
in order from left to right, the robot will be able to
perform the programmed actions without beeping an
error message.

A2. Repeats Does the program utilize any repeat blocks? If so, to what
complexity are they used?

A3. Conditionals Does the program utilize any if blocks? If so, to what
complexity are they used?

A4. Module Use

What kinds of modules were attached to the ports on
the KIBO body? Do these attached modules have any
correspondence to the actual program? For instance, a
sound sensor used without a Wait for Clap block does not
display correspondence.

A5. Data

Does the child exhibit an understanding of information
storage in their programming? For instance, the child
records their own sounds using the sound recorder
blocks/module or makes use of subroutines, which are
blocks used to substitute a set of other blocks.

Project Design
Elements (B)

B1. Sequencing How many blocks does the child use to construct their
program?

B2. Block Variety What kinds of blocks does the child use to construct their
program?

B3. Robot Customization

How is the robot decorated and customized with arts and
crafts and/or building materials? The child will be able
to test their creations so that decorations are securely
attached to the robot.

B4. Setting

What (if any) additional project elements are included as
part of the final project? Examples of project elements
might include singing or dancing along, playing
background music, or displaying some type of visual
poster alongside their robotic creations.

B5. Coordination

How are project elements used purposefully to enhance
synchronization and coordination? For example, the
child uses a Wait for Clap block strategically to align the
robot’s actions with a particular song or dance.

Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

283

Examining Young Children’s Computational Artifacts

of commands. In addition to proper syntax, the child has correctly utilized a repeat
loop (A2) with the number 4 parameter. This parameter signifies that the two forward
motions will repeat four times. There is no use of if/conditional blocks (A3) in this
program. The child has attached wheels and motors, as well as a sound sensor to
the KIBO body. However, the only action the robot is programmed to do is to move
forward, so the attachment of the sound sensor is unnecessary. Only the wheels and
motors have appropriate correspondence (A4) to the constructed program. Finally,
there is no use of sound recorder blocks, subroutines, or any project elements that
require storing information, so there is no supporting evidence for the Data sub-
category (A5).

Figure 10. Child scans the sequence of KIBO blocks using the robot’s embedded
barcode scanner. The KIBO program contains a repeat loop with a number “4”
parameter, indicating that the two forward blocks will repeat a total of four times
(i.e., KIBO will move forward eight times).
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

284

Examining Young Children’s Computational Artifacts

Project Design Elements

Project design elements refer to anything that the child adds to the project in order
to add aesthetic appeal, display originality and creativity, or extend the complexity
of their project. There are five sub-categories of project design elements, which are
(B1) sequencing, (B2) block variety, (B3) robot customization, (B4) setting, and
(B5) coordination.

Even the design elements of a KIBO project require that children utilize and display
their CT abilities. For example, the more blocks a child uses in their KIBO project,
the more opportunities the child has to plan and scan their programs, enabling the
child to engage more deeply in algorithmic thinking and the design process. Using
a variety of blocks also displays the use of more advanced CT abilities, particularly
symbolic representation and the idea that attributes such as colors and icons signify
specific types of actions. Symbolic representation also plays a role in how the child
customizes their robot. What is the robot intended to be: a helper bot, an animal, a
famous person? Whatever the child imagines the robot to be can be represented in
the way that the child decorates and programs the robot. Even after decorating the
robot, the child may later decide to extend their ideas by adding music, creating
corresponding dance moves, or drawing an illustration to go along with the project.
These additional project design elements further exemplify the design process and
any debugging and problem-solving the child does to make their projects exactly
as they intended.

Let’s examine these five constructs using the KIBO project displayed in Figure 11.
Students from this kindergarten classroom participated in a curriculum that integrated
the KIBO robotics kit with literacy and storytelling using the theme book Brown Bear,
Brown Bear, What Do You See? written and illustrated by Bill Martin, Jr. and Eric
Carle. In this particular project, a child designed and programmed the KIBO robot
to move through the taped illustrations, which represent the brown bear going to a
farm and seeing a white dog. The program utilized eight programming blocks (B1)
of various types: yellow Light block, gray Repeat blocks, and blue Motion blocks
(B2). On top of the KIBO robot’s platform, the child had securely affixed a paper
plate, cup and various decorations and artwork, which personalized the project and
enabled the child to showcase their imagination and creativity (B3). The illustrations
taped to the floor enhance the overall project and provide a meaningful connection
between the robot’s actions and the theme book (B4). Finally, there is no supporting
evidence that the project required specific timing or synchronization through the use
of multiple robots, the Wait for Clap block, or other project elements (B5).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

285

Examining Young Children’s Computational Artifacts

Similar to the ScratchJr Project Rubric, the score for each of the ten sub-categories
ranges from 0 to 4 points, depending on the mastery level in each area. The higher
the points received for a particular construct, the more advanced skill the child has
exhibited. For instance, for the sub-category of Repeats, the point allocation is as
follows:

0 points: No repeat blocks used
1 point: Repeat attempted but missing or misplaced the Begin/End and/or parameter

or no blocks in-between Begin/End blocks
2 points: At least one successful repeat loop with number parameter
3 points: At least one successful repeat loop with sensor parameter
4 points: At least one successful repeat loop as part of nested statement

Figure 11. The KIBO robot is programmed to turn on its white light and then move
forward and turn left for a total of three times. The robot is decorated like a brown
bear and moves through different illustrations taped to the floor that represent
various scenes from the children’s book Brown Bear, Brown Bear.
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

286

Examining Young Children’s Computational Artifacts

Table 3 displays sample KIBO programs that would receive these varying point
values. With each successive point, it is evident that the child has demonstrated
more advanced programming competency.

With five sub-categories (each worth 0-4 points), each set of scoring criteria is
worth a maximum of 20 points. However, just as coding concepts were weighted
more heavily than project design in the ScratchJr Project Rubric, so is the case for
the KIBO rubric. The rationale for weighting the categories differently is simple. At
its core, KIBO is a tangible programming interface, not an arts and crafts activity.
Although the tool offers ample integration opportunities and has aesthetic appeal,
the primary educational purpose of KIBO is to introduce foundational programming
concepts to young children. Thus, the KIBO Project Rubric follows the same 60-40
weighted ratio, with emphasis given to programming concepts by multiplying its
summed score by 1.5. Therefore, the maximum number of points for programming
concepts is 30 points, which brings the total summed score to a maximum of 50
points. This total score is then split evenly into five levels: Budding (0-9 points),
Developing (10-19 points), Proficient (20-29 points), Advanced (30-39 points), and
Distinguished (40-50 points).

There are several important points to note about these final project scores and
levels of mastery. One is the positive framing for the names of the five level categories.
Aligned with the principles of strengths-based education (Lopez & Louis, 2009),
the level of mastery obtained from the KIBO Project Rubric is meant to highlight
the positive aspects of children’s efforts and achievement, rather than position any
misconceptions in their learning as deficits. Using positive framing also serves

Table 3. KIBO repeat loops of varying point criteria

Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

287

Examining Young Children’s Computational Artifacts

to position children’s learning and engagement with the KIBO robotics kit as a
developmental activity. A child who is introduced to KIBO for the very first time,
even if older by age, may not necessarily create a “proficient” KIBO project. By
using the terms “budding” or “developing”, we recognize that the child is growing
their programming skills and with more experience and exposure, the child may
have the opportunity to develop and display greater proficiency with the KIBO
programming language.

Finally, it is essential to note that the final score does not indicate a child’s overall
level of programming mastery. Rather, the score provides an estimated level of
mastery as exhibited in this particular project, which means that children’s projects
might be limited by factors outside of their control. For example, children who are
working with KIBO-10 (an introductory kit sold by KinderLab Robotics that comes
with the 10 most basic programming blocks) are likely to create projects that are
less complex than children working with KIBO-21 (a more comprehensive kit that
comes with additional advanced blocks and sensors). Unless children are prompted
to construct a program using the most advanced KIBO parts that they have access
to and know how to use, as well as provided with unlimited time and resources for
building and decorating their robots, children are not necessarily expected to display
the entire extent of their knowledge in a single project. As discussed in other parts
of this chapter, scoring children’s project artifacts is one useful way of assessing
what they know, but it is certainly not the only way.

COMPARING AND CONTRASTING
SCRATCHJR AND KIBO PROJECTS

The developers designed ScratchJr’s and KIBO’s interfaces according to children’s
developmental ranges. KIBO has a tangible interface that caters to younger learners
(ages three and up), whereas ScratchJr is a screen-based app that targets children
ages five and up. Despite the different interfaces, children generally enjoy playing
with both KIBO and ScratchJr and can use either coding tool to produce creative
projects. As ScratchJr and KIBO are both block-based programming languages,
children are not required to be able to read text because they can differentiate
blocks by their symbols and colors. ScratchJr and KIBO have similar programming
concepts such as sequencing, repeats, conditionals, data, and number parameters.
The main difference is that programming concepts in ScratchJr are more advanced
(e.g., Parallelism). KIBO does not have parallelism because the robot can only read
and run one sequence at a time. Furthermore, each KIBO robot represents a single
character, whereas ScratchJr can easily have multiple characters with coordination
happening between characters. However, KIBO has module use, which ScratchJr does

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

288

Examining Young Children’s Computational Artifacts

not have. The ability to use modules is a function that makes KIBO very appealing
to young children. KIBO’s modules include wheels, motors, lightbulbs, and sound,
light, and distance sensors, all of which enable children to engage more deeply with
the computational idea of hardware versus software. In addition, children can also
engage more physically with the KIBO robot, for example, by clapping to trigger the
sound sensor or using their hands or other materials to trigger the distance sensor.

Although children can develop programming skills from ScratchJr and KIBO
effectively (Pugnali, Sullivan, & Bers, 2017), the different interfaces inevitably lead
to different levels of project creativity. As KIBO is a tangible tool, many components
of project design also happen physically. For example, children can be creative
with decorating the KIBO robot and creating backgrounds using different art tools,
such as crayons, papers, and tapes as shown in Figure 12. These customizations
differ from ScratchJr, where creativity can happen within the app through drawing
or coloring. Additionally, ScratchJr has more than 50 characters with different
themes (e.g., animals, nature, and people) and more than 20 backgrounds. In each
ScratchJr project, children can add as many characters as they want with up to four
backgrounds (pages). ScratchJr has a photo taking function, which enables children
to add custom images to their characters and backgrounds. Due to these interface
differences, children display different kinds of aesthetic design elements in their
projects.

Finally, project sharing is another factor that differs between ScratchJr and KIBO.
Project sharing is an important and beneficial approach for children to collaborate
and learn from one another and from each other’s projects. ScratchJr has a project
sharing function through email or airdrop. According to the DevTech website
(ScratchJr), as of October 2020, 600 thousand projects have been shared. The
percentage of project sharing increased by 200% during the COVID-19 pandemic
as illustrated in Chapter 15. In contrast, the only way to share KIBO projects is to
take pictures or videorecord KIBO’s actions, which enables viewers to see projects
in their entirety (e.g., movements, arts and crafts, light, and music).

IMPLICATIONS FOR RESEARCH AND PRACTICE

Coding projects enable children to exhibit their CT abilities while also showcasing
their creativity and imagination. As more states and countries adopt formal computer
science and digital literacy standards and frameworks, the need for supporting
educators and practitioners in how they assess students’ learning becomes more
critical. What criteria are appropriate to examine in young children’s projects? Should
children be provided with a prescribed rubric or set of project guidelines, or should
the rubric merely be an educator-facing tool to examine the different elements of a

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

289

Examining Young Children’s Computational Artifacts

project? To answer these questions, we offer the following practical strategies for
using project rubrics in educational and research settings:

• Documentation of process and outcome: Brennan and Resnick (2012)
identified strengths and limitations of three different assessment approaches:
project analysis, artifact-based interviews, and design scenarios. Part of the
challenge of project analysis, which is the focus of this chapter, is that we are
only able to examine children’s exhibition of CT concepts, rather than CT
practices. In order to gather some sense of children’s design processes as they
are working on their projects, we suggest a combination of project analysis
and artifact-based interviews. Through the documentation of both process
and outcome, we can better understand the bidirectional relationship between
children’s computational thinking and their computational making.

• Subjectivity and ambiguity in scoring: Another challenge of a project
portfolio assessment, identified by Grover (2020) and others, is that the
process of assessment itself can be subjective and ambiguous. Even with
detailed rubrics with specific scoring criteria, different individuals may
prioritize different aspects of projects, depending on the learning setting, the
activity prompt, and children’s own interests and motivations. Furthermore,
children may be working in pairs or teams or receiving assistance from their
teachers and peers, which makes assessing an individual child’s understanding
even more challenging. For example, the presence of advanced programming
blocks in a project merely indicates conceptual encounter but does not
mean the child has fully understood the use and purpose of those blocks.
Despite these limitations, however, coding projects can be an authentic way
of examining what children know by what they can create, rather than by
multiple-choice or task-based questions that they can answer.

• Emphasis on purposefulness: As Bers stated in the opening of this book,
the goal of introducing computing tools and activities for young children is
not so that they can all become future STEM professionals. Rather, in line
with Wing’s (2006) push that computational thinking is a universal set of
skills and not something specially reserved for computer scientists, the
opportunities to manipulate and create digital artifacts is something that
should be afforded to all students. Furthermore, the assessment of those
creations should forefront purposefulness, providing insight into the child’s
unique interests and identities. Scott, Sheridan and Clark (2015) propose
that technological success should be considered based on “creative intent
and social significance”. These goals can be applied here in the context of
children’s coding projects.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

290

Examining Young Children’s Computational Artifacts

There is an increasing prevalence and use of creative computing tools in
classrooms and informal learning settings. As such, educators and researchers are
seeking robust assessment methods for examining children’s coding artifacts and
extrapolating their understanding of foundational CT and programming concepts
from these projects. In this chapter we discussed two such rubrics for ScratchJr and
KIBO that take the perspective that CT concepts can be displayed not only through
the act of programming, but also through the act of designing the aesthetic elements
of a project. We believe that the ability for children to apply their CT concepts
through project-based learning tasks is equally as important as knowing the concepts.
Therefore, coding project rubrics will be a critical component in computer science
education for practitioners to better understand children’s coding competency levels.

ACKNOWLEDGMENT

This research was supported by the Scratch Foundation and the U.S. Department
of Education.

REFERENCES

Basu, S. (2019). Using Rubrics Integrating Design and Coding to Assess Middle
School Students’ Open-ended Block-based Programming Projects. Proceedings of
the 50th ACM Technical Symposium on Computer Science Education, 1211–1217.
10.1145/3287324.3287412

Bers, M. U. (2020). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom (2nd ed.). Routledge Press.
doi:10.4324/9781003022602

Brennan, K., Haduong, P., & Veno, E. (2020). Assessing Creativity in Computing
Classrooms. Creative Computing Lab.

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the
development of computational thinking in interactive media design. Annual Meeting
of the American Educational Research Association (AERA).

Chen, Y. F., & Martin, M. A. (2000). Using Performance Assessment and Portfolio
Assessment Together in the Elementary Classroom. Reading Improvement, 37(1),
32–38.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

291

Examining Young Children’s Computational Artifacts

Creative Computing Lab. (n.d.). Assessing Development of Computational Practices.
https://scratched.gse.harvard.edu/ct/assessing.html

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school
girls: Can they be used to measure understanding of computer science concepts?
Computers & Education, 58(1), 240–249. doi:10.1016/j.compedu.2011.08.006

DevTech Research Group. (2018). General Assessment Templates. https://sites.tufts.
edu/devtech/files/2018/03/GeneralAssessments.pdf

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M.
(2013). Designing ScratchJr: Support for early childhood learning through computer
programming. Proceedings of the 12th International Conference on Interaction
Design and Children - IDC ’13, 1–10. 10.1145/2485760.2485785

Funke, A., & Geldreich, K. (2017). Gender Differences in Scratch Programs of
Primary School Children. Proceedings of the 12th Workshop on Primary and
Secondary Computing Education, 57–64. 10.1145/3137065.3137067

Grover, S. (2017). Assessing Algorithmic and Computational Thinking in K-12:
Lessons from a Middle School Classroom. In Emerging Research, Practice, and
Policy on Computational Thinking (pp. 269-288). Springer International.

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017).
A Framework for Using Hypothesis-Driven Approaches to Support Data-Driven
Learning Analytics in Measuring Computational Thinking in Block-Based
Programming Environments. ACM Transactions on Computing Education, 17(3),
1–25. doi:10.1145/3105910

Lopez, S. J., & Louis, M. C. (2009). The Principles of Strengths-Based
Education. Journal of College and Character, 10(4). Advance online publication.
doi:10.2202/1940-1639.1041

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A Web Tool to Automatically
Evaluate Scratch Projects. Proceedings of the Workshop in Primary and Secondary
Computing Education, 132–133. 10.1145/2818314.2818338

Moreno-LeÓn, J., Robles, G., & Roman-Gonzalez, M. (2020). Towards Data-Driven
Learning Paths to Develop Computational Thinking with Scratch. IEEE Transactions
on Emerging Topics in Computing, 8(1), 193–205. doi:10.1109/TETC.2017.2734818

O’Quin, K., & Besemer, S. P. (1989). The development, reliability, and validity
of the revised creative product semantic scale. Creativity Research Journal, 2(4),
267–278. doi:10.1080/10400418909534323

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://scratched.gse.harvard.edu/ct/assessing.html
https://sites.tufts.edu/devtech/files/2018/03/GeneralAssessments.pdf
https://sites.tufts.edu/devtech/files/2018/03/GeneralAssessments.pdf

292

Examining Young Children’s Computational Artifacts

Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why Isn’t Creativity
More Important to Educational Psychologists? Potentials, Pitfalls, and Future
Directions in Creativity Research. Educational Psychologist, 39(2), 83–96.
doi:10.120715326985ep3902_1

Pugnali, A., Sullivan, A., & Bers, M. U. (2017). The Impact of User Interface on
Young Children’s Computational Thinking. Journal of Information Technology
Education: Innovations in Practice, 16, 172–193. doi:10.28945/3768

Relkin, E., & Bers, M. U. (2019). Designing an Assessment of Computational Thinking
Abilities for Young Children. In L. E. Cohen & S. Waite-Stupiansky (Eds.), STEM for
Early Childhood Learners: How Science, Technology, Engineering and Mathematics
Strengthen Learning (pp. 85–98). Routledge. doi:10.4324/9780429453755-5

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).
Scratch: Programming for Everyone. Communications of the ACM, 52(11), 60–67.
doi:10.1145/1592761.1592779

Rose, S. P., Habgood, M. P. J., & Jay, T. (2017). An Exploration of the Role of
Visual Programming Tools in the Development of Young Children’s Computational
Thinking. The Electronic Journal of e-Learning, 15(4), 297-309.

Scott, K., Sheridan, K., & Clark, K. (2014). Culturally Responsive Computing: A
theory revisited. Learning, Media and Technology, 40(4), 1–25.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational
thinking of primary grade students. Proceedings of the Ninth Annual International
ACM Conference on International Computing Education Research - ICER ’13, 59.
10.1145/2493394.2493403

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142–158. doi:10.1016/j.edurev.2017.09.003

Strawhacker, A., & Bers, M. U. (2019). What they learn when they learn coding:
Investigating cognitive domains and computer programming knowledge in young
children. Educational Technology Research and Development, 67(3), 541–575.
doi:10.100711423-018-9622-x

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz Alves,
N., Barbosa, H., & Azevedo, L. F. (2018). CodeMaster—Automatic Assessment
and Grading of App Inventor and Snap! Programs. Informatics in Education, 17(1),
117–150. doi:10.15388/infedu.2018.08

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

293

Examining Young Children’s Computational Artifacts

Wilson, A., Hainey, T., & Connolly, T. M. (2013). Using Scratch with Primary
School Children: An Evaluation of Games Constructed to Gauge Understanding
of Programming Concepts. International Journal of Game-Based Learning, 3(1),
93–109. doi:10.4018/ijgbl.2013010107

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3),
33–35. doi:10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717–3725.

ADDITIONAL READING

Adams, J. C., & Webster, A. R. (2012). What do students learn about programming
from game, music video, and storytelling projects? Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education - SIGCSE ’12, 643.
10.1145/2157136.2157319

Delacruz, S. (2020). Starting From Scratch (Jr.): Integrating Code Literacy in the
Primary Grades. The Reading Teacher, 73(6), 805–812. doi:10.1002/trtr.1909

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.

Johnston, K., Highfield, K., & Hadley, F. (2018). Supporting young children as
digital citizens: The importance of shared understandings of technology to support
integration in play‐based learning. British Journal of Educational Technology, 49(5),
896–910. doi:10.1111/bjet.12664

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2017). Designing and creating
an educational app rubric for preschool teachers. Education and Information
Technologies, 22(6), 3147–3165. doi:10.100710639-017-9579-0

Papert, S. (2000). What’s the big idea? Toward a pedagogy of idea power. IBM
Systems Journal, 39(3.4), 720-729.

Robson, S. (2014). The Analysing Children’s Creative Thinking framework:
Development of an observation‐led approach to identifying and analysing young
children’s creative thinking. British Educational Research Journal, 40(1), 121–134.
doi:10.1002/berj.3033

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

294

Examining Young Children’s Computational Artifacts

KEY TERMS AND DEFINITIONS

Computational Artifact: Anything created by a human using a computer.
Event: An action that causes something else to happen.
KIBO: A screen-free programmable robotics kit for young children with blocks,

sensors, modules, and art platforms.
Parallelism: Multiple codes executed concurrently for a single character.
Project-Based Learning: Student-centered pedagogy in which students acquire

knowledge and skills by actively exploring real-world projects and challenges.
ScratchJr: A free block-based programming application for young children.
Syntax: The set of rules, principles and processes of a language that govern the

arrangement of words and phrases.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

295

DOI: 10.4018/978-1-7998-7308-2.ch015

ABSTRACT

Over the past decade, there has been a growing interest in learning analytics for
research in education and psychology. It has been shown to support education
by predicting learning performances such as school completion and test scores
of students in late elementary and above. In this chapter, the authors discuss the
potential of learning analytics as a computational thinking assessment in early
childhood education. They first introduce learning analytics by discussing its various
applications and the benefits and limitations that it offers to the educational field.
They then provide examples of how learning analytics can deepen our understanding
of computational thinking through observing young children’s engagement with
ScratchJr: a tablet coding app designed for K-2 students. Finally, they close this
chapter with future directions for using learning analytics to support computer
science education.

Insights Into Young Children’s
Coding With Data Analytics

Apittha Unahalekhaka
Tufts University, USA

Jessica Blake-West
Tufts University, USA

XuanKhanh Nguyen
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

296

Insights Into Young Children’s Coding With Data Analytics

UNDERSTANDING LEARNING ANALYTICS

Assessing children’s knowledge is a challenge, and when we isolate computational
thinking as our measure, the challenge becomes even greater. Computational thinking
is a thought process, rather than a right or wrong answer on a test, and therefore our
question extends beyond ‘how to assess children’s knowledge’ and becomes more
‘how to measure a child’s way of thinking’. In this chapter, we explore how Learning
Analytics is used to try to answer this question. Learning Analytics is the process
of collecting and analyzing data from learners in order to better understand and
optimize their learning processes (Gašević et al., 2015). While Learning Analytics
does not solve the issue of how to measure learning, it does offer another angle to
look at a children’s learning process. Combined with other assessments, Learning
Analytics can provide a richer view of a child’s learning process.

Learning Analytics collects a wide variety of data, all of which are outcomes of
learners’ interactions with learning platforms. Learning platforms include online
games, applications, learning management systems, and Massive Open Online
Courses (MOOCs), such as Khan Academy, (Fischer et al, 2020; Gašević et al., 2015).
A user interaction can be many things including number of clicks, the number of
logins, and the duration in completing a lesson. Learning Analytics help educators
to identify where a student is in their learning process, which allows the educators
to better meet the needs of students of all different types of learning styles and paces
(Baker and Siemens, 2014). Learning Analytics is most commonly used in higher
education to measure school completion and learning performances (Ifenthaler &
Yau, 2020). By collecting this information, higher education institutions can better
identify needs of students and therefore work to address those needs.

While Learning Analytics is used more commonly in higher education, it can
be applied to early childhood education as well. One example is LAP: A Learning
Analytics Platform prototype developed by PBS KIDS, a US public broadcasting
service catered to children (Roberts et al, 2016). In this study, the main functions
of LAP were to track, store, and analyze children’s (ages 2-8 years) interactions
with the PBS KIDS math and literacy content including broadcasts, online videos,
games, and offline activities. Children’s anonymous usage data were collected and
packaged into custom reports for parents on how to better support their children’s
learning needs. LAP measured learning in multiple ways. One way in which LAP
assessed math was by reporting the accuracy and speed in answering mathematical
problems. It was found that LAP measures were able to predict a reliable level of
children’s math proficiency compared to the TEMA-3 scale, which is a standardized
mathematics test for children from 3-8 years old (Ginsburg & Baroody, 2003). From
this example, we see that usage data, collected from a Learning Analytics tool can

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

297

Insights Into Young Children’s Coding With Data Analytics

successfully predict specific learning outcomes—even when the users are young
children.

Another way in which Learning Analytics can be used, is to evaluate the
appropriateness of the learning tools. In the case of Vatavu et al. (2015), Learning
Analytics were used to assess the usability of touch screen devices. In the study,
researchers asked 89 children (ages 3-6 years) to complete various tasks such as
tapping, dragging, and dropping graphics on the touch-screen device. They found that
children’s sensorimotor abilities, as measured by a validated sensorimotor evaluation,
were correlated with touch performance such as task completion and accuracy rate
(Vatavu et al., 2015). This study helps us to better understand young children’s ability
to interact with touch screens, which in turn help us to create better age-appropriate
touch interface designs. This is particularly relevant now, as many educational tools
designed for young children come in the form of touchscreen apps. In this chapter,
we explore one such app for children called ScratchJr, a freely downloadable tablet
app that engages children ages 5-7 years in computer programming.

In order to apply Learning Analytics to evaluate computational thinking,
researchers at the DevTech Research Group have been using Google Analytics to
understand the kind of coding experiences and skills developed with the ScratchJr
application. This chapter will first explore the opportunities and obstacles of using
Learning Analytics as a computational thinking assessment tool. We will then focus
on a particular Learning Analytics Tool: Google Analytics, and discuss how we
have used it to analyze young children’s coding abilities by examining their usage
patterns in ScratchJr. Then, we will discuss how analyzing these usage patterns may
be translated into an understanding of computational thinking in early childhood.
Finally, we will highlight a few specific drawbacks of Google Analytics as a Learning
Analytics tool and discuss future directions for this area of research.

Learning Analytics: Applying Data Analytics to Education

Learning Analytics is a subfield Data Analytics, which is the practice of collecting
and analyzing raw data in order to make meaningful conclusions. Data Analytics
has proven to be instrumental in the success of many industries including medicine
and many areas of business. By analyzing data regarding anything from scheduling
to diagnoses, analytics in the field of medicine aids care efficiency, reduces
administrative burdens, and accelerates diagnoses. In business, analytics aids in
product design, sales, and business efficiency. Netflix, for example, has been one
of the most successful users of Data Analytics to tailor their product to the user –
which greatly contributes to its success as a business. As Andrew Medal from The
Entrepeneur points out, “big data can help make sense of the information gathered,
such as retention cost, average transaction value and even customer satisfaction”

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

298

Insights Into Young Children’s Coding With Data Analytics

(Medal, 2017). Businesses thrive on Data Analytics to better market their products
because Data Analytics helps them to understand the audience.

Education, however, is not about selling a product or improving efficiency of
medical practices – it is about understanding how children are learning and using that
knowledge to improve educational practices (Piaget, 1952; Vygotsky, 1978; Papert,
1980). Computational thinking, and education as a whole, should be measured by
the child’s thoughts and reasoning process, not just the programs they produce or the
test scores they receive. Additionally, education requires a high level of flexibility
and attention to individualism. Student learning patterns cannot be captured in one
number, while company profits usually can. Applying Data Analytics to education
could be useful, but requires a larger emphasis on how to capture learning through
data rather than just learning outcomes. To bring Data Analytics to education, we
must think about what types of variables we can examine that will indicate something
about a child’s learning process.

The other drawback of adapting Data Analytics to education is that in order
to draw conclusions from data, it must be guaranteed that the data were collected
in environments that are consistent with one another. In order to “demonstrate an
overall effect, every learner in an intervention needs to have the same experience
in the intervention, and the comparison group needs to be held constant in order
for the difference to be consistent.” (Cope, 2016) Children’s learning and learning
environments are never consistent. The lack of consistency is for good reason:
teachers must constantly adapt to their students’ needs and alter lesson plans quickly
to optimize engagement. For example, one group of children may be incredibly
excited about hatching caterpillars while another group is producing a movie on
ScratchJr with 4 iPads side by side. Should the teacher force one group to put down
their activity and engage all together on one task? Or should the teacher allow each
student to pursue their project? If they allow each child to pursue what they want,
one group will gain much more experience on ScratchJr than the other, skewing that
classroom’s ScratchJr usage data. Should that sort of adaptable teaching practice
be discouraged in order to collect consistent data? Probably not. Therefore, due to
the setup of early childhood classrooms and the dependence on flexibility, drawing
reliable conclusions from Learning Analytics alone isn’t always possible.

Countless other industries have benefitted from using Data Analytics. While Data
Analytics has incredible promise, it is clear that bringing Data Analytics to education
through Learning Analytics faces many challenges that need consideration. Despite
these drawbacks, there are still many Learning Analytics tools in use today. In the
next section, we will discuss the how the use of Learning Analytics in education
can improve educational practices as a whole.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

299

Insights Into Young Children’s Coding With Data Analytics

Learning Analytics to Improve General Education Practices

The reason Data Analytics has been so beneficial to large companies and other
industries is because it allows researchers to observe large overarching trends of
clients, patients, and customers. From seeing these trends, industries are able to adapt
practices and products to meet the needs of the masses. With education, this mindset
can be problematic. If teachers just adapted practices to the majority, then students
with atypical learning styles would inevitably fall through the cracks. What collecting
learner data can do, however, is find trends in the majority and the minority. Using
Learning Analytics, trends could be found among students with atypical learning
styles across classrooms and can provide teachers with more knowledge on how to
address those atypical student needs. It’s no longer just one teacher observing the
learning in her classroom, but now many teachers combining observations across
classrooms, revealing unseen patterns. The use of Learning Analytics has the ability
to allow educators to make connections across classrooms and isolate variables that
may not be apparent when looking at just one child’s learning patterns.

While not specific to computational thinking, analyzing learning trends can
improve assessment as a whole because it allows educators to gauge their students’
progress, and in turn, create more specialized and appropriate learning standards.
All forms of learning are unique to the student, but in order to ensure success of
the masses, school districts almost always align their curricula and assessments
with a form of learning standards. It’s broadly agreed upon that measuring student
progress and setting specific goals are crucial to school improvement (Schmoker,
1999). In order to create these standards, the scope of the skills, knowledge, and
all other factors impacting learning must be well defined. In order to define this
scope, data is a very promising solution (NECRL, 2004). A curriculum designer
can easily set unrealistic goals for students if they cannot gauge student progress or
starting points accurately. Data can be used to define the scope of learning styles
and current knowledge among students, which then helps teachers and education
policy makers to design realistic and informed learning frameworks. We argue that
with the right measures, defining learning standards and improving assessment
with Learning Analytics can be extended and specialized to defining computational
thinking standards and assessment as well.

Additionally, looking at trends allows us to identify gaps and irregularities in
student performance and isolate contributing factors. Trends give us an idea of the
norm and therefore allow us to highlight learning patterns that are outside of that
“norm”. While children’s learning never follows a “normal” path and deviations from
the norm are typical and healthy, identifying and addressing the deviations early on
can prevent learning and opportunity gaps from growing. With real-time feedback
of student performance, teachers can be proactive in adapting their teaching styles.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

300

Insights Into Young Children’s Coding With Data Analytics

By using Learning Analytics, teachers can become more self-aware of their practices
and can have immediate feedback on their teaching. As cited in a study conducted
by Zwieg and colleagues, research suggests that by monitoring students’ learning
and growth through collecting learning outcome data, educators become more
knowledgeable about their own capacities, and can develop plans for improvement
(Zweig et al., 2015). If specialized correctly, Learning Analytics could help identify
learning gaps specific to computational thinking tasks. With the ability to identify
struggling students more easily, teachers would be able to work more strategically
to ensure computational thinking proficiency across the classroom.

Depending on which types of information are collected, Learning Analytics can
provide insights about student demographic trends, learning patterns, geographic
variables, and so on- the insights are fairly limitless if the right data is collected.
One of the greatest strengths of Data Analytics in general, specifically in education,
is the ability to zoom in and out. As said previously, trends across big groups are
the most frequent focus of Data Analytics, but with the right tools, data can also
be collected from a specific user. In their paper about Data Analytics coming to
schools, Bill Cope and Mary Kalantzis pointed out that:

In the case of big data, scaling up or down, zooming in or out, offers a range of
viable perspectives on a shared data source—a micro-moment of feedback in the
writing process, for instance, to larger patterns of revision, to overall progress of a
student or a class or cohort measured in terms of writing standards over a longer
time frame. (Cope, 2016)

Not only does Learning Analytics allow researchers to zoom in and out on student
performances, but it also has the potential to predict student performance. This
type of prediction is possible through Machine Learning: the concept of computer
algorithms learning from past data and using the learned patterns to predict future
data points. Two ways in which this can be helpful to education is predicting student
performance and improving retention. As Anozie et al., found, “by ‘learning’ about
each student, the machine learning model can find out weaknesses and suggests ways
to improve, such as additional lectures or study additional literature” (Anozie, N.,
Junker, B. W., 2006). This prediction is another way in which Learning Analytics
can be used to close achievement gaps and help teachers to identify students with
specific needs; “by identifying ‘at risk’ students, schools can reach out to those
students and get them the help they need to be successful” (Đambić, G., Krajcar, M.
& Bele, D., 2016). By “learning” about each student, the technology can identify
weaknesses and help students to succeed.

While machine learning is one of the most promising applications of Data
Analytics, it must be noted that predicting student outcomes is not always as accurate

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

301

Insights Into Young Children’s Coding With Data Analytics

as it should be to be informative. Since technology in education is fairly new and
constantly changing, there is a large margin of error and false conclusions can easily
be made. Using large amounts of data without any theoretical framework may lead to
inaccurate conclusions. If we were to throw a large number of random variables into
a predictive statistical model, it is likely that the model would show us significant
relationships between variables that are totally unrelated in reality. This scenario
is known as, data fishing or data dredging. Longo and Montevil (2018) explained
the danger of data analysis without any theoretical framework and provided an
example that there is a false correlation between people who drowned after fishing
and marriage rate in Kentucky. These types of correlations could easily appear in
Data Analytics for education, possibly leading educators and policy makers to devote
attention to the wrong areas of education.

Despite notable limitations, Learning Analytics has the potential to be instrumental
in improving learning standards, tracking student progress, closing achievement gaps,
and understanding learners on a deeper level. In the next section, we will discuss
how specific aspects of Learning Analytics tools lend themselves well to assessing
mental processes such as computational thinking.

Learning Analytics to Assess Computational Thinking

Assessing Computational Thinking

Computational Thinking (CT) is a highly valuable and transferrable skill for everyday
life that is the byproduct of coding (Chp.8, Relkin). According to Bers (2020), CT
emerges from the “Seven Powerful Ideas” of computer science for early childhood.
The Powerful Ideas include algorithms, modularity, control structures, debugging,
hardware/software correspondence, debugging, and the design process. These
computational thinking concepts are not only fundamental to computer science, but
also to understanding the world around us. For example, the concept of modularity
can help children think about solving complex problems in life by breaking down a
solution into multiple small steps. One example of this could be putting on clothes.
To a five-year-old, the task is not trivial. For this very reason, we often break the
task up into steps: start with your head, then get your arms through, and then finally
pull the shirt down over your body! Then, when faced with putting on a sweatshirt,
the child will be able to recall these steps and apply them to the new task—thus
successfully applying modularity to their everyday challenges.

While it’s clear that computational thinking is crucial in early childhood education,
it is much less clear how this skill should be assessed. As we have mentioned, an
ongoing challenge in the field of assessment is how to measure a thought process,
rather than just an outcome. There are many ways to address this issue including

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

302

Insights Into Young Children’s Coding With Data Analytics

type of assessment, timing of assessment, and mode of implementation. The use of
Learning Analytics as an assessment does not offer a solution to assessing CT, but
it does offer benefits over other types of assessments-- specifically when thinking
about assessment for early childhood education. In the next section we will discuss
how Learning Analytics has the potential to be an effective assessment tool and
could be refined to assess computational thinking in the future.

Learning Analytics as an Ongoing Assessment

While many Learning Analytics tools currently lack the level of specificity of
measures needed to examine computational thinking, the potential is there. One of
the most notable benefits to using analytics as an assessment tool is that unlike tests
or project showcases, analytics offers insights that come from ongoing observation
rather than sporadic intervention. This benefit is especially notable when working
with young pre-school and elementary-aged children. This type of information
collection is much more developmentally appropriate for young children, and
therefore offers more informative data points. The National Association for the
Education of Young Children (NAEYC) states that assessments that collect learning
data over a longer period of time, like analytics, are the most appropriate assessment
approach for young children whose development is highly complex, dynamic, and
often erratic and uneven (Ackerman & Coley 2012). This makes it difficult to
capture their learning through one-time assessments that provide only a snapshot of
a child in a particular moment (Riley-Ayers, 2018). Observing children over longer
periods of time allows educators and researchers to get a more accurate picture of a
child’s development and thought processes, whereas a “snapshot” such as one test
or one project is likely going to be inconsistent and uninformative. With this more
accurate picture, comes the possibility of isolating specific thought processes, such
as computational thinking. Learning Analytics tools, while not there yet, offer the
possibility of observing infinite small moments rather than just the product of a test
or a project. By using ongoing observation as an assessment tool, the possibility of
isolating thought processes and cognitive patterns such as computational thinking
becomes much more within reach than it is with traditional assessment measures.

Despite the promise that Learning Analytics tools have, the data collection
methodologies that exist right now in the field of education don’t yet have the
capabilities to isolate individual students’ learning processes. While we are able to
collect student data from Learning Analytics tools, like Google Analytics, drawing
conclusions from that data about computational thinking takes a fair bit of speculation.
Learning Analytics offers huge amounts of information and provides many benefits
to education as a whole. Although not specialized enough to give us information
about something as complex as computational thinking, Learning Analytics does

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

303

Insights Into Young Children’s Coding With Data Analytics

provide incredible amounts of information about a student. In the next section, we
will discuss how the DevTech Research Group employs Google Analytics for the
ScratchJr coding app as a Learning Analytics tool.

LEARNING ANALYTICS TOOL: GOOGLE ANALYTICS

Google Analytics is a web analytics service that is used to track and analyze user
metrics, evaluate usage patterns, user behavior, and much more. In education research,
the use of Google Analytics with learning tools can help educators in finding advanced
methods for enhancing student learning. DevTech researchers use Google Analytics to
track and report the traffic of the ScratchJr app. Google Analytics has many features
that allow researchers to review how and when students are interacting with the
ScratchJr app. The buildings blocks of Google Analytics reporting are dimensions
and metrics as shown in Figure 1. Dimensions are attributes of the data such as the
city, state, or country where the data traffic is coming from, what browser is used,
or what language the user was using ScratchJr in. Metrics are the numerical data
points collected such as amount of time spent on the app, the number of users from
a specific location, or how many new users there are on a given day.

The main measure in Google Analytics is number of users. As of January 2021,
ScratchJr has had over 19 million users accounted for by Google Analytics. It must

Figure 1. ScratchJr usage data from Jan. 1, 2021-Mar. 30, 2021. Dimension =
Country. Metrics = Users, New Users, etc.
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

304

Insights Into Young Children’s Coding With Data Analytics

be noted, though, that Google Analytics does not record the usage on the oldest
versions of ScratchJr, and therefore users working on older devices, such as non-
touchscreen Chromebooks, are not accounted for in this user count. Within the user
count, we are able to see who is a new user (someone that is opening the app on
their device for the first time) or returning users (someone that has already used
ScratchJr for at least one session). Additionally, user data can be parsed by geography.
Not only can we see the city, state, and country a user is from, but we can also see
whether that user selected “Home” or “School” for their app setting. This tells us
where a student is located when using the app and allows us to make inferences
about how structured their ScratchJr playtime may have been. For example, if a user
is registered as “School”, it is likely that they are using the app in the context of a
class with instruction and supervision. If the user selected “Home”, on the other
hand, we might infer that the child is using ScratchJr on their own time and at their
own pace. We acknowledge that these inferences are much weaker during times of
remote-schooling due to the COVID-19 pandemic, but we still want to emphasize the
general importance of acknowledging a child’s setting and the impact it can have on
their learning. Knowing the structure of users playing time could be very powerful
and informative for future ScratchJr curricula development. Google Analytics
also collects the time and duration that the app is used, as shown in Figure 1. The
duration of sessions is recorded each time the app is opened and then closed and is
often used in analysis to indicate levels of engagement and interest from the users.

In addition to knowing when and where users are on the app, Google Analytics
also offers insights into how the user may be using the app. Google Analytics
collects event data, meaning any type of action a user does on the app is recorded.
In ScratchJr, this means that all the block types that are selected for programs, page
additions, presentation mode, paint editor, new characters, etc., are all recorded and
averaged across geographical areas. For example, in Figure 2, Google Analytics will
record the types of blocks put in the programming area, the character used, and any
design choices the user makes on the app. It is important to note that this data is
never shown for a single user: the closest we come to identifying specific users is
by the city they are in, but rarely is that used in our analysis. Therefore, all details
about how the app is used is only informative about how the app is used across a
large group, not from user to user.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

305

Insights Into Young Children’s Coding With Data Analytics

In short, Google Analytics data can be used to define the scope of research
questions. It allows us to gain an overview of the app user demographics and how
the app is most commonly being used. Beyond just broad demographic information,
it allows us to create user personas and predict behaviors of those personas, allowing
for more effective and targeted app development in the future. In order to highlight
the research possibilities that Google Analytics offers, we will spend the next section
discussing our newest findings on ScratchJr usage at home versus school, and how
this was impacted by the COVID-19 pandemic.

Global Usage of ScratchJr Learning Analytics

ScratchJr has been using Google Analytics to track the app usage data since the
early release. The purpose of exploring ScratchJr Analytics is to gain deeper insights
into children’s interaction with the app and to investigate how usage pattern may
be related to CT (Leidl et al., 2017). Since 2015, there have been over 19 million
users across 194 countries world-wide. Users have created over 52 million projects
and edited projects over 70 million times. Globally, there was an increasing trend in
the number of ScratchJr sessions from 2016 to 2019 as shown in Figure 3. Children

Figure 2. Example of a ScratchJr project
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

306

Insights Into Young Children’s Coding With Data Analytics

commonly used ScratchJr in schools, as shown by the fact that usage dropped during
the US summer break from June-August. However, the usage trends in 2020 were
different due to school closures caused by the COVID-19 pandemic.

The daily ScratchJr usage pattern differed across countries, the top ten countries
with the most sessions in 2020 are shown in Figure 4. Figures 5 and 6 compare the
number of users from January 1, 2020 to February 30, 2020 at home and at school
in United States and Japan. This particular time period was chosen because it was
before the COVID-19 pandemic severely impacted the world. Figure 5 shows the
similarity between the usage pattern across settings, home and school, in the U.S.
In both home and school settings, ScratchJr usage by US children peaked on the
weekdays and dropped on the weekends. In contrast, shown in Figure 6, Japan
showed the reversed pattern of increases and drops between home and school users.
When comparing between each setting in Japan, there was more usage at home on
the weekend and more usage at school on the weekday.

Figure 3. Number of ScratchJr users from 2016-2020. Note that in 2019, ScratchJr
Analytics collected data only from January to October of 2019 due to a transition
into the new Google Analytics version (Firebase)
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

307

Insights Into Young Children’s Coding With Data Analytics

A possible explanation for the different usage pattern between USA and Japan is
that ScratchJr is commonly used at school in the US, therefore the pattern follows
school periods. We also saw peaks of home usage in the US when children should
have been at school. This could be explained by the possibility that the app may
have tracked tablets used at schools as being used at home as there were reports that
children in the US also bring their home tablet to use at school (Trends in Digital
Learning: Students’ Views on Innovative Classroom Models, 2014).

Figure 4. The top 10 countries with most ScratchJr sessions in 2020
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

308

Insights Into Young Children’s Coding With Data Analytics

Figure 5. USA ScratchJr Users: January 1, 2020 to February 30, 2020. Dotted
Line= Home users, Solid Line= School users
Source: IGI, 2021

Figure 6. Japan ScratchJr Users: January 1, 2020 to February 30, 2020. Dotted
Line= Home users, Solid line= School users
Source: IGI, 2021

Figure 7. Japan ScratchJr Users: August 1, 2020 to March 30, 2021. Dotted Line=
Home Users, Solid Line= School Users
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

309

Insights Into Young Children’s Coding With Data Analytics

Different policies for computer science education in early childhood may also
affect the usage pattern in the US and Japan. Under the Coding for All policy
released in 2016, it is mandatory for schools to teach computer science to students
from kindergarten on (The Whitehouse, 2016). Many US schools have incorporated
ScratchJr into their curriculum, such as the K-2 CS curriculum in San Francisco, CA
(K-2 Computer Science Curriculum, n.d.). In Japan, mandatory computer science
classes were planned to be implemented in primary school starting in 2020 (Bocconi
et al., 2016). It is unclear if the policy was fully implemented in 2020; however,
there was a usage spike in Japan starting in 2021, which may imply that the policy
was implemented. Additionally, in Figure 7, the usage pattern at home and school
in Japan became more similar to the usage trend in the US, where the usage pattern
follows the school periods (higher usage on the weekdays).

Change in ScratchJr Usage Pattern From COVID-19

We wanted to study how the COVID-19 pandemic impacted ScratchJr usage across
the world. In 2020, due to COVID-19, 1.7 billion children were affected by the school
closure (Gouedard & Pont, 2020). The consequences from the COVID-19 pandemic
can clearly be seen in Figure 3, with the number of ScratchJr sessions decreased from
the previous years, especially in the first half of 2020 when the pandemic started.

Figure 8. The percentage of projects shared increased significantly compared 2019
to 2020
Source: IGI, 2021

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

310

Insights Into Young Children’s Coding With Data Analytics

School closures strongly and negatively impacted the number of ScratchJr sessions.
However, the analytics show that children globally shared their ScratchJr projects
with others (e.g., via email) more than ever during social distancing. Particularly,
in Figure 8, the number of ScratchJr projects shared increased by more than 100%
after April 2020 compared to the same months in 2019. The percentage of projects
shared skyrocketed over 200% after August 2020, which might be due to remote
learning where students had to send projects to teachers.

What Can We Learn From the Usage Patterns?

By collecting usage data through Google Analytics, we are able to see how and
when children are coding. While this data does not give us insights into the thought
processes of the children, it does give us an additional viewpoint onto how children
are coding. Different studies found that a type of Learning Analytics, or the type
of coding blocks used may imply children’s coding understanding level (Emerson
et al., 2020; Price & Price-Mohr, 2018). Emerson et al. (2020) identified common
misconceptions in introductory programming by analyzing how students used
coding blocks. The students that lacked conceptual knowledge used fewer types of
coding blocks on average compared to the other groups of students. Furthermore,
the students that had a disorganized programming style had longer sequences with
more errors. A different study by Price and Price-Mohr (2018) reported that students
that were expert programmers (college students) spent less time and were able to
code more intentionally than novices (elementary students). We cannot assess CT
from just these measures alone, but we do gain a more holistic view of the child’s
knowledge, which ultimately allows us to make more accurate inferences about
their mental processes.

A Learning Analytics study on ScratchJr analyzed young children’s block
usage types: 1) Coding duration; 2) Block complexity; 3) Block category; 4) Block
consistency (Unahalekhaka & Bers, in press). The researchers found differences
in how children in the U.S. used coding blocks at home compared to at school.
Particularly, children at home used more advanced and more diverse coding blocks
than children at school. The more advanced coding blocks for children ages 5-7
include control blocks such as repeat a command or trigger blocks such as if-then
commands. Although the Learning Analytics alone cannot measure children’s CT,
some of ScratchJr coding blocks can imply CT concepts. The control coding blocks
(repeat loop) align with the “control structure” concept, which is one of the seven
computational thinking concepts for early childhood (Bers, 2020).

Results from Unahalekhaka and Bers (In Press) also suggested that children at
home most likely had a more exploratory style of coding due to more freedom in
playing with ScratchJr. Children at home also spent more time using the paint editor,

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

311

Insights Into Young Children’s Coding With Data Analytics

a feature that supports character and background aesthetic customization. In contrast,
children at school may have to follow a fixed curriculum that is focusing on using
certain coding blocks. Therefore, they spent less time decorating or painting the
characters and longer time with the actual coding. Furthermore, children at school
used more similar coding blocks complexity level across days (Unahalekhaka &
Bers, in press). This study implied that young children may need different computer
science learning pedagogies across formal and informal settings to target CT centric
actions. For example, teachers may give more free play time during each lesson,
where children can code as they wish. Furthermore, parents may also want to
provide more step-by-step scaffolding before children can code freely. A study by
Strawhacker et al. (2018) reported that the teaching style such as having flexible
teaching plans with open-ended coding time is beneficial for children’s learning.

In this section, we illustrated how Google Analytics can report a diverse ScratchJr
usage pattern across countries, circumstances, and learning settings. However, usage
patterns at the aggregated level alone cannot tap into understanding an individual
child’s CT. To do so, we may need a different analytics tool to collect individual
student’s data. With more individualized learning data, we can then compare them
to individual’s CT scores like the measures from Grover et al. (2017). In the next
section, we will expand on the limitations of Google Analytic as a tool to understand
children’s learning.

LIMITATIONS OF GOOGLE ANALYTICS AS
A LEARNING ANALYTICS TOOL

While Google Analytics as a whole has immense potential for education, it is not
able to offer the level of specificity required for educators to get useful information
on students learning. For example, Google Analytics can only localize data to the
city, which is far from highlighting an individual student. Most cities have multiple
schools, which have multiple classrooms, which have upwards of 20 students using
learning tools, such as ScratchJr, at a time. To assess a child’s knowledge, particularly
in early childhood, it is rarely accurate to look at big numbers and averages. Such
reports often represent aggregate views of student and school data devoid of any
strategic or tactical judgements. The inability to narrow down our focal point on
analytics means that we can never look at just one child’s work, which is hugely
limiting when trying to assess something as variable as computational thinking.

Assessing computational thinking requires not only a close look at each individual
student, but also a report on that child’s learning process and style. Current Learning
Analytics tools are very limited in types of measures that can be collected. Google
Analytics can show us how a child is using the app in terms of what blocks are

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

312

Insights Into Young Children’s Coding With Data Analytics

used and what features are employed, but there is no current way to measure the
thoughts behind block and feature choice. To draw conclusions about computational
thinking takes a fair bit of speculation. Without more specialized measures, drawing
conclusions about thought process and reasoning is not possible.

FUTURE DIRECTIONS

Google Analytics offers huge amounts of information, but the lack of specificity and
adaptation to the field of education prevents most current Learning Analytics tools
from reaching their potential in the type of information that can be shown about a
student. Therefore, we hope that future development in this field includes finding a
way to collect individualized student data without breaching privacy obligations of
students. We also hope that new, more qualitative measures can be incorporated into
the data collection. Determining the specific measures that could indicate thought
processes like computational thinking requires further research.

One potential promising subfield of Learning Analytics is Multi Modal-Learning
Analytics (MMLA). While Learning Analytics has become more widely used in
higher education, there is still lack of research on how, or if, Learning Analytics can
be applied to understand learning development in the younger population. MMLA
does not require the screen time interaction, instead, it collects physiological data
such as speech cues, eye gazes, facial expression, and heart rate (Oviatt et al., 2018).
Some researchers claimed that MMLA can assess a learner’s engagement with the
task, in contrast with “regular” Learning Analytics that can only track for usage
pattern (e.g., number of clicks, session duration) (Crescenzi-Lanna, 2020). This
could be a potential direction to take Learning Analytics for assessing thinking
patterns in early childhood.

CONCLUSION

Learning Analytics, the sub field of Data Analytics that pertains to education, is
becoming increasingly utilized by educators and researchers. It provides more
information about students than has ever been possible, and therefore holds huge
potential for improving teaching and understanding students better. As discussed,
however, there are many aspects of Data Analytics that do not yet translate well to
Learning Analytics. These drawbacks, though, are an effect of a newly emerging field
that has not grown to its full potential yet. With further research and development,
Learning Analytics could be an incredibly useful tool for understanding computational
thinking and learning processes in general.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

313

Insights Into Young Children’s Coding With Data Analytics

REFERENCES

Baker, R. S., & Siemens, G. (2014). Educational data mining and learning analytics.
In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (2nd ed., pp.
253–274). Cambridge University Press. doi:10.1017/CBO9781139519526.016

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational Data Mining and
Learning Analytics: Applications to Constructionist Research. Technology, Knowledge
and Learning, 19(1–2), 205–220. doi:10.100710758-014-9223-7

Bers, M. U. (2020). Coding as a Playground: Programming and Computational
Thinking in the Early Childhood Classroom. Routledge. doi:10.4324/9781003022602

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016).
Developing computational thinking in compulsory education: Implications for
policy and practice. Publications Office. https://data.europa.eu/doi/10.2791/792158

Brunner, C., Fasca, C., Heinze, J., Honey, M., Light, D., Mandinach, E., et al. (2005).
Linking data and learning: The Grow Network study. Academic Press.

Cope. (2016). Big Data Comes to School: Implications for Learning, Assessment,
and Research. University of Illinois. https://journals.sagepub.com/doi/
pdf/10.1177/2332858416641907

Crescenzi‐Lanna, L. (2020). Multimodal Learning Analytics research with young
children: A systematic review. British Journal of Educational Technology, 51(5),
1485–1504. doi:10.1111/bjet.12959

Emerson, A., Smith, A., Rodriguez, F. J., Wiebe, E. N., Mott, B. W., Boyer, K. E.,
& Lester, J. C. (2020). Cluster-Based Analysis of Novice Coding Misconceptions
in Block-Based Programming. Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, 825–831. 10.1145/3328778.3366924

FACT SHEET: President Obama Announces Computer Science For All Initiative.
(2016, January 30). Whitehouse.Gov. https://obamawhitehouse.archives.gov/the-
press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-
all-initiative-0

Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R.,
Slater, S., Baker, R., & Warschauer, M. (2020). Mining Big Data in Education:
Affordances and Challenges. Review of Research in Education, 44(1), 130–160.
doi:10.3102/0091732X20903304

Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics
are about learning. TechTrends, 59(1), 64–71. doi:10.100711528-014-0822-x

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://data.europa.eu/doi/10.2791/792158
https://journals.sagepub.com/doi/pdf/10.1177/2332858416641907
https://journals.sagepub.com/doi/pdf/10.1177/2332858416641907
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0

314

Insights Into Young Children’s Coding With Data Analytics

Ginsburg, H., & Baroody, A. (2003). TEMA-3 examiners manual. Pro-Ed.

Gouëdard, P., Pont, B., & Viennet, R. (2020). Education responses to COVID-19:
shaping an implementation strategy. OECD Education Working Papers, No. 224.

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017).
A Framework for Using Hypothesis-Driven Approaches to Support Data-Driven
Learning Analytics in Measuring Computational Thinking in Block-Based
Programming Environments. ACM Transactions on Computing Education, 17(3),
1–25. doi:10.1145/3105910

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study
success in higher education: A systematic review. Educational Technology Research
and Development, 68(4), 1961–1990. doi:10.100711423-020-09788-z

K-2 Computer Science Curriculum—Orange. (n.d.). Retrieved April 10, 2021, from
https://sites.google.com/sfusd.edu/k-2cs/orange

Kent, J. (2020). 4 Emerging Strategies to Advance Big Data Analytics in Healthcare.
HealthITAnalytics. https://healthitanalytics.com/news/4-emerging-strategies-to-
advance-big-data-analytics-in-healthcare

Leidl, K. D., Bers, M. U., & Mihm, C. (2017). Programming with ScratchJr: A review
of the first year of user analytics. Proceedings of the International Conference on
Computational Thinking Education.

Medal, A. (2017). How Big Data Analytics Is Solving Big Advertiser Problems.
Entrepreneur. https://www.entrepreneur.com/article/293678

NECRL. (2004). Using Data to Guide School Improvement. Learning Point Associates.
North Central Regional Educational Laboratory. https://files.eric.ed.gov/fulltext/
ED518630.pdf

Oviatt, S. (2018, October). Ten Opportunities and challenges for advancing student-
centered multimodal learning analytics. In Proceedings of the 20th ACM International
Conference on Multimodal Interaction (pp. 87-94). ACM.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

Piaget, J. (1952). The origins of intelligence in children No. 5 (Vol. 8). International
Universities Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://sites.google.com/sfusd.edu/k-2cs/orange
https://healthitanalytics.com/news/4-emerging-strategies-to-advance-big-data-analytics-in-healthcare
https://healthitanalytics.com/news/4-emerging-strategies-to-advance-big-data-analytics-in-healthcare
https://www.entrepreneur.com/article/293678
https://files.eric.ed.gov/fulltext/ED518630.pdf
https://files.eric.ed.gov/fulltext/ED518630.pdf

315

Insights Into Young Children’s Coding With Data Analytics

Price, C. B., & Price-Mohr, R. M. (2018). An Evaluation of Primary School
Children Coding Using a Text-Based Language (Java). Computers in the Schools,
35(4), 284–301.

Riley-Ayers. (2018). Excerpt from Spotlight on Young Children: Observation and
Assessment. Naeyc. https://www.naeyc.org/resources/pubs/books/excerpt-from-
spotlight-observation-assessment

Roberts, J. D., Chung, G. K. W. K., & Parks, C. B. (2016). Supporting children’s
progress through the PBS KIDS learning analytics platform. Journal of Children
and Media, 10(2), 257–266.

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules:
Exploring the impact of teaching styles on young children’s programming knowledge
in ScratchJr. International Journal of Technology and Design Education, 28(2),
347–376.

Thornton-Lang. (2012) Observation as a formal assessment tool in early childhood
classrooms: A professional development module. University of Northern Iowa. https://
scholarworks.unit.edu/cgi/viewcontent.cgi?article=1238&context=grp

Trends in Digital Learning: Students’ Views on Innovative Classroom Models. (2014).
Project Tomorrow. https://tomorrow.org/speakup/2014_OnlineLearningReport.html

Unahalekhaka, A., & Bers, M. U. (in press). Taking Coding Home: Analysis of
ScratchJr Usage in Home and School Settings. Educational Technology Research
and Development.

Vatavu, R. D., Cramariuc, G., & Schipor, D. M. (2015). Touch interaction for
children aged 3 to 6 years: Experimental findings and relationship to motor skills.
International Journal of Human-Computer Studies, 74, 54–76.

Vygotsky, L. S. (1978). Mind in society: The Development of higher psychological
processes. Harvard University Press.

Zweig. (2015). Data collection and use in early childhood education programs:
Evidence from the Northeast Region. Regional Educational Laboratory. https:/files.
eric.ed.gov/fulltext/ED555737.pdf

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.naeyc.org/resources/pubs/books/excerpt-from-spotlight-observation-assessment
https://www.naeyc.org/resources/pubs/books/excerpt-from-spotlight-observation-assessment
https://scholarworks.unit.edu/cgi/viewcontent.cgi?article=1238&context=grp
https://scholarworks.unit.edu/cgi/viewcontent.cgi?article=1238&context=grp
https://tomorrow.org/speakup/2014_OnlineLearningReport.html
http://https:/files.eric.ed.gov/fulltext/ED555737.pdf
http://https:/files.eric.ed.gov/fulltext/ED555737.pdf

316

Insights Into Young Children’s Coding With Data Analytics

ADDITIONAL READING

Agus, R., & Mohamad Samuri, S. (2018). Learning Analytics Contribution in
Education and Child Development: A Review on Learning Analytics. Asian Journal
of Assessment in Teaching and Learning, 8, 36–47. doi:10.37134/ajatel.vol8.4.2018

Alonso-Fernández, C., Calvo-Morata, A., Freire, M., Martínez-Ortiz, I., & Fernández-
Manjón, B. (2019). Applications of data science to game learning analytics data: A
systematic literature review. Computers & Education, 141, 103612. doi:10.1016/j.
compedu.2019.103612

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014).
Programming Pluralism: Using Learning Analytics to Detect Patterns in the Learning
of Computer Programming. Journal of the Learning Sciences, 23(4), 561–599. do
i:10.1080/10508406.2014.954750

Chen, G., Rolim, V., Mello, R. F., & Gašević, D. (2020). Let’s shine together!:
A comparative study between learning analytics and educational data mining.
Proceedings of the Tenth International Conference on Learning Analytics &
Knowledge, 544–553. 10.1145/3375462.3375500

Irizarry, R. A. (2020). The Role of Academia in Data Science Education. Harvard
Data Science Review, 2(1).

Liu, M. C., & Huang, Y. M. (2017). The use of data science for education: The case
of social-emotional learning. Smart Learn. Environ., 4(1), 1. doi:10.118640561-
016-0040-4

Milicevic, A., Ivanovic, M., & Budimac, Z. (2017). Data science in education: Big
data and learning analytics. Computer Applications in Engineering Education, 25.
Advance online publication. doi:10.1002/cae.21844

Rodríguez, A. O. R., Riaño, M. A., García, P. A. G., Marín, C. E. M., Crespo, R. G., &
Wu, X. (2020). Emotional characterization of children through a learning environment
using learning analytics and AR-Sandbox. Journal of Ambient Intelligence and
Humanized Computing, 11(11), 5353–5367. doi:10.100712652-020-01887-2

Wang, L., Sy, A., Liu, L., & Piech, C. (2017). Learning to Represent Student
Knowledge on Programming Exercises Using Deep Learning. In International
Educational Data Mining Society. International Educational Data Mining Society.
https://eric.ed.gov/?id=ED596596

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://eric.ed.gov/?id=ED596596

317

Insights Into Young Children’s Coding With Data Analytics

KEY TERMS AND DEFINITIONS

COVID-19: An ongoing global pandemic of coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Early Childhood: Period of time between birth and age eight.
Google Analytics: A web data analytics platform by Google that tracks website

and application traffics.
Learner Interactions: An action a student takes on an online learning platform.

Actions can include number of clicks, when an app is opened or closed, what pages
of a site were opened, etc.

Learning Analytics: The process in collecting and analyzing data from learners
to better understand and optimize their learning processes.

Multi-Modal Learning Analytics: A sub field of Learning Analytics that collects
and analyzes natural human signals.

ScratchJr: A free block-based programming application for young children.
Usage Patterns: A user’s behavioral patterns on a website, application, or

electronic device.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Compilation of References

Abelson, H., & DiSessa, A. (1981). Turtle geometry: The computer as a medium for exploring
mathematics (The MIT press series in artificial intelligence). Cambridge, MA: MIT Press.

AERA. (2015). (2015, March 5). Study: Little Evidence That Executive Function Interventions
Boost Student Achievement [Press release]. Retrieved from https://www.aera.net/Newsroom/
News-Releases-and-Statements/Study-Little-EvidenceThat-Executive-Function-Interventions-
Boost-Student-Achievement

Albo-Canals, J., Martelo, A. B., Relkin, E., Hannon, D., Heerink, M., Heinemann, M., Leidl, K., &
Bers, M. U. (2018). A Pilot Study of the KIBO Robot in Children with Severe ASD. International
Journal of Social Robotics, 10(3), 371–383. doi:10.100712369-018-0479-2

Aldemir, J., & Kermani, H. (2017). Integrated STEM curriculum: Improving educational outcomes
for Head Start children. Early Child Development and Care, 187(11), 1694–1706. doi:10.1080
/03004430.2016.1185102

Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin, F. (2010).
Computational thinking for youth. White Paper for the ITEST Small Working Group on
Computational Thinking (CT).

Amelink, C. T., & Creamer, E. G. (2010). Gender differences in elements of the undergraduate
experience that influence satisfaction with the engineering major and the intent to pursue engineering
as a career. Journal of Engineering Education, 99(1), 81–92. doi:10.1002/j.2168-9830.2010.
tb01044.x

American Psychological Association. (2015). Guidelines for psychological practice with
transgender and gender nonconforming people. The American Psychologist, 70(9), 832–864.
doi:10.1037/a0039906 PMID:26653312

American Psychological Association. (2021). APA Resolution on Gender Identity Change
Efforts. American Psychological Association. Retrieved from: https://www.apa.org/about/policy/
resolution-gender-identity-change-efforts.pdf

American Speech-Language-Hearing Association. (n.d.). Practice Portal: Clinical Topics:
Selective Mutism. American Speech-Language-Hearing Association. Retrieved February 15,
2020, from https://www.asha.org/Practice-Portal/Clinical-Topics/Selective-Mutism/#collapse_8

318

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.aera.net/Newsroom/News-Releases-and-Statements/Study-Little-Evidence
https://www.aera.net/Newsroom/News-Releases-and-Statements/Study-Little-Evidence
https://www.apa.org/about/policy/resolution-gender-identity-change-efforts.pdf
https://www.apa.org/about/policy/resolution-gender-identity-change-efforts.pdf
https://www.asha.org/Practice-Portal/Clinical-Topics/Selective-Mutism/#collapse_8

Compilation of References

Angevine, C., Cator, K., Roschelle, J., Thomas, S. A., Waite, C., & Weisgrau, J. (2017).
Computational Thinking for a Computational World. Academic Press.

An, S., Tinajero, J., Tillman, D., & Kim, S. (2019). Preservice Teachers’ Development of Literacy-
Themed Mathematics Instruction for Early Childhood Classrooms. International Journal of Early
Childhood, 51(1), 41–57. doi:10.100713158-019-00232-9

Antle, A. N., & Wise, A. F. (2013). Getting down to details: Using theories of cognition and
learning to inform tangible user interface design. Interacting with Computers, 25(1), 1–20.
doi:10.1093/iwc/iws007

Applebee, A. N., Langer, J. A., & Mullis, I. V. S. (1986). The Writing Report Card: Writing
Achievement in American Schools. Princeton, NJ: Educational Testing Service; Washington,
DC: Office of Educational Research and Improvement.

Arctic Apples. (2020). Retrieved from: https://www.arcticapples.com/

Arfé, B., Vardanega, T., Montuori, C., & Lavanga, M. (2019). Coding in Primary Grades Boosts
Children’s Executive Functions. Frontiers in Psychology, 10, 2713. doi:10.3389/fpsyg.2019.02713
PMID:31920786

Bada, S. O., & Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching
and learning. Journal of Research & Method in Education, 5(6), 66–70.

Baker, R. S., & Siemens, G. (2014). Educational data mining and learning analytics. In R. K.
Sawyer (Ed.), Cambridge handbook of the learning sciences (2nd ed., pp. 253–274). Cambridge
University Press. doi:10.1017/CBO9781139519526.016

Bakhtin, M. M. (1981). The dialogic imagination: Four essays (M. Holquist, Ed. & Trans.).
University of Texas Press.

Barron, B., Martin, C. K., Takeuchi, L., & Fithian, R. (2009). Parents as Learning Partners in
the Development of Technological Fluency. International Journal of Learning and Media, 1(2),
55–77. doi:10.1162/ijlm.2009.0021

Barrouillet, P., & Lecas, J. (1999). Mental Models in Conditional Reasoning and Working Memory.
Thinking & Reasoning, 5(4), 289–302. doi:10.1080/135467899393940

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM Inroads, 2(1),
48–54. doi:10.1145/1929887.1929905

Basu, S., Mustafaraj, E., & Rich, K. (2016). CIRCL Primer: Computational Thinking. In CIRCL
Primer Series. Retrieved from https://circlcenter.org/computational-thinking

Basu, S. (2019). Using Rubrics Integrating Design and Coding to Assess Middle School Students’
Open-ended Block-based Programming Projects. Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 1211–1217. 10.1145/3287324.3287412

319

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.arcticapples.com/
https://circlcenter.org/computational-thinking

Compilation of References

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying
middle school students’ challenges in computational thinking-based science learning. Research
and Practice in Technology Enhanced Learning, 11(1), 13. doi:10.118641039-016-0036-2
PMID:30613246

Baumeister, R. F., & Vohs, K. D. (2004). Handbook of self-regulation: Research, theory, and
applications. Guilford Press.

Beals, L., & Bers, M. (2006). Robotic Technologies: When Parents Put Their Learning Ahead
of their Child’s. Journal of Interactive Learning Research, 17(4), 341–366.

Bell, T., & Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It Work? In
H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures Between Lower Bounds and
Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday.
doi:10.1007/978-3-319-98355-4_29

Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work? In H.-J.
Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures between lower bounds and higher
altitudes: Essays dedicated to Juraj Hromkovič on the occasion of his 60th birthday. Springer
International Publishing.

Bell, T., & Lodi, M. (2019). Constructing Computational Thinking Without Using Computers.
Constructivist foundations, Vrije Universiteit Brussel. Constructionism and Computational
Thinking, 14(3), 342–351.

Beltagui, A., Sesis, A., & Stylos, N. (2021). A bricolage perspective on democratizing innovation:
The case of 3D printing in makerspaces. Technological Forecasting and Social Change, 163,
120453. doi:10.1016/j.techfore.2020.120453

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational Data Mining and Learning
Analytics: Applications to Constructionist Research. Technology, Knowledge and Learning,
19(1–2), 205–220. doi:10.100710758-014-9223-7

Berninger, V. W., Abbott, R. D., Vermeulen, K., Ogier, S., Brooksher, R., Zook, D., & Lemos,
Z. (2002). Comparison of Faster and Slower Responders to Early Intervention in Reading:
Differentiating Features of Their Language Profile. Learning Disability Quarterly, 25(1), 59–76.
doi:10.2307/1511191

Bers, M. U. (2018b). Coding, Playgrounds and Literacy in Early Childhood Education: The
Development of KIBO Robotics and ScratchJr. IEEE Global Engineering Education Conference
(EDUCON), 2100. 10.1109/EDUCON.2018.8363498

Bers, M. U. (2019). Coding as another language: a pedagogical approach for teaching computer
science in early childhood. Journal of Computers in Education, 6(4), 499-528.

Bers, M. U. (2020). Playgrounds and Microworlds: Learning to Code in Early Childhood.
In Designing Constructionist Futures: The Art, Theory, and Practices of Learning Designs.
Academic Press.

320

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Compilation of References

Bers, M. (2007). Project Inter-Actions: A multigenerational robotic learning environment. Journal
of Science and Technology Education, 16(6), 537–552. doi:10.100710956-007-9074-2

Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom.
Teachers College Press.

Bers, M. U. (2008). Blocks to Robots: Learning with Technology in the Early Childhood Classroom.
Teachers College Press.

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development: From playpen
to playground. Oxford University Press. doi:10.1093/acprof:oso/9780199757022.001.0001

Bers, M. U. (2017). The Seymour Test: Powerful Ideas in early childhood education. International
Journal of Child-Computer Interaction, 14, 10–14. doi:10.1016/j.ijcci.2017.06.004

Bers, M. U. (2018). Coding as a Playground: Programming and Computational Thinking in the
Early Childhood Classroom. Routledge Press.

Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the
early childhood classroom. Routledge.

Bers, M. U. (2018). Coding as a playground: programming and computational thinking in the
early childhood classroom. Routledge., doi:10.4324/9781315398945

Bers, M. U. (2018a). Coding as a playground: Computational thinking and programming in
early childhood. Routledge.

Bers, M. U. (2019). Coding as Another Language: “Why Computer Science in Early Childhood
Should Not Be STEM. In C. Donohue (Ed.), Key Issues in Technology and Early Childhood.
Routledge. doi:10.4324/9780429457425-11

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer
science in early childhood. Journal of Computers in Education, 6(4), 499–528. doi:10.100740692-
019-00147-3

Bers, M. U. (2022). Beyond Coding: How Children Learn Human Values through Programming.
The MIT Press.

Bers, M. U., & Resnick, M. (2015). The Official ScratchJr Book: Help your Kids Learn to Code.
No Starch Press.

Bers, M., New, B., & Boudreau, L. (2004). Teaching and learning when no one is expert: Children
and parents explore technology. Journal of Early Childhood Research and Practice, 6(2).

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan, P. W., & Meagher, L. R. (2013). Making
computing interesting to school students: Teachers’ perspectives. In Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science Education. Association
for Computing Machinery. 10.1145/2462476.2466519

321

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Compilation of References

Blair, C. (2002). School readiness: Integrating cognition and emotion in a neurobiological
conceptualization of child functioning at school entry. The American Psychologist, 57(2), 111–127.
doi:10.1037/0003-066X.57.2.111 PMID:11899554

Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief
understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2),
647–663. doi:10.1111/j.1467-8624.2007.01019.x PMID:17381795

Blikstein, P. (2013). Digital Fabrication and ‘Making’ in Education: The Democratization of
Invention. In J. Walter-Herrmann & C. Büching (Eds.), FabLabs: Of Machines, Makers and
Inventors. Transcript Publishers. doi:10.14361/transcript.9783839423820.203

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing
computational thinking in compulsory education: Implications for policy and practice. Publications
Office. https://data.europa.eu/doi/10.2791/792158

Bouck, E. C., & Yadav, A. (2020). Providing Access and Opportunity for Computational Thinking
and Computer Science to Support Mathematics for Students With Disabilities. Journal of Special
Education Technology. Advance online publication. doi:10.1177/0162643420978564

Bowman, B., Donovan, S., & Burns, M. (2001). Eager to learn: Educating our preschoolers.
Washington, DC: National Academy Press.

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D.
(2017). Development of computational thinking skills through unplugged activities in primary
school. Proceedings of the 12th Workshop on Primary and Secondary Computing Education,
65-72. 10.1145/3137065.3137069

Bredekamp, S. (1987). Developmentally appropriate practice in early childhood pro- grams serving
children from birth through age 8. National Association for the Education of Young Children.

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development
of computational thinking in interactive media design [Paper presentation]. The meeting of the
American Educational Research Association, Vancouver, BC, Canada.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting of the
American educational research association (Vol. 1, p. 25). Academic Press.

Brennan, K., Haduong, P., & Veno, E. (2020). Assessing Creativity in Computing Classrooms.
Creative Computing Lab.

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of
computational thinking in interactive media design. Annual Meeting of the American Educational
Research Association (AERA).

Bresler, L. (Ed.). (2007). International handbook of research in arts education (Vol. 16). Springer
Science & Business Media. doi:10.1007/978-1-4020-3052-9

322

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://data.europa.eu/doi/10.2791/792158

Compilation of References

Brunner, C., Fasca, C., Heinze, J., Honey, M., Light, D., Mandinach, E., et al. (2005). Linking
data and learning: The Grow Network study. Academic Press.

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics
ability: Inhibition, switching, and working memory. Developmental Psychology, 19(3), 273–293.
PMID:11758669

Bureau of Labor Statistics. (2020). Labor Force Statistics from the Current Population Survey.
Retrieved from: https://www.bls.gov/cps/cpsaat11.htm

Burke, Q., & Kafai, Y. B. (2010). Programming & storytelling: Opportunities for learning about
coding & composition. Proceedings of the 9th International Conference on Interaction Design
and Children. 10.1145/1810543.1810611

Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering
Teacher, 70(1), 30.

Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science
Teacher Education, 25(2), 211–221. doi:10.100710972-014-9381-4

Calabrese Barton, A., & Tan, E. (2018). A longitudinal study of equity-oriented STEM-rich
making among youth from historically marginalized communities. American Educational Research
Journal, 55(4), 761–800. doi:10.3102/0002831218758668

Calabrese Barton, A., & Tan, E. (2019). Designing for rightful presence in STEM: The role of
making present practices. Journal of the Learning Sciences, 28(4-5), 616–658. doi:10.1080/10
508406.2019.1591411

Caldwell, H., & Smith, N. (2016). Teaching computing unplugged in primary schools: Exploring
primary computing through practical activities away from the computer. Learning Matters.

California State Board of Education. (2013). California Common Core State Standards: English
Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects. Retrieved
from California Department of Education: https://www.cde.ca.gov/

Callanan, M., Cervantes, C., & Loomis, M. (2011). Informal learning. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(6), 646–655. doi:10.1002/wcs.143 PMID:26302414

Cameron, C., McClelland, M. M., Jewkes, A., Connor, C., Farris, C., & Morrison, F. (2008).
Touch your toes! Developing a direct measure of behavioral regulation in early childhood. Early
Childhood Research Quarterly, 23(2), 141–158. doi:10.1016/j.ecresq.2007.01.004

Campana, K., Haines, C., Kociubuk, J., & Langsam, P. (2020). Making the Connection:
Computational thinking and early learning for young children and their families. Public Libraries,
59(4).

323

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.bls.gov/cps/cpsaat11.htm
https://www.cde.ca.gov/

Compilation of References

Campbell, L. O., Heller, S., & Goodman, B. (2018, March). Fostering computational thinking
and student engagement in the literacy classroom through pop-up makerspaces. In Society
for Information Technology & Teacher Education International Conference (pp. 3750-3754).
Association for the Advancement of Computing in Education (AACE).

Catterall, J. S., & Waldorf, L. (1999). Chicago Arts Partnerships in Education: Summary evaluation.
In E. B. Fiske (Ed.), Champions of change: The impact of the arts on learning (pp. 47–62). Arts
Education Partnership. Retrieved from https://artsedge.kennedy-center.org/champions/pdfs/
ChampsReport.pdf

Center for the Developing Child. (n.d.). A Guide to Executive Function. Retrieved from https://
developingchild.harvard.edu/guide/a-guide-to-executive-function/

Chambers, J. (2015). Inside Singapore’s plans for robots in pre-schools. GovInsider. Retrieved
from: https:// govinsider.asia/smart-gov/exclusive-singapore-puts-robots-in-pre-schools/

Chappell, C., Dabholkar, S., Dilley, C., Heiland, M., Huang, A., Kuldell, N., Kurman, M.,
Legault, J., Scheifele, L., Scholze, A., Takara, C., & Tuck, E. (2021, April 8-12). The BioMaker
Ecosystem: Technologies, Spaces and Curricula for K-12 Making with Biology. American
Educational Research Association 98th Virtual Annual Meeting.

Chase, M., Son, E. H., & Steiner, S. (2014). Sequencing and Graphic Novels with Primary-Grade
Students. The Reading Teacher, 67(6), 435–443. doi:10.1002/trtr.1242

Chemaly, S. (2016, March 16). The problem with a technology revolution designed primarily
for men. Quartz. Retrieved from https://qz.com/640302/why-is-so-much-of-our-new-technology-
designed-primarily-for-men/

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing
elementary students’ computational thinking in everyday reasoning and robotics programming.
Computers & Education, 109, 162–175. doi:10.1016/j.compedu.2017.03.001

Chen, Y. F., & Martin, M. A. (2000). Using Performance Assessment and Portfolio Assessment
Together in the Elementary Classroom. Reading Improvement, 37(1), 32–38.

Clarke, S., Resnick, L. B., & Rose, C. P. (2015). Dialogic instruction: A new frontier. Academic
Press.

Clark, L. S. (2011). Parental Mediation Theory for the Digital Age. Communication Theory,
21(4), 323–343. doi:10.1111/j.1468-2885.2011.01391.x

Clements, D. (1999). The Future of Educational Computing Research: The Case of Computer
Programming. In C. Hoyles & R. Noss (Eds.), Learning mathematics and Logo. Academic Press.

Clements, D. H., Battista, M. T., & Sarama, J. (2001). LOGO and Geometry. Journal for Research
in Mathematics Education Monograph Series, 10.

324

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://artsedge.kennedy-center.org/champions/pdfs/ChampsReport.pdf
https://artsedge.kennedy-center.org/champions/pdfs/ChampsReport.pdf
https://developingchild.harvard.edu/guide/a-guide-to-executive-function/
https://developingchild.harvard.edu/guide/a-guide-to-executive-function/
http://https://govinsider.asia/smart-gov/exclusive-singapore-puts-robots-in-pre-schools/
https://qz.com/640302/why-is-so-much-of-our-new-technology-designed-primarily-for-men/
https://qz.com/640302/why-is-so-much-of-our-new-technology-designed-primarily-for-men/

Compilation of References

Clements, D.H., Sarama, J., Unlu, F., Layzer, C. (2012, March). The efficacy of an intervention
synthesizing scaffolding designed to promote self- regulation with an early mathematics curriculum:
Effects on executive function. Presentation at Society for Research on Educational Effectiveness
(SREE), Washington, DC.

Clements, D. H. (2007). Curriculum Research: Toward a Framework for “Research-based
Curricula”. Journal for Research in Mathematics Education, 38(1), 35–70.

Clements, D. H., & Gullo, D. F. (1984). Effects of Computer Programming on Young
Children’s Cognition. Journal of Educational Psychology, 76(6), 1051–1058. doi:10.1037/0022-
0663.76.6.1051

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical
Thinking and Learning, 6(2), 81–89. doi:10.120715327833mtl0602_1

Clough, M. P., & Olson, J. K. (2016). Connecting science and engineering practices: a cautionary
perspective. In L. A. Annetta & J. Minogue (Eds.), Connecting Science and Engineering Education
Practices in Meaningful Ways: Building Bridges (pp. 373–385). Springer. doi:10.1007/978-3-
319-16399-4_15

Code.org. (2013). Steve Jobs on Computer Science. Academic Press.

Code.org. (2018). 2018 Annual Report. https://code.org/files/annual-report-2018.pdf

Code.org. (2019). Retrieved from https://code.org/

Code.org. (2020). Leaders and Trendsetters Agree More Students Should Learn Computer Science.
https://code.org/promote

Code.org. (2020a, April 15). CS helps students outperform in school, college, and workplace.
codeorg.medium.com

Code.org. (2020b). CS helps students outperform in school, college, and workplace. Retrieved
from codeorg.medium.com

Code.org. (2021a). Code.org Statistics. Retrieved from Code.org: code.org/statistics

Code.org. (2021b). Why Computer Science? Retrieved from code.org: code.org/promote

Committee on STEM Education, National Science & Technology Council, the White House.
(2018). Charting a course for success: America’s strategy for STEM education. https://www.
whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf

Congress, U. (1975). The Individuals with Disabilities Education Act–IDEA.

Connell, S. L., Lauricella, A. R., & Wartella, E. (2015). Parental Co-Use of Media Technology
with their Young Children in the USA. Journal of Children and Media, 9(1), 5–21. doi:10.108
0/17482798.2015.997440

325

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://code.org/files/annual-report-2018.pdf
https://code.org/
https://code.org/promote
http://codeorg.medium.com
http://codeorg.medium.com
http://code.org/statistics
http://code.org/promote
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf

Compilation of References

Cope. (2016). Big Data Comes to School: Implications for Learning, Assessment, and Research.
University of Illinois. https://journals.sagepub.com/doi/pdf/10.1177/2332858416641907

Copple, C., & Bredekamp, S. (2009). Developmentally appropriate practice in early childhood
programs serving children from birth through age 8. National Association for the Education of
Young Children.

Corbett, C., & Hill, C. (2015). Solving the equation: the variables for women’s success in
engineering and computing. The American Association of University Women.

Cordes, C., & Miller, E. (2000). Fool’s gold: A critical look at computers in childhood. Academic
Press.

Creative Computing Lab. (n.d.). Assessing Development of Computational Practices. https://
scratched.gse.harvard.edu/ct/assessing.html

Crescenzi‐Lanna, L. (2020). Multimodal Learning Analytics research with young children: A
systematic review. British Journal of Educational Technology, 51(5), 1485–1504. doi:10.1111/
bjet.12959

CSTA & ISTE. (2011). Operational Definition of Computational Thinking for K-12 Education.
http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf

Cumbers, J. (2019). New This Ski Season: A Jacket Brewed Like Spider’s Silk. Forbes Magazine
Online. Retrieved from: https://www.forbes.com/sites/johncumbers/2019/08/28/new-this-ski-
season-a-jacket-brewed-from-spider-silk/#2788fa63561e

Cunha, F., & Heckman, J. (2007). The Technology of Skill Formation. The American Economic
Review, 97(2), 31–47. doi:10.1257/aer.97.2.31

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers to
computational thinking using unplugged storytelling. Proceedings of the 9th workshop in primary
and secondary computing education, 89-92. 10.1145/2670757.2670767

Dagiene, V., & Stupurienė, G. (2016). Bebras–a sustainable community building model for the
concept based learning of informatics and computational thinking. Informatics in Education,
15(1), 25–44. . doi:10.15388/infedu.2016.02

Dalbey, J., & Linn, M. C. (1985). The demands and requirements of computer programming:
A literature review. Journal of Educational Computing Research, 1(3), 253–274. doi:10.2190/
BC76-8479-YM0X-7FUA

de Strulle, A., & Shen, C. (n.d.). STEM + Computing K-12 Education (STEM+C). https://wwwnsf.
gov/funding/pgm_summ.jsp?pims_id=505006

deafkidscode.org. (n.d.). Our Story. Retrieved February 15, 2020, from https://www.deafkidscode.
org/our-story

326

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://journals.sagepub.com/doi/pdf/10.1177/2332858416641907
https://scratched.gse.harvard.edu/ct/assessing.html
https://scratched.gse.harvard.edu/ct/assessing.html
http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf
https://www.forbes.com/sites/johncumbers/2019/08/28/new-this-ski-season-a-jacket-brewed-from-spider-silk/#2788fa63561e
https://www.forbes.com/sites/johncumbers/2019/08/28/new-this-ski-season-a-jacket-brewed-from-spider-silk/#2788fa63561e
https://wwwnsf.gov/funding/pgm_summ.jsp?pims_id=505006
https://wwwnsf.gov/funding/pgm_summ.jsp?pims_id=505006
https://www.deafkidscode.org/our-story
https://www.deafkidscode.org/our-story

Compilation of References

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking
through unplugged activities in early years of Primary Education. Computers & Education, 150,
103832. doi:10.1016/j.compedu.2020.103832

Delacruz, S. (2020). Starting From Scratch (Jr.): Integrating Code Literacy in the Primary Grades.
The Reading Teacher, 73(6), 805–811. doi:10.1002/trtr.1909

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can
they be used to measure understanding of computer science concepts? Computers & Education,
58(1), 240–249. doi:10.1016/j.compedu.2011.08.006

DevTech Research Group. (2018). General Assessment Templates. https://sites.tufts.edu/devtech/
files/2018/03/GeneralAssessments.pdf

DevTech Research Group. (2018). Our treasure: A KIBO coding curriculum for emergent readers.
Tufts University.

Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood:
Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & R. T. Knight (Eds.),
Principles of frontal lobe function (pp. 466–503). Oxford University Press. doi:10.1093/acprof
:oso/9780195134971.003.0029

Digital News Asia. (2015). IDA launches $1.5m pilot to roll out tech toys for preschoolers.
Retrieved from: https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-
out-tech-toys-forpreschoolers

DiSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. MIT Press. doi:10.7551/
mitpress/1786.001.0001

Doerschuk, P., Liu, J., & Mann, J. (2007). Pilot summer camps in computing for middle school
girls. ACM SIGCSE Bulletin, 39(3), 4–8. doi:10.1145/1269900.1268789

Dong, C., & Xu, Q. (2020). Pre-service early childhood teachers’ attitudes and intentions: Young
children’s use of ICT. Journal of Early Childhood Teacher Education, 1–16. doi:10.1080/1090
1027.2020.1726843

Doudna, J. (2015, September). How CRISPR lets us edit our DNA [Video file]. Retrieved from: www.
ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_but_let_s_do_it_wisely#t-686789

Dougherty, D. (2012). The maker movement. Innovations: Technology, Governance, Globalization,
7(3), 11–14. doi:10.1162/INOV_a_00135

Duhaime-Ross, A. (2014, September 25). Apple promised an expansive health app, so why can’t
I track menstruation? The Verge. Retrieved from https://www.theverge.com/2014/9/25/6844021/
apple-promised-an-expansive-health-app-so-why-cant-i-track

Dweck, C. S. (2008). Mindset: The new psychology of success. Random House Digital, Inc.

327

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://sites.tufts.edu/devtech/files/2018/03/GeneralAssessments.pdf
https://sites.tufts.edu/devtech/files/2018/03/GeneralAssessments.pdf
https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-forpreschoolers
https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-forpreschoolers
http://www.ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_but_let_s_do_it_wisely#t-686789
http://www.ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_but_let_s_do_it_wisely#t-686789
https://www.theverge.com/2014/9/25/6844021/apple-promised-an-expansive-health-app-so-why-cant-i-track
https://www.theverge.com/2014/9/25/6844021/apple-promised-an-expansive-health-app-so-why-cant-i-track

Compilation of References

Ehsan, H., Ohland, C., Dandridge, T., & Cardella, M. (2018). Computing for the Critters:
Exploring Computational Thinking of Children in an Informal Learning Setting. Proceedings
of IEEE Frontiers in Education Conference. 10.1109/FIE.2018.8659268

Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO Robotics Kit in
Preschool Classrooms. Computers in the Schools, 33(3), 169–186. doi:10.1080/07380569.201
6.1216251

Emerson, A., Smith, A., Rodriguez, F. J., Wiebe, E. N., Mott, B. W., Boyer, K. E., & Lester, J. C.
(2020). Cluster-Based Analysis of Novice Coding Misconceptions in Block-Based Programming.
Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 825–831.
10.1145/3328778.3366924

Erdmann, K. A., & Hertel, S. (2019). Self-regulation and co-regulation in early childhood –
development, assessment and supporting factors. Metacognition and Learning, 14(3), 229–238.
doi:10.100711409-019-09211-w

Erdoğan, S., & Baran, G. (2009). A study on the effect of mathematics teaching provided through
drama on the mathematics ability of six-year-old children. Eurasia Journal of Mathematics,
Science & Technology Education, 5(1), 79–85. Retrieved from https://www.ejmste.com/v5n1/
EURASIA_v5v1_SErdogan.pdf

Erete, S., Martin, C. K., & Pinkard, N. (2017). Digital Youth Divas: A program model for
increasing knowledge, confidence, and perceptions of fit in STEM amongst black and brown
middle school girls. In Moving students of color from consumers to producers of technology
(pp. 152-173). IGI Global. doi:10.4018/978-1-5225-2005-4.ch008

Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E.
(2004). The contribution of executive functions to emergent mathematic skills in preschool
children. Developmental Neuropsychology, 26(1), 465–486. doi:10.120715326942dn2601_6
PMID:15276905

FACT SHEET: President Obama Announces Computer Science For All Initiative. (2016, January
30). Whitehouse.Gov. https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-
sheet-president-obama-announces-computer-science-all-initiative-0

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM Occupations - Past,
Present, and Future. https://hdl.handle.net/1813/79240

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM Occupations-Past,
Present, and Future. U.S. Department of Labor, Bureau of Labor Statistics.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The Language of Programming:
A Cognitive Perspective. Trends in Cognitive Sciences, 23(7), 525–528. doi:10.1016/j.
tics.2019.04.010 PMID:31153775

328

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.ejmste.com/v5n1/EURASIA_v5v1_SErdogan.pdf
https://www.ejmste.com/v5n1/EURASIA_v5v1_SErdogan.pdf
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0
https://hdl.handle.net/1813/79240

Compilation of References

Finders, J. K., McClelland, M. M., Geldhof, G. J., Rothwell, D. W., & Hatfield, B. E. (2021).
Explaining achievement gaps in kindergarten and third grade: The role of self-regulation and
executive function skills. Early Childhood Research Quarterly, 54, 72–85. doi:10.1016/j.
ecresq.2020.07.008

Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., Slater, S., Baker, R.,
& Warschauer, M. (2020). Mining Big Data in Education: Affordances and Challenges. Review
of Research in Education, 44(1), 130–160. doi:10.3102/0091732X20903304

Fitzgerald, J., & Markham, L. R. (1987). Teaching children about revision in writing. Cognition
and Instruction, 4(1), 3–24. doi:10.12071532690xci0401_1

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013).
Designing ScratchJr: support for early childhood learning through computer programming. In
Proceedings of the 12th International Conference on Interaction Design and Children. New
York, NY: Association for Computing Machinery. 10.1145/2485760.2485785

Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd ed.). Prentice Hall.

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2018). International Computer
and Information Literacy Study. ICILS 2018: Technical Report.

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Duckworth, D. (2020). Preparing for life in
a digital world: IEA International computer and information literacy study 2018 international
report (Vol. 297). Springer Nature. doi:10.1007/978-3-030-38781-5

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive
learning in preschool education. Computers & Education, 70, 53–64. doi:10.1016/j.
compedu.2013.07.043

Funke, A., & Geldreich, K. (2017). Gender Differences in Scratch Programs of Primary School
Children. Proceedings of the 12th Workshop on Primary and Secondary Computing Education,
57–64. 10.1145/3137065.3137067

Gadanidis, G. (2017). Five affordances of computational thinking to support elementary
mathematics education. Journal of Computers in Mathematics and Science Teaching, 36(2),
143–151.

Gage, N. A., Lierheimer, K. S., & Goran, L. G. (2012). Characteristics of Students With High-
Incidence Disabilities Broadly Defined. Journal of Disability Policy Studies, 23(3), 168–178.
doi:10.1177/1044207311425385

Gal-Ezer, J., & Stephenson, C. (2009). The current state of computer science in US high schools:
a report from two national surveys. Retrieved from Computer Science Teachers Association
website, https://csta.acm.org/Research/sub/ Projects/ResearchFiles/StateofCSEDHighSchool.pdf

Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive Function in Preschoolers: A Review
Using an Integrative Framework. Psychological Bulletin, 134(1), 31–60. doi:10.1037/0033-
2909.134.1.31 PMID:18193994

329

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://https://csta.acm.org/Research/sub/Projects/ResearchFiles/StateofCSEDHighSchool.pdf

Compilation of References

Garrett, J. L. (2008). STEM: The 21st century sputnik. Kappa Delta Pi Record, 44(4), 152–153.
doi:10.1080/00228958.2008.10516514

Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about
learning. TechTrends, 59(1), 64–71. doi:10.100711528-014-0822-x

Gee, J. P. (2007). What Video Games Have to Teach Us About Learning and Literacy.
Cyberpsychology & Behavior, 12(1).

Gestsdottir, S., & Lerner, R. M. (2008). Positive development in adolescence: The development and
role of intentional self-regulation. Human Development, 51(3), 202–224. doi:10.1159/000135757

Ginsburg, H., & Baroody, A. (2003). TEMA-3 examiners manual. Pro-Ed.

Gioia, I., & Guy, K. (2000). Behavior Rating Inventory of Executive Function. Psychological
Assessment Resources.

Goddu, M. K., Lombrozo, T., & Gopnik, A. (2020). Transformations and Transfer: Preschool
Children Understand Abstract Relations and Reason Analogically in a Causal Task. Child
Development, 91(6), 1898–1915. doi:10.1111/cdev.13412 PMID:32880903

Goldstein, J., & Flake, J. K. (2016). Towards a framework for the validation of early childhood
assessment systems. Educational Assessment, Evaluation and Accountability, 28(3), 273–293.
doi:10.100711092-015-9231-8

González-González, C. S., & Arias, L. G. A. (2019). Maker movement in education: maker
mindset and makerspaces. In J. L. Jurado, C. A. Collazos, y L. F. Muñoz (Eds.), Ingeniería
colaborativa, aplicaciones y usos desde la perspectiva de la Interacción Humano-Computador
[Collaborative engineering, applications and uses from the perspective of Human-Computer
Interaction]. Editorial: Universidad San Buenaventura de Cali. Colombia.

Goswami, U. (2001). Early phonological development and the acquisition of literacy. Handbook
of Early Literacy Research, 111-125.

Gouëdard, P., Pont, B., & Viennet, R. (2020). Education responses to COVID-19: shaping an
implementation strategy. OECD Education Working Papers, No. 224.

Govind, M. (2019). Families That Code Together Learn Together: Exploring family-oriented
programming in early childhood with ScratchJr and KIBO Robotics [Unpublished master’s
thesis]. Tufts University, Medford, MA, United States.

Govind, M., & Bers, M. U. (2019). Parents Don’t Need to Be Coding Experts, Just Willing to
Learn With Their Children. EdSurge. https://www.edsurge.com/news/2019-12-11-parents-don-
t-need-to-be-coding-experts-just-willing-to-learn-with-their-children

Govind, M., & Bers, M. U. (2020). Family Coding Days: Engaging Children and Parents in
Creative Coding and Robotics. Proceedings of Connected Learning Summit.

330

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.edsurge.com/news/2019-12-11-parents-don-t-need-to-be-coding-experts-just-willing-to-learn-with-their-children
https://www.edsurge.com/news/2019-12-11-parents-don-t-need-to-be-coding-experts-just-willing-to-learn-with-their-children

Compilation of References

Govind, M., Relkin, E., & Bers, M. U. (2020). Engaging Children and Parents to Code Together
Using the ScratchJr App. Visitor Studies, 23(1), 46–65. doi:10.1080/10645578.2020.1732184

Gravel, B. E., Bers, M. U., Rogers, C., & Danahy, E. (2018). Making engineering playful in
schools. The LEGO Foundation.

Gropen, J., Clark-Chiarelli, N., Hoisington, C., & Ehrlich, S. B. (2011). The importance of
executive function in early science education. Child Development Perspectives, 5(4), 298–304.
doi:10.1111/j.1750-8606.2011.00201.x

Grover, S. (2017). Assessing Algorithmic and Computational Thinking in K-12: Lessons from
a Middle School Classroom. In Emerging Research, Practice, and Policy on Computational
Thinking (pp. 269-288). Springer International.

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017). A Framework for
Using Hypothesis-Driven Approaches to Support Data-Driven Learning Analytics in Measuring
Computational Thinking in Block-Based Programming Environments. ACM Transactions on
Computing Education, 17(3), 1–25. doi:10.1145/3105910

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12. In Proceedings
of the 2014 conference on Innovation & technology in computer science education (pp. 57-62).
ACM. 10.1145/2591708.2591713

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the
Field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of
the ACM, 51(8), 25–27. doi:10.1145/1378704.1378713

Guzdial, M., & Morrison, B. (2016). Seeking to making computing education as available
as mathematics or science education. Communications of the ACM, 59(11), 31–33.
doi:10.1145/3000612

Handsfield, L. (2016). Literacy Theory as Practice: Connecting Theory and Instruction in K–12
Classrooms. Teachers College Press.

Hartman, S. L., & Dani, D. (2020). Full STEAM Ahead: Creating Interdisciplinary Informal
Learning Opportunities for Early Childhood Teacher Candidates. Journal of STEM Teacher
Education, 54(1), 3. doi:10.30707/JSTE54.1/MNCB7975

Hassenfeld, Z. R., & Bers, M. U. (2020). Debugging the Writing Process: Lessons From a
Comparison of Students’ Coding and Writing Practices. The Reading Teacher, 73(6), 735–746.
doi:10.1002/trtr.1885

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. (2020). If You Can Program, You
Can Write: Learning Introductory Programming Across Literacy Levels. Journal of Information
Technology Education, 19, 65–85. doi:10.28945/4509

331

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Compilation of References

Hatton, E. (1989). Lévi‐Strauss’s bricolage and theorizing teachers’ work. Anthropology &
Education Quarterly, 20(2), 74–96. doi:10.1525/aeq.1989.20.2.05x0841i

Heckman, J., & Masterov, D. (2007). The Productivity Argument for Investing in Young Children.
Review of Agricultural Economics, 29(3), 446–493. doi:10.1111/j.1467-9353.2007.00359.x

Hein, G. (1991). Constructivist learning theory. Institute for Inquiry. http://www. exploratorium.
edu/ifi/resources/constructivistlearning.html

Henderson, A. (2020, July 21). So Why Is There An “A” In STEAM? [Blog post]. Retrieved from
https://amt-lab.org/blog/2020/5/so-why-is-there-an-a-in-steam

Hendricks, C. C., Alemdar, M., & Ogletree, T. W. (2012). The impact of participation in VEX
robotics competition on middle and high school students’ interest in pursuing STEM studies
and STEM-related careers. Paper presented at the ASEE Annual Conference, San Antonio, TX.
Retrieved from https://peer.asee.org/22069

Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch?: A controlled experiment
comparing plugged first and unplugged first programming lessons. In Proceedings of the 12th
Workshop on Primary and Secondary Computing Education. Association for Computing
Machinery. 10.1145/3137065.3137072

Hill, C., Corbett, C., & St Rose, A. (2010). Why so few? Women in science, technology, engineering,
and mathematics. American Association of University Women.

Hogan, T. P., Catts, H. W., & Little, T. D. (2005). The Relationship between Phonological
Awareness and Reading: Implications for the Assessment of Phonological Awareness. Language,
Speech, and Hearing Services in Schools, 36(4), 285–293. doi:10.1044/0161-1461(2005/029)
PMID:16389701

Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Tangible interaction and learning: The case
for a hybrid approach. Personal and Ubiquitous Computing, 16(4), 379–389. doi:10.100700779-
011-0404-2

Huang, W., & Looi, C. K. (2020). A critical review of literature on “unplugged” pedagogies in
K-12 computer science and computational thinking education. Computer Science Education, 1–29.

Hubwieser, P., Armoni, M., Giannakos, M. N., & Mittermeir, R. T. (2014). Perspectives and Visions
of Computer Science Education in Primary and Secondary (K-12) Schools. ACM Transactions
on Computing Education, 14(2).

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in
higher education: A systematic review. Educational Technology Research and Development,
68(4), 1961–1990. doi:10.100711423-020-09788-z

Ingram, D., & Riedel, E. (2003). What does arts integration do for students? University of
Minnesota, Center for Applied Research and Educational Improvement.

332

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

http://http://www.exploratorium.edu/ifi/resources/constructivistlearning.html
http://http://www.exploratorium.edu/ifi/resources/constructivistlearning.html
https://amt-lab.org/blog/2020/5/so-why-is-there-an-a-in-steam
https://peer.asee.org/22069

Compilation of References

International Literacy Association. (2021). Teaching with Tech. https://www.literacyworldwide.
org/blog/digital-literacies/teaching-with-tech

International Society for Technology in Education (ISTE) & The Computer Science
Teachers Association (CSTA). (2011). CT leadership toolkit. Retrieved from https://
cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdf?_
ga=2.15251892.309077916.1613247518-1278422219.1611941118

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–12
Students With Disabilities to Learn Computational Thinking and Computer Programming.
Teaching Exceptional Children, 48(1), 45–53. doi:10.1177/0040059915594790

Ito, M., Gutiérrez, K., Livingstone, S., Penuel, B., Rhodes, J., Salen, K., Schor, J., Sefton-Green,
J., & Watkins, S. C. (2013). Connected Learning: An Agenda for Research and Design. Digital
Media and Learning Research Hub.

Iwata, M., Pitkänen, K., Laru, J., & Mäkitalo, K. (2020). Exploring potentials and challenges
to develop twenty-first century skills and computational thinking in K-12 maker education. In
Frontiers in Education, 5(87), 1-16. doi:10.3389/feduc.2020.00087

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal of Computer
Science Integration, 1(1). Advance online publication. doi:10.26716/jcsi.2018.01.1.1

Jacobson, L. (2016). The Codemakers: J is for Javascript. School Library Journal, 62(4).

Janveau-Brennan, G., & Markovits, H. (1999). The Development of Reasoning with Causal
Conditionals. Developmental Psychology, 35(4), 904–911. doi:10.1037/0012-1649.35.4.904
PMID:10442860

Jaramillo, J. M., Rendón, M. I., Muñoz, L., Weis, M., & Trommsdorff, G. (2017). Children’s self-
regulation in cultural contexts: The role of parental socialization theories, goals, and practices.
Frontiers in Psychology, 8, 923. doi:10.3389/fpsyg.2017.00923 PMID:28634460

Jenkins, T. (2002). On the difficulty of learning to program. https://www.psy.gla.ac.uk/~steve/
localed/jenkins.html

Jones, C. D., Clark, S. K., & Reutzel, D. (2012). Enhancing Alphabet Knowledge Instruction:
Research Implications and Practical Strategies for Early Childhood Educators. Early Childhood
Education, 41(2), 81–89. doi:10.100710643-012-0534-9

Jones, K. S. (2003). What is an affordance? Ecological Psychology, 15(2), 107–114. doi:10.1207/
S15326969ECO1502_1

Jungert, T., Hubbard, K., Dedic, H., & Rosenfield, S. (2018). Systemizing and the gender gap:
Examining academic achievement and perseverance in STEM. European Journal of Psychology
of Education, 479–500.

K-12 Computer Science Framework Steering Committee. (2016). K–12 computer science
framework. https://k12cs.org

333

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech
https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdf?_ga=2.15251892.309077916.1613247518-1278422219.1611941118
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdf?_ga=2.15251892.309077916.1613247518-1278422219.1611941118
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdf?_ga=2.15251892.309077916.1613247518-1278422219.1611941118
https://www.psy.gla.ac.uk/~steve/localed/jenkins.html
https://www.psy.gla.ac.uk/~steve/localed/jenkins.html
https://k12cs.org

Compilation of References

K-12 Computer Science Framework Steering Committee. (2016). K-12 computer science
framework. https://k12cs.org/

K–12 Computer Science Framework. (2016). K-12 CS Framework. http://www.k12cs.org

K-2 Computer Science Curriculum—Orange. (n.d.). Retrieved April 10, 2021, from https://sites.
google.com/sfusd.edu/k-2cs/orange

Kafai, Y. B., & Walker, J. T. (2020). Twenty things to make with biology. Proceedings of
Constructionism, 598-606.

Kafai, Y., & Margolis, J. (2014, October 7). Why the ‘coding for all’ movement is more than
a boutique reform. Washington Post. Retrieved from https:// www.washingtonpost.com/news/
answer-sheet/wp/2014/10/17/whythe-coding-for-all-movement-is-more-than-a-boutique-reform

Kafai, Y. B., Fields, D. A., & Searle, K. A. (2014). Electronic Textiles as Disruptive Designs:
Supporting and Challenging Maker Activities in Schools. Harvard Educational Review, 84(4),
532–557. doi:10.17763/haer.84.4.46m7372370214783

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and
learning in a digital world. Erlbaum.

Kafai, Y., Telhan, O., Hogan, K., Lui, D., Anderson, E., Walker, J. T., & Hanna, S. (2017, June).
Growing designs with biomakerlab in high school classrooms. Proceedings of the 2017 Conference
on Interaction Design and Children, 503-508. 10.1145/3078072.3084316

Kaldor, T. (2017). The T in STEM: Creating Play-Based Experiences That Support Children’s
Learning of Coding and Higher Order Thinking. Retrieved from https://www.naeyc.org/resources/
blog/creating-play-based-experiences

Kamps, D., Abbott, M., Greenwood, C., Wills, H., Veerkamp, M., & Kaufman, J. (2008).
Effects of small-group reading instruction and curriculum differences for students most at risk in
kindergarten: Two-year results for secondary- and tertiary-level interventions. Journal of Learning
Disabilities, 41(2), 101–114. doi:10.1177/0022219407313412 PMID:18354931

Karpiński, Z., Di Pietro, G., & Biagi, F. (2021). Computational thinking, socioeconomic gaps,
and policy implications. IEA Compass: Briefs in Education Series (12). Retrieved from: https://
www.iea.nl/publications/series-journals/iea-compass-briefs-education-series/january-2021-
computational

Kazakoff, E. R., & Bers, M. (2012). Programming in a robotics context in the kindergarten
classroom: The impact on sequencing skills. Journal of Educational Multimedia and Hypermedia,
21(4), 371–391.

Kazakoff, E. R., & Bers, M. U. (2014). Put your robot in, Put your robot out: Sequencing through
programming robots in early childhood. Journal of Educational Computing Research, 50(4),
553–573. doi:10.2190/EC.50.4.f

334

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://k12cs.org/
http://www.k12cs.org
https://sites.google.com/sfusd.edu/k-2cs/orange
https://sites.google.com/sfusd.edu/k-2cs/orange
http://https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/whythe-coding-for-all-movement-is-more-than-a-boutique-reform
http://https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/whythe-coding-for-all-movement-is-more-than-a-boutique-reform
https://www.naeyc.org/resources/blog/creating-play-based-experiences
https://www.naeyc.org/resources/blog/creating-play-based-experiences
https://www.iea.nl/publications/series-journals/iea-compass-briefs-education-series/january-2021-computational
https://www.iea.nl/publications/series-journals/iea-compass-briefs-education-series/january-2021-computational
https://www.iea.nl/publications/series-journals/iea-compass-briefs-education-series/january-2021-computational

Compilation of References

Kazakoff, E., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive
robotics and programming workshop on sequencing ability in early childhood. Early Childhood
Education Journal, 41(4), 245–255. doi:10.100710643-012-0554-5

Kent, J. (2020). 4 Emerging Strategies to Advance Big Data Analytics in Healthcare.
HealthITAnalytics. https://healthitanalytics.com/news/4-emerging-strategies-to-advance-big-
data-analytics-in-healthcare

Kewalramani, S., Palaiologou, I., & Dardanou, M. (2016). Children’s Engineering Design
Thinking Processes: The Magic of the ROBOTS and the Power of BLOCKS (Electronics).
Eurasia Journal of Mathematics, Science and Technology Education, 16(3). Advance online
publication. doi:10.29333/ejmste/113247

Kim, Y. E., Edouard, K., Alderfer, K., & Smith, B. K. (2018). Making culture: A national study
of education makerspaces. Drexel University.

Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive mastery testing
and a sequential mastery testing procedure. In New horizons in testing (pp. 257–283). Academic
Press. doi:10.1016/B978-0-12-742780-5.50024-X

Knight, V. F., Wright, J., & DeFreese, A. (2019). Teaching Robotics Coding to a Student with
ASD and Severe Problem Behavior. Journal of Autism and Developmental Disorders, 49(6),
2632–2636. doi:10.100710803-019-03888-3 PMID:30734176

Koretz, D., McCaffrey, D. F., Klein, S. P., Bell, R. M., & Stecher, B. M. (1992). The Reliability
of Scores from the 1992 Vermont Portfolio Assessment Program. Academic Press.

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4), 36–42.

Kuhl, P. K., Lim, S. S., Guerriero, S., & van Damme, D. (2019). How stereotypes shape children’s
STEM identity and learning. In Developing Minds in the Digital Age: Towards a Science of
Learning for 21st Century Education. OECD Publishing. doi:10.1787/43e5bb4c-en

Kuhn, D., Nash, S. C., & Brucken, L. (1978). Sex role concepts of two- and three-year-olds.
Child Development, 49(2), 445–451. doi:10.2307/1128709 PMID:679779

Lachapelle, C. P., & Cunningham, C. M. (2007, March). Engineering is elementary: Children’s
changing understandings of science and engineering. ASEE Annual Conference & Exposition, 33.

Ladner, R. E., & Israel, M. (2016). For all” in” computer science for all. Communications of the
ACM, 59(9), 26–28. doi:10.1145/2971329

Lakind, A., Willett, R., & Halverson, E. R. (2019). Democratizing the maker movement: A case
study of one public library system’s makerspace program. Reference and User Services Quarterly,
58(4), 234–245. doi:10.5860/rusq.58.4.7150

Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge
University Press. doi:10.1017/CBO9780511815355

335

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://healthitanalytics.com/news/4-emerging-strategies-to-advance-big-data-analytics-in-healthcare
https://healthitanalytics.com/news/4-emerging-strategies-to-advance-big-data-analytics-in-healthcare

Compilation of References

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., &
Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.
doi:10.1145/1929887.1929902

Lee, K., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using robotics to foster
social interaction in kindergarten. Computers in the Schools, 30(3), 271–281.

Leidl, K. D., Bers, M. U., & Mihm, C. (2017). Programming with ScratchJr: A review of the first
year of user analytics. Proceedings of the International Conference on Computational Thinking
Education.

Lester, J. C., Rowe, J. P., & Mott, B. W. (2013). Narrative-centered learning environments: A
story-centric approach to educational games. Emerging Technologies for the Classroom. 223-237.

Leung, S. K. (2020). Teachers’ belief-and-practice gap in implementing early visual arts
curriculum in Hong Kong. Journal of Curriculum Studies, 52(6), 857–869. doi:10.1080/0022
0272.2020.1795271

Lewin-Bizan, S. G., & Urban, J. B. (Eds.). Thriving in childhood and adolescence: The role of
self-regulation processes. New Directions for Child and Adolescent Development, 133, 29–44.

Littleton, K., & Howe, C. (2010). Educational Dialogues: Understanding and Promoting
Productive Interaction. Routledge. doi:10.4324/9780203863510

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., &
Duschl, R. A. (2020). Computational Thinking Is More about Thinking than Computing. Journal
for STEM Education Research, 3(1), 1–18. doi:10.100741979-020-00030-2 PMID:32838129

Lockwood, J., & Mooney, A. (2018). Computational thinking in education: Where does it fit?
A systematic literary review. International Journal of Computer Science Education in Schools,
2(1), 41–60.

Lockwood, J., & Mooney, A. (2018). Computational Thinking in education: Where does it fit?
A systematic literary review. International Journal of Computer Science Education in Schools,
2(1), 41–60. doi:10.21585/ijcses.v2i1.26

Lopez, S. J., & Louis, M. C. (2009). The Principles of Strengths-Based Education. Journal of
College and Character, 10(4). Advance online publication. doi:10.2202/1940-1639.1041

Ludwig, M., & Song, M. (2016). Evaluation of professional development in the use of arts-
integrated activities with mathematics content: Findings from the evaluation of the Wolf Trap
Arts in education model development and dissemination grant. American Institutes for Research.
Retrieved from https://education.wolftrap.org/sites/default/files/Full%20WT%20AEMDD%20
Report_Final_Jan-2015updated%20with%20date%2Bappendix.pdf

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
doi:10.1016/j.chb.2014.09.012

336

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://education.wolftrap.org/sites/default/files/Full%20WT%20AEMDD%20Report_Final_Jan-2015updated%20with%20date%2Bappendix.pdf
https://education.wolftrap.org/sites/default/files/Full%20WT%20AEMDD%20Report_Final_Jan-2015updated%20with%20date%2Bappendix.pdf

Compilation of References

Madill, H., Campbell, R. G., Cullen, D. M., Armour, M. A., Einsiedel, A. A., Ciccocioppo, A. L., &
Coffin, W. L. (2007). Developing career commitment in STEM-related fields: Myth versus reality.
In R. J. Burke, M. C. Mattis, & E. Elgar (Eds.), Women and Minorities in Science, Technology,
Engineering and Mathematics: Upping the Numbers (pp. 210–244). Edward Elgar Publishing.

Manabe, H., Kanemune, S., Namiki, M., & Nakano, Y. (2011). CS unplugged assisted by digital
materials for handicapped people at schools. In Proceedings of the 5th International Conference
on Informatics in Schools: Situation, Evolution and Perspectives. Springer-Verlag. 10.1007/978-
3-642-24722-4_8

Mantzicopoulos, P., & Patrick, H. (2011). Reading picture books and learning science: Engaging
young children with informational text. Theory into Practice, 50(4), 269–276. doi:10.1080/00
405841.2011.607372

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2017). Stuck in the shallow end:
Education, race, and computing. MIT Press.

Markert, L. R. (1996). Gender related to success in science and technology. The Journal of
Technology Studies, 22(2), 21–29.

Marsh, J., Wood, E., Chesworth, L., Nisha, B., Nutbrown, B., & Olney, B. (2019). Makerspaces
in early childhood education: Principles of pedagogy and practice. Mind, Culture, and Activity,
26(3), 221–233. doi:10.1080/10749039.2019.1655651

Masoumi, D. (2020). Situating ICT in early childhood teacher education. Education and
Information Technologies, 1–18.

Massachusetts Department of Elementary and Secondary Education. (2017). English Language
Arts and Literacy. Retrieved from Massachusetts Department of Education: https://www.doe.
mass.edu/

Maureen, I. Y., van der Meij, H., & de Jong, T. (2020). Enhancing Storytelling Activities to
Support Early (Digital) Literacy Development in Early Childhood Education. International
Journal of Early Childhood, 52(1), 55–76. doi:10.100713158-020-00263-7

McClelland, M. M., Ponitz, C. C., Messersmith, E., & Tominey, S. (2010). Self-regulation:
The integration of cognition and emotion. In The Handbook of Life-Span Development. Vol. 1:
Cognition, Neuroscience, Methods (pp. 509–553). Hoboken, NJ: Wiley.

McClelland, M. M., & Cameron, C. E. (2011). Self‐regulation and academic achievement in
elementary school children. New Directions for Child and Adolescent Development, 2011(133),
29–44. doi:10.1002/cd.302 PMID:21898897

McClelland, M. M., & Cameron, C. E. (2012). Self-regulation in early childhood: Improving
conceptual clarity and developing ecologically valid measures. Child Development Perspectives,
6(2), 136–142. doi:10.1111/j.1750-8606.2011.00191.x

337

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.doe.mass.edu/
https://www.doe.mass.edu/

Compilation of References

McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. J.
(2007). Links between behavioral regulation and preschoolers’ literacy, vocabulary and math skills.
Developmental Psychology, 43(4), 947–959. doi:10.1037/0012-1649.43.4.947 PMID:17605527

McKown, C., & Weinstein, R. S. (2003). The development and consequences of stereotype-
consciousness in middle childhood. Child Development, 74(2), 498–515. doi:10.1111/1467-
8624.7402012 PMID:12705569

McLennan, D. P. (2017). Creating coding stories and games. Teaching Young Children, 10(3).
18-21. Retrieved October 02, 2019 from https://www.naeyc.org/resources/pubs/tyc/feb2017/
creating-coding-stories-and-games

McMillan, J. H. (2013). Classroom assessment: Principles and practice for effective instruction
(6th ed.). Pearson/Allyn and Bacon.

Medal, A. (2017). How Big Data Analytics Is Solving Big Advertiser Problems. Entrepreneur.
https://www.entrepreneur.com/article/293678

Metin, S. (2020). Activity-based unplugged coding during the preschool period. International
Journal of Technology and Design Education, 1–17.

Metz, S. S. (2007). Attracting the engineering of 2020 today. In R. Burke & M. Mattis (Eds.),
Women and Minorities in Science, Technology, Engineering and Mathematics: Upping the
Numbers (pp. 184–209). Edward Elgar Publishing. doi:10.4337/9781847206879.00018

Miller, C. C. (2017). Tech’s Damaging Myth of the Loner Genius Nerd. https://www.nytimes.
com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html

Milto, E., Portsmore, M., McCormick, M., Watkins, J., & Hynes, M. (2020). Novel Engineering,
K–8: An Integrated Approach to Engineering and Literacy. NSTA Press.

Miner, A. S., Milstein, A., Schueller, S., Hegde, R., Mangurian, C., & Linos, E. (2016).
Smartphone-based conversational agents and responses to questions about mental health,
interpersonal violence, and physical health. JAMA Internal Medicine, 176(5), 619–625. doi:10.1001/
jamainternmed.2016.0400 PMID:26974260

Mioduser, D., Levy, S. T., & Talis, V. (2009). Episodes to scripts to rules: Concrete-abstractions
in kindergarten children’s explanations of a robot’s behavior. International Journal of Technology
and Design Education, 19(1), 15–36. doi:10.100710798-007-9040-6

Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of gratification in children. Science,
244(4907), 933–938. doi:10.1126cience.2658056 PMID:2658056

Modan, N. (2019, September 11). 33 states adopted 57 computer science ed policies since 2018.
K-12 Dive. https://www.educationdive.com/news/33-states-adopted-57-computer-science-ed-
policies-since-2018/562530/

338

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.naeyc.org/resources/pubs/tyc/feb2017/creating-coding-stories-and-games
https://www.naeyc.org/resources/pubs/tyc/feb2017/creating-coding-stories-and-games
https://www.entrepreneur.com/article/293678
https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html
https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html
https://www.educationdive.com/news/33-states-adopted-57-computer-science-ed-policies-since-2018/562530/
https://www.educationdive.com/news/33-states-adopted-57-computer-science-ed-policies-since-2018/562530/

Compilation of References

Moll, L., Amanti, C., Neff, D., & González, N. (2005). Funds of knowledge for teaching: Using
a qualitative approach to connect homes and classrooms. In Funds of Knowledge: Theorizing
Practices in Households, Communities, and Classrooms (pp. 71-88). Lawrence Erlbaum Associates.

Monhardt, L., & Monhardt, R. (2006). Creating a context for the learning of science process skills
through picture books. Early Childhood Education Journal, 34(1), 67–71. doi:10.100710643-
006-0108-9

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A Web Tool to Automatically Evaluate
Scratch Projects. Proceedings of the Workshop in Primary and Secondary Computing Education,
132–133. 10.1145/2818314.2818338

Moreno-LeÓn, J., Robles, G., & Roman-Gonzalez, M. (2020). Towards Data-Driven Learning
Paths to Develop Computational Thinking with Scratch. IEEE Transactions on Emerging Topics
in Computing, 8(1), 193–205. doi:10.1109/TETC.2017.2734818

Moruzzi, C. (2017, November). Creative AI: Music composition programs as an extension of the
composer’s mind. In 3rd Conference on” Philosophy and Theory of Artificial Intelligence. Springer.

Movellan, J., Eckhardt, M., Virnes, M., & Rodriguez, A. (2009). Sociable robot improves toddler
vocabulary skills. Proceedings of the 4th ACM/IEEE International Conference on Human Robot
Interaction. 10.1145/1514095.1514189

Moyer, K., & Gilmer, B. V. H. (1953). The Concept of Attention Spans in Children. The Elementary
School Journal, 54(1), 464–466. doi:10.1086/458623

Mulker Greenfader, C. (2019). What is the role of executive function in the school readiness of Latino
students? Early Childhood Research Quarterly, 49(4), 93–108. doi:10.1016/j.ecresq.2019.02.011

Mullis, I. V., & Martin, M. O. (2019). PIRLS 2021 Assessment Frameworks. International
Association for the Evaluation of Educational Achievement. Retrieved from https://eric.
ed.gov/?id=ED606056

Munoz, R., Villarroel, R., Barcelos, T. S., Riquelme, F., Quezada, A., & Bustos-Valenzuela, P.
(2018). Developing Computational Thinking Skills in Adolescents With Autism Spectrum Disorder
Through Digital Game Programming. IEEE Access: Practical Innovations, Open Solutions, 6,
63880–63889. doi:10.1109/ACCESS.2018.2877417

Muro, M., Liu, S., Whiton, J., & Kulkarni, S. (2017). Digitalization and the American workforce.
Brookings Institute.

Naik, G. R. (Ed.). (2012). Applied Biological Engineering: Principles and Practice. BoD–Books
on Demand. doi:10.5772/2101

National Association for the Education of Young Children (NAEYC) & Fred Rogers Center for
Early Learning and Children’s Media. (2012). Technology and Interactive Media as Tools in
Early Childhood Programs Serving Children from Birth through Age 8. https://www.naeyc.org/
files/naeyc/file/positions/PS_technology_WEB2.pdf

339

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://eric.ed.gov/?id=ED606056
https://eric.ed.gov/?id=ED606056
https://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf
https://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf

Compilation of References

National Center for Education Statistics. (2021). Digest of Education Statistics: 2019. U.S.
Department of Education. https://nces.ed.gov/programs/digest/d19/

National Governors Association Center for Best Practices, Council of Chief State School Officers.
(2010a). Common Core State Standards: English Language Arts Standards: Writing, Grade 1.
Washington, DC: National Governors Association Center for Best Practices, Council of Chief
State School Officers. Retrieved from Common Core State Standards Initiative: http://www.
corestandards.org/

National Governors Association Center for Best Practices, Council of Chief State School Officers.
(2010b). Common Core State Standards: Mathematics Standards: Number & Operations in Base
Ten, Grade 1. National Governors Association Center for Best Practices, Council of Chief State
School Officers.

National Research Council. (2000). From neurons to neighborhoods: The science of early
childhood development. U.S. National Research Council.

National Research Council. (2011). Report of a Workshop of Pedagogical Aspects of Computational
Thinking. National Academy Press.

National Research Council. (2011). Report of a workshop on the pedagogical aspects of
computational thinking. National Academies Press.

National Research Council. (2012). A Framework for K-12 Science Education: Practices,
Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12
Science Education Standards. Board on Science Education, Division of Behavioral and Social
Sciences and Education. The National Academies Press.

National Science Foundation. (2017). Women, Minorities, and Persons with Disabilities in Science
and Engineering: 2017. Special Report NSF 17-310. Available at www.nsf.gov/statistics/wmpd/

Nebeker, F. (2002). Golden accomplishments in biomedical engineering. IEEE Engineering
in Medicine and Biology Magazine, 21(3), 17–47. doi:10.1109/MEMB.2002.1016851
PMID:12119874

NECRL. (2004). Using Data to Guide School Improvement. Learning Point Associates. North
Central Regional Educational Laboratory. https://files.eric.ed.gov/fulltext/ED518630.pdf

Neumann, M. (2017). Parent scaffolding of young children’s use of touch screen tablets. Early
Child Development and Care, 188(12), 1654–1664. doi:10.1080/03004430.2016.1278215

NGSS Lead States. (2013). Next Generation Science Standards: For States By States. Author.

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. The
National Academies Press.

Nystrand, M. (1997). Opening Dialogue: Understanding the Dynamics of Language and Learning
in the English Classroom. Teachers College Press.

340

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://nces.ed.gov/programs/digest/d19/
http://www.corestandards.org/
http://www.corestandards.org/
http://www.nsf.gov/statistics/wmpd/
https://files.eric.ed.gov/fulltext/ED518630.pdf

Compilation of References

O’Quin, K., & Besemer, S. P. (1989). The development, reliability, and validity of the
revised creative product semantic scale. Creativity Research Journal, 2(4), 267–278.
doi:10.1080/10400418909534323

Olds, A. R. (2001). Child care design guide. McGraw-Hill.

Oppenheimer, T. (2003). The flickering mind: The false promise of technology in the classroom,
and how learning can be saved. Random House Incorporated.

Ostroff, W. L. (2016). Cultivating curiosity in K-12 classrooms: How to promote and sustain
deep learning. ASCD.

Oviatt, S. (2018, October). Ten Opportunities and challenges for advancing student-centered
multimodal learning analytics. In Proceedings of the 20th ACM International Conference on
Multimodal Interaction (pp. 87-94). ACM.

Pane, J. F., & Myers, B. A. (2001). The impact of human-centered features on the usability of a
programming system for children. Proceedings of CHI EA’02.

Papert, S. (2002). Hard fun. Bangor Daily News, 2.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Basic Books.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. Basic Books.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.

Papert, S. (1980). Mindstorms: Computers, children, and powerful ideas. Basic Books.

Papert, S. (1987). Computer Criticism vs. Technocentric Thinking. Educational Researcher, 16(1).

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. Basic
Books.

Papert, S. (2005). You can’t think about thinking without thinking about thinking about something.
Contemporary Issues in Technology & Teacher Education, 5(3), 366–367.

Paris, A. H., & Paris, S. G. (2003). Assessing narrative comprehension in young children. Reading
Research Quarterly, 38(1), 36–76. doi:10.1598/RRQ.38.1.3

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming.
New Ideas in Psychology, 2, 137–168.

Pearce, J., & Borba, S. (2017). What Is Family Code Night? https://www.naesp.org/blog/what-
familycode-night

Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and
mathematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75–89.

341

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.naesp.org/blog/what-familycode-night
https://www.naesp.org/blog/what-familycode-night

Compilation of References

Peppler, K. A., & Warschauer, M. (2012). Uncovering Literacies, Disrupting Stereotypes:
Examining the (Dis)Abilities of a Child Learning to Computer Program and Read. International
Journal of Learning and Media, 3(3), 15–41. doi:10.1162/IJLM_a_00073

Pérez-Marín, M., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2018). Can computational thinking be
improved by using a methodology based on metaphors and Scratch to teach computer programming
to children? Computers in Human Behavior.

Perlis, A. J. (1962). The computer in the university. In M. Greenberger (Ed.), Computers and the
world of the future (pp. 180–219). MIT Press.

Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning. Education and
Information Technologies, 9(2), 147–158. doi:.0000027927.78380.60 doi:10.1023/B:EAIT

Piaget, J. (1952). The origins of intelligence in children No. 5 (Vol. 8). International Universities
Press.

Piaget, J. (1952). The origins of intelligence in children. International Universities Press.

Piaget, J. (1971). Developmental stages and developmental processes. In D. R. Green, M. P. Ford,
& G. B. Flamer (Eds.), Measurement and Piaget (pp. 172–188). McGraw-Hill.

Pierson, E., Momoh, L., & Hupert, N. (2015). Summative Evaluation Report for the Be A Scientist!
Project’s Family Science Program. https://iridescentlearning.org/wp-content/uploads/2014/01/
BAS-2015-Eval-FINAL-3.pdf

Pivetti, M., Di Battista, S., Agatolio, F., Simaku, B., Moro, M., & Menegatti, E. (2020). Educational
Robotics for children with neurodevelopmental disorders: A systematic review. Heliyon, 6(10),
e05160. doi:10.1016/j.heliyon.2020.e05160 PMID:33072917

Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why Isn’t Creativity More Important to
Educational Psychologists? Potentials, Pitfalls, and Future Directions in Creativity Research.
Educational Psychologist, 39(2), 83–96. doi:10.120715326985ep3902_1

Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. J. (2009). A structured observation
of behavioral self-regulation and its contribution to kindergarten outcomes. Developmental
Psychology, 45(3), 605–619. doi:10.1037/a0015365 PMID:19413419

Portelance, D. J., & Bers, M. U. (2015). Code and Tell: Assessing young children’s learning
of computational thinking using peer video interviews with ScratchJr. Proceedings of the 14th
International Conference on Interaction Design and Children (IDC ’15). 10.1145/2771839.2771894

Portelance, D. J., Strawhacker, A., & Bers, M. U. (2015). Constructing the ScratchJr programming
language in the early childhood classroom. International Journal of Technology and Design
Education, •••, 1–16.

Prensky, M. (2001). Digital Natives, Digital Immigrants Part 2: Do They Really Think Differently?
On the Horizon, 9(6), 1–6. doi:10.1108/10748120110424843

342

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://iridescentlearning.org/wp-content/uploads/2014/01/BAS-2015-Eval-FINAL-3.pdf
https://iridescentlearning.org/wp-content/uploads/2014/01/BAS-2015-Eval-FINAL-3.pdf

Compilation of References

Price, C. B., & Price-Mohr, R. M. (2018). An Evaluation of Primary School Children Coding
Using a Text-Based Language (Java). Computers in the Schools, 35(4), 284–301.

Promise, D. (2017). Computational Thinking for a Computational World. Retrieved from https://
digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf

Przybylski, A. K., & Weinstein, N. (2019). Digital Screen Time Limits and Young Children’s
Psychological Well‐Being: Evidence From a Population‐Based Study. Child Development, 90(1),
e56–e65. doi:10.1111/cdev.13007 PMID:29235663

Pugnali, A., Sullivan, A., & Bers, M. U. (2017). The Impact of User Interface on Young Children’s
Computational Thinking. Journal of Information Technology Education: Innovations in Practice,
16, 172–193. doi:10.28945/3768

RAND Reading Study Group. (2002). Reading for Understanding, toward an R&D Program in
Reading Comprehension. RAND.

Relkin, E. (2018). Assessing young children’s computational thinking abilities (Master’s thesis).
Retrieved from ProQuest Dissertations and Theses database. (UMI No. 10813994)

Relkin, E. (2018). Assessing Young Children’s Computational Thinking Abilities (Masters Thesis).
Tufts University.

Relkin, E., & Bers, M. U. (2020). Exploring the Relationship Among Coding, Computational
Thinking, and Problem Solving in Early Elementary School Students [Symposium]. Annual
Meeting of the American Educational Research Association (AERA), San Francisco, CA.

Relkin, E., & Bers, M. (2021). TechCheck-K: A Measure of Computational Thinking for
Kindergarten Children. In 2021 IEEE Global Engineering Education Conference (EDUCON).
IEEE. Retrieved from https://sites.tufts.edu/devtech/files/2021/05/1487.pdf

Relkin, E., & Bers, M. U. (2019). Designing an Assessment of Computational Thinking Abilities
for Young Children. In L. E. Cohen & S. Waite-Stupiansky (Eds.), STEM for Early Childhood
Learners: How Science, Technology, Engineering and Mathematics Strengthen Learning (pp.
85–98). Routledge. doi:10.4324/9780429453755-5

Relkin, E., & Bers, M. U. (2019). Designing an assessment of computational thinking abilities for
young children. In STEM for Early Childhood Learners: How Science, Technology, Engineering
and Mathematics Strengthen Learning. Routledge.

Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to Code and the Acquisition of
Computational Thinking by Young Children. Computers & Education, 169, 104222. Advance
online publication. doi:10.1016/j.compedu.2021.104222

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and Validation of an
Unplugged Assessment of Computational Thinking in Early Childhood Education. Journal of
Science Education and Technology, 29(4), 482–498. doi:10.100710956-020-09831-x

343

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf
https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf
https://sites.tufts.edu/devtech/files/2021/05/1487.pdf

Compilation of References

Relkin, E., Govind, M., Tsiang, J., & Bers, M. (2020). How Parents Support Children’s Informal
Learning Experiences with Robots. Journal of Research in STEM Education, 6(1), 39–51.
doi:10.51355/jstem.2020.87

Resnick, L. B., Asterhan, C. S. C., & Clarke, S. (2018). Next Generation Research in Dialogic
Learning. In G. E. Hall, L. F. Quinn & D. M. Gollnick (Eds.), Wiley Handbook of Teaching and
Learning (pp. 338-323). Wiley-Blackwell.

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects, Passion,
Peers, and Play. MIT Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... Kafai,
Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner,
A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for
Everyone. Communications of the ACM, 52(11), 60–67. doi:10.1145/1592761.1592779

Resnick, M., & Siegel, D. (2015). A Different Approach to Coding. International Journal of
People-Oriented Programming, 4(1), 1–4.

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids.
Proceeding of the 2005 Conference on Interaction Design and Children - IDC ’05, 117–122.
10.1145/1109540.1109556

Rideout, V. J. (2014). Learning at home: Families’ educational media use in America. A report
of the Families and Media Project. The Joan Ganz Cooney Center at Sesame Workshop.

Riley-Ayers. (2018). Excerpt from Spotlight on Young Children: Observation and Assessment.
Naeyc. https://www.naeyc.org/resources/pubs/books/excerpt-from-spotlight-observation-
assessment

Robelen, E. W. (2011). STEAM: Experts make case for adding arts to STEM. Education Week,
31(13), 8.

Roberts, J. D., Chung, G. K. W. K., & Parks, C. B. (2016). Supporting children’s progress through
the PBS KIDS learning analytics platform. Journal of Children and Media, 10(2), 257–266.

Robertson, J., Gray, S., Toye, M., & Booth, J. N. (2020). The relationship between executive
functions and computational thinking. International Journal of Computer Science Education in
Schools, 3(4), 35–49. doi:10.21585/ijcses.v3i4.76

Rogoff, B. (1999). Cognition as a collaborative process. In Handbook of child psychology. New
York: Wiley.

Rogoff, B., Paradise, R., Arauz, R. M., Correa-Chávez, M., & Angelillo, C. (2003). Firsthand
learning through intent participation. Annual Review of Psychology, 54. PMID:12499516

344

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.naeyc.org/resources/pubs/books/excerpt-from-spotlight-observation-assessment
https://www.naeyc.org/resources/pubs/books/excerpt-from-spotlight-observation-assessment

Compilation of References

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining Assessment Tools
for a Comprehensive Evaluation of Computational Thinking Interventions. In Computational
Thinking Education (pp. 79–98). Springer. doi:10.1007/978-981-13-6528-7_6

Román-González, M., Pérez-González, J., & Jiménez-Fernández, C. (2017). Which cognitive
abilities underlie computational thinking? Criterion validity of the Computational Thinking Test.
Computers in Human Behavior, 72, 678–691. doi:10.1016/j.chb.2016.08.047

Roque, R. (2016). Family Creative Learning: Designing Structures to Engage Kids and Parents
as Computational Creators. In K. Peppler, Y. Kafai, & E. Halverson (Eds.), Makeology in K-12,
Higher, and Informal Education. Routledge.

Roque, R., Lin, K., & Liuzzi, R. (2014). Engaging Parents as Creative Learning Partners in
Computing. Exploring the Material Conditions of Learning, 2, 687–688.

Rose, S. P., Habgood, M. P. J., & Jay, T. (2017). An Exploration of the Role of Visual Programming
Tools in the Development of Young Children’s Computational Thinking. The Electronic Journal
of e-Learning, 15(4), 297-309.

Rothbart, M. K. (2007). Temperament, development, and personality. Current Directions in
Psychological Science, 16(4), 207–212. doi:10.1111/j.1467-8721.2007.00505.x

Rothbart, M. K., Sheese, B. E., & Posner, M. I. (2007). Executive attention and effortful control:
Linking temperament, brain networks, and genes. Child Development Perspectives, 1(1), 2–7.
doi:10.1111/j.1750-8606.2007.00002.x

Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education. PLoS
Computational Biology, 10(11), e1003897. doi:10.1371/journal.pcbi.1003897 PMID:25411839

Rumelhart, D. E. (1994). Toward an interactive model of reading. In R. B. Ruddell, M. R. Ruddell,
& H. Singer (Eds.), Theoretical models and processes of reading (pp. 864–894). International
Reading Association.

Rusk, N., Berg, R., & Resnick, M. (2005). Rethinking robotics: Engaging girls in creative
engineering. Proposal to the National Science Foundation, Cambridge. Retrieved from https://
www.media.mit.edu/publications/rethinking-robotics-engaging-girls-in-creative-engineering-2/

Ryan, E. G. (2013, November 8). Smartphones are made for giant man-hands. Jezebel. Retrieved
from https://jezebel.com/smartphones-are-made-for-giant-man-hands-1461122433

Sameroff, A. J., & Haith, M. M. (1996). The Five to Seven Year Shift: The Age of Reason and
Responsibility. The University of London.

Sameroff, A. J., & Haith, M. M. (1996). The Five to seven year shift: The age of reason and
responsibility. University of Chicago Press.

Sanders, M. E. (2008). Stem, stem education, stemmania. Technology Teacher.

345

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.media.mit.edu/publications/rethinking-robotics-engaging-girls-in-creative-engineering-2/
https://www.media.mit.edu/publications/rethinking-robotics-engaging-girls-in-creative-engineering-2/
https://jezebel.com/smartphones-are-made-for-giant-man-hands-1461122433

Compilation of References

Sano, A. (2019, March 27). Coding will be mandatory in Japan’s primary schools from 2020. Nikkei
Asia. https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-
from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20
sought%20information%20technology%20skills

Sattler, J. M. (2014). Foundations of behavioral, social and clinical assessment of children.
Jerome M. Sattler, Publisher, Incorporated.

Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W. (2020). Designing Unplugged and Plugged
Activities to Cultivate Computational Thinking: An Exploratory Study in Early Childhood
Education. The Asia-Pacific Education Researcher, 29(1), 55–66. doi:10.100740299-019-00478-w

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2018). The cognitive benefits of learning computer
programming: A meta-analysis of transfer effects. Journal of Educational Psychology, 111(5),
764–792. doi:10.1037/edu0000314

Schunk, D. H., & Zimmerman, B. J. (1997). Social origins of self-regulatory competence.
Educational Psychologist, 32(4), 195–208. doi:10.120715326985ep3204_1

Scott, K., Sheridan, K., & Clark, K. (2014). Culturally Responsive Computing: A theory revisited.
Learning, Media and Technology, 40(4), 1–25.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking
of primary grade students. Proceedings of the Ninth Annual International ACM Conference on
International Computing Education Research - ICER ’13, 59. 10.1145/2493394.2493403

Seow, P., Looi, C. K., How, M. L., Wadhwa, B., & Wu, L. K. (2019). Educational policy and
implementation of computational thinking and programming: Case study of Singapore. In
Computational thinking education (pp. 345–361). Springer.

Serafini, F., & Gee, E. (2017). Remixing multiliteracies: Theory and practice from New London
to new times. Teachers College Press.

Sheffield, R. S., Koul, R., Blackley, S., Fitriani, E., Rahmawati, Y., & Resek, D. (2018).
Transnational examination of STEM education. International Journal of Innovation in Science
and Mathematics Education (formerly CAL-laborate International), 26(8).

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review, 22, 142–158. doi:10.1016/j.edurev.2017.09.003

Signorella, M. L., Bigler, R. S., & Liben, L. S. (1993). Developmental differences in children’s
gender schemata about others: A meta-analytic review. Developmental Review, 13(2), 147–183.
doi:10.1006/drev.1993.1007

Smith, M. (1982). Creators not consumers: Rediscovering social education. NAYC.

Smith, R., Snow, P., Serry, T., & Hammond, L. (2020). The Role of Background Knowledge in
Reading Comprehension: A Critical Review. Reading Psychology, 42(3).

346

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills
https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills
https://asia.nikkei.com/Economy/Coding-will-be-mandatory-in-Japan-s-primary-schools-from-2020#:~:text=TOKYO%20%2D%2D%20Computer%20programming%20will,highly%20sought%20information%20technology%20skills

Compilation of References

Snodgrass, M. R., Israel, M., & Reese, G. C. (2016). Instructional supports for students with
disabilities in K-5 computing: Findings from a cross-case analysis. Computers & Education, 100,
1–17. doi:10.1016/j.compedu.2016.04.011

Snow, C. E., Van Hemel, S. B., & Committee on Developmental Outcomes Assessments for
Young Children. (2008). Early childhood assessment: Why, what, and how. Washington, DC:
National Academies Press.

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math
performance. Journal of Experimental Social Psychology, 35(1), 4–28. doi:10.1006/jesp.1998.1373

Springer, K., & Keil, F. (1991). Early Differentiation of Causal Mechanisms Appropriate to
Biological and Nonbiological Kinds. Child Development, 62(4), 767–781. doi:10.2307/1131176
PMID:1935342

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance.
The American Psychologist, 52(6), 613–629. doi:10.1037/0003-066X.52.6.613 PMID:9174398

Steele, C. M. (1999). Thin ice: “Stereotype threat” and black college students. Atlantic Monthly,
284(2), 44–47, 50–54.

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance
of African-Americans. Journal of Personality and Social Psychology, 69(5), 797–811.
doi:10.1037/0022-3514.69.5.797 PMID:7473032

STEM Education Act of 2015, House of Representatives 1020, 114th Congress. (2015). https://
www.congress.gov/bill/114th-congress/house-bill/1020

Strawhacker, A. & Bers, M. U. (2018b). Promoting Positive Technological Development in a
Kindergarten Makerspace: A Qualitative Case Study. European Journal of STEM Education,
3(3), 9. doi:10.20897/ejsteme/3869

Strawhacker, A., Verish, C., Shaer, O., & Bers, M. U. (2020a, April). Debugging as Inquiry in
Early Childhood: A case study using the CRISPEE prototype. Computational Thinking for Science
Learning. Symposium. Annual Meeting of the American Educational Research Association (AERA).

Strawhacker, A. L., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing children’s
programming comprehension using tangible, graphical, and hybrid user interfaces. International
Journal of Technology and Design Education, 25(3), 293–319.

Strawhacker, A. L., Lee, M. S. C., & Bers, M. U. (2017). Teaching tools, teachers’ rules: Exploring
the impact of teaching styles on young children’s programming knowledge in ScratchJr. International
Journal of Technology and Design Education. Advance online publication. doi:10.100710798-
017-9400-9

Strawhacker, A., & Bers, M. U. (2018). What they learn when they learn coding: Investigating
cognitive domains and computer programming knowledge in young children. Educational
Technology Research and Development. Advance online publication. doi:10.100711423-018-
9622-x

347

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.congress.gov/bill/114th-congress/house-bill/1020
https://www.congress.gov/bill/114th-congress/house-bill/1020

Compilation of References

Strawhacker, A., & Bers, M. U. (2018a). Makerspaces for early childhood education (principles
of space redesign) & Maker values of early childhood educators, organizing a grassroots space. In
B. E. Gravel, M. U. Bers, C. Rogers, & E. Danahy (Eds.), Making engineering playful in schools
(pp. 18–29). The LEGO Foundation.

Strawhacker, A., & Sullivan, A. (2021). Computational Expression: How dramatic arts support
computational thinking in young children. In M. U. Bers (Ed.), Computational thinking and
coding in early childhood. IGI Global.

Strawhacker, A., Verish, C., Shaer, O., & Bers, M. (2020c). Young children’s learning of
bioengineering with CRISPEE: A developmentally appropriate tangible user interface. Journal
of Science Education and Technology, 29(3), 319–339. doi:10.100710956-020-09817-9

Strawhacker, A., Verish, C., Shaer, O., & Bers, M. U. (2020b). Designing with Genes in Early
Childhood: An exploratory user study of the tangible CRISPEE technology. International Journal
of Child-Computer Interaction, 26, 26. doi:10.1016/j.ijcci.2020.100212

Strong-Wilson, T., & Ellis, J. (2007). Children and place: Reggio Emilia’s environment as third
teacher. Theory into Practice, 46(1), 40–47. doi:10.1080/00405840709336547

Sullivan, A. (2016). Breaking the STEM Stereotype: Investigating the Use of Robotics to Change
Young Children’s Gender Stereotypes About Technology and Engineering (Doctoral Dissertation).
Tufts University, Medford, MA.

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo: Engaging young children in
programming and engineering. In Proceedings of the 14th International Conference on Interaction
Design and Children (IDC ’15). ACM.

Sullivan, A. (2019). Breaking the STEM stereotype: reaching girls in early childhood. Rowman
& Littlefield.

Sullivan, A. (2019). Breaking the STEM Stereotype: Reaching Girls in Early Childhood. Rowman
& Littlefield.

Sullivan, A. (2020). STEM Tools, Games, and Products to Engage Girls in Pre-K through Early
Elementary School. Technological Horizons in Education.

Sullivan, A. A. (2019). Breaking the STEM stereotype: Reaching girls in early childhood. Rowman
& Littlefield Publishers.

Sullivan, A. A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing, and Coding with KIBO:
Using Robotics to Foster Computational Thinking in Young Children. Proceedings of the
International Conference on Computational Thinking.

Sullivan, A., & Bers, M. U. (2015). Robotics in the early childhood classroom: Learning outcomes
from an 8-week robotics curriculum in pre-kindergarten through second grade. International
Journal of Technology and Design Education. Advance online publication. doi:10.100710798-
015-9304-5

348

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Compilation of References

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in young children’s
performance on robotics and programming tasks. Journal of Information Technology Education:
Innovations in Practice, 15, 145–165. doi:10.28945/3547

Sullivan, A., & Bers, M. U. (2017). Dancing robots: Integrating art, music, and robotics in
Singapore’s early childhood centers. International Journal of Technology and Design Education.
Advance online publication. doi:10.100710798-017-9397-0

Sullivan, A., & Bers, M. U. (2018). Investigating the use of robotics to increase girls’ interest in
engineering during early elementary school. International Journal of Technology and Design
Education, 29(5), 1033–1051. doi:10.100710798-018-9483-y

Sullivan, A., & Bers, M. U. (2018b). The Impact of Teacher Gender on Girls’ Performance on
Programming Tasks in Early Elementary School. Journal of Information Technology Education:
Innovations in Practice, 17, 153–162. doi:10.28945/4082

Sullivan, A., & Bers, M. U. (2019). VEX Robotics Competitions: Gender differences in
student attitudes and experiences. Journal of Information Technology Education, 18, 97–112.
doi:10.28945/4193

Sullivan, A., & Bers, M. U. (Manuscript submitted for publication). Increasing female representation
on VEX robotics competition teams: Results from a three-year study. International Journal of
Technology and Design Education.

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo: Engaging young children in
programming and engineering. Proceedings of the 14th International Conference on Interaction
Design and Children (IDC ’15). 10.1145/2771839.2771868

Swartz, M. I., & Crowley, K. (2004). Parent Beliefs about Teaching and Learning in a Children’s
Museum. Visitor Studies, 7(2), 5–16.

Takeuchi, L., & Stevens, R. (2011). The New Coviewing: Designing for Learning through Joint
Media Engagement. The Joan Ganz Cooney Center at Sesame Workshop.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A
systematic review of empirical studies. Computers & Education, 148, 103798. doi:10.1016/j.
compedu.2019.103798

Taylor, M. S. (2018). Computer Programming With Pre-K Through First-Grade
Students With Intellectual Disabilities. The Journal of Special Education, 52(2), 78–88.
doi:10.1177/0022466918761120

Taylor, M. S., Vasquez, E., & Donehower, C. (2017). Computer Programming with Early
Elementary Students with Down Syndrome. Journal of Special Education Technology, 32(3),
149–159. doi:10.1177/0162643417704439

The Computer Science Teachers Association (CSTA). (2021). K-12 CS Education Glossary.
https://www.csteachers.org/page/glossary

349

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.csteachers.org/page/glossary

Compilation of References

The Condition of Education: Students with Disabilities. (2020). National Center of Education
Statistics. https://nces.ed.gov/programs/coe/indicator_cgg.asp

The Toy Association. (2019). STEM/STEAM Formula for Success. https://www.toyassociation.org/
ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-
1fea-4b37-a5e2-9679ec26f048

Thies, R., & Vahrenhold, J. (2013). On plugging unplugged into CS classes.
doi:10.1145/2445196.2445303

Thies, R., & Vahrenhold, J. (2012). Reflections on Outreach Programs in CS Classes: Learning
Objectives for” Unplugged” Activities. Proceedings of the 43rd ACM technical symposium on
Computer Science Education, 487-492. 10.1145/2157136.2157281

Thornton-Lang. (2012) Observation as a formal assessment tool in early childhood classrooms:
A professional development module. University of Northern Iowa. https://scholarworks.unit.edu/
cgi/viewcontent.cgi?article=1238&context=grp

Toikkanen, T., & Leinonen, T. (2017). The coding ABC MOOC: Experiences from a coding
and computational thinking MOOC for Finnish primary school teachers. In Emerging research,
practice, and policy on computational thinking (pp. 239–248). Springer International Publishing.

Trends in Digital Learning: Students’ Views on Innovative Classroom Models. (2014). Project
Tomorrow. https://tomorrow.org/speakup/2014_OnlineLearningReport.html

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model
curriculum for K–12 computer science: Report of the ACM K–12 task force curriculum committee
(2nd ed.). Association for Computing Machinery.

Tufekci, Z. (2013, November 4). It’s a man’s phone. Medium. Retrieved from https://medium.
com/technology-and-society/its-a-mans-phone-a26c6bee1b69

U.S. Bureau of Labor Statistics. (2021). Labor Force Statistics from the Current Population
Survey CPS CPS Program Links. Author.

Unahalekhaka, A., & Bers, M. U. (in press). Taking Coding Home: Analysis of ScratchJr Usage
in Home and School Settings. Educational Technology Research and Development.

Upadhyaya, B., McGill, M. M., & Decker, A. (2020). A Longitudinal Analysis of K-12 Computing
Education Research in the United States: Implications and Recommendations for Change.
Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 605-611.
10.1145/3328778.3366809

Vakil, S. (2018). Ethics, identity, and political vision: Toward a justice-centered approach to equity
in computer science education. Harvard Educational Review, 88(1), 26–52. doi:10.17763/1943-
5045-88.1.26

350

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://nces.ed.gov/programs/coe/indicator_cgg.asp
https://www.toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048
https://www.toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048
https://www.toyassociation.org/ta/research/reports/stem-steam/toys/research-and-data/reports/stem-steam.aspx?hkey=6e80262f-1fea-4b37-a5e2-9679ec26f048
https://scholarworks.unit.edu/cgi/viewcontent.cgi?article=1238&context=grp
https://scholarworks.unit.edu/cgi/viewcontent.cgi?article=1238&context=grp
https://tomorrow.org/speakup/2014_OnlineLearningReport.html
https://medium.com/technology-and-society/its-a-mans-phone-a26c6bee1b69
https://medium.com/technology-and-society/its-a-mans-phone-a26c6bee1b69

Compilation of References

Vatavu, R. D., Cramariuc, G., & Schipor, D. M. (2015). Touch interaction for children aged
3 to 6 years: Experimental findings and relationship to motor skills. International Journal of
Human-Computer Studies, 74, 54–76.

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition
Studies, 1(2), 42–64.

Vee, A. (2017). Coding Literacy: How Computer Programming Is Changing Writing. The MIT
Press. doi:10.7551/mitpress/10655.001.0001

Venville, G., Gribble, S. J., & Donovan, J. (2005). An exploration of young children’s understandings
of genetics concepts from ontological and epistemological perspectives. Science Education,
89(4), 614–633. doi:10.1002ce.20061

Verish, C., Strawhacker, A., Bers, M. U., & Shaer, O. (2018). CRISPEE: A Tangible Gene Editing
Platform for Early Childhood. Proceedings of the Twelfth International Conference on Tangible,
Embedded and Embodied Interaction (TEI). 10.1145/3173225.3173277

Viana, A. G., Beidel, D. C., & Rabian, B. (2009). Selective mutism: A review and integration
of the last 15 years. Clinical Psychology Review, 29(1), 57–67. doi:10.1016/j.cpr.2008.09.009
PMID:18986742

Vogel, S., Hoadley, C., Castillo, A. R., & Ascenzi-Moreno, L. (2020). Languages, literacies,
and literate programming: Can we use the latest theories on how bilingual people learn to help
us teach computational literacies? Computer Science Education, 30(4), 420–443. doi:10.1080/
08993408.2020.1751525

Vogel, S., Santo, R., & Ching, D. (2017, March). Visions of computer science education:
Unpacking arguments for and projected impacts of CS4All initiatives. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 609-614). ACM.

Vohs, K. D., & Baumeister, R. F. (2004). Understanding self-regulation: An Introduction. In
R. F. Baumeister & K. D. Vohs (Eds.), Handbook of Self-Regulation: Research, theory, and
applications (pp. 1–9). Guilford Press.

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz Alves, N., Barbosa,
H., & Azevedo, L. F. (2018). CodeMaster—Automatic Assessment and Grading of App Inventor
and Snap! Programs. Informatics in Education, 17(1), 117–150. doi:10.15388/infedu.2018.08

Vossoughi, S., & Vakil, S. (2018). Toward what ends? A critical analysis of militarism, equity, and
STEM education. In Education at war (pp. 117–140). Fordham University Press. doi:10.2307/j.
ctt2204pqp.9

Vygotsky, L. S. (1987). Thinking and speech (N. Minick, Trans.). In R. W. Rieber & A. S. Carton
(Eds.), The collected works of L. S. Vygotsky (Vol. 1., pp. 39-285). New York: Plenum Press.
(Original work published 1934)

Vygotsky, L. (2012). Thought and language. MIT Press.

351

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Compilation of References

Vygotsky, L. S. (1978). Mind in Society. Harvard University Press.

Vygotsky, L. S. (1978). Mind in society: The Development of higher psychological processes.
Harvard University Press.

Wadsworth, B. J. (1996). Piaget’s theory of cognitive and affective development: Foundations
of constructivism. Longman Publishing.

Walker, J., & Strawhacker, A. (Co-chairs). (2021, April 8-12). The Biomaker Ecosystem:
Technologies, Spaces and Curriculum for K-12 Making with Biology [Symposium]. American
Educational Research Association (Virtual Conference).

Wang, J., & Hejazi Moghadam, S. (2017, March). Diversity barriers in K-12 computer science
education: structural and social. Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education, 615-620. 10.1145/3017680.3017734

Werner, L., Denner, J., & Campe, S. (2014). Using computer game programming to teach
computational thinking skills. Learning, Education And Games, 37. Retrieved from https://
dl.acm.org/citation.cfm?id=2811150

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment:
measuring computational thinking in middle school. Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, 215–220. 10.1145/2157136.2157200

Westlund, J., & Breazeal, C. (2015). The Interplay of Robot Language Level with Children’s Language
Learning During Storytelling. In Proceedings of the Tenth Annual ACM/IEEE International
Conference on Human-Robot Interaction Extended Abstracts. ACM. 10.1145/2701973.2701989

Willis, A. I., & Harris, V. (2000). Political acts: Literacy learning and teaching. Reading Research
Quarterly, 35(1), 72–88. doi:10.1598/RRQ.35.1.6

Wilson, A., Hainey, T., & Connolly, T. M. (2013). Using Scratch with Primary School Children:
An Evaluation of Games Constructed to Gauge Understanding of Programming Concepts.
International Journal of Game-Based Learning, 3(1), 93–109. doi:10.4018/ijgbl.2013010107

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure
to teach K-12 computer science in the digital age. The Association for Computing Machinery
and the Computer Science Teachers Association.

Wilson-Lopez, A., Larsen, V., & Gregory, S. (2017). Reading and Engineering: Elementary
Students’ Co-Application of Comprehension Strategies and Engineering Design Processes. Journal
of Pre-College Engineering Education Research, 6(2), 39–57. doi:10.7771/2157-9288.1116

Wing, J. (2011). Research notebook: Computational thinking—What and why? https://www.
cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link Magazine.
Retrieved from https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-
and-why

352

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://dl.acm.org/citation.cfm?id=2811150
https://dl.acm.org/citation.cfm?id=2811150
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-

Compilation of References

Wing, J. (2011). Research notebook: computational thinking—What and why? The Link Magazine.
Retrieved from: https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-
and-why

Wing, J. M. (2006). Computational Thinking. CACM Viewpoint, 33-35. http://www.cs.cmu.edu/
afs/cs/usr/wing/www/publications/Wing06.pdf

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881),
3717–3725.

Wing, J. (2006). Computational thinking. Communications of Advancing Computing Machinery,
49 (3), 33-36. Association for Computing Machinery.

Wing, J. M. (2006). Computational thinking. CACM Viewpoint, 49(3), 33–35.
doi:10.1145/1118178.1118215

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. through
programming robots in early childhood. Journal of Educational Computing Research, 50(4),
553–573.

Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Baehr, E. C. (2016). Gender, interest, and
prior experience shape opportunities to learn programming in robotics competitions. International
Journal of STEM Education, 3(1), 18. doi:10.118640594-016-0052-1

Wittgenstein, L. (1997). Philosophical Investigations (2nd ed.). Cambridge: Blackwell.

Wohl, B., Porter, B., & Clinch, S. (2015). Teaching computer science to 5–7 year-olds: An initial
study with scratch, cubelets and unplugged computing. Proceedings of the Workshop in Primary
and Secondary Computing Education, 55–60. 10.1145/2818314.2818340

Wortham, S. C. (2006). Early childhood curriculum: Developmental bases for learning and
teaching. Kevin M.

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an emerging
competence domain. In Technical and vocational education and training (Vol. 23, pp. 1051–1067).
doi:10.1007/978-3-319-41713-4_49

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All: Pedagogical
Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends, 60(6),
565–568. doi:10.100711528-016-0087-7

Yager, R. E. (1996). Meaning of STS for science teachers. Science/technology/Society: as reform
in science education, 16-24.

Yelland, N. (2005). Mindstorms or a storm in a teacup? A review of research with Logo.
International Journal of Mathematical Education in Science and Technology, 26(6), 853–869.
doi:10.1080/0020739950260607

353

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://www.cs.cmu.edu/link/research-
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

Compilation of References

Yelland, N., & Masters, J. (2007). Rethinking scaffolding in the information age. Computers &
Education, 48(3), 362–382. doi:10.1016/j.compedu.2005.01.010

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). Computational Thinking
Test for Beginners: Design and Content Validation. In 2020 IEEE Global Engineering Education
Conference (EDUCON) (pp. 1905-1914). IEEE. 10.1109/EDUCON45650.2020.9125368

Zeidler, D. L., Herman, B. C., Clough, M. P., Olson, J. K., Kahn, S., & Newton, M. (2016).
Humanitas emptor: Reconsidering recent trends and policy in science teacher education. Journal
of Science Teacher Education, 27(5), 465–476. doi:10.100710972-016-9481-4

Zelazo, P. D., Carter, A., Reznick, J. S., & Frye, D. (1997). Early development of executive
function: A problem solving framework. Review of General Psychology, 1(2), 198–226.
doi:10.1037/1089-2680.1.2.198

Zweben, S., & Bizrot, B. (2015). 2014 Taulbee survey. Retrieved from the Computing Research
Association website, https://cra.org/wp-content/uploads/2015/06/2014-Taulbee-Surv

Zweig. (2015). Data collection and use in early childhood education programs: Evidence from the
Northeast Region. Regional Educational Laboratory. https:/files.eric.ed.gov/fulltext/ED555737.pdf

354

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

https://cra.org/wp-content/uploads/2015/06/
http://https:/files.eric.ed.gov/fulltext/ED555737.pdf

About the Contributors

Jessica Blake-West is a master’s student at Tufts University, studying Human
Factors Engineering, and the Lab Manager of DevTech Research Group. She received
her B.S. in Cognitive Neuroscience at Brown University in 2020. While studying
at Brown, she worked extensively with children through internships at Women and
Infants’ Hospital in Providence Rhode Island, Brown’s Swearer Center, and DevTech
Research Group. Her studies at Brown focused on developmental neuroscience and
psychology, as well as computer science and education studies. After her internship
at DevTech in 2019, Jessica took a great interest in educational technology and
teaching computational thinking, and decided to return to DevTech post-graduation
as the Lab Manager. Now at DevTech, her work is primarily focused on developing
the Coding Stages Assessment and ScratchJr administration, which includes using
Google Analytics to assess ScratchJr usage.

Laura de Ruiter is a Research Assistant Professor at the DevTech Research
Group at the Eliot-Pearson Department of Child Study and Human Development
at Tufts University. She studies language acquisition and cognitive development
in young children. Her interests include understanding how children map mental
representations and language, and uncovering the cognitive underpinnings of devel-
opmental computer science. Laura uses predominantly quantitative research methods,
including experiments, corpus analyses and psychometric assessments. She received
her Ph.D. from the Max Planck Institute for Psycholinguistics in Nijmegen (The
Netherlands), and completed a postdoctoral fellowship at the ESRC International
Research Centre for Language and Communicative Development (LuCiD) at the
University of Manchester (UK).

Madhu Govind is a doctoral student in the Eliot-Pearson Department of Child
Study and Human Development at Tufts University and a graduate researcher at the
DevTech Research Group. She received her B.S. in Child Studies and Neuroscience
at Vanderbilt University and her M.A. at Tufts University in Child Study and Hu-
man Development. Her interests broadly encompass the ways in which innovative

355

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

About the Contributors

education technologies and pedagogies can promote children’s learning and creative
expression. Madhu’s research interests are shaped by personal life experiences and
over a decade of teaching experience as an after-school tutor, public middle school
special educator, and math department chair. Her current work focuses on PK-2
teachers’ relationships with and attitudes toward coding and robotics education for
children. Madhu’s doctoral research is generously supported by the Tufts Provost
Fellowship and the Evans Literacy Fellowship.

Ziva R. Hassenfeld is the Jack, Joseph and Morton Mandel Assistant Professor
in Jewish Education at Brandeis University. She studies reading comprehension
from a sociocultural perspective, focusing on how children develop interpretations
of the Hebrew Bible as a case of student reading development. She uses a variety
of qualitative methods including ethnographic observation, stimulated recall in-
terviewing, and think-aloud interviewing. These investigations connect her to the
worlds of biblical hermeneutics, both contemporary and rabbinic, as well as literary
theory and criticism.

Libby Hunt holds a master’s degree from the Eliot-Pearson Department of
Child Study and Human Development at Tufts University, with a concentration in
21st Century Literacies: Media and Technology. She received a B.A. in English
Literature from Wheaton College (MA). Libby’s primary research interests include
the impacts of media on children’s social-emotional development, how educational
media can promote learning, and media literacy. During her time at Tufts, Libby
worked as a research assistant for the DevTech Research Group and the Children’s
Television Project.

Tess Levinson is a Ph.D. Student at the Eliot-Pearson Department of Child Study
and Human Development at Tufts University and is a member of the DevTech Re-
search Group. Tess received her B.S. in Cognitive Studies and Disability Studies at
Vanderbilt University, where she became interested in the interaction between social-
emotional development and academic learning. Prior to Tufts, she was a research
coordinator at the Perelman School of Medicine at the University of Pennsylvania,
coordinating a research grant on the neural correlates of motivation in adolescents
at risk for psychosis. Her current research interests include the intersection of so-
cial and emotional learning and computer science learning in young children, the
neurocognitive processes associated with learning to code, and inclusive coding and
robotics educational environments for children with disabilities.

Claudia Mihm is currently a Master’s student at Harvard Graduate School of
Education, studying Technology, Innovation and Education. She attended Tufts

356

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

About the Contributors

University for her undergraduate degree, majoring in Computer Science and Child
Study and Human Development. Throughout her time at Tufts, she worked as an
undergraduate research assistant in the DevTech research group, primarily supporting
research around ScratchJr and the KIBO robotics kit, and creating a guide to help
teachers support their students through the transition from ScratchJr to Scratch. Over
the past 5 years, Claudia has taught computational thinking and computer science to
young learners in informal settings, and is primarily interested in leveraging com-
putational thinking approaches and technological tools to create engaging learning
experiences across subjects.

Elizabeth Kazakoff Myers, Ph.D., is currently Director of Education Research
and Evaluation at WGBH Educational Foundation where she manages formative
and summative research activities in children’s educational media. She has an ex-
tensive background in the development and evaluation of K-12 STEM and EdTech
resources with a particular focus on the intersection of new technologies and child
development. Dr. Myers has held positions in and led research projects across aca-
demic, industry, government, and non-profit settings. Dr. Myers earned a B.S in
Psychology from Rensselaer Polytechnic Institute, M.Ed. in Psychological Studies
from Cambridge College, and a Ph.D. in Child Study and Human Development
from Tufts University.

XuanKhanh Nguyen is an undergraduate student in the Computer Science De-
partment at Tufts University and an undergraduate research assistant at the DevTech
Research Group. She will receive her B.S. at Tufts University with a major in Data
Science. XuanKhanh’s goal of being a Data Scientist to transform the education
system and focus on innovative educational technologies. Her current capstone
project focuses on studying the effectiveness and relevance of Computer Science
Standards to prepare students for college, career, and life. At DevTech, XuanKhanh’s
research work focuses on ScratchJr’s data analytics using Google Analytics and
Machine Learning models.

Emily Relkin, M.A., is a Ph.D. student at the Eliot-Pearson Department of Child
Study and Human Development at Tufts University and is a member of the DevTech
Research Group. Emily received her B.A. from Muhlenberg College in Psychology
and her M.A. from Tufts University in Child Study and Human Development. Her
research focuses on understanding and assessing the development of computational
thinking abilities in young children. She developed and validated TechCheck, a novel
unplugged computational thinking assessment for 5-9-year-olds that is being used
in research and educational settings.

357

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

About the Contributors

Amanda Strawhacker, Ph.D., is the Associate Director of the Early Childhood
Technology (ECT) Graduate Certificate Program at Tufts University’s Eliot-Pearson
Department of Child Study and Human Development. Her work involves teaching,
developing curriculum, and professional development around educational technol-
ogy. Prior to her role at ECT, Amanda was a Ph.D. student at the DevTech Research
Group. She has contributed to the research and development of several technologies
including the ScratchJr programming app, the KIBO robotics kit, the Early Childhood
Makerspace at Tufts, and most recently the CRISPEE bioengineering kit. Amanda
is a two-time winner of the Eliot-Pearson Research-Practice Integration Award,
and was a speaker with TEDxYouth@BeaconStreet. Her research interests include
engaging children in playful learning about computational thinking, biology, and
ethics, and supporting in-service educators and adults in fostering children’s early
STEM experiences.

Amanda Sullivan is a research consultant, educator, and author who broadly
focuses on the impact of new technologies and media on young children. Her research
specifically explores strategies for breaking gender stereotypes and engaging girls
in STEM & STEAM. Amanda holds a Master’s and Ph.D. in Child Development
from Tufts University where she worked with the Developmental Technologies
(DevTech) Research Group. She is the co-creator of theScratchJr Coding Cards:
Creative Coding Activities for Children Ages 5-7, published by No Starch Press,
and author of the book Breaking the STEM Stereotype: Reaching Girls in Early
Childhood,published by Rowman & Littlefield. Her work has been featured in
GeekWire, WIRED magazine, the New York Times, and more. As a former drama
teacher, Amanda is an advocate for STEAM education and integrating the arts with
technology. She has over a decade of classroom experience teaching early childhood
and elementary school robotics, coding, drama, film production, and more. Amanda
is a Lecturer in the Early Childhood Technology (ECT) graduate certificate program
at Tufts University and an Associate Faculty member in the College of Doctoral
Studies at the University of Phoenix.

Apittha Unahalekhaka is a doctoral student in the Eliot-Pearson Department of
Child Study and Human Development at Tufts University and a graduate researcher
at the DevTech Research Group. She received her B.S. at University of Toronto
with a double major in Neuroscience and Economics, M.M.S. at Duke University,
and Ed.M. at Harvard Graduate School of Education. Her research interests are
data science for education and socio-emotional development in early childhood
with technological learning tools. Prior to graduate schools, she was a manage-
ment consultant at Gallup, external relations associate at Teach For Thailand, and
an intern at The United Nations High Commissioner for Refugees (UNHCR). Her

358

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

About the Contributors

current research work focuses on analyzing ScratchJr data analytics and how young
children’s collaboration affect the quality of their coding projects.

Miki Vizner, M.A., is passionate about creating technologies that allow young
children to grow through play and self-expression. He strives to create technologies
that empower, not pacify. He’s spent a decade collecting skills that make him as
comfortable working with a classroom full of kindergartners as he is in manufactur-
ing facilities across Asia. Now, he is a mechanical engineer developing integrated
power systems for developing countries. Before, he spent two years building robots
and rapid prototyping tools for young children as part of the DevTech research
group during a master’s program in child studies and human development at Elliot
Pearson. He also tended bar. Before that, he spent two and a half years in Rwanda,
developing a center for vulnerable high schoolers to learn science by doing. He is
interested in preoperational logic, making absurd objects, talking to young children
about big ideas, and being outside.

359

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Index

21St Century Skills 110, 238, 245

A
Arts Education 136-137, 155
Attentional Flexibility 71, 83

B
Biodesign 107, 109-113, 115-118, 124-

127, 132
Block-based Coding 51, 83
BRIEF 69, 73, 253

C
CAL-KIBO 255-256, 264
Caregiver 175
Coding As Another Language 8, 54, 84,

93, 203
Coding Education 44, 65, 85, 99
Composition 106, 138, 142, 145, 277
Computational Artifact 92, 294
Computational Literacy 1, 14, 56, 84-86
Computational Thinking 1, 3-13, 20-25,

35-36, 41-42, 45-47, 53, 64-72, 75-77,
83-87, 90, 98, 100, 107-109, 111-114,
118, 120-121, 126-127, 132, 134-135,
137-139, 142-143, 145, 148, 158-160,
172, 176-183, 188, 191, 195, 201-206,
209, 211-214, 216-217, 219, 228-229,
236, 238-239, 242, 245, 250, 264-266,
268-269, 281, 295-302, 310-312

Computer Programming 1, 4, 7-9, 13, 44,
62, 70, 133, 138, 155, 166, 181, 199,

238, 251, 297
Computer Science 3-7, 9-13, 20-24, 41-

45, 53, 62, 67, 85, 88, 91, 94-95, 98,
107-112, 136, 140, 142, 145, 152, 159,
175, 177, 185, 201-203, 216-220, 226,
229-230, 236-240, 244-245, 251-252,
254, 264, 269, 281, 288, 290, 295,
301, 309, 311

Computer Science Education 6, 11, 42, 53,
67, 85, 108-109, 111, 202, 236-239,
244-245, 269, 290, 295, 309

Conditionals 29, 40, 161, 203, 251, 269,
272, 280-281, 287

Connected Learning 171
Constructionism 20, 93, 109, 181, 199, 248
Control Structures 11, 24, 28-31, 50-51,

138, 160-161, 169, 203, 207, 220, 238,
250, 252, 270, 272, 275-276, 281, 301

COVID-19 288, 304-306, 309, 317
Creative Expression 155, 201-202, 244
Creativity 9, 70, 109, 135-137, 142, 159,

176-177, 179-180, 182, 194, 203, 213,
220, 237, 265, 273-274, 284, 288

CRISPEE 107, 109, 113-118, 120-123,
126-128, 133

D
Debugging 8, 11, 23-24, 34-35, 49, 54, 67-

69, 75, 88, 92, 97, 121, 123, 126, 138,
145, 148, 160, 163-165, 169, 188-189,
191-192, 195, 199, 210, 220, 250, 252,
269-270, 284, 301

Design Process 11, 24, 33-34, 53-54, 95,
97, 112, 117-118, 123-124, 126, 138,

360

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Index

145, 147, 160, 165, 167-168, 182, 192,
194, 200, 204-205, 207, 211, 220, 252,
254, 267-268, 270, 278, 284, 301

Dramatic Arts 137, 146, 155, 220

E
Early Childhood 1, 7-11, 13, 20-21, 24-26,

41-42, 44-45, 47, 54, 56, 62, 64-65,
68-70, 76, 84-85, 88, 90, 92, 94, 107-
108, 112-114, 128, 133, 135-139, 141,
145, 152, 155, 164, 177-183, 185, 188,
196, 200-202, 208, 216-217, 219-220,
223, 229, 252, 254, 295-298, 301-302,
309-312, 317

Early Childhood Coding 85
Early Childhood Education 1, 10, 21, 44,

54, 62, 107, 133, 155, 200, 202, 295-
296, 301-302

Engineering Design Process 112, 117-118,
126, 145, 147, 192, 194, 200, 205

Environment-as-Teacher 178, 200
Executive Function 64-70, 75-76, 83
Explicit Instruction 238-239, 248

F
Family Coding Days 160, 164-165, 170-171
Family Engagement 158-159

G
General Education Environment 248
Google Analytics 297, 302-306, 310-312,

317

H
High-Incidence Disability 237, 248
HTKS 71, 73-75, 83

I
Individuals With Disabilities in Education

Act 248
Informal Learning 158-160, 164, 172, 175,

177, 290

Inhibition Control 70-71, 76, 83
Instant Gratification 66, 70, 83
Interfaith 201-202

J
Joint Media Engagement 163

K
K-2 21-22, 28, 35, 93, 295, 309
KIBO 8-9, 11, 20, 22-25, 28-29, 31-35,

54, 62, 91-95, 97-98, 113, 140-142,
155, 160, 164-168, 175, 185-186, 188,
192-194, 200, 203-208, 210-214, 221,
223-224, 228, 234, 237, 241-244, 254,
264-265, 267, 270, 280-288, 290, 294

L
Learner Interactions 317
Learning Analytics 295-303, 305, 310-

312, 317
Learning Disabilities 237, 239
Life Science 107-113, 133
Low-Incidence Disability 248

M
Machine Learning 300
Makerspaces 176-184, 195-196, 200
Modularity 4, 10-11, 24, 27-28, 49-50, 68,

113, 138, 145, 160, 169, 207, 220, 250,
252, 256, 270, 275, 278, 301

Multiliteracies 87, 100
Multi-Modal Learning Analytics 317
Multi-Subject Integration 206

P
Parallelism 270-273, 275, 287, 294
Participatory Learning 163
Performing Arts 135-139, 145, 148-149,

152, 155
Powerful Ideas 3-5, 8-13, 24-25, 35, 41, 45,

47, 98, 138-139, 160-161, 164, 167,
169-170, 176, 183, 207, 220, 223, 243,

361

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

Index

252, 254-255, 264, 270, 275, 281, 301
Professional Development 92, 203-204, 212
Programming Language 1-5, 13, 23, 31,

35, 40, 43, 69-70, 88, 91, 94, 98-99,
106, 113, 163, 185, 242-243, 267-268,
280, 287

Project Design 267-271, 273-275, 277, 281,
284, 286, 288

Project-Based Learning 290, 294

R
Robotics 8-9, 20, 22, 54, 62, 66, 90-91,

93-94, 108, 113, 136, 138-139, 141,
155, 160, 164, 166, 175, 180, 185,
192, 200-204, 206-207, 209, 213-214,
216, 219, 221, 224, 226, 228-229, 234,
239-245, 252, 254, 264, 266, 270, 280,
284, 287, 294

Rubric 268-274, 276-277, 280-282, 285-
286, 288

S
Scaffolding 71, 75, 161, 165, 175, 311
Scratchjr 1-4, 8, 11, 20, 22-23, 25-31, 34-

35, 43, 54, 62, 66-68, 71-76, 83, 88,
92-95, 97, 99, 113, 142-144, 155, 160,
164-166, 168-170, 175, 228, 264-266,
270-274, 276-279, 281, 285-288, 290,
294-295, 297-298, 303-311, 317

Selective Mutism 240
Self-Regulation 64-72, 74-76, 83
Sequencing 4-5, 8, 10, 13, 23, 26, 29, 40,

45, 67-68, 70, 76, 88, 90, 120, 133,
138, 142-145, 164, 203, 211, 221, 239,
242, 268, 272-273, 275, 280, 284, 287

Seymour Papert 5, 10, 35, 45
Socio-Cultural Environments 201-202, 213
Special Education 73, 236-240, 245, 248
Special Education Services 236-240, 248
STEAM Education 136-137, 156, 201
STEM Education 85-86, 110, 133-136
Stereotype 218-219, 234
Stereotype Threat 218-219, 234
Syntax 2, 4, 23, 43, 88, 91, 97, 106, 177,

273, 275, 283, 294

T
TACTIC-KIBO 254-256, 264
Tangible Robotics 164, 240-241, 244
Tangible User Interface 133
Teaching Coding 85
Techcheck 98, 250, 254-256, 258-259, 264

U
Universal Design for Learning 240, 244
Unplugged 4, 7-8, 10, 42-47, 51-57, 62,

88, 98, 161, 163-164, 171-172, 175,
196, 223, 239, 244, 250-252, 254, 264

Usage Patterns 297, 303, 310-311, 317

W
Working Memory 68-71, 76, 83, 256
Writing Process 53, 88, 300

362

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l.

A
ll

rig
ht

s
re

se
rv

ed
.

