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Section 1
Deep Dive

Chapter 1
From.Computational.Thinking.to.Computational.Doing.......................................1

Marina Umaschi Bers, Tufts University, USA

Computer.programming.is.becoming.an.essential.skill.in.the.21st.century,.and.in.
order.to.best.prepare.future.generations,.the.promotion.of.computational.thinking.
and. literacy. must. begin. in. early. childhood. education.. Computational. thinking.
can.be.defined.in.many.ways..The.broad.definition.offered.in.this.chapter.is.that.
computational.thinking.practices.refer.to.techniques.applied.by.humans.to.express.
themselves.by.designing.and.constructing.computation..This.chapter.claims.that.
one.of.the.fundamental.ways.in.which.computational.thinking.can.be.supported.
and.augmented.is.by.providing.children.with.opportunities.to.code.and.to.create.
their.own.interactive.computational.media..Thus,.computational.literacy.will.allow.
children.to.become.producers.and.not.only.consumers.of.digital.artifacts.and.systems.

Chapter 2
Why.Teach.Coding.to.Early.Elementary.Learners...............................................21

Claudia M. Mihm, Tufts University, USA

As.coding.and.computer.science.become.established.domains.in.K-2.education,.
researchers.and.educators.understand.that.children.are. learning.more.than.skills.
when.they.learn.to.code.–.they.are.learning.a.new.way.of.thinking.and.organizing.
thought..While.these.new.skills.are.beneficial.to.future.programming.tasks,.they.
also.support.the.development.of.other.crucial.skills.in.early.childhood.education..
This. chapter. explores. the. ways. that. coding. supports. computational. thinking. in.
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young.children.and.connects.the.core.concepts.of.computational.thinking.to.the.
broader.K-2.context.

Chapter 3
Unplugged.Learning:.Recognizing.Computational.Thinking.in.Everyday.Life...41

Emily Relkin, Tufts University, USA
Amanda Strawhacker, Tufts University, USA

This.chapter.explores.perspectives.on.unplugged.coding.and.computational.thinking.
(CT).in.early.childhood..Concepts,.definitions,.and.research.on.unplugged.learning.
and.its.relationship.to.computer.science.are.considered..Several.examples.illustrate.
how.young.children.can.encounter.powerful.ideas.of.CT.in.both.formal.educational.
settings.and.in.the.process.of.everyday.life..Resources.are.provided.that.aid.in.the.
identification.and.integration.of.unplugged.activities.into.early.childhood.settings..
Finally,.the.authors.advocate.for.further.research.on.teaching.CT.concepts.to.children.
that.includes.both.coding.and.unplugged.approaches.

Section 2
Connections

Chapter 4
The.Role.of.Executive.Function.and.Self-Regulation.in.the.Development.of.
Computational.Thinking.......................................................................................64

Elizabeth Kazakoff Myers, WGBH Educational Foundation, USA

This.chapter.summarizes.theoretical.connections.between.computational.thinking.
through. learning. to. code,. self-regulation,. and. executive. function. and. discusses.
why.it. is. important. to.continue.exploring.the.intersection.of.executive.function,.
self-regulation,.and.computational.thinking,.including.the.need.to.revisit.the.socio-
cultural. underpinnings. of. foundational. self-regulation,. executive. function,. and.
school.readiness.research..As.an.example,.findings.from.a.2014.study.that.explored.
the.relationship.between.self-regulation.and.computational.thinking.when.learning.
to.code.are.shared..Research.supports.the.idea.of.teaching.computational.thinking.
skills.within.an.integrated.early.childhood.curriculum.to.support.the.development.of.
well-prepared.citizens.for.the.21st.century.by.drawing.on.the.connections.between.
executive.function,.self-regulation,.and.computational.thinking.

Chapter 5
Rhyme.and.Reason:.The.Connections.Among.Coding,.Computational.
Thinking,.and.Literacy..........................................................................................84

Madhu Govind, Tufts University, USA
Ziva Reimer Hassenfeld, Brandeis University, USA
Laura de Ruiter, Tufts University, USA
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The. chapter. begins. with. an. exploration. of. computational. thinking. (CT). and. its.
relationship.to.computational.literacy,.followed.by.a.summary.of.theoretical.and.
empirical.work.that.aims.to.elucidate.the.connections.among.coding,.CT,.and.literacy..
The.authors.argue.that.these.connections.thus.far.have.been.predominantly.one.of.
support.(i.e.,.unidirectional).and.motivated.by.technological.and.policy.advances,.as.
opposed.to.considering.the.connections.as.mutually.reinforcing.and.developmentally.
coaligned..The.authors.discuss.the.coding.as.another.language.(CAL).pedagogical.
approach,.a.pedagogy.that.presents.learning.to.program.as.akin.to.learning.how.
to.use.a.new.language.for.communicative.and.expressive.functions,.emphasizing.
the.bidirectional.connections.between.the.two.domains..Finally,.the.authors.detail.
various.curricula.that.use.the.CAL.approach.and.discuss.the.implications.of.CAL.
for.teaching.and.learning.in.early.childhood.

Chapter 6
Computational.Thinking.and.Life.Science:.Thinking.About.the.Code.of.Life..107

Amanda L. Strawhacker, Tufts University, USA

Life.science.and.computer.science.share.the.educational.goals.of.fostering.students.
to.engage.in.inquiry-based.learning.and.solve.problems.through.similar.practices.
of.discovery,.design,.and.experimentation..This.chapter.outlines.the.pedagogical.
links.among. traditional. life. science.and.emerging.computer. science.domains. in.
early. childhood. education,. and. describes. an. educational. intervention. using. the.
CRISPEE. technological. prototype.. CRISPEE,. designed. by. a. research. team. of.
developmentalists,. biologists,. educators,. and. computer. scientists,. invites. young.
children. to. use. computational. logic. to. model. design. processes. with. biological.
materials..Findings.are.discussed.as.they.relate.to.new.understandings.about.how.
young.children.leverage.computational.thinking.when.engaged.in.design-based.life.
science,.or.biodesign.

Chapter 7
Computational.Expression:.How.Performance.Arts.Support.Computational.
Thinking.in.Young.Children...............................................................................134

Amanda L. Strawhacker, Tufts University, USA
Amanda A. Sullivan, Tufts University, USA

In.the.past.two.decades,.STEM.education.has.been.slowly.replaced.by.“STEAM,”.
which.refers.to.learning.that.integrates.science,.technology,.engineering,.arts,.and.
mathematics.. The. added. “Arts”. portion. of. this. pedagogical. approach,. although.
an. important. step. towards. integrated. 21st. century. learning,. has. long. confused.
policymakers,.with.definitions.ranging.from.visual.arts.to.humanities.to.art.education.
and.more..The.authors.take.the.position.that.Arts.can.be.broadly.interpreted.to.mean.
any.approach.that.brings.interpretive.and.expressive.perspectives.to.STEM.activities..
In. this. chapter,. they. present. illustrative. cases. inspired. by. work. in. real. learning.
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settings. that. showcase.how.STEAM.concepts.and.computational. thinking.skills.
can.support.children’s.engagement.in.cultural,.performing,.and.fine.arts,.including.
painting,.sculpture,.architecture,.poetry,.music,.dance,.and.drama.

Section 3
Contexts

Chapter 8
Fostering.Computational.Thinking.in.Homes.and.Other.Informal.Learning.
Spaces.................................................................................................................158

Madhu Govind, Tufts University, USA

This. chapter. provides. theoretical. and. practical. insights. for. fostering. children’s.
computational. thinking.(CT). in.homes.and.other. family-friendly.spaces.such.as.
libraries,.museums,.and.after-school.programs..The.family.context—the.kinds.of.
roles,.interactions,.and.opportunities.afforded.by.parents,.caregivers,.and.siblings—is.
essential.for.understanding.how.young.children.learn.and.engage.in.CT..This.work.
is.informed.by.research.on.how.everyday.activities.and.educational.technologies.
(and.the.contexts.in.which.they.are.used).can.be.designed.to.promote.opportunities.
for.CT.and.family.engagement..This.chapter.discusses.ways.to.support.children’s.
CT.by.co-engaging.family.members.in.collaborative.coding.activities.in.homes.and.
other.informal.learning.spaces.

Chapter 9
Makerspaces.as.Learning.Environments.to.Support.Computational.Thinking..176

Amanda L. Strawhacker, Tufts University, USA
Miki Z. Vizner, Independent Researcher, USA

Makerspaces.are.technology-rich.learning.environments.that.can.uniquely.support.
children’s. development.. In. education. communities,. makerspaces. have. become.
sites.to.take.up.explorations.of.personally-motived.problem.solving,.and.have.been.
tied.to.21st.century.learning.outcomes.of.perseverance,.creativity,.persistence,.and.
computational. thinking.. Elsewhere. in. this. book,. Bers. described. computational.
thinking.as.the.set.of.skills.and.cognitive.processes.required.to.give.instructions.
for.a.specific.task.in.such.a.way.that.a.computer.could.carry.it.out..But.Bers.also.
argued.that. the.purpose.of.computational. thinking. is. to.cultivate.a.fluency.with.
technological.tools.as.a.medium.of.expression,.not.an.end.in.itself..Computational.
making.is.part.of.this.expression..This.chapter.explores.the.ways.in.which.tools,.
facilitation,.and.the.physical.environment.can.support.children’s.engagement.with.
powerful.ideas.of.computational.thinking.through.making.
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Chapter 10
Coding,.Computational.Thinking,.and.Cultural.Contexts..................................201

Libby Hunt, Tufts University, USA
Marina Umaschi Bers, Tufts University, USA

This.chapter.examines.the.relationship.between.coding,.computational.thinking,.and.
the.contexts.in.which.those.concepts.are.learned..It.recounts.a.pilot.study.where.
a. 12-week. robotics. curriculum. was. taught. in. kindergarten. classrooms. at. eight.
interfaith. and. secular. schools. in.Boston,.United.States. of.America. and.Buenos.
Aires,.Argentina..In.this.chapter,.the.authors.explore.how.teachers.and.students.drew.
from.their.socio-cultural.environments. to. inform.the. language.of.computational.
thinking.and.support. the. internalization.of.computational.concepts.and,. in. turn,.
how.computational.thinking.was.used.as.a.tool.for.deeper.exploration.of.cultural.
traditions.and.beliefs,.meaning-making,.and.creative.expression.

Chapter 11
Supporting.Girls’.Computational.Thinking.Skillsets:.Why.Early.Exposure.Is.
Critical.to.Success...............................................................................................216

Amanda Sullivan, Tufts University, USA

The. representation. of. women. in. technical. fields. such. as. computer. science. and.
engineering.continues.to.be.an.issue.in.the.United.States,.despite.decades.of.research.
and.interventions..According.to.the.most.recent.Bureau.of.Labor.Statistics.reports,.
only.21.1%.of.computer.programmers.are.women,.and.only.16.5%.of.engineering.
and.architecture.positions.are.filled.by.women..This.chapter.discusses. the. long-
term.importance.of.exposing.girls.to.computational.thinking.during.their.formative.
early.childhood.years.(Kindergarten.through.second.grade).in.order.to.set.them.up.
for.equal.opportunities. in. technical.fields. throughout. their. later.educational.and.
career.years..This.chapter.presents.a.case.example.of.a.K-2nd.grade.robotics.and.
coding.curriculum.in.order.to.highlight.examples.of.developmentally.appropriate.
technologies,.activities,.and.strategies.that.educators.can.implement.to.foster.young.
girls’.computational.thinking.skills..Best.practices.and.instructional.strategies.to.
support.girls—as.well.as.young.children.of.any.gender.identity—are.discussed.
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available.to.students.receiving.special.education.services..The.chapter.then.provides.
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This. chapter. describes. the. development. and. validation. of.TechCheck,. a. novel.
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displayed.when.children.have.the.opportunity.to.demonstrate.their.skills.by.producing.
creative.coding.artifacts..Performance-based.or.project.portfolio. assessments.of.
young.children’s.coding.artifacts.are.a. rich.and.useful.approach. to.explore.how.
children.develop.and.apply.CT.abilities..In.this.chapter,.the.authors.examine.various.
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Preface

Thinking About Computational Thinking in Early Childhood

My mentor, Seymour Papert, used to say that one cannot “think about thinking 
without thinking about something”. Behind this playful phrase hides a deep concern 
about epistemology: how do we get to know what we know? How do we gain new 
insights about our own cognitive processes and the world around us?

This book is inspired by that quest for gaining new knowledge. In September 
2001, I started as a young assistant professor at Tufts University, and I created an 
interdisciplinary research group called “Developmental Technologies”, DevTech. 
Students with diverse backgrounds: from child development to computer science, 
from education to engineering, from cognitive science to anthropology, joined the 
group. For the last twenty years, DevTech has focused on understanding how new 
technologies that engage in coding, robotics and making can play a positive role in 
children’s development and learning. Early on, DevTech’s work focused on older 
children, teens and pre-teens, and coding opportunities embedded in virtual worlds. 
Later on, as I had my own children, I realized there was a lack of tools for them. 
Thus, DevTech’s focus shifted to early childhood.

This fascinating period of development invites us to re-think how we design 
interfaces for children who cannot yet read and write, who have short attention span 
and working memory, who are honest in expressing engagement and frustration, 
who are just learning how to work with others and who are eager to explore the 
world by touching, making and breaking. At DevTech we focused on designing and 
creating novel programming environments, such as KIBO robotics and ScratchJr, to 
be developmentally appropriate. We collaborated with others, such as KinderLab 
Robotics, the LifeLong Kindergarten group at the MIT Media Lab and the Scratch 
Foundation to make sure these technologies could go out into the world and become 
products used by millions, and not only research prototypes. We developed teaching 
materials and pedagogical strategies for professional development of early childhood 
educators and opportunities for family and community engagement.
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Preface

All of this work is based on the theoretical frameworks that I have developed 
over the years, such as Positive Technological Development (Bers, 2012); Coding 
as a Playground (Bers, 2018; 2020) and Coding as Another Language (Bers, 2019). 
We are conducting studies all over the world to understand how diverse children 
learn with and about computer science, how this discipline can help them make 
connections to more traditional domains of learning and how it can support the 
development of positive human values (Bers, 2022).

Our research involves three dimensions: theoretical contributions, design of new 
technologies, and empirical work to test and evaluate the theory and the technologies. 
Our long-time commitment is to inspire sustainable and scalable evidence-based 
programs for young children that promote the learning of programming with a 
playful and developmentally appropriate approach.

As we were busy with our work, a new term in the field started to gain traction: 
“computational thinking”. Jeannette Wing popularized it in the mid 2000’s. However, 
those of us working within a Constructionist framework (Papert, 1980; Resnick, 
2017) recognized the concept immediately from observing the kinds of questions 
children engaged with when programming, the kind of problems they encountered 
when creating their projects, and the multiple creative solutions they proposed.

Nowadays, there is a push to embed computational thinking throughout the 
national and international educational frameworks, to conduct research to better 
understand what it means, to package it through curriculum, media and games, 
and to assess it. This brings new opportunities for the field of computer science 
education to reach mainstream.

In this book, we focus on a particular segment of the population: early childhood. 
The fifteen chapters in this book were all written by current or former students in the 
DevTech research lab. Thus, all chapters share a similar theoretical and pedagogical 
framework, but they each focus on a particular aspect of computational thinking 
and early childhood education. The book is organized in four parts: “Deep Dive,” 
“Connections,” “Contexts.” and “Evaluation.”

The three chapters in “Deep Dive” set the stage for thinking about computational 
thinking and its relationship to coding and unplugged activities. Chapter 1, “From 
Computational Thinking to Computational Doing,” by Marina Bers, provides a broad 
literature review and positions computational thinking practices as techniques applied 
by humans to express themselves by designing and constructing computational 
artifacts. This chapter claims that one of the fundamental ways in which computational 
thinking can be supported and augmented is by providing children with opportunities 
to code and to create their own interactive computational media. Chapter 2, “Why 
Teach Coding to Early Elementary Learners,” by Claudia Mihm, explores the ways 
in which coding supports computational thinking in young children, and connects 
the core concepts of computational thinking to other crucial skills in early childhood 

xvi

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



Preface

education – such as literacy, numeracy, and organization skills. Chapter 3, “Unplugged 
Learning: Recognizing Computational Thinking in Everyday Life,” by Emily Relkin 
and Amanda Strawhacker, explores both plugged and unplugged opportunities that, 
building on traditional early education experiences and activities, can engage young 
children in computational thinking in both formal and informal learning settings.

The four chapters in “Connections” provide examples of the associations and 
relationships that come about when computational thinking is explored through the 
life sciences, literacy, dramatic arts, and the development of executive functions. 
Chapter 4, “The Role of Executive Function and Self-Regulation in the Development 
of Computational Thinking,” by Elizabeth Kazakoff-Myers, explores theoretical 
connections between computational thinking, coding, self-regulation, and executive 
function and presents findings from an early study. Chapter 5, “Rhyme and Reason: 
The Connections Among Coding, Computational Thinking, and Literacy,” by 
Madhu Govind, Ziva Hassenfeld, and Laura de Ruiter, discusses theoretical and 
empirical work to elucidate the connections among coding, computational thinking, 
literacy, and language. The authors argue that these connections thus far have been 
predominantly one of support (i.e., unidirectional) and motivated by technological 
and policy advances, as opposed to considering the connections as mutually 
reinforcing and developmentally coaligned. The authors present the Coding as 
Another Language (CAL) pedagogical approach and curricula, which addresses 
the bidirectional connection between computer science and literacy. Chapter 6, 
“Computational Thinking and Life Science: Thinking About the Code of Life,” 
by Amanda Strawhacker, outlines the pedagogical links among traditional life 
science and emerging computer science domains in early childhood education, and 
describes an educational intervention using the CRISPEE prototype that invites 
young children to leverage computational thinking when engaged in design-based 
life science, or biodesign. Chapter 7, “Computational Expression: How Performance 
Arts Support Computational Thinking,” by Amanda Strawhacker and Amanda 
Sullivan, explores how in the past two decades, STEM education has been slowly 
replaced by “STEAM”, which refers to learning that integrates Science, Technology, 
Engineering, Arts, and Mathematics and presents case studies in which painting, 
sculpture, architecture, poetry, music, dance, and drama supported the teaching of 
computational thinking skills.

The five chapters in “Contexts” present examples of different experiences in 
which children and families learn to code by making their own computationally rich 
projects and by thinking in computational ways. The diversity of the five chapters in 
this part span from a focus on girls, children with disabilities and families, to learning 
environments explicitly designed to promote making activities and exploration of 
cultural and religious identities. Chapter 8, “Fostering Computational Thinking in 
Homes and Other Informal Learning Spaces,” by Madhu Govind, explores the different 
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Preface

kinds of roles, interactions, and opportunities afforded by parents, caregivers, and 
siblings when engaging in collaborative coding activities. Chapter 9, “Makerspaces 
as Learning Environments to Support Computational Thinking,” by Amanda 
Strawhacker and Miki Vizner, explores the ways in which tools, facilitation, and the 
physical environment of informal makerspaces can support children’s engagement 
with powerful ideas of computer science and the maker movement. Chapter 10, 
“Coding, Computational Thinking, and Cultural Contexts,” by Libby Hunt and 
Marina Bers, describes a pilot study in eight interfaith kindergarten classrooms in 
Boston, United States of America and Buenos Aires, Argentina that set out to explore 
different ways a robotics curriculum could promote computational thinking, and, 
in turn, how computational thinking was used as a tool for deeper exploration of 
cultural traditions and beliefs, meaning-making, and creative expression. Chapter 
11, “Supporting Girls’ Computational Thinking Skillsets: Why Early Exposure Is 
Critical to Success,” by Amanda Sullivan, discusses the long-term importance of 
exposing girls to computational thinking during their formative early childhood years 
in order to set them up for equal opportunities in technical fields throughout their 
later educational and career years and presents a case study of a K-2nd grade robotics 
and coding curriculum that illuminates best practices and instructional strategies. 
Chapter 12, “Including Students With Disabilities in the Coding Classroom,” by 
Tess Levinson, Libby Hunt, and Ziva Hassenfeld, describes the special education 
system in the United States, and how computer science education is made available 
to students receiving special education services. It presents a case study of a student 
with a mild disability. Implications for future research directions are discussed.

Lastly, “Evaluation” presents three chapters focused on how to evaluate 
computational thinking using projects created by children, validated unplugged 
assessments and data analytics. Chapter 13, “TechCheck: Creation of an Unplugged 
Computational Thinking Assessment for Young Children,” by Emily Relkin, describes 
the development and validation of TechCheck, a novel instrument for rapidly 
assessing Computational Thinking (CT) skills in 5-9 years old children. Chapter 14, 
“Examining Young Children’s Computational Artifacts,” by Apittha Unahalekhaka 
and Madhu Govind, examines various rubrics and assessment tools used to measure 
the levels of programming competency, creativity, and purposefulness displayed in 
students’ coding artifacts, and discusses the ScratchJr and KIBO Project Rubrics for 
researchers and educators to evaluate diverse projects. Chapter 15, “Insights Into 
Young Children’s Coding With Data Analytics,” by Apittha Unahalekhaka, Jessica 
Blake-West, and XuanKhanh Nguyen, discusses the potential of learning analytics 
for computational thinking assessment in early childhood education and provides 
examples of its use to deepen understanding of computational thinking through 
observing young children’s engagement with ScratchJr.
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Preface

Together, these 15 articles divided in four parts presents a snapshot of some of 
the work done over two decades by members of the DevTech research group. As the 
field progresses, and more labs and researchers around the country and the world 
engage with computer science and early childhood, it is my hope that we will grow 
our collective ability to “think about thinking by thinking about computational 
thinking”.
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Section 1

Deep Dive
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Chapter  1

1

DOI: 10.4018/978-1-7998-7308-2.ch001

ABSTRACT

Computer programming is becoming an essential skill in the 21st century, and in 
order to best prepare future generations, the promotion of computational thinking 
and literacy must begin in early childhood education. Computational thinking 
can be defined in many ways. The broad definition offered in this chapter is that 
computational thinking practices refer to techniques applied by humans to express 
themselves by designing and constructing computation. This chapter claims that 
one of the fundamental ways in which computational thinking can be supported 
and augmented is by providing children with opportunities to code and to create 
their own interactive computational media. Thus, computational literacy will allow 
children to become producers and not only consumers of digital artifacts and systems.

A SCENARIO

Henry, 6 years old, is working with the free ScratchJr introductory programming 
language on an iPad loaded in his kindergarten class. He is focused on making an 
animation of a train. Every so often, he wiggles. Other times, he is frustrated and 
watches over his friend Liana’s project to ask her a question. “How did you make 
your cat appear and disappear on the screen so many times?” Henry is trying to 
program a train that travels into a tunnel. He drew the train and the tunnel with the 
paint tool in ScratchJr. He is happy with how they look, but now comes the hardest 
part: he needs to program the train to move forward, while making a “choo-choo-

From Computational Thinking 
to Computational Doing
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Tufts University, USA
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From Computational Thinking to Computational Doing

choo” noise. He has to time it perfectly, so the train disappears as it travels into the 
tunnel, but the noise continues to play out.

“Look at my cat! Look at my cat!” Liana is excited to show Henry how to use 
new programming blocks, purple blocks to be more specific, called Looks blocks. 
She has programmed her ScratchJr kitten to appear and disappear on the screen 
ten different times. She has put together a long sequence. Although Liana cannot 
read yet, she knows that these programming blocks can make her ScratchJr kitten 
show and hide.

Henry wants to do the same thing, except that he wants the train to always hide 
while it is inside the tunnel. Slowly, by trial and error, he figures that he will need 
to put together a sequence with ten hide blocks. And then, he could put one show 
block and the train will become visible again. The problem is that all of this needs 
to happen while the train keeps sounding its “choo choo choo” horn. He is not sure 
how to do this.

Henry’s teacher hears his call and walks over to him. Henry explains what he 
wants. The teacher shows him how to create parallel programs, so two different 
events can happen at the same time. Henry is happy to try it. He records the “choo 
choo choo” sound with his voice and he creates a sequence that makes the sound 
start with the green flag. The same green flag that starts the train moving forward 
to go through the tunnel. “It works!” exclaims Henry while jumping up and down. 
However, after watching the animation for a few seconds, Henry notices that the 
train doesn’t hide for long enough. Self-confident, Henry decides to add a few more 
blocks to the hide sequence until he runs out of space in the screen. He is about to ask 
Liana again, when he suddenly remembers about the new programming block they 
learned a few days ago, a long orange block, called “Repeat.” This block allows for 
other blocks to be inserted inside its “loop”. The repeat block then runs the blocks 
inside its loop as many times as the programmer decides.

After some trial and error, in which Henry plays with inserting different numbers 
of hide blocks inside the “Repeat” block, he figures it out. He can put just one hide 
block inside the “Repeat” block and set the number of repetition times to the highest 
he needs for the train to be inside the tunnel. He chooses the number 20 and clicks 
the “Green flag” to see the animation. The train moves forward on its tracks and 
goes into a tunnel while the “choo choo choo” sound plays in the background. Then, 
the train disappears and comes out on the other side. After watching the animation, 
Henry realizes it is boring to wait for so long for the train to appear again. He goes 
back to his code and reduces the number of repetitions to 5. Figure 1 shows Henry’s 
code for the train.

During this experience, Henry had fun. He also put his coding skills to work 
making a project he cared about. He learned that a programming language has a 
syntax in which symbols represent actions. He understood that his choices had 
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an impact on what was happening on the screen. While programming, Henry 
encountered some of the most powerful ideas of computer science that are accessible 
for a young child. He developed computational thinking. He was able to create a 
sequence of programming blocks to represent a complex behavior (e.g., appearing 
and disappearing), as well as create parallel sequences so two different events could 
happen at the same time (e.g., parallel programming). He used logic in a systematic 
way to correctly order the blocks in a sequence and he problem-solved. He exercised 
his tenacity and learned how to ask for help from peers and his teacher. Finally, 
Henry was able to create a project from his own original idea and turn it into a final 
product, a project he chose and to which he was personally attached. He was happy 
to revise it when the final outcome did not meet his expectations (i.e., it ended up 
being so long that it was boring to watch). He also engaged with mathematical ideas 
of estimation and number sense.

To code, Henry used ScratchJr, a programming language specifically designed 
for young children and available for free on touchscreen tablets. ScratchJr was 

Figure 1. The ScratchJr interface with Henry’s train. In this photo, the train is 
programmed with a repeat loop to disappear 5 times while it goes in the tunnel and 
then appear at the end.
Source: IGI, 2021
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designed by the DevTech Research Group at Tufts University in collaboration 
with MIT’s Lifelong Kindergarten group at the MIT Media Lab and the Playful 
Invention Company (PICO) company. To date, over 20 million young children all 
over the world are using ScratchJr to create their own projects. As children make 
computational projects, they develop computational thinking. This involves more 
than problem-solving or logical thinking; it means gaining the concepts, skills, 
and habits of mind to express themselves through coding. In this approach, doing 
and thinking come together, echoing decades of research done by developmental 
scientists and educational researchers.

This chapter explores the recent construct of computational thinking as it applies 
to young children. First, the chapter provides an overview about computational 
thinking, and then it focuses on a limited set of seven powerful ideas of computer 
science that are developmentally appropriate. Finally, the chapter discusses the 
relationship between computational thinking and coding. Computational thinking 
is often thought of as a cognitive activity that involves problem-solving through 
both unplugged activities and computer programming. In this chapter, though, the 
definition is framed in a broader context. Computational thinking is conceptualized 
as an expressive process that involves problem solving. In this perspective, problem 
solving is not an end in itself, it is also a means for expression, for making projects.

COMPUTATIONAL THINKING: THEORETICAL FOUNDATIONS

The idea that the “theory of computation” is for everyone, and not only for computer 
scientists, dates back to the 1960’s (Perlis, 1962). As technology progressed, computers 
became more accessible, but programming languages’ syntax and grammar were 
still too difficult to understand and manipulate. In 1982, Perlis, one of the pioneers 
in developing the ALGOL programming language wrote “most people find the 
concept of programming obvious, but the doing impossible” (Perlis, 1982, p. 10). 
What Perlis referred to as the “concept of programming” is close to our current 
understanding of computational thinking. Furthermore, Perlis distinguished the 
cognitive processes associated with thinking in abstract and logical ways from the 
mastery of a programming language. Perlis also observed that, since computer 
programming requires logical and creative thought, its teaching needs to start early in 
life and become part of everyone’s education. The intuition that even young children 
could grasp concepts associated with computational thinking such as sequencing, 
patterns, modularity, cause and effect, and problem-solving when presented with 
them in a way that made sense, has now been confirmed by extensive research 
(Bers, 2018, 2020).
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These insights echoed Seymour Papert’s work, who, at the time, was working on 
the development of a programming language that children could use, so the “doing” 
would not be impossible, as Perlis had argued. Building on knowledge about human 
development from Jean Piaget, Papert collaborated with Wally Feurzeig and others 
to create LOGO, the first programming language designed for children to think in 
computational ways. Papert argued that this new way of thinking could happened 
at its best when children were given tools to create personally meaningful projects. 
That is, computational thinking and computational doing could happen hand-in-
hand (Bers, 2010; Papert, 1980). Children who could think like a computer were 
children who could use a computer to express themselves in a fluent way to create 
computational media, and children who could develop habits of mind such as 
persistence (Bers, 2021).

In the process of learning how to use a programming language, one learns to think 
and act in different ways. In his writing, Papert did not use the term computational 
thinking. Instead, he defined these new ways of thinking by referring to powerful 
ideas, central concepts and skills within a discipline, that children could encounter 
while using programming languages, such as sequencing, abstraction, modularization, 
problem solving and logical thinking (Bers, 2008, 2017, 2020). Those cognitive 
mechanisms are associated with what researchers call now computational thinking 
(Barr, Harrison, & Conery, 2011; Barr & Stephenson, 2011; Computer Science 
Teachers Association, 2020; Lee et al., 2011; Wing, 2006;).

In 2006, Jeannette Wing’s influential article “Computational Thinking” appeared 
in the Communications of the ACM (Wing, 2006). Echoing Perlis and Papert, Wing 
argued that computational thinking, a broad set of analytic and problem-solving 
skills, dispositions, and habits, rooted in computer science, is universally applicable 
and therefore should be part of every child’s analytical ability. Wing defined 
computational thinking as “solving problems, designing systems, and understanding 
human behaviour, by drawing on the concepts fundamental to computer science” (p. 
33). At the heart of computational thinking is abstraction (Kramer, 2007), that is the 
ability to identify salient pieces of a problem or model and ignore inessential details.

Computational thinking includes mental tools such as thinking recursively, using 
abstraction when figuring out a complex task, and applying heuristic reasoning to 
discover a solution and to identify potential “bugs” or problems. Wing asserts that 
just as the printing press facilitated the spread of the three Rs (reading, writing, 
and arithmetic), computers facilitate the spread of computational thinking. The 
question is: are computers, per se, facilitating the spread of computational thinking 
or is it the ability to program that allows for the development of computational 
thinking? This chapter proposes that, although using computers opens the door to 
the world of computation, it is through programming them that we develop new 
ways of thinking associated with the discipline of computer science. Consuming 
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technology is not the same as producing it. Using a computer doesn’t require the 
same kind of thinking as programming a computer. This perspective seems to be in 
alignment with Wings later writing in which she defined computational thinking 
as a “thought processes involved in formulating problems and their solutions so 
that the solutions are represented in a form that can be effectively carried out by an 
information-processing agent” (Wing, 2011).

Wing’s writing brought newfound light to the importance of computer science 
education. However, it also limited the discourse around computational thinking 
to a problem-solving process that complements mathematical and engineering 
thinking. It does not incorporate the relationship between thinking and doing as a 
way of personal expression. Mainstream computational thinking came to represent a 
type of analytical thinking that shares similarities with mathematical thinking (e.g., 
problem-solving), engineering thinking (designing and evaluating processes), and 
scientific thinking (systematic analysis; Bers, 2010). This perspective easily found 
a niche in the K-12 curriculum as it enabled the teaching of computational thinking 
outside the context of computer science courses and programming languages.

However, for some researchers, this decoupling is problematic. For example, 
Bers (2018) claims the thought processes involved in computational thinking need 
to support the creation of computational projects, and vice versa. While Wing 
describes the computational thinker as “an information-processing agent,” Bers 
refers to this thinker as an “expressive agent.” (Bers, 2020). An expressive agent is 
someone who has the internal and external resources and the required fluency with 
technological environments to be able to translate ideas into computational projects 
to share with others (Bers, 2021). Along this line of thinking, Brennan and Resnick 
(2012) broke down computational thinking into a three-dimensional framework that 
comprises concepts, practices, and perspectives. At a higher level, computational 
thinking practices refer to techniques applied by humans to express themselves by 
designing and constructing computation. The ideas presented in this chapter are 
aligned with this understanding.

Although computational thinking has received considerable attention over the 
past several years, there is little agreement on what a definition for computational 
thinking might encompass (Allan et al., 2010; Barr & Stephenson, 2011; Grover & 
Pea, 2013; National Academies of Science, 2010; Relkin, 2018; Relkin & Bers, 2019; 
Shute, Sun, & Asbell-Clarke, 2017; Grover & Pea, 2013; Guzdial, 2008). However, 
there is consensus on the fact that the science of computation must be available to 
thinkers of all disciplines, regardless of their ability to program (Guzdial, 2008; 
Yadav, 2011). Thus, motivated by a shortage of software engineers and programmers 
and the need of diversity in the industry, frameworks and initiatives have been put 
in place to promote the teaching of computational thinking in K-12, so to attract a 
wider pool of interested students before college (Barr, Harrison, & Conery, 2011). 
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This decision is informed by the need to broaden access to the field of computer 
science, which has traditionally been populated by white males. Extensive prior work 
demonstrates the importance of piquing the interest of girls during their formative 
early childhood years before gender stereotypes regarding these traditionally 
masculine fields are ingrained in later years (Sullivan, 2019; Metz, 2007; Steele, 
1997). In addition, work is done to extend opportunities for participation in computing 
communities to black and Latino students (Erete et al., 2017). To this end, computer 
science educators have a unique responsibility to promote social justice and combat 
systemic inequities in the field of computer science (Vogel et al., 2017). Starting to 
teach computer science in the early years is one way to do so. But it must be done 
with an age-appropriate pedagogical approach.

Playgrounds for Thinking

Researchers, practitioners, funding institutions, and policy makers have traditionally 
associated computer programming and computational thinking with problem-
solving. Thus, when translated into the educational curriculum, computer science 
is grouped with science, technology, engineering, and math disciplines: STEM. 
When integrated with these programs, computational thinking is defined as a set 
of cognitive skills for identifying patterns, breaking apart complex problems into 
smaller steps, organizing and creating a series of steps to provide solutions, and 
building a representation of data through simulations (Barr & Stephenson, 2011). 
When extended to the arts, STEM becomes STEAM and a design component is 
usually added. Children are invited to create their own projects. This addition 
facilitates the understanding of computational thinking as involved in the process 
of creation. However, not everyone agrees on the materials for creation. While some 
researchers believe that computational tools and learning how to code are essential, 
others pose that it is possible to engage in computational thinking without working 
with computers of any kind.

Recently, a low-tech or unplugged approach to computational thinking has been 
growing (e.g., Bell, Witten, & Fellows, 1998). For example, computational thinking 
can occur in everyday activities, including: sorting LEGO (using the concept of 
“hashing” to sort by color, shape, and size), cooking a meal (using “parallel processing” 
to manage cooking different types of food at different temperatures for different 
amounts of time), and looking up a name in an alphabetical list (linear: starting at 
the beginning of the list; binary: starting at the middle of the list). Traditional board 
games have also been designed to explicitly support computational thinking. For 
example, Robot Turtles (Shapiro, 2015) was designed for young children aged 3–8 
years to start thinking in computational ways while playing a traditional turn-based 
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board game, in which there are multiple paths for reaching a goal and for solving 
a problem successfully.

The DevTech Research Group at Tufts University has also developed low-tech 
strategies to promote computational thinking through the Coding as Another Language 
(CAL) curriculum: singing and dancing, card games, bingo, and the Simon Says 
game (Bers, 2019). The powerful ideas that children encounter while playing these 
games, such as sequencing and debugging, breaking one big problem into smaller 
steps, and planning and testing a strategy, all tap into the core of computational 
thinking. However, DevTech’s approach, which is presented through the different 
chapters in this book, claims that although unplugged activities can support, enable 
and augment the development of computational thinking, in order to fully engage 
with it, children must experience the activity of computer programming.

Programming languages involve problem-solving, while supporting personal 
expression through the making of computational projects. Coding, then, becomes 
a vehicle for new forms of thinking and for the expression of the resulting thoughts.

There is a constant interplay between making new things in the world and making 
new ideas in our heads. As you make new things and get feedback from others (and 
from yourself), you can revise, modify, and improve your ideas. And based on these 
new ideas, you are inspired to make new things. (Resnick, 2001, p.3)

In order for children to make computational projects, there is a need for 
programming languages. When those are designed in developmentally appropriate 
ways, they can become coding playgrounds (Bers, 2012; 2020; 2018). In the coding 
playgrounds, children can learn to think computationally, while also making their 
own projects. For example, with tools such as KIBO robotics, shown in figure 2, 
and the free ScratchJr introductory language, children can create different forms 
of computational projects, from screen animations to dancing robots. (Kazakoff, 
Sullivan, & Bers, 2013; Portelance & Bers, 2015; Sullivan & Bers, 2015).

Programming languages such as KIBO and ScratchJr are coding playgrounds 
that promote problem-solving, imagination, cognitive challenges, social interactions, 
motor skills development, emotional exploration, and making different choices. 
They provide tools to create projects to express our thinking, to communicate who 
we are and what we love. In the process, computational thinking develops. Early 
childhood is a wonderful time for discovering new ways of thinking.
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Research shows the economic and developmental impact of interventions that 
begin in early childhood. These are associated with lower costs and more durable 
effects than interventions that begin later on (e.g., Cunha & Heckman, 2007; Heckman 
& Masterov, 2007; National Research Council Committee on Early Childhood 
Pedagogy, 2001; Shonkoff & National Research Council, 2000). Thus, if promoting 
computational thinking is important in our information age, it needs to be introduced 
in early childhood, given the plasticity of young children. However, pedagogical 
approaches and programming languages must be consistent with developmentally 
appropriate practice (Bredekamp, S, 1987) and must embrace the maturational 
stages of children by inviting play and discovery, socialization and creativity (Bers, 
2018a). In addition, the powerful ideas of the discipline of computer science must be 
developmentally appropriate. It is not enough to copy models used in later schooling.

Research shows that, when beginning in prekindergarten, learning to program 
can significantly improve a child’s ability to logically sequence picture stories 
(Kazakoff, Sullivan, & Bers, 2013) and to improve executive functioning (Arfé et 
al., 2019). These findings are consistent with other research that shows the positive 
impact that learning computer programming and computational thinking can have 
on skills such as reflectivity, divergent thinking, and cognitive, social, and emotional 
development (Clements & Gullo, 1984; Clements & Meredith, 1992; Flannery 
& Bers, 2013). In early childhood, the playground approach to coding provides 
opportunities to encounter a complex system of ideas that is logically organized and 

Figure 2. A KIBO robotics project programmed with wooden blocks
Source: IGI, 2021
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utilizes abstraction and representation. In addition, it enables the development of 
skills and habits of mind to put those powerful ideas to use—by making personally 
meaningful projects (Bers, 2020).

THE POWERFUL IDEAS OF COMPUTATIONAL THINKING

Seymour Papert coined the term “powerful ideas” to refer to a central concept and 
skill within a domain (i.e., computer science) that is at once personally useful, 
interconnected with other disciplines, and has roots in intuitive knowledge that a 
child has internalized over a long period. According to Papert, powerful ideas afford 
new ways of thinking, new ways of putting knowledge to use, and new ways of 
making personal and epistemological connections with other domains of knowledge 
(Papert, 2000).

Papert envisioned the computer as a carrier of powerful ideas and as an agent for 
educational change. While school reform is complex, he proposed that the teaching 
of computer science could help children encounter powerful ideas about new 
disciplines, such as computer science, old disciplines, such as math, and learning 
itself. For example, he showed how when children learned how to program a turtle 
to create geometrical shapes on the screen with LOGO, they were not only exploring 
abstract thinking, modularity, problem solving, and recursion, but also powerful 
mathematical ideas such as angles as well as thinking about their own thinking 
(Abelson & DiSessa, 1981).

Over the years, a growing community of researchers and educators has used the 
term “powerful ideas” to refer to a set of intellectual tools worth learning, as decided 
by a community of experts in each of the fields of study (Bers, 2008). However, 
different people have used the term in diverse ways and amongst the powerful ideas 
community there are divergent opinions about the benefits and dangers of presenting 
a unified definition (Papert & Resnick, 1996).

When exploring the concept of computational thinking, it is useful to do it in 
such a way to identify the powerful ideas we hope children will encounter and 
develop. Powerful ideas of computer science are not tied to a particular programming 
environment but to the discipline of computer science and its associated habits of 
mind. While most of these ideas can be encountered when engaging in low-tech or 
unplugged activities, it is in the activity of programming that they can be further 
explored. However, the challenge for early childhood education is that powerful 
ideas need to be defined in a developmentally appropriate way and described at 
different levels of depth, in a spiral manner, in the sequence of PreK-2. For example, 
understanding algorithmic thinking in PreK might focus on linear sequencing, while 
in second grade it extends to loops. Children will understand that within a sequence 
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there are patterns that repeat themselves. Inspired by already existing computational 
thinking curriculum such as the framework and resources for educators launched 
by Google in 2010 (Google for Education, 2010), the work of Karen Brennan and 
Mitchel Resnick with Scratch (2012), and previous work with the KIBO robotic 
system (Sullivan & Bers, 2015) and with ScratchJr (Portelance, Strawhacker, & Bers, 
2015), I propose a framework involving seven developmentally appropriate powerful 
ideas for early childhood computer science education: algorithms, modularity, control 
structures, representation, hardware/software, design process, and debugging.

• Algorithms refer to a series of ordered steps taken in a sequence to solve 
a problem or achieve an end goal. Sequencing is an important skill in early 
childhood; it is a component of planning and involves putting objects or 
actions in the correct order. For example, retelling a story in a logical way or 
ordering numbers in a line is sequencing. Understanding algorithms involves 
understanding abstraction (i.e., identifying relevant information to define 
what constitutes a step in the sequence) and representation (i.e., depicting 
and organizing information in an appropriate form).

• Modularity involves breaking down tasks or procedures into simpler, 
manageable units that can be combined to create a more complex process. 
This process of decomposition involves subdividing jobs. In early childhood, 
decomposition can be taught anytime a complex task needs to be broken 
down into smaller units.

• Control Structures determine the order (or sequence) in which instructions 
are followed or executed within an algorithm or program. Control structures 
provide a window into understanding the computational concept of making 
decisions based on conditions (e.g., variable values, branching, etc.). Children 
learn about sequential execution first, and later they become familiar with 
multiple control structures that involve repeat functions, loops, conditionals, 
events, and nested structures. Loops can be used to repeat patterns of 
instructions, conditionals to skip instructions, and events to initiate an 
instruction. Understanding control structures in early childhood requires 
familiarity with patterns.

• Representation is related to the way computers store and manipulate data 
and values in a variety of ways. These data need to be made accessible 
through different representations. Early on, children learn that concepts can 
be represented by symbols. For example, letters represent sounds, numbers 
represent quantities, and programming instructions represent behaviors. As 
children grow and advance to more complex programming languages, they 
learn about other data types, such as variables. The notion that concepts can 
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be represented using symbols is foundational in early childhood and has 
strong links to both math and literacy.

• Hardware/Software Systems refer to the fact that computing systems need 
both hardware and software to operate and to accomplish tasks, such as 
receiving, processing, and sending information. The relationship between 
hardware and software becomes increasingly important in understanding the 
ways that components affect a system. As children grow they will encounter 
the need to understand the complexities of different system.

• Design Process is an iterative process used to develop programs and tangible 
artifacts that involves several steps and has similarities with the engineering 
design cycle (Ertas & Jones, 1996). The design process starts with asking a 
question, planning an approach, proposing prototypes, testing and re-testing 
them, revising and sharing the result. Children can begin at any step, move 
back and forth between steps, or repeat the cycle over and over (Bers, 2018). 
As children become more familiar with the design process, they become 
instilled with the ability to iteratively create and refine their work, to give 
and receive feedback to others, and to continually improve a project through 
experimenting and testing. This leads to iterative improvement, involves 
perseverance, and has strong associations with some aspects of executive 
functions, such as self-control, planning and prioritizing, and organization 
(Bers, 2020)

• Debugging refers to the systematic analysis and evaluation that allows us to 
fix problems and involves using skills such as testing, logical thinking, and 
problem-solving in an intentional, iterative step-by-step way. As children learn 
how to debug their systems, they start to develop common troubleshooting 
strategies that can be used on a variety of computing systems. Debugging 
teaches the powerful lesson that things do not just happen to work on the first 
try, but, in fact, that many iterations are usually necessary to get it right.

In the chapters in this book, these seven powerful ideas of computer science that 
are developmentally appropriate will be further explored and examples and case 
studies will be presented.

CONCLUSION: FROM THINKING TO DOING

There is debate amongst researchers and educators regarding whether computational 
thinking can be classified as a unique category of thought (Gadanidis, 2017; Pei, 
Weintrop, & Wilensky, 2018). However, the term has grown popular at a time when 
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schools are starting to incorporate the teaching of computer science in more massive 
ways (K–12 Computer Science Framework Steering Committee, 2016).

Thinking is at the core of why we introduce coding in early childhood. Coding 
can not only help children think in systematic and sequential ways, but also create 
and express themselves in new ways. That is, in computational ways. The power 
of computational thinking extends beyond thinking like computer scientists in two 
significant ways. First, by engaging children to think about their own thinking, they 
can develop metacognition. And that is a useful skill, regardless of the discipline of 
study or the job of the future. Second, when children engage in coding or in creating 
their own computational projects, they put their thinking at the service of making 
by engaging in an activity that requires the application of their abstract thinking in 
very concrete ways.

This chapter claims that one of the fundamental ways in which computational 
thinking can be supported and augmented is by providing children with opportunities 
to code and to create their own interactive computational media. It is in this process, 
that the seven powerful ideas described earlier are best encountered.

Thinking implies the ability to make sense, interpret, represent, model, predict 
and invent our experiences in the world. Research shows that children learn to think 
with and through language (Vygotsky, 1978). Thus, by learning to use a programming 
language that involves logical sequencing, abstraction, and problem solving, children 
can learn how to think in analytical ways. Wittgenstein argued that the language we 
speak determines the thoughts we are able to have. In other words, learning a new 
language can make new patterns of thought, new conceptual frameworks, and new 
ways of using language (Wittgenstein, 1997). Wittgenstein’s philosophy echoes 
Vygotsky’s developmental perspective in terms of the relationship between language 
and thinking at the individual level. Programming languages provide opportunities 
for new ways of thinking that involve a problem-solving dimension as well as the 
use and manipulation of a language, a symbolic representational system, to create 
a sharable product that others can interpret (Bers, 2020).

Computer programming is becoming an essential skill in the 21st century. Each 
month, there are an estimated 500,000 openings for computing jobs nationwide, and 
a lack of adequately trained people to fill them (Code.org, 2018; Fayer, Lacey, & 
Watson, 2017). However, the rationale for supporting the introduction of computer 
science and computational thinking starting in kindergarten is not the creation of the 
future workforce, but the future citizenry (Bers, 2020). Without understanding the 
fundamentals of what an algorithm is and how it works, people might not understand 
why and how certain data is displayed and become illiterate in the information age.

We understand by doing. Therefore, in this chapter I argue that in order to 
promote computational thinking, we should expose young children to learning a 
developmentally appropriate programming language with a playful approach. Coding 
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is a new literacy, and as such, those who learn how to code from a young age, will 
not only participate in the automated economy, but will also be able to create new 
opportunities for civic participation and for living in healthy social communities 
(Bers, 2022). Computational literacy will allow children to become producers, and 
not only consumers of digital artifacts and systems. They will be able to do, to 
change the world, and not only to think about it.
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KEY TERMS AND DEFINITIONS

Coding: The process or activity of writing computer programs.
Computational Thinking: Techniques applied by humans to express themselves 

by designing and constructing computation.
Computer Science: The study of the principles and use of computers.
Constructionism: The theory that learning should be done through student-

centered discovery.
Early Childhood: Period of time between birth and age eight.
KIBO: A screen-free programmable robotics kit for young children with blocks, 

sensors, modules, and art platforms.
Learning: The acquisition of knowledge or skills through experience, study or 

being taught.
ScratchJr: A free block-based programming application for young children.
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ABSTRACT

As coding and computer science become established domains in K-2 education, 
researchers and educators understand that children are learning more than skills 
when they learn to code – they are learning a new way of thinking and organizing 
thought. While these new skills are beneficial to future programming tasks, they also 
support the development of other crucial skills in early childhood education. This 
chapter explores the ways that coding supports computational thinking in young 
children and connects the core concepts of computational thinking to the broader 
K-2 context.

INTRODUCTION

Steve Jobs once said, “I think everybody in this country should learn how to program 
a computer…because it teaches you how to think.” He said this over twenty years 
ago, and schools are starting to catch up to his vision (Code.org, 2013). 47% of 
public high schools offer coding courses, and there were over 1 million teacher and 
36 million student accounts on Code.org at the end of 2018, up from 10,000 and 
500,000, respectively, in 2013 (Code.org, 2021a; Code.org, 2021b). In the employment 
realm, computer science is projected to make up 67% of new STEM jobs in the 
United States by 2028, totaling nearly 600,000 jobs (Code.org, 2021b). However, 
only 25.2% of people employed in computing fields in 2020 identified as women, 
and less than 35% were non-white (U.S. Bureau of Labor Statistics, 2021). Even 
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earlier in the computer science career pipeline, only 33% of students who took the 
AP Computer Science exam were female in 2020, showing that the gender divide 
is already present in high school (Code.org, 2021b). Despite these trends, research 
shows that providing students early exposure to computer science helps improve 
the gender gaps and overall diversity in tech fields (Bers, 2018; Jungert et al., 2018; 
Sullivan & Bers, 2016). By providing students with early exposure to computational 
thinking, schools can create opportunities for them to enter this growing field.

Beyond career preparedness, there are several reasons why it is important for early 
elementary students to learn how to code. Early coding exposure can help attract 
students from historically underrepresented backgrounds to engage in STEM, by 
building comfort with engineering concepts and helping young children, and especially 
girls, to picture themselves as future engineers and software developers (Jungert et 
al., 2018; Sullivan & Bers, 2018). Additionally, engaging with computers can help 
children develop a deeper understanding of their own learning, by asking them to 
examine their thought processes as they are instructing the computer (Papert, 1980). 
Studying computer science has also been shown to improve elementary student’s 
performance in other subjects and strengthen their problem-solving abilities (Code.
org, 2020). Finally, learning to code builds up computational thinking skills, which 
are transferrable far beyond programming, and include practices that are especially 
crucial for early elementary students (Bers, 2018; Yadav et al., 2016). I will spend 
this chapter exploring how to teach computational thinking to young children through 
programming and discuss the importance of these skills outside the realm of code.

Background

Before continuing to explore computational thinking, I will establish what I mean 
by programming. I came to understand how young children can code in my time 
working at the DevTech research group, when I was an undergraduate student at Tufts 
University. I was majoring in Computer Science, so I was learning conventional, 
text-based programming languages like C++. While the K-2 students I was teaching 
would have needed significant help to use C++ to program anything, they were 
able to create complex programs using developmentally appropriate tools created 
at DevTech: ScratchJr and KIBO. ScratchJr is an iPad app where users program 
with image-based blocks (see Figure 1), and KIBO is a robotics kit where users 
give instructions to a robot by scanning wooden blocks which represent different 
actions (see Figure 2) (Portelance et al., 2015; Sullivan et al., 2017). Programming 
at its core is the act of giving instructions to a computer or computational device in a 
form that both the user and the computer can understand. Both ScratchJr and KIBO 
facilitate this through picture-based blocks, which can be put together into sequences 
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to make the on-screen characters or robot execute different actions (Portelance et 
al., 2015; Sullivan et al., 2017).

While the tools are different, both the software engineer and the student are 
engaging in the same cognitive processes. Both use the tools available to go through 
an iterative problem-solving process, leveraging the power of technology and a 
programming language, to create a solution. While ScratchJr and KIBO remove certain 
barriers to conventional programming, such as literacy requirements, syntax errors 
and top-to-bottom sequencing, they still provide access to the core fundamentals 
of computer science and computational thinking – such as sequencing, looping, 
debugging, and more. As I will demonstrate throughout this chapter, these tools 
facilitate mastery of computational thinking concepts, just as traditionally designed 
programming languages do. I will explore each powerful idea of computational 
thinking, and how it can be taught by using either KIBO or ScratchJr. As someone 
who has a degree in computer science and works in the technology field, it has 
always been important to me that the ways I teach computational thinking are aligned 
with the profession and can set students up to continue succeeding in computational 
activities. As I explore each idea, I will pull from my own experience teaching these 

Figure 1. A ScratchJr screen displaying a cat character and movement blocks
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ideas, and also share the broader relevance of the idea for foundational skill building, 
beyond becoming an expert programmer.

Powerful Ideas of Computational Thinking

As Bers explains in the first chapter of this book, computational thinking is a way of 
thinking that grows out of computer science. At its core, it is a collection of problem-
solving and analytic skills, grounded in practices necessary to program successfully, 
but that have far-reaching applications. Bers’ seven powerful ideas of computational 
thinking help to illustrate the core concepts that students learn when they learn to 
code, with a particular focus on developmentally relevant skills for early childhood 
learners (Bers, 2018). The powerful ideas are: Algorithms, Modularity, Control 
Structures, Representation, Hardware & Software, Design Process and Debugging 
(Bers, 2018). These powerful ideas illustrate skills that are not only important for 
mastering programming, but also for navigating the challenges of 21st century, with 
its constantly evolving technological landscape, and that are particularly useful for 
early elementary learners. By developing these seven areas, learners are equipping 
themselves with intellectual tools that have broad applications – from developing 

Figure 2. KIBO robot with programming blocks and accessories
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literacy to problem-solving skills, and much in between (Hassenfeld & Bers, 2020; 
Kewalramani et al., 2016; Wilson-Lopez et al., 2017).

The seven powerful ideas, rooted in learning to program, have historically 
been challenging to teach to young learners. As with LOGO, Scratch, and other 
programming languages designed for elementary and middle-grade children, 
ScratchJr and KIBO are programming languages that help younger students engage 
with powerful ideas of computational thinking in developmentally appropriate ways 
(Flannery et al., 2013; Papert, 1980; Portelance et al., 2015; Sullivan et al., 2017). 
Previously, programming – even through block-based platforms like Scratch – was 
inaccessible to young children, due to the baseline of motor and cognitive abilities 
necessary to utilize those platforms (Flannery et al., 2013). Scratch, for instance, 
requires students to be able to read the text on the blocks, use a mouse to move the 
blocks around a screen, and understand mathematical concepts like degrees and 
percentages. Recently, there have been new approaches to programming technology 
that remove those barriers, allowing access for early elementary students (Jacobson, 
2016; Portelance et al., 2015; Sullivan et al., 2017). By engaging with these tools, 
designed with their motor and cognitive abilities in mind, young learners have access 
to a whole realm of knowledge that has previously been inaccessible. The value of 
this is not just to get them started earlier as coders, but also to give them access to 
a whole new set of skills that may serve useful to them in other areas of learning. 
In this chapter, I will explore how we teach these powerful ideas of computational 
thinking through KIBO and ScratchJr, illustrate strategies and approaches that facilitate 
computational thinking, and discuss why it is important to start in early childhood.

TEACHING THE POWERFUL IDEAS OF 
COMPUTATIONAL THINKING

Algorithms

Bers (2018) defines algorithms as “A series of ordered instructional steps taken in a 
sequence to solve a problem or achieve an end goal.” By looking at this definition, it 
becomes clear that the term algorithm, often attributed to the world of engineering 
and mathematics, is simply another word for a sequential plan. We create algorithms 
every day, from making a sandwich to planning a walking route. Learning to program 
is a concrete way to practice building algorithms, given the logical structure and clear 
steps required to instruct a non-sentient machine to carry out a task. ScratchJr and 
KIBO are especially helpful tools for young learners to master planning because the 
blocks allow for quick iteration, a visual representation of the steps your program 
is taking, and a structured environment in which to execute on a plan.
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One successful way that I have found to teach algorithms to young learners is 
to ask them to create a story in ScratchJr. While there are many ways to approach 
creating algorithms, I have found that asking students to tell a story helps them 
build personal connection and relevance. To create the algorithm, they first have to 
think of the story they would like to tell, and the conclusion it will reach. By doing 
this, it creates a foundation from which to build the algorithm. In my experience, if 
there is not a clear end goal it can be incredibly challenging to create the story – and 
thus craft an algorithm – without it petering out or continuing beyond the scope of 
a meaningful narrative.

Once they have decided on their plot, they must identify the different characters 
in the story, and the actions that the characters must take. Only then do I ask them 
to start building a sequence, by articulating the order in which these actions take 
place, as not everything can happen at once. I often ask the students to write down 
or speak the order of actions, and who is performing them, to ensure that they are 
creating a structured sequence. By articulating each step, they are learning how to 
break something whole – a story – down into component parts, as well as how to 
put those parts together into an ordered sequence. By nature of building this story 
in ScratchJr, the sequence that they design is reinforced by the block-based, ordered 
structure inherent to the platform.

Learning to sequence is an important skill supported by developing algorithms 
– if you don’t establish sequence, your algorithm is just an unordered collection. 
Sequencing is not just important for developing algorithms, though. It has applications 
in reading comprehension – understanding the order that events take place in a story 
– writing, and numeracy (Chase et al., 2014). Sequencing is included in reading 
and mathematics curricular frameworks for kindergarten and first grade in several 
states (e.g. Massachusetts, California) and in the US Common Core framework 
(California State Board of Education, 2013; Massachusetts Department of Elementary 
and Secondary Education, 2017; National Governors Association Center for Best 
Practices, Council of Chief State School Officers, 2010a). Research has found that 
engaging with block-based programming also improves early childhood learner’s 
scores on evaluations of story-based sequencing ability (Kazakoff et al., 2013). 
The evaluations were not tied to programming knowledge, but rather to sequencing 
knowledge more broadly. This indicates that while learning sequencing in the context 
of programming, young learners are developing skills that will aid them in reading 
comprehension and writing production.

Creating algorithms also provides opportunities to practice planning. By learning 
how to move from a high-level goal (tell a story) to a step-by-step plan, students are 
learning to break down goals into achievable steps, to understand how individual 
components work together to create a whole, and to grasp order and sequence. 
Whether learning to read, write a story, plan their day, or tackle a word problem, 
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understanding how to create and act on algorithms is something that students will 
use with throughout their lives.

Modularity

Modularity is defined as “The breaking down of tasks or procedures into simpler, 
manageable units that can be combined or re-used to create a more complex process” 
(Bers, 2018). Modularity focuses on breaking a problem down into achievable 
tasks, and often takes it one step further by repurposing the practice to achieve 
something new. In text-based programming languages, functions are a great example 
of modularity. It is common practice to package a task as a function, which can be 
referenced throughout the program. For example, a “print” function will initiate a 
series of smaller sub-tasks to print whatever input it is given on the screen, and can 
be used throughout a program without having to write the same sub-task code again.

Let’s look at an example with ScratchJr: say a learner wants to have their character 
move diagonally across the screen. There is no “diagonal” block in ScratchJr, so they 
will need to combine multiple blocks in order to create the action – in other words, 
they will need to create a function. In order to create the function, students must 
understand that a diagonal move can be broken down to moving right and moving 
up at the same time. Through trial and error, they will eventually learn that they need 
to have two parallel programs, or programs that run at the same time, to achieve a 
straight diagonal line. One program instructs their character to move right, and the 
other instructs their character to move up, starting at the same time (see Figure 3). In 
order to create this diagonal function, they breaking down a complex task – moving 
diagonally – into two component parts – moving right, and moving up. They are 
then repurposing their knowledge of the move right and move up blocks to create 
a new action. In order to teach modularity through ScratchJr, I like to make sure 
students are grounded in the ScratchJr blocks they can use– if there is not a block 
for it, then they’ll need to break the task down another level. Similarly, if they have 
already solved the problem somewhere else in the program, it can be helpful to ask 
them if they’ve created a solution with blocks elsewhere already.
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An example of modularity outside of programming is understanding base-ten 
number concepts, including number decomposition. Number decomposition is a 
primary focus in K-2 Common Core Mathematics guidelines – for example, the 
understanding that “the numbers from 11 to 19 are composed of a ten and one, two, 
three, four, five, six, seven, eight, or nine ones,” or “the numbers 10, 20, 30, 40, 
50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens 
(and 0 ones)” (National Governors Association Center for Best Practices, Council 
of Chief State School Officers, 2010b). As both of these examples show, it is not 
just a matter of breaking down a number into units of one, but understanding that 
both one and ten are units that all numbers can be broken down to. Just as students 
decompose a diagonal move until it takes the form of familiar blocks – in this case, 
‘Move Right’ and ‘Move Up’ – they can apply the same approach decomposing 
a number into a collection of ones and tens. By equipping them with the tangible 
experience of breaking a task down, thinking modularly helps expose them to an 
important approach to knowledge they will use for the rest of their lives.

Control Structures

“Control structures determine the order (or sequence) in which instructions are 
followed or executed within an algorithm or program” (Bers, 2018). Control 
structures are some of the most complex programming features supported by KIBO 
and ScratchJr, and so many teachers and curricula will leave them as some of the 

Figure 3. ScratchJr blocks demonstrating parallel programs to make a character 
move diagonally
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last blocks to introduce. However, they are incredibly powerful, and open up new 
ways to create and express oneself when they are mastered.

In KIBO, control structures take the form of blocks, such as repeat blocks, 
conditionals, and events (e.g., “start” blocks). They play an important role in 
sequencing, as they disrupt the otherwise linear sequencing pattern that KIBO adopts. 
To teach these concepts, it can be helpful to return back to the algorithm. Going 
back to the idea of creating a story, which can be just as easily done with KIBO, 
if a child wants to code a character to take the same action more than once (say, 
they pace back and forth three times), then that can be a great moment to introduce 
control structures, specifically the repeat block. While you do not necessarily need 
the repeat block in this case – you can just use the same blocks three times in a row 
– it simplifies the action, and allows the learner to practice using control structures.

Similarly, learning to leverage control structures can lead to more complex 
programs. Take the case of a student who wants to program their dog to bump into 
their cat and have the cat say “Ow!” when they are bumped. Their first instinct will 
probably be to use a “Wait” block to try to have the cat wait enough time to let the dog 
move to them. I have seen many do this, and while it is one solution, it is tedious and 
requires a lot of trial and error, especially if the child later decides to add something 
to the project that alters the timing (for example, dog saying “Hello!” before walking). 
It also does not actually mimic the interactivity that the original story implies, since 
the cat and the dog are operating completely independently within the program. 
It would make much more sense to say “when the cat is bumped by the dog, then 
have the cat say ‘Ow!’.” There is, in fact, an event block in ScratchJr called “Start 
on Bump” that allows this exact interaction (see Figure 4). Event blocks allow for 
interrelated programs, which opens up the possibility for the logical sequencing of 
events. This can also be challenging to teach, but I’ve found it helpful to act out the 
event blocks with people – having two students (gently!) reenact the scene helps 
them understand the role of the block. In addition, this is another example where 
grounding it in a story helps students grasp the concept. Because they are able to 
act it out and understand what should happen, it gives them a stronger foundation 
for translating actions to code.
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Control structures are relevant outside of computing because they help students 
visualize cause and effect. In the example with the dog and the cat, we can see the 
contrast between the first and second solutions, and how they can help demonstrate 
cause and effect. In the first solution, the student uses a “Wait” block, which 
means there is no relationship between the dog’s actions and the cat saying “Ow!” 
However, in the second solution, there is a relationship between the two, because 
the cat will only say “Ow!” (the effect) when it is bumped by the dog (the cause). 
While understanding cause and effect has relevance in many subjects, such as 
understanding the plot of a story or color mixing in art, it is also a foundational 
skill that has implications for future science learning. Cause and effect is listed as 
a cross-cutting subject in the Next Generation Science Standards, indicating its 
importance as a foundational science skill, and appears in the standards as early as 
kindergarten (NGSS Lead States, 2013). While there has been evidence to show 
that younger children can master cause and effect in specific circumstances, despite 
developmental claims that they are not able to, it is still a challenging concept to 
grasp and teach (Goddu et al., 2020; Springer & Keil, 1991). By engaging with 
control structures in a visible way, where you can immediately see the output of 
an action, children have the opportunity to build their understanding of cause and 
effect in a visual environment, with a finite amount of possible causes and possible 

Figure 4. A ScratchJr program showcasing the “Start on Bump” block
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effects. When children grasp control structures, they are opened up to a whole new 
way of looking at programming and logical thinking.

Representation

Bers (2018) introduces representation by saying “programming languages represent 
information through the use of a symbol system.” With ScratchJr and KIBO, as 
with all programming languages, symbols are used to represent instructions to the 
tool. KIBO has blocks that represent movement (e.g., move forward, turn right, 
etc.), sound (sing), colors (light up blue), and more. These blocks, when scanned, 
translate into an action that the robot takes.

To teach representation, I ask the students to explain or show me what a block 
tells the machine to do. For example, I would hand them a “Move Forward” block 
and ask them what it does. Often, I will ask them to act it out with their body, to 
make sure they really understand what action the block represents. In order to teach 
the connection between the symbol (the block) and its meaning (the outcome), I 
encourage students to test out what a block does. Because KIBO has such visual 
outputs, it is easier for the programmers to see the connection – they can scan the 
block, and see what the output is. Through this practice, they learn to connect the 
block to the corresponding KIBO action that it represents.

Learning KIBO blocks helps to build a mental model of representation, which 
can be hugely beneficial when it comes to equipping students with skills to express 
themselves. Tinkering with language and storytelling gives children new, novel 
ways to express themselves, and can expand the tools they have for communication 
(Maureen, et al., 2020). By learning a new representative system and new storytelling 
tool, children are given new ways to communicate their ideas. As we see with some 
young people preferring to communicate via spoken word, written work, drawing, 
etc., introducing programming as a novel form of communication allows for creative 
forms of expression, collaboration and meaning-making.

Additionally, symbolic representation is the foundation of building any sort of 
human communication system – be that a programming language or a natural spoken 
and written one (Jones, et al., 2012). Numbers and letters, like KIBO blocks, are 
objects that represent a larger concept. Building a strong foundation of symbolic 
understanding is crucial for future literacy and numeracy endeavors (Berninger et al., 
2002). Therefore, helping students understand how to connect symbols to what they 
represent to others in their society is a hugely important skill in developing literacy. 
Understanding the connection between a KIBO block and a KIBO movement is a 
similar practice to understanding the connection between a letter and the sound it 
represents. By learning with KIBO, where they can test out the outcome of a symbol 
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as many times as they need, coding can be a helpful way to build an understanding 
of representation.

Hardware and Software

Understanding hardware and software, and the relationship between them, is 
crucial for anyone navigating our increasingly digital world. As Bers (2018) states, 
“Computing systems need hardware and software to operate. The software provides 
instructions to the hardware, which might or might not be visible. Hardware and 
software work together as a system to accomplish tasks, such as receiving, processing, 
and sending information.” KIBO is an incredibly powerful tool for helping illustrate 
the relationship between hardware and software, because of the tangible nature 
of the software. With KIBO, the blocks provide the instructions to the robot, and 
thus serve as the software. Users can see the hardware of the robot by looking at 
the clear bottom, which reveals the wires and other internal workings of how the 
robot’s hardware operates.

To introduce the terms of hardware and software, I like to use the metaphor of the 
body and the brain. While this is an oversimplification, it helps to ground abstract 
mechanical relationships in something the students understand. In this metaphor, 
the brain is the software, giving instructions to your body, which acts on those 
instructions, making it the hardware. To translate this relationship to KIBO, I ask 
the learner to press the “Go” button on KIBO. Nothing happens, because we have 
not yet given it any instructions – so they start to understand that the hardware is not 
functional without the software. I then ask them to pick a KIBO block and tell me 
how to use it, which usually leads to an explanation that you have to scan the block 
in order to use it. This illustrates the opposite point, that software is not useful unless 
it has hardware to execute the commands. Especially because KIBO is a tangible 
tool, this is a helpful way to start the conversation about software and hardware.

We often hear people assume that because young learners are “digital natives,” 
things like hardware and software are concepts that they innately understand 
(Prensky, 2001). However, while young children might have a level of comfort and 
familiarity with a variety of technological devices, this does not necessarily mean 
that they have a deeper understanding of how they actually work. It is the difference 
between knowing what you can do with your tablet and actually understanding how 
your tablet works. Familiarity with the interaction between hardware and software 
can serve as a powerful foundation to create interesting, meaningful artifacts, and 
to shift from being a consumer of technology to a creator with technology (Kafai, 
Fields, & Searle, 2014).

It is important to teach the relationship between hardware and software, in order 
to help students begin to view technology as a human-made object, rather than a 
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magical one. The clear base on KIBO helps them to see that it is in fact a collection 
of hardware that makes up a robot, rather than a mysterious collection of things they 
would never hope to understand. This process leads to an improved relationship with 
any sort of technology in their life, and an increased ability to do more interesting 
things with it. Additionally, our workforce is requiring increasingly higher levels of 
digital abilities and understanding – as of 2016, an analysis of 545 occupations in the 
U.S. revealed that 23% of the country’s jobs required high digital ability, and 48% 
required medium digital ability (Muro et al., 2017). By pairing use of technology 
with a deep understanding of how it works, we are equipping young learners with 
the ability to meaningfully engage with and understand the technologies they will 
need to use in the future.

Design Process

While there are many different definitions of a design process, the general sentiment 
is the same. It is an iterative process that helps move from concept to implementation, 
and then cycles through the same steps making improvements. Bers (2018) outlines 
the steps as: “ask, imagine, plan, create, test, improve, and share. The process is 
open-ended, in that a problem may have many possible solutions.” Below, I explain 
each step more.

Ask: you must define a question that you want to answer, or a problem that you 
want to solve.

Imagine: in order to answer your question or challenge, you must create multiple 
potential solutions to the question that you are asking.

Plan: you move from high-level concept to executable plan, which means getting 
more specific about how you will use the tools at your disposal to build the 
solution. The plan stage is when you create an algorithm.

Create: in this step, you actually start building. This is not the end of the design 
process – while creation is of course a key step, the important iteration happens 
after the first round of creation is completed.

Test: once you have created something, you must test if it solves the initial question 
you asked yourself in the first step.

Improve: you iterate on your design based on the results of your testing. This also 
requires going back to your plan, and adapting it based on what you have learned.

Share: you share your solution and process with others. Sharing is a great way to 
synthesize your learnings, get more feedback, and learn from others as they 
share their creations with you.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



34

Why Teach Coding to Early Elementary Learners

An important part of all design processes is that they are not linear. While there are 
certain steps to move through, a designer will probably loop through them multiple 
times and in different orders. It is helpful to understand the steps of the design process 
before beginning, because then there is an established vocabulary for referring to 
the steps that you are moving through. It also introduces the concept of iteration.

To teach the design process, it is important to actually name the steps of it. At 
the DevTech research group, we had a poster that illustrates the process. This helps 
to provide a shared vocabulary at the beginning, that can be referenced back to. 
For instance, a student I worked with was particularly stuck in the creation phase, 
and she kept losing sight of what she was trying to build. In the planning phase, 
we had discussed the story that she was trying to tell and mapped out the different 
characters and events needed. By revisiting the plan she had put together, she was 
able to remind herself of the vision that she had already created. Because we had 
a shared vocabulary, and understanding of a progression of steps, it was easier to 
discover what her challenge was, and land on a solution.

Learning the design process has been shown to build similar strategies to reading 
comprehension (Wilson-Lopez et al., 2017). By becoming familiar with the design 
process, students also are developing problem-solving strategies that will be useful to 
them in other disciplines. Another important facet of the design process is iteration. 
By learning to iterate, one builds comfort with the idea that they are not going to get 
it right on the first try. With this approach, failure to achieve a goal becomes not a 
failure, but a step in the right direction, and an opportunity to try again with a new 
approach. Through programming, students develop emotional intelligence through 
overcoming their fear of something not working, which can help build a willingness 
to continue through adversity (Kewalramani et al., 2016). While this mental shift is 
crucially important for learning to program, iteration is also an important process 
outside the realm of programming – any product benefits from multiple rounds of 
design, creation, and feedback. Learning to go through the design process with a 
structured tool like ScratchJr or KIBO can help students internalize the process and 
apply it to other undertakings – such as writing a story, building a block tower, or 
solving a math problem.

Debugging

As Bers (2018) defines it, debugging is: “Fixing problems through systematic analysis 
and evaluation, while developing troubleshooting strategies.” As you can see from 
this definition, while debugging is often relegated to the world of programming, it is 
really about creating practices for problem solving. Teaching debugging inherently 
comes with teaching programming, as problems will always arise, especially if 
students are new to programming. It is especially helpful if the programmer has 
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made a plan – such as an algorithm – because that provides a foundation of what 
you are hoping to achieve, which can be compared to what the program is actually 
doing. When a student’s program is not doing what is expected, I ask them to start 
by comparing the plan of what they want the program to be doing with what it is 
actually doing. The goal is to build up a strategy for understanding where things went 
wrong, not just that it is not working. One of the strengths of tools like ScratchJr and 
KIBO is that they allow for immediate output and rapid tweaking. So, if someone 
is stuck, they do not just have to think about what is wrong. They can actually start 
changing the program and see what changes.

One of my favorite debugging strategies is to take the sequence apart, and test it 
out step by step. For instance, if you are trying to navigate KIBO through a maze, 
you take all the blocks off your sequence but the first one. Then, you run KIBO 
to make sure that the first block is achieving what you want it to do. You can then 
continue to add your blocks back into your sequence, systematically working until 
you identify where it is going wrong. This is not only an effective strategy for this 
particular instance, but also helps demonstrate a methodical approach to problem 
solving more broadly. Rather than giving up, or starting completely over, it models a 
step-by-step problem-solving approach that can be used in other challenging situations.

Students have shown more comfort with debugging in programming than in 
writing endeavors – in other words, they are more comfortable with editing their 
program than with editing their written work (Hassenfeld & Bers, 2020). This has 
exciting implications for building up student’s comfort with editing and revision 
in other areas of their life. Additionally, Seymour Papert writes about the power 
of programming to teach metacognition, and debugging is a wonderful example of 
this (Papert, 1980). By going through debugging processes, learners are finding the 
gaps in their own knowledge or understanding of their programming language. This 
metacognition serves to make them stronger learners, and more self-aware people 
(Erdmann & Hertel, 2019). Metacognition is not just useful for debugging – their 
awareness of their learning approaches is not just tied to programming languages, 
and thus can help them become stronger learners across domains.

CONCLUSION

In this chapter, I show how the benefit of learning to code at an early age far 
surpasses any programming skills that may be mastered. Learning to code teaches 
computational thinking skills, which in turn, have wide-ranging benefits for students 
in K-2 classrooms. Computational thinking is not only a helpful cognitive tool, but 
a necessary one to equip our young learners with the skills they need to tackle the 
challenges of the 21st Century. The seven powerful ideas developed by Bers and further 
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explored in this chapter, important on their own, boil down to an understanding of 
creative problem solving and digital competency that can set students up for success 
as they move forward.

It is my hope that in the coming years, we will see an incorporation of programming 
into classroom activities. Rather than a separate STEM lesson, I have seen coding bring 
a reading or science lesson to life in new ways, engaging learners who felt isolated 
or allowing others a new way to understand a concept. Learning to program will be 
most powerful if they are aligned with core teaching goals and incorporated into 
classroom routines. In short, in order to best leverage the strengths of computational 
thinking skills, we must incorporate computational thinking activities into the core 
of our classrooms. Computational thinking is a powerful approach to thinking, and 
the earlier we can expose our students to it, the better served they will be.
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KEY TERMS AND DEFINITIONS

Code: To create a program in a specific programming language.
Conditionals: A programming command that executes different actions based 

on evaluating a condition.
Programmer: One who writes code in a specific programming language.
Programming Language: A formal language consisting of commands that can 

be interpreted by a computer.
Robot: A machine that is programmable via a computer and is capable of carrying 

out actions automatically.
Sequencing: Putting events, steps, or other individual items in a specific order 

in relation to each other.
STEM: The collective field consisting of science, technology, engineering, and 

mathematics.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  3

41

DOI: 10.4018/978-1-7998-7308-2.ch003

ABSTRACT

This chapter explores perspectives on unplugged coding and computational thinking 
(CT) in early childhood. Concepts, definitions, and research on unplugged learning 
and its relationship to computer science are considered. Several examples illustrate 
how young children can encounter powerful ideas of CT in both formal educational 
settings and in the process of everyday life. Resources are provided that aid in the 
identification and integration of unplugged activities into early childhood settings. 
Finally, the authors advocate for further research on teaching CT concepts to children 
that includes both coding and unplugged approaches.

INTRODUCTION

In the years before writing this chapter, we have had numerous conversations with 
members of the DevTech research group and colleagues about whether computers 
are necessary for children to learn computational thinking (CT). Many expressed the 
view that computers are an integral and inseparable part of computer science (CS) 
education. Although the precise definition of CT and its implications for education 
are still debated, in this chapter we attempt to unpack the distinctions between CS, 
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CT and unplugged learning for the purpose of envisioning a more equitable and 
inclusive computational pedagogy.

While it is hard to imagine CS education without computers, the logic, algorithms 
and other processes that contribute to CT have always been an important part of 
everyday life even before computers came into existence. After all, if it had been 
impossible to think “computationally” before the advent of computers, how would 
humans have invented them in the first place?

These questions mirror the rise of a national debate about the place of technology 
in computer science education. Critics of unplugged learning (notably, Huang & 
Looi, 2020) have argued that some CS concepts may be impossible to divorce from 
the technological medium of computers, and that school-based curricula that seek 
to teach CS concepts without computers are under-researched. We wholeheartedly 
agree with Huang and Looi’s conclusion that more research is needed to understand 
whether and how “unplugged” learning that takes place without computers or other 
technology can support engagement with CS.

However, we argue that the debate is far from settled about whether unplugged 
learning can effectively support the development of computational thinking concepts. 
In this chapter, we use Bers’ definition of CT concepts as those discipline-agnostic 
ideas, such as algorithmic logic and iterative design, that are foundational to CS, but 
not necessarily exclusive or unique to it. While education research is still exploring 
the relationships among tech tools, unplugged learning, and CS education, we 
propose that unplugged activities may engage children in CT skills practice, which 
may be beneficial for general development even beyond CS learning. For example, 
CS education has long faced criticism for lack of inclusion among girls, minorities, 
learners with disabilities, and learners unable to access tech tools and experiences. 
These inequities cause early gaps in CS achievement that last throughout a child’s 
academic life and even long into adulthood, impacting career opportunities and 
contributing to a stratified CS workforce (Brackmann et al., 2017; Margolis et al., 
2017; Wang & Hejazi Moghadam, 2017). By engaging children in unplugged CT 
learning, beginning with familiar early childhood activities, children may be able 
to build a foundation of CT awareness to mitigate gaps in CS readiness, and even 
the playing field for later pre-professional training.

Throughout this chapter we will be referring to concepts of Computer Science 
(CS) and Computational Thinking (CT). We will discuss methods and practices 
of exploring these domains such as unplugged learning and coding/programming. 
Although the meaning of these concepts are still evolving, for the purposes of this 
chapter, we will use the following definitions and conceptions: (1) CS is a field of 
study explicitly about understanding and utilizing computer technology. The Computer 
Science Teachers Association (CSTA) in the US has adopted the Association for 
Computing Machinery’s (ACM) definition of CS, as “the study of computers and 
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algorithms processes, their principles, their designs, their applications, and their 
impact on society” (CSTA, 2021; Tucker et al., 2006). (2) CT is often described 
as drawing upon computer science concepts, but CT skills are not exclusive to CS 
(Basu et al., 2016; Chen et al., 2017; Wing, 2006). CT broadly represents the set 
of thought processes that are required to engage in a range of analytic skills. These 
skills include, among other things, the ability to think recursively, apply abstraction, 
and use heuristic reasoning to solve a problem or complete a task. The process of 
engaging in CT is related to the field of CS but is also applicable to everyday life 
(Relkin et al., 2021; Wing, 2006, 2011). (3) We define “unplugged” as any activity 
or experience that does not require the child to be actively manipulating a smart 
device or computer, but that still promotes engagement with computer science 
concepts, skills, and practices. (see table 1). There are many tools and technologies 
that are available to introduce learners to CS and CT. New resources for unplugged 
computational learning are still emerging. In the following sections we outline the 
importance of unplugged opportunities to engage a diverse range of students in 
computational learning.

Unplugged Coding vs. Unplugged CT: Not All 
Unplugged Learning is Created Equal

One of the original intentions launching CS unplugged initiatives was to teach CS 
concepts in a way that made them accessible regardless of the student’s access to 
computers. Coding (programming) involves using a set of instructions to solve 
problems and tasks with computers and other technologies (McLennan, 2017; Metin, 
2020). Some activities that are described as “unplugged” are essentially coding 
exercises carried out offline using some of the same symbols and syntax as actual 
programming. For example, ScratchJr.org allows print out of large programming 
block cards that can be used to play a game called “Programmer Says”. This game 
is similar to “Simon Says” but uses ScratchJr programming language instead of the 
usual verbal instructions to help students gain familiarity with coding commands. 
For the purpose of the present discussion, we will refer to these types of exercises 
as unplugged coding activities.

Other resources teach CT-related principles without directly invoking coding 
commands. For example, CSunplugged.org’s “Divide and Conquer?” uses animal 
playing cards to teach about algorithms and related concepts. We will refer to activities 
such as these as unplugged CT activities. While coding is recognized as a means of 
acquiring CT skills, unplugged activities provide another route that may be more 
accessible to young children, especially those who are pre-literate or without ready 
access to computer hardware.
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New research is constantly leading to revisions and refinements in educational 
practices. This includes how unplugged coding activities (e.g. board game or paper-
based coding) versus unplugged CT activities (e.g. non-coding sorting and pattern 
matching) are employed in early childhood education (e.g., see Barr & Stephenson, 
2011; Bell & Lodi, 2019; Bell & Vahrenhold, 2018; Upadhyaya et al., 2020). In 
the following section we discuss what the evidence currently suggests about how 
unplugged activities may contribute to children’s future CS success.

Unplugged Activities as a Foundation 
for Computer Science Learning

Unplugged activities were created as a means of teaching Computer Science (CS) 
concepts and skills without requiring use of computers or programming (Bell & 
Vahrenhold, 2018). This approach was popularized in the early 1990s by a group 
of collaborating educators and researchers who coined the term “CS Unplugged” 
and shared a free collection of unplugged resources (Bell & Vahrenhold, 2018). 
CS unplugged concepts were taken from advanced CS courses and translated into 
physical activities where information could be more easily understood (Bell & Lodi, 
2019). Since then, engaging students in unplugged activities have become widely 
recognized as beneficial for teaching CS concepts to young children. A variety of 
newer unplugged activities and curricula are found on websites such as csunplugged.
org, in mainstream coding education initiatives such as www.code.org and https://
www.barefootcomputing.org/ and in books and other resources (Caldwell & Smith, 
2016).

Unplugged CS in Early Childhood

Limits to young children’s literacy, numeracy, and abstract reasoning skills place 
some constraints on the CS concepts that can be mastered by young children (Bell 
et al., 2016). Young children are capable of learning to code but typically require 
developmentally appropriate programming platforms that use tangible blocks and 
graphical coding interfaces (Strawhacker et al., 2017; Sullivan et al., 2015; Resnick 
& Silverman, 2005). Unplugged activities can be used to introduce CS concepts 
to young children regardless of their ability to read, write, or count. An unplugged 
activity typically involves a set of artifacts and procedures that are well-known to 
most children and adults from their everyday lives. By presenting a readily understood 
analogy, or challenging students to formulate questions and find solutions, unplugged 
activities exercise some of the same skills that are involved in computer programming 
without the use of computers.
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Past research on the impact of CS unplugged on young children has provided some 
contradictory messages. A few researchers have reported that unplugged activities do 
not increase interest or knowledge in CS/CT as much as traditional coding activities 
(e.g., Black et al., 2013). Other investigators have found that unplugged lessons alone 
are just as effective if not better at promoting CT as traditional coding (Hermans 
& Aivaloglou, 2017; Metin, 2020; Wohl et al., 2015). Yet another group of authors 
have suggested that the most powerful way to promote CT in young children is to 
integrate unplugged exercises and coding activities together (Metin, 2020; Huang 
& Looi, 2020; Bers, 2020; Thies & Vahrenhold, 2012, 2013).

How Does Computational Thinking Fit 
with Unplugged Learning?

The concept of CT was mentioned by Seymour Papert in his 1980 book Mindstorms, 
but the concept was more widely popularized by Jeanette Wing in 2006. Wing proposed 
that teaching CT should be part of every child’s education. However, long before 
Wing (2006) popularized the term “computational thinking”, young children have 
practiced sequencing, deconstructing problems, symbolic representation, and other 
CT skills in various science and non-technical classes as well as in their daily lives.

There have been several attempts to identify the subdomains of CT in a manner 
that conceptually aligned with child development. For example, the Computer 
Science Teachers Association (CSTA) and the International Society for Technology 
in Education (ISTE) developed a framework for grades K-12 that includes nine 
core concepts of CT (CSTA & ISTE, 2011). Dr. Marina Bers has identified seven 
developmentally appropriate powerful ideas of Computational Thinking for children 
in the range of 4-7 years of age (Bers, 2018; 2020). CSunplugged.org identified 6 CT 
subdomains for K-12. Table 1 shows the relationship among these three frameworks. 
In this chapter, we primarily employ Bers’ seven powerful ideas because they are 
specifically developmentally appropriate for early childhood (ages 4-7).
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Unplugged Learning as a Pathway to 
Equitable Computational Thinking

CT has gained traction among education practitioners and researchers as a foundational 
skill set for CS education. However, research has identified that gaps in children’s 
access to devices and technology instruction predict lasting and lowered outcomes 
for those students with lowered access to technology (Fraillon et al. 2020). Across 
schools, districts, and even nations, gaps are common between students from families 
of high and low socioeconomic status (SES), with lower SES correlated to lowered 
performance on CT assessments (Karpiński et al. 2021).

In an analysis of data from the 2018 IEA International Computer and Information 
Literacy Study (ICILS), which tested over 46,000 students from 14 countries, 
researchers found that persistent gaps among students’ CT performance were linked 
to their family’s socioeconomic backgrounds (Fraillon et al. 2020; Karpiński et al. 
2021). Specifically, results “consistently showed that students from less advantaged 
backgrounds had lower levels of computer skills than those from more advantaged 
backgrounds, especially in CT” (Karpiński et al. 2021, p. 1).

Table 1. Computational Thinking domains as described by Bers (2018), CSunplugged.
org and CSTA & ISTE (2011) respectively. The “CT Concept or Learning Goal” 
column highlights the overlap between these frameworks

Bers’ CT Powerful 
Ideas

CS Unplugged 
Framework

ISTE & CSTA 
Standards CT Concept or Learning Goal

Algorithms Algorithmic 
Thinking

Algorithms & 
Procedures

Step-by Step sequencing/order used 
to achieve a task or solve problems

Modularity Decomposition Problem 
Decomposition

Breaking up larger task into smaller 
more manageable parts

Control Structures Generalizing and 
Patterns Parallelization

Recognizing patterns and repetition, 
cause and effect, determining the 
order of events, Organize resources

Representation Abstraction Abstraction, Data 
Representation

Symbolic Representation, Filtering 
to make less complex

Hardware / Software N/A Automation
Smart objects are not magical, 
objects are human engineered, 
understanding technology

Design Process Evaluation Simulation
Creative problem solving, gathering 
information, identifying possible 
solutions, iterative editing/ revision

Debugging Logic Data Analysis Identifying problems, Making sense 
of data, Error correction

Source: (Bers, 2018; Csunplugged.org; CSTA & ISTE, 2011)
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Importantly, preliminary research has shown that unplugged activities may be 
useful for addressing these gaps by laying a foundation for later technology-mediated 
CS learning (Bers, 2020; del Olmo-Muñoz et al. 2020). Young children aged 4-8 
years, with their developmental need for physical, hands-on play and limited screen 
engagement, may benefit the most from foundational unplugged CT experiences 
(Przybylski & Weinstein, 2019; Saxena et al. 2020). Further, CT already permeates 
children’s daily activities and experiences as a cognitive skill set, in and out of 
school. It is important to look beyond formal education and explore the possibilities 
of democratizing CT by broadening awareness of its impact in everyday life. Given 
mounting evidence, we posit that one critical step toward addressing the known gap 
in CT performance among children from different backgrounds and with differential 
access to technology is to research and promote educational initiatives on aspects 
of CT that can be introduced in an unplugged format in formal, informal, and home 
learning settings.

By acknowledging and highlighting opportunities for everyday unplugged CT 
experiences, there is hope for democratizing foundational CS skills for all children, not 
just those whose families can afford it. In this chapter, instead of emphasizing novel 
activities and strategies to introduce CT into early childhood learning, we focus on 
recognizing how CT already exists in children’s everyday learning. To help highlight 
the many opportunities to integrate CT throughout children’s activities at home and 
school, we draw on existing definitions of computational thinking concepts, taken 
from Bers’ (2020) Powerful Ideas of Computational Thinking. This reference was 
chosen for its evidence-based recommendations, developed from empirical research 
specifically relating to early childhood (Bers, 2020)

SUPPORTING THE ACQUISITION OF YOUNG 
CHILDREN’S CT THROUGH UNPLUGGED LEARNING

In the following sections, we follow a day in the life of a fictional child, Ava, who 
is a typically-developing 5-year-old girl. Like most kids her age, she explores and 
practices critical cognitive skills in her everyday life, preparing her for foundational 
computational thinking tasks before ever working with a computer. The examples 
below focus on typical “unplugged” experiences and daily practices that require 
problem solving and CT strategies. In each example, we offer evidence-based practice 
suggestions for further supporting unplugged engagement with CT.
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Waking up With Algorithms

Ava’s father knocks on her bedroom door and calls, “Rise and shine, Sleepyhead!” 
Ava stumbles into the bathroom, rubbing her eyes and yawning, and reaches for 
her toothbrush. Sometimes she is so sleepy in the morning, she has to stop and 
remember what to do first. She checks the list with sticker pictures that she made 
with her mother to remind her of the steps:

In this example, Ava is exercising the CT concept of algorithms, a sequential step-
by-step process that can help solve problems or complete tasks (Bers, 2020; ISTE 
& CSTA, 2011; CSunplugged.org). In a typical coding task, children might explore 
algorithms by creating a sequence of coded instructions for a robot to carry out, or 
by using directional steps (e.g. turn left, one step forward) to program an on-screen 
character to navigate a maze. Here, Ava applies the same instructional logic to a 
non-technological activity, brushing her teeth.

By following a sequence of steps, the activity reinforces the idea that order 
matters to assure a process works as intended. Ava also worked with a parent to 
create the chart herself, meaning she was engaged in constructing the algorithm, 
not just following it. This way, she comes to know that there is meaning to her daily 
ritual, and that following the order of her algorithm is important to ensure that her 
teeth will be clean and healthy. To help children practice algorithmic thinking, you 
can work to build a chart, song, or other mnemonic to connect children’s developing 
CT skills to their other daily practices, such as personal hygiene habits.

Figure 1.
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Debugging and Mismatched Socks

It’s Ava’s first day of Kindergarten and she’s excited to dress up for the occasion. 
Ava picks out her favorite outfit for school and takes a look in the mirror. “Oh no, 
my socks don’t match!” When she opens her sock drawer she can’t seem to find a 
pair that are the same. Every pair of socks in the drawer is mismatched! She takes 
all of the socks out of the drawer and places them on the bed and starts to sort 
them. First she puts all the white socks together, then all the red, blue, etc. She then 
notices that they are still not matched. She looks at the white socks and sees some 
have patterns and some are plain white, so she separates those. She does the same 
for the other colors. She pairs up all of the socks by color and pattern only to find 
that two of the socks don’t match each other or any others. She calls her father over 
to ask what to do. Her father suggests going downstairs to check in the laundry. 
She goes downstairs, finds the socks and pairs them up. The problem is solved, and 
she remembers to change into a matched pair before she goes to school! They also 
agree to keep the socks balled together in the future to avoid this problem.

Debugging is the two-part act of (1) exploring a system for an issue or “bug” that 
is causing the smooth functioning of the system to break down, and (2) working to 
iterate through solutions until the bug is resolved (Bers, 2020). Although the term 
debugging was coined to refer to issues in computational machinery, it also applies 
to any system with multiple parts working together for a single function. In this 
story, Ava engages in a form of “debugging” in order to solve the problem of her 
mismatched socks. The “system” in this case is the flow of her laundry from dirty 
to clean to sorted. Ava recognized that something was wrong with the process of 
matching socks in her drawer and went through multiple iterations in order to fix 
the problem. She completes the debugging process by restoring order to her drawer, 
correcting her mismatched socks, and coming up with a plan (with the help of her 
father) to prevent a similar problem in the future.

Modularity at the Breakfast Table

After finally picking her outfit, Ava runs to the kitchen - it smells delicious! While 
her father finishes cooking and mother is busy helping her brother with homework, 
Ava knows it’s her job to set the table. She is so excited to eat that she sets her own 
place first - getting a plate, then a fork and knife, and finally a glass and putting 
them at her seat. She looks up and realizes that she has walked from the cupboard 
to the table three times, and has only set one place - there must be an easier way! 
She moves back to the cupboard and this time she stops to think. Her father, mother, 
and her brother will all need place settings. She counts out family members on her 
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hands - 1, 2, 3. Then, she takes three plates and carefully carries them to the table. 
She checks the example place setting she left at her own chair, and comes back 
with three forks and knives, and then again returns with three cups. Just as she is 
separating out the dishes into three matched place settings, everyone is ready to sit 
down to her favorite breakfast - waffles!

When Ava sets the table, she is engaging in an idea similar to algorithms, but a bit 
different. Modularity is the process of breaking down tasks or procedures into simpler 
units. Modularity makes complex processes easier to manage by decomposing many 
steps of a problem. Examples of modularity in technology-mediated activities include 
separately coding two units (for example, characters in an animation) to interact with 
each other, or breaking down a longer coding process (e.g. code a robot to navigate 
across a room) into shorter steps (e.g. code a robot to navigate to the door, then to 
the table, etc.). Ava made “modules”, or units, out of each place setting composed 
of one plate, one cup, and one set of silverware.

There are many ways you can explore modularity without using screens or 
technologies. Activities that involve planning are usually great opportunities to 
break down complex tasks. You can help children get excited to plan their birthday 
parties - complete with a guest list, invitations, favors, and games, all of which 
require children to break down the tasks into smaller steps. You can even explore 
modularity by breaking apart steps to a favorite song or dance and thinking about 
the repeating “modules” and the order they are sequenced.

Control Structures for Walking to School

Ava leaves with her mother to go to school. She skips, jumps, and runs along the 
sidewalk ahead of her mother, but she knows to always stop and wait when she gets 
to a crosswalk. At the corner in front of her school, she holds her mother’s hand and 
closely watches the crossing guard, Ms. Doyle. She remembers what she learned 
last year, when her preschool teacher helped her whole class practice the special 
rules for crossing the street: If Ms. Doyle is holding up the red sign, that means 
Ava should STOP and wait. If Ms. Doyle holds up the green circle sign, that means 
it’s safe to walk. Ava waits patiently while Ms. Doyle shows her red sign and lets 
some cars pass. She and her mother do not begin walking until they see Ms. Doyle 
holding up her green circle sign.

Control structures, sometimes called event-based codes, determine the order and 
timing of events as well as the sequence in which instructions are followed. Machines 
that use sensors, such as robotic vacuum cleaners that use distance sensors to navigate 
a room, or automatic doors that open when a person activates the infrared sensor, are 
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real-world examples of technologies that use control structures. Use of phrases with 
words such as when, while, until, and if are clues that children are exploring Control 
Structure reasoning. In this unplugged example, Ava shows a good understanding that 
traffic signs affect the timing of safe street crossing, which is an exercise in control 
processes. In her understanding of the meaning of the signs Ava is also exercising 
the CT process of representation which we explore next.

Representation

After hugging her mother goodbye, Ava runs into her new classroom. She gets excited 
when she finds her friend Liam from her preschool is in her new class! Mr. Oladeji 
tells everyone to find their nametag at a table at the front of the room. Ava and Liam 
look at all the nametags - there are so many! Ava looks carefully for any names that 
start with the letter “L”. “Liam! I found yours!” Ava waves Liam’s name tag at her 
friend, and then keeps looking until she finds the name tag that spells A-V-A, but 
is confused when she finds three tags with her name on them. When she asks her 
teacher, he tells her there are two other students named Ava in their classroom, so 
she and the other Avas should pick a colored sticker so they can tell their name tags 
apart. She picks a blue star since blue is her favorite color! That will make it easy 
to find every morning. She walks to her seat, ready for the day.

Representation is the notion of an equivalence of symbols with concepts, objects, 
shapes, and other things. In computer-based coding, representation might come 
out in understanding the specific symbols of a block-based coding language, such 
as the color- and shape-based language system used by the Cubetto robot (https://
www.primotoys.com/). It might also come out in text-based coding languages, for 
example, in a function or subroutine where typing the command “time” represents 
a long series of coding steps in which the computer accesses, sorts, and displays 
information about the current time of day. In preschool and Kindergarten, children 
learn that letters can be used to represent sounds, numbers represent quantities, and 
that other types of symbols (such as stop signs and gendered pictures on bathrooms) 
have meanings. In the example here, Ava learns that the symbol of a blue star can also 
be a useful representation for herself when letters and words may not be sufficient.

Hardware/Software

During her first day of kindergarten Ava’s teacher asks, “who likes music?” Ava 
raises her hand and says, “I love to listen to music when I travel in the car”. The 
teacher asks, “can music only come from a radio?” One of Ava’s classmates says 
she listens to music on a computer and another hears music on her parents’ cell 
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phone. The teacher asks if anyone plays an instrument. Ava says she’s learning to 
play piano. The teacher asks, “what’s the difference between music on the radio 
and music on the piano?” Ava says, “when I turn on the radio the music just comes 
out, but I have to remember which keys to press for the piano to make music.” The 
teacher smiles and asks, “Is it the piano that makes the music or is it you?” Ava says, 
“I guess it is both”. The piano makes the sounds, but I have to tell it which notes to 
play. The teacher says “that is right! The radio, the computer, the cellphone, and 
the piano are all types of machines that can make sounds, but we need to tell the 
machines what to do in order for it to come out sounding like music.”

Ava’s teacher is helping her to understand an analogous concept to hardware and 
software as it relates to music and musical instruments. Children of this age are 
learning that technological objects are not magical or alive but in fact need to be 
constructed and instructed to perform the way they do. Computers use hardware 
and software to run. Hardware is physical devices (e.g., keyboard, computer screen, 
motherboard) and software is codes that tell the computer how to operate. In this 
example, Ava’s teacher points out that both digital and analog technologies can 
function as “hardware”. Coded software or sometimes our physical actions serve 
as the inputs needed to control the machine.

Of all the CT concepts explored in this chapter, the relationship between 
hardware and software is one of the most challenging for making unplugged 
learning connections. This is because computers, with their internal lightning-fast 
processors, simplify the hardware/software. This metaphor is made more complex 
in the non-digital world by the intervention of our natural processors - the brain. 
In Ava’s example, the piano and radio are easily identifiable as the hardware that 
“enacts” the musical performance. In the case of the radio, the software is also easily 
named - the computer file that stores the music recording. Naming the “software” 
guiding a piano performance is more nebulous. Is it Ava, the player striking the 
keys? Or, the written music that reminds Ava of the structure and sequence of notes? 
Or is it Chopin, the original designer and author of the sheet music sitting on Ava’s 
piano? Any of these answers could be argued, although the most precise analogy 
to computer code probably points to the sheet music as an analogue for software, 
and Ava (the player) is the “processor” translating the written instructions to sounds 
on the piano hardware.

Explaining this complex system to children, without the ability to show them 
a processing unit inside of a computer, leads to some necessary challenges for the 
educator, and probably some confusion in the learner. One way around this is to 
use a simplified metaphor, such as comparing it to music and musical instruments. 
Although this is an imperfect analogy, it has the benefit of leveraging children’s 
natural inclination toward concrete thinking (for a deeper discussion of concrete 
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thinking in the context of computer science education, see Papert, 2005). By using a 
basic metaphor, children can develop a heuristic that can serve them as a foundation 
for later, more advanced exploration of hardware and software.

Design Process

When her mother picks Ava up at school, she can hardly wait to tell her about her 
first homework assignment - she gets to build a structure out of marshmallows and 
toothpicks! When they get home Ava starts planning the marshmallow structure. 
Ava made lots of marshmallow towers at STEM camp this summer, so decides to 
challenge herself and build a marshmallow bridge. The only problem is, she can’t 
figure out how to make it stay upright without falling down in the middle. She asks 
her brother for help. He looks at the table and asks “Where’s your design?” Ava 
looks up, curious. “You know,” her brother says, “your plan. Your blueprint. The 
picture that you’re using to help you build the whole thing.” Ava’s face lights up. 
“You’re right! I forgot, we used to make blueprints at camp!” She runs to get paper 
and her pencil box, and begins furiously sketching out her bridge. Her mother smiles 
when Ava adds her final touches to the drawing, and offers to hold up her design 
while Ava begins to build it. Ava checks the plan, and this time adds a few supporting 
marshmallows in the center. Now it looks sturdy! She asks her brother to test it for 
her. He picks up the box of leftover toothpicks and places it on the bridge - but it 
crashes down! “Oh no! I need to add more middle parts,” Ava says and she picks 
up the broken bridge carefully. After two more tests and redesigns, her bridge finally 
holds up to the toothpick box test! Her brother offers to help her carry it into school 
tomorrow to make sure it doesn’t break before she can share it with her class.

In this example, Ava goes through the various steps of the design process. She first 
imagines what she will make and asks a question about how to make a sturdy structure. 
She plans using a blueprint, she creates the structure, and tests its sturdiness. She 
also improves the structure and shares with her family and classmates. The design 
process is an open-ended and iterative process used to create new things. There’s 
no official starting or ending point to the design process. Children can begin at 
any step, move in any direction and repeat the cycle as many times as they see fit.

In contrast to the CT concept of hardware and software, introducing the design 
process is one of the easiest computational thinking skills to integrate into unplugged 
everyday life. Design is a human-driven activity, and can take place in almost any 
modality and in the context of any topic. Scientists engage in a form of the design 
process (they prefer the term “scientific method”) when planning and carrying out 
experiments. Writers use the functionally identical “writing process” to brainstorm, 
draft, and revise their stories. Computer Scientists learn to engage in the iterative 
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process of writing, compiling, running, and debugging their code until it functions 
as intended. When children explore robotics for the first time they can design the 
hardware that executes their program, the program itself, or a combination of both. 
Fortunately for unplugged CT learning, children can explore the steps of the design 
process using familiar materials and ideas. Crayons, paper, and chalk can help with 
planning and blueprinting, and traditional blocks, craft supplies, or recycled and 
found materials are great for modeling their designs. Any activity that engages 
children in identifying a problem, formulating a solution, and working to build it 
into a reality is a fantastic opportunity to engage in the steps of the design process.

RESOURCES

In this section we list some of the resources that can aid in the implementation of 
unplugged learning for early childhood education and allow creation of new activities.

Websites such as www.csunplugged.org, www.code.org, https://www.
barefootcomputing.org/, www.kodable.com, and www.csinsf.org, are excellent 
resources for finding unplugged CT as well as unplugged coding activities and 
curricula for young children. These websites include unplugged CT activities 
that engage children in various subdomains including algorithms, debugging, and 
decomposition. Unplugged coding cards for various early childhood technologies 
can be found on sites such as https://www.scratchjr.org/ that allows download and 
printing of free large ScratchJr unplugged cards. Similar cards for the KIBO robotics 
platform can be purchased at https://shop.kinderlabrobotics.com. These coding 
cards are an excellent way to introduce children to programming languages for the 
first time and may be more accessible to some children than manipulating smaller 
blocks. You can also purchase ScratchJr coding cards which includes both interface 
and coding as well as unplugged activity ideas for educators.

The DevTech Research Group has created the Coding as Another Language (CAL) 
ScratchJr and KIBO curricula for PreK-2nd grade that integrate both traditional 
coding, unplugged coding, and literacy activities. You can learn more and download 
the CAL curricula for free here: sites.tufts.edu/codingasanotherlanguage.

We and other researchers believe that it is vital that unplugged CS education 
connects to children’s everyday lives. Therefore, we encourage educators and 
researchers to create their own activities that are personally meaningful to them 
and their students.

If you are interested in creating your own activities here are guiding questions 
to inspire children’s learning:
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• Introduce Design: Can we make a plan or design for this idea? Can we iterate 
through multiple revisions?

• Practice Sequencing: How does order matter? what would happen if we 
changed the order of steps?

• Solve Problems by Debugging: Is there a step-by-step approach we could 
take to identify the problem? How can we try to fix it?

Many educators find it helpful to start by teaching young children unplugged 
coding/CT and then graduate to traditional lessons of coding. Here are some concepts 
to keep in mind during that process:

• Consider the age range the tool was designed for. Will it be too simple or too 
complex for your learner?
 ◦ Start with tangible coding languages and tools for younger learners 

before moving to screen-based ones
 ◦ For pre-readers and beginning-readers, look for coding tools that don’t 

rely on text-based language. Draw or print out images of the coding 
symbols to use in off-screen games and activities.

 ◦ For children who are ready for a challenge, look for tools that support 
open-ended coding experiences, rather than puzzle-style or step-by-step 
coding games

• Start small.
 ◦ Introduce a robot without its power source or batteries the first time you 

share it with a child.
 ◦ When beginning to learn a coding language, focus on one or two basic 

commands to master before moving into more complex instructions.
• Make connections to real-world technology - You can find sensors, cameras, 

and computers all around!
 ◦ Point out when doors and sinks motion-activated, or when interactive 

vending machines use robotic arms
 ◦ Have discussions about whether certain technologies are robots, with 

moving parts that can be programmed (e.g. self-driving cars, motion-
activated doors) and which are non-robotic machines (e.g. typewriters, 
televisions, flashlights).

• Finally, consider a mix of both plugged and unplugged experiences to engage 
children in all the kinds of learning they might encounter in the real world! 
Many libraries, makerspaces, and museums will have tools and technologies 
available for children to explore. This can be a great first introduction to the 
world of plugged-in CT and CS exploration.
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REFLECTING ON THE IMPORTANCE 
OF UNPLUGGED LEARNING

Throughout this chapter we have argued that unplugged CT/CS learning can 
support children’s later academic success. As we outlined in the beginning of this 
chapter, preliminary evidence from research supports the perspective that unplugged 
learning can be an important foundation for more formal CS education (Hermans 
& Aivaloglou, 2017; Metin, 2020; Wohl et al., 2015). In addition, we propose two 
other arguments supporting unplugged learning in early childhood.

First, we can look to other, more established learning domains for examples of 
how to introduce young children to life-long concepts. In the field of language and 
literacy, educators have long known about the importance of “print awareness,” or 
highlighting text and letter symbols through child-accessible signage and books. If 
we accept the premise that coding and CS comprise a computational literacy (e.g., 
Bers, 2020), then we might interpret the unplugged activities presented in this chapter 
as suggestions for promoting “computational awareness” in learners before being 
formally introduced to CS education.

Second, regardless of the impact of unplugged CT learning on children’s later 
academic success, research is conclusive about the impacts of early exposure to 
novel domains on children’s developing identity awareness (Kuhl et al. 2019; 
Sullivan, 2019). Researchers have even demonstrated that early exposure to STEM 
domains through playful and hand-on activities has contributed to disrupting the 
formation of stereotypes that may inhibit children (particularly those from resource-
stretched backgrounds who are already facing a disadvantage in CS pathways) 
from engaging in those professions later in life (Karpiński et al. 2021; Sullivan, 
2019). In the face of disheartening gaps, it is critical for educators and families to 
explore the use of unplugged CT activities to achieve more equitable CS education. 
Unplugged learning might mitigate SES-based discrepancies in student performance 
by reinforcing critical CT skills without the need for prohibitively expensive or 
rare technologies. Although accessibility issues remain, we agree with others that 
a model of unplugged learning outside the formal classroom may still be a useful 
starting point to engage learners who have no other recourse to explore CT due to 
inaccessible technologies (Manabe et al. 2011). Since unplugged lessons also tend 
to be a thoughtful reframing of activities that children and families already do or 
know how to do, they can also offer adults a chance to demystify CS concepts for 
themselves, leading to more success teaching and modeling this kind of thinking 
for children (e.g., Curzon et al. 2014).

Taking these arguments together, we propose that implementing unplugged 
activities in early childhood may have lasting benefits in terms of children’s developing 
interests, identities, and academic readiness to engage in later CS learning. Unplugged 
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learning may even support foundational learning in other domains identified in 
research as connected to CT. Our advocacy of unplugged learning does not detract 
from our enthusiasm for approaches such as learning to code which can have additive 
or synergistic benefits for children’s cognitive development. There is uncertainty 
about whether unplugged learning alone achieves the same outcomes as coding 
activities in terms of mastery of CT concepts. More research is needed to determine 
how to best integrate unplugged and coding approaches into a unified method of CS 
education for young children. In addition, further refinement of unplugged curricular 
activities is needed so that best educational practices can be identified.
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KEY TERMS AND DEFINITIONS

Coding: Also called programming, coding is the process of designing and 
building an executable computer program to accomplish a specific computing result 
or to perform a specific task.

Computer Science: The study of computers and computing as well as their 
theoretical and practical applications.

Early Childhood Education: Education of children from birth through age eight.
KIBO: A screen-free programmable robotics kit for young children with blocks, 

sensors, modules, and art platforms.
Programming: Also called coding, computer programming is the process of 

designing and building an executable computer program to accomplish a specific 
computing result or to perform a specific task.

ScratchJr: A free block-based programming application for young children
STEM: An integrated educational approach involving disciplines of Science, 

Technology, Engineering, and Mathematics.
Unplugged: Describes activities such as games and puzzles that aid the teaching 

and learning of computer science but without requiring the use of technology.
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Chapter  4

DOI: 10.4018/978-1-7998-7308-2.ch004

ABSTRACT

This chapter summarizes theoretical connections between computational thinking 
through learning to code, self-regulation, and executive function and discusses 
why it is important to continue exploring the intersection of executive function, 
self-regulation, and computational thinking, including the need to revisit the socio-
cultural underpinnings of foundational self-regulation, executive function, and 
school readiness research. As an example, findings from a 2014 study that explored 
the relationship between self-regulation and computational thinking when learning 
to code are shared. Research supports the idea of teaching computational thinking 
skills within an integrated early childhood curriculum to support the development of 
well-prepared citizens for the 21st century by drawing on the connections between 
executive function, self-regulation, and computational thinking.

INTRODUCTION

As other chapters in this book will attest, coding is becoming an increasingly essential 
skill. As Bers references in Chapter 1, “there are an estimated 500,000 openings 
for computing jobs nationwide, and a lack of adequately trained people to fill them 
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(Code.org, 2018; Fayer, Lacey, & Watson, 2017).” While job training and 21st century 
skill development is one reason to advocate for coding education, I argue adoption 
of a computational thinking curriculum in early childhood by educators, parents, 
and children is much more likely when coding is connected to other aspects of the 
early childhood curriculum. More specifically, connecting computational thinking 
to core academic domains like math and literacy as well as the development of 
cognitive skills, such as executive function and self-regulation.

When integrating computational thinking into classroom through educational 
technologies, it is important to note that technological tools are artifacts mediated 
by social groups and cultural mores (Moll, 2014). Younger children do not provide 
themselves with the digital technologies in their lives; parents, families, and schools 
are the ones to make the purchases or hand the child the devices (Gutnick, A. L., Robb, 
M., Takeuchi, L., & Kotler, J., 2010). The technological tools the child is exposed to 
are influenced by societal and cultural factors. Furthermore, socioeconomic status 
of families not only underpins digital divide, but is also a predictor of all domains 
of executive function (Mulker Greenfader, 2019). Schools can play a key role in 
narrowing digital gaps, providing more equal opportunities for technology devices, 
exposure to computational thinking, and the development of executive function skills.

My early research focused on connections between coding and literacy (Kazakoff 
& Bers, 2012; Kazakoff, Sullivan, & Bers, 2013; Kazakoff & Bers, 2015). My 2014 
dissertation, Cats in Space, Pigs Who Race: Does self-regulation play a role when 
kindergartners learn to code? was one of the first studies to examine executive 
function within the context of the development of computational thinking and coding 
skills in early childhood. Self-regulation (controlling ones behaviors) and executive 
function (directing ones thoughts and behaviors towards a problem solving goal) 
are also skills seen by educators and parents as desirable for traditional ideas of 
kindergarten readiness (Center for the Developing Child, n.d.; Finders, et. al., 2021).

My work specifically focused on the consideration of the role self-regulation 
plays when learning to code. This work was inspired by several years of interactions 
with young children and digital tools, where it became clear to me there were many 
factors that determined how well children learned novel technologies and coding 
languages. As an illustrative example, take Danielle and Jennifer, whom I met early 
in my research.

Danielle and Jennifer were friends and neighbors in the same first grade classroom 
and described by their parents as excellent, curious students. Their parents had 
signed them up for a research study on a new coding language for young children 
where they were able to program a robot’s movements with wooden blocks affixed 
with scannable barcodes that translated an action on the block to a movement for 
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the robot. One Saturday morning, Danielle and Jennifer arrived at the DevTech Lab 
research lab presenting with equivalent levels of excitement to learn about robots.

When introduced to the robotics lesson, Danielle and Jennifer had similar ideas 
about decorating their robots to be ballerina robots and programming them to move 
forward three steps, do three spins, and move backwards three steps. They got to 
work on their ideas and decorated their robots with pipe cleaners, construction 
paper, and glitter, transforming the robots into whimsical ballerinas. However, when 
it came time to code, Jennifer meticulously built and tested each block of code on 
her ballerina robot, whereas Danielle skipped coding altogether and insisted on 
dancing around the room with her robot in hand -- making her robot dance through 
manual effort and not the coding blocks. Danielle expressed interest and excitement 
in Jennifer’s robot dancing on its own “like magic” but seeing her friend code was 
not enough for Danielle to overcome the instant gratification of dancing with her 
robot in the moment instead of programming it to dance on its own.

While every child is different, these two general reactions to learning to code 
presented regularly in my early years of building coding languages for children. When 
coding with existing programming languages of the time, children of kindergarten 
and first grade ages observed in studies varied widely in their abilities to overcome 
“instant gratification” activities and interface components (i.e., buttons that would 
randomly insert characters or make a character grow big and shrink small) in favor 
of systematically programming their great ideas. I hypothesized that self-regulation 
was a key developmental area that appeared to be a particular barrier for children 
five to seven-year-olds, particularly when using the original version of the Scratch 
software (for children ages 8 and older).

As such, my research within the development of ScratchJr explored how 
differences in self-regulation impacted computational thinking and learning to code 
by examining the possible bi-directional relationship between self-regulation level 
and coding ability when using ScratchJr. The hope was that coding languages could 
be developed in more inclusive ways to provide access to all young students in all 
classrooms, rather than becoming tools only for out-of-school-time enrichment for 
students who were developmentally ready for existent computational activities. In 
the nearly eight years since I last focused on this work, the importance of coding 
and computational thinking for young children has exploded in popularity, as has 
the call for more studies to demonstrate causal impact of executive function focused 
interventions in classrooms (Jacob & Parkinson, 2015). It is also important to note 
that self-regulation and delay of gratification research has grown heavily out of 
Mischel, et al’s “Marshmallow Studies” (Mischel, Shoda, & Rodriguez, 1989) which 
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have recently been revisited and critiqued for their selection bias (Watts, Duncan, 
& Quan, 2018).

The purpose of this chapter is to (1) summarize theoretical connections between 
computational thinking through learning to code, self-regulation, and executive 
function, (2) to summarize findings of a 2014 study which explored the relationship 
between self-regulation and computational thinking when learning to code, and 
(3) to highlight why it is still important to continue exploring the intersection of 
executive function, self-regulation, and computational thinking, including the need 
to revisit the socio-cultural underpinnings of foundational self-regulation, executive 
function, and school readiness research (which is beyond the scope of this chapter).

COMPUTATIONAL THINKING

ISTE and the Computer Science Teachers Association (CSTA) define computational 
thinking as a problem solving process (ISTE & CSTA, 2011) and problem solving 
will become a common theme throughout this chapter. While this definition (one of 
many) emerged from the computer science education field, computational thinking 
is applicable across many disciplines and domains (Digital Promise, 2017). As Bers 
states in Chapter 1, “although computational thinking has received considerable 
attention over the past several years, there is little agreement on what a definition 
for computational thinking might encompass (Allan et al., 2010, Barr & Stephenson, 
2011, Grover & Pea, 2013, National Academies of Science, 2010, Relkin, 2018, 
Relkin & Bers, 2019, Shute, Sun, & Asbell-Clarke, 2017, Grover & Pea, 2013, & 
Guzdial, 2008).”

Brennan and Resnick (2012) defined computational thinking along three specific 
dimensions that apply to Scratch (and, in turn, ScratchJr). The dimensions are 
computational concepts, computational practices, and computational perspectives. 
Computational concepts refer to areas such as: sequencing of programming 
instructions; parallel programming by either giving multiple programs to one character 
or giving two or more characters programs to act out together; and programming 
events, such as “start on green flag” (Brennan & Resnick, 2012). Computational 
practices include iterative design, testing and debugging, and abstracting and 
modularizing. Computational perspectives refer to the connections children make 
between the technological tool and the real world, by asking questions and making 
connections with others (Brennan & Resnick, 2012).

This definition of computational thinking, specifically related to Scratch/ScratchJr, 
is mentioned to highlight the connections between computational thinking, math, 
literacy, and problem solving. Math, literacy, and problem solving have all been 
correlated with self-regulation in prior studies (Espy, et. al., 2004; McClelland, et. 
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al., 2007; Zelazo, Carter, Reznick, & Frye, 1997) and it is possible that activities that 
utilize and build computational thinking, such as learning to code with ScratchJr, 
may also contribute to the development of cross-domain skills in math, literacy, 
problem solving, and self-regulation. Of course, there is still much work to be done 
in these areas to demonstrate concrete, measurable connections, but these theoretical 
connections served as the basis for initial work on connecting self-regulation and 
computational thinking through learning to code. Demonstrating that young children 
can grasp computational thinking concepts such as sequencing, patterns, modularity, 
cause and effect, and problem solving when presented with them in a developmentally 
appropriate way has been confirmed by extensive research (Bers, 2018).

EXECUTIVE FUNCTION AND SELF-REGULATION

Computational thinking, as a means of problem solving, taps into similar and 
overlapping cognitive functions -- many of which are considered under the umbrella 
of executive function, and, by extension, self-regulation. An emphasis can be made on 
the connection between self- regulation and learning to code as coding has previously 
been defined as problem solving (Brennan & Resnick, 2012; Yelland, 2005) and 
problem solving is a self-regulative process in itself (Zelazo, Carter, Reznick, & 
Frye, 1997). In particular, executive function plays a role in a child’s capacity to 
iteratively revise a hypothesis. Testing and revising hypotheses is a key component 
of not only the scientific method but also testing and debugging and computational 
thinking while learning to code. Through hypothesis testing, children engage in 
meaningful science and engineering exploration in early childhood while working 
to build executive function and computational thinking skills through scaffolded 
scientific inquiry (Gropen, Clark-Chiarelli, Hoisington, & Ehrlich, 2011).

Broadly, self-regulation refers to an integrative process that governs emotional, 
cognitive, and behavioral functioning (Baumeister & Vohs, 2004; Gestdotteir & 
Lerner, 2008; McClelland, Ponitz, Messersmith, & Tominey, 2010). Notably, the 
Handbook of Self-Regulation (Baumeister & Vohs, 2004) states that all contributing 
authors had different definitions of self-regulation but agreed on a common theme: 
“self-regulation refers to the exercise of control over oneself, especially with regard 
to bringing the self into line with preferred...standards (p. 2)” through controlling 
one’s attention, thoughts, emotions, and actions (McClelland & Cameron, 2012).

Examining self-regulation from an education perspective primarily focused on 
behaviors, thoughts, and feelings associated with school success (McClelland, Pontiz, 
Messersmith, & Tominey, 2010) and is defined by the behavioral aspects of self-
regulation: flexible attention, working memory, and inhibitory control (McClelland 
& Cameron, 2011). The separate yet integrated tasks of flexible attention, working 
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memory, and inhibitory control appear to be most relevant for learning in school, 
particularly when following directions or persisting on difficult tasks (McClelland 
& Cameron, 2011).

Executive function and self-regulation are related, in that executive function 
serves as the construct that unites working memory, attention, and inhibitory control 
for the purposes of planning, problem solving and goal-directed activity (Blair 
2002; Blair & Razza, 2007). These three aspects of self-regulation specifically and 
executive function broadly are critical for success in the early childhood classroom 
and predictive of academic success (Diamond, 2002; Sameroff & Hait 1996). Self-
regulation is critical to school success. It predicts school readiness over and above 
other factors, such as general cognitive skills and family background (Blair & Razza, 
2007) and growth in behavioral regulation predicts growth in math and literacy skills 
(McClelland, et. al., 2007). Furthermore, through their early work on a large-scale 
study of children using the LOGO programming language, Clements, Battista, & 
Sarama (2001) demonstrated that children in Grades K – 6 scored significantly 
higher on tests of mathematics, reasoning, and problem solving after learning to 
code with LOGO. The researchers theorize that when children engage in coding 
activities (through a process which would now be called computational thinking): 
creating sequences of commands for the computer to read, the children externalize 
their inner thought process. This externalization of inner thoughts may make a child’s 
thought process more readily available for reflection and understanding (Clements, 
Battista, & Sarama, 2001). Reflection and understanding of one’s thought process is 
also known as metacognition, which is a component of executive function (Garon, 
Bryson, & Smith, 2008). Perhaps then, learning to code promotes metacognition, 
which in turn, could contribute to children’s development of executive function and 
self-regulation.

More recently, a 2020 study looked specifically at a correlation between the 
BRIEF2 assessment of executive function and debugging in Scratch for 11-year-old 
students. The study found that BRIEF2 scores that demonstrated executive function 
maturity were strongly correlated with students’ Scratch debugging scores (Robertson, 
Gray, Martin, & Booth, 2020). The BRIEF2 (and earlier version, BRIEF) is a 
comprehensive, clinical measure of multiple facets of executive function including 
working memory, inhibitory control, and (shifting) attention plus emotional control, 
initiation, planning, organization of materials, and monitoring (Gioia, Isquith, 
Guy, Kenworthy, 2000). The authors conclude that study was another piece of the 
puzzle connecting computational thinking and cognitive variables. The authors 
also emphasize the need to scaffold students based on executive function levels 
and join the literature suggesting that executive function skills could be developed 
through motivating and engaging computational thinking activities (Robertson, 
Gray, Martin, & Booth, 2020).
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Another small study with first graders in Italy explored the connection between 
computational thinking and executive function skills primarily focused on response 
inhibition and planning. Children in the study who learned to code improved planning 
and inhibition control skills compared to controls. Researchers equated the gains from 
one month of coding to seven months for control students in planning and inhibition 
tasks. Although small, this study further supports the theory that computational 
thinking can boost at least some aspects of executive function in young children 
(Arfe, Vardangega, Monturori, & Lavanga, 2019).

A CASE STUDY WITH SCRATCHJR

This section describes the results of a previously unpublished case study. In two 
kindergarten classrooms, the relationship between self-regulation and children’s 
experiences in learning to code using ScratchJr was explored. Specifically, this work 
examined whether initial levels of self-regulation made a difference in ScratchJr 
performance during the first eight ScratchJr lessons, and if varied lengths of exposure 
to ScratchJr correlated with changes in self-regulation scores. The central research 
question was: To what extent does self-regulation have a role in learning to code 
with a novel computer programming software in kindergarten classrooms, and does 
length of exposure to the programming software correlate with the post-test self-
regulation scores of these kindergarten students?

In learning to code with ScratchJr, children exercise many intersecting concepts 
across computational thinking, executive function, and self-regulation described 
above. For example, a child may need to: develop a concept (creativity); think about 
how to compensate when the exact character they want or need does not exist (out 
of the box thinking; working memory); debug code that is not working correctly 
(problem solving; staying focused on a task; attention); and continue working on 
code despite temptations to explore other areas of a computing device (stay on task; 
sustain focus; seek long term reward; inhibition control)..

ScratchJr, was developed with early childhood developmental theory in mind, 
paying particular attention to young children’s self-regulation, early math ability, 
and early literacy skills. For example, the number of coding blocks children are 
presented with in the ScratchJr programming language is limited due to children’s 
developing attention and working memory. There are very few words in ScratchJr in 
consideration of young children’s developing literacy skills, although children can 
add text to practice writing in addition to sequencing their words within “phrases” 
or “sentences” of code.

Almost no “instant gratification” buttons (blocks you can click for an immediate 
action or reward like a plus sign that make your character grow huge) exist in 
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ScratchJr, in consideration of young children’s developing inhibitory control. The 
lack of such buttons encourages programming over simply clicking for cause and 
effect. The number range children can work with in ScratchJr was limited in this study 
to 20 horizontally and 15 vertically based on young children’s number sense and 
inhibition control (i.e., a limit on how large a number can be input into the software).

Of note, the ScratchJr curriculum used in this study was a pilot version and a 
somewhat hybrid approach to curriculum design. Part of the ScratchJr project as 
a whole included testing various curriculum with different levels of scaffolding. 
The children who took part in this version of the study used the most open-ended, 
least-scaffolded version of the curriculum, which included one day of open-ended 
exploration, five structured lessons, and two days of semi-structured projects. At 
the conclusion of the phase of the ScratchJr project described here, a new and 
significantly more structured curriculum was introduced for future ScratchJr studies.

The focus of this study was to understand how to develop novel coding tools 
usable by more than the classroom’s top performing, most attentive, or most engaged 
kindergarten students. As such, this study focused on how differences in initial levels 
of self-regulation and the development of computational thinking skills through 
learning to code with ScratchJr might be related and, therefore, how do developers 
ensure coding tools for children are developmentally appropriate for all classrooms?

Measures

Self-regulation was measured through the Head Toes Knees Shoulders (HTKS) 
assessment (McClelland, et. al., 2007, Cameron, et. al., 2008, Ponitz, McClelland, 
Matthews, & Morrison, 2009). The HTKS validly and reliably measures working 
memory, inhibition control, and attention through an assessment directly with 
children as demonstrated in several prior studies utilizing the measure (McClelland 
& Cameron, 2012; Ponitz, McClelland, Matthews, & Morrison 2009; McClelland, 
et al., 2007) and scores range from 0-60. Working memory, inhibition control, and 
attention are exercised when using ScratchJr in the following ways:

Working Memory. Children must remember their coding project goal, the coding 
blocks that correspond to the actions they would like for their characters, and the 
series of instructions that they place on each of their characters.

Attentional Flexibility. Children must switch between characters, backgrounds, 
and codes for their different characters; switch between categories of coding blocks; 
and switch between multiple pages within each coding project.

Inhibition Control. Children need to inhibit a dominant response in favor of a 
more productive one, for example, resisting an urge to spend a majority of their time 
in the ScratchJr paint tool rather than programming their character.
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Computational thinking and coding skills were measured through several 
researcher-developed measures created through video coding of students and their 
ScratchJr programs: Programming Score, Goal Completion Score, and Time on 
Task Score. Participants received a Programming, Goal Completion, and Time on 
Task Score for each ScratchJr coding lesson.

Programming score. Programming score was calculated from a ScratchJr 
interface checklist, based on watching the videos of children working with ScratchJr. 
Programming score was intended to be a measure of what targeted blocks and 
interface elements of the ScratchJr Lesson the child attempted and understood. 
Coders watched videos of the participants coding with ScratchJr and completed 
checklists of all possible coding blocks and interface elements used and understood 
or attempted. Programming scores ranged from 0-5 based on the percent of targeted 
blocks and interface elements attempted and understood.

Goal Completion Score. Goal completion scores assessed if the child worked 
toward and completed the day’s assigned ScratchJr lesson. The child received a 
score of 0 if they did not attempt the lesson, a score of 1 if the child attempted the 
lesson, and a score of 2 if the child completed the lesson.

Time on Task Score. Time on Task Score was a calculation (0-100%) of how 
frequently a child was focused on the ScratchJr Lesson, another area of the ScratchJr 
interface (e.g., the paint editor), or away from the computer. Time on Task was 
included as a variable since attention span and staying on task towards goals is 
predictive of future success and is related to self-regulation (McClelland, Acock, 
Piccinin, Rhea, & Stallings, 2013).

Sample

Participants were members of two kindergarten classrooms located in a densely 
populated suburb of Boston, Massachusetts with a range of economic and racial-
ethnic diversity. Participating teachers and parents/guardians of students provided 
signed informed consent prior to participation. The initial sample size for this 
study was 38 students: 19 in Classroom Pre16 (labeled as such because the students 
took a self-regulation pre-test followed by 16 ScratchJr lessons) and 19 students in 
Classroom Pre8 (labeled as such because they took a self-regulation pre-test followed 
by 8 ScratchJr lessons). The average age at the start of the study was 5.51 years old 
(SD = 0.30). For the study year, the participating school reported in this study was 
composed of students identified as 40.1% Latinx/Hispanic, 37.1% White, 14.6% 
African American, 6.7% Asian, and 1.5% Multi-Race/Non-Hispanic students. About 
75% of the school was classified as “high needs,” including students with a first 
language other than English (41.2% of the total student population), low-income 
students (68.4% of students), students receiving free or reduced lunch (68.2% of 
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students), and students classified as Special Education (24.7% of students). Consent 
forms were completed in English, Spanish, and Portuguese. The classrooms did not 
vary significantly in terms of age, sex, or pre-test score on the HTKS.

ScratchJr Coding Lesson Descriptions

Introduction/Free Explore. After a brief overview of the interface of the ScratchJr 
software, children were encouraged to explore the tool on their own and discuss 
what they had discovered with the researchers, their teachers, and each other.

Airplane Fly Across USA (“Airplane Lesson”). This lesson introduced the “start 
on flag” block, motion blocks, and the method for changing number parameters. 
Children programmed an airplane to fly across a map of the USA.

Character Race (“Race Lesson”). In this lesson, students programmed three 
characters to race against each other at varying speeds. This lesson introduced the 
set speed block and reinforced the motion and “start on flag” blocks.

Characters Dance (“Dance Lesson”). The dance lesson introduced the concepts 
of multiple scripts on one character and sound blocks. Children programmed one 
character to provide both the music and dance steps, while they programmed a 

Figure 1. Lesson Three. A screenshot of ScratchJr, Lesson 3, where pig, caterpillar, 
and chicken are programmed to race. The “Start on Flag,” “Set Speed,” “Move 
Forward,” and “End” blocks are shown.
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second character to provide just dance steps. This lesson also introduced the “start 
on bump” block, which initiates a program when two characters bump into each 
other and the “repeat forever” block, which plays a programming script continuously.

Sunset (“Sunset Lesson”). Children programmed a sunset in this lesson. The show, 
hide, and go home (reset) blocks were introduced. Start blocks and motion blocks 
were reviewed. Children that finished the sunset lesson early had the opportunity 
to attempt a “moon rise” lesson.

Characters Greet Each Other (“Greet Lesson”). In this lesson, children learned 
how to program characters to have a conversation when they bump into each other. 
This lesson reinforced the “start on bump” start block and introduced speech bubble 
blocks, “send a message”, and “start on message received” blocks.

“About Me” Project (Project Lesson). Children were instructed to make four 
ScratchJr pages about themselves, first brainstorming with paper and crayons. The 
four pages were (1) a picture of themselves with their name, (2) a page about school, 
(3) a page about home, and (4) a page about what the student wanted to be when 
they grew up. This task proved too intense for a two-day project. Final projects were 
considered successful if two of these four pages were created and something was 
programmed. Children received a lesson on how to use the “add a page” feature 
before beginning their projects.

Findings

Children in this study were able to use and understand the ScratchJr interface and 
coding blocks (Programming Score) with not significant differences based on 
self-regulation pre-test scores. Meaning, ScratchJr appears to be developmentally 
appropriate to code in for the wide variety of self-regulation levels found at baseline 
in kindergarten classrooms. Working to ensure the software is developmentally 
appropriate is working to ensure the software tool itself does not hinder use by 
students from variable backgrounds. Baseline levels of self-regulation, as measured 
by the HTKS assessment, did not make a statistical difference when the children 
were attempting to code with ScratchJr.

Baseline self-regulation levels did matter outside the scope of the ScratchJr 
interface when the children progressed to projects that were more open-ended, self-
directed, and goal-oriented (measured by Goal Completion Score). This variable that 
heavily relied upon attention and inhibitory control when considering baseline level 
of self-regulation. Perhaps it is not necessarily that the children with lower levels of 
self- regulation had more difficulty reaching goals, but instead, that the curricular 
goals themselves were not motivating enough for students. Substantive anecdotes 
where children were more successful at lessons about which they were more excited 
and enthusiastic (repeatedly revisiting Race programs or finding Greet program to 
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be very funny) point to an argument for exploring the importance of engagement 
and motivation in the context of computational thinking and the development of 
self-regulation and executive function skills. Time on Task data points to the idea 
that children can attend more to lessons they find engaging, relevant, and structured, 
like the Race lesson, but have more difficulty focusing when a goal is too open-ended 
and the lesson plan did not provide enough scaffolding, as in the students’ About 
Me projects which were personally meaningful but lacked scaffolding.

IMPACT

Although there was not enough power for significance, the differences in self-
regulation scores between pre-test and post-test for the Pre8 (eight coding lessons) 
and Pre16 (sixteen coding lessons) groups are of interest. While self-regulation 
scores increased for both groups between pre-test and post-test, and the gains in self-
regulation scores for the Pre16 group were larger than those for the Pre8 group, the 
differences between the groups were not significant. Perhaps there is a relationship 
where eight lessons were enough to gain some familiarity with coding concepts and 
understanding of the blocks in ScratchJr, but a child may need somewhere between 
eight and sixteen lessons to begin to work on the computational thinking, problem 
solving, and debugging that could lead to marked improvements in self-regulation 
and executive function. However, this study was statistically underpowered to see 
significant differences in pre-post HTKS self-regulation scores. It is also possible 
that each teacher could have had a unique impact on self-regulation gains through 
other aspects of their curriculum. Future studies exploring the relationship between 
computational thinking and executive function must have numerous treatment and 
control groups to account for the likely influence of teachers on development of 
both computational thinking and executive function skills.

IMPLICATIONS AND CONCLUDING THOUGHTS

As noted throughout this book, coding is becoming an increasingly essential skill. 
A 2017 National Association for the Education of Young Children (NAEYC) blog 
post highlighted similarities between computational thinking (CT), higher order 
thinking (HOT), and executive functioning (EF) skills because at their core, CT skills 
support reasoning, critical thinking, and problem solving (Kaldor, 2017). However, 
the American Educational Research Association promoted a 25-year meta-analysis 
in 2015 that found no conclusive evidence that interventions designed to develop 
students’ executive function skills are causally connected to improved academic 
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performance and concluded money should not be spent on these interventions 
(AERA, 2015; Jacob & Parkinson, 2015). The meta-analysis did conclude, however, 
that there is a strong correlation between a children’s executive function skills and 
their achievement level (Jacob & Parkinson, 2015) as was explored in the ScratchJr 
study reported herein.

In conclusion, even if there is no conclusive causal relationship between 
interventions designed to develop executive function skills on the whole and resulting 
gains in achievement, it is still worth teaching students interdisciplinary skills that 
utilize executive function. Given that executive function is strongly correlated with 
academic and life success (albeit a western ideal of success – a topic beyond the 
scope of this chapter, see Jaramillo, et. al, 2017 for a discussion), educators should 
integrate executive function exercises and executive function supportive skills into 
the curriculum. Furthermore, greater focus should be placed on determining causal 
relationships of classroom interventions that develop skills within the subdomains 
of executive function (such as inhibition control, working memory, or attention) 
and outcomes on academic achievement.

Jacob & Parkinson state “Although investing in executive function interventions 
has strong intuitive appeal, we should be wary of investing in these often expensive 
programs before we have a strong research base behind them” (AERA, 2015). This 
seems to ignore the robust and growing early childhood computational thinking 
curricula: ScratchJr is free on PBS Kids, for instance, WGBH/PBS are in the process 
of developing a computational thinking TV show, with digital tools, and hands-on 
materials for young children, and activities that practice story sequencing on paper 
or digitally are also low to no cost to families.

Young children grow up surrounded by digital devices and yet know very little 
about how these tools work (Bers, 2008). This situation is especially true for children 
from families living in poverty or dealing with systemic racism or otherwise facing 
education opportunity gaps -- all children whose families have less exposure to new 
digital devices on a daily basis (Gee, 2013a; 2013b, Gutnick, Robb, Takeuchi, & 
Kotler, 2010). Understanding how different levels of self-regulation may influence a 
child’s ability to navigate a digital tool and learn to code can inform the design and 
evaluation of digital tools for young children in order to ensure the most universal 
access and most successful use of digital devices possible for all children. Given the 
preliminary findings about the potential bi-directional relationship between coding 
tools, digital devices, computational thinking and executive function, I argue it is 
very much worth it to invest in interventions that support multiple facets of a child’s 
education in the 21st century.

Perhaps learning to code with tools like ScratchJr is “only” utilizing and building 
computational thinking skills, and that, in itself, would be enough. However, students 
are likely also building their executive function skills. While more research needs to 

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



77

The Role of Executive Function and Self-Regulation in the Development of Computational Thinking

be conducted, it would seem to be a disservice to children to advocate for limiting 
interventions, especially ones that are multifaceted and cross disciplinary. Teaching 
computational thinking skills with an integrated curriculum, rather than one that 
separates coding from social and emotional and cognitive processing skills could 
potentially create more well-balanced and well-prepared citizens for the 21st century, 
which will likely need collaborative, creative, problem-solvers both in school and 
in future careers.
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KEY TERMS AND DEFINITIONS

Attentional Flexibility: Ability to shift ones focus and attention.
Computational Thinking: Thinking or problem solving systematically like a 

computer.
Executive Function: Cognitive construct that unites working memory, attention, 

and inhibitory control for the purposes of planning, problem solving and goal-
directed activity.

HTKS: Heads-toes-knees-shoulders assessment of self-regulation for young 
children developed by McClelland, et. al. measuring a child’s working memory, 
attention, and inhibition control.

Inhibition Control: Ability to prioritize one’s actions or behaviors and resist 
impulses.

Instant Gratification: Immediate availability or action, usually accompanied 
by a lack of inhibition control in pursuit of a more substantial or significant reward.

ScratchJr: A digital block-based coding language for young children.
Self-Regulation: The behavioral aspects of executive function, including working 

memory, attention, and inhibition control.
Working Memory: Ability to hold and process thoughts or information.
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Chapter  5

DOI: 10.4018/978-1-7998-7308-2.ch005

ABSTRACT

The chapter begins with an exploration of computational thinking (CT) and its 
relationship to computational literacy, followed by a summary of theoretical and 
empirical work that aims to elucidate the connections among coding, CT, and literacy. 
The authors argue that these connections thus far have been predominantly one of 
support (i.e., unidirectional) and motivated by technological and policy advances, as 
opposed to considering the connections as mutually reinforcing and developmentally 
coaligned. The authors discuss the coding as another language (CAL) pedagogical 
approach, a pedagogy that presents learning to program as akin to learning how 
to use a new language for communicative and expressive functions, emphasizing 
the bidirectional connections between the two domains. Finally, the authors detail 
various curricula that use the CAL approach and discuss the implications of CAL 
for teaching and learning in early childhood.
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INTRODUCTION

Anyone in the field of computer science education has likely seen or heard the phrase 
“Coding is the literacy of the twenty-first century,” but what meaning does it hold 
beyond being a lofty metaphor or a catchy marketing slogan? The term “literacy” 
is often invoked to emphasize the importance of coding in our modern technology-
rich world. After all, at the turn of the twentieth century, it was difficult to imagine 
achieving economic independence or participating in civic society without knowing 
how to read and write. As such, we might imagine that in the near future, it may 
be difficult to succeed without some knowledge of coding, or at the very least, a 
foundational understanding of the computational processes involved in computing.

With the increasing prevalence of technology and the rise of computing jobs 
(Code.org, 2020; Fayer, Lacey & Watson, 2017), there is no question that coding 
and computational thinking (CT) have been a growing national and international 
area of focus. In December 2018, the US White House released a report Charting a 
Course for Success: America’s Strategy for STEM Education, in which they named 
computational literacy as one of the four pathways to success in STEM (Science, 
Technology, Engineering, and Mathematics) education and the promotion of CT as 
one of the three objectives for achieving this goal (Committee on STEM Education, 
2018). However, there are many unanswered questions about what this pathway 
looks like, especially in the early years when young children are actively acquiring 
foundational literacy and language skills. We explore in this chapter the bidirectional 
and developmentally aligned connections among coding, CT, and literacy. We 
conclude by suggesting that early childhood coding education need not repeat 
the mistakes of literacy education. It need not promote inequity and status quo by 
limiting access or by legitimizing only particular notions of knowledge, truth, and 
values. By teaching coding through a pedagogy that centers the child and her funds 
of knowledge, we can show the next generation that coding education is for everyone.

Background

Before CT was popularized as a “universally applicable attitude and skillset everyone, 
not just computer scientists, would be eager to learn and use” (Wing, 2006, p. 33), 
there was the notion of computational literacy (diSessa, 2000). Whereas Wing’s 
definition of computational thinking highlighted the universality of the principles 
behind computer science (CS) that could be used to promote learning in all areas, 
diSessa’s definition of computational literacy extended beyond CS and took into 
consideration the material, cognitive, and social dimensions of computing.

Many use the terms computational thinking and computational literacy 
interchangeably, sometimes preferring the former in order to clearly differentiate 
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from digital literacy (Grover & Pea, 2013). However, we argue, as have others (see 
e.g., Committee on STEM Education, 2018; Li et al., 2020), that the distinction 
is meaningful. Computational literacy has a broader scope than CT and much 
greater implications regarding how people think, communicate, and make sense of 
the world around them. For the purposes of our discussion on the conceptual and 
pedagogical connections to young children’s literacy and language development, 
we focus specifically on CT.

Given the range of thought on the topic, there is a need for a guiding framework 
through which we can situate our work. Jacob and Warschauer (2018) propose a 
three-dimensional framework for exploring the relationship between CT and literacy: 
1) understanding the connection between CT and literacy from a cognitive and 
sociocultural perspective; 2) outlining mechanisms by which existing literacy and 
language skills can help augment CT; and 3) exploring ways in which CT skills can 
facilitate the development of traditional and new literacies. To put it succinctly, they 
see the connection between CT and literacy unfolding in three distinct ways: CT 
as literacy, CT through literacy, and literacy through CT. This framework proves 
useful for structuring our discussion in this chapter.

Computational Thinking as Literacy

Understanding the connection between CT and literacy from a cognitive and 
sociocultural perspective requires a deeper dive into literacy development. There 
are two great conversations in the study of reading: decoding and comprehension. 
Most research has focused on decoding – how students turn letters on a page into 
words. In the last several decades, fierce debates have raged (and continue to rage) 
about how best to teach decoding. Some say focus on letter-sound correspondence, 
others point to phonemic awareness, and even others look to whole words. But at 
a fundamental level, everyone agrees on the rules that govern decoding: the letters 
“f” “o” and “x” combine to form the word “fox.”

Comprehension is the process through which students understand what they are 
reading. Comprehension is also governed by rules, but there is much less agreement 
as to the contours of those rules, in part because the process is far less understood 
(see e.g., Smith, Snow, Serry & Hammond, 2020). Despite the various definitions 
and conceptions of comprehension, there have been a few consistent perspectives. 
The cognitive and psychological perspective posits that comprehension involves a 
complex nonlinear dance of mental processes that transform words on a page into 
meaning. It includes the application of vocabulary knowledge, but also orthographic, 
lexical, syntactic and semantic knowledge (Rumelhart, 1994). For example, a child 
comprehending the sentence “The quick brown dog jumped over the lazy fox” 
requires the child to convert the code on the page to spoken language, know that 

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



87

Rhyme and Reason

“dog” refers to the four-legged barking fluffy animal she sees on leashes in the 
street, grasp that “over” after “dog” and before “fox” indicates that the quick dog 
was doing the jumping and not the lazy fox, and understand that it makes sense that 
a quick dog would jump and a lazy fox would stay put.

This cognitive model of comprehension, however, is critiqued for its detachment 
from the cultural and social diversity that students and teachers bring to the classroom. 
Oral and written language, critics argue, is not agnostic like computer code, but 
always and necessarily a deeply social and cultural phenomenon. Sociocultural 
researchers start from the position that all students bring their own funds of 
knowledge to the activity of reading (Handsfield, 2016; Moll et al., 2005; RAND, 
2002) and that all reading is always dialogical as a result (Bakhtin, 1981). Thus, the 
sociocultural view posits that how a child comprehends the sentence “The quick 
brown dog jumped over the lazy fox” would have as much to do with their cultural 
associations with dogs, foxes, and the term “lazy” as it would with any syntactic or 
lexical understanding. For example, you can imagine the adjective “lazy” evoking 
triggering and hurtful stereotypes for students from traditionally marginalized and 
discriminated communities. Likewise, students coming from cultures and communities 
where dogs are not domesticated will draw from a different schema than students 
from suburban America where many homes keep their pet on a leash.

At the center of the move to sociocultural models of comprehension is the 
acknowledgment that children grow up in a multimodal world raised in multiliteracies 
(Serafini & Gee, 2017). The multiliteracies vantagepoint, drawing on semiotic 
frameworks, argues that people “read” many things that are not words printed on 
paper, such as road signs, artwork, and even videogames (see Gee, 2007). Another 
form of text that students are learning to read in the modern moment is computer 
programs – that which happens behind the screen to produce the visual and print 
texts they see on the screen. The reading connection between learning to program 
and learning to decode and comprehend print texts is without question the most 
compelling case of CT-related multiliteracies today. And yet the connection is rarely 
made. Although the field of literacy has embraced technological tools produced 
by coding (see e.g., International Literacy Association, 2021), the field has yet 
to consider the bidirectional relationship between coding and literacy except for 
a few scant articles (e.g., Jacob & Warschauer, 2018; Vee, 2017). We explore this 
bidirectionality further in the next two sections: CT through literacy and literacy 
through CT.

Computational Thinking Through Literacy

Efforts to integrate CT into traditional literacy instruction have been largely fueled 
by technological and policy advances. The rise of coding tools for young children 
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and the increasing adoption of CS standards and frameworks have propelled the 
pedagogical movement of integration through incorporating coding and CT into 
traditional literacy instruction. Table 1 illustrates some examples of academic 
alignment between computer science and English/Language Arts (ELA) standards 
in the United States. In practice, the integration of coding involves educators finding 
ways for children to use their existing literacy and language skills and apply them 
in the context of programming. For example, the practice of writing pseudocode 
encourages students to use their language abilities to think about a problem and 
communicate the process—in their natural written and spoken language—for how 
that problem might be approached (Pane & Myers, 2001). Rather than getting 
bogged down by the nuances of syntax, children leverage their existing language 
abilities to think through the logic of the problem, develop their algorithmic plan, 
and then iteratively revise the plan to match the appropriate computational syntax. 
The integration of CT in early childhood classrooms may or may not necessarily 
involve the activity of coding (see Chapter 3 for a longer discussion of unplugged 
learning). For example, teachers might use CT vocabulary to reinforce classroom 
routines and practices (e.g., introducing a set of instructions on a handout as an 
“algorithm” or praising students for their “debugging” skills when they solve a 
challenging problem). Although the CT terms may not be used exactly as defined 
in a programming context, the practice of reinforcing CT vocabulary in other areas 
of instruction helps further the goal of cross-curricular integration.

Using programming languages to construct narratives is another method that 
has been used to infuse CT within literacy practices. For example, Burke and Kafai 
(2012) explored middle schoolers’ storytelling using the Scratch programming 
language during writer’s workshop. Their findings indicated that students’ existing 
knowledge and application of the writing process supported their understanding 
of CT practices such as designing and debugging. Similar findings were reported 
with young children. For instance, Portelance and Bers (2015) found that second 
graders displayed CT concepts such as sequencing and parallel programming while 
constructing ScratchJr animations and orally sharing their digital artifacts with peers.
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Table 1. Standards alignment between computer science/computational thinking 
(CT) and English/Language Arts (ELA)

CT Concept 
(Analogous 

Literacy/Language 
Connections)

Related Computer Science Teachers 
Association (CSTA) Standards For K-2

Related Common Core ELA Standards for 
First Grade

Algorithms 
(Sequencing)

1A-CS-08: Model daily processes by creating 
and following algorithms (sets of step-by-step 
instructions) to complete tasks. 
1A-CS-10: Develop programs with sequences 
and simple loops, to express ideas or address a 
problem.

CCSS.ELA-LITERACY.RL.1.2: Retell 
stories, including key details, and demonstrate 
understanding of their central message or 
lesson. 
CCSS.ELA-LITERACY.W.1.3: Write narratives 
in which they recount two or more appropriately 
sequenced events, include some details 
regarding what happened, use temporal words 
to signal event order, and provide some sense 
of closure. 
CCSS.ELA-LITERACY.W.1.7: Participate 
in shared research and writing projects (e.g., 
explore a number of “how to” books on a given 
topic and use them to write a sequence of 
instructions).

Modularity 
(Phonological 
Awareness and 
Decoding)

1A-CS-11: Decompose (break down) the 
steps needed to solve a problem into a precise 
sequence of instructions.

CCSS.ELA-LITERACY.RF.1.2: Demonstrate 
understanding of spoken words, syllables, and 
sounds (phonemes). 
CCSS.ELA-LITERACY.RF.1.3: Know and 
apply grade-level phonics and word analysis 
skills in decoding words.

Representation 
(Alphabet and 
Letter-Sound 
Correspondence)

1A-CS-09: Model the way programs store and 
manipulate data by using numbers or other 
symbols to represent information.

CCSS.ELA-LITERACY.RF.1.1: Demonstrate 
understanding of the organization and basic 
features of print. 
CCSS.ELA-LITERACY.RF.1.3: Know and 
apply grade-level phonics and word analysis 
skills in decoding words.

Hardware/
Software (Tools of 
Communication and 
Language)

1A-CS-02: Use appropriate terminology in 
identifying and describing the function of 
common physical components of computing 
systems (hardware). 
1A-CS-03: Describe basic hardware and 
software problems using accurate terminology. 
1A-CS-16: Compare how people live and work 
before and after the implementation or adoption 
of new computing technology.

CCSS.ELA-LITERACY.W.1.6: With guidance 
and support from adults, use a variety of digital 
tools to produce and publish writing, including 
in collaboration with peers.

Design Process 
(Writing Process)

1A-CS-12: Develop plans that describe a 
program’s sequence of events, goals, and 
expected outcomes. 
1A-CS-15: Using correct terminology, describe 
steps taken and choices made during the 
iterative process of program development.

CCSS.ELA-LITERACY.W.1.5: With guidance 
and support from adults, focus on a topic, 
respond to questions and suggestions from 
peers, and add details to strengthen writing as 
needed. 
CCSS.ELA-LITERACY.SL.1.5 
Add drawings or other visual displays to 
descriptions when appropriate to clarify ideas, 
thoughts, and feelings.

Debugging (Editing 
and Audience 
Awareness)

1A-CS-14: Debug (identify and fix) errors in an 
algorithm or program that includes sequences 
and simple loops.

CCSS.ELA-LITERACY.SL.1.3: Ask and 
answer questions about what a speaker says in 
order to gather additional information or clarify 
something that is not understood.

Control Structures 
(Literary Devices)

1A-CS-10: Develop programs with sequences 
and simple loops, to express ideas or address a 
problem.

CCSS.ELA-LITERACY.RF.1.4.B: Read grade-
level text orally with accuracy, appropriate rate, 
and expression on successive readings.

Source: (IGI, 2021)
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Literacy Through Computational Thinking

The research on how CT can facilitate the development of traditional and new 
literacies is currently limited in scope, but some work has been done to examine the 
possible transfer effect of programming on literacy. A meta-analysis of 105 studies 
that explored the transfer of programming skills to a variety of domains found 
very little transfer to students’ literacy skills (Scherer et al., 2018). The authors 
concluded that “reading comprehension and writing skills [are] skills that overlap 
only marginally with programming,” (p. 783), although noting that only nine of the 
105 studies explored the transfer effect on literacy, and those studies’ interventions 
were not necessarily tailored to foster literacy through programming.

There is some evidence, however, that learning to code can be leveraged to 
promote young children’s language and literacy development. Some studies point 
to introductory programming as a way to engage students of varying skill levels, 
highlighting improved student outcomes such as metalinguistic awareness, sequencing 
and storytelling abilities, and vocabulary and language skills (Burke & Kafai, 
2010; Clements, 1999; Fridin, 2014; Movellan, Eckhardt, Virnes, & Rodriguez, 
2009; Peppler & Warschauer, 2012). The sequencing and storytelling connection in 
particular has been explored with early childhood robotics. Kazakoff and colleagues 
(2013) showed that an intensive robotics and programming intervention as short as 
one week significantly improved story sequencing abilities among a sample of pre-
kindergarten and kindergarten students. Another study by Westlund and Breazeal 
(2015) indicated that preschool children were able to create stories by engaging in 
a storytelling game with a social robot. Sullivan and Bers (2015), who conducted a 
cross-sectional study with 60 pre-kindergarten to second grade students, found that 
children of all grade levels performed well on sequencing-related programming tasks, 
with older first and second graders performing slightly better on hard sequencing tasks.

Although these aforementioned studies did not consider literacy as an explicit 
focus in their curriculum design, these studies indicate, in alignment with Jacob 
and Warschauer’s (2018) framework, that the connections among coding and CT 
on the one hand, and literacy and language on the other, may be developmentally 
coaligned. In order to support integration of these two curricular domains in a way 
that produces meaningful outcomes in both areas, we must first understand the 
similarities and differences between natural languages and artificial programming 
languages, which we unpack in the next section.
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UNPACKING THE SIMILARITIES AND DIFFERENCES

At their core, both artificial programming languages and natural languages are 
symbolic, representational systems with a grammar and syntax that can be used 
to convey meaning and to express ideas that others can interpret (Bers, 2019). 
Research studies have explored the similarities between programming languages 
and natural languages, showing how learning to program might be beneficial for 
learning new languages. For instance, Sara Vogel and colleagues (2020) propose 
that translanguaging pedagogy—a term used in bilingual education referring to 
how students use all of their linguistic resources across and beyond their multiple 
languages to learn—might also be applied to computer science pedagogy to engage 
children in CT practices alongside supporting their multiple language acquisition.

Some of the recent work at the DevTech Research Group has focused on exploring 
the relationship between early elementary students’ literacy levels and programming 
skills. Hassenfeld and colleagues (2020), for example, measured 132 second graders’ 
phonological awareness at the beginning of their school year using the Phonological 
Awareness Literacy Screening (PALS), a diagnostic tool that looks at abilities such 
as phonemic awareness, alphabet knowledge, letter-sound knowledge and word 
recognition. Phonological awareness in the early grades is an important predictor 
of later reading achievement (Hogan, Catts, & Little, 2005). The researchers also 
assessed students’ programming skills in the KIBO programming language and the 
knowledge of programming concepts using an assessment called KIBO Mastery 
Challenges (KMCs) at different times over the course of a KIBO robotics curriculum. 
They found that there was evidence for a weak, positive correlation (r = 0.3) between 
PALS scores and KMC scores. Hassenfeld and colleagues’ findings are in line with 
other studies that looked at the relationship between CT (not programming) and 
verbal abilities more generally in older children and adolescents (Román-González 
et al., 2017). These studies indicate there may be an overlap between language and 
literacy ability in children on the one hand and the ability to learn computational 
concepts on the other.

In addition to the connections between reading (decoding and comprehension) and 
coding, there are also interesting connections between writing and coding. Coding 
and writing are both compositional processes, and they share a subset of activities 
(Hassenfeld & Bers, 2020). Coding is usually preceded by planning – determining 
what the purpose of the program is, for example, by creating a flowchart or thinking 
aloud what you want the computer to do. Writing is also usually preceded by planning 
and pre-writing, for example, by researching a topic, jotting down notes, or creating 
a graphic organizer. Then, both programmer and writer create their first program or 
first draft and evaluate (test) it, becoming observers of how their program performs 
or how their text reads. This first product is almost never the way the composer had 
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envisioned it. The artifact needs to be debugged (program) or edited and revised 
(text). There may be mechanical errors (e.g., forgetting an end block in a program; 
missing a punctuation mark after a sentence) or stylistic errors (e.g., using multiple 
individual blocks when a repeat loop would be more efficient; using a word that 
does not have quite the intended meaning). In an iterative process, the composer 
may review their product, identify these errors, and take steps to correct them until 
the product matches what they had in mind.

However, editing and revising are often where there are differences between the 
two processes, at least as observed in young children. When writing, novice writers 
are often reluctant to edit and revise (see, e.g., Applebee et al., 1986; Fitzgerald & 
Markham, 1987; Hassenfeld & Bers, 2020). In contrast, novice programmers often 
dedicate considerable time to getting their program ‘right’. Potential reasons lie in 
the affordances of each medium – with debugging in ScratchJr and KIBO being less 
cumbersome than erasing penciled text and rewriting – and the role of feedback. 
Unlike a reader of written text, a computer can provide immediate feedback on a 
program. The programmer sees right away what is working and what isn’t. In other 
words, the programmer can shift their role between producer and consumer of their 
computational artifact much more readily (e.g., “Is the character moving as much as 
it should? Maybe instead of moving 3 steps to the left, the character should move 
5 steps”). On the other hand, the process of writing and reading one’s own writing 
for clarity, grammar, and other stylistic aspects requires a qualitatively different 
level of audience awareness and role navigation between producer and consumer.

Understanding these similarities and differences between coding and writing 
has important implications for teaching and learning. For example, a teacher who 
struggles with motivating his students to revise their writing or to compose a story 
might introduce a coding application as a supportive tool to help students understand 
audience awareness or to inspire students’ story planning (e.g., Delacruz, 2020). In a 
different vein, a student who is below grade-level in their reading and writing might 
be encouraged to explore block-based programming to express their creative ideas 
and produce meaningful computational artifacts (e.g., Peppler & Warschauer, 2012). 
These examples push us to consider the reframing of CS education in early childhood 
as one that embraces the connections to literacy and language. This perspective, of 
course, requires understanding early childhood teachers’ dispositions towards both 
disciplines. We might ask, for example, what are early childhood teachers’ views on 
and priorities regarding literacy education, and what role can coding play to support 
those priorities? To what extent might the broader discourse on CS education (and 
the push to fuel the STEM professional pathway) possibly cloud early childhood 
teachers’ perceptions of coding as a sense-making creative activity?

These questions set the stage for our current work developing and implementing 
a coding and CT curriculum and sustainable professional development model in 
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K-2. Our work actively engages teachers in viewing coding as another language, 
exploring cross-disciplinary alignment, and understanding feasible practices for 
implementation and integration. In the next section, we examine these topics by 
introducing the pedagogical approach developed by Prof. Marina Bers and members 
of the DevTech Research Group at Tufts University called “Coding as Another 
Language” (CAL).

The Coding as Another Language (CAL) Pedagogical Approach

The CAL pedagogical approach is grounded in three theoretical perspectives for 
how young children learn and develop when engaging with computational tools: 
1) constructionism (Papert, 1980), 2) positive technological development (Bers, 
2012), and 3) dialogic instruction (Clarke et al., 2015; Littleton & Howe, 2010; 
Resnick et al., 2018).

1.  Constructionist theory, as its root word “construct” implies, is the process-
oriented theory that maintains people learn best when they actively build and 
make things that can be shared with others (as opposed to the product-oriented 
instructionist approach, in which knowledge is transmitted from instructor to 
learner).1 In the context of early childhood coding education, constructionist 
theory emphasizes programming as an opportunity for young children to 
construct their own programs and make personally meaningful projects.

2.  The Positive Technological Development framework proposed by Bers (2012) 
identifies six kinds of behaviors that can be fostered in a technology-mediated 
learning experience: content creation, creativity, communication, collaboration, 
community building, and choices of conduct. These behaviors are not only 
supported by the computational tool or activity, but also the context of the 
learning environment and the ways in which the activity is presented to children 
by the teacher or facilitator. This latter point is emphasized through the third 
theoretical perspective: dialogic instruction.

3.  In dialogically organized instruction (Nystrand, 1997), the teacher is not 
positioned as the sole authoritative expert, nor is the child positioned as the 
novice. Instead, teachers engage their students in authentic explorations of 
the subject matter and invite open-ended discussions of student ideas and 
interpretations. As a result, learning is co-constructed collaboratively and 
through active discourse.

We next describe how these three theoretical perspectives are operationalized 
into full-length curricula with KIBO robotics and ScratchJr, two block-based 
programming tools for young children developed by the DevTech Research Group.
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Operationalization of the CAL Approach 
into Early Childhood Curricula

The CAL curricula are organized into grade-level units, all centered around various 
children’s books and an introductory programming language for young children 
(either the KIBO robotics kit or the screen-based ScratchJr application). Regardless 
of the programming language used, each curriculum unit follows a similar structure 
and consists of games, songs, design challenges, free play, expressive explorations, 
reading and writing activities, and technology circles. Each curriculum unit is aligned 
with nationally recognized computer science and literacy standards and frameworks, 
including the International Society for Technology in Education (ISTE) Standards 
for Students, K-12 Computer Science Framework, Computer Science Teachers 
Association (CSTA) K-12 Computer Science Standards, and Common Core ELA 
Standards. We next describe the set of curriculum units split by programming 
language, first KIBO and then ScratchJr.

The CAL KIBO curriculum uses the KIBO programming language to introduce 
young children to foundational concepts of coding, CT, and robotics. Formerly known 
as KIWI in its early research prototype form, KIBO is a screen-free robotics set 
sold commercially by KinderLab Robotics, Inc. The kit is comprised of a battery-
operated robot with an embedded barcode scanner and the following detachable 
parts: wheels and motors; lightbulb and sound recorder modules that enable the robot 
to light up and make sounds; sensors that enable the robot to sense light, sound, 
and distance; tangible wooden programming blocks with barcode stickers; and art 
platforms enabling children to personalize their robots with arts and crafts. The 
DevTech Research Group has developed CAL KIBO curricula for Pre-Kindergarten, 
Kindergarten, First Grade, and Second Grade. Each grade-level curriculum spans 
between 12 to 30 lessons of approximately 30-60 minutes each. The variability in 
lesson length and duration takes into account developmental differences of students 
and the level of programming complexity introduced at each grade level. However, 
as with any curriculum, the content and pacing can be adjusted to particular learning 
settings to meet the needs of teachers and students.

The CAL ScratchJr curriculum uses the ScratchJr programming language to 
teach children to code. The ScratchJr programming language is an introductory, 
visual programming language for children between five and seven years of age. 
ScratchJr is a freely available app and, at the time of writing, the most popular free 
programming language in the world (Bers, 2020). In the app, children can create 
stories and games by putting together graphical programming blocks that represent 
different commands, similar to the wooden blocks used with the KIBO robot. All 
menu options and instructions are represented by symbols and colors, so children 
at all literacy levels can use it as well. The CAL ScratchJr curriculum consists of 
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24 individual lessons of approximately 45 minutes each (totaling 18 hours), but 
the pacing can be adjusted to particular learning settings. Individual curricula have 
been developed for Kindergarten, First Grade, and Second Grade. The curriculum 
provides integration between computer science and programming in the context of 
literacy. Throughout the 24 lessons, students learn to explore two books (different 
ones for each grade) to write creative, fun programs on ScratchJr. The curriculum 
culminates with an open-ended project to share with family and friends.

Table 2 illustrates the different types of activities in the CAL KIBO and ScratchJr 
curricula and highlights the CT concepts and skills that are supported throughout 
the lessons. The next section describes three example lesson activities from the CAL 
curricular units with related CT concepts italicized.

Examples of CAL Lesson Activities

How-To Prompts

Functional texts, or texts used for everyday communication that serve a particular 
purpose (e.g., recipes, manuals, instructions, etc.), are an integral aspect of early 
elementary literacy education. Children are regularly tasked with following single- 
and multi-step directions and communicating how to do something on their own. 
How-To prompts are a low-stress entry point into writing and provide children the 
opportunity to reflect on the process they undertake to accomplish a task (design 
process) and to communicate the steps of that process in a sequential and detailed 
fashion (algorithms). There are several activities in the CAL KIBO and ScratchJr 
curricular units that engage children in CT through procedural writing or functional 
texts. For instance, one prompt in the CAL KIBO First Grade curriculum is “What 
are the steps for making a pizza? What toppings will you put on your pizza? Draw or 
write these steps in your Design Journal.” Another activity is “Program the Hokey-
Pokey,” in which the class dances to the Hokey-Pokey song and brainstorms a set 
of programming actions that would correspond to the physical movements for the 
song. Children then program their KIBO robots or ScratchJr characters to dance 
the Hokey-Pokey.
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Table 2. Summary of CAL KIBO and ScratchJr curricular activity types

Activity Purpose of 
Activity CAL KIBO Example CAL ScratchJr Example

Warm Up
Playfully introduce 
or reinforce 
concepts

Children sing and dance to 
the “Robot Parts” song that 
describes how children act 
as engineers to connect the 
different parts of the KIBO 
robot and to program it to move 
using the blocks (hardware and 
software).

Children are shown a picture 
of a street and search for 
symbols (STOP signs, zebra 
crossings, a shop’s sign). The 
activity gets children started in 
understanding and expressing 
that symbols stand for 
something else (representation).

Opening/
Closing 
Technology 
Circle

Come together to 
discuss, share, and 
reflect on activities 
and concepts

Children gather in a community 
circle to share problems they 
had while creating and scanning 
KIBO programs and discuss 
problem-solving strategies 
(debugging).

Children gather in a community 
circle to talk about the rules 
and elements of a race (e.g., 
distance, participants, speed).

Structured 
Coding 
Challenge

Engage children in 
powerful ideas in 
computer science 
through learning 
new coding skills

Children learn about algorithms 
and how KIBO will perform 
the actions in the same order 
that the blocks are assembled 
and scanned using the robot’s 
embedded barcode scanner 
(algorithms).

Children learn what a parameter 
is and why parameters are 
useful (e.g., instead of using six 
turn blocks, they can use just 
one turn block and change the 
number of times it will be used 
to six).

Expressive 
Coding 
Explorations

Practice learned 
coding skills in an 
open-ended way

Children engage in an iterative 
design process to create their 
own version of the Hokey-
Pokey dance using the KIBO 
blocks. After planning, testing 
and revising their programs, 
children share their KIBO 
dances with their peers (design 
process).

Children apply their knowledge 
of the speed blocks to program 
their own ScratchJr race 
between multiple characters 
(control structures).

Unplugged 
Time

Promote CT 
learning, social 
interaction, and 
movement without 
the use of any 
devices

Children play a game of 
“Red Light, Green Light” to 
reinforce the meanings of the 
green Begin block and the 
red End block. The activity 
aims to promote children’s 
understanding of attributes such 
as color or symbol being used 
to communicate information 
(representation).

Children play a game of 
“Programmer Says,” similar 
to the traditional “Simon 
Says” game, in which children 
repeat an action (a ScratchJr 
command) when instructed 
by the programmer (i.e., the 
teacher or a child).

Word Time

Engage children 
in powerful ideas 
of literacy and 
language

Children listen to a poem or 
song and try to identify the 
repeating words or phrases. 
This activity is extended into a 
discussion about repetition as a 
literary device and how we can 
use repeat loops in our KIBO 
programs (control structure).

Children learn about the 
importance of sequencing by 
planning their own story using 
a planning sheet with three 
sections for the beginning, 
middle, and end of the story 
with lines for writing and space 
for drawing (algorithms).

Source: (IGI, 2021)
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Tools of Communication

People can communicate with one another in a variety of ways, for instance, through 
oral, gestural, written, and pictorial representations. New technological tools such 
as telephones, e-mail, video-chatting platforms, and emojis have further expanded 
the ways in which people can communicate (hardware and software). Each form 
of communication has its own strengths and limitations and, depending on the 
context, might be a preferable method of getting the right message across to the 
recipient. Although natural languages might have some flexibility in interpretation, 
programming languages do not; without proper syntax and grammar, the computer 
will not interpret the programmed instructions appropriately. The CAL KIBO 
and ScratchJr curricular units engage children in exploring different tools of 
communication and in reflecting on the similarities and differences between natural 
and artificial programming languages.

For example, one lesson activity involves a game of “Telephone,” in which one 
student thinks of a message and whispers it to the person sitting next to them, who 
then whispers to the person next to them, and so on until the message gets to the 
last person. The first and last people deliver these messages out loud, and the class 
compares and discusses the two messages. Children then play additional modified 
rounds, such as with a handwritten message or with a printed or typed message. 
Children discuss the experience of receiving and communicating messages in different 
forms (representation), and importantly how they would revise their communication 
if the recipient is confused. This activity of revising is later connected to the 
importance of troubleshooting errors (debugging) when children are programming 
with KIBO or ScratchJr.

Creative Writing and Coding Compositions

The final lessons of the CAL KIBO and ScratchJr curricula invite students to 
compose creative artifacts through writing and programming. Students first engage 
in a book read-aloud, which serves as inspiration for their final project creations. 
They ask and imagine an alternative ending for one of the book’s characters or 
(in the case of the Pre-Kindergarten KIBO curriculum and the book Pete the Cat: 
Robo-Pete by James Dean) what their own robot-friend would look like and do. 
Students compose a written artifact about their project idea or orally share their 
initial ideas with peers, and then are tasked with programming and designing their 
final projects. Once students have the first iterations of their creations, they test out 
their designs, troubleshoot bugs, and then share their projects with peers, families, 
and community members (design process). Through this process of planning and 
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designing their projects, children engage in computational thinking and making 
and are able to experience the unfolding of their unique ideas with each medium.

IMPLICATIONS FOR TEACHING AND LEARNING

For a long time, computer science has been viewed as a talent that people either have 
or don’t have, and the computing field has been highly gendered as well (Miller, 
2017). However, once the parallels between literacy and coding are appreciated, it 
becomes clear that CT is a teachable and learnable skill just like reading and writing. 
Recent research using different methodologies has shown that both girls and boys 
can improve their CT skills through classroom coding instruction. For example, 
Pérez-Marín and colleagues (2018) found that 9 to 12-year-old children who were 
taught computer science concepts using metaphors and the Scratch App (a block-
based programming language for children ages eight and up) were able to improve 
their scores on standardized multiple-choice CT assessments (Román-González et 
al., 2017). Working with even younger children, Relkin and colleagues examined 
changes in CT skills in first and second grade students (six- and seven-year-olds) 
who had been exposed to the CAL KIBO curriculum compared to children who did 
not. Over the course of the study, children who received CAL KIBO improved on 
their CT skills as measured by the unplugged CT assessment TechCheck (Relkin 
et al., 2020), whereas the control group did not. There were no differences between 
boys and girls. Unlike other studies, this study included a control group, a crucial 
element for being able to show that the improvements are due to instruction, and not 
a result of students improving by themselves or through business-as-usual classroom 
instruction. The study adds to the growing body of evidence (Lye & Koh, 2014) that 
CT can be taught successfully just like literacy, and that early interventions have 
strong potential to help dismantle gender stereotypes about the computing field 
(Sullivan, 2019; see Sullivan’s Chapter 11).

CONCLUSION

Just as there is an inextricable, bidirectional link between thought and language 
(Vygotsky, 2012), there cannot be a complete conversation about coding and CT 
without a discussion of literacy and language. In this chapter, we presented these 
two sets of domains as mutually reinforcing and developmentally coaligned. As a 
literacy, coding engages children in thinking about “powerful ideas” (Papert, 1980) 
from computer science as well as other domains. Through literacy, coding and 
CT provide opportunities for children’s sense-making. Through coding and CT, 
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children are able to use problem solving as a means towards self-expression and 
communication, ultimately becoming able to navigate the digital world around them.

While we see great value in appreciating the connections between CT, coding, 
literacy and language, it is important to highlight that there are also several crucial 
differences. First and foremost, when children learn to write, they already have spoken 
language to start from. They need to learn new symbols (letters, punctuation, etc.), 
but they don’t have to learn the grammar or the vocabulary of their language, which 
they’ve had years of experience and practice with. In contrast, learning to program 
means learning a language that has hardly any connection to the language they speak 
(only via the route of written language, such as “start” written on a start block). 
There is no spoken language equivalent of the ScratchJr programming language 
like there is with human languages (Goswami, 2001). In addition, both written and 
spoken language are very accommodating when it comes to errors. We can process 
speech effortlessly although most spontaneous utterances are not “grammatical,” 
and we can read texts riddled with spelling errors. A program, however, may not 
run at all if there is even a single error in it. Language (written and spoken) fulfills 
many different functions – we can use it to describe, to question, to praise, to scold, 
to plea, to apologize, to congratulate, and so on. We can modulate our tone and the 
level of politeness. It’s a complex system that has evolved over thousands of years. 
Programs can do many things, but they do not match the functionality of human 
language.

These differences notwithstanding, appreciating the parallels can open our eyes 
to another important point: literacy is and always has been a deeply political issue. 
Literacy has stood at the heart of access, power and hierarchy in our society. The 
United States in the twentieth century used literacy as a barrier for people of color, 
people of low socioeconomic backgrounds, and women. One of the main ways 
that literacy has been manipulated to support the status quo and disenfranchise is 
to limit access. At this present moment in time when the country is divided and 
hateful rhetoric is at a dangerous high, we cannot afford as a nation to repeat the 
mistakes of print literacy with digital literacy. The future of coding education begins 
with access. All children deserve to learn how to code and learn from an early age.

However, access is not the only way literacy has been used to disenfranchise. 
Literacy instruction has also been used to legitimize particular notions of knowledge, 
truth and values. Assessment of literacy in schools has been used to promote 
philosophically narrow and biased viewpoints linked to race, class and gender. As 
Willis and Harris (2000) explain, “Literacy learning and teaching has never been 
ideologically neutral or culturally unbiased. It has been a series of related political acts 
of ideological domination and conformity draped under a thick veil of paternalism” 
(p. 78). The need for more culturally sensitive pedagogies for literacy is a call that 
goes out against an educational landscape in which demographics suggest that future 
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teachers are “most likely to be white monolingual females from suburban and rural 
middle-class homes [while] the student population the next century suggest two 
out of every three students will be children of color” (Willis & Harris, 2000, p. 76).

CAL begins the corollary work of multiliteracies for computational thinking and 
coding. While every child needs access to the new literacy of coding, they also need 
instruction in ways that overcome the same narrow, transmissive focused way that 
literacy has been taught (and is only now beginning to be transformed). CAL is a 
step in the right direction of pedagogical approaches and curricula that no longer 
ignore students’ lives, contexts and desire to make meaning with the resources of their 
lived experience, and avoids a pedagogy that continues to exclude and marginalize. 
Like literacy, coding must start from a pedagogical premise that asks students to 
bring their questions, interests, and experiences to the task at hand. Only then will 
the full benefits of CT and literacy come to fruition.

ACKNOWLEDGMENT

This research was supported by the U.S. Department of Defense Education Activity 
Grant “Breaking the Code for College and Career Readiness” and the U.S. Department 
of Education [grant number U411C190006]. The authors also wish to thank Dr. 
Olson Pook for copyediting this chapter.

REFERENCES

Applebee, A. N., Langer, J. A., & Mullis, I. V. S. (1986). The Writing Report Card: 
Writing Achievement in American Schools. Princeton, NJ: Educational Testing 
Service; Washington, DC: Office of Educational Research and Improvement.

Bakhtin, M. M. (1981). The dialogic imagination: Four essays (M. Holquist, Ed. 
& Trans.). University of Texas Press.

Bers, M. (2020). Coding as a Playground: Programming and Computational 
Thinking in the Early Childhood Classroom (2nd ed.). Routledge Press. 
doi:10.4324/9781003022602

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth 
Development: From Playpen to Playground. Cary, NC: Oxford. doi:10.1093/acpro
f:oso/9780199757022.001.0001

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



101

Rhyme and Reason

Bers, M. U. (2019). Coding as another language: A pedagogical approach for 
teaching computer science in early childhood. Journal of Computers in Education, 
6(4), 499–528. doi:10.100740692-019-00147-3

Burke, Q., & Kafai, Y. B. (2010). Programming & storytelling: Opportunities for 
learning about coding & composition. Proceedings of the 9th International Conference 
on Interaction Design and Children. 10.1145/1810543.1810611

Clarke, S., Resnick, L. B., & Rose, C. P. (2015). Dialogic instruction: A new frontier. 
Academic Press.

Clements, D. (1999). The Future of Educational Computing Research: The Case 
of Computer Programming. In C. Hoyles & R. Noss (Eds.), Learning mathematics 
and Logo. Academic Press.

Code.org. (2020). Leaders and Trendsetters Agree More Students Should Learn 
Computer Science. https://code.org/promote

Committee on STEM Education, National Science & Technology Council, the 
White House. (2018). Charting a course for success: America’s strategy for STEM 
education. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-
Education-Strategic-Plan-2018.pdf

Delacruz, S. (2020). Starting From Scratch (Jr.): Integrating Code Literacy in the 
Primary Grades. The Reading Teacher, 73(6), 805–811. doi:10.1002/trtr.1909

diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. MIT 
Press. doi:10.7551/mitpress/1786.001.0001

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM 
Occupations - Past, Present, and Future. https://hdl.handle.net/1813/79240

Fitzgerald, J., & Markham, L. R. (1987). Teaching children about revision in writing. 
Cognition and Instruction, 4(1), 3–24. doi:10.12071532690xci0401_1

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for 
constructive learning in preschool education. Computers & Education, 70, 53–64. 
doi:10.1016/j.compedu.2013.07.043

Gee, J. P. (2007). What Video Games Have to Teach Us About Learning and Literacy. 
Cyberpsychology & Behavior, 12(1).

Goswami, U. (2001). Early phonological development and the acquisition of literacy. 
Handbook of Early Literacy Research, 111-125.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://code.org/promote
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://hdl.handle.net/1813/79240


102

Rhyme and Reason

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State 
of the Field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Handsfield, L. (2016). Literacy Theory as Practice: Connecting Theory and 
Instruction in K–12 Classrooms. Teachers College Press.

Hassenfeld, Z. R., & Bers, M. U. (2020). Debugging the Writing Process: Lessons 
From a Comparison of Students’ Coding and Writing Practices. The Reading Teacher, 
73(6), 735–746. doi:10.1002/trtr.1885

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. (2020). If You Can 
Program, You Can Write: Learning Introductory Programming Across Literacy 
Levels. Journal of Information Technology Education, 19, 65–85. doi:10.28945/4509

Hogan, T. P., Catts, H. W., & Little, T. D. (2005). The Relationship between 
Phonological Awareness and Reading: Implications for the Assessment of 
Phonological Awareness. Language, Speech, and Hearing Services in Schools, 
36(4), 285–293. doi:10.1044/0161-1461(2005/029) PMID:16389701

International Literacy Association. (2021). Teaching with Tech. https://www.
literacyworldwide.org/blog/digital-literacies/teaching-with-tech

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal 
of Computer Science Integration, 1(1). Advance online publication. doi:10.26716/
jcsi.2018.01.1.1

Kazakoff, E., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based 
intensive robotics and programming workshop on sequencing ability in early 
childhood. Early Childhood Education Journal, 41(4), 245–255. doi:10.100710643-
012-0554-5

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. 
D., & Duschl, R. A. (2020). Computational Thinking Is More about Thinking than 
Computing. Journal for STEM Education Research, 3(1), 1–18. doi:10.100741979-
020-00030-2 PMID:32838129

Littleton, K., & Howe, C. (2010). Educational Dialogues: Understanding and 
Promoting Productive Interaction. Routledge. doi:10.4324/9780203863510

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational 
thinking through programming: What is next for K-12? Computers in Human 
Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech
https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech


103

Rhyme and Reason

Miller, C. C. (2017). Tech’s Damaging Myth of the Loner Genius Nerd. https://
www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-
nerd.html

Moll, L., Amanti, C., Neff, D., & González, N. (2005). Funds of knowledge for 
teaching: Using a qualitative approach to connect homes and classrooms. In Funds 
of Knowledge: Theorizing Practices in Households, Communities, and Classrooms 
(pp. 71-88). Lawrence Erlbaum Associates.

Movellan, J., Eckhardt, M., Virnes, M., & Rodriguez, A. (2009). Sociable robot 
improves toddler vocabulary skills. Proceedings of the 4th ACM/IEEE International 
Conference on Human Robot Interaction. 10.1145/1514095.1514189

Nystrand, M. (1997). Opening Dialogue: Understanding the Dynamics of Language 
and Learning in the English Classroom. Teachers College Press.

Pane, J. F., & Myers, B. A. (2001). The impact of human-centered features on the 
usability of a programming system for children. Proceedings of CHI EA’02.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Peppler, K. A., & Warschauer, M. (2012). Uncovering Literacies, Disrupting 
Stereotypes: Examining the (Dis)Abilities of a Child Learning to Computer Program 
and Read. International Journal of Learning and Media, 3(3), 15–41. doi:10.1162/
IJLM_a_00073

Pérez-Marín, M., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2018). Can computational 
thinking be improved by using a methodology based on metaphors and Scratch to 
teach computer programming to children? Computers in Human Behavior.

Portelance, D. J., & Bers, M. U. (2015). Code and Tell: Assessing young children’s 
learning of computational thinking using peer video interviews with ScratchJr. 
Proceedings of the 14th International Conference on Interaction Design and Children 
(IDC ’15). 10.1145/2771839.2771894

RAND Reading Study Group. (2002). Reading for Understanding, toward an R&D 
Program in Reading Comprehension. RAND.

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and 
Validation of an Unplugged Assessment of Computational Thinking in Early 
Childhood Education. Journal of Science Education and Technology, 29(4), 482–498. 
doi:10.100710956-020-09831-x

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html
https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html
https://www.nytimes.com/2017/08/12/upshot/techs-damaging-myth-of-the-loner-genius-nerd.html


104

Rhyme and Reason

Resnick, L. B., Asterhan, C. S. C., & Clarke, S. (2018). Next Generation Research 
in Dialogic Learning. In G. E. Hall, L. F. Quinn & D. M. Gollnick (Eds.), Wiley 
Handbook of Teaching and Learning (pp. 338-323). Wiley-Blackwell.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, 
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). 
Scratch: Programming for Everyone. Communications of the ACM, 52(11), 60–67. 
doi:10.1145/1592761.1592779

Román-González, M., Pérez-González, J., & Jiménez-Fernández, C. (2017). 
Which cognitive abilities underlie computational thinking? Criterion validity of 
the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. 
doi:10.1016/j.chb.2016.08.047

Rumelhart, D. E. (1994). Toward an interactive model of reading. In R. B. Ruddell, 
M. R. Ruddell, & H. Singer (Eds.), Theoretical models and processes of reading 
(pp. 864–894). International Reading Association.

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2018). The cognitive benefits of 
learning computer programming: A meta-analysis of transfer effects. Journal of 
Educational Psychology, 111(5), 764–792. doi:10.1037/edu0000314

Serafini, F., & Gee, E. (2017). Remixing multiliteracies: Theory and practice from 
New London to new times. Teachers College Press.

Smith, R., Snow, P., Serry, T., & Hammond, L. (2020). The Role of Background 
Knowledge in Reading Comprehension: A Critical Review. Reading Psychology, 
42(3).

Sullivan, A. (2019). Breaking the STEM Stereotype: Reaching Girls in Early 
Childhood. Rowman & Littlefield.

Vee, A. (2017). Coding Literacy: How Computer Programming Is Changing Writing. 
The MIT Press. doi:10.7551/mitpress/10655.001.0001

Vogel, S., Hoadley, C., Castillo, A. R., & Ascenzi-Moreno, L. (2020). Languages, 
literacies, and literate programming: Can we use the latest theories on how bilingual 
people learn to help us teach computational literacies? Computer Science Education, 
30(4), 420–443. doi:10.1080/08993408.2020.1751525

Vygotsky, L. (2012). Thought and language. MIT Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



105

Rhyme and Reason

Westlund, J., & Breazeal, C. (2015). The Interplay of Robot Language Level with 
Children’s Language Learning During Storytelling. In Proceedings of the Tenth 
Annual ACM/IEEE International Conference on Human-Robot Interaction Extended 
Abstracts. ACM. 10.1145/2701973.2701989

Willis, A. I., & Harris, V. (2000). Political acts: Literacy learning and teaching. 
Reading Research Quarterly, 35(1), 72–88. doi:10.1598/RRQ.35.1.6

Wing, J. M. (2006). Computational Thinking. CACM Viewpoint, 33-35. http://www.
cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

ADDITIONAL READING

Aguilar, R. (2014, July 30). Your Call: Is coding the new literacy? [Radio broadcast]. 
KALW. https://www.kalw.org/show/your-call/2014-07-30/your-call-is-coding-the-
new-literacy

Bers, M. U. (2018). Coding as a Literacy for the 21st Century. https://www.edweek.
org/education/opinion-coding-as-a-literacy-for-the-21st-century/2018/01

Bers, M. U. (2019). Coding as another language. In C. Donohue (Ed.), Exploring 
key issues in early childhood and technology: Evolving perspectives and innovative 
approaches (pp. 63–70). Routledge. doi:10.4324/9780429457425-11

DevTech Research Group. (2021). Coding as Another Language: Teaching 
programming as a literacy of the 21st century. https://sites.tufts.edu/
codingasanotherlanguage/

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The Language 
of Programming: A Cognitive Perspective. Trends in Cognitive Sciences, 23(7), 
525–528. doi:10.1016/j.tics.2019.04.010 PMID:31153775

Hassenfeld, Z. R., & Bers, M. U. (2019). When We Teach Programming Languages 
as Literacy. https://www.literacyworldwide.org/blog/literacy-now/2019/05/16/when-
we-teach-programming-languages-as-literacy

Vee, A. (2013). Ideologies of a New Mass Literacy. https://vimeo.com/61820239

Vee, A. (2013). Is coding the new literacy everyone should learn? Moving beyond 
yes or no. http://www.annettevee.com/blog/2013/12/11/is-coding-the-new-literacy-
everyone-should-learn-moving-beyond-yes-or-no/

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
https://www.kalw.org/show/your-call/2014-07-30/your-call-is-coding-the-new-literacy
https://www.kalw.org/show/your-call/2014-07-30/your-call-is-coding-the-new-literacy
https://www.edweek.org/education/opinion-coding-as-a-literacy-for-the-21st-century/2018/01
https://www.edweek.org/education/opinion-coding-as-a-literacy-for-the-21st-century/2018/01
https://sites.tufts.edu/codingasanotherlanguage/
https://sites.tufts.edu/codingasanotherlanguage/
https://www.literacyworldwide.org/blog/literacy-now/2019/05/16/when-we-teach-programming-languages-as-literacy
https://www.literacyworldwide.org/blog/literacy-now/2019/05/16/when-we-teach-programming-languages-as-literacy
https://vimeo.com/61820239
http://www.annettevee.com/blog/2013/12/11/is-coding-the-new-literacy-everyone-should-learn-moving-beyond-yes-or-no/
http://www.annettevee.com/blog/2013/12/11/is-coding-the-new-literacy-everyone-should-learn-moving-beyond-yes-or-no/


106

Rhyme and Reason

KEY TERMS AND DEFINITIONS

Access: The ability, permission, or right to use, communicate, or approach 
something or someone.

Composition: A musical, artistic, written, or digital artifact created by a person 
or a group of people.

Grammar: The structure and system of a language.
Language: A socially and culturally constructed symbolic system of human 

communication conveyed using speech, gesture/manual signs, and writing.
Literacy: The ability to read, write, speak, and listen in a way that enables a 

person to communicate effectively and make sense of the world around them.
Programming Language: A set of commands, instructions, and symbols that 

humans can manipulate in order to communicate with computers.
Syntax: The set of rules, principles and processes of a language that govern the 

arrangement of words and phrases.

ENDNOTE

1  Note that constructionism is based on but slightly different from constructivism 
as it is used in language acquisition research; the latter refers to the assumption 
that children construct meaning collaboratively in an interplay between the 
individual and the environment, and specifically other speakers who use 
language around them.
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ABSTRACT

Life science and computer science share the educational goals of fostering students 
to engage in inquiry-based learning and solve problems through similar practices 
of discovery, design, and experimentation. This chapter outlines the pedagogical 
links among traditional life science and emerging computer science domains in 
early childhood education, and describes an educational intervention using the 
CRISPEE technological prototype. CRISPEE, designed by a research team of 
developmentalists, biologists, educators, and computer scientists, invites young 
children to use computational logic to model design processes with biological 
materials. Findings are discussed as they relate to new understandings about how 
young children leverage computational thinking when engaged in design-based life 
science, or biodesign.

INTRODUCTION

As part of my research at the DevTech Research Group, I (like all the researchers 
in our lab) have spent years collecting data about young children’s engineering, 
technology, and programming learning by implementing and evaluating informal 
curricular interventions. In the 20 years since the creation of DevTech by Marina 
Bers, our collective research experience on running these camps and play sessions 

Computational Thinking 
and Life Science:

Thinking About the Code of Life

Amanda L. Strawhacker
Tufts University, USA

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



108

Computational Thinking and Life Science

has resulted in a cumulative wealth of knowledge about effective practices for 
introducing robotics, coding, and other STEAM-themed topics for the first time to 
4- to 8-year-old learners. One of the very first activities that we like to play in our 
robot-themed camps is a game called, “Robot or Not?” The premise of the game is 
simple: the researcher shows a group of children a picture of an object, and asks “Is 
this a robot, or not?” If a child thinks yes, they jump up and down; if their answer 
is no, they stand still; and if they aren’t sure or they need more information, they 
wiggle from side-to-side. In addition to being a fun game to get some energy out, 
Robot or Not? provides an opportunity for children have conversations about what 
makes something a robot. We found early on that children exploring robotics for 
the first time understandably hold a variety of assumptions and ideas about robots 
that range from precocious to erroneous. Robot or Not? offers a low-stakes playful 
settting to explore children’s ideas, allowing researchers to address misconceptions 
and identify gaps in knowledge.

Conversations get especially rich when players disagree about whether something 
is a robot. For example, most children jump up and down when they see a picture 
of a famous robot character from a movie, and stand still for a picture of a dog, but 
a picture of a stuffed toy stitched to look like a robot is more ambiguous. When we 
reach the inevitable point in the game when children are uncertain, the researcher 
pauses to invite children to list characteristics that they think robots have, in order to 
agree on a shared definition. A common list includes the following criteria: Robots 
are made of metal or plastic; They have special parts like gears and motors that non-
robots do not have; These special parts can move and make sounds automatically; 
Some robots are built to look like humans; All robots need an engineer or programmer 
to tell them what to do. This list may grow or change depending on the children in 
the group, but one criterion is common across every conversation that I’ve ever led 
or observed with children playing this game: robots are machines, and so they are 
definitely not alive. And yet, as advances in biotechnology and genetics change the 
very nature of what we mean by “alive”, I find myself questioning this foundational 
assumption about machines that even young children understand, and wondering what 
it could look like to have that conversation in our early childhood STEAM camps.

Thus, in my doctoral thesis, I set out to explore the relationship between children’s 
understanding of computational algorithms, and algorithms in the natural world, 
such as DNA—the genetic “code of life”. I wanted to know if we could create tools, 
frameworks, and lesson activities to invite children to meaningfully engage with 
concepts from genetics and biology in a playful and developmentally appropriate 
way, just as we’ve seen successfully in early computer science education (Bers, 2020). 
The NSF-funded Making the Invisible Tangible project led at Tufts University and 
Wellesley College (CHS-1564019), attempted to explore the pedagogical connections 
linking computational thinking to engineering design and life science content 
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(Strawhacker, Verish, Shaer, & Bers, 2020a, 2020b, 2020c; Verish, Strawhacker, 
Bers, & Shaer, 2018). We sought to develop a suite of lesson activities and an 
educational technology prototype, called the CRISPEE kit, that could bring the 
real-world relevance and design creativity of coding into children’s exploration 
of microbiology, a historically challenging field for young learners to break into.

In this chapter, I share our experiences testing the CRISPEE learning intervention 
with children. I first outline relevant pedagogical connections and priorities among 
traditional life science and more recent computer science domains, with a focus on 
the emerging STEM-integrated domain of biodesign (using engineering practices 
and methodologies to solve biological problems, using biologically-based building 
materials). Finally, I describe findings from an educational research intervention with 
the novel CRISPEE prototype, to explore whether and how young children can apply 
digital learning tools and computational thinking skills to explore biological content.

Science and the STEM Revolution

In the last few decades, the US education community has seen a boom in shifting 
tools, attitudes, and priorities surrounding STEM (or “I-STEM”), the catch-all term 
for integrated science, technology, engineering, and mathematics content. Whether the 
justification is military and federal concern for an economic pipeline of new STEM 
jobs needing to be filled (Vossoughi & Vakil, 2018), civic concern over the lack 
of diversity and representation in current STEM fields (Sullivan, 2019; Vossoughi 
& Vakil, 2018), or novel learning opportunities made by possible by innovations 
educational technologies (Bers, 2020; Kafai & Walker, 2020), STEM has become 
as ubiquitous in curriculum standards and school district outcomes as the classic 
learning goals of “reading, writing, and arithmetic” (Garrett, 2008; McComas & 
Burgin, 2020; Sanders, 2008; Sullivan, 2019).

It is beyond the scope of this chapter to delve into the debate surrounding how or 
why STEM has launched into national (and international) prominence (see Vossoughi 
& Vakil, 2018, for a critical depth examination), but one pronounced trend is that 
technology, computer science, and engineering have made sweeping advances as 
educational domains. This is partly due to advances in computational technology, 
which have contributed to a growing library of innovative, hands-on learning tools 
that make previously inaccessible concepts more tangible and accessible than ever 
before, especially for the youngest learners in PreK-2nd grade who most benefit 
from an integrated, hands-on approach to STEM learning (Chappell, et al., 2021; 
Kafai & Walker, 2020; National Research Council, 2000). In many ways, new tool 
development has been spurred by a focus on design-based learning approaches, rooted 
in the theory of constructionism from the field of computer science education, and 
learning pedagogies (e.g. “playground-style” technology use, Bers 2012) that engage 
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learners in creating digital and computational artifacts to visualize learning – in other 
words, to use novel platforms and modalities to construct, share, and reinterpret ideas 
through design (Bers, 2012; Papert, 1993). But where does this leave science? Why 
has the “S” in STEM education seemed to maintain a business-as-usual learning 
model in spite of new integrated science standards (Bybee, 2010, 2014; NGSS Lead 
States, 2013), introduced during a renaissance of integrated STEM education? For 
the purposes of this chapter, I will focus on life science and biology (used more 
or less interchangeably) as I unpack these questions and explore potential future 
directions for early education.

Bringing K-12 Life Science into the 21st Century

The question of how to reckon traditional life science education with a changing 
modern world has been debated in the education community long before the push 
for “21st century skills”. In the 1980s and 90s, researchers championed Science, 
Technology, and Society (STS), a movement to engage students in leveraging scientific 
knowledge in decisions about policy, social, and public life (e.g., Yager, 1996). As 
life science approaches a new threshold of change and innovation, these initiatives to 
are even more important to prepare future citizens for biology-based dilemmas of the 
21st century. Novel design-based methods that leverage living materials and genetic 
“re-coding” to engineer solutions to human problems foreshadow new directions 
for life science as a field, and thus, new goals for STEM-integrated life science 
education and participation (Kafai & Walker, 2020; Walker & Strawhacker, 2021).

Recent decades have seen the emergence of crosscutting and speculative domains 
like biodesign (applying engineering practices to the design of biological materials 
to solve human problems), leading to such advances as foods bioengineered to be 
more shelf-stable (e.g., Arctic Apples, 2020), tactical clothing made with genetically-
engineered spider silk (Cumbers, 2019), and more common bioengineered products 
like insulin, medicines, and vaccines (Nawla, 2014). Technology and biology are 
converging in a way that outpaces our ability to fully understand it, much less explain 
it to children. Still, in the face of such transformative advances in “real” life science 
practices, limiting biology education to the same observational tools and methods 
of 19th century naturalists feels jarringly outdated.

From an education perspective, critics of integrating life science with other 
STEM fields point to clashing epistemologies and philosophies of each discipline 
(e.g., Clough & Olson, 2016; McComas & Burgin, 2020; Zeidler et al., 2016). The 
argument goes that traditionally, the goal of life science is to observe and explain 
phenomena in the natural world, which inherently diverges from engineering and 
computer science goals of building things to solve problems (see McComas & 
Burgin, 2020 for a depth discussion of life science in relation to integrated STEM 
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education). Further, when we introduce design into any discipline, we inherently 
introduce power dynamics about who decides which designs are valuable, who stands 
to benefit from designs, and which design challenges are not pursued (e.g. Calabrese 
Barton & Tan, 2019). If issues of ethics and access are left unaddressed at the early 
education level, emerging 21st century life science pedagogies risk perpetuating 
ingrained inequities and injustices (e.g. underrepresentation of minority groups) 
currently facing STEM fields like computer science (Vakil, 2018).

My motivation for exploring innovative life science education in this chapter 
aligns with a perspective voiced by my former doctoral advisor, Prof. Marina Bers, 
about computer science education: “the rationale for supporting the introduction 
of computer science starting in kindergarten shouldn’t be the creation of the future 
workforce, but the future citizenry” (Bers, 2018, p. 500). Further I agree with 
colleague Prof. Justice Walker that a main challenge of life science and biology 
education today is that schools use “19th century practices, to teach 20th century 
concepts, to create 21st century citizens” (J. Walker, personal communication, 
February 15, 2021). I do not argue that we should stop teaching children about the 
wonders of the natural world, or the traditional concepts and methods that make up 
life science education as we now know it. However, if we accept that an implicit goal 
of biology education is to democratize scientific knowledge and methods for the 
benefit of cultivating an informed public, capable of making scientifically grounded, 
ecologically sustainable, and socially just decisions for our world, then we must 
prioritize pedagogies that enable students to engage with relevant, authentic, and 
current scientific information and approaches. Further, I argue that a key part of 
fostering children’s engagement with ethical 21st century design-based life science, 
involves developing their computational thinking skills.

Computational Thinking in Life Science: 
The Case for Biodesign

While the debate rages among researchers about how to position K-12 life science 
education in an integrated STEM curriculum, pre-professional programs and 
universities find themselves facing a different challenge: how to train their early-
stage life scientists to better understand computational thinking?

In the 1950s, when the discovery of the DNA double-helix had just launched 
a new field called bioengineering, STEM training programs recognized the need 
to offer more biology courses to their engineering students (Naik, 2012; Nebeker, 
2002). Today, bioengineering progressively relies not only on natural biological 
processes, but also artificial ones, thanks to new advances in computational biology 
and nanotechnology (Naik, 2012). As the discipline advances, university educators 
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like Rubinstein and Chor (2014) insist that it is time to address students’ lacking 
computational thinking skills, which they see as critical for modern biology training:

Life sciences are going through a dramatic biotechnological revolution. […] Life 
sciences curricula, however, have hardly been altered to reflect this revolution...[and] 
not enough emphasis is put on developing abstract and algorithmic thinking skills.

This gap presumably starts at the classroom, but it lingers later on. Biology in many 
institutes and labs is still primarily a descriptive science with little computational 
approaches being used on a daily basis. Computational approaches in this context 
are not the mere use of tools, but the integration of computational thinking and 
algorithms to experiments design; to data generation, integration, and analyses; 
and to modeling (Rubinstein & Chor, 2014, p. 1).

Others have noted this issue as well, and in response, the ecosystem of tools 
and technologies for biodesign, bioengineering, and biomaking is growing (as 
young field, these nascent terms are still evolving and converging but they all refer 
to biology experiences that leverage computational thinking and problem-solving 
through design). Most biodesign education programs are targeted at older students 
in high school or college (e.g. Kafai, Telhan, Hogan, Lui, Anderson, Walker, & 
Hanna, 2017; Kuldell, 2007), but many countries already mandate computer science 
and engineering education starting in Kindergarten (Cejka, Rogers, & Portsmore, 
2006; Metz, 2007; Pretz, 2014). Life science has been taught to this age range for 
decades already, so why should we not introduce biodesign earlier?

Biodesign is currently viewed as too advanced for early education, and using 
current models for teaching about microbiology, that is certainly true. However, 
research suggests that young children may already hold preconceptions about 
genetics and biology, gleaned from popular culture and media aimed at children 
and young adults (Elmkesky, 2013; Venville, Gribble & Donovan, 2005). In my 
own interviews with over 100 children aged 4-9 years in the greater Boston area, 
I found that around 15% of my sample had already heard of concepts like “genes” 
and “DNA”, and some could explain these and other advanced biology concepts 
(like viruses) with surprising accuracy (Strawhacker, Verish, Shaer, & Bers, 2020b).

There are also overlapping themes that young children explore in early childhood 
that are foundational to biodesign. Life science and engineering share similar 
methodologies for asking and answering questions (i.e., the scientific method) 
and building and testing solutions to human problems (i.e., the engineering design 
process). Both involve steps of ideating, designing (experiments or prototypes), 
iterating, and refining that young children practice starting in Kindergarten. Similarly, 
biology and computer science both rely on computational concepts of abstraction 
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(e.g., of proteins within cells, or subroutines within coded instructions), modularity 
(segmentation of organs to make a body, or hardware parts to make a robot), and 
algorithmic logic (in genetic codes or computer codes) to understand and model 
how systems operate within hierarchical structures to function as a whole. These 
computational concepts may sound highly sophisticated, but educational coding 
tools like the ScratchJr programming language (www.scratchjr.org), KIBO robotics 
kit (www.kinderlabrobotics.com), BeeBot robot (www.terrapinlogo.com), Code-a-
Pillar (www.fisher-price.com), and more all demonstrate how those concepts can 
successfully be introduced to children as early as preschool.

From a developmental perspective, integrated STEM is the preferred learning 
model for early childhood (Aldemir & Kermani, 2017; Wortham, 2006). Engineering 
brings creative agency and hands-on exploration to biology lessons, which can be 
abstract and overly-structured for young learners (Ostroff, 2016). Introducing novel 
scientific topics of biodesign brings real-world relevance and context to STEM 
explorations, connecting children’s learning to topics in their broader community and 
society. New technologies offer children a chance to playfully explore topics that were 
previously too microscopic, invisible, or time-consuming to engage meaningfully.

Given these findings, that constraints for bringing biodesign into early childhood 
would appear to rest more on the side of pedagogical approaches and educational 
tools than on children’s developmental capacity. In the following sections, I describe 
a research project that set out specifically to address this gap, by designing a learning 
intervention and tangible technology supports to engage children in applying 
computational thinking concepts to biodesign content.

Design of CRISPEE: A Tangible Tool and Learning 
Intervention to Model “Coding with Genes”

The NSF-funded Making the Invisible Tangible project attempted to explore the 
pedagogical connections linking computational thinking to engineering design and 
life science content (NSF grant no. CHS-1564019). The goal of the project, headed 
by Dr. Orit Shear of Wellesley University and Dr. Marina Bers at Tufts University, 
was to explore the viability of translating these integrated STEM themes to an 
early childhood context, designing tangible technologies and curricular supports as 
needed to meet young children’s developmental needs. I participated as a doctoral 
student researcher to develop a biodesign learning tool and curriculum, together 
with a team of university student researchers trained in a variety of backgrounds, and 
expert consultants from fields of biology, ethics, and education. We implemented 
this learning tool with over 125 children, families, and teachers in school, museum, 
and makerspace settings, and used findings to iteratively redesign the technology 
and intervention (Strawhacker, Verish, Shaer, & Bers, 2020a, 2020b, 2020c; Verish, 
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Strawhacker, Bers, & Shaer, 2018). Throughout the rest of this chapter, I will share 
our experiences testing this technology and curriculum with children, and describe 
how these findings highlighted the role of computational thinking in design-based 
biology for early childhood.

The Tangible CRISPEE Technology Kit

Inspired by advances in learning and design frameworks for child-computer interaction 
(e.g., Antle & Wise, 2013; Horn, Crouser, & Bers, 2012; Lester, Rowe, & Mott, 
2013), we set out to test whether young children could explore the computational 
and biological ideas we identified as learning goals if we provided them with 
tangible tools and story-based contexts to represent learning. After researching 
relevant early childhood learning standards and frameworks, we identified a list 
of cross-cutting STEM learning goals for our intervention (Strawhacker, Verish, 
Shaer, & Bers, 2020c). These goals can be summarized in three steps: (1) introduce 
or recall (depending on the child’s experience) the model of coding languages in 
machines, and present genes as a kind of coding language for living things; (2) 
engage children in designing and testing their own gene codes (using technology to 
model this process); and (3) prompt children to apply their newfound gene-design 
knowledge to solve speculative and story-based problems. The result of the 4-year 
project exploring these learning outcomes is the CRISPEE kit prototype (see Figure 
1), and accompanying curriculum for a 15-hour learning intervention.

CRISPEE is modeled loosely on DNA extractor/incubators that use the CRISPR/
Cas-9 gene editing software – the most prominent technological advance to bring 
genetic engineering from “tinkering” to “cut and paste editing” (Doudna, 2015). 
CRISPEE lets children explore how genes can function like a coding language to 
determine the color of a bioluminescent (glowing) animal’s light. The model, based 
on real processes of genes and bioluminescent proteins, relies on “gene blocks” 
(made with wood, felt, conductive Velcro, and resistors) that turn red, green, and blue 
glowing lights “on” or “off”. The “on” light colors then mix according to light-color 
physics (in which a regular color wheel begins with different primary colors than 
in solid-color mixing) to determine the resulting light color. In addition to letting 
children explore fascinating naturally-glowing animals, the mixture of gene colors 
also lets children explore the visual arts concept of additive color-mixing with light. 
a less-explored companion to subtractive color-mixing with solids, like crayons and 
paints. Because this is a universal concept beyond biology, the additive primary 
colors (red, green, and blue) always mix to create the same secondary colors, whether 
working with CRISPEE, a children’s light table, or cello-paper and flashlights.
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Figure 1. The prototyped CRISPEE Kit for modeling biodesign of bioluminescent 
(glowing) animals’ light color includes (1) a tangible interface for building and 
testing light codes, (2) various gene blocks with different color controls, (3) a picture 
book to introduce how CRISPEE works in a story context, (4) LED-interactive stuffed 
animals to display children’s coded lights, and (5) speculative designs for logic-gate 
“biosensor” controls to code light changes under certain environmental conditions

Figure 2. Three-step CRISPEE interaction
Source: Verish et al. (2018)
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Figure 2 shows the interaction process to play with CRISPEE. First, a child 
selected a detachable faceplate showing the animal they want to use in their model. 
We provided four choices of naturally bioluminescent animals: firefly, zebrafish 
anglerfish, and jellyfish. Next, they selected three gene blocks to code for the light 
color in their animal model, which will determine which colors will be lit up, and 
which will remain silenced. I deliberately used computational words like “code” 
and “program” to describe their chosen block sequence, in order to highlight the 
design-based nature of this step. Finally, children shook the platform vigorously 
until several lights indicated CRISPEE was ready to test. Shaking was added for two 
reasons. First, it represents the real-life centrifuge process that DNA extractors use 
to tease apart DNA, allowing new genetic sequences (programmed by the engineer) 
to insert themselves into the genome. While we did not necessarily expect children 
to understand the details of this process, children in the curricular intervention 
viewed videos of this centrifuge process in laboratory CRISPR machines and made 
the connection to CRISPEE’s action. Second, shaking reinforced the idea that the 
colors children selected would mix together, creating a single output light color. 
After shaking the platform, children finally pressed a button to test their new light, 
which glowed out of an oversized lightbulb framed by their animal faceplate.

The CRISPEE Curriculum: A Biodesign 
Curriculum for 5-8 Year Old Children

In addition to the technology kit, our research team developed, iteratively implemented, 
and refined a 15-hour NGSS-aligned curriculum intervention for 5-8 year old 
children to explore biodesign in a developmentally appropriate learning progression. 
Included in this curriculum were original learning supports, as well as suggestions 
for commercially- and freely-available resources.

Storytelling with picture books is an effective learning device to introduce young 
children to science topics that are typically too abstract (experimental methods), distant 
(e.g. outer space), or microscopic (e.g. cell biology) for children to meaningfully 
explore (Mantzicopoulos, & Patrick, 2011; Monhardt & Monhardt, 2006). I wrote the 
Adventures in Bioengineering picture book to introduce concepts like biodesign in the 
context of a developmentally-appropriate story, as well as to illustrate the interaction 
steps for using the CRISPEE tool (see Figure 3). In the story, a firefly with a genetic 
inability to glow is separated from his friends, who cannot locate him without his 
light. He seeks the help of a bioengineer, who works with Bob to reprogram his 
genes so he can glow and relocate his firefly community. The story presents concepts 
and vocabulary words (e.g., bioengineering, genes, bioluminescence) in-text and 
in a glossary, and narrates through a problem-design-solution process. This story 
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was important for helping children understand a potential context for what kind of 
problems biodesign might be useful to address.

Part of the challenge of introducing biodesign for any age group is the ethically 
sensitive nature of work that involves changing the genes of living animals and 
organisms. In order to explore these questions without presenting any single 
perspective as “ethically correct,” we created an anchor chart called the Ethical 
Design Process. This chart was directly inspired by the Engineering Design Process 
commonly taught in DevTech Research Group’s camps and interventions, but 
included questions that biodesigners ask at each step of the design process to ensure 
that their solutions are as ethical and responsible as possible (see Figure 4). The 
questions identified on the chart, such as “What are the possible consequences [of 
the design]?” and “How can we make our solution less harmful?” were adapted from 
or inspired by transcript conversations with young children in my research sample. 
Questions were further refined with assistance from expert consultants, including 
a biodesign professor at MIT, and a philosophy of ethics professor at Wellesley 
College. While this chart represents only a narrow portion of the kinds of ethical 
work that ecological conservationists and biodesign scientists must conduct as part 
of their professional design initiatives, these questions provided enough provocation 
that children could meaningfully consider ethical consequences of their design steps 
while engaging with CRISPEE (discussed more in later sections).

Figure 3. Cover art (left) and pages (center, right) from the Adventures in 
Bioengineering storybook, an original picture book developed to introduce a story-
context for biodesign, as well as illustrate how to use the CRISPEE tool
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Children also explored a variety of familiar and traditional curricular supports, 
including biology- and engineering-themed picture books, microscopes and slides, 
child-sized laboratory equipment and gear (e.g. lab coats, beakers), researcher-
created worksheets and games (e.g. word searches) packaged into individual Design 
Journals, and materials for light and color play (see Figure 5). In particular, children 
engaged richly with a light table purchased specifically because it used Red, Green, 
and Blue primary color knobs to control the color produced by the table. Children 
used this tool to explore light mixing, incorporating translucent marbles and toys 
into their play, and frequently commented that it mixed colors using the same rules 
as CRISPEE.

All of these materials were crafted or chosen specifically to support a concept 
relevant to our core learning goals for biodesign engagement. In the following 
sections, I describe examples from user testing and curriculum interventions 
involving CRISPEE and a small team of my research assistants. Each example 
shows how children naturally incorporated aspects of computational thinking into 
their biodesign play.

Figure 4. The Ethical Design Process (left) was modeled directly on the DevTech 
Research Group’s Engineering Design Process (right)
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Figure 5. Children complete an original worksheet activity using biology-themed 
reference picture books
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COMPUTATIONAL THINKING IN CHILDREN’S CRISPEE PLAY

Algorithmic Logic

CRISPEE was designed intentionally to leverage Kindergarten-appropriate physics 
(i.e., light color mixing) and biology topics, as well as to forefront computational 
thinking concepts. To make a successful glowing light with CRISPEE, children 
needed to understand a few algorithmic concepts. First, they needed to understand 
the binary nature of the blocks. For example, CRISPEE has two red blocks, one 
marked with an X for “turn red off”, and the other marked with a solid color for 
“turn red on”. They cannot be used at the same time, because (as the children often 
explained to each other), “CRISPEE doesn’t understand if you tell it ‘yes red’ AND 
‘no red’.” Second, children needed to add one of each color block in their sequence, 
or CRISPEE would terminate the test, because one color had too many inputs (the 
on-and-off problem again). Third, they had to understand that the colors they chose 
to turn “on” would mix together to create a new color, while the colors they turned 
“off” would remain silenced.

With just these simple coding rules, we found that children made connections 
to concepts of order and pattern. Younger children (aged 4 and 5 years) were more 
likely than older ones to use CRISPEE blocks to make a repeating color pattern 
(e.g., blue-red-blue) purely for aesthetic appeal, which researchers guided into an 
exploration of the rules for what blocks CRISPEE will “accept”.

Other children mentioned technological toys and robot kits from their home or 
school, and used computational words like “program” and “code” before researchers 
introduced them. These children were more likely to test the same program multiple 
times in different sequences (e.g., red-green-blue, then blue-green-red) to see if 
block sequence would change the output light (see Figure 6). Even though we did 
not present CRISPEE as a robot or coding toy, these clues indicate that children 
understood CRISPEE as a computational tool for exploring sequencing, patterns, 
and algorithms.
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Figure 6 shows a 7-year-old child testing a gene program with three On blocks 
(green-blue-red). His plan for the next program is laid out the table in front of him, 
with a reversed sequence of colors (red-blue-green) in Off blocks. Out of 28 total 
programs that he tested with CRISPEE, 15 were deliberately to explore the effect 
of changing the sequence of blocks in the same program.

Debugging and Hardware / Software

Although the debugging process and hardware/software relationships are separate 
computational thinking concepts, they were so related in children’s explorations that 
I will discuss them together here. Children in my studies spent a good amount of 
time identifying and attempting to repair bugs (technical malfunctions) while using 
CRISPEE. This included debugging their CRISPEE codes to design a specific color 
they wanted (e.g., Strawhacker et al, 2020b), and assisting researchers in exploring 
actual bugs in the prototype (e.g., Strawhacker et al, 2020a). As a proof-of-concept 

Figure 6. A child tests a CRISPEE program with the state goal of seeing how the 
sequence of colors impacts the output light
Source: Strawhacker et al. (2020a)
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research prototype, CRISPEE occasionally malfunctioned, which sparked curiosity 
in children about the hardware and how it worked. Children frequently requested 
to look inside CRISPEE, and found the internal mechanics as interesting as the 
actual interface.

Children also made scientific (evidence-based) observations about the CRISPEE 
kit during times when our research team had to repair the tool. For example, one 
child noticed that the wood interface “smells like a bonfire” (a byproduct of laser-
cutting the parts), and he closely examined the moving platform to see if it “uses 
wheels, like my robot at home”. He was especially curious about how CRISPEE 
could produce light when seemed be made of non-electronic materials. When 
examining the conductive Velcro on the underside of the programming blocks he 
asked, “is that stuff Velcro? How can it do stuff if it’s just cardboard or wood?” In 
this instance, he was relating CRISPEE’s interactions (e.g. lights, buttons) to its 
interface made of familiar, non-technical materials (e.g. wood, felt, Velcro), and and 
trying to reconcile this observation with his understanding of machines that require 
computational components to execute software code.

The children’s curiosity inspired me to leave a laptop at the CRISPEE center 
with videos running to show how different parts of CRISPEE were made, which in 
turn led to further exploration about computational hardware. When I left a video 
running about laser-cutting to show why the CRISPEE wood smelled like it was 
burned, one girl asked, “What else can that laser thing cut? Can it cut glitter? Can it 
cut paper?” Watching researchers fix the CRISPEE prototype and finding new bugs 
became a favorite past-time during our CRISPEE curriculum interventions. One 
child even began collecting field notes in a hand-drawn bug log when she found a 
CRISPEE error, complete with drawings and labels of the specific malfunctioning 
CRISPEE code (see Figure 7).
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One collaborative debugging episode occurred while children played with three 
different versions of the CRISPEE prototype. They were surprised to find that 
the program for a blue light, which everyone knew how to make, was returning a 
magenta color on one of the CRISPEEs. Four children and two researchers all worked 
together to solve the problem, and eventually discovered that CRISPEE blocks were 
not compatible across different prototype versions, a discovery that surprised even 
the lead engineer. Without the children’s willingness to explore and test different 
solutions, it’s unlikely that this issue would have been resolved, since most of the 
researchers gave up before the children did!

Design Process

Children were prompted to engage in steps of an ethical design process through 
large-group discussions, activities using their Design Journals, and games and 

Figure 7. A free-drawn “bug log” of a malfunctioning CRISPEE program, created 
by a 6-year-old girl to add to her Design Journal
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songs involving the Ethical Design Process anchor chart. One activity, called 
Design a Helpful Animal, invited children to imagine a problem they could solve 
by biodesigning an animal, and then to consider positive and negative consequences 
of that design. Children identified diverse and interesting problems to solve, and 
offered creative solutions.

Several children wrote in their design journals about environmental problems 
they cared about. For example, during a circle conversation, a 5-year-old girl shared 
a memory of a trip she had taken to Florida, where she learned that the sea turtle 
population there was becoming threatened due to plastic pollution. The turtles were 
eating plastic bags, instead of their normal diet of jellyfish. For her design, this girl 
wanted to “give fox ‘smell genes’ to turtles”, so that they could tell the difference 
between plastic bags and jellyfish. In addition to the positive consequence of saving 
turtle populations, she identified a negative consequence of turtles suddenly starting 
to hunt food that foxes eat, as a result of sharing their “smell gene”.

Similarly, a 6-year-old boy spent over an hour imagining, sharing, and revising 
a design idea to help cheetahs (his favorite animal) by giving them “more genes” to 
be “smarter and faster”. Originally it seems he just wanted to make cheetahs even 
faster (see Figure 8), although through conversation with two other intervention 
participants (a 7-year-old boy and a teacher, both of whom he knew from school) 
he was pressed to justify his design problem. When asked why cheetahs should be 
faster, the boy’s answer focused on the dangers of poachers threatening the cheetah 
population. The friend and teacher both validated and extended his idea by offering 
vocabulary words (e.g., “endangered”) to capture his concern for the cheetah’s welfare 
(i.e., “why cheetahs are getting killed”). This example indicates the boy’s conviction 
that a biodesign solution should involve serving or helping animals to escape harm, an 
ethical purpose that both his friend and his teacher readily understood and accepted.
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Not all children directly engaged with ethical consequences of biodesign. For 
example, one 5-year-old girl, inspired by the circle-time story about turtles, drew 
pictures of plastic bags floating in an ocean of sea creatures, and wrote a line from 
the perspective of the animals: “Don’t litter because I can die.” Although her design 
doesn’t suggest a bioengineered solution, it indicates that she was connecting 
biodesign to environmental maintenance and ecological stewardship. Other children 
wrote story-style narratives and focused more on individual animal characters than 
an ecosystem-level issue.

Figure 8. A boy’s design journal page describing his idea to enhance cheetahs with 
genes to help them escape poachers
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Surfacing Computational Thinking in Biodesign Education

Taking up the call from Rubinstein and Chor (2014) to examine the early beginnings 
of the gap in students’ computational thinking preparedness for modern-day biology, 
this section reflects on the ways that the biodesign curriculum intervention and 
tangible CRISPEE tool organically fostered children’s engagement with computational 
thinking. In the examples presented earlier, children explored algorithmic logic, 
debugging, hardware construction, and the engineering design process, although none 
of these concepts was explicitly introduced. Analysis of video transcripts suggests 
that these topics emerged spontaneously due to three main factors.

The first factor relates to the CRISPEE technology itself. Because CRISPEE 
was a computational object, children leveraged their understanding of machines to 
understand how CRISPEE works. Children drew on prior experiences with educational 
robotic kits, computer hardware, technology references in children’s media (e.g., tv 
and books), and their family members’ professions (e.g., doctor, software engineer) 
to make sense of CRISPEE’s novel interactions and interface. This led to hypotheses 
when first engaging with CRISPEE about making color patterns with blocks, changing 
block sequences to explore the resulting light effect, and voicing theories like, “the 
blue blocks are maybe a different coding language than the green ones.” Simply 
by using a technological tool, children were cued to engage their prior knowledge 
and experiences with technology, suggesting that computational concepts such as 
algorithmic logic may serve children in computer-mediated tasks, even when the 
task is not inherently related to computation.

The second factor contributing to computational thinking was the expertise of 
facilitators in the room during interventions, which emerged during tech malfunctions. 
At least one of the engineers who actually helped construct CRISPEE prototypes was 
present at each research session. This was a preventive measure, since I expected to 
the prototypes to fail occasionally. What I did not expect was that these technology 
breakdowns would inspire children’s curiosity about hardware and software, and 
engage them in debugging practices of logging failures, observing engineers as 
they repaired prototypes, and persisting with tests to determine the nature of bugs. 
Children thrilled at the chance to take CRISPEE apart and put it back together again, 
and were self-motivated to help in any way they could with the debugging process. 
This finding points to the power of surprising tech interactions, including bugs and 
malfunctions, to engage children in authentic computational practices.

Third, the researcher-developed curricular tools, particularly the Adventures in 
Bioengineering storybook and the Ethical Design Process, supported children’s 
engagement in iterative and reflective design cycles. In user tests of CRISPEE 
without the curricular components, children played for about 20-30 minutes before 
shifting to hardware explorations, discussions about science, or simply moving on 
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to different activities. In contrast, children in the curricular interventions returned 
again and again to CRISPEE to try to realize their designs. For example, some 
children spent several days learning the logic of the gene blocks in order to recreate 
animals they learned about from the biology reference books we provided. When 
invited to create their own biodesigned solutions to a problem of their choosing, 
one child worked so hard on his design concept about endangered animals that he 
skipped free-play time and snack! This finding is most interesting to me, because 
it speaks to the ways that computational thinking processes like creative design, 
and learning domains like biology, can support children’s engagement in ethical 
and altruistic play and learning. The diversity of children’s engagement with ethical 
design offers valuable insight for future research in this area. Interestingly, none 
of the students in my sample made a biodesign to aid humans, but instead focused 
on ways to solve problems that animal might face. This surfaces another ethical 
challenge in biodesign education, since in reality, bioengineered organisms are 
primarily created to solve human problems. Perhaps children are so altruistic in 
their thinking at this age that it simply does not occur to them to view animals as a 
resource to serve human needs, or perhaps their attitudes are a product of the fact 
that anthropomorphic and empathic animals are commonly cast as protagonists in 
children’s media (including the Adventures in Bioengineering picture book used 
in my studies). Future research should consider the impact of narrative framing to 
explain the purpose of biodesign work as it is actually practiced.

CONCLUSION

While researchers continue to debate the role of computational thinking in the biology 
classroom, findings from the CRISPEE research project suggest that biodesign may 
be a fruitful way to engage children as young as 5 years old in meaningful, relevant, 
and even ethical applications of computational concepts to the natural world. Even 
without a novel tool and curriculum, children may leverage computational logic 
to understand repeating patterns in nature, distinguish natural and human-made 
materials, and consider engineered solutions to environmental problems. As 
biodesign continues to emerge as a 21st century domain, I hope that future citizens 
and designers carry forward the propensity found in children, to leverage biodesign 
as a tool to engineer sustainable, environmentally responsible, and ethical solutions 
to problems that face humans and all organisms on our planet.
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KEY TERMS AND DEFINITIONS

Biodesign: An emerging science movement that applies methods and approaches 
of creative and engineering to the design of living materials and systems.

Computational Thinking: Broadly, a set of cognitive skills, processes and 
concepts that involve expressing problems and their solutions in ways that a computer 
could also execute.
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CRISPEE: A tangible technological prototype and suite of educational materials 
designed to engage children in playfully exploring biological algorithms (e.g., 
genetics) through the lens of computer programming.

Early Childhood Education: Education of children from birth through age 8 
years.

Life Science: Any fields of science related to biology or the study of life and 
living systems.

Programming: Also called coding, computer programming is the process of 
designing and building an executable computer program to accomplish a specific 
computing result or to perform a specific task.

Sequencing: Arranging elements of a system in a particular order, e.g., commands 
in a computer code.

STEM Education: An educational approach that integrates domains of science, 
technology, engineering, and mathematics.

Tangible User Interface: A computer interface in which the user manipulates 
digital information using physical gestures and interactions.
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ABSTRACT

In the past two decades, STEM education has been slowly replaced by “STEAM,” 
which refers to learning that integrates science, technology, engineering, arts, and 
mathematics. The added “Arts” portion of this pedagogical approach, although 
an important step towards integrated 21st century learning, has long confused 
policymakers, with definitions ranging from visual arts to humanities to art education 
and more. The authors take the position that Arts can be broadly interpreted to 
mean any approach that brings interpretive and expressive perspectives to STEM 
activities. In this chapter, they present illustrative cases inspired by work in real 
learning settings that showcase how STEAM concepts and computational thinking 
skills can support children’s engagement in cultural, performing, and fine arts, 
including painting, sculpture, architecture, poetry, music, dance, and drama.
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INTRODUCTION

What kind of thinking does it take to write a story, paint a landscape, or put on a 
play? How does a poet know how to structure a stanza, or an architect know how 
to start designing a memorial statue? Creativity and inspiration are an important 
part of the artistic process, but equally important are cognitive and psychosocial 
traits that support many creative endeavors such as perseverance, logical reasoning, 
abstraction – in other words, computational thinking. Further, just as learners can 
and should explore diverse artistic mediums from an early age, young children’s 
cognitive and psychosocial development can also benefit from early exposure to 
computational thinking. In chapter one of this book, Professor Marina Bers framed 
computational thinking as an expressive process that involves problem solving by 
thinking like a computer. In this chapter we delve into this” expressive process” to 
explore the communicative and creative potential that children can tap into when 
they explore foundational computational thinking skills.

In the past two decades, STEM education has been slowly replaced by “STEAM”, 
which refers to learning that integrates Science, Technology, Engineering, Arts, and 
Mathematics. The added “Arts” portion of this pedagogical approach, although an 
important step towards integrated 21st century learning, has long confused policy 
makers, with definitions ranging from visual arts to humanities to art education, and 
more (Henderson, 2020). We take the position that Arts can be broadly interpreted 
to mean any approach that brings interpretive and expressive perspectives to STEM 
activities. In this chapter, we will discuss how STEAM concepts and computational 
thinking skills can support children’s engagement in a range of liberal and performing 
arts, including painting, sculpture, architecture, poetry, music, dance, and drama. 
This chapter specifically hones in on how the performing arts (e.g., dance, drama, 
music, etc.) are connected to computational thinking. We present descriptive cases 
that are inspired by research conducted in early-learning settings over a period of 
several years to illustrate the many overlaps between supporting young children’s 
exploration of drama and computational thinking.

BACKGROUND

STEAM in Early Childhood

Young children (ages 5-8 years) are at a critical stage in their cognitive, social, 
emotional, and physical developmental trajectories. Integrated educational STEAM 
experiences allow children to explore diverse approaches, perspectives, and mediums 
related to STEM, offering a divergence from the positivist “hard sciences” mindset of 
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20th century science, math, and construction education. Similar to how representation 
of diverse religious, cultural, ethnic, and gender backgrounds can support a child’s 
developing identity, diverse modes of STEAM education support a child’s developing 
identity as one who does – or is able to do – STEM work.

The arts help teachers engage more thoroughly with STEM, as well. Research 
shows that despite the global educational trend of bringing novel STEM domains 
(e.g., computer science, technology, robotics) into early childhood classrooms 
(Sheffield et al., 2018), pre-service and in-service early childhood educators around 
the world still indicate insecurity and mixed levels of confidence in their ability 
to meaningfully teach these subjects (e.g., Dong & Xu, 2020; Masoumi, 2020). In 
contrast, arts integration has a long history in education, and teachers generally 
report feeling confident and comfortable with bringing these domains into the early 
childhood classroom (Bresler, 2007; Hartman & Dani, 2020; Leung, 2020). Arts 
integration makes STEM more accessible to teachers by allowing them to leverage 
their experience in arts education to create more engaging and meaningful pathways 
into STEAM exploration for students.

With the growing focus on technology and STEM education, some critics of 
computers in education have expressed fear that technology may inhibit children’s 
natural play and creativity (e.g., Cordes & Miller, 2000; Oppenheimer, 2003). The 
STEAM integration approach counters this by demonstrating that the flexibility 
inherent in art practices and how naturally this can be applied to STEM content, 
therefore making STEM more appealing to young learners as well as accessible for 
educators (Robelen, 2011).

Performing Arts in Early STEM Education

In the performing arts, including fields like theater, music, and dance, children 
literally embody the emotion or message they are aiming to present. Integrating 
STEM content in the performing arts offers children the chance to embody a STEM 
identity (e.g., by acting out the role of a scientist wearing a white lab coat), and even 
appropriate STEM practices into their “toolbox” for creative and expressive play 
(e.g., building and testing props for a dramatic performance).

Over a decade of research has demonstrated that the performing arts can positively 
benefit young children’s learning across multiple STEM domains. For example, 
Ingram & Reidel (2003) found a significant positive link between in-school arts-
integrated programming (as part of the Arts for Academic Achievement program) 
and standardized test scores. Similar research found that children in Chicago arts-
integrated elementary schools performed better on tests than children in control 
schools (Catterall & Waldorf,1999). At the early childhood level, Erdoğan and Baran 
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(2009) reported that drama-infused math instruction for Turkish six-year-olds was 
linked to mathematics achievement test scores.

The performing arts offer playful and collaborative ways to integrate self-
expression and creativity with traditional STEM content in ways that support 
foundational knowledge as well as self-confidence. Research funded by the US 
Department of Education indicates that teachers using arts-integrated strategies have 
significant positive effect on children’s STEM learning (Ludwig & Song, 2016). In a 
randomized controlled study of an early childhood program titled “Early Childhood 
STEM Learning Through the Arts” created by the Wolf Trap Foundation for the 
Performing Arts, researchers found that students in the program outperformed peers 
in control schools on the Early Math Diagnostic Assessment (EMDA). Moreover, 
teachers in this study reported that music, movement, and drama was particularly 
beneficial for students who were shy, who had never been to school, or who were 
speaking another language (Ludwig & Song, 2016). In this way, the performing arts 
help teachers connect with children who may otherwise struggle socially. Taken 
together, this body of research speaks to the value of integrating the arts with other 
curricular areas in order to boost children’s confidence, foster connections, and 
even master STEM learning content – in other words, it illustrates the benefits of 
adapting a STEAM approach.

Computational Thinking & STEAM

As we have seen, there is a growing body of work on the impact of the performing 
arts on STEAM education. The focus of prior work has mainly concentrated on 
linking the arts with mathematics achievement (e.g., Erdoğan & Baran, 2009). With 
the recent national and international focus on the importance of early childhood 
exposure to coding, computational thinking, and engineering, it is useful to look 
at how the performing arts can serve to foster new 21st century computing skills 
and mindsets.

Computational Thinking (hereafter, CT) has been described as the thought 
processes involved in constructing and/or decomposing the sequential steps of a 
task so that it can be carried out by a computer (Cuny, Snyder, & Wing, 2010; Aho, 
2011; Lee, 2016). In chapter two of this book, Bers (2021) argues that CT is more 
than a style or category of thinking. She asserts that the ability to apply CT skills 
and practices for the purpose of self-expression through code and technology is 
equally important for young children to explore, which nicely aligns with creative, 
dramatic, and performing arts education perspectives.

In this chapter, we take the second approach, and further propose that when 
children engage in STEAM-integrated dramatic arts and performance, they leverage 
CT skills and practices to create a shared experience outside of themselves. Through 
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the arts, students move from mastery or even self-expression through code to 
connection with their community and audience. In the process of creating shared 
cultural artifacts and experiences with technology, children not only hone their 
computational thinking skills and abilities, but also cultivate their creative capacity 
and enrich their identities as agents of transformative social experience. In this view, 
technology is not just a tool to practice with, a puzzle to solve, or even a language 
to learn, but instead becomes an extension of the child’s expressive and artistic 
palette, alongside paints, costumes, and musical instruments. In the case vignettes 
presented later in this chapter, we offer real example cases of children exploring 
STEAM-integrated arts and drama experiences using performative platforms such 
as robotics kits and computer programming languages.

Computational Thinking & the Performing 
Arts: How Do They Relate?

Offhand, it may seem like the arts and CT have little in common. Surprisingly, 
though, the mindsets, skills, and practices from the two domains actually overlap 
quite a bit. Modularity and decomposition, for example, are CT skills that involves 
breaking a task into smaller, more manageable parts. Decomposition can also be 
applied to composing a piece of music with multiple movements or writing a play 
with multiple acts. Taking the music example, the composer could choose to work on 
each individual “movement” (i.e., a self-contained part of the musical composition)at 
a time and then break that down into even smaller sections such as the main melody 
and distinct harmonies.

At the early childhood level, it may be difficult for educators to decipher 
which CT and performing arts concepts are most important for young children to 
focus on. It is important to choose concepts from both domains that will reinforce 
foundational early childhood skills that are relevant across all classes and content 
matter. Sequencing (i.e., understanding that order matters), for example, is relevant 
to CT and drama but is also a foundational early math and literacy skill.

Bers (2020) describes 7 “powerful ideas” from CT that young children should 
focus on. These include: algorithms, modularity, control structures, representation, 
hardware/software, the design process, and debugging. Table 1 defines each of these 
powerful ideas and illustrates how each one relates to the performing arts as well 
as foundational early childhood skills.
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THREE CASES OF STEAM ACTIVTIES TO 
SUPPORT COMPUTATIONAL THINKING

The previous section explored the powerful ideas of CT young children can begin to 
develop, as well as how and how they map on to the arts and traditional early childhood 
content. But what does this look like in practice? In this section, we will explore 
how these concepts can be brought to life with hands-on robotics kits, interactive 
coding applications, and in-person practices. We will present three case studies that 
include fictionalized vignettes (all school and child names are pseudonyms) that 
are inspired by actual early learning curricula and projects that successfully wove 
together the performing arts, technology, and CT. These vignettes are based on real 
observations and data collected in the settings described, but include fictionalized 
depictions of students.

The first case study will describe a project integrating robotics with music and 
dance performance in Singapore preschools. The second explores a curriculum that 

Table 1. Mapping early childhood CT concepts with performing arts activities & 
early childhood skill

Bers (2020) Computational 
Thinking Concepts Performing Arts Activities & Practices Early Childhood Skills

Algorithms – A series of ordered 
steps taken in sequence.

Story Arc – Understanding that a play 
follows a sequence including a beginning, 
middle, and end.

Sequencing
Logical organization

Modularity – Breaking down 
tasks and procedures into simpler, 
manageable units.

Breaking Down Music - Learning to 
play a song one verse at a time.

Breaking down a large 
task

Control Structures – Controlling 
the sequence in which a program 
is executed. Making decisions 
based on conditions.

Character Reactions – Exploring if/then 
reactions for characters through acting 
improvisations.

Pattern Recognition

Representation – Concepts can 
be represented by symbols.

Music Notation - Learning to read music 
notation and understanding symbols 
represent notes, rhythms, etc.

Symbolic representation 
of letters & numbers

Hardware/Software - Computing 
systems need both hardware & 
software to operate.

Lighting & Sound Boards – 
Understanding that lighting & sound 
boards rely on hardware & software.

Recognizing objects that 
are human engineered

Design Process – An iterative 
process used to develop programs 
& artifacts with multiple steps.

Editing – Iteratively editing a script or 
piece of music.

Writing Process
Scientific Method
Editing/Revision

Debugging – Fixing problems in 
our programs.

Rehearsals – Using the rehearsal process 
to troubleshoot a song that doesn’t sound 
quite right, a scene that doesn’t work, or a 
lighting cue that is off.

Perseverance
Problem-Solving
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explores music and computer science. Finally, the third vignette describes a STEAM 
summer camp that integrated performance arts practices through rehearsals and a 
final performance for families.

Cultural Dances with KIBO

At Sunny Day preschool in Singapore, group partners Nadia, Siti, and Rizwan are all 
working hard on their Dancing KIBO robot project. “Can you pass me the motors?” 
Nadia asks in English, and Rizwan replies, “here you go” in Malay. Because of 
Singapore’s multicultural community, most schools offer bilingual education in 
English, and one of the other three national languages: Mandarin, Malay, and 
Tamil. Although everyone learns English at Sunny Day, these three children are in 
the Malay “Mother Tongue” program. Today, they are excited to test the dancing 
KIBO project they have been working on for several weeks. They can’t wait to show 
off their special Malay dance to their classmates in their school showcase!

Nadia is nearly done attaching two motors to their KIBO. Meanwhile, Siti is building 
their dance program while Rizwan checks their Design Plan Worksheet and gives Siti 
instructions. “Begin, Spin, Wait for Clap, Shake, End,” he reads off the code they 
wrote yesterday, while Siti touches each block in the program in front of her. “It’s 
all here! We’re ready Nadia!” Nadia hands the robot to Rizwan, who carefully holds 
KIBO’s flashing scanner light over the barcode on the Begin block. When the robot 
beeps loudly, Nadia and Siti shout “Next!” and Rizwan moves to the next block, until 
he has scanned all the way down the line. Nadia tests their robot, remembering to 
add a sound sensor to hear their clap. Finally, after a few tests, the team decides the 
robot is ready to decorate. Siti carefully attaches the decorated platform they had 
all worked on last week. She is careful not to crush or tear the tissue paper skirts 
of their robot dancer, and makes sure it is sturdy before she takes her hands away.

“Everyone, it’s time to put on your costumes!” their teacher announces. All three 
children take out the silky skirts and hats they brought from home. They giggle and 
twirl in their special outfits, and take turns dancing next to KIBO. Finally, their 
teacher starts the music and nods to their group. Rizwan presses “Start” on the 
KIBO, and all three partners line up to dance along with their robot. “Spin, Clap, 
Shake” their teacher reads off their Design Plan and acts along in front of them. As 
the three children dance side-by-side with their robot, their classmates smile and 
nod to the music. Finally, they finish the song and take a bow to a room of applause. 
“Well done, Malay team!” their teacher says, and helps them carry their robot to 
a table while the Tamil group prepares to practice their dance.
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This case example was taken from a study conducted in 2015, when the government 
of Singapore announced a novel initiative called the “PlayMaker Progamme” to bring 
a maker-centered, screen-free approach to early childhood technology instruction 
(Bers, 2020; Chambers 2015; Digital News Asia 2015; Sullivan & Bers, 2017). 
Preschool classrooms across the country used novel technologies like BeeBot (a 
programmable floor robot) and Circuit Stickers (paper-thin conductive electrical 
components that can be connected to create programmable circuits). Additionally, 
several classrooms explored KIBO robotics described in the vignette above through 
a research collaboration with the DevTech Research Group at Tufts University 
(Sullivan & Bers, 2017).

KIBO is a robotics construction kit designed for children ages 4–7 years to practice 
early engineering, programming, and design skills (Sullivan & Bers 2015). KIBO was 
created by the DevTech Research Group through funding from the National Science 
Foundation and made commercially available through KinderLab Robotics. KIBO 
is a robotics construction kit that involves hardware (the robot itself) and software 
(tangible programming blocks) used to make the robot move (Sullivan and Bers, 
2015). The kit contains easy to connect construction materials including: wheels, 
motors, light output, and a variety of sensors. KIBO is programmed to move using 
interlocking wooden programming blocks. These wooden blocks contain no embedded 
electronics or digital components. Instead, KIBO has an embedded scanner in the 
robot used to scan the barcode on each block one at a time (see Figure 1).

Figure 1. KIBO Robot and sample wooden programming blocks
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Children in the PlayMaker Programme study spent 7 weeks building, coding, 
and testing a KIBO robot, as well as learning and rehearsing a meaningful dance 
from their unique culture. Just as Rizwan checked their group’s Design Plan to 
remember their KIBO program, children spent time matching their dance steps to 
KIBO’s coding instructions, creating an algorithm that represented the familiar dance 
steps they wanted to perform. Coding with a specific order in mind connects to the 
powerful computer science idea of algorithms, or the concept that the sequence 
of coded instructions is important for the final product. Children felt intrinsically 
motivated to develop and stick to specific algorithms because they knew it would 
make their dancing robots perform in a way that matched their initial choreography 
and creative vision.

Children also explored the distinction between KIBO’s software, or coded 
instructions, and robotic hardware, the physical pieces that are required to make the 
robot move. Nadia knew that her KIBO needed special hardware parts, motors and 
a sensor, to act out all the instructions in their software (Spin, Wait for Clap, and 
Shake). The concept that a machine or computer will only act out the instructions 
in its coding software is a complex idea for young children. In comparison, the 
idea that your body can only act out a dance if your mind learns the steps is easy to 
understand. By exploring coding through the metaphor of a musical performance, 
children can embody the hardware/software relationship themselves. They easily 
understand the relationship between software instructions and hardware as they 
act out the dance steps alongside their robots, perhaps even listing their coding 
instructions out loud as they move. Papert, a pioneer of computational thinking in 
children, called this body syntonic learning, and argued that it is a natural way for 
young children to learn about their world (Papert, 1980).

In this example, children explored coding software and robotic hardware through 
the lens of song and dance performance. Children’s cultural connection to their 
dance, and their commitment to accurately showing the steps of the dance, added 
meaning and creativity to an otherwise straightforward (and common) STEM activity 
to code a robot to move in certain direction. In the next vignette, we meet a child 
who is exploring concepts of sequencing and patterns through code, in the context 
of musical composition.

Coded Musical Compositions

Livvy is 7 years old and is learning how to use the ScratchJr programming app on 
her family’s tablet. She has been practicing how to record sounds into coding blocks, 
make characters, and write short lines of code. Today, she wants to make a music 
video for her little brother of his favorite song, 5 Little Speckled Frogs (see lyrics 
below). She tries to record the whole song, but her tune is interrupted! ScratchJr 
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sound record blocks can only hold about 1 minute of song. She erases the recording 
and thinks about the lyrics of her song:

“Five Little Speckled Frogs” Song Lyrics
Five little speckled frogs,
Sat on a speckled log,
Eating some most delicious bugs.
Yum!
One jumped into the pool,
Where it was nice and cool,
Then there were four speckled frogs.
Glub glub!
Four little speckled frogs,
Sat on a speckled log,
Eating some most delicious bugs.
Yum!
One jumped into the pool,
Where it was nice and cool,
Then there were three speckled frogs.
Glub!
Three little speckled frogs
(song continues)...

After singing through the song in her head, she says out loud, “most of this 
song is the same part over and over. Just the number of frogs changes.” She thinks 
a little longer, and then begins to record three new sounds, shown in Table 2. Then 
she organizes her blocks into a code, with her verse block repeating in between the 
counting down blocks (see Figure 2). Soon, she finishes her first page and proudly 
replays it again and again. Just as she is ready to move onto the next part of the song, 
she hears her mom calling her to come eat lunch. She runs to the table beaming, 
and spends lunch telling her family all about the parts she wants to add to her song 
project after she finishes eating.

Livvy was engaging in the computational thinking skill of Algorithmic logic 
and sequencing when she worked on her ScratchJr song project. By creating her 
song through code instead of simply singing it, she was forced to consider the 
repetitive patterns in the song. Music also supports Livvy’s intrinsic motivation to 
accurately code the sequence. She and her audience (her little brother) know what 
the song sounds like, and if there are changes in the sequence it becomes a musical 
reinterpretation – but not the old familiar classic.
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Musicians and computer scientists both share a very important understanding 
about the value of algorithmic sequencing. Even people who have never coded before 
can understand why it would be important for a computer or machine to carry out 

Table 2. Livvy’s sound block recordings

Sound Block Livvy’s Recording

Block 1 (Verse):

Sat on a speckled log,
Eating some most delicious bugs.
Yum!
One jumped into the pool,
Where it was nice and cool,

Block 2: Five little speckled frogs

Block 3: Then there were four speckled frogs.
Glub!

Block 4: Four little speckled frogs

Block 5: Then there were three speckled frogs.
Glub!

Figure 2. Livvy’s ScratchJr Program, which reads “Start on Green Flag, then Play 
Recordings in this order: 2, 1, 3, 4, 1, 5”
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instructions in a specific order to function correctly. We need sensor-automated sinks 
to wait to be activated until they turn on the water faucet, and a robot coded to move 
straight 3 times and then right will end up in a very different place than if it turned 
right 3 times and then moved straight. Similarly, the sequence of notes, phrases, 
and stanzas in a musical score is important to creating the mood and emotion that 
the composer is trying to evoke, in addition to recreating the rhythm and cadence of 
familiar songs accurately. The shared emphasis on sequencing and patterning is part 
of the reason that computer science researchers have recently begun to explore AI 
(artificial intelligence) algorithms to aid in music composition (e.g., Moruzzi, 2017).

When Livvy breaks up the parts of her song into different sections and pieces 
them together again through code, she is also practicing modularity, the practice of 
decomposing problems into smaller, constituent parts. This is distinct from breaking 
music phrases into stances or couplets, which is more similar to a literacy or poetry 
task, but instead requires Livvy to recognize the specific lyrics of the song that 
change through each iteration of the verse. As Livvy works through multiple rounds 
of testing and refining her project, she may also choose to test specific parts of the 
program individually, rather than launching the whole song from the beginning, 
which is also a form of modularity. In early childhood, modularity is a challenging 
but important skill that sets the foundation for larger and more complex tasks like 
writing a lengthy story, exploring complex math concepts, and more.

Livvy’s vignette highlights the importance of using algorithmic logic, modularity, 
and debugging to explore musical composition with a technological tool. Moreover, 
this vignette demonstrates a simple way that educators can infuse music with 
computational thinking through a freely available coding application. the third 
and final example in this chapter, we consider how children can apply the same 
mindset of debugging and refining a “work in progress”, to the task of rehearsing 
and executing a culminating performance about their completed STEAM projects.

Reflecting on Computational Thinking and Performing Arts

“...And now, I’d like to introduce the Robot Campers to share with you their 
robotic Zoo Animals! Go ahead and say hello, campers!” Calvin’s camp counselor 
announces and the room full of parents, grandparents, siblings, and babysitters 
erupts in applause. He is a little nervous, but when his counselor, Lisa, gives him a 
big smile and two thumbs up, he stands up with his friends and waves at his family 
in the crowd. Lisa moves to the side of the stage area, so Calvin can still see her but 
she is not in the way of the audience, and she holds up the poster of the Engineering 
Design Process for the campers to see. Then she holds up her fingers to silently 
count down “3 – 2 – 1 – GO!” and the campers start singing “the Design Process 
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Song” at the same time. Lisa points to the poster and mouths the words along with 
them. Everything is going exactly like they practiced yesterday in rehearsal. Calvin’s 
nervousness starts to fade and soon he is smiling and singing loudly. When they get 
to the end of the song, he doesn’t even need anyone to point at him to remind him 
when to sing his big ending – this is even better than rehearsal!

Next, he gets ready to show-and-tell about his robot. Just like in a school play or 
performance, each camper has lines to say at particular times. When it is Calvin’s 
turn, Lisa hands him his decorated robot and he holds it out for everyone to see. 
“This is my Zebra. Zebras are my favorite animal because they’re kind of like 
horses but with better colors.” All the adults laugh and Calvin looks up, confused, 
but Lisa nods for him to keep going. She also puts her hands around her mouth as 
if she might shout, to remind him to talk louder. He keeps going, raising his voice 
to say “My three zebra facts are: Zebras are herbivores because they eat grass, 
Zebras live in Africa, and many Zebras together is called a Dazzle. I programmed 
my Zebra with many forwards because zebras can travel very far, and I used a light 
sensor to make it only move when it’s light outside, because Zebras sleep at night 
and are awake during the day. It took me 8 tries to make the sensor work right. Also, 
I used black and white streamers for the Zebra stripes.” Calvin places his robot on 
the ground and presses the “Play” button to show his moving Zebra robot. When 
it stops moving Lisa starts clapping, and then the whole audience claps so loudly 
that Calvin jumps. He sees his Mom and brother standing up, clapping loudest of 
all. “Thank you, Calvin! Go ahead and take a bow!” Lisa says. Calvin bows like 
they practiced that morning, and carried his robot back to his seat.

After the showcase, Calvin walked back to the bus stop with his family, holding his 
new Robot Engineer certificate with a picture he remembered posing for earlier 
that week, of him holding his Zebra robot. He was so proud that he asked his mom 
if they could hang the certificate on the refrigerator at home. “Are you still sad you 
didn’t get to take the robot home?” his brother asked. “No,” Calvin said, “this is 
even better,” and he held up his certificate, beaming.

Calvin’s experience at his robot showcase is a common scene from the STEAM-
themed camps run at the DevTech Research Group. In addition to being a powerful 
way to commemorate the time and effort that children put into their STEAM projects 
and invite adults to understand the work they did at camp, performances like these 
are wonderful opportunities to practice performance and dramatic arts. Calvin’s 
several rehearsals prepared him for large-group public speaking, communicating 
through song, gestures, and speech in front of an audience, and coordinating with 
a team of other performers to make sure their performance came across as a clear, 
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cohesive presentation. The teacher moves made by counselor Lisa are some classic 
supports that drama teachers use to guide children to focus and remember their parts, 
and remind children that they are not alone. This kind of practice is important for 
children’s perseverance and executive functioning, especially during the potentially 
overwhelming experience of performing for a crowd.

Another goal of helping children rehearse and refine a staged performance is 
that it is another way to practice the Engineering Design Process. This is a multi-
step practice that professional and novice engineers, designers, and builders engage 
in when working through a design project. Educators and researchers use various 
versions of this cycle (e.g., see Lachapelle & Cunningham, 2007, and Milto, 
Portsmore, McCormick, Watkins, and Hynes, 2020), but almost all of them move 
through a process of asking a question, brainstorming and testing different solutions, 
and iterating on designs until the designer is satisfied. The design cycle commonly 
used at DevTech STEAM camps is depicted in figure 3, notably an infinity loop 
to signify to children that the process is never fully “done,” and you can constantly 
jump around to any stage in the process as you work. This is akin to rehearsing a 
staged performance: there are always changes and improvements that can be made.

Figure 3. The engineering design process
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Calvin’s references to improving on his rehearsal point to another important 
practice that he surely explored when building his zebra robot as well: Debugging. 
Debugging, the practice of identifying and resolving problems in your work, is a 
popular skill to build when creating a STEM project. It’s especially useful when 
the program or machine is meant to solve a problem, or is expected to perform in a 
very specific way. However, this process is also useful for dramatic performances, 
when timing, coordination, and precise execution of lines and actions is important 
to expressing a clear, unified message to an audience. Just as Calvin spent “8 tries” 
reworking and iterating on his robotic sensor, he also spent several rehearsals 
learning his lines for the showcase performance. While debugging with technology 
can improve his competence as a technician and builder, debugging his performance 
can support his developing confidence in sharing and expressing his design ideas.

Summer Camp STEAM Showcase

The vignettes above demonstrate ways that children can engage with computational 
thinking through a STEAM integration approach, with dramatic, performance, 
and visual arts playing as important a role in children’s creative design work as 
engineering, logic, and technology. In addition to highlighting children’s creative 
and expressive potential through computational media, these stories also depicted 
adults – parents, teachers, and counselors who put in considerable time and effort 
“behind the scenes” to support children’s positive early STEAM experiences. In this 
section, we unpack some practical steps that adults can take to increase children’s 
chance of success with STEAM-themed performing arts explorations.

We have argued throughout this chapter that computational thinking is just one 
among many skillsets that children can leverage during creative STEAM play, but 
we have not yet described what other types of learning adults might look for. In 
2012, Bers outlined the Positive Technological Development framework, a model of 
psychosocial behaviors that children can practice through engagement with technology 
(Bers, 2012). This framework drew on extensive research in latent character trait 
development to yield six behavioral indicators of children’s psychosocial engagement, 
also called the 6 C’s (see figure 4).
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What does this framework mean for CT teaching and learning? The 6 C’s 
can be a guiding framework to remind adults of the positive psychological and 
prosocial outcomes that children stand to gain through developmentally appropriate, 
meaningful, child-directed technology exploration (Bers, 2012). Below, we outline 
teaching and mentoring practices that specifically relate to integrating STEAM 
and the performing arts. In each example, we use the 6 C’s to highlight aspects of 
psychosocial development that are supportive of CT learning:

• Support Children in Giving and Receiving Constructive Feedback. An 
important aspect of both art and engineering is respecting the iterative, 
flexible, and sometimes unpredictable nature of the design process. In our 
curricular work with children, we often encourage children to pause and 
celebrate the process through mid-point project shares and requests for help 
and feedback, typically in medium or large groups. In addition to helping 
children course-correct in the event of technology bugs or challenges, these 
conversations give children opportunities to practice communicating their 
work and ideas in a way that others can understand. Children who are not 
presenting ideas also have learning opportunities, and must practice how to 

Figure 4. Positive Technological Development Framework, including (left) general 
character assets that children can develop, (center) six corresponding behaviors 
(i.e. “6 C’s”) that children exhibit when using technology to indicate they are 
developing that asset, and (right) example classroom practices that can support 
positive behaviors through technology use
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provide feedback or opinions in a collaborative and constructive way, without 
hurting the presenting child’s feelings. Adults can help children develop 
empathic and constructive choices of conduct by offering a simple structure 
for feedback, such as naming one aspect of another child’s project that they 
admire or enjoy for every suggested change. This type of exercise is common 
in performing arts classes after children perform a scene or monologue, but 
less common in coding or computer science classes. However, it is especially 
helpful for young children because it allows them to observe their peers’ 
reactions to their words and choices, which important for their developing 
social and perspective-taking skills.

• Implement Rehearsals. While we appreciate the worry of over-practicing 
and taking the joy out of an expressive experience, rehearsing for a 
performance is an important part of the creative process. In STEM, the arts, 
and life, there is always room to “improve,” and learn from past failures. 
Giving children opportunities to experience failure in low-stakes settings 
bolsters their confidence ahead of larger, more intimidating performances. 
When adults skip these practice opportunities, children may feel unsure about 
their ability to express their creative selves for “real” events and audiences, 
leading to stifled creativity and, in the worst-case scenario, stage fright and 
fear of failure. Instead, adults can liken rehearsals to the “Test & Improve” 
step of the engineering design cycle (see Figure 3). This positions rehearsals 
as a necessary step toward content creation, rather than letting small failures 
discourage a child from completing their performance. Importantly, rehearsals 
also offer low-stakes environments for children to practice respectful listening 
as audience members. Adults can invite these children to offer feedback 
and encouragement (e.g., through applause) to help them feel involved in 
rehearsing for more passive parts of a performance. Positive presentation of 
failures can help children outline the next steps for debugging their work, 
allowing space for them to explore creative solutions, and ultimately make 
their work even better than they originally thought it could be!

• Communicate with Education Stakeholders. Children may have wonderfully 
rich performing arts STEAM experiences in the context of a camp or 
classroom, but how can we support the transfer of these skills to other settings 
and learning contexts? Adults can set children up for STEAM success (in the 
performing arts or in any STEAM program) by communicating ideas and 
strategies to keep the learning going with other adults and caregivers in the 
child’s learning environment, including home and school. Regular notes sent 
home to family members, classroom teachers, or other counselors can outline 
key concepts, activities, and vocabulary words from the day’s STEAM 
lesson, and can even prompt adults with questions or ideas to connect to 
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relevant experiences at home or in the local community. These can easily 
be drafted ahead of time, and shared in a timely way at pick-up and drop-
off, or classroom transitions. Connecting STEAM learning to children’s 
daily experiences (e.g., at the grocery store, while watching TV, or even 
while eating dinner) can cement CT concepts that they will carry into later 
academic settings. Perhaps more importantly, this kind of communication 
among a child’s entire community of mentors and educators serves to recruit 
them as STEAM-allies within the child’s learning network.

• Be a STEAM Role Model. Adults leading STEAM activities have an 
opportunity to model all of the 6 Cs by diving in and taking part in the 
creative process alongside children! In addition to being a fun and dynamic 
way to lead activities, this method allows children to see first-hand how 
an experienced STEAM practitioner works through challenges using 
perseverance, positivity, curiosity, and passion. Many learning approaches, 
especially in early school settings, attempt to “manage” children’s attention, 
motivation, and contribution to activities (Rogoff, Paradise, Arauz, Correa-
Chávez, & Angelillo, 2003). By comparison, research has shown that when 
children are positioned as responsible contributors to a shared task in which 
adults also take part, they exhibit more intrinsic motivation to observe and 
participate (e.g., Rogoff, Paradise, Arauz, Correa-Chávez, & Angelillo, 
2003). Studies also show that regardless of the teaching approach, children 
are constantly observing and learning from adults around them, which leads 
to schemas of social understanding (e.g., Sullivan, 2019). For example, if 
their female teacher never engages in an engineering project of her own, or 
their male caregiver insists that he is not creative, this contributes to children’s 
developing understanding (and stereotyping) of gender roles (Sullivan, 
2019). Adults can foster a more equitable STEAM narrative by engaging 
as collaborators, creators, and experimenters alongside the children they are 
mentoring. This can lead to more agency and freedom of creative expression 
in children, an important aspect in their arts-integrated learning. Finally, 
adults can telegraph expectations and values to children through their praise 
and affirmations. Research shows the importance of praising effort, rather 
than output, for fostering a resilient growth mindset in children (Dweck, 
2008; Sullivan, 2019). For example, telling children that you admire their 
pretty decorations cues them to attend to visual output of their work, which 
shifts focus from the creative process. Over time, this kind of praise can lead 
to perfectionism or performance anxiety in children. Instead, admiring the 
effort and time they must have put into their detailed decorations sends the 
message that the process of designing is more important than the product, and 
reinforces children’s perseverance and initiative.
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CONCLUSION

In the professional world, the line between the arts and computing is becoming 
increasingly blurry. Fields like film and video game design, for example, rely heavily 
on both artistic and computing abilities. Colleges like Yale are now offering majors 
in Computing and the Arts, melding computer science with drama, music, and more. 
Why, then, should we teach these fields in isolation at the early childhood level? Both 
CT and performing arts activities offer young children new and engaging ways to 
build problem-solving skills, express themselves creatively, and build self-confidence. 
By integrating the performing arts with CT, it also becomes possible for parents and 
educators to reach children who are not typically drawn to STEM or computing. 
Through these integrative experiences, children learn that computational skills can 
be applied to the arts, and in fact, support them in furthering their artistic endeavors.
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KEY TERMS AND DEFINITIONS

Arts Education: A field of educational research and practice informed by 
investigations into learning through arts experiences.

Computer Programming: The process of designing and building a stepwise 
list of instructions (program) for a computer or machine to carry out.

Creative Expression: A broad spectrum of using artistic to engage in storytelling 
and idea-sharing, sometimes related to expressing aspects of selfhood (e.g., identity, 
personal experiences). Methods of creative expression include dance, writing, theater, 
drama, acting, singing, music, broadcasting, digital design, and scriptwriting.

Dramatic Arts: The art of the writing and production of plays; drama.
Early Childhood Education: Education of children from birth to age 8 years.
KIBO: A screen-free programmable robotics kit for young children with blocks, 

sensors, modules, and art platforms.
Performing Arts: All forms of creative activity that are performed in front of 

an audience, such as drama, music, and dance, etc. Also called Performance Arts.
ScratchJr: A programming application for young children to create games, 

animations, stories, and more.
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STEAM Education: An approach to learning that integrates science, technology, 
engineering, the arts, and mathematics for encouraging student inquiry, dialogue, 
and problem-solving.
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Chapter  8

DOI: 10.4018/978-1-7998-7308-2.ch008

ABSTRACT

This chapter provides theoretical and practical insights for fostering children’s 
computational thinking (CT) in homes and other family-friendly spaces such as 
libraries, museums, and after-school programs. The family context—the kinds of 
roles, interactions, and opportunities afforded by parents, caregivers, and siblings—is 
essential for understanding how young children learn and engage in CT. This work 
is informed by research on how everyday activities and educational technologies 
(and the contexts in which they are used) can be designed to promote opportunities 
for CT and family engagement. This chapter discusses ways to support children’s 
CT by co-engaging family members in collaborative coding activities in homes and 
other informal learning spaces.

INTRODUCTION

Parents and caregivers have long played an important role in children’s early learning 
and development (NAEYC & Fred Rogers Center, 2012; Rideout, 2014). From birth 
onwards, children rely on their caregivers to provide them with the care they need 
to be happy and healthy, and to grow and develop in positive ways. Caregivers of 
today’s increasingly digital and global landscape are tasked with exposing their 
young children to an emerging set of skills that enable them to successfully navigate 
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the constantly evolving and technology-rich society in which they live. One set of 
these so-called “twenty-first century competencies” is computational thinking, the 
focus of this book.

In Chapter 1, Bers describes computational thinking (CT) as a way of thinking 
in new ways that invites creativity, collaboration, and critical thinking, among 
other important skills. Prior to the 1980s, CT was not a term that was used outside 
of the field of computer science (CS), let alone in the homes of young children 
and families. In many ways, CT is still largely situated within the CS discipline. 
However, as technology continues to grow and young children are increasingly 
exposed to a wide range of technological tools, CT is being treated more like the 
“universally applicable attitude and skill set” Wing (2006) and others purported 
it to be. In line with this perspective, CT can be applied to a variety of problem-
solving situations that do not necessarily require the act of coding or manipulating 
digital technologies but can be supported when partnered with them. As such, CT 
represents a set of skills that can be learned and fostered through young children’s 
everyday play and learning activities, many of which occur in informal spaces in 
the presence of family members.

It is important to acknowledge that informal spaces, as described in this chapter, 
have less to do with physical location (though that can be a distinguishing factor) but 
rather more to do with the kinds of interactions and learning opportunities afforded 
to children and other individuals occupying that space. For instance, an after-school 
chess club with local community members might take place in a formal school 
setting, but the nature of the activity and the participants involved in the activity 
make it more of an informal learning context. Callanan, Cervantes and Loomis 
(2011) summarize five key dimensions of informal learning: 1) non-didactive, 2) 
highly socially collaborative, 3) embedded in meaningful activity, 4) initiated by 
learner’s interest or choice, and 5) removed from external assessment. Accordingly, 
the informal learning spaces discussed in this chapter refer to environments that 
invite multiple pathways for attaining and transmitting knowledge, promote social 
and collaborative interactions, and engage children in meaningful and self-driven 
activities for the sake of enrichment, not evaluation. Such spaces include children’s 
homes, museums, libraries, community centers, after-school enrichment programs, 
and other spaces that are accessible to young children and their caregivers.

The goal of this chapter is to provide theoretical and practical insights for fostering 
children’s CT in homes and other family-friendly informal learning spaces. The family 
context, which is comprised of the various roles, interactions, and opportunities 
afforded by parents, caregivers, siblings, and extended family members, is essential 
for understanding how young children learn and engage in CT. This work is informed 
by research on how everyday activities and educational technologies (and the contexts 
in which they are used) can be designed to promote opportunities for CT and family 
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engagement. After presenting an overview of this literature, I discuss one workshop 
model for engaging families in collaborative computing and CT activities in informal 
learning spaces. These workshops, called Family Coding Days, utilize two coding 
platforms for young children shared in other chapters of this book: the ScratchJr 
app and the KIBO robotics kit. The chapter concludes with some practical insights 
for families, educators, and practitioners when facilitating such events like Family 
Coding Days or other family-oriented opportunities that aim to strengthen young 
children’s development of coding and CT skills.

THE ROLE OF CAREGIVERS IN SUPPORTING 
CHILDREN’S COMPUTATIONAL THINKING

Long before formal schooling begins, parents and caregivers (hereafter referred to 
as “caregivers” to synthesize the various terms used to identify the primary adults 
who care and provide for a child) guide young children’s participation in culturally 
valued activities and practices (Barron, Martin, Takeuchi, & Fithian, 2009; Lave & 
Wenger, 1991; Rogoff, 1999; Vygotsky, 1978). These activities and practices serve 
to promote children’s development in a variety of cognitive domains, including but 
not limited to early literacy and language, numeracy, scientific thinking, artistic 
and musical abilities, and competency with technology, all of which are connected 
in some capacity to CT. This section summarizes the literature on caregivers’ roles 
as gatekeepers, facilitators, co-learners, and co-designers of children’ coding and 
CT experiences.

Although children have some agency in how they explore the world around them, 
the role that caregivers play, either implicitly or explicitly, in guiding children’s 
participation in cultural and social activities is critical. For instance, caregivers 
may provide access to particular toys or media in the home, or they may arrange for 
the child to engage in informal learning opportunities outside of the home at local 
libraries or other community spaces (Rideout, 2014). Caregivers may also engage 
more directly in these activities by attending these informal learning experiences 
with their children, co-viewing media, or playing with toys and games together 
(Takeuchi & Stevens, 2011). Regardless of the level of involvement caregivers 
may have, one thing is clear: caregivers act as “gatekeepers” (The Toy Association, 
2019, p. 5) of children’s early play and learning experiences, and thus, of children’s 
earliest experiences with multiple dimensions of CT.

Various frameworks and definitions of CT have been proposed over the years 
(see Bers’ Chapter 1). This chapter focuses on seven powerful ideas of CT that are 
developmentally appropriate for young children: algorithms, modularity, control 
structures, representation, hardware/software, design process, and debugging 
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(Bers, 2018). These seven powerful ideas encompass CT concepts and approaches 
that children can exhibit through everyday activities around the home and other 
informal spaces. Table 1 illustrates common activities in the home that support 
CT. One example of a CT concept that can be fostered through daily activities is 
algorithms. Caregivers may support children’s algorithmic thinking by structuring 
daily schedules in a logical and step-by-step fashion, such as through morning and 
evening routines. Algorithmic thinking is also involved in library and museum 
settings when families use maps to navigate from one space to another or plan out 
how they will visit multiple exhibits over a span of several hours.

Another example of a CT concept that can be fostered in informal settings without 
technological devices is control structures. In programming, control structures are 
complex sets of code that determine whether and how other pieces of code are 
executed (e.g., repeat loops, events, and conditionals). In the broader sense of CT, 
however, control structures can be described as a way of understanding whether and 
how everyday activities should be performed. Let’s look at these two statements 
as an example: 1) If it is cold outside, then I will wear a jacket, but if it is warm 
outside, then I will leave my jacket at home. 2) Because I have two feet, I perform 
the action of putting on my sock and then my shoe two times: first for my left foot 
and the second time for my right foot. The first statement identifies a situation 
for which the outcome will be determined by an external event, the weather. The 
second statement represents an activity that involves a step-by-step process that is 
repeated a total of two times. These examples illustrate how families may already 
be encouraging or supporting children’s understanding of conditionals and repeat 
loops but may not be aware of it, possibly because they may lack an understanding 
of CT or because the activities do not necessarily involve technology. However, as 
Relkin and Strawhacker detail in Chapter 3, there are many unplugged activities 
that can help promote children’s CT and can be facilitated by parents or other family 
members.

Caregivers may also support young children’s CT development through more 
explicit technology-mediated activities that engage children in viewing, manipulating 
or producing computational artifacts. Computational artifacts are anything created 
by a human using a CT process and a computing device, such as a program, image, 
video, audio, presentation, or web page file (K-12 CS Framework, 2016). Although 
children may be exposed to viewing computational artifacts from a very young 
age using televisions or mobile devices (Rideout, 2014), the act of manipulating 
or producing them might be a novel experience. Thus, in addition to their roles 
as gatekeepers and resource providers, caregivers can also serve as facilitators of 
children’s technology-related experiences. As facilitators, caregivers not only provide 
access to opportunities, but they also may be present to provide verbal, emotional, 
physical, or cognitive scaffolding to help children understand difficult concepts or 
guide their learning (Neumann, 2017; Yelland & Masters, 2007).
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Table 1. Examples of activities in the home that support computational thinking (CT)

CT Powerful 
Idea (Bers, 2020) Activity Example Activity Description

Algorithms
Following daily 
routines and 
schedules

From the moment children wake up and to the time they get 
ready to fall asleep, children often follow a set of routines that 
help them understand everyday events and procedures. By co-
constructing schedules with children, guiding them to choose the 
order of activities, or asking children to remember the steps for 
doing something, caregivers reinforce the idea of algorithms or 
sequencing.

Modularity
Setting up the 
dining table for 
a meal

Each place setting (plate, cup, fork, spoon, knife, etc.) represents a 
module that can be duplicated. Caregivers may demonstrate how 
to arrange one place setting, and children may follow along and 
arrange the remaining dinnerware, displaying their understanding 
of decomposition (breaking down a large task into smaller chunks) 
and modularity (recreating the module for the other place settings 
that day or on a different day).

Control Structures

Choosing what 
to wear based on 
the activity or 
weather

When explaining to children why it would be appropriate to wear 
a coat before going outside in the cold weather, caregivers are 
introducing children to the idea of decision-making and cause and 
effect. These foundational concepts promote understanding of 
control structures such as loops and conditionals, which are used 
to direct which actions take place and the order in which they take 
place.

Representation
Sorting items by 
size, color, or 
other attributes

Many objects in homes, including young children’s toys and 
games, have distinct attributes, such as color, size and shape. Some 
of these attributes signify important meanings. For example, the 
red button on a TV remote and the red button on a video camera 
can both be used to record something. When children recognize 
and learn these associations, they are engaging with the idea of 
symbolic representation.

Hardware/
Software

Using a remote 
to turn on/off 
devices

A computing device works by having physical components 
(hardware) that are given instructions using programs (software). 
When children use remotes to turn on/off devices or to adjust the 
volume, brightness, or other settings on the device, children are 
engaging with the concepts of hardware and software.

Design Process

Building 
structures with 
blocks or other 
materials

Children’s play activities often involve blocks, building bricks, 
or other sturdy objects that can be stacked on top of one another 
to create different structures. Children may be provided design 
challenges that invite them to think, plan, and test their ideas 
and then determine whether their creations successfully met the 
challenge. Through the process of building, testing, and improving 
on their ideas, children participate in an iterative design process.

Debugging

Finding or fixing 
something that is 
missing, broken 
or incorrect

It is not uncommon for a young child to misplace something 
around the home or to act displeased when their favorite toy is 
broken. The act of finding solutions to problems can support 
children’s debugging skills when they engage with computing 
devices. For instance, children may be guided to retrace their steps, 
tinker and explore how broken parts can be glued back together, 
and persevere through challenging tasks.

Source: (IGI, 2021)
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The role of caregivers as facilitators is particularly salient in library and museum 
settings (Campana, Haines, Kociubuk, & Langsam, 2020; Ehsan, Ohland, Dandridge, 
& Cardella, 2018; Swartz & Crowley, 2004). Caregivers may explore these spaces 
with their children, pointing out different features of exhibits and encouraging 
children to interact with the objects or individuals in the space. For example, a study 
by Ehsan et al. (2018) examined five families’ interactions with a computer-based 
coding game at an engineering exhibit in a science center. The authors found that 
although children could engage in CT independently while playing the game (citing 
evidence of children’s algorithmic thinking, debugging, and decomposition, among 
other CT skills), parents were able to provide complementary CT competencies 
that enabled children to advance to higher game levels. The authors conclude that 
children’s engagement in CT can differ depending on the presence and involvement 
of parents, and that the role of parents may evolve as children gain more experience 
and competence with technology.

Particularly in the context of novel technologies such as tablet-based apps and 
creative computing tools, caregivers may also assume the roles of co-learner and 
co-designer. The terms participatory learning and joint media engagement (JME) 
are often used to characterize how caregivers can co-engage in activities and learn 
alongside their children (Clark, 2011). Takeuchi and Stevens (2011) define JME 
as “spontaneous and designed experiences of people using media together… [such 
as through] viewing, playing, searching, reading, contributing, and creating, with 
either digital or traditional media” (p. 9). Whereas many parent-child interactions 
might involve the parent teaching or guiding the child in accomplishing a complex 
task (“zone of proximal development”, Vygotsky, 1978), novel technologies can 
disrupt traditional roles of teacher and learner and enable families to participate more 
collaboratively and actively (Barron et al., 2009; Connell, Lauricella, & Wartella, 
2015; Takeuchi & Stevens, 2011).

As gatekeepers, facilitators, learners, and designers, caregivers play a variety 
of roles in promoting young children’s CT development. Accordingly, a number of 
programs and interventions have been aimed at bringing children and their families 
together in informal spaces to engage in collaborative STEM (science, technology, 
engineering, and mathematics), computing, and making activities. Some examples 
of these programs include Family Creative Learning, CS is Elementary, and Be a 
Scientist Family Science Program. The Family Creative Learning program consists of 
a series of workshops for school-age children and their families to learn and co-create 
projects using the Makey Makey invention kit and Scratch programming language 
(Roque, 2016; Roque, Lin & Liuzzi, 2014). The CS is Elementary program, formerly 
known as Family Code Night, provides free event kits for schools to host large-scale 
family learning events for K-5 students and families using Code.org and unplugged 
activities (Pearce & Borba, 2017). The Be A Scientist Family Science Program 
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brings children and parents together for five-week workshops to engage in hands-
on science and engineering-related activities (Pierson, Momoh, & Hupert, 2015).

To provide a closer look at one family workshop model and the ways in which it 
can support children’s coding and CT skills, this next section describes a research 
project at the DevTech Research Group at Tufts University called Family Coding Days. 
This project, like the aforementioned programs, explored how families with young 
children engage in unplugged and technology-supported coding and CT activities. 
The technologies used in this project were the ScratchJr programming application 
and the KIBO robotics kit, both of which are introductory block-based programming 
languages developed by the DevTech Research Group that expose young children 
to foundational coding and CT concepts. Due to the interface differences between 
ScratchJr (screen-based application) and KIBO (tangible robotics set), the project 
also explored the ways in which the type of interface may influence how families 
interact with the technology and with one another during the workshops.

FAMILY CODING DAYS

The Family Coding Days project at the DevTech Research Group first originated in 
the early 2000s as Project Inter-Actions, an exploration of intergenerational learning 
with robotics. Children between the ages of 4-7 and their parents attended a series 
of five-week workshops, during which they were introduced to programming using 
LEGO bricks. The project revealed a number of interesting findings about the ways 
in which children and parents learn about technology and engage with powerful ideas 
such as sequencing, looping, and debugging (Beals & Bers, 2006; Bers, 2007; Bers, 
New & Boudreau, 2004). In particular, the project revealed how these workshops 
could generate a multigenerational “community of practice” (Lave & Wenger, 1991) 
that encourages families to engage with each other and with new knowledge and 
skills by producing creative computational artifacts.

About a decade later, the creation of newer coding technologies for young children 
such as ScratchJr and KIBO made it possible to explore family dynamics around 
creative computing with a fresh perspective. Anecdotal evidence from informal 
community outreach events and pilot workshops at local early childhood centers 
and museums indicated that families having the opportunity to code together with 
ScratchJr and KIBO could learn together, too. Thus, these 1-2-hour workshops called 
“Family Coding Days” were developed and implemented with over 100 families 
with young children. A detailed protocol was devised with recruitment strategies, 
facilitation tips, sample workshop agendas, activity prompts, and instructions for 
research data collection, enabling interested event facilitators around the country to 
host their own Family Coding Day workshops in informal learning spaces. A total 
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of 14 workshops (nine ScratchJr and five KIBO) were facilitated in after-school 
programs, libraries, and museums in the local New England area and in several 
cities across the United States. The research sample of Family Coding Day attendees 
included mostly mothers holding an associate degree or higher with children in the 
5-7-year range. Over half of families did not have any prior experience with the 
technology (ScratchJr or KIBO) before attending the event, and about one-third had 
children who had some exposure to the technology through school.

Each Family Coding Day workshop utilized one type of coding technology 
(ScratchJr or KIBO) and consisted of three general types of activities: learning 
about the technology, co-creating a coding project, and sharing projects with peers. 
Families were together for most of the workshop, except for the introductory learning 
activity. Children’s introduction to the coding technology included off-screen games 
followed by a play-based tutorial, whereas parents’ introduction consisted of a step-
by-step tutorial followed by an open discussion. When families were rejoined for 
the co-creating activity, facilitators provided families with sample prompts for their 
projects (e.g., “Program a ScratchJr character or KIBO robot to perform a dance, 
be an animal, or act out a scene from a favorite book or movie”) but encouraged 
families to come up with their own creative ideas. As families worked on their 
projects, facilitators walked around to assist and observed how families interacted 
with one another and with the technology.

This next section presents a summary of findings from Family Coding Days, 
focusing particularly on findings related to children’s CT engagement. Then, two 
illustrative case studies are presented from a small follow-up study, in which individual 
parent-child dyads were videotaped while working together on a ScratchJr or KIBO 
project together for 20 minutes. Although the context of these individual case studies 
was different from the multigenerational community gatherings of Family Coding 
Days, the case studies provided unique insight into the kinds of parent-child CT 
interactions that can take place around creative computing activities.

Findings from Family Coding Day parent surveys indicated that parents reported 
a significant increase in their own coding interest, as well as in their children’s. 
Parents also observed children actively exploring CT concepts of algorithms, design 
process, and debugging. In addition, parents reported engaging collaboratively 
with their children (as opposed to the activity being child- or adult-directed) and 
particularly enjoyed watching their children take initiative as planners of their 
coding projects. Parents provided a variety of cognitive, affective, and technical 
scaffolding support for their children. For example, observed parental behaviors 
included asking their children questions about their projects, offering suggestions 
and words of encouragement, and showing children where to click or press buttons 
(Govind, Relkin, & Bers, 2020; Relkin, Govind, Tsiang & Bers, 2020). No significant 
differences in workshop outcomes, as reported by parents, were found between 
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families who attended ScratchJr workshops and families who attended KIBO 
workshops, suggesting that families experienced similar forms of collaboration and 
joint engagement regardless of interface (Govind & Bers, 2020).

The follow-up study of parent-child dyadic interactions with ScratchJr and KIBO 
shed insight into how families were able to engage collaboratively to create their 
computational artifacts. For example, families positioned themselves strategically 
so that the tool was equally accessible. In addition, if one person was using the tool 
without sharing, the other person would ask to take a turn or make verbal suggestions 
to contribute actively to the project. Consistent with our previous study findings, 
families’ interactions and behaviors during this 20-minute activity further clarified 
parents’ role as coaches and children’s role as planners. The following case studies 
illustrate this coach-planner dynamic and how parents, even without having explicit 
knowledge of computer programming or CT, were engaging in conversations and 
behaviors that seemed to enhance children’s display of CT.

KIBO Case Study: Eye of the Tiger

Jordan (child) and Caroline (parent) are playing with the KIBO robotics kit during a 
KIBO family coding play session. Caroline asks whether Jordan would like to make 
KIBO into an animal or something else, to which Jordan responds “animal… a tiger!” 
Knowing that her son has had extensive experience with KIBO from school, Caroline 
lets Jordan take the lead, remarking, “you might have to lead the way because I don’t 
know how to do this.” Jordan goes to the crafts table and begins looking through 
the various colors of construction paper. They work together to find all the orange 
paper in the stack. Seeing the variety of colors to choose from, Jordan thinks about 
making a rainbow instead, but Caroline encourages him to stick with the tiger idea.

Caroline begins drawing a face on the tiger and prompts Jordan with questions 
about a tiger looks like so that she can draw it properly. She asks, “What color should 
the stripes be? Does a tiger have whiskers? Does a tiger have eyebrows? Does a tiger 
have eyes?” Jordan gets excited about their project after seeing the tiger drawing. 
He asks his mother for help to tape the drawing onto KIBO. They bounce ideas off 
of one another to figure out how to ensure the drawing is sturdy and upright so that 
it doesn’t fall off the robot. Caroline makes the connection that “it’s like putting a 
character on a parade float”. Jordan and Caroline finish taping the tiger body onto 
KIBO. As a finishing touch to their decorations, Caroline offers a suggestion to make 
a tiger tail out of a rolled-up piece of orange construction paper. Jordan considers the 
suggestion but instead decides to cut a zigzag design on a rectangular strip of paper 
and tapes it to the back of the KIBO robot. They run out of tape, which prompts 
them to move onto the next part of their project: programming KIBO.
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Caroline asks Jordan for ideas for their program. Jordan at first seems distracted 
but then walks over to the blocks and confidently says, “Forward, backward, lights—
these are the eyes blinking—and play sounds.” Jordan points out that there are three 
different sounds that can be recorded using the sound recorder module, so he records 
the first two tiger growling sounds. Then Caroline asks for the third turn and records 
her own growling sound. Jordan independently assembles and scans the full program, 
which contains a repeat forever loop, and presses the green triangle on KIBO to play 
the program. He remarks to his mother, “Look, I’m scanning these blocks again on 
purpose because I want this [forward] to go more than once.” Caroline expresses 
her excitement to see their project come alive and gives her son a high-five. When 
they showcase their KIBO tiger project to the researcher, Jordan recalls his favorite 
part as creating the tiger’s tail. Caroline replies that she enjoyed that too but that 
her favorite part was recording the growling sounds. Figure 1 displays Jordan and 
Caroline’s collaborative creation, a KIBO tiger.

CT Connections

There are many examples of CT skills displayed by Jordan in this case study. To 
illustrate a few of them, I will focus on the following three powerful ideas of CT: 
algorithms, representation, and design process. Jordan displays his understanding 
of algorithms by successfully assembling and scanning the KIBO program. He 
demonstrates to his mother how the blocks of the program represent the tiger’s actions 
and even explains how scanning the block multiple times was not an accident but 
rather done purposefully to repeat the robot’s actions. When discussing ideas about 
how to program their KIBO tiger, Caroline and Jordan choose blocks that would 
represent different aspects of a tiger. The light blocks, as Jordan remarks, represent 

Figure 1. Jordan (child) and Caroline (parent) co-create a KIBO project: a robotic 
tiger that moves around, blinks its eyes, and makes growling sounds
Source: Reprinted from Govind (2019)
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the tiger’s flashing eyes. The recorded sounds represent the tiger growling. These 
associations made between the characteristics of a tiger and the actions that KIBO can 
do (i.e., move, turn on its lightbulb, and play sounds) display Jordan’s understanding 
of the computational idea of representation. Finally, Jordan and Caroline engage 
in an iterative design process to create their KIBO decorations. They imagine what 
a tiger’s face looks like, create their drawing, use tape to secure the decoration to 
the robot, and improve their design by adding a tiger tail. These design choices are 
not independently made by Jordan but rather facilitated by Caroline through asking 
questions and offering suggestions.

ScratchJr Case Study: Magic and Mystery

Shaan (child) and Bina (parent) decide they are going to create a play, maybe 
something about “dragon avengers” or perhaps a wizard story. They are participating 
in a ScratchJr family coding play session. Shaan opens a new ScratchJr project 
and begins scrolling through the backgrounds. Because they are making a play, 
Shaan selects a stage background and announces that their theme will be “magic 
and mystery.” Bina agrees with enthusiasm and points out the wizard as they scroll 
through the page of ScratchJr characters. Shaan selects the wizard and navigates 
to the paint editor tool to customize the wizard as Gandalf from Lord of the Rings. 
Bina sounds out the name Gandalf while Shaan uses his finger to type “Gandolf the 
great wizard” as the character’s name. There is extensive trial and error involved in 
customizing their Gandalf character, requiring Bina to show Shaan how to use the 
“undo” feature on the paint editor tool.

Once their first character is set, Shaan switches back and forth between the 
character panel and paint editor to design the other characters for their project. 
Laughing at their silly creations, Shaan and Bina create the following Lord of the 
Rings characters: Frodo, Treebeard, and Legolas. There seems to be no suitable 
character that would be easy to modify into Treebeard or Legolas, so Shaan makes 
the Treebeard character from scratch. Bina points out they don’t have a lot of time 
left, so instead of creating a completely new character for Legolas, Bina encourages 
him to use the fairy and pretend that the wings and heels are “where his bow and 
arrow are.”

With only a few minutes left to finish their projects, Bina suggests to Shaan that 
perhaps they should move on to programming their characters. Shaan agrees and 
decides immediately that he wants to record a story. He selects the green “Record 
Sound” block and starts recording, “Once upon a time, there were these... uh hold 
on a second… there were these four fighters...” Shaan plays back his recorded sound 
and blushes with embarrassment about his pause in the middle. Bina offers the 
suggestion of practicing what to say before recording. They notice they only have 
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about a minute left, so Shaan instead navigates to the blue motion blocks. He swiftly 
drags the blocks into the programming area and snaps them together to create a dance. 
He asks Bina how he can get the character to dance and play his recorded story at 
the same time. Before she could respond, Shaan exclaims that he remembers how 
to do that and adds the “Start on Green Flag” block at the beginning of both sets of 
code. He then decides to use a “Repeat Forever” block for the movements so that 
the characters would keep dancing forever. Bina exclaims and asks, “Forever?! Why 
don’t we just make it repeat a couple of times?” Shaan shrugs and proceeds to test 
his program, excitedly watching the character jumping around the screen. As Bina 
calls over the researcher to look at their project, Shaan copies the dance code to the 
other characters so that they are all dancing together on the stage. Figure 2 displays 
Shaan and Bina’s collaborative creation, a Lord of the Rings-themed ScratchJr play.

CT Connections

In this case study, Shaan leads most of the activity, but Bina is fully present and 
engaged. Their back-and-forth exchanges and giggles throughout the course of 
the activity exemplifies the nature of their playful interactions and collaborative 
experience. To illustrate the ways in which CT is fostered in this example, I focus on 
the following powerful ideas: modularity, debugging, and control structures. Having 
chosen a magical and mysterious theme with many different characters, Shaan and 
Bina display the concepts of decomposition and modularity in their project. They 
break down their project idea (the large, complex novel and book series Lord of 
the Rings) into individual characters that they could then customize and program. 
At the end of their project, Shaan’s ability to copy the code for one character to the 
others demonstrates his understanding that this set of code represents a “dance” 
module that could be used in multiple places. Debugging is also present when 
Shaan wonders how he can get the recorded sound and movement blocks to play at 
the same time. Although he attempts to ask his mother for help, he remembers that 
he forgot to include the “Start on Green Flag” block to the beginning of his code. 
Finally, Shaan’s decision to use the “Repeat Forever” block rather than the orange 
repeat loop block demonstrates his understanding of the difference between infinite 
and finite loops, thus indicating his ability to navigate control structures.

These two case studies highlight some of the ways in which caregivers may 
promote young children’s engagement in CT. As a practical tip, caregivers seeking 
strategies to support children’s CT learning might consider asking the following 
kinds of questions while co-engaging in collaborative activities with children: 
“Can you show or tell me what you’re doing? What are the steps we need to follow 
here? That looks interesting – what do you think will happen if we try this?” Such 
questions open the door for children to display their coding knowledge, ask and 
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answer questions in return, and engage in deeper CT practices. The next section 
explores additional practical strategies for families and facilitators.

SETTING FAMILIES AND FACILITATORS UP FOR SUCCESS

In addition to CT concepts and practices that are encompassed in Bers’ (2018) 
framework of the seven powerful ideas, Brennan and Resnick (2012) identified that 
children participating in creative computing activities can also have CT perspectives. 
CT perspectives are defined as “children’s evolving understandings of themselves, 
their relationships to others, and the technological world around them” (p. 10). One of 
these three perspectives is connecting, which describes how children recognize—and 
perhaps grow to appreciate—the power of creating with and for others. The Family 
Coding Days project and the related work shared in this chapter aptly point to this 
very aspect of CT. When children co-create computational artifacts or co-engage in 

Figure 2. Shaan (child) and Bina (parent) co-create a ScratchJr project with 
multiple Lord of the Rings characters dancing on a stage and a “Legolas” character 
narrating the story
Source: Reprinted from Govind (2019)
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unplugged CT activities with family members—often the closest people to young 
children both physically and social-emotionally—the opportunities to grasp, apply, 
and extend their understanding of CT are amplified.

Models that engage young children and families in collaborative activities 
are well-aligned with the principles of connected learning. Ito and colleagues 
(2013) define connected learning as “broadened access to learning that is socially 
embedded, interest-driven, and oriented toward educational, economic, or political 
opportunity” (p. 4). Collaborative computing activities, such as the ones described 
in the Family Coding Days project, are interest-powered and production-centered, 
inviting parents to co-design robotic creations or digital stories that are personally 
meaningful and interesting to their children and to themselves. These activities are 
also peer-supported and have a shared purpose, welcoming various opportunities 
for collaboration, feedback, and community building. Finally, these activities are 
academically oriented and openly networked, offering children the opportunity to 
learn new skills and connect their learning across different settings.

As recommendations for future research and practice, I offer the following 
practical tips and considerations for families and facilitators seeking to promote 
young children’s coding and CT engagement:

• Tools for consuming versus creating: The JME literature highlights the 
many ways that children of today’s increasingly global and technology-rich 
society are interacting with the technological tools around them. However, 
not all technology is the same. Some tools are made for consuming (e.g., 
televisions); others are made for creating (e.g., conductive play dough). 
Thus, the ways in which families can foster children’s CT through those 
technologies should not be the same either. In any space that is considered 
to be “family-friendly”, caregivers might consider the following questions: 
What might my child do or say while they are navigating this space? What 
might I be doing or saying while navigating this space with my child? How 
does the technology and the technology-mediated activity enable us to co-
engage in CT? Facilitators and designers of family-friendly environments 
might examine the variety of technological tools in their spaces and think 
carefully about the kinds of interactions those tools might provide.

• Leveraging community resources: In addition to the kinds of tools, it is 
crucial to think about how the community will utilize the space and the 
resources needed to make the opportunity accessible and engaging for all 
attendees. Facilitators might consider the following questions: Are there 
enough robotics kits or materials for all families? How are we supporting 
bilingual families or families with children with special rights with this tool 
and activity? What resources may be needed to enhance accessibility and 
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inclusion? Facilitators should be encouraged to leverage the existing resources 
within communities when planning workshops, activities, and other events 
intended to support families’ coding and CT engagement.

• Facilitating bidirectional home-school connections: One of the primary 
goals of this chapter is provide insight on how families can drive their own 
learning process about understanding what CT is and how it can be fostered 
through unplugged and technology-mediated activities. As computer science 
education becomes an increasingly important national and international 
priority in schools and other formal learning settings, continuing children’s 
coding and CT learning in informal settings through family engagement 
initiatives will be increasingly salient. Stakeholders who play a role in 
facilitating children’s informal and formal learning experiences might 
consider the following questions: What activities might parents already be 
doing in homes and informal learning spaces that foster children’s CT, and 
how can we empower parents to recognize and extend those activities? What 
technological tools might be introduced in school settings and how is that 
learning being shared with families? Facilitating bidirectional home-school 
connections is essential to developing young computational thinkers in homes 
and other family-friendly spaces.

CONCLUSION

Computational thinking is a set of thought processes that can be learned and 
fostered through young children’s everyday play and learning activities, many of 
which occur in informal spaces in the presence of family members. These activities 
do not necessarily require the act of coding or manipulating digital technologies 
but can be supported when partnered with them. This chapter bridges together the 
theory, research, and practice around families supporting children’s coding and 
computational thinking through unplugged and technology-supported activities in 
the home and other family-friendly informal learning spaces such as community 
centers, museums, and libraries.
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KEY TERMS AND DEFINITIONS

Caregiver: A person, often a parent or adult family member, who is responsible 
for the overall supervision, care, and well-being of a child.

Informal Learning: Any form of education that takes place outside of a structured 
setting or is embedded within daily life experiences.

Interface: A device that enables a person to communicate with a computer.
KIBO: A screen-free programmable robotics kit for young children with blocks, 

sensors, modules, and art platforms.
Scaffolding: A range of instructional techniques used to support a person in the 

learning process.
ScratchJr: A free block-based programming application for young children.
Unplugged: Describes activities such as games and puzzles that aid the teaching 

and learning of computer science but without the use of technology.
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ABSTRACT

Makerspaces are technology-rich learning environments that can uniquely support 
children’s development. In education communities, makerspaces have become sites 
to take up explorations of personally-motived problem solving, and have been tied 
to 21st century learning outcomes of perseverance, creativity, persistence, and 
computational thinking. Elsewhere in this book, Bers described computational 
thinking as the set of skills and cognitive processes required to give instructions 
for a specific task in such a way that a computer could carry it out. But Bers also 
argued that the purpose of computational thinking is to cultivate a fluency with 
technological tools as a medium of expression, not an end in itself. Computational 
making is part of this expression. This chapter explores the ways in which tools, 
facilitation, and the physical environment can support children’s engagement with 
powerful ideas of computational thinking through making.

Makerspaces as Learning 
Environments to Support 
Computational Thinking
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INTRODUCTION

Makerspaces have become sites to take up exploration of personally-motived problem 
solving, and have been tied to 21st century learning outcomes of perseverance, 
creativity, persistence, and--particularly because of the emphasis on creation with 
digital tools--computational thinking (e.g. Campbell, Heller, & Goodman, 2018; 
González-González & Arias, 2019; Iwata, Pitkänen, Laru, & Mäkitalo, 2020). 
Elsewhere in this book, Bers described computational thinking as the set of skills 
and cognitive processes required to give instructions for a specific task in such a 
way that a computer could carry it out. But Bers also argued that the purpose of 
computational thinking is to cultivate a fluency with technological tools as a medium 
of expression, not an end in itself. Makerspaces provide informal learning spaces 
in which this can happen through computational making.

While the concept of computational making is nascent, we use the term in this 
chapter to refer to any creative making or design endeavor in which makers (anyone 
who creates or tinkers) leverage computational thinking skills (e.g. as outlined by Bers, 
2020), to achieve their creative goals. We do not propose that computational making 
is a learning domain or a standard in itself. In much the same way that picking up 
and putting down weights isn’t the reason one goes to a gym as much as maintaining 
overall health and wellness, and mastering grammar and syntax isn’t the reason to 
learn a new language as much as self-expression and communication, we argue that 
making is not necessarily an educational goal itself. Rather, we pose in this chapter 
that an educational goal of making is to support the maker in developing a suite of 
psychosocial behaviors and character traits, including (but not limited to): confidence 
to tackle unstructured problems, competence with a range of physical and digital 
tools and creative practices, critical thinking skills to evaluate problems and imagine 
logical solutions, and creativity and agency to determine which problems to address 
that are personally or communally meaningful. By extension, an educational goal 
of computational making is to cultivate those same skills and behaviors, but in the 
context of projects that incorporate digital and technological tools, computational 
thinking skills, and disciplinary practices from fields such as computer science 
and engineering. Maker educators are familiar with the phrase, “children should be 
creators, and not just consumers of their own digital experiences” (Smith, 1982). By 
providing tools, community, and an environment to enable computational making, 
a makerspace supports children in creating, rather than consuming.

In the following chapter, we explore research on the educational affordances of 
makerspaces, with a focus on opportunities for computational thinking and making in 
the early years. Following this, we describe practice-based examples of computational 
making inspired by real children and events from our experiences designing and 
evaluating early childhood makerspaces. We use these examples to illustrate how 
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computational making supports learning in areas such as computational thinking 
and creative agency. Finally, we share evidence-based principles for designing and 
facilitating a makerspace to support computational making, and conclude with a 
reflection about the impact of computational making on children’s ability to create 
their own artifacts and ideas.

BACKGROUND

What is a Makerspace?

Soldering irons, 3D Printers, and robots are some examples of tools that people 
commonly feel are too complicated for most education settings, especially early 
childhood ones. In the early 2000s, the maker movement, branded by Dale Dougherty’s 
Make Magazine, began to rise in popularity with the promise to democratize tools, 
expertise, and learning models of production (Dougherty, 2012). His conceptualization 
of makerspaces was widely interpreted to be in the same spirit of public libraries and 
their promise to democratize knowledge and literacy (Lakind, Willett, & Halverson, 
2019). As Doughterty defines them, makerspaces are any places where people get 
together to make. The content of what is made can vary. It is the mindset of the 
community, the affordances of the available tools, and the intended purpose of the 
space that defines the unique identity of a makerspace. While the environment, 
community expertise, facilitation, and tools may be very different across spaces, 
all makerspaces--from very high-tech industry prototyping sites, to school-based 
maker labs, to at-home garages--are places where people can go to make things, 
and develop their making skills.

Makerspaces and the Environment-as-Teacher

Early childhood educators trained in the Reggio-Emilia approach, a pedagogical 
philosophy rooted in supporting children to direct their own learning, often say that 
“the environment acts as a third teacher” (Strong-Wilson, 2007). In other words, 
the environments that we inhabit inform the ways we think about and engage with 
the world. Anita Olds, a leading expert in designing North American childcare 
centers, wrote that “our attitudes and beliefs are the legacy we leave our children. 
Our thoughts, as reflected in our designs, in turn shape children’s beliefs about 
themselves and life” (Olds, 2001).

As designers of computationally-enriched spaces and tools for young children, 
we have researched makerspaces in order to learn how the affordances of the 
environment can support children’s learning, specifically in areas of computational 
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thinking and making. Affordances are properties of objects or environments that 
guide users to the actions they can take, simply through their design and interface 
(Jones, 2003). For example, a door handle could be designed to invite a user to 
push, twist, or pull, depending on the affordances (e.g., shape, size, location) of 
the handle. In 2018, we conducted research on the differential impact of the “three 
teachers” identified in the Reggio-Emilia pedagogy (Strawhacker & Bers, 2018b). 
Specifically, we explored children’s interactions with peers, facilitators, and the 
makerspace environment and materials, and looked for differences in key areas 
of Positive Technological Development (Bers, 2012), six behaviors that children 
can exhibit when using technology that are shown to correlate with psychosocial 
development in children. We found that each of these three “teachers” supported 
children’s positive technology engagement in related but unique ways. Children and 
facilitators supported more social behaviors such as “making pro-social choices of 
conduct” and “building community connections,” and the makerspace itself—through 
material affordances of the furnishings, materials, and tools, as well as on-display 
projects and provocations—supported children’s creativity and content creation 
(Strawhacker & Bers, 2018b).

If children’s spaces, tools, and experiences have such a strong impact on learning, 
we have an opportunity to set intentions about what we want these environments to 
communicate to children. Since beginning our work in 2015, we have maintained 
a goal of developing makerspaces to engage children in playful and self-directed 
computational thinking and making, in order to empower them as future citizens 
and leaders.

What Can Makerspaces Teach Us?

In his theory of loose parts for children’s play, Nicholson wrote that “our education 
and culture condition us to believe that creativity is for the gifted few… and this 
is a culturally induced and perpetuated lie.” It is this lie that the maker movement 
responds to, by promoting a vision of community that is participatory, egalitarian, 
and innovative (Hlubinka et al., 2013). Making can be successful for young children, 
as well as older youth in middle school, high school, and college (Blikstein, 2013; 
Halverson & Sheridan, 2014; Marsh et al., 2019). We chose to focus on early childhood 
because we know that children form stereotypes about themselves at a very young 
age (Martin & Ruble, 2004, Sullivan, 2016), and so we must ask what educational 
tools can we use to combat these harmful biases in the early years? Papert (1980) 
asserted that knowledge is constructed by the individual, through interactions with 
the real world and with digital worlds. In other words, learning happens by making. 
He also posed that the making should be personally meaningful, as evidenced by 
children’s willingness to persevere on a project for its own sake in spite of challenges, 
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a concept he termed “hard fun” (Papert, 2002). We align with his conception of 
learning, and maintain that learning happens through playful making.

Play in the early childhood years is dominated by make-believe fantasy play. 
For young children, this is serious work; through play, children develop new tools 
for thinking, being, and symbolizing (Scarlett, 2005). The maker movement boasts 
“If you can imagine it, you can make it” (Hlubinka et al., 2013). We know that, 
as with play, children’s motivations to make, experiment, and explore come from 
need to understand the world around them, and one of their most trusted tools in the 
pursuit of this exploration is their imagination. A space explicitly designed to foster 
making and learning through playful, imaginative making seems developmentally 
appropriate, if not necessary.

In our own research, we intentionally designed spaces to interrogate the societal 
lie of “gifted creativity” by designing rooms with easy access to tools and materials, 
open-ended play provocations, and facilitators trained to let children take the 
creative lead on their own playful projects. The major distinction that separates 
makerspaces from other learning environments is that they offer learners a way to 
engage with a wider range traditional and novel tools, technologies, practices, and 
forms of expression than are typically acceptable in formal learning environments, for 
example, because of mess, limited space, or impractical arrangements (e.g. too few 
electrical outlets). Today, there are many technologies that children may encounter 
in their daily lives, including tools from their parent’s generation (like phones and 
pagers), their grandparent’s generation (like LEGO bricks and polaroid cameras) 
and from many generations before that (like pencils and paper). A makerspace offers 
children a place where they can form their own community, and engage with the 
tools and skills that will become part of their own generation. Today, that includes 
programming, robotics, and engineering (Bers, 2008).

Computational Making in Early Childhood

Given the wide range of applications and audiences for makerspaces, we set out to 
investigate how to design makerspaces that specifically engage young children in 
computational thinking and making. In order to do this, we revisited classic theories 
of how children learn by doing and making. Developmentalists have long known 
that between ages 5-7 years, young children undergo dramatic transitions in almost 
every domain, including cognitive, social, emotional, and physical changes (Sameroff 
& Haith, 1996). As their capacity for new understanding grows, patterns emerge in 
how children learn, and hands-on play, physical exploration, personal motivation, 
and social connection all play a heightened role in children’s knowledge-gathering 
about their world. Famed developmental theorist, Piaget, is credited as the first to 
propose the idea of constructivism, the theory that children construct their own 

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



181

Makerspaces as Learning Environments to Support Computational Thinking

knowledge as they attempt to understand their own interactions with the world, 
such as building with block manipulatives to form early conceptions of gravity and 
spatial reasoning (Wadsworth 1996). Because of the importance the environment 
on children’s learning, constructivist pedagogies argue for cultivating a learning 
environment full of provocations and opportunities to test, build, and explore with 
a variety of available materials. To support children’s free exploration and idea 
construction, teachers can support learning by acting as facilitators and co-explorers 
(rather than gatekeepers) of knowledge (e.g. Bada & Olusegun, 2015; Hein, 1991).

Pertinent to makerspaces, new approaches have emerged to describe learning 
in technologically-enhanced and digital environments. Papert (1980) proposed 
constructionism, an adaptation of constructivism concerned with the unique meta-
cognitive learning opportunities afforded by computer programming. He is perhaps 
best known for his idea that “you can’t think about thinking without thinking about 
something”, emphasizing the importance of models, representations, and tools to 
aid in knowledge construction (Papert, 2005). He argued that when children explore 
computer coding, they create digital “microworlds,” or virtual spaces where they have 
programmed all the rules and behaviors in that world. When creating (and testing, 
and breaking) these programmatic rules, children can learn about how the “real” 
world works, and also about their own computational thinking processes (Papert, 
1980). Further, he argued that by constructing artifacts to represent their thinking 
in the digital world, children can share ideas with peers, and learn from communal 
experiences and explorations.

How can a Makerspace Facilitate Computational Making?

What specific elements of the makerspace afforded opportunities to explore 
computational thinking and making? In the following section, we describe elements 
of space, materials, and facilitation that could be used in any space to engage young 
children in developmentally-appropriate computational activities.

Research on makerspaces for early childhood has revealed that the developmental 
needs of child makers have important consequences for the purpose and expectations 
of the making that occurs there. For example, kindergarten educators who use 
makerspaces with their students report that they prioritize learning goals of sensory 
and motor exploration, confidence-building, and agency in choosing and pursing 
projects (Strawhacker & Bers, 2018b). These goals differ from the purpose of 
spaces where professional makers develop prototypes for commercial use, or even 
educational spaces for older student makers to cultivate STEM skills and practices 
(Gravel, Bers, Rogers, & Danahy, 2018). In a study of the unique affordances of 
facilitators and the environment in Early Childhood Makerspace at Tufts University, 
the physical environment (including tools, materials, furniture, and layout of space) 
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accounted mainly for children’s engagement in content creation and creativity 
(Strawhacker & Bers, 2018b).

If the goal of an early childhood makerspace is to afford opportunities for 
children to explore making, it is important to understand how young children create 
and explore artifacts in the world. Researchers have described two distinct but 
equally valid ways of making (i.e., engaging in the design process), both of which 
are demonstrated in this vignette (Turkle & Papert, 1990; Papert & Harel, 1991; 
Worsley & Blikstein, 2013; Resnick, 2006; Vizner & Strawhacker, 2016). One 
popular approach is bricolage-style making (sometimes called “tinkering”) in which 
the maker “mucks about” and eventually comes to a design conclusion by artfully 
or randomly bringing together objects and ideas (Beltagui, Sesis, & Stylos, 2021; 
Hatton, 1989). There is also a more top-down structured approach to design, where 
the creator follows a defined set of steps to find a solution to their problem (e.g., 
Papert & Harel, 1991; Vizner & Strawhacker, 2016). In order to support children’s 
engagement in computational thinking, makerspaces can provide provocations for 
engaging in both of these ways of making.

Besides the materials and tools inside the room, children’s space designers know 
that the room itself – the decor, furniture, arrangement of space – is important 
for helping children feel safe and secure enough to explore creative play. To help 
children focus on making, the space should feel as modular and flexible as the loose 
parts within it. Figure 1 highlights several design elements to guide the design of 
flexible, creative makerspaces. These guidelines were informed by interviews and 
observational research with kindergarten educators in diverse early childhood settings 
(see Figure 1; Strawhacker & Bers, 2018a; 2018b). For example, makerspaces 
should offer tools and materials that children can access and use on their own with 
minimal guidance. To support collaborative making, larger furniture or equipment 
should be too heavy for one child to lift, but safely movable by pairs or groups 
of children. In general, overly bright and colorful furnishings can be fatiguing in 
spaces where children prefer to focus (e.g. work tables), so opt for neutral, muted 
tones or natural materials, and provide clean, open work spaces (Olds, 2001). 
Instead, save that attention-grabbing decor for areas to display children’s made 
works, which should also be labelled as often as possible with photos, captions, 
and other indicators to humanize and contextualize the children who represent the 
makerspace community. Finally, the factor mentioned by almost every educator in 
our studies was the importance of children’s freedom and agency within the space, 
particularly the freedom to explore methods and materials that would be difficult 
to explore in a classroom, such as large-scale, messy, or technologically-mediated 
activities (2018a; 2018b).
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Computational Making in Practice: Three Vignettes

Bers breaks down computational thinking (the skills, practices, and processes that 
comprise computational making) into the following powerful ideas. In the coming 
vignettes, we describe how children explored one or more of these concepts and 
processes through their making, as well as how the space afforded that exploration 
(see Table 1).

Two of the following vignette examples came from the Early Childhood Maker 
Space (ECMS) developed by the authors at Tufts University. The authors developed 
this space in 2017, with support from the broader Tufts community as a working 
laboratory to investigate—amongst other things—computational thinking and 
making. The ECMS became a space where engineers, educators, researchers, and 
children could come together to co-create the space and tools together. The third 
vignette came from the Kindergarten Makerspace (also developed by the authors) 
at the International School of Billund, a progressive international children’s school 
in Denmark (Gravel, Bers, Rogers, & Danahy, 2018). Both spaces were supported 
by the LEGO Foundation, the Eliot-Pearson Curriculum Lab, Tufts University’s 
DevTech Research Group, and Tufts’ Center for Engineering Education and Outreach.

Figure 1. Guidelines for designing early childhood makerspaces (Strawhacker & 
Bers, 2014)
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All vignettes were inspired by or adapted from real events that took place in these 
makerspaces. All names presented are pseudonyms. All three vignettes illustrate how 
young children can engage in computational making, and emphasize how elements 
of space like tools, furnishing, and facilitation came together to support children’s 
freedom and agency to pursue computational making.

Vignette 1: Exploring Representation with big-KIBO

In this vignette, we see a child exploring the computational concept of representation, 
both in his imaginative play and representation of a toy robot as a non-robotic vehicle 
(at times, a truck and a racecar), and his exploration of how to represent his plan 
for the robot’s actions using its block coding language. The robot described in this 

Table 1. Bers’ Seven Powerful Ideas of Computational Thinking

Powerful Idea Description

CONCEPTS

Algorithms
Series of ordered steps in a sequence to solve a problem or achieve some goal. 
Sequencing is an important skill in early childhood. It is at the core of being able to 
tell a story, tie one’s shoes, and make a peanut butter and jelly sandwich.

Modularity

The decomposing of a complex task or procedure into more manageable sub-parts, 
and an understanding that sub-parts can be put together to make a more complex 
entity. The ability to use sub-parts from a solution to one problem with other sub-
parts to solve a new problem.

Control structures

The initiation and order of execution of a set of commands. This includes repeats, 
loops, conditionals, events and nested structures. Making decisions based on a set 
of conditions. For example, when a button is pressed, do some action or if it is dark 
out, turn on a light. Identifying patterns and using structures such as repeats and 
loops to execute them efficiently.

Representation

Symbolism develops in early childhood. The ability to represent concepts as 
symbols is important for computational thinking. The formal languages of 
computer science are representations of the programmer’s thoughts organized in 
such a way that a machine can understand them

Hardware/software

Hardware and software are parts of a system. Software is used to control hardware. 
Hardware is built to interpret software and do some action. Depending on the 
hardware, this may be interpreting large data sets (computer) or navigating a maze 
(robot).

PROCESSES

Design Process
A cycle with no explicit beginning or end where a child: asks questions, imagines, 
plans, creates, tests and improves, and shares their work. Engaging with and 
iterating through these actions is design process

Debugging
A systematic approach to isolating and addressing problems within an existing 
piece of work. For example, one might step through a program to find an error or 
check all connections on a piece of hardware.

Source: (Bers, 2012; Vizner, 2017)
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vignette, called big-KIBO, is an experimental prototype of a scale version of the 
commercially-available KIBO robot. KIBO is an educational robot kit designed at 
DevTech and now produced and distributed through KinderLab Robotics, Inc. (for 
more information about the KIBO robot you can visit www.kinderlabrobotics.com). 
Intended to engage young children in developmentally-appropriate experiences with 
coding, computer science, and engineering, KIBO is programed with a tangible 
programming language consisting of wooden blocks with symbols for pre-readers 
(e.g. arrows), capitalized words for early-readers (e.g. FORWARD), and a barcode 
for the robot. In order to program KIBO, the child holds the robot over their chain of 
blocks—the program—and scans each block one at a time. Throughout this chapter, 
we will use written words (e.g. FORWARD) to refer to block-based instructions in 
the KIBO language.

One new and exciting tool that came out of the ECMS effort was a life-size 
rideable KIBO robot appropriately named big-KIBO (see Figure 2). Big-KIBO was 
built by the author to support his thesis work (Vizner, 2017) on investigating the 
role of scale in early childhood robotics. Big-KIBO is a replica of KIBO that is 109 
times larger. It has a steel frame with a wooden top and acrylic see-through panels 
that allow children to see its “guts”, the electrical components that make it work. 
It is powered by recycled wheelchair motors, and is strong enough to carry several 
full grown adults. Big-KIBO uses the same programming blocks as KIBO, due to its 
size children lift each block up to big-KIBO instead of holding it over their program.

As part of the author’s thesis work (Vizner, 2017), Vizner invited two groups 
of three kindergartners with their classroom teacher to play with big-KIBO and/
or KIBO in the Early Childhood makerspace. As we see in the following vignette, 
children were invited to free-play with big-KIBO while Vizner facilitated these 
maker activities as a participant researcher.

Noah and two of his Kindergarten classmates are taking their second visit to the Early 
Childhood Maker Space today, and he is excited to continue building a tow-truck. 
The first time he visited the space, he tried to make his truck with a regular-sized 
KIBO, and was disappointed that it couldn’t carry heavy objects, and that he couldn’t 
ride the truck himself. Today, Noah begins to build with big-KIBO and states that 
he wants to design a feature to “help big-KIBO tow things.” He uses duct tape, pipe 
cleaners and a foam block to construct a rudimentary towing hook, which he calls 
a “spoiler”, and tests it by towing a stuffed animal (see Figure 3). He works on his 
“spoiler”, and the design evolves to take on additional functions. “I’m going to 
make KIBO into a tow-race-car, a race car that tows things,” he explains. He also 
decides to add antennas to “help big-KIBO climb.” In the transcript excerpt below, 
Noah’s regular classroom teacher asks him about his construction:
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Teacher: Do you want to tell me what that thing is?

Noah: It’s a spoiler that helps tow things [a spoiler is a stabilizing component 
typically found on the rear of a racecar]

Teacher: Oh, it tows things

Matt [another child]: Spoilers usually make [it so] cars don’t spin

Teacher: Why does it need a spoiler

Noah: So that KIBO can go fast

Figure 2. Big-KIBO and coding blocks in the ECMS at Tufts University
Source: Reprinted from Vizner (2017)
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Once he is satisfied with his creation Noah begins build a program for big-KIBO: 
BEGIN, SHAKE, SHAKE, FORWARD, FORWARD, END. In this transcript segment, 
Vizner (researcher) asks Noah about his program:

Researcher: What does it do?

Noah: This one is rock climbing [pointing at the first SHAKE]. This one is rock 
climbing [pointing at the second SHAKE]. This one is racing [pointing at the first 
FORWARD]. This one is racing [pointing at the second FORWARD].

Noah: But I need more racing [He gets up and looks for more FORWARD blocks]

Figure 3. Noah constructs his towing hook on big-KIBO, and tests it to see if it will 
tow his stuffed animal
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In this example, Noah knows that each block represents a command to the robot 
and an action that it will do. Each block is a bit (i.e., a small unit of information) 
of information. Noah has also encoded an additional personally meaning bit of 
information to each block, i.e., climbing and racing. This makes each block a nested 
set of representations which big-KIBO is expected to carry out. By turning big-KIBO 
into a race car with a “spoiler”, and using programming blocks to symbolize his 
robot racing, climbing, and towing, Noah is engaging the computational thinking 
concept of representation. The original KIBO robot kit supported his engagement 
with computational thinking, but Noah’s engagement in computational making was 
much richer with big-KIBO. We argue that this can be attributed to the affordances 
of the makerspace, e.g., through experimental materials like the big-KIBO prototype, 
which was impractically sized for home or classroom use, as well as the freedom of 
the permitted activities in the makerspace that allowed him to pursue his pretend 
play goal of creating a ride-able racecar/tow-truck.

The Early Childhood Maker Space supported a “make anything” mindset through 
the tools housed there (crafts, novel robots, etc.), which allowed Noah to engage in a 
rich play and making experience with a computational thinking concept, motivated 
by his own interests. In the following example, we see a child whose making engage 
him in the computational thinking process of debugging.

Vignette 2: Engaging in Debugging with a CNC Mill

Another experience that took place in the ECMS was a movie-making camp for 6-8 
year olds. The child participants produced stop-motion animation films from start 
to finish, including script-writing, prop and set creation, filming, and editing. The 
following vignette highlights children engaging in a lengthy and iterative debugging 
process in order to prepare the props for their films using a CNC mill. Debugging is 
a critical component of computational thinking, and reflects that the child maker (1) 
has a clear design goal in mind, and (2) engages in a process of iteratively refining 
their design to better achieve their goal. In this vignette, the child is working for 
the first time with an unfamiliar machine, a CNC (computer numerical control) 
milling machine (colloquially referred to as a CNC), and needs to explore and reuse 
the device many times before creating the exact construction he is working on. A 
CNC is a digital fabrication tool that uses blades on a rotating cylinder controlled 
by a computer to make precise cuts that form a 3D object (described in more detail 
below). The work flow for using this otherwise industrial tool was adapted for young 
children and supervised by an adult engineer and fellow researcher, allowing them 
to engage in the same process of trial and iteration that adult engineers using the 
CNC use to refine their designs.
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Bobby, 7 years old, has been interested in medieval history ever since his parents 
took him to the renaissance festival last spring. When Bobby’s mom told him he 
would be going to film making camp this summer, he immediately knew he wanted 
to make a movie about knights. He decided that the star of his film would be a 
knight who rides a horse and carries a sword. The first step for making his film was 
to create the props and characters. His camp counselor explained that they would 
be making all of the props themselves out of foam, using a big machine called a 
CNC. The counselor explained that a CNC is like a cutting machine that can make 
3D objects, and uses pictures to make a program of where to cut. If Bobby drew a 
picture of each of the props he needed for his movie on a piece of paper, the computer 
could translate it into code that would tell the CNC how to cut out the same shape. 
This CNC uses a fast spinning blade which is precisely controlled by the computer 
program to move up/down, left/right, and front/back in order to cut the props out of 
foam. As it works the CNC creates waste material called swarf—Bobby chuckled at 
the sound of this word—which is cleaned by a vacuum as it works—Bobby also liked 
the idea that the machine cleans up as it works, so there is no clean-up time! Finally, 
his counselor introduced a visiting engineer/researcher, who would be helping the 
kids make CNC-created props for their movies. To make his props, Bobby drew a 
picture of a knight, a picture of a horse, and a picture of a sword (see Figure 4). 
Each picture filled up an entire piece of paper.

The engineer scanned Bobby’s drawings and used a computer software to show how 
the CNC would cut his shapes out of the pink foam. Bobby put on safety goggles 
so he could watch as the machine cut the foam, and his sword slowly began to take 
shape. When the machine finished, Bobby excitedly removed his props from the 
CNC—but there was a big problem. The sword and horse and knight were all the 
same size! Bobby wanted the knight to be bigger than the sword, and smaller than 
the horse. At first, he was upset. It took him a long time to draw each of the pictures 
and he wasn’t sure if he could do it again. Just as he was getting so frustrated that 
he wanted to quit, the engineer explained to Bobby that he didn’t have to make new 
pictures, but instead they could program the computer to change the scale and size 
of the drawings he already had. In other words, Bobby could try to debug his design 
without losing all his earlier hard work. This is where Bobby got to experience the 
“rapid” part of rapid prototyping. Bobby worked with the engineer to change the 
size of his props, and even played around with scale factors, which adjusted the size 
of the props relative to each other, all on the computer. This debugging process took 
several tries. On his first re-scaling attempt, the horse came out way too small and 
knight was too big, which made Bobby laugh at “the giant and his tiny pony” (see 
Figure 5). On his second try, the sword was too small and the horse was huge. Bobby 
and the engineer worked on the computer and tried rescaling again and again until 
he was finally happy with the way all three props looked together.

.
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Figure 4. Bobby’s sword drawing, ready to be scanned into the computer
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It was finally time to film. Bobby sets up the knight and sword next to the horse and 
got ready to turn on the camera. He pressed “record”, looked through the camera 
lens, and discovered that his parts were too big to fit in the frame! “No problem,” 
Bobby said confidently, and walked back to the computer, ready to work on even 
more debugging. While the engineer watched, Bobby typed a few numbers into the 
computer to apply a 20% scaling factor to all of his props. He knew that by scaling 
their size uniformly instead of individually, the props would all keep the same relative 
size, and look the way he wanted when they were propped next to each other. He 
loaded a final piece of foam into the CNC and pressed “run.” At the end of the 
cutting cycle, he lifted the lid to the CNC, and triumphantly pulled out his props. 
He now had the perfect cast for his film!

Bobby’s iterative process highlights the computational thinking practice of the 
debugging process. Within the context of making, Bobby was not focused on the 
many trials it took him to perfect his design, but instead was motivated to keep 
working so that he could realize his ultimate vision of a movie about a medieval 

Figure 5. On his first resizing attempt, Bobby’s knight was too big relative to his horse
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knight. While working towards the goal of having appropriately scaled parts he 
created, critiqued, and refined several prototypes of his props, engaging in multiple 
tests to improve his design. In Bobby’s debugging process, we saw him engage in 
both bricolage and top-down design processes. When he arbitrarily sized each part, 
he took the bricolage approach. When he scaled them uniformly, he took a step-
by-step approach. The makerspace, and the facilitators, machines, and equipment 
within it, afforded Bobby the opportunity to engage with novel tools and processes 
that he would be unlikely to encounter in any other setting designed for his age 
group. In the very beginning of the process, Bobby very nearly gave up on his first 
design, and would have missed out on a rich debugging and refining process that 
finally resulted in him proudly using perfected designs of his original prop idea 
for his self-made movie This example further highlights the flexibility of digital 
fabrication and rapid prototyping tools, and how they can support young children 
in computational making and thinking.

Vignette 3: Using the Design Process 
During Storybook-Inspired Making

This final vignette took place at the Kindergarten Makerspace at the International 
School of Billund. In this example, the affordances of the environment and the moves 
of the teacher supported children’s engagement in computational play. Specifically, 
the children in this vignette engaged in a lengthy engineering design process to 
create a personally-meaningful KIBO robotics project, inspired by their favorite 
classroom storybook.

Abbie and Mathilde are partners in Ms. Maria’s Kindergarten class. They are 
excited, because today they get to visit the new makerspace again. The makerspace 
is located next to the woodshop room, music room, and computer lab – but unlike 
all of those spaces, the makerspace has a whole room just for Kindergarteners!

When they first visited the space last week, they couldn’t help running around the 
wide open room. The floor was cushy with mat tiles, and there were low benches, 
cushions, and “wobble chairs” located around the room. When they were sitting in 
a circle, a classmate shouted, “this room is like a gym!” Their teacher, Ms. Maria, 
smiled and said, “That’s because we need lots of space to build your big ideas out 
of blocks and crafts – and of course, robots!” She brought out a box from behind her 
chair, and took out a KIBO robot. She passed it around the circle, showing children 
the batteries and wires inside through the clear panel on the back, the motors and 
wheels that move on its sides, and the green button that turns on its scanner. After 
she introduced KIBO, she divided children into pairs, gave them a robot, and let 
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them explore how to build and code with it. Ever since that first visit, Abbie and 
Mathilde have been talking about what kind of a robot they would make the next 
time they visited the makerspace.

Today, Ms. Maria says there is a special activity waiting for them. When they arrive, 
they see all the chairs and cushions have been moved to the side of the room, and 
there are ramps, stools, and masking tape paths all around the floor. Today they 
will be making obstacle courses for their KIBO robots to navigate. Mathilde gets 
started ideating right away, saying “maybe we can make KIBO climb a hill!” She 
balances a ramp against a low stool. “I know, I know! We should make KIBO go 
on a Bear Hunt!” Abbie exclaims, referring to the story they have been reading at 
library time, and Mathilde eagerly agrees. The partners brainstorm about how to 
make a robot that acts out their favorite parts of the story, while Ms. Maria lends them 
her copy of the Bear Hunt book for inspiration. They are most excited to build the 

Figure 6. Children used furniture in the makerspace to build a “cave” environment 
as part of their robot obstacle course, inspired by their classroom storybook, Going 
on a Bear Hunt
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“gloomy cave”. The girls build a cave-exploring robot and test out several less-safe 
dark corners of the room before Ms. Maria suggests that they transform a tall table 
with blankets and stools to be a spooky cavern for KIBO to explore (see Figure 6).

While testing their KIBO, Abbie frowns. “It’s too dark in here for the KIBO to help 
us find any bears,” she says. Mathilde gets a flashlight from the materials wall to 
attach to their robot, but the flashlight is too heavy even when they try to use tape 
and rubber bands. They speak to Ms. Maria, who shows them a new KIBO part called 
a lightbulb, and some blocks to program different colorful lights for the lightbulb to 
shine. They add some light blocks to KIBO’s program, and are confused when it still 
doesn’t shine—they can’t figure out what’s wrong with their program. They continue 
to troubleshoot by testing different program sequences until Mathilde has the idea 
to try attaching the lightbulb to their KIBO. Suddenly, KIBO’s light shines in many 
colors and the girls are delighted with their glow-in-the-dark cave-exploring robot! 
It wasn’t the program after all, but the robotic parts and hardware that needed to 
be changed. Soon the whole class is having fun in their KIBO cave, and Abbie and 
Mathilde happily explain to anyone who wants to know how they got KIBO to shine 
its light in many colors.

In this vignette, the materials and furniture are used in a way that’s rarely allowed 
in a classroom setting, and they become a part of the children’s playful engineering 
design process. They are inspired to create a project modeled on their Bear Hunt 
storybook, and brainstorm how their KIBO robot will showcase their favorite cave-
exploring scene. They quickly build a robot and begin testing different sites to use 
for their cave location. Finally, at the suggestion (and permission) of the teacher, 
they end up creating their own test site out of blankets and tables, which spurs them 
to engage in a longer process of iteratively refining and testing ways to make their 
robot shine a light. Finally, when they are satisfied with their final design, their 
enthusiasm spreads to others in the class who want to join in the fun, evidence that 
they are engaging in the positive technological behaviors of community building 
and communication through their robotic making project (Bers, 2012). The girls 
engage in the last step of the design process, sharing with the community, by inviting 
their classmates to play in their self-made cave, and sharing their new technical 
knowledge with others who are curious about the lightbulb hardware and software 
that completed their design. Rather than restricting their play or requiring “proper” 
use of this furniture, the teacher in the vignette considered the needs of the children 
and responded by simply granting them permission to explore the space in a new, 
creative way that also met her requirements for safety. Through the combination of 
space and facilitation aligned to support children’s creativity, Abbie and Mathilde 
were able to pursue a rich engineering design process, completely motivated by 
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their own creative ideas. In the process, they explored the computational thinking 
process of the design cycle, as well as concepts of hardware and software (when 
changing the code and parts to make their lightbulb shine) and debugging (when 
troubleshooting and testing to make their robot flash its lightbulb). Because of the 
affordances of the makerspace materials and facilitation that encouraged hands-on, 
child-directed play, Abbie and Mathilde were able to engage in rich computational 
making.

CONCLUSION

Throughout this chapter we’ve argued for the importance of children’s environments 
on their learning. We also expanded on the nascent concept of computational making 
as making that leverages computational thinking skills and practices, and proposed 
that makerspaces are learning sites uniquely able to engage children in computational 
making. Finally, we maintained that our primary goal in pursuing this work was 
to empower children to become computationally fluent future leaders and citizens.

What Lies Ahead for Computational Making 
and Educational Makerspaces?

If agency and computational fluency are the values that we hope to impart to young 
children, then supporting the development of computational thinking and making 
are imperative. As our world becomes increasingly mediated by digital experiences, 
computational making can empower children to “be protagonists in their own learning” 
(Kuh, 2014). In other words, environments that promote computational making and 
thinking afford opportunities for children to create and produce artifacts of their 
own learning, rather than “consume” ideas through passive digital experiences.

While the educational opportunities inherent in makerspaces are vast, there is 
still much work to be done to realize the maker movement’s goals of democratized 
knowledge, equipment, and expertise (Dougherty, 2012). Community makerspaces 
still struggle to empower makers to engage their own cultural funds of knowledge 
to impact designed solutions (Calabrese Barton & Tan, 2018). In a survey of 30 
educational makerspaces in K-12 settings around the U.S., researchers from Drexel 
identified cultural inclusion as the biggest gap missing from school makerspaces—a 
serious omission, given that community-building and inclusive collaboration are 
explicit goals of the maker movement (Kim, Edouard, Alderfer, & Smith, 2018). 
As the maker movement enters its second decade, we hope to see an emphasis on 
shared culture-building take priority over less community-oriented maker goals 
such as access to expensive and highly technical equipment. We have shown above, 
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in other chapters in this book (unplugged activity chapter), and in previous studies 
that computation making does not explicitly rely on high tech tools.

Educators can prioritize community-centered making in their own early childhood 
makerspaces by attending to the design guidelines introduced earlier in this chapter 
(see Figure 1). Specifically, displaying children’s work, and even images of children 
working in the space at child’s eye-level can improve a child’s sense of connectedness 
to their maker community, even if they do not always play or engage with others 
in the space. Further, selecting materials, including reference books, tools, and 
craft materials that represent a diversity of maker cultures and histories, can help 
children connect to what Dale Dougherty calls the shared human act of making, 
passed on from centuries and even millennia of ancestors who were tool makers 
and users (Dougherty, 2012). Creating a space that allows young children to create 
comfortably and freely sets the stage for computational making.

Additionally, our prior work suggests that makerspaces can be productive sites 
for Positive Technological Development, a pedagogical approach that forefronts 
development of psychosocial and character traits through engagement with technology 
(e.g. Strawhacker & Bers, 2018b). Makerspace designers should incorporate practices 
and technologies that support these positive social and independent behaviors, in order 
to support children in meaningful and community-engaged computational making.
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KEY TERMS AND DEFINITIONS

Constructionism: A learning theory arguing that learners can construct novel 
ideas through engaging with creative technological platforms, such as coding 
environments.

Debugging: In computer programming and software development, debugging 
is the process of finding and resolving “bugs” (errors) within computer programs, 
software, or systems.
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Early Childhood Education: Education of children from birth through age eight.
Engineering Design Process: A common series of steps that engineers use in 

creating functional products and processes.
Environment-as-Teacher: A concept from the Reggio Emilia pedagogy that 

states, after the peers, educators, and self, the environment is a teacher (imparts 
information, values, and opportunities to explore) for young children.

KIBO: A screen-free programmable robotics kit for young children with blocks, 
sensors, modules, and art platforms.

Makerspaces: Collaborative spaces where people gather to get creative with DIY 
projects, invent new ones, and share ideas (also called hackerspaces, hackspaces, 
and fablabs).

Representation: The use of signs that stand in for and take the place of something 
else. It is through representation that people organize the world and reality through 
the act of naming and assigning meaning to its elements.
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ABSTRACT

This chapter examines the relationship between coding, computational thinking, 
and the contexts in which those concepts are learned. It recounts a pilot study 
where a 12-week robotics curriculum was taught in kindergarten classrooms at 
eight interfaith and secular schools in Boston, United States of America and Buenos 
Aires, Argentina. In this chapter, the authors explore how teachers and students drew 
from their socio-cultural environments to inform the language of computational 
thinking and support the internalization of computational concepts and, in turn, 
how computational thinking was used as a tool for deeper exploration of cultural 
traditions and beliefs, meaning-making, and creative expression.

INTRODUCTION

As computer technologies become ubiquitous in society, the call for incorporating 
STEM/STEAM education into early childhood classrooms grows louder on a global 
scale (Bers, 2019; Modan, 2019; K-12 Computer Science Framework Steering 
Committee, 2016), with computational thinking and coding lessons starting as early 
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as kindergarten (Sano, 2019; Seow, et al., 2019; Toikkanen and Leinonen, 2017). The 
kindergarten classroom is just one of many socio-cultural environments (e.g., home, 
school, faith-based settings) that play an integral role in a child’s developmental 
process, contributing to the lens through which children view and understand the 
world. What does computer science education look like through this lens? How 
does cultural context shape the way a robotics-based program is taught and learned?

These ideas were explored as part of an interfaith project called Beyond STEM: 
The Development of Virtues in Early Childhood Education Through Robotics, led 
by Professor Marina Bers and funded by the Templeton World Charity Foundation. 
While the primary focus of the study related to the ways a robotics curriculum could 
support character development, this chapter focuses specifically on the relationship 
between coding, computational thinking, and the contexts in which those concepts 
are learned.

This chapter explores the role socio-cultural environments can play in informing the 
language of computational thinking and the internalization of computational concepts, 
and, in turn, how computational thinking can be used as a tool for deeper exploration 
of cultural traditions and beliefs, meaning-making, and creative expression. In it, we 
will demonstrate a number of ways that robotics and computational thinking can be 
used to help children strengthen their connections to their own cultural communities, 
faith-based or otherwise, and learn about others.

BEYOND STEM PROJECT OVERVIEW

Eight schools, four in Boston in the United States and four in Buenos Aires in 
Argentina, participated in the study. Six schools were representative of a major 
monotheistic religion in each country: Judaism, Catholicism, and Islam, and two 
schools were secular. These schools were selected for having a solid mission statement 
citing commitment to values education and character development — elements we 
hoped would be fostered throughout the project.

The project was implemented in 12 kindergarten classrooms — 5 in Boston and 
7 in Buenos Aires — over a twelve-week period. The numbers are different because 
schools in Argentina are bigger and have more than one classroom per grade; this 
was the case for only one Boston school. A total of 224 children participated: 64 in 
Boston and 160 in Buenos Aires.

Although an increasing number of developmentally appropriate technological 
tools are available for children, this study utilized KIBO, a screen-free robotics 
kit designed for children ages 4-7 that supports cognitive development, creative 
problem solving, fine-tuning motor skills, and social engagement in a playful and 
developmentally appropriate manner (Bers, 2018; Lee, Sullivan, and Bers, 2013). 
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KIBO was selected because of its hands-on nature, as well as its open-ended platform 
that allows children to experiment, express themselves, and share experiences while 
actively practicing computational thinking skills.

The KIBO curriculum was developed by the DevTech Research Group into two 
different versions to align with frameworks and standards in computer science for 
both Massachusetts and the City of Buenos Aires. It consisted of twelve lessons, 
from foundational aspects of robotics and programming (e.g., sequencing) to more 
complex concepts like control structures, repeats, and conditionals. The curriculum 
followed the Coding as Another Language (CAL) approach (Bers, 2019) and built 
upon the theoretical framework of Positive Technological Development (PTD) 
(Bers, 2008; 2012; 2018) that promotes six positive behaviors (“the 6 C’s”) through 
the use of technology: content creation, creativity, communication, collaboration, 
community building, and choices of conduct. Each lesson featured a variety of 
activities — warm-up games, design challenges, creative projects, “technology 
circles” for peer-reflection, and plenty of free-play — that correlated to one of 
more of the “C’s.”

A team of researchers in Boston and Buenos Aires were present in the classrooms 
for each lesson. Using research instruments created by the DevTech Research Group, 
they collected data relating to the students’ computational thinking, coding, and 
robotics knowledge, while also observing the ways individual teachers adapted the 
lessons to better meet the needs of their own classrooms, their school culture, and 
their faith.

Through this project, teachers and children in these two international cities 
developed technical skills through a robotics curriculum, while simultaneously 
fostering positive character traits, exploring their own cultures/beliefs, and learning 
about others. The experience was designed so teachers could present the robotics 
curriculum concurrently with discussions about what it means to be human, how 
to treat one another, and how to be citizens of the world.

Professional Development

In order for teachers to successfully integrate computational thinking and coding 
lessons into their classrooms, it is essential that they themselves understand the 
foundation of computational thinking. This does not require high-level expertise — 
only the willingness to learn (Govind & Bers, 2019). To ensure this, 31 educators 
and 5 administrators from the participating schools attended a one-day professional 
development workshop in their respective city. Of those participants, 24 had no prior 
coding or robotics experience. Here they learned about the concept of coding as a 
new literacy, the robotics curriculum, and the goals of the proposed project, and 
were given the chance to connect with one another.
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Most importantly, however, the teachers were given the opportunity to engage 
with the KIBOs themselves. The teachers became students. They were encouraged 
to play, to make mistakes, to try and try again, and to ask for help when they needed 
it. This is the embodiment of the Design Process, a cycle of six steps: ask, imagine, 
plan, create, test and improve, and share, that they would later use to teach their 
students how an engineer approaches a problem.

Once the teachers had mastered the basics of the KIBO robotics kit, they gathered 
to discuss the challenges they had faced working with the KIBOs, the different 
values reflected in their individual faiths and school environments, and the ways in 
which the KIBO curriculum could be used to enhance the teaching of those values 
to their students.

Lastly, the teachers were asked to put their new skills to the test and create KIBO 
projects that were representative of their school, their faith, and their values. How 
the teachers chose to represent their schools varied — some told stories while others 
focused more on recognizable symbols — but at the core of each lay a commonality 
that was present throughout the professional development workshops. Amid religious 
differences, each participant of the workshop was an educator, and each program 
represented what they hoped their students would gain from their school’s style 
of education. At the root, what each teacher hoped for was that their students feel 
inspired to learn, safe to wonder, and free to play.

CONCEPTUALIZING COMPUTATIONAL 
THINKING IN THE CLASSROOM

Engaging With the Design Process

The first lesson of the KIBO curriculum begins with a simple but essential question: 
“What is an engineer?” When posed with this question, students had plenty of 
guesses. A student at the Catholic school in Argentina said that engineers work 
with different types of energy, while another claimed engineers “fix ceilings so they 
don’t fall.” Others boasted having an engineer in their family, like one child in the 
Boston secular school who announced, “I’m an engineer. My dad is an engineer... 
An engineer is fixing problems and if they make mistakes, they try another time.” 
Already, through the simple sharing of ideas based on their individual experiences, 
students were beginning to engage in two of the 6 Cs of Positive Technological 
Development framework- collaboration and communication (Bers, 2012).

Ultimately, the conversation steered to the understanding that engineers build 
robots (among other things). The students were all familiar with robots from different 
movies they’d seen, books they’d read, or even appliances in their homes. However, 
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none had really stopped to consider: “What makes a human different from a robot? 
What makes something a robot at all? How does a robot do things?” As students 
began to conceptualize these somewhat philosophical questions, we saw the first 
instances of how teachers would come to use their different cultural contexts to 
make sense of computational thinking.

In each classroom, teachers had pictures of different items: a tree, a flower, a 
vacuum, a cell phone, and had their students determine which category the item 
belonged to, using cultural or faith-based worldviews to inform their category 
options. For the children at one secular school that prioritizes the appreciation 
of nature in its overall mission, the distinction was described as something that 
was made by humans, or made by nature. In faith-based classrooms, nature-made 
objects were described as “God-given.” Students at a Muslim school in Boston 
took the discussion even deeper, examining how, because humans were created by 
Allah, even human-made items were, in a way, gifts from Allah. Unbeknownst to 
these students, they were beginning to actively engage with the engineering design 
process: asking big questions.

In a post-implementation workshop, one of the participating teachers described 
her students’ grasping of the nature vs. manmade concept as “empowering.” She 
had explained to her students, “Without humans, the technology would just be 
sitting there.” By exploring the concept through the lens of her classroom’s culture 
of autonomy, students could clearly see the role they had to play in making KIBO 
work. If the students were in control, what different things could they program 
robots to do?

The students’ ideas about what robots could do revealed connections they were 
already making between the technological tools and their environment. The following 
example shows students engaging with the next stage of the engineering design 
process — imagining solutions.

Students are gathered on a colorful carpet, sitting at their teacher’s feet. Many 
small hands wave eagerly in the air, waiting to be called on to share their ideas. The 
teacher has just asked a most intriguing question: “If there is a bug on the ceiling, 
how can I reach the bug and catch it?” More than one head turns to the ceiling to 
see if there is a bug there. The teacher calls on the boy nearest to her, who offers that 
perhaps they could use a robot with an arm that “goes really high.” And if the arm 
couldn’t reach it it? Make the robot arms longer. And if that still doesn’t work? He 
considers this a moment, looking to the ceiling, then replies confidently,“Someone 
could climb up the arm.”

In Buenos Aires, a similar conversation took place at the secular school. Many 
of the students proposed ways to squash the bug. One imaginative girl did not care 
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for this line of thinking. “Instead of killing him,” she said, “I would scare him to 
escape.” Her response was strongly influenced by the culture of her school, which 
focuses on environmentalism.

The idea that robots exist to help people, paired with faith or school-based 
contextual influences, drove many of the students’ early designs. One student 
designed a composting robot, while others discussed ways that the robots could help 
stop people from cutting down trees. At the Catholic school in Boston, one child 
considered the ways a robot could assist in a charitable food drive.

The values displayed in these early designs were not just reflective of school and 
faith-based cultures. Some were influenced by the cultures of their homes.

A student at the Catholic school in Buenos Aires used his first design journal 
entry to create a robot that would help his mom cook. When a researcher prompted 
him, “Why don’t you make a robot to help you store your toys?” he replied simply 
that his mom could help him because the robot would be cooking. In addition 
to the “helpful” culture of this child’s home environment, here we also see the 
multifaceted social-emotional potential of robotics design. This little boy wanted 
to help his mother, but he also wanted her to be more available to spend time with 
him. In these examples, children envision ways that robots can support empathy, 
environmentalism, and family connection.

Multi-Subject Integration

A convenient and impactful way that teachers used contexts to add relevance to 
children’s exploration of computational thinking is by incorporating the robotics 
lesson into other subjects being learned in the classroom. At the Jewish school in 
Boston, KIBO lessons were regularly integrated with Hebrew class. The secular 
classroom in Boston programmed their KIBOs to reenact a story they’d read about 
a hermit crab. The Catholic school in Buenos Aires used their KIBO project to 
explore environmental science, discussing things like energy and ocean pollution. 
The secular school in Buenos Aires strove to bring institutionalism to the project by 
collaborating with the gym teacher, the librarian, and others, all working together 
to integrate taking care of the environment with technology.

Even if the connections weren’t explicitly facilitated by the teachers, students still 
found them. One student at the Muslim school in Argentina compared engineers to 
beavers because they work together to achieve a goal. Another student, while putting 
together a KIBO, noted, “he has electricity like some toys” and “it’s like putting 
together a puzzle.” Thinking about what robots can or cannot do, one insightful 
child at the Catholic school in Argentina pointed out, “robots cannot eat a tomato,” 
while another explained that our brains give instructions to our bodies so we don’t 
crash, and that a robot does not have a brain or heart equal to that of a human. This 
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child, methodical and surprisingly advanced in his interests for a kindergartener, 
later drew a connection between the unfamiliar language of KIBO robotics and 
hieroglyphics, stating that the robot “reads drawings like the Egyptians” (referring 
to the bar codes imprinted on KIBO’s wooden programming blocks).

In conceptualizing programming languages, it is helpful for students to draw 
connections to images they’ve seen in environments outside of coding. In our study, 
students recalled seeing barcodes in grocery stores or on the backs of books, and 
connected the red and green of the begin and end blocks to traffic lights. By making 
these sorts of connections, the students were internalizing the meaning of a coding 
language as familiar, attainable. Students were able to build upon these associations 
as they continued to master the KIBO coding language. As with tackling a math 
problem or a new word, students found creative ways to approach the challenges 
they faced with their programs.

A hunger for answers drove the students’ connections with computational concepts 
and powerful ideas. Through their desire to master the KIBOs, they were subtly 
mastering the concepts of control structures and modularity and engaging directly 
with hardware and software.

In a final reflection, one teacher said, “The kids really grasped the concept 
of repeat and using brackets, and the sandwich analogy,” referring to a method 
of teaching repeat loops in which repeating actions are placed between brackets, 
just like the ingredients on a sandwich go between two slices of bread. Metaphors 
were a useful tool for connecting coding concepts to other areas of learning. This 
teacher also compared the symbolic numbers of math or letters of a language to 
those symbols that make up a coding language, saying, “This is how coding and 
literacy are so connected.”

Other teachers found similar connections. The teacher from the Jewish school 
in Boston had selected a specific song for their final project because it featured 
sequences, repetition, relevant Hebrew vocabulary, and an overarching message 
about community. A teacher from the Muslim school in Buenos Aires commented 
that her students found a way to mention KIBO in every class. Her students drew 
connections between left-to-right writing systems and how the program must be 
arranged for KIBO to read it.

Throughout the design process, the students grew increasingly comfortable with 
the process of experimentation, from asking initial questions to testing for results. 
They learned to be flexible when experiments did not go as planned, to debug by 
looking for alternative approaches to their goal.
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Coding and Character Development

Regardless of cultural differences, early childhood classrooms share many of the same 
rules - be kind to each other, help your friends, take care of objects in the classroom. 
Throughout the study, we found that the classroom environments shaped the way that 
students interacted with KIBO and with one another, and that as their confidence 
in their own abilities developed, students quickly transitioned to helping others.

The children understood that KIBO was a tool that could break (one child 
compared it to her family’s broken computer), and through discussions about caring 
for materials, we noticed that values emblematic of their classroom environments 
emerged. At the Catholic school in Boston, one young boy offered that we take 
care of KIBO because if it breaks, the students next year can’t use it. This forward 
thinking shows a level of generosity that seems surprising for a kindergartener, but 
he was not the only one.

At each school, students were working with the KIBOs in groups of two or 
more. While many students naturally understood that they should treat their peers 
with respect, others struggled with collaboration. We observed that in classrooms 
where students sat at the same assigned tables every day, they seemed more used 
to working in pairs or small groups.

Classrooms with more flexible layouts had successful collaborations when pairs 
stayed the same for the whole curriculum, whereas classrooms where partners 
changed regularly showed fewer generous moments. In most classrooms, students 
were helping one another grow, not only as programmers, but as people.

“You have to be patient,” a boy at the Buenos Aires secular school advised some 
peers who were struggling to scan. “I can help you scan!” a boy at the Boston Catholic 
school said, eagerly leaving his own project to assist his neighbors. When a student 
at the Jewish school in Buenos Aires returned from vacation, his classmate offered 
to show him what he had missed. A student at the Muslim school in Buenos Aires 
resolved a conflict between two peers who were fighting over KIBO wheels, saying 
“There are two wheels, one for you and one for her.”

The sheer act of collaboration incites some conflict, but these students were 
learning that to accomplish their goals, they needed to work together. At the start 
of the pilot study, students were more eager to engage with the KIBO than with one 
another. They hoarded blocks, grabbed robots, and showed little interest in what 
other students were doing.

Towards the end of the twelve weeks, however, there was a shift towards more 
patient listening, observing one another’s projects, and asking for help from peers. 
They shared materials freely. Some students even went out of their way to give 
compliments on another student’s successes. They had begun to internalize a sense 

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



209

Coding, Computational Thinking, and Cultural Contexts

of community, and recognize the benefits of collaboration, of other perspectives, 
to reaching positive outcomes.

EXPLORING CULTURE AND COMMUNITY

Throughout the curriculum, teachers were encouraged to adapt the lessons to better 
meet the needs of their classrooms, their school culture, and their faith. Nowhere 
was the success of these adaptations more evident than in the planning and execution 
of the final project - “Our Treasure.” The theme of treasure was used to emphasize 
the value and specialness of whatever they chose to express.

The final projects varied greatly (as shown in the next section), ranging from 
treasure hunts to parades to theatrical performances. Whatever approach a teacher 
decided, the goal was for students to “think deeply about what makes their school 
a unique community” (DevTech, 2018). The lesson that outlines the final project 
explains:

This […] will give children the creative agency to choose how to represent the things 
that their school finds important through the treasure that they choose […] Children 
will be pushed to think about their personal and community identities. Their ideas 
of representation will be explored as they find different ways to portray these parts 
of their identities in creative and abstract ways.

The final projects of the robotics curriculum served as an opportunity for the 
explicit examination of each classroom/school’s culture. Through lengthy discussion 
about what made their school unique, students were able to assign meaning to 
abstract concepts, reflect on the symbols that represented their environments, and 
find creative ways to use their KIBOs to get their messages across.

This section will consist of four vignettes that capture the students’ final projects, 
the computational thinking skills that children were engaging with, and the ways that 
the projects were representative of the cultures and values of their respective schools.

Vignette 1: Computational Thinking to Overcome Challenges

At the secular school in Boston there is frenzy in the classroom. The previous day, 
the students discussed at length the things they valued most within each other and 
within the school, calling them “little lights” after the school song - “This Little 
Light of Mine.” Topics included kindness and everyone being worthy of respect. 
Following the discussion, students wrote letters, drew pictures, and placed them in a 
makeshift treasure chest. Today, to their dismay, their “treasures” have been “stolen” 
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and hidden all around the classroom! The students must program their KIBOs to 
navigate through winding mazes all around their classroom until their individual 
treasures have been found and the chest is filled again.

One girl sets her KIBO down on the floor in front of a table covered in a blanket, 
giving the appearance of a tunnel. The task is for the KIBO to move through the 
tunnel, then turn right. She presses go. The KIBO zooms forward, but when it turns 
right, it hits a table leg and is sent off course into the blanket. Its blue light turns on, 
and it shakes as if stuck. She picks KIBO up, and this time places it further into the 
tunnel. The program runs again, and this time the KIBO clips the leg of the table 
on the other side. The girl thinks aloud. “Maybe we should try four times again?” 
referring to the number of “move forward” functions she programmed. “Let’s see,” 
she says, and goes back to the blocks to debug. When her KIBO finally runs without 
crashing into anything, she is pleased, but not yet satisfied. It moved over the treasure, 
when she wanted it to stop, shake, and shine a blue light right on top. She picks her 
KIBO back up, matter-of-factly says what she will try next, and moves to do so.

In another part of the classroom, another girl runs to the box of blocks. “We just 
need a ‘turn left’ to get my treasure,” she says as she rifles around the box, looking 
for the block she needs. She adds the block, rescans, and groans in frustration when 
it turns the wrong way. Another rescanning and - “Why did it do light first?!” Back 
to the drawing board.

This treasure hunt created ample opportunities for the students to utilize their 
programming and debugging skills to complete the task, but also encapsulated the 
classroom cultures of divergent thinking and conflict resolution. Frustration gave way 
to perseverance, and perseverance gave way to pride as one by one they successfully 
reclaimed their treasure and returned it safely to the chest so every light could shine.

Vignette 2: Classroom Culture and Perspective-Taking

The classroom of the secular school in Argentina looks more like a stage, decorated 
with colorful props at every turn. In one corner sits a mouth made of poster board, 
its teeth made of disposable material, so large a child could sit in it. In another 
corner sit three potted plants decorated with paper butterflies. Another section of 
the classroom features a cityscape built from painted cardboard. The bottom of one 
of the structures reads “Xul Solar,” the name of an Argentinian painter. A projection 
playing clips from physical education class hangs above a poster that represents 
their digital library. The students have been working hard for this moment. Each 
prop represents a classroom project they developed throughout the year — their 
treasures. This final project is intended to capture their ability to intertwine the 
KIBO curriculum with other aspects of their education (i.e. art, reading, physical 
education), values, and with Argentinian culture. Each team of children programs a 
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section of the route KIBO will follow to each display. They discuss their classroom 
treasures, comprised not only of the projects they created, but the friendship and 
love that were present as they did so.

At the center of the circle of children sits a single KIBO, a GoPro camera affixed 
to its body. In small groups, the students select their blocks from a box and work 
together to create their program, scan the blocks, and test to see if it works. Later, 
after all the blocks have been scanned and the programs run, the students will be 
able to look at the GoPro footage and see what the world looks like through KIBO’s 
“eyes” — a small but meaningful lesson in different points of view.

Vignette 3: Community Connectedness

Across the floor of a large open room at the Jewish school in Boston, a number of 
poster boards are set up. The posters depict colorful cutouts of the KIBO programming 
blocks, arranged in different orders. On the floor in front of each poster lies a 
“stage” that depicts different aspects of a community (houses, trees, farms). This is 
the landscape through which the KIBOs will move. For their final project, they are 
embracing the community aspect of the 6 C’s. The students have invited parents 
and friends of the community to an expo-style presentation of their KIBO projects. 
Students move to their posters and await the visitors who want to see the KIBOs in 
action. Throughout the room, students explain their program to visitors, and carefully 
show them how to put the robots together. They reference the program laid out on 
the poster board, explain what should happen next, and at times even get the visitors 
involved. One child has his parent shine a flashlight on the eye attachment of KIBO 
while another encourages observers to clap. The KIBOs move from location to 
location on their respective maps, and the room buzzes with discussion as visitors 
ask questions and students explain their design process, decision points, successes 
and frustration. The youngest students in the school confidently have stepped into 
the role of experts and active members of their community, sharing all they’ve 
learned throughout the curriculum.

Following this portion of the presentation, the students line up and perform the 
song that inspired their programs: a popular Israeli children’s song called ‘Eretz 
Israel Sheli’ (My Israel). Their teacher explained later at the post-study workshop 
that the song “teaches about building community in Israel while reinforcing some 
basic Hebrew vocabulary. The repetition and sequencing make it a catchy song and 
also support computational thinking,” particularly the skill of algorithmic logic. 
This is the culmination of an emphasis throughout the curriculum on integrating 
their KIBO lessons with Hebrew language education, a subject at the heart of the 
school’s mission.
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Vignette 4: Celebration of Differences

A large blue sheet of paper lies on the floor of a classroom in the Muslim school 
in Buenos Aires. Painted atop the blue “sea” of paper are continents, and in the 
left-hand corner, the shape of South America. The students, kindergarteners, gather 
around the “map,” clustering near the parts of the map they are originally from. 
They place their KIBO robots, topped with drawings students made of themselves, 
on their respective countries of origin. Then, one by one, the students press the “go” 
button on their robot, and watch how their programs run. The first group’s KIBO 
spins once, then runs off the blue paper in an unintended direction and stops. The 
children pick up the robot and rescan their blocks, before trying again. This time, 
the KIBO spins, then zooms across the blue paper to South America, and shakes, 
almost as if joyful to have arrived in its intended location. Another KIBO zooms 
forward, and sings upon arrival to its spot on the map.

The next pair of students to try their program run into a different issue. Their 
KIBO moves too far forward, across the sheet and into the leg of another student. 
One of the programmers shakes her head - this isn’t right. She picks it up and they 
reconfigure their program. After a few attempts at a working program, running 
and rerunning their tests, the KIBO finally lands on South America. The students 
are satisfied. Now that the dress rehearsal is over, the students and their KIBOs 
get in place, and press the “go” buttons once more. One by one, the KIBOs join in 
Argentina. The students applaud and cheer. At the bottom of the map, a large white 
caption reads: “Somos un montón de gente todos diferentes y nos encontramos para 
aprender jugar juntos.” In English, this means “We are a lot of people, all different, 
and we meet to learn and play together.”

Perspective-taking is a theme for this classroom. Their use of treasure as a 
metaphor for their students’ immigrant experiences was not only a creative approach 
to storytelling - it was a means of celebrating multiple perspectives, respecting 
differences, and reflecting more explicitly on how they each were an important part 
of their school community and of Argentina, no matter where they’d come from.

CROSS-CULTURAL COLLABORATIONS

In addition to the way computational thinking can provide a context for the exploration 
and expression of one’s own cultures, ample opportunity exists for cross-cultural 
collaborations. In the professional development workshops, we saw the benefits of 
people from different cultures and communities coming together and sharing their 
perspectives. It was important that the outcomes of the individual schools’ projects 
should not exist in a vacuum — they had all pursued the same curriculum, after all.
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We created a website where teachers could share videos and pictures from their 
students’ final projects. They were encouraged to share the projects from other schools 
within their own classrooms and leave comments. This created an opportunity for 
students not only to glimpse other children’s work, but to have conversations and ask 
questions about cultural differences, using their conception of multiple perspectives 
to enrich their understanding of the world outside their classroom, home, and faith-
based environments.

Teachers were invited to a final workshop to talk about the challenges, successes, 
and interesting moments that arose throughout the curriculum. It was striking how 
similar many of their experiences were, and how readily teachers offered suggestions, 
resources, and techniques that had worked for them.

The teachers discussed the perspective-taking abilities their students developed 
as a more nuanced form of collaboration — working with partners, coordinating, 
and compromising, but also, as the teacher from the Boston Jewish school described 
it, standing back and saying, “Wow, we all programmed the same song using the 
same equipment, but look how different they all are.” Through the development 
of computational thinking skills, implicit values were made explicit and multiple 
opportunities to exercise these values emerged, all while internalizing programming 
concepts.

Each school benefited from seeing the other schools’ approaches, which inspired 
conversations among the teachers about the different capacities of their institutions. 
Some teachers approached the curriculum from an integrated standpoint and felt 
that their students had a well-rounded experience. Others felt that by not integrating 
KIBO into other subjects they had missed the opportunity to dig deep into their 
values and ultimately their projects were limited. Teachers from schools without a 
designated computer teacher reflected on how that might have impacted the lessons. 
Teachers who were nervous about implementing the curriculum and had followed the 
guidelines strictly expressed that, now they’d grown comfortable with the materials, 
next time they would approach the lessons with more creativity and flexibility.

For the students, however, these insecurities went unnoticed. The Boston secular 
school’s teacher put it well, stating, “In [children’s] minds there’s no math, there’s 
no technology. Everything is part of the learning experience.”

CONCLUSION

This chapter set out to examine the ways that socio-cultural environments inform the 
teaching and learning of computational concepts in diverse kindergarten classrooms. 
The schools that participated in our study explored how a robotics curriculum 
could be taught in an integrated way with their own values, faith and culture, while 
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supporting perspective-taking and learning about others. The experience highlighted 
a microcosm of the challenges that face education, where words like integration, 
social-emotional growth and STEM get thrown around without much context, and 
teachers are constantly asked to find ways to put them together through project-based 
experiences. This project attempted to reverse course by saying to teachers: start 
with your classroom, your school, your faith tradition, your community, and your 
values, and you will find ways to integrate the teaching of robotics.

At the beginning of the project, teachers and researchers alike were uncertain about 
what we would find. Over the twelve weeks, however, it was clear that the salient 
moments we were looking for were everywhere. We watched students struggle, argue, 
ask, and overcome. We watched them help unprompted and share challenges they 
faced openly and unashamed. We watched students push their creative boundaries, 
question the limits of their programming abilities, and glow with pride when their 
program proved successful.

The play that is facilitated by the KIBO curriculum inherently requires problem 
solving, collaboration, perspective shifting, and creative approaches. The students 
were able to use these computational thinking skills beyond coding, to engage 
with the abstract concepts that define the cultures of their classrooms, schools, and 
religions, and use their KIBOs to turn those abstract concepts into tangible, creative 
expressions.

In this chapter, we saw how culture can be harnessed as a tool to help young 
children conceptualize computational concepts, but also, how the culture of the 
learning environment influences the problems children see fit to be solved. On a 
deeper level, KIBO was a vehicle for imagining other technological tools the students 
could build to serve a greater purpose.
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ABSTRACT

The representation of women in technical fields such as computer science and 
engineering continues to be an issue in the United States, despite decades of research 
and interventions. According to the most recent Bureau of Labor Statistics reports, 
only 21.1% of computer programmers are women, and only 16.5% of engineering 
and architecture positions are filled by women. This chapter discusses the long-
term importance of exposing girls to computational thinking during their formative 
early childhood years (Kindergarten through second grade) in order to set them up 
for equal opportunities in technical fields throughout their later educational and 
career years. This chapter presents a case example of a K-2nd grade robotics and 
coding curriculum in order to highlight examples of developmentally appropriate 
technologies, activities, and strategies that educators can implement to foster young 
girls’ computational thinking skills. Best practices and instructional strategies to 
support girls—as well as young children of any gender identity—are discussed.
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INTRODUCTION

From smart home devices to cell phone applications, the fields of technology, 
engineering, and computer science drive the development of everyday innovations 
we all rely on. So what happens when female voices are not represented in these 
fields? We see “innovations” like cell phones that fit men’s hands better than women’s 
(Tufecki, 2013; Ryan, 2013) and health tracking apps that ignore women’s menstrual 
cycles (Duhaime-Ross, 2014). We see virtual assistants that have a harder time 
answering women’s questions than men’s – that can suggest help for a heart attack 
but not for domestic violence or rape (Chemaly, 2016; Miner et al, 2016). In short, 
we see masculine biases in almost all of the technology we engage with on a daily 
basis. Although most of the issues in these particular examples have been addressed 
by developers since coming to light, they are issues that would have been unlikely 
to occur to begin with if female voices had been equally involved and valued during 
the development of these technologies.

The problem is that female voices1 are not – and historically, have never 
been– well represented in the fields driving innovation. While this issue of female 
under-representation in technical STEM (Science, Technology, Engineering, and 
Mathematics) fields is not a new one, it is a persistent one. Despite decades of research 
and interventions, the disparity between the representation of men and women in 
technical fields in the United States continues to persist. According to the most 
recent Bureau of Labor Statistics numbers, only 21.1% of computer programmers 
are women and only 16.5% of engineering and architecture positions are filled by 
women (Bureau of Labor Statistics, 2020).

Although there is a major spotlight on workforce representation of women 
in technology, it is important to note that the issue of female representation in 
engineering and computing fields begins long before the career years. Beginning 
in early childhood and throughout their middle and high school years, girls and 
young women are exposed to stereotypes that inform ideas about their identity, 
abilities, and interest in STEM fields (e.g., McKown & Weinstein, 2003; Kuhn, 
Nash, & Brucken, 1978; Signorella, Bigler, & Liben, 1993; Metz, 2007; Steele, 
1997; Sullivan, 2019). By high school, research has shown that male students are 
more likely than female students to take the standardized exams closely associated 
with the fields of engineering and computing (Corbett & Hill, 2015).

With the rise of the K-12 coding and computational thinking education movement 
in recent years, educators have a renewed opportunity to begin addressing this divide 
from an early age – and potentially address the gender and STEM gap before it 
becomes pronounced. This chapter will explore best practices for gender-inclusive 
computational thinking curriculum that can be implemented during the foundational 
early childhood years (kindergarten through second grade). While the focus of this 
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chapter is on increasing STEM access to girls and women (and as such the research 
and language used will focus on those identifying as girls) the ultimate goal of this 
line of work is to encourage researchers and educators to develop curriculum and 
technologies that are bias-free, gender-neutral, and equally appealing to all young 
children.

Through the lens of a curriculum unit called “Helpful Robots,” this chapter will 
highlight suggestions for choosing appropriate tools, curricular themes, and adult 
role-modeling practices that can positively engage girls – and all students, regardless 
of gender identity– in playful computational learning from an early age, with the 
ultimate goal of ensuring all young children are afforded equal opportunities to 
succeed in STEM and beyond.

LITERATURE REVIEW

Women in STEM

In the United States, men have consistently outnumbered women in numerous 
technical STEM fields, particularly fields like computer science and engineering 
(Hill, Corbett, & St. Rose, 2010). The representation of women in science and 
engineering education and employment is substantially lower than their representation 
in the U.S. population. According to the National Science Foundation (2017), the 
fields of computer science, physics, and engineering were all overwhelmingly male.

Today, the Bureau of Labor Statistics (2020) confirms that men continue to 
dominate these fields. Women make up only 21.1% of computer programmers, and 
only 16.5% of combined engineering and architecture positions are filled by women. 
Looking at computer and mathematical sciences combined, women fill only around 
a quarter of these positions (25.2%). (Bureau of Labor Statistics, 2020).

Stereotypes & the Importance of Early Exposure

It has been long theorized that a social psychological phenomenon known as 
“stereotype threat” may influence the participation of girls and women in STEM. 
Stereotype threat refers to the anxiety that one’s performance on a task or activity 
will be seen through the lens of a negative stereotype (e.g., Steele, 1997; Steele, 
1999; Steele & Aronson, 1995; Spencer, Steele, & Quinn 1999). For example, 
Spencer, Steele, & Quinn (1999) found that women performed significantly worse 
on a math test if they were first shown information indicating that women do not 
perform as highly as men on math tasks (to induce the negative stereotype). If the 
negative stereotype was not triggered (i.e. participants were told that there were 
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no gender differences associated with the math test) women and men performed 
similarly on the test.

While most research on the influence of stereotype threat has focused on adolescent 
and adult research participants, we know that basic stereotypes do begin to develop in 
children around two to three years of age (Kuhn, Nash, & Brucken, 1978; Signorella, 
Bigler, & Liben, 1993). Children learn to make sense of the vast and confusing world 
around them by putting things into neat categories (often stereotypes), based on their 
observations of their peers, families, books, and other media they are exposed to. As 
children grow older, stereotypes about sports, occupations, and adult roles expand, 
and their gender associations become more sophisticated (Sinno & Killen, 2009). 
Adults should be aware of these newly forming stereotypes in order to expand on 
them (or, disprove them) by providing children with new role-models, experiences, 
and media that can help shift children’s belief system.

Early experiences have the potential to play an ongoing role in children’s sense 
of belonging and confidence in different STEM activities and their own developing 
identity as they grow up. Forming a positive “STEM Identity” (Aschbacher, Li, & 
Roth, 2010) during this time can be pivotal to maintaining girls’ interest in these 
fields. Prior research has shown that early childhood experiences with technology 
and engineering – or lack thereof – can continue to impact young women during 
middle school and high school, even those on competitive robotics and programming 
teams (Sullivan & Bers, under review; Sullivan & Bers, 2019). Taken together with 
the past body of work on stereotypes, it is critical to begin reaching girls (and all 
children) with positive, developmentally-appropriate experiences with technical 
STEM content from an early age.

Supporting Young Children’s Computational Thinking Skills

We have been focusing on the “technical” STEM fields (i.e., coding, engineering, 
etc.) because these are the fields in which women continue to be sorely under-
represented at the professional level. There is great variability across the fields in 
these domains, but one thing they have in common is their reliance on computational 
thinking (hereafter, CT) skillsets. While “coding” can be considered a technical skill 
and “computer science” is typically thought of as an academic discipline, “CT” can 
be thought of as a problem-solving process central to computer science that can be 
applied more broadly to problem solving and learning in any discipline (Avengine 
et al, 2017).

CT was brought into the public discourse by Wing (2006), who asserted that 
“computational thinking represents a universally applicable attitude and skillset 
everyone, not just computer scientists, would be eager to learn and use” (p. 33). 
Wing (2006) went on to define CT as a way of solving problems, designing systems, 
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and understanding human behavior that draws on concepts fundamental to computer 
science. Since Wing’s pivotal work defining CT, research has shown that CT is, in 
fact, applicable across disciplines from the arts to the sciences. Chapter 7 in this book 
for example, depicts how CT relates and supports the dramatic arts (Strawhacker 
& Sullivan, 2021).

But what does CT look like at the early childhood level? As we will explore 
in the following case study, it can look a lot like hands-on play, independent and 
collaborative problem-solving, and tinkering with developmentally-appropriate 
computing technologies for children. Bers (2020) describes 7 “powerful ideas” from 
CT that young children begin to master including: algorithms, modularity, control 
structures, representation, hardware/software, the design process, and debugging. 
Later in this chapter, we will look at how each of these concepts described by Bers 
can be introduced to young girls beginning in pre-kindergarten.

Case Example: “Helpful Robots” Curriculum

This case example will walk through the design and implementation of the Helpful 
Robots curriculum which introduced coding, engineering, and CT concepts to 
children in K-2nd grade with the goal of increasing girls’ interest in engineering. 
It will highlight research on the curriculum’s efficacy and strategies from the unit 
that educators can employ in their own early learning settings.

Overview of the Curriculum

The “Helpful Robots” theme was developed in collaboration between the lead 
researcher for this project and the participating K-2nd grade teachers at a public 
elementary school located in Somerville, Massachusetts. Teachers were interested 
in a theme that would foster community, helping, and caring. These behaviors 
were also aligned with the Positive Technological Development (PTD) Framework 
developed by Bers (2012). The PTD framework was developed as an extension 
of the computer literacy and the technological fluency movements to guide the 
development, implementation, and evaluation of educational programs that use new 
technologies (Bers, 2012). The PTD framework proposes six positive behaviors 
(commonly referred to as the “six C’s”) that should be supported by educational 
programs that use new educational technologies including: content creation, creativity, 
communication, collaboration, community building and choices of conduct (Bers, 
2012). These six C’s were used as a theoretical guide when developing the “Helpful 
Robots” curriculum.

The teachers and the lead researcher developing the curriculum worked together 
to decide upon a theme that they believed would be equally appealing to all young 
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children, regardless of gender. Throughout the curriculum, children learned about 
robots that perform helpful jobs in the real world (such as hospital robots, robots that 
clean like the Roomba, etc.). As a final project, children worked in groups to create 
their own “Helpful Robots” robots using the KIBO robotics kit (described in the 
next section) to do helpful classroom jobs, teach important ideas, and demonstrate 
respectful behaviors and school rules.

Each week, children spent one hour learning and practicing new CT, engineering, 
and robotics concepts such as sequencing, repeat loops, sensors, and conditional 
statements. While the same curricular structure was used across classes and grades, 
modifications were designed to make the curriculum developmentally appropriate. 
For example, younger grades spent more time on new concepts while older grades 
moved through the same concepts more quickly (See Table 1).

The exploration of new concepts continued for the first five weeks of the curriculum. 
Children always worked in groups ranging from 2-4 children, based on class size 
and factors decided upon by the classroom teacher. Children also gathered as a full 
group for discussions, games, read-alouds, and/or showcases during each session. 
The final two weeks of the curriculum were spent working on final “helpful robot” 
creations and culminated in a final showcase of projects.

Technology Used

The Helpful Robots curriculum unit utilized an early prototype version of the KIBO 
robotics kit, developed by the DevTech Research Group at Tufts University and now 
manufactured by KinderLab Robotics. KIBO is a screen-free robotics construction 
kit that children assemble, decorate, and then program using wooden programming 
blocks to make the robot move and react to stimuli (Sullivan and Bers 2015). The 
kit contains wheels, motors, a light output, and a variety of sensors that are easy for 
children to attach to the robot . KIBO is programmed to move using interlocking 
wooden programming blocks that each have a unique barcode. KIBO uses an 
embedded scanner in the robot body to scan the barcodes one at a time, sending the 
program to the robot (see Figure 1).

Technological learning tools like KIBO are perfect for engaging young girls 
(and all young children) in CT for a few key reasons. First off, KIBO is designed 
for open-ended play that allows girls to make almost anything they want based on 
their own personal interests. KIBO can be used to act out a scene from a story or 
movie, it can be decorated to look like an animal, it can be a carousel or a fire truck 
(Sullivan, 2020). Therefore, it can be used to help explore almost any interest that 
a young girl has (see figures 2 and 3 for examples of final Helpful Robot projects).
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Table 1. Scope and Sequence of the Helpful Robots Curriculum as described by 
Sullivan (2016) and Sullivan & Bers (2018)

Lesson Kindergarten First Grade Second Grade

1

What is a robot? Who 
are engineers? Children 
learn the engineering 
design process and build 
sturdy robots that can 
carry a ball of paper to the 
recycling bin.

What is a robot? Who are 
engineers? Children learn the 
engineering design process 
and build sturdy robots that 
can carry a ball of paper to the 
recycling bin.

What is a robot? Who are 
engineers? Children learn the 
engineering design process and 
build sturdy robots that can carry a 
ball of paper to the recycling bin.

2

What is a program 
(pt. 1)? Children learn 
sequencing & program 
their robots to dance the 
Hokey Pokey.

What is a program? Children 
learn sequencing & program 
their robots to dance the Hokey 
Pokey.

What is a program? Children 
learn sequencing & program their 
robots to dance the Hokey Pokey.

3

What is a program (pt. 
2)? Children continue 
to practice sequencing a 
program by navigating 
masking tape maps on the 
floor.

What are sensors? Children 
add sound sensors to their 
robots and program them to 
wait for their clap.

What are sensors? Children add 
sound sensors to their robots and 
program them to wait for their 
clap.

4

What are sensors? 
Children add sound 
sensors to their robots and 
program them to wait for 
their clap.

What are repeat loops
with number parameters?
Children practice estimation 
while using repeat loops and 
number parameters to make 
their 
robots navigate floor maps.

What are repeats loops with 
number parameters and sensor 
parameters? Children practice 
estimation while using repeat 
loops and number parameters to 
make their robots navigate floor 
maps. Next, children navigate the 
same maps using distance and light 
parameters.

5

What are repeats 
loops with number 
parameters? Children 
practice estimation while 
using repeat loops and 
number parameters to 
make their robots navigate 
floor maps.

What are repeat loops with 
sensor parameters?
Children learn about the 
distance and light sensors and 
program them to work with 
their robots using repeat loops.

What are conditional 
statements? Children learn about 
conditional “if” blocks. They 
program their robots to respond to 
light and distance sensor input in 
order to “decide” what to do.

6

Final Project- Children 
plan, build, and begin to 
program their Helpful 
Robots.

Final Project- Children plan, 
build, and begin to program 
their Helpful Robots.

Final Project- Children plan, 
build, and begin to program their 
Helpful Robots.

7

Final Project- Children 
finish their projects. In a 
final exhibition, they share 
their final projects.

Final Project- Children 
finish their projects. In a final 
exhibition, they share their 
final projects.

Final Project- Children finish 
their projects. In a final exhibition, 
they share their final projects.
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KIBO was explicitly designed to have neutral aesthetic, making it equally appealing 
to children of any gender. While many early childhood robots are designed to portray 
“character” (think of Beebot’s friendly “bee” aesthetic or Dash’s blue, one-eyed, 
robot appearance) KIBO takes the opposite approach, with neutral colored wooden 
parts that do not attempt to look like anything until a child builds and decorates it.

With so few truly gender-neutral toys out there (even LEGO has long legacy of 
being deemed a “boy’s toy”), neutrally designed kits like KIBO can be useful to 
equally reach children in mixed gendered classrooms. Finally, KIBO engages girls 
in hands-on building and tinkering as well as CT problem-solving and coding.

Supporting CT in Young Children

Throughout the curriculum, a variety of problem-solving, and specifically CT related, 
skills and concepts were taught through the use of KIBO as well as unplugged games 
and activities. Although the Helpful Robots curriculum was first designed in 2016, 
before the Bers (2020) approach to CT in early childhood was released, it is still useful 
to map the curriculum onto each of the 7 powerful ideas of CT presented by Bers. 

Figure 1. Example KIBO robot and interlocking wooden programming blocks
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This helps to illustrate how programmable robotics kits like KIBO can support the 
learning of a range of CT skills and concepts that are developmentally appropriate 
for young children. Table 2 connects each of the seven CT concepts presented by 
Bers (2020) with activities that from in the Helpful Robots unit.

Figure 2. KIBO prototype decorated for the final to remind children to listen. This 
was a final project created for the Helpful Robots curriculum
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Figure 3. A final project designed to help carry school supplies for the Helpful 
Robots curriculum
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Strategies Employed

From the first glance, this may seem like a typical robotics and computer science 
curricular unit. And in many ways, it was. However, in its implementation it differed 
in a few ways that may have made it especially effective at increasing girls’ interest 
in STEM and reducing gender stereotypes of both boys and girls. These include:

• Focusing on female role models – Prior research has shown that role-
modeling may be an important piece of engaging girls and women in STEM 
(Amelink & Creamer, 2010). This unit was originally taught by an all-female 
teaching team from Tufts University.

• Choosing a gender-neutral tech – The unit used the neutrally designed KIBO 
robotics kit, as opposed to stereotypically “girly” materials or a traditionally 
masculine STEM products like LEGO, programmable cars, or drones.

• Focusing on collaboration over competition – Prior research has shown 
that girls and women may respond more to collaboration than competition 
(e.g., Sullivan & Bers, under review; Rusk, Berg, & Resnick, 2005). Still, 
many educational robotics initiatives that exist in schools are centralized 
around competitive goals. This unit differed by focusing on collaboration in 

Table 2. Exploring CT concepts through the Helpful Robots Unit

Bers (2020) CT Concepts “Helpful Robots” Curricular Activities

Algorithms – A series of ordered steps taken in 
sequence.

Creating algorithms for the KIBO robot. 
Playing unplugged sequencing focused games such as 
“Coder Says” (a version of Simon Says).

Modularity – Breaking down tasks and 
procedures into simpler, manageable units.

Breaking down Final Project tasks into smaller jobs 
(e.g., planning code, creating program in small pieces, 
decorating robot, etc.).

Control Structures – Controlling the sequence 
in which a program is executed. Making 
decisions based on conditions.

Exploring Repeat Loops and Conditional Statements with 
KIBO’s block language.

Representation – Concepts can be represented 
by symbols.

Learning that each block represents a different action for 
KIBO.

Hardware/Software - Computing systems need 
both hardware & software to operate.

Learning that KIBO works because of hardware (i.e. 
the robot chassis, motors, sensors) and software (block 
programming language).

Design Process – An iterative process used 
to develop programs & artifacts with multiple 
steps.

Children worked iteratively to revise, edit, and improve 
their Helpful Robot projects over multiple class sessions.

Debugging – Fixing problems in our programs.
Children worked to solve problems with their robot’s 
hardware as well as their syntactical problems with their 
code.
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all aspects of the unit, from the theme itself (creating robots that help the 
school community), to content taught (e.g., learning about robots that help 
in hospitals and other settings), to the set-up activities (all children worked 
collaboratively in partners or small groups).

These classroom practices, as well as other best practices for engaging girls in 
CT and STEM in general, are explored further later in this chapter.

Efficacy of this Curricular Approach

The efficacy of the Helpful Robots curriculum on increasing girls’ interest in 
engineering was published by Sullivan & Bers (2018a) in the International Journal of 
Technology & Design Education. In this study by Sullivan & Bers (2018a), findings 
from a sample of 105 children in K-2nd grade demonstrated that after completing 
the curriculum, students identifying as girls had a statistically significant positive 
change in their desire to be an engineer. This change was not present in a control 
group from the school that did not receive the curriculum. Prior to the curriculum 
intervention, pretest findings also showed that student identifying as boys were 
significantly more interested in being an engineer than girls. After completing the 
curriculum, there was no longer a significant difference between boys’ and girls’ 
interest in engineering. Additionally, there were no significant effects for gender 
on mastery of CT concepts measured– indicating boys and girls mastered the 
computational concepts equally well (Sullivan & Bers, 2018a). This, ultimately, 
should be the goal: to create equitable learning situations where children of any 
gender are able to demonstrate equal mastery.

It is important to note that in this study, the child participants themselves were 
asked to share how they identified (not a teacher or parent). They were given the 
opportunity to provide non-binary responses or to say they “didn’t know” however, 
in this sample, all children chose to identify as either boys or girls. Future research 
should aim to find samples of children that captures non-binary identities as well.

Other work by Sullivan & Bers found that the female teaching team may have 
been especially important to the success of the program (Sullivan & Bers, 2018b). 
This study demonstrated preliminary evidence that having a female instructor may 
positively impact girls’ performance on certain programming tasks and reduce the 
number of gender differences between boys and girls in their mastery of programming 
concepts.

Taken together, findings suggest that a combination of technology choice, female 
role-modeling of instructors, and the actual curricular content itself led to positive 
outcomes for increasing girls’ interest in engineering, while supporting children in 
mastering computational concepts equally well, regardless of gender.
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Practices to Support Girls’ CT Learning

In the previous case study, we saw that certain practices were successful at increasing 
girls’ interest in engineering and teaching computational thinking to all young 
children. Table 3 highlights key practices from the case study, as well as other best 
practices for positively engaging girls in CT from an early age. The suggestions 
presented in Table 3, while rooted in research on girls in STEM, are applicable for 
young children of any gender identity.

The case study focused on the use of the KIBO robotics kit, but similar curricular 
interventions could be implemented using a range of materials. Sullivan (2019) 
explains that when choosing technologies and apps for young girls, one of the most 
important factors educators should consider choosing applications that engage girls 
as creators of digital content rather than consumers of digital content. Choosing 
tools that prompt girls not just to watch but to do. These might include programming 
applications like ScratchJr, robotics kits like KIBO or Code-a-Pillar, or DIY kits 
from companies like Goldie Blox.

Table 3. Best practices for engaging girls in CT

Best Practices What it Might Look Like in the Classroom…

Choosing the Right Tools

     • Choosing open ended tools or applications that engage 
girls as creators rather than consumers of their digital 
experiences. 
     • Choosing tools that support CT learning, engineering, 
and design.

Integrative STEAM Approach
     • Rather than teaching CT concepts or coding as a 
“standalone,” integrating CT with the arts, music, culture, 
history and more to reach a wider range of students.

Fostering Collaboration

     • Providing girls with opportunities to work in 
partnerships, small groups, and large groups. 
     • Work toward collaborative STEM events. (i.e., 
showcases) as opposed to competitive ones (i.e., final 
competitions or contests).

Breaking/Preventing/Disrupting Stereotypes
     • Talking about stereotypes that are presented in the 
shows, books, and movies they are exposed to. 
     • Proving examples that contradict negative stereotypes.

Female STEM Role Models

     • Expose all children (including boys and children of any 
gender identity) to female STEM role models through books, 
media, and real-world introductions. 
     • Female educators should be sure to model their own 
positive attitudes toward CT and STEM in general.

Language Matters: Choosing Words Wisely

     • Choose gender-neutral terms to talk about robots and 
technology (e.g., “it” rather than “he”). 
     • Carefully choosing how you talk about STEM concepts, 
fields, and professionals.
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One of the key features of the Helpful Robots curriculum was the focus (explicit 
and implicit) on collaboration, teamwork, and support. Over the past decade, 
robotics competitions have become an increasingly popular way for K-12 students 
to become involved with computer science and engineering in a way that has been 
thought to increase student interest in math and science and (Hendricks, Alemdar, 
& Olgletree, 2012; Petre & Price 2004). However, while robotics competitions may 
motivate students to learn more about fields such as computer science, research 
also demonstrates that gender gaps persist in these competitive environments and 
appear to widen as students grow older and enter more advanced competitions 
(Witherspoon, Schunn, Higashi, & Baehr, 2016). By offering opportunities for 
children to explore coding, CT, and engineering in collaborative contexts, it may be 
possible to increase the number of girls who master CT skills and decide to pursue 
computational subjects and fields as they grow up.

The final key component of Helpful Robots curriculum worth highlighting is the 
early age of the age of the curricular intervention: Kindergarten through second grade. 
There is a growing body of work on the importance of early exposure to coding and 
engineering content in order to help pique girls’ interest in technical STEM fields 
from an early age (e.g., Sullivan, 2019; Sullivan & Bers, 2018a, Sullivan & Bers, 
2018b; Sullivan, 2016). Other work has shown that even beginning in preschool, 
children can successfully learn basic CT concepts (e.g., Elkin, Sullivan, & Bers, 
2016). So why wait until later in life when stereotypes and beliefs about abilities 
are more firmly ingrained? Instead, we should consider early childhood a pivotal 
time to begin reaching girls with engaging STEM and CT content, and continue to 
support them – and all children – throughout their educational journeys.

CONCLUSION

Five years later and we still have a ways to go in order to truly make CT and computer 
science equitable and available for all students. This chapter has highlighted strategies 
and approaches that educators can use to begin to address issues of STEM equity 
early on. Ensuring that girls are exposed to developmentally appropriate tools that 
encourage engineering, computational thinking, and creating from an early age through 
collaborative contexts is key for setting the stage for success later on. Additionally, 
it is important to expose all young children to female role models from STEM fields 
and to carefully choosing gender-neutral terms to talk about technology to children. 
Finally, explicitly talking to young children about stereotypes and addressing biases 
from books and media will help to tackle the issue of stereotypes head on.

By following these guidelines and encouraging CT exposure early on, with a focus 
on consciously choosing teaching tools and themes that will be equally appealing 
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to all students, we can take an important first step toward realizing the vision of 
“computer science for all.”
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KEY TERMS AND DEFINITIONS

KIBO: A screen-free programmable robotics kit for young children with blocks, 
sensors, modules, and art platforms.

Stereotype: A widely held but fixed and oversimplified image or idea of a 
particular type of person, group, or thing.

Stereotype Threat: A socially premised psychological threat that arises when 
one is in a situation for which a negative stereotype about one’s group applies.
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ENDNOTE

1  Use of the words and phrases “female voices,” “women,” “girls,” and “female” 
throughout this chapter refers to anyone self-identifying as female. The American 
Psychological Association (APA) defines “gender identity” as “a person’s 
deep felt, inherent sense of being a girl, woman, or female; a boy, a man, or 
male; a blend of male or female; [or another] gender” as well as nonbinary 
individuals (APA, 2015, p. 862; APA, 2021). While this chapter focuses on 
female-identifying individuals, the best practices and suggestions presented 
are applicable to working with young children of any gender identity.
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ABSTRACT

This chapter discusses understandings of coding and computational thinking education 
for students with disabilities. The chapter describes the special education system 
in the United States, including limitations in how computer science education is 
made available to students receiving special education services. The chapter then 
provides a summary of research in computer science education for students with 
disabilities, including both high-incidence and low-incidence disabilities. A case 
study of a young student with a mild disability learning in a general education 
computational thinking program is then presented, and the implications of the case 
study for future research directions are discussed.
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Including Students With Disabilities in the Coding Classroom

INTRODUCTION

Sophie1, a 5-year-old girl enters Ms. Locke’s kindergarten class smiling. She sits 
on her spot on the carpet and waits for class to begin. The girls around her argue 
over who will sit next to who. She seems intentionally oblivious. At some point, 
she is drawn into this seating dance as another student asks if she will move so that 
said girl can sit next to another student. She obliges, undisturbed. Soon Ms. Locke 
begins class and sings the robot part song. Sophie stands delighted and dances along, 
moving side to side: “The body is connected to the motor; the motor is connected to 
the... so move robot move.” Today is the day the teacher informs the class they will 
finally get to play with the KIBO robot. The teacher has organized and sorted all the 
KIBO parts into different storage bins in the “materials” part of her classroom. The 
students are broken into pairs and called into a line to collect their materials. Sophie 
and her partner, Pete, wait patiently as students mull over the KIBO bins. Finally, 
it is their turn. Sophie and Pete take turns filling their tray with all the KIBO parts.

Soon they find a quiet place on the rug and begin building. They work 
collaboratively, taking turns, co-constructing a path for the KIBO robot to travel and 
the corresponding program that will allow KIBO to travel. Sophie plans her project 
in her Design Journal and references that plan as she and Pete create their program. 
Instead of becoming discouraged when the scanning of the coding blocks does not 
work, they work together to problem-solve, and Sophie scans the coding blocks 
with the robot. One would not know from this short snapshot of the classroom that 
Sophie does not talk in school. She doesn’t speak out loud to Pete as they build their 
program, and her design plan does not include the voice recorder and associated 
blocks. Still, she and Pete work together, excited by the possibilities KIBO offers 
for creativity and expression. In this chapter we will explore what Sophie’s teacher 
did to accommodate her disability so that she could access KIBO learning alongside 
her peers. More broadly, we will discuss how computer science education can be 
used towards inclusive classrooms and pedagogy.

STUDENTS WITH DISABILITIES AND COMPUTER SCIENCE

Fourteen percent of public-school students in the United States ages 3-21 receive 
special education services under the Individuals with Disabilities Education Act 
(Congress, 1975) for some form of disability, which can range from specific learning 
disorder, to speech or language impairment, to autism spectrum disorder (Students 
with Disabilities, 2020). As each student’s individual needs vary, so do the special 
education services provided. A student with a high-incidence disability, a category 
including but not limited to learning disabilities, emotional and/or behavioral 
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disorders, and speech or language impairments, may spend most of their day with 
their peers in the general education classroom and only receive an hour or so of special 
education services for domain-specific instruction (Gage et al., 2012). Students with 
disabilities of this nature comprise the majority of students with disabilities (Gage et 
al., 2012; National Center for Education Statistics, 2021). In contrast, students with 
low-incidence disabilities have disabilities that affect learning across domains, such 
as significant sensory or cognitive impairments (Congress, 1975). Depending on 
the nature of their disability and needs, students with more-significant intellectual 
disabilities or other domain-general disabilities may spend most of the day receiving 
special education services, meaning much of their education is provided by the 
special education teacher. As suggested by the term, the minority of students with 
disabilities have disabilities that are classified as low-incidence.

Over 60% of students with disabilities spend more than 80% of their day in 
the general education classroom (National Center for Education Statistics, 2021). 
However, students with disabilities do not have equal access to computer science 
and computational thinking education as their nondisabled peers, which ultimately 
leads to knowledge gaps for students with disabilities in increasingly important 
21st century skills. For example, while approximately 10% of students without 
disabilities scored below proficient for the National Assessment of Educational 
Progress technology and engineering literacy content area, nearly half of students with 
disabilities scored below proficient (National Center for Education Statistics, 2021). 
Groups and initiatives such as AccessCSForAll and Deaf Kids Code are increasing 
access to computer science and computational thinking programming for kids with 
disabilities (deafkidscode.org, n.d.; Ladner & Israel, 2016). Additionally, researchers 
are developing dedicated educational programs for students with disabilities, as well 
as best practices for accommodation, in order to improve the quality of computer 
science education for these students.

Many of the specific programs and interventions relating to computer science 
and coding instruction for students with disabilities have focused on developing 
educational programs for students with low-incidence disabilities and autism (Taylor, 
2018). Much of this research focuses on educational pedagogies based around explicit 
instruction. In a curriculum based on explicit instruction, a student might learn, for 
example two control structures, and then practice them by programming a specific 
game. Using evidence-based explicit instruction, computer programming has been 
taught to students with Down syndrome, autism, and intellectual disability (Pivetti 
et al., 2020). For example, Knight, Wright, and DeFreese (2019) used an explicit 
instruction pedagogy to teach an elementary student with autism and significant 
behaviors to code using the Ozobot robot. Following the instruction period, the 
student was able to generalize the coding skills to new coding challenge (Knight 
et al., 2019). However, skills taught through explicit instruction do not necessarily 
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generalize. This means a child may be able to use a skill within a specific setting but 
cannot use the skill in a new setting or to create an unknown program. For example, 
Taylor (2018) used explicit instruction to teach preschool, kindergarten, and first 
grade students with intellectual disabilities to use the Dash robot, and although all 
the students learned to code the robot, no student was able to generalize the skills 
to complete a novel coding challenge (Taylor, 2018).

These evidence-based explicit instructionist pedagogies used by special educators 
are in tension with the constructionist pedagogies for computational thinking (Bers, 
2020). Constructionist models allow for student-driven play to drive learning, whereas 
explicit instruction provides a structure for learning. For example, Munoz et al (2018) 
taught students with autism to create video games using an instructionist pedagogy 
that provided students with the prompt, characters, and code (Munoz et al., 2018). 
Through this instructionist video-game learning curriculum, students with autism 
learned computational thinking skills such as abstraction, problem decomposition, 
and data representation. In contrast, in a constructionist robotics curriculum focused 
on cause and effect, students participated in guided free-play involving coding and 
sensors (Albo-Canals et al., 2018). The primary goal of Albo-Canals et al.’s (2018) 
research was understanding student engagement with educational robots, rather than 
computational thinking learning, but the findings suggest that the students gained 
some computational thinking knowledge, including sequencing and cause-effect. 
There has not yet been research specifically on computational thinking learning 
through constructionist curricula for students with disabilities.

Most research on computer science education for students with disabilities has 
focused on students with low-incidence disabilities and autism who may receive more 
significant accommodations or modifications to their educational materials. However, 
the majority of students with disabilities have high-incidence disabilities, and as 
mentioned above, most of them receive education at least partially within the general 
education setting (Gage et al., 2012; Students with Disabilities, 2020). Services for 
students with high-incidence disabilities, which include specific learning disabilities 
(e.g., reading disabilities, math disabilities), speech and language impairments, 
and emotional and behavioral disorders, are often targeted to a student’s specific 
area of need. For example, a student with a specific learning disability in reading 
may receive special education services in literacy and language arts but might not 
receive individualized attention or accommodations in computer science. Bouck 
and Yadav (2020) showed that students with high-incidence disabilities in an upper 
elementary school resource room learned computational thinking concepts such as 
algorithms through a combination of explicit instruction and unplugged activities. 
They also suggest use of instructional methods such as pre-teaching vocabulary 
and providing information in multiple formats (Bouck & Yadav, 2020). Israel et 
al. (2015) reinforce the use of multiple instructional methods and emphasize the 
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use of Universal Design for Learning practices, which uses multiple means of 
representation, action and expression, and engagement to create an inclusive and 
accessible curriculum (Israel et al., 2015).

Here, we describe a case study of a student with a disability served primarily in 
the general education classroom, selective mutism. Selective mutism is defined as “a 
complex childhood anxiety disorder characterized by a child’s inability to speak and 
communicate effectively in select social settings, such as school” (American Speech-
Language-Hearing Association, n.d.). The condition must cause impairment either 
academically or socially and must not be explained by another communication or 
developmental disorder (Viana et al., 2009). Although speech or language impairment 
is classified as high-incidence with regard to special education services, selective 
mutism is thought to be a relatively rare diagnosis, with prevalence estimated to be 
between 0.47% and 0.76% (Viana et al., 2009). There is no known single cause of 
selective mutism, and while there is evidence suggesting an association with anxiety 
disorders, some students also express externalizing behaviors or ADHD (Viana et 
al., 2009). The complexity and variations of the disorder create further challenges 
for a teacher of a student with selective mutism, as there is no single approach to 
accommodate a student with this diagnosis. The curriculum presented in this case 
study was not intended as a program or intervention to teach computer science 
or coding to students with disabilities. Rather, by accommodating the needs of a 
student with a disability, the teacher was able to create an inclusive and accessible 
constructionist, coding environment. As such, the case study we present explores 
exciting new possibilities for using constructionist pedagogies in teaching computer 
science with students with high-incidence disabilities.

CASE STUDY: CODING AS ACCESSIBLE COMMUNICATION

At first or even second glance, Sophie’s classroom participation was similar to that 
of any other child in her kindergarten class. She sat amid her peers during carpet 
circle times, raised her hand during participatory questions, and turned her head to 
anyone who addressed her. Sophie has selective mutism and does not speak, but she 
was fully included in her class’s computer science programming. Sophie and her 
kindergarten class took part in a larger research project investigating how religious 
and secular elementary schools used tangible robotics as an opportunity to foster 
character development (see Chapter 10 in this book). As a research team, we were 
interested in the different ways that kindergarten-age children would interact with 
one another in the context of robotics, and how their classroom environment would 
influence those interactions.
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Ms. Locke’s classroom was a place where Sophie’s disability was accommodated 
and accepted. Ms. Locke explained Sophie’s disability to the researcher’s when 
explaining an accommodation made to the curriculum, and throughout the 
implementation of the KIBO tangible robotics curriculum, Ms. Locke made notes 
about how she modified discussion-based activities to allow non-verbal participation. 
Ms. Locke made turned open-ended questions into “raise your hand if you agree” 
questions, allowing her to contribute non-verbally without standing out among 
her peers. Ms. Locke also seemed to have an eye out for Sophie. In one classroom 
activity we observed, we watched as Sophie began to look a little despondent while 
her peers shouted their ideas. Ms. Locke noticed and turned to Sophie, saying, 
“Tell me, should we do a dog?” Sophie smiled and nodded. The acceptance and 
accommodation of Sophie’s disability modeled by Ms. Locke appeared to translate 
to the other students’ acceptance and inclusion of Sophie. In another activity, while 
creating underwater scenes with crayons, Sophie’s classmate leaned over the table 
to look at her drawing. “I love yours! Look how Sophie did hers!” her classmate 
remarked, drawing everyone’s attention to Sophie. “So pretty,” another classmate 
said. Sophie did not look up but smiled slightly and continued coloring.

Throughout the tangible robotics curriculum, Sophie had the same partner, her 
classmate Pete. In her notes, Ms. Locke writes that Pete “continues to show kindness 
and patience towards his partner. Sophie is very quiet, and Pete takes time to explain/
talk with Sophie about KIBO.” In the hands-on robotics activity, Pete and Sophie 
worked to build the KIBO robotics kit together. Sophie poked Pete to get his attention. 
He never denied her the chance to touch the KIBO robot even when she was having 
difficulty scanning the tangible programming blocks. Ms. Locke wrote in her lesson 
notes: “Pete didn’t take KIBO away and didn’t do the scanning himself, he just held 
his friend’s hands from above and controlled her hand movements.” At another 
point in the curriculum, Ms. Locke used Sophie and Pete’s program as an example 
for the whole class. Although Pete and Ms. Locke did the verbal presentation, they 
consistently used the plural pronouns “them and their” to give ownership to Pete and 
Sophie, not just Pete. In another class discussion about who helped other students 
work with their KIBOs, Pete raised his hand. Sophie noticed and raised her hand. 
Ms. Locke called on Pete. He announced to the class that Sophie had helped him 
because she scanned the barcodes of the tangible block program for him. Sophie 
smiled big and looked down, but the smile lingered for moments after.

We found through analysis of our ethnographic data and video observations that 
Sophie demonstrated more communicative acts during KIBO robotics activities than 
during discussion-based activities. She ran from spot to spot with her classmates 
during “Robot Corners,” a game about differentiating between items that are or are 
not robots, but during sharing circles, she appeared distracted and uninterested. 
While this finding may feel intuitive, this serves as a reminder of the role of tactile 
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and kinesthetic learning tools for students with communication-related disabilities. 
The fact that this particular robotics kit, KIBO, centers on student expression and the 
teaching of coding as a language for communication, makes this finding even more 
promising for future applications of KIBO as a tool for students with communication-
related disabilities to learn computational thinking.

While Sophie offered consistent communicative gestures whenever she was 
engaged with the KIBO robotics kit, no activity in the curriculum showed her 
engagement with the tangible tool more than her final project. Figure 1 below shows 
her planning sheet in her Design Journal for her final project. The assignment asked 
the students to create “Gratitude Floats” celebrating things special to the students 
and their community: Because this lesson took place close to Thanksgiving, this 
was an opportunity for the students to examine the tenets of their school and reflect 
on what they were grateful for.

GRATITUDE FLOATS (15 min) Ask students to think about what makes their 
school special. Often, things that are special to you have some sort of meaning 
that signifies who you are or where you come from. Tell students that today, they 
will be making “Gratitude Floats,” similar to a Thanksgiving Parade, celebrating 
their school and what makes it special. Ask students: What’s important to you? Is it 
important to other people in the school too? What is different about our school than 
other schools? Students then should draw images of the things they felt made their 
school special. These images will later be used to decorate their Gratitude Floats.

The project continued:

PLAN THE PARADE (15 min) Before giving the students their KIBO, have the 
students plan out their parade. They should imagine if they could take their parade 
around the school, where they will go (e.g., other classrooms, the cafeteria, the 
chapel) and why. If time allows, children could even draw their route in the form of 
a map in their Curiosity Journals.

The blocks Sophie circled in her project plan suggest that she had a developing 
technical understanding of the KIBO programming language. First, she circled 
that she would use both a begin block and end block, both necessary for any 
KIBO program. This is significant because it ties into a basic understanding of 
the foundations of programming and connects to the powerful idea of algorithms 
and sequencing. Second, she circled movement blocks in her program, suggesting 
an expanded vocabulary of programming functions. Third, she circled both the 
light bulb and the light block, suggesting an emergent understanding of hardware-
software correspondence. Although she did not yet show a mastery of this concept, 
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for example, selecting the light and distance sensors without the corresponding 
blocks, this is significant as it connects to the powerful ideas of representation and 
multiple tools of communication.

While Sophie’s project planning sheet showed her technical understanding of the 
KIBO robotics kit and block programming language, the sheet also revealed that Sophie 
saw the KIBO programming language as a language that she could use, express in, 
and communicate with. Particularly noteworthy was that Sophie felt empowered to 
circle every sensor except the voice recorder. Ms. Locke created a classroom culture 
in which Sophie was included and her disability was accommodated, and Sophie 
was comfortable in this classroom to express herself using every accommodating 
aspect of the KIBO language while rejecting the unaccommodating aspects. Within 
the KIBO language, she was able to advocate for and accommodate her own needs, 
making the language work for her.

Figure 1. Sophie’s final project plan (IGI, 2021)
Source: IGI, 2021
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CONCLUSION

Sophie’s classroom experience suggests that even young children with disabilities 
can access mainstream, constructionist computer science learning environments 
with classroom accommodations, and that this opportunity to explore the coding 
platform leads to creative expression and classroom communication using the 
coding language. Her planning sheet communicates that she felt empowered to use 
the KIBO robotics kit to build her “Gratitude Float.” She communicated in her plan 
that the program would require use of all the robotic sensors, except one, the voice 
recorder. With the classroom accommodations provided by her teacher, she could 
compose and self-express using the KIBO robotics language and was able to write 
programs expressing and accommodating her individual needs.

Sophie’s successful experience reinforces previous research on students with 
disabilities and computer science on how to incorporate Universal Design for Learning 
and other accommodations into computer science instruction (Israel et al., 2015). 
For example, Israel et al. suggest that teachers give students with disabilities roles 
within project groups that allow them to focus on their strengths, while altering 
expectations for the student as necessary (Israel et al., 2015). While working with 
Pete, Sophie scanned the code (a non-verbal task), while Pete verbally shared their 
work with the class. The constructionist tangible robotics curriculum used in Ms. 
Locke’s class also used many of Israel et. al.’s suggested practices, for example by 
providing the students with a culturally-relevant project or including unplugged 
activities to provide for multiple means of action and expression (Israel et al., 2015). 
Sophie’s success with this curriculum suggests that teachers can use these practices 
to create an inclusive and accommodating coding classroom even for students as 
young as Kindergarten.

Computer science education for students with disabilities is important. These 
students are entitled to equally access all educational opportunities as their non-
disabled peers, including computer science education (IDEA, 2004). Although 
most students with disabilities do not have computer-science or robotics specific 
accommodations, previous research suggests applying the supports already in place 
for other classroom subjects will lead to successful learning outcomes in computer 
science for students with disabilities (Snodgrass et al., 2016). We saw this with 
Sophie, who was included, engaged, and ultimately successful in the student-centered 
tangible robotics curriculum because her teacher’s existing supports allowed for 
alternate methods of communication. For other students, existing supports might 
include access to assistive technology, KIBO blocks modified to include braille, or 
multiple modes of providing instructions.

Recently, there have been increasing opportunities for students with disabilities 
to learn computer science and access computer science curricula. As mentioned 
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earlier, organizations and initiatives such as AccessCSForAll and Deaf Kids Code 
are bringing computer science opportunities to more students with disabilities 
(deafkidscode.org, n.d.; Ladner & Israel, 2016). Educational programs in robotics 
and computational thinking are being developed and assessed for students with 
disabilities using traditional special education practices (Knight et al., 2019; Munoz 
et al., 2018; Taylor et al., 2017). As computer science education becomes more 
available to young children, students with disabilities have the right to learn these 
21st century skills alongside their nondisabled peers. Our work with Sophie suggests 
even young students with disabilities can learn computer science in student-centered 
learning environments alongside their nondisabled peers, including experiencing 
the benefits of the student-centered computer science pedagogy. By expanding their 
existing supports to new computer science curricula, teachers can offer inclusive 
and exciting computer science opportunities to engage students with and without 
disabilities in new ways of thinking and expression.
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KEY TERMS AND DEFINITIONS

Constructionism: A student-directed pedagogy in which students’ learning is 
self-directed based on individual questions and interests.

Explicit Instruction: A structured, teacher-directed pedagogy in which teachers 
provide direct instruction to students, provide students with a scaffolded learning 
environment, and assess student learning based on correctness of answers.

General Education Environment: The learning environment (including 
curriculum, teachers, standards, social environment, and physical environment) 
provided to children without disabilities.

High-Incidence Disability: A category of disabilities that includes specific 
learning disorders, speech or language impairments, ADHD, and emotional and 
behavioral disabilities.

Individuals With Disabilities in Education Act: The law that mandates special 
education services be provided to students with disabilities, and that students with 
disabilities are entitled to a free appropriate public education in the least restrictive 
learning environment.

Low-Incidence Disability: A category of disabilities that affect learning 
across domains, such as significant sensory impairments or significant cognitive 
impairments.

Special Education Services: Services provided by the school or school 
district to support students with disabilities, including special education teachers, 
paraprofessionals, and specialized curricula.

ENDNOTE

1  All names are pseudonyms.
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ABSTRACT

This chapter describes the development and validation of TechCheck, a novel 
instrument for rapidly assessing computational thinking (CT) skills in 5-9 years 
old children. TechCheck assessments can be administered in classroom or online 
settings regardless of whether students have prior knowledge of coding. This 
assessment probes six domains of CT described by Bers (2018) as developmentally 
appropriate for young children including algorithms, modularity, control structures, 
representation, hardware/software, and debugging. TechCheck demonstrates good 
psychometric properties and can readily distinguish among young children with 
different CT abilities.

INTRODUCTION

Numerous studies have demonstrated that children as young as four years of age 
are capable of learning to code (Kazakoff & Bers, 2014; Bers, 2018; Clements 
& Gullo, 1984; Strawhacker & Bers, 2018). In the process of acquiring coding 
skills, children often simultaneously develop a set of thought processes known as 
computational thinking (CT) that are useful for framing and solving problems using 
computers and other technologies (Wing, 2006; Wing 2011). CT is valuable for 
coding but also applicable to other disciplines including problem-solving in everyday 

TechCheck:
Creation of an Unplugged Computational 
Thinking Assessment for Young Children

Emily Relkin
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life. Promoting the acquisition of CT is accordingly one of the goals of computer 
science (CS) education (Grover & Pea, 2013; Lye & Koh, 2014; NRC, 2011). One 
of the challenges to achieving this goal has been the lack of availability of suitable 
instruments for assessing CT skills in young children (Lockwood & Mooney, 2018; 
Grover & Pea, 2013; Lee et al., 2011; Román-González et al., 2019). A reliable and 
validated CT assessment tool can be used to monitor young students’ CT progress 
and allow educators to gauge the effectiveness of CS lessons. CT assessment can 
also be used to identify students in need of extra support as well as those with 
exceptional talents. CT assessment can provide new insights into how children’s 
CT abilities develop and can assist in the development of new curricula and best 
practices for CS education.

Challenges of CT Assessment in Young Children

Assessing CT in young children requires taking into account stages of cognitive 
development. A young child’s literacy, numeracy, and abstract reasoning undergo 
gradual development (Piaget, 1971). Their developmental stage can impact their 
ability to understand certain CS concepts and their readiness for CT assessment 
(Chen et al., 2017). A kindergarten student may not be able to fully understand CT 
principles such as “if-then” conditionals (Barrouillet & Lecas, 1999; Janveau-Brennan 
& Markovits, 1999; Muller et al., 2001). Aspects of abstract representations such 
as programming variables may be inaccessible to them. They may express magical 
thinking as an explanation for the action of computers and other technology (Flavell 
et al., 1993; Mioduser et al., 2009). These and other constraints may affect the design 
and implementation of CT assessments for young children.

Instruments for assessing CT in older students and adults have existed for some 
time (Fraillon at al., 2018; Werner at al., 2012; Chen at al., 2017). A common 
approach involves the use of coding exercises that are designed to elicit the same 
type of logic and reasoning that is involved in programming. However, coding-based 
assessments require prior knowledge of a coding language and can conflate coding 
ability with CT skills (Yadav et al., 2017). Assessments that require knowledge 
of coding cannot readily be used to assess baseline CT abilities in coding-naive 
students. In addition, research with older children has indicated that coding can 
become automatic. Therefore, coding exercises may not be the most effective way 
to probe CT (Werner at al., 2014).

It is advantageous to be able to measure CT skills in children regardless of whether 
they have past knowledge or experience with computer programming (Grover et al., 
2014). With this in mind, our group began exploring the use of code-free instruments 
to assess CT skills in children. Our basis for creating a coding-free CT assessment 
was the realization that CT is exercised in the context of many “unplugged” activities 
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(Bell & Vahrenhold, 2018; Zapata-Cáceres et al., 2020). Unplugged activities typically 
involve puzzles, games and exercises that exemplify CS concepts without requiring 
explicit knowledge of coding or the use of computers (see Relkin & Strawhacker, 
Chapter 3). Unplugged activities have been used to teach CS concepts for over two 
decades (e.g., CSUnplugged.com; code.org) and in recent years have started to be 
used for the purposes of assessment. It has been argued that unplugged assessments 
offer advantages because they do rely on a particular computer language or curricula 
and are therefore purer reflections of CT abilities (Dagiene & Futschek, 2008).

Conceptual Foundations for Unplugged CT Assessment

Unplugged CT activities involve the participation in tasks that exercise analogous 
thinking processes to those involved in CT. However, there is a lack of consensus 
about the precise definition of CT and its subdomains. A number of definitions have 
been put forth, most of which place CT outside of the context of early childhood. 
(Aho, 2012; Barr & Stephenson, 2011; Cuny at al., 2010; Grover & Pea, 2013; 
Kalelioğlu at al., 2016; Lu & Fletcher, 2009; Shute at al., 2017; Wing, 2006; Wing, 
2008; Tang at al., 2020). To operationalize unplugged CT assessment, it is important 
to use a conceptual framework that is developmentally appropriate for young children.

To identify CT’s cognitive subdomains in young children, Bers (2018) drew on 
Papert’s definition of “powerful ideas” as skills within a domain or discipline that 
are individually meaningful and change how we think or perceive the world and 
problem solve (Papert, 1980). This led to the formation of the “Seven Powerful Ideas” 
that operationalize CT in a developmentally appropriate way that can be taught to 
young children through a CS or robotics curriculum (Bers, 2018). These powerful 
ideas include algorithms, modularity, control structures, representation, hardware/
software, design process, and debugging (see table 1). To create a coding-free 
assessment of CT, we identified unplugged activities that were associated with six 
of these domains and confirmed the associations through the consensus of a panel 
of child development and computer science professionals.
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What Features Should a CT Assessment for 
Young Children Ideally Possess?

Assessment of young children requires careful attention to certain elements of 
design and content selection that differ from those involved in creating comparable 
instruments for adults (Goldstein & Flake, 2016). Assessment instruments for young 
children must use developmentally appropriate language, symbols and tasks to 
assure that factors such as literacy, numeracy and fine motor skills are not limiting 
(Chen et al., 2017; Sattler, 2014). Activities and artifacts employed must be familiar 
and non-threatening to young children and as free as possible from cultural biases 
(Tang et al., 2020; McMillan, 2013; Mullis & Martin, 2019). In light of the shorter 
attention span of young children (Moyer & Gilmer, 1953) and the likelihood of 
test fatigue, the duration of the assessment must be kept sufficiently brief to allow 
routine use in educational settings (Basu et al., 2016; Werner et al., 2014; Chen et 
al., 2017). Educational assessments should not be so lengthy and or complex that 
teachers are unable to administer them in routine classroom settings. Likewise, it may 
be impractical to require that assessment be carried out one-on-one because of the 
constraints of class time. Ideally, teachers who are not particularly skilled at coding 
themselves should be able to administer CT assessments. As emphasized above, 
the administration should be possible regardless of the student’s past programming 
experience. The rating system employed should use simple outcome categories 
and/or numeric scores that are straightforward to calculate and interpret (Koretz et 
al., 1992). A CT assessment for children should demonstrate good construct and 
face validity (essentially, confirmation that the assessment measures what it was 
designed to measure) as well as acceptable inter-rater reliability and sensitivity to 

Table 1. This table describes each of the developmentally appropriate seven powerful 
ideas of Computer Science that were selected by Bers (2018) and used as domains 
of CT in TechCheck

Bers’ Seven Powerful Ideas Description

Algorithms A step-by-step sequential process that helps achieve a goal/task

Modularity Breaking up large tasks into smaller parts; reusing modules

Control Structures Recognizing patterns and repetition, cause and effect

Representation Symbolic representation, forming models

Hardware/Software Understanding that smart objects are not magical but are human-
engineered

Debugging Finding and fixing problems, troubleshooting

Design Process An iterative and creative process often involving perseverance
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change. These and other considerations can make the creation of assessments for 
early childhood a particularly challenging enterprise (Snow et al., 2008).

Features of the TechCheck CT Assessment

TechCheck is a 15 item, multiple-choice, unplugged CT assessment that was 
created at Tufts University in 2018 for children ages 5-9. The assessment is easy 
to administer to students regardless of their familiarity with coding. The concepts 
behind TechCheck followed from experience with a platform-specific CT assessment 
instrument called TACTIC-KIBO that we previously designed. TACTIC-KIBO 
required one-on-one administration as well as familiarity with the KIBO robotics 
platform (Relkin, 2018; Relkin & Bers, 2019). In contrast, TechCheck is platform-
independent, meaning it does not require knowledge of programming or the use of 
a computer to be completed. Six of the “Seven Powerful Ideas” of computer science 
(Bers, 2018) that are developmentally appropriate for early childhood are probed 
by this instrument. The remaining powerful idea, Design Process, was not included 
in the assessment because it is an iterative and open-ended process that does not 
lend itself to a multiple-choice format. A multiple-choice format was used because 
it simplifies data collection, helps make scoring more objective and facilitates 
administration to large numbers of students simultaneously.

TechCheck can be administered one-on-one, to whole classrooms, or even to 
geographically distributed groups. It can be printed out or displayed on a device 
(the mode of presentation does not alter the “unplugged” nature of the assessment 
content). A proctor reads out loud the stem (question/challenge) for each of the 15 
items. Children respond by checking off or clicking on one of the answer options. 
The children can understand answer options as they have little to no text in them (see 
Table 2). Each correct response is awarded one point, with a maximum total score 
of 15 points. Two practice questions are included at the beginning of the assessment 
to familiarize students with the format but are not included in the scoring. This is 
a “forced choice” assessment, meaning all questions must be answered. Students 
are instructed to guess if they do not know the answer and informed that there is 
no penalty for guessing. The administration time varies by grade but in most cases, 
TechCheck can be completed in under 20 minutes. The use of an answer key makes 
scoring straightforward. Mean scores and distribution by grade have were determined 
in nearly 800 students first and second grade.
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Design and Validation

After developing prototypes of TechCheck questions, we assembled a group of 
nineteen evaluators (CS researchers, educators and students) with various levels 
of expertise in CT to judge whether or not the questions embodied the domains of 
Bers’ Seven Powerful Ideas. Inter-rater agreement was then assessed. There was an 
average agreement of 81% among raters. Fleiss’ Kappa indicated consensus among 
evaluators about the CT domain most associated with each question κ = 0.63 (95% CI) 
p < 0.001. Although all prototypes were judged to probe the intended CT domains, 
some questions were rejected because their content was judged to fall outside the 
common knowledge base of typical 5-to-9-year-olds (Relkin et al., 2020).

We initially validated TechCheck in a cohort of first and second graders participating 
in a research study involving the CAL-KIBO curriculum. TechCheck showed good 
reliability and validity according to measures of classical test theory (CTT) and item 
response theory (IRT). CTT and IRT are models that are commonly used to examine 
items on an assessment and individual responses to better understand their relationship 
to the underlying concept being measured (Kingsbury & Weiss 1983). TechCheck’s 
discrimination between skill levels was found to be adequate. The difficulty was 
suitable for first graders and low for second graders. TechCheck scores correlated 
moderately with a previously validated CT assessment tool (TACTIC-KIBO).

Figure 1. A Density plot of scores on original TechCheck for first and second grade. 
A slight ceiling effect is evident second graders
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In a prospective longitudinal study, Relkin et al., (2021) used TechCheck to 
compare children receiving the CAL-KIBO programming curriculum (N=667) to 
a control group (N=181) who participated in typical classroom activities without 
coding (No-CAL). A sequential regression showed TACTIC-KIBO scores and a 
child’s baseline TechCheck score predicted the endpoint TechCheck score (Relkin 
& Bers, 2020). Over the course of the study, children who received CAL-KIBO 
improved on TechCheck (Mchange= 0.94, p<0.001) whereas the No-CAL group did 
not change significantly (Mchange=0.27, p=.07). This change equated to the change 
in TechCheck scores estimated to occur over approximately 6 months of typical 
development. Generalized Linear Mixed Model (GLMM) and Bayesian analyses 
revealed that exposure to the CAL-KIBO curriculum predicted the TechCheck 
outcome score, taking into account differences in baseline TechCheck performance 
and other demographic and environmental effects. Children who received CAL-
KIBO showed the most improvement in the CT domains algorithms, modularity, 
representation. The significant changes observed in TechCheck scores in this study 
demonstrates the utility of this measure for longitudinal assessment.

Although results using TechCheck in first and second graders were encouraging, 
there was a noticeable ceiling effect in the second-grade cohort manifesting in a smaller 
window to observe change compared to the first-grade cohort. The assessment for 
second grade children ages 7-9 was subsequently modified to increase item difficulty. 
We conducted an item analysis of all the questions and modified those that had low 
difficulty, discrimination, and/or point biserial correlations. In the initial pilot test 
of the assessment, five experimental questions were also added to test whether any 
of the newer questions performed better than the previous ones. All modifications 
to original questions and three of the five experimental questions were included in 
the final version of TechCheck-2.

When we began administering TechCheck to kindergarten students, we realized that 
further modifications were required. Previous research has shown that the working 
memory of children of kindergarten age (~5 years old) limits them to hold an average 
of three items in immediate memory, compared to children in first and second grade 
(~6-9 years old) who can hold an average of four items (Cowan, 2016; Simmering, 
2012). This limit can potentially impact kindergartener’s performance on multiple-
choice assessments. Consequently, we reduced the number of response options 
from four to three in TechCheck-K (the Kindergarten version). We accomplished 
this by systematically eliminating one of a pair of distractors for each item that had 
close to the same response probabilities. We followed this procedure in an effort to 
maintain the overall difficulty and discrimination levels on a par with the original 
version of TechCheck. An example of a TechCheck question for each of the three 
grade levels is shown in Table 2. The impact of TechCheck-K and TechCheck-2 on 
the score distributions by grade are shown in Figure 2.
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Table 2. Sample Debugging Symmetry Problem and Algorithms Missing Symbol 
Series questions for kindergarteners, first graders, and second graders
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REFLECTIONS AND FUTURE DIRECTIONS

Our experience to date in the development, validation and research application of 
TechCheck has been gratifying. TechCheck has been successfully administered in a 
variety of formats including in-person or remotely, online and on paper, to groups 
of students and individuals in many countries. The instrument has been translated 
into several languages in addition to English (e.g., Spanish, Turkish, Chinese) and 
is currently being used in a variety of educational and research settings around the 
world.

Despite these successes, TechCheck can be further improved. The multiple-choice 
format of the instrument does not lend itself to creative self-expression and open-
ended problem solving which is a significant part of CT. We are currently examining 
other testing formats including more naturalistic and open-ended formats that may 
better address this shortcoming. Román-González at al., (2019) pointed out that CT 
assessments often focus on concepts rather than “practices and perspectives”, and 
as a consequence become “static and decontextualized.” To address this concern, 
strategies such as game-based assessment may offer a window on CT applied to real-
time problem-solving. Currently, TechCheck is designed for K-2nd grades. There is 
potential to extend this to other grades, including preschool and higher elementary 

Figure 2. This figure shows a density plot with the distribution of TechCheck scores 
by grade for the revised and updated formats of the assessment
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grade levels. Future studies should also explore whether the assessment can be used 
with neuro-diverse children and other contexts.

ACKNOWLEDGMENT

I would like to thank the principal investigator of this project, Marina Bers as well 
as our Project Coordinators, Angela de Mik and Megan Bennie for their many 
contributions to this work. I would like to thank my many colleagues at the DevTech 
research group at Tufts University who assisted in the development and field testing 
of TechCheck . Lastly, I would like to thank all of the educators, parents, and 
students who participated in this study. This work was funded by the Department 
of Defense Education Activity (DoDEA) grant entitled “Operation: Break the Code 
for College and Career Readiness.” Unique Entity Identifier: “WORLDCL10” and 
the Department of Education PR/Award Number: U411C190006

REFERENCES

Barrouillet, P., & Lecas, J. (1999). Mental models in conditional reasoning and working 
memory. Thinking & Reasoning, 5(4), 289–302. doi:10.1080/135467899393940

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). 
Identifying middle school students’ challenges in computational thinking-based 
science learning. Research and Practice in Technology Enhanced Learning, 11(1), 
13. doi:10.118641039-016-0036-2 PMID:30613246

Bell, T., & Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It 
Work? In H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures Between 
Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the 
Occasion of His 60th Birthday. doi:10.1007/978-3-319-98355-4_29

Bers, M. U. (2018). Coding as a playground: Programming and computational 
thinking in the early childhood classroom. Routledge.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). 
Assessing elementary students’ computational thinking in everyday reasoning and 
robotics programming. Computers & Education, 109, 162–175. doi:10.1016/j.
compedu.2017.03.001

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



260

TechCheck

Clements, D. H., & Gullo, D. F. (1984). Effects of Computer Programming on 
Young Children’s Cognition. Journal of Educational Psychology, 76(6), 1051–1058. 
doi:10.1037/0022-0663.76.6.1051

Code.org. (2019). Retrieved from https://code.org/

Dagiene, V., & Stupurienė, G. (2016). Bebras–a sustainable community building 
model for the concept based learning of informatics and computational thinking. 
Informatics in Education, 15(1), 25–44. . doi:10.15388/infedu.2016.02

Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd 
ed.). Prentice Hall.

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2018). International 
Computer and Information Literacy Study. ICILS 2018: Technical Report.

Goldstein, J., & Flake, J. K. (2016). Towards a framework for the validation of 
early childhood assessment systems. Educational Assessment, Evaluation and 
Accountability, 28(3), 273–293. doi:10.100711092-015-9231-8

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12. 
In Proceedings of the 2014 conference on Innovation & technology in computer 
science education (pp. 57-62). ACM. 10.1145/2591708.2591713

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state 
of the field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with 
causal conditionals. Developmental Psychology, 35(4), 904–911. doi:10.1037/0012-
1649.35.4.904 PMID:10442860

Kazakoff, E. R., & Bers, M. U. (2014). Put your robot in, Put your robot out: 
Sequencing through programming robots in early childhood. Journal of Educational 
Computing Research, 50(4), 553–573. doi:10.2190/EC.50.4.f

Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive 
mastery testing and a sequential mastery testing procedure. In New horizons in 
testing (pp. 257–283). Academic Press. doi:10.1016/B978-0-12-742780-5.50024-X

Koretz, D., McCaffrey, D. F., Klein, S. P., Bell, R. M., & Stecher, B. M. (1992). 
The Reliability of Scores from the 1992 Vermont Portfolio Assessment Program. 
Academic Press.

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://code.org/


261

TechCheck

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., 
& Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 
2(1), 32–37. doi:10.1145/1929887.1929902

Lockwood, J., & Mooney, A. (2018). Computational Thinking in education: Where 
does it fit? A systematic literary review. International Journal of Computer Science 
Education in Schools, 2(1), 41–60. doi:10.21585/ijcses.v2i1.26

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational 
thinking through programming: What is next for K-12? Computers in Human 
Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012

McMillan, J. H. (2013). Classroom assessment: Principles and practice for effective 
instruction (6th ed.). Pearson/Allyn and Bacon.

Mioduser, D., Levy, S. T., & Talis, V. (2009). Episodes to scripts to rules: Concrete-
abstractions in kindergarten children’s explanations of a robot’s behavior. International 
Journal of Technology and Design Education, 19(1), 15–36. doi:10.100710798-
007-9040-6

Moyer, K., & Gilmer, B. V. H. (1953). The Concept of Attention Spans in Children. 
The Elementary School Journal, 54(1), 464–466. doi:10.1086/458623

Mullis, I. V., & Martin, M. O. (2019). PIRLS 2021 Assessment Frameworks. 
International Association for the Evaluation of Educational Achievement. Retrieved 
from https://eric.ed.gov/?id=ED606056

National Research Council. (2011). Report of a workshop on the pedagogical aspects 
of computational thinking. National Academies Press.

Piaget, J. (1971). Developmental stages and developmental processes. In D. R. 
Green, M. P. Ford, & G. B. Flamer (Eds.), Measurement and Piaget (pp. 172–188). 
McGraw-Hill.

Relkin, E. (2018). Assessing young children’s computational thinking abilities 
(Master’s thesis). Retrieved from ProQuest Dissertations and Theses database. 
(UMI No. 10813994)

Relkin, E., & Bers, M. (2021). TechCheck-K: A Measure of Computational Thinking 
for Kindergarten Children. In 2021 IEEE Global Engineering Education Conference 
(EDUCON). IEEE. Retrieved from https://sites.tufts.edu/devtech/files/2021/05/1487.
pdf

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://eric.ed.gov/?id=ED606056
https://sites.tufts.edu/devtech/files/2021/05/1487.pdf
https://sites.tufts.edu/devtech/files/2021/05/1487.pdf


262

TechCheck

Relkin, E., & Bers, M. U. (2019). Designing an Assessment of Computational Thinking 
Abilities for Young Children. In L. E. Cohen & S. Waite-Stupiansky (Eds.), STEM for 
Early Childhood Learners: How Science, Technology, Engineering and Mathematics 
Strengthen Learning (pp. 85–98). Routledge. doi:10.4324/9780429453755-5

Relkin, E., & Bers, M. U. (2020). Exploring the Relationship Among Coding, 
Computational Thinking, and Problem Solving in Early Elementary School Students 
[Symposium]. Annual Meeting of the American Educational Research Association 
(AERA), San Francisco, CA.

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and 
Validation of an Unplugged Assessment of Computational Thinking in Early 
Childhood Education. Journal of Science Education and Technology, 29(4), 482–498. 
Advance online publication. doi:10.100710956-020-09831-x

Relkin, E., de Ruiter, L., & Bers, M. U. (2021). Learning to Code and the Acquisition 
of Computational Thinking by Young Children. Computers & Education, 169, 
104222. Advance online publication. doi:10.1016/j.compedu.2021.104222

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining Assessment 
Tools for a Comprehensive Evaluation of Computational Thinking Interventions. 
In Computational Thinking Education (pp. 79–98). Springer. doi:10.1007/978-981-
13-6528-7_6

Sattler, J. M. (2014). Foundations of behavioral, social and clinical assessment of 
children. Jerome M. Sattler, Publisher, Incorporated.

Snow, C. E., Van Hemel, S. B., & Committee on Developmental Outcomes 
Assessments for Young Children. (2008). Early childhood assessment: Why, what, 
and how. Washington, DC: National Academies Press.

Strawhacker, A., & Bers, M. U. (2018). What they learn when they learn coding: 
Investigating cognitive domains and computer programming knowledge in young 
children. Educational Technology Research and Development. Advance online 
publication. doi:10.100711423-018-9622-x

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational 
thinking: A systematic review of empirical studies. Computers & Education, 148, 
103798. doi:10.1016/j.compedu.2019.103798

Werner, L., Denner, J., & Campe, S. (2014). Using computer game programming to 
teach computational thinking skills. Learning, Education And Games, 37. Retrieved 
from https://dl.acm.org/citation.cfm?id=2811150

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://dl.acm.org/citation.cfm?id=2811150


263

TechCheck

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance 
assessment: measuring computational thinking in middle school. Proceedings of 
the 43rd ACM Technical Symposium on Computer Science Education, 215–220. 
10.1145/2157136.2157200

Wing, J. (2011). Research notebook: Computational thinking—What and why? 
The Link Magazine. Retrieved from https://www.cs.cmu.edu/link/research-
notebookcomputational-thinking-what-and-why

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 
33–35. doi:10.1145/1118178.1118215

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an 
emerging competence domain. In Technical and vocational education and training 
(Vol. 23, pp. 1051–1067). doi:10.1007/978-3-319-41713-4_49

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). 
Computational Thinking Test for Beginners: Design and Content Validation. In 
2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 1905-1914). 
IEEE. 10.1109/EDUCON45650.2020.9125368

ADDITIONAL READING

Brennan, K., Haduong, P., & Veno, E. (2020). Assessing Creativity in Computing 
Classrooms. Creative Computing Lab.

Clarke-Midura, J., Silvis, D., Shumway, J. F., Lee, V. R., & Kozlowski, J. S. (2021). 
Developing a kindergarten computational thinking assessment using evidence-
centered design: The case of algorithmic thinking. Computer Science Education, 
31(2), 1–24. doi:10.1080/08993408.2021.1877988

Hogenboom, S. A., Hermans, F. F., & Van der Maas, H. L. (2021). Computerized 
adaptive assessment of understanding of programming concepts in primary school 
children. Computer Science Education, 1–30. doi:10.1080/08993408.2021.1914461

Relkin, E., & Bers, M. U. (2021). Factors Influencing Learning of Computational 
Thinking Skills in Young Children. Virtual Annual Meeting of the American 
Educational Research Association (AERA).

Teaching Computational Thinking and Coding to Young Children, edited by Marina Bers, IGI Global, 2021. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/bostoncollege-ebooks/detail.action?docID=6692377.
Created from bostoncollege-ebooks on 2023-11-28 20:54:02.

C
op

yr
ig

ht
 ©

 2
02

1.
 IG

I G
lo

ba
l. 

A
ll 

rig
ht

s 
re

se
rv

ed
.

https://www.cs.cmu.edu/link/research-


264

TechCheck

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). 
Which cognitive abilities underlie computational thinking? Criterion validity of 
the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. 
doi:10.1016/j.chb.2016.08.047

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. 
Educational Research Review, 22, 142–158. doi:10.1016/j.edurev.2017.09.003

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational 
thinking through Scratch in K-9. Computers & Education, 141, 103607. doi:10.1016/j.
compedu.2019.103607

KEY TERMS AND DEFINITIONS

CAL-KIBO: A KIBO robotics coding curriculum appropriate for children in 
preschool through second grade that combines teaching programming skills, self-
expression, and literacy.

KIBO: A screen-free programmable robotics kit for young children with blocks, 
sensors, modules, and art platforms.

Powerful Ideas: Skills within a domain or discipline that are individually 
meaningful and change how we think or perceive the world and problem solve. Bers’ 
seven powerful operationalize domains of CT that are developmentally appropriate 
for young children.

ScratchJr: A free block-based programming application for young children.
TACTIC-KIBO: A CT measure that requires knowledge of coding with the 

KIBO robot. The assessment classifies children into one of four programming 
proficiency levels.

TechCheck: A “unplugged” assessment of Computational Thinking (CT) 
designed for children in kindergarten, first and second grades. TechCheck- K is for 
kindergarteners, TechCheck-1 is for first graders, and TechCheck-2 is for second 
graders The TechCheck assessments can be used to assess CT regardless of a child’s 
familiarity with coding.

Unplugged: Describes activities such as games and puzzles that aid the teaching 
and learning of computer science but without requiring the use of computers and 
other technologies.
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ABSTRACT

Computational thinking (CT), in line with the constructionist perspective, is often 
best displayed when children have the opportunity to demonstrate their skills 
by producing creative coding artifacts. Performance-based or project portfolio 
assessments of young children’s coding artifacts are a rich and useful approach to 
explore how children develop and apply CT abilities. In this chapter, the authors 
examine various rubrics and assessment tools used to measure the levels of 
programming competency, creativity, and purposefulness displayed in students’ 
coding artifacts. The authors then discuss the development of ScratchJr and KIBO 
project rubrics for researchers and educators, including examples to illustrate how 
these highly diverse projects provide insight into children’s CT abilities. Finally, 
the authors conclude with implications and practical strategies for using rubrics 
in both educational and research settings.

INTRODUCTION

Elisa is in first grade. She wants to create a ScratchJr project where she throws a 
birthday party in space and invites her classmates to eat a birthday cake with aliens. 
Elisa has a complex plan to include multiple scenes in her project. Using the paint 
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editor tool on ScratchJr, she customizes her characters: a girl who looks like and 
represents herself, a rocket, aliens, a birthday cake, and friends. The first scene is 
at the street in front of her house. Elisa starts her program with the green flag. A 
voice recording plays, “Please come to my birthday party,” after which a purple 
rocket flies off into space. As soon as the rocket lands on the moon (second scene), 
character-Elisa and her friends are greeted by an alien that looks like a jellyfish. 
This jellyfish brings out a blue gigantic birthday cake that gets bigger every time 
Elisa taps on the cake. After the cake triples in size, it jumps, makes a pop noise 
and spins away. The project ends in a bedroom (third scene) where character-Elisa 
wakes up, realizes her space birthday party is all a dream, and exclaims with a text 
bubble, “That was a strange dream I had!”

In the kindergarten classroom down the hall, Shiro sits down with his KIBO 
robotics kit, excited to return to his final project. His teacher had just read aloud the 
book Pete the Cat: Robo-Pete and tasked the class with a final project to create their 
own KIBO robot-friend. Shiro wonders, “What will my KIBO look like? I like to 
play soccer, so I want KIBO to play soccer with me.” He looks at the programming 
blocks and begins to assemble a program: Begin, Forward, Turn Left, Turn Right, 
Shake, End. Shiro scans each block carefully using the KIBO robot’s embedded 
barcode scanner and then runs his program. Shiro’s teacher comes to check on his 
progress and asks Shiro about his project idea. Shiro explains how his robot-friend 
is moving around on the soccer field to kick the soccer ball into the goal. Shiro’s 
teacher comments, “That’s a neat idea! Is there anything you could add to show that 
KIBO made the goal?” Shiro thinks for a moment and looks over at his blocks. He 
notices the lightbulb module, and a light goes off in his head. He responds, “I’m 
going to add a white light at the end to show that KIBO made the goal!” He places 
the White Light On block between the Shake and End blocks, inserts the lightbulb 
module into one of KIBO’s ports, and scans his revised program. He exclaims, “I 
love it! My KIBO scored the winning goal, hooray!”

Millions of computational artifacts like Elisa’s and Shiro’s have been created, 
remixed, and shared all around the world. Each of these projects is special in its 
own regard comprising unique sequences of coding blocks, but they all share one 
thing in common: each project reflects something about the child’s ability to think 
computationally. In Chapter 1 of this book, Dr. Bers writes, “As children make 
computational media, they develop computational thinking (CT). This involves 
more than just problem-solving or logical thinking; it means gaining the concepts, 
skills, and habits of mind to express themselves through coding.” In this chapter 
we will explore this notion further by examining how children develop and display 
their CT abilities through producing creative and personally meaningful projects.

We begin this chapter by presenting existing literature on the assessment of 
children’s coding projects. We then introduce two rubrics we developed for ScratchJr 
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and KIBO that assess the coding concepts and project design elements displayed 
in children’s computational artifacts. Next, we discuss some of the similarities and 
differences between the two rubrics, highlighting the CT opportunities afforded 
by different interfaces. Finally, we end the chapter with implications and practical 
strategies for using project rubrics in educational and research settings.

Background

Questionnaires and task-based assessments are the two most common ways to 
assess children’s programming mastery (Shute, Sun & Asbell-Clarke, 2017). These 
forms of assessments involve children answering a set of pre-made questions or 
performing tasks that typically have one correct solution. However, some studies 
have used performance-based assessments to evaluate young children’s programming 
competencies from their projects (Basu, 2019; Denner, Werner, & Ortiz, 2012; 
Wangenheim et al., 2018; Wilson, Hainey, & Connolly, 2013). Performance-based 
assessments allow children to demonstrate their knowledge and skills by making 
authentic products that are driven by their individual interests and identities (Chen 
& Martin, 2000). These assessments provide insights into how children apply their 
acquired cross-disciplined skills into their coding projects.

Performance-based (or often called project portfolio) analysis on children’s coding 
projects is a rich and concrete approach to explore how children develop and apply 
their understanding of programming concepts. For example, one study conducted 
by Brennan and Resnick (2012) compared Scratch (a block-based programming 
language for children ages eight and up) project portfolios between a novice child 
programmer and an expert child programmer. The expert child experimented with a 
wider variety and number of coding blocks across projects compared to the novice 
child. The duration of experience with Scratch seemed to affect how these two children 
displayed their understanding of programming concepts. The expert programmer 
child in the study had been coding with Scratch for three years, whereas the novice 
programmer child had just started for one week. Through examining each child’s 
Scratch program, researchers could better identify the computational skills and 
concepts each child had acquired and displayed through their projects.

One drawback of a performance-based assessment is that it only captures the 
product and fails to acknowledge the process of creation. The process of creation, or 
design process, is a component of CT needed for young children to create solutions 
to problems (Bers, 2020). Brennan & Resnick (2012) acknowledged that after 
interviewing the child, the project portfolio analysis did not accurately reflect the 
child’s CT. In other words, the use of particular coding blocks in the child’s project 
did not necessarily mean that the child could explain how those programming 
concepts actually worked. Thus, instead of analyzing final projects exclusively, it 
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may be beneficial to include incomplete coding projects in children’s portfolios 
(Brennan & Resnick, 2012) or utilize a “system of assessments” (Grover, 2017) to 
provide a more holistic view of children’s understanding.

It is important to note that researchers and educators may be interested in 
understanding different aspects of students’ coding artifacts, or products created 
through the activity of computational making. This next section explores coding 
project rubrics that were specifically developed for researchers versus educators.

Project Rubrics for Researchers

A few studies have explored the development and use of coding project rubrics to 
assess students’ coding performances. Although each rubric differs in the categories 
of criteria, the two most common categories are programming concepts and project 
design. Whereas programming concepts refer to concrete skills and computational 
thinking practices necessary for students to plan and construct their coding artifacts, 
project design refers to the range of aesthetic elements used in the project. The 
project design criterion generally includes character and stage customization (Funke 
& Geldreich, 2017). For example, Denner et al. (2012) developed a rubric to grade 
coding projects on Stagecast Creator software, a visual programming language for 
children and adults to create games. In this rubric, the three main criteria are 1) 
programming, 2) code organization, and 3) design. Although most rubrics examine 
both the programming and design components of projects, some studies focus only 
on the programming (Moreno-León & Robles, 2015).

In addition to rubric criteria, another essential component of rubrics is calculating 
and interpreting projects’ final scores or mastery levels. Different researchers have 
used different approaches to determine final scores. For example, Wangenheim et 
al. (2018) calculated the final project scores by adding raw scores from all criteria, 
dividing them by the maximum possible score, and categorizing the total scores into 
ten competency levels. Other studies, instead of having one final project score, used 
percentages to report how many times each concept occurs, which helps researchers 
understand the most frequently used concepts (Denner et al., 2012; Wilson et al., 
2013). For example, Wilson et al. (2013) reported that the most common competencies 
found in 8-11-year-old children’s projects were sequencing and events (if statements). 
The least frequently displayed competencies were random numbers and keyboard 
input. Another study by Funke & Geldreich (2017) had an additional rubric criterion 
used to determine children’s overall level of understanding, in addition to calculating 
the frequency of each competency.

One lacking element from researchers’ rubrics is the design process, which is 
more commonly incorporated in educators’ coding rubrics. Why might this be the 
case? Although both researchers and educators have similar interests in examining 
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children’s computational artifacts, they may have differing aims for how to use the 
project scores. For instance, researchers might probe into specific characteristics of 
projects or use rubric scores to understand the kinds of programming competencies 
exhibited in a project. On the other hand, educators may use rubrics to track students’ 
design thinking or as an instructional tool to understand how to better support 
student learning. In this next section, we discuss coding project rubrics developed 
by and for educators.

Project Rubrics for Educators

As computer science education becomes increasingly prevalent in schools, 
educators may also find coding project rubrics useful for their classrooms. The 
Creative Computing Lab at the Harvard Graduate School of Education shared a 
report synthesizing 50 teachers’ highly diverse rubrics used to assess their students’ 
coding projects (Brennan, Haduong, & Veno, 2020). Similar to the coding project 
rubrics used in research, the rubrics used in classrooms also have programming and 
project design components. However, some of the classroom rubrics also have extra 
elements that capture the working process—for example, students’ iterative process, 
time management, and collaboration. Because one key takeaway from this report 
was that students should receive feedback on their coding projects from multiple 
perspectives (e.g., self, teachers, peers, and family members), additional rubrics 
were designed for these various evaluators.

The Creative Computing Lab also developed a rubric to assess students’ 
development of computational practices through artifact-based interviews (Creative 
Computing Lab, n.d.). Computational practices differ from computational thinking, 
as computational practices focus more on the process of thinking than on the 
concept learned (Brennan & Resnick, 2012). This rubric consists of four sets of 
questions related to children’s projects—Experimenting and Iterating, Testing and 
Debugging, Reusing and Remixing, Abstracting and Modularizing. For example, 
one of the questions under the computational practices of Testing and Debugging 
is “Describe a time when your project didn’t run as you wanted.” Each response the 
child provides to a question is given a proficiency rating of low, medium, or high.

Connecting Children’s Projects to Computational Thinking

Programming concepts are a component of project rubrics that are most directly 
related to computational thinking (CT; Moreno-LeÓn et al., 2020; Seiter & Foreman, 
2013). Different researchers define CT differently, but the seven most common 
concepts across studies according to Rose et al. (2017) are: 1) using sequences of 
steps (algorithms); 2) using if-then statements (conditionals); 3) having more than 
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one code running concurrently (parallelism); 4) breaking a big problem into smaller 
parts (decomposition); 5) solving problems (debugging); 6) formulating a problem 
in an understandable manner (abstraction and generalization); 7) and analyzing 
data to solve problems (data collection). Most of these seven common CT concepts 
can be found in coding project rubrics, especially under the programming criteria. 
However, concepts related to thinking processes, such as debugging, may be harder 
to assess from projects alone.

The components of CT mentioned by Rose et al. (2017) apply generally across all 
ages of coders. However, some CT concepts in the way they are defined for adults 
may not be developmentally suitable for young children. In Chapter 1, Bers outlined 
the seven powerful ideas of CT that are relevant and appropriate for young children, 
which include algorithms, modularity, control structures, representation, hardware/
software, design process, and debugging. Bers (2020) also connected the seven 
powerful ideas to the ScratchJr app and the KIBO robotics kit, two coding platforms 
for children ages 4-7 that were developed by the DevTech Research Group. Both 
of these coding tools enable children to acquire and display CT abilities, which we 
will explore in this chapter by describing the ScratchJr and KIBO Project Rubrics.

Although programming concepts may be most directly related to CT, the design 
elements of children’s coding projects also invite children to think in computational 
ways. CT is a way of thinking that children can apply to various life situations not 
limited to programming (Relkin & Bers, 2019; Wing, 2006). The depth of children’s 
project design may also reflect CT. For example, if a child wants to differentiate the 
main character in her ScratchJr project, she may experiment with different solutions, 
such as enlarging the character or changing the color of the main character. The 
process of designing the main character, although not involving programming, 
still enables the child to engage with computational practices and concepts. Thus, 
the ScratchJr and KIBO Project Rubrics presented in these next sections take into 
account both the programming concepts and design elements of coding projects.

SCRATCHJR PROJECT RUBRIC

The ScratchJr Project Rubric was developed by the DevTech Research Group with 
the primary goal to assess young children’s purposeful creation with ScratchJr 
projects. The rubric, which is outlined in Figure 1, specifically assesses for the 
comprehension of coding concepts and the project design ability, while also getting 
at the purposefulness of their creations.
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The ScratchJr Project Rubric went through multiple iterations until reaching a 
high level of agreement between graders. Four research assistants were involved in 
testing and revising the rubric over the span of three months. Each grader assessed 
245 projects created by children or adults: 176 practice projects and 69 test projects 
with a finalized rubric.

Coding Concepts

Coding concepts are the first set of criteria as shown in Table 1 and are based on 
previous studies that reported various coding concepts from ScratchJr (Flannery 
et al., 2013; Strawhacker & Bers, 2019). This work was also inspired from studies 
that used coding rubrics to examine elementary and middle school students’ Scratch 
coding projects (Basu, 2019; Moreno-León & Robles, 2015). For example, “Dr. 
Scratch” is an example of a project rubric for Scratch that assesses CT development 
(Moreno-León & Robles, 2015). The seven programming concepts for Dr. Scratch 
are abstraction, parallelism, logical thinking, synchronization, flow control, user 
interactivity, and data representation.

Figure 1. ScratchJr Project Rubric domains (Coding Concepts and Project Design) 
and their sub-categories
Source: IGI, 2021
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The six sub-categories of the ScratchJr Coding Project’s coding concepts 
criterion include (A1) Sequencing, (A2) Repeat, (A3) Events, (A4) Parallelism, 
(A5) Coordination, and (A6) Number parameters. These six sub-categories can be 
examined in projects and are connected to the definition of CT by Rose et al. (2017) 
and Bers (2020). The rubric explicitly examines sequencing and algorithms, repeat 
loops and control structures, events and conditionals.

The ScratchJr project shown in Figure 2 displays all six coding concepts in the 
rubric. This project shows programming sequences (A1) of the bird’s movement 
and appearance. The bird flies one block down then 15 blocks (A6) to the right. 
Simultaneously, the bird repeatedly (A2) gets bigger eight times as it is flying, making 

Table 1. ScratchJr Project Rubric criteria

Scoring 
Criteria Sub-Categories Description

Programming 
Concepts (A)

A1. Sequencing Is the program functional? How many coding blocks 
were included (repeated blocks were counted once)?

A2. Repeats Does the program utilize any repeat blocks? If so, to what 
complexity are they used?

A3. Events
Does the program utilize any start on tap, bump, 
message, or go to page? If so, to what complexity are 
they used?

A4. Parallelism Is there more than one program being executed 
simultaneously? If so, to what complexity are they used?

A5. Coordination
Does the program utilize any wait, speeding, or stop 
blocks? If so, to what complexity and intentionality are 
they used?

A6. Number Parameter Is the number bubble being used to execute the action to 
a certain number of times?

Project Design 
Elements (B)

B1. Character Customization To what extent did the child customize the character? 
How many different approaches did the child used?

B2. Background 
Customization

To what extent did the child customize the background? 
How many different approaches did the child used?

B3. Look Are any of the look blocks used to change the appearance 
of the character?

B4. Sound Does the child use any pop block or record sound? Does 
the added sound make logical connection to the project?

B5. Number of Characters How many characters with at least one coding block was 
included in the project?

B6. Number of Settings Out of the 4 possible pages to add background, how 
many different settings did the child choose?

B7. Speech bubbles Is the speech bubble included? Is there only one word, a 
few words, a sentence, or an entire conversation?

Source: IGI, 2021
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it seem that it flies closer to the screen. Parallel sequences (A4) make it possible for 
the bird to move and change in appearance at the same time. The bird then touches, 
which triggers (A3) the flower to wait one second (A5) before it enlarges 10 times.

To expand on the coding concepts, this project has sequencing, which is the 
ability to create ordered steps to achieve a goal. Repeat block tells a command to 
replay, shown in Figure 2 when the bird gets bigger repeatedly. Parallelism is when 
there is more than one order executing at the same time, when the bird grows when 
moves right. Events is the ability to trigger an if-then command to start, shown in 
Figure 2 when a bumping block that tells the flower’s syntax to start playing after 
the bird touches the flower. Coordination is when a child programs two or more 
characters to interact with one another, shown by the flower that is waiting for the 
bird to fly by and starts growing after a few seconds. Lastly, number parameter is the 
ability for children to specify the number of times they want each coding block to 
play. Number parameters are the white bubbles at the bottom of each coding block.

Project Design

In Table 1, the project design category of the project was inspired from creativity 
applications for education and creativity assessment literature (O’Quin & Besemer, 
1989; Plucker, Beghetto, & Dow, 2004). The literature describes creativity, in 
this context, as having originality, elaboration, and purposefulness through the 
process of meaningful creation (O’Quinn & Besemer, 1989; Plucker et al., 2004). 
Therefore, we developed a final project rubric for design based on three dimensions: 

Figure 2. ScratchJr project example that shows parallel coding sequences for a bird 
character and a single coding sequence for a flower character
Source: IGI, 2021
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originality, elaboration, and purposefulness. Furthermore, we adapted the rubric 
sub-categories to be applicable with the ScratchJr functions. Our rubric not only 
captures purposefulness in the project design criterion, but it also measures whether 
children use coding blocks purposefully.

The project design in the ScratchJr Project Rubric has seven sub-categories in total, 
four sub-categories are under originality including (B1) character customization, (B2) 
background customization, (B3) look blocks, and (B4) sound. The three remaining 
subcategories fall under elaboration, which includes (B5) number of characters, 
(B6) number of settings, and (B7) speech bubble. There are limitless ways children 
can display their creativity and imagination with ScratchJr. Figure 3 displays how 
children can insert photos of their faces, record their voices, insert shapes, write, 
draw, paint, and more. Thus, there are a wide variety of project design elements 
assessed in the rubric.

Figure 3. ScratchJr project example that has customized characters created using 
the draw, paint, and insert shape tools. One cat character is painted red, and the 
other cat has long hand drawn hair.
Source: IGI, 2021
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Projects that contain the same coding concepts and project design sub-categories 
may not receive the same final project score. This is because the score of each 
subcategory ranges from 0 to 4 points, depending on the mastery level in each area. 
For example, a syntax that only uses one coding block in multiple repeat loops 
shown on the top of Figure 4 is less complex than a syntax that has a nested loop 
shown on the bottom of Figure 4. Therefore, in a repeat coding concept, a project 
that has one coding block inside a repeat loop would get a lower score, whereas a 
project that has a nested loop would the highest score.

From the final 69 projects that were created by children and adults, sequencing 
was the sub-category with the highest mean score, following by number parameter. 
All projects had 4-5 coding blocks on average. The lowest mean scores went to 
coordination and parallelism, which are the two undeniably most difficult concepts, 
both involving high levels of purposefulness and coding mastery. To get the highest 
score in coordination, there must be a clear intention that two or more characters 
interact by using a certain set of coding blocks (e.g., wait and change speed).

Figure 5 is an example of a project that has a score of 4 for coordination. In 
this example, there is intentional coordination between the two cars that are racing 
across the city. Both cars’ sequences have an orange speed block; however, the top 
sequence has a speed up block, whereas the bottom sequence has a speed down 
block. Therefore, the top car ends up winning the race. From the seven powerful 
ideas (Bers, 2020), this project displays the CT concepts of algorithms, modularity, 
and control structures. The creator of this project formulated coding sequences in two 

Figure 4. Both sequences command a character to make the same movement. 
However, the bottom sequence is more efficient and displays the advanced concept 
of nested loops.
Source: IGI, 2021
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different chucks for the two cars. Additionally, the speeding blocks in this project 
are examples of control structures.

Figure 5. A car racing project which receives the highest score under the coordination 
sub-category in the ScratchJr Project Rubric
Source: IGI, 2021
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Different Types of ScratchJr Projects

During the rubric development, we came across various project types. We originally 
tried to group ScratchJr projects into three types: stories, games, and collages. 
However, we soon realized that it was impossible to fit the projects into only three 
types. We were surprised by the remarkable versatility of ScratchJr projects and 
describe several of these creative projects in the following section.

Space Musical Jam

The project in Figure 6 features four characters: Earth, Shooting Star, Rocket, Star. 
Using only two coding blocks per character, each has a unique recorded sound that 
will start playing when the character is tapped. The rocket has a drum sound, the 
star has a piano melody, the earth has a high humming voice, and the shooting star 
has a low humming voice. The combination of all four characters’ sounds makes 
a complete musical piece. The project exemplifies how the project design aspect 
(sound recording) can be highlighted through programming (conditional statements).

Figure 6. A music composition project that will play a different instrumental sound 
after tapping on each character
Source: IGI, 2021
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Lighting Candles

For the project shown in Figure 7, if the user taps on the candle stick, a message is 
sent from the candle stick to the flames, which then receive the message and begin 
appearing and disappearing. This repeated action mimics a flickering candle. This 
project uses sending messages (conditional statement), which is one of the hardest 
and thus less frequently used coding blocks for young children.

Holiday E-Card

For the project shown in Figure 8, the creator first took a picture of a snowy Christmas 
tree background from the internet and set it as the project background. The author 
then painted a Santa Claus character from an existing ScratchJr character. The last 
step was to add a speech bubble for Santa Claus to say Merry Christmas. This project 
presents the combination of modularity and design process. In the design process 
of this project, the creator customized the background and characters using various 
paint editor tools.

Figure 7. A candle lighting projects that uses tapping and sending messages blocks 
for the flames to flicker
Source: IGI, 2021
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Score Tracker

The ScratchJr project in Figure 9 functioned as a score tracker board for three players 
as shown through the three different color cards. The project was intended to be 
used while the children were playing a separate game off-screen, such as an outdoor 
playground game. When a player earns a point in the game, the player can tap on 
their assigned color card. The score increases by one point with each tap. Once one 
of the cards reaches a certain point, six in this case, a congratulating message pops 
up. The programming concepts behind this project are fairly complex. To create the 
score cards, the child had created multiple card number characters and stacked them 
on top of each other, with the lowest score on top. Each card number character is 
programmed similarly: start on tap and then become invisible. When the top card 
disappears, the next number appears.

Figure 8. This project was created as a holiday e-card with speech bubbles and a 
winter Christmas tree background
Source: IGI, 2021
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KIBO PROJECT RUBRIC

The primary purpose of the KIBO Project Rubric is to assess the programming 
concepts and design elements exhibited in a KIBO robotics project. The rubric enables 
educators and practitioners to assess children’s mastery of the KIBO programming 
language when they are presented with the opportunity to apply their knowledge 
and skills to their own personalized project.

A project rubric for the KIBO robotics kit was first developed in 2018 and was 
aligned with existing KIBO robotics curricula (DevTech Research Group, 2018). 
The rubric outlined criteria such as correct usage of repeat loops and conditionals, 
proper sequencing of blocks to accomplish the intended task, and appropriate 
placement of sensors and modules, among other general project characteristics. Over 
the years, with feedback from researchers and educators, the rubric was revised to 
include specific scoring criteria, usability across various curricular activities, and 
step-by-step instructions for identifying children’s overall level of programming 
mastery exhibited in the project. Versions of the rubric were tested and validated 
with over a hundred KIBO projects.

Figure 9. This project works as a score tracker for three players (red, green, pink) 
and involves multiple start on tap and invisible blocks
Source: IGI, 2021
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Similar to the ScratchJr Project Rubric, the KIBO rubric consists of two sets of 
scoring criteria: programming concepts and project design elements. Solely learning 
how to program the KIBO robot using the blocks does not necessarily constitute a 
high display of computational thinking abilities. Therefore, the rubric also takes into 
account how children choose to sequence the programming blocks, customize their 
robots using arts and crafts materials, and utilize music, dance, or other creative 
media to make their robotic creations come alive. These aspects, though not always 
related to coding and computer science, are activities that invite children to utilize 
general computational thinking abilities and to produce personally meaningful and 
purposeful projects. As displayed in Table 2, the two categories of scoring criteria 
are each split into five specific sub-categories, which are described in the following 
sections.

Programming Concepts

There are five sub-categories of programming concepts, which are (A1) syntactical 
accuracy, (A2) repeats, (A3) conditionals, (A4) module use, and (A5) data. When 
children display their understanding of programming concepts through their robotic 
creations, the thought processes required to carry out the project task invoke the 
powerful ideas of computational thinking introduced by Bers in Chapter 1. Syntactical 
accuracy, for instance, requires children to assemble KIBO programs in order from left 
to right, thereby engaging their use of algorithmic thinking. Repeats and conditionals 
are examples of control structures. When children use repeat and if blocks in their 
projects, they display an understanding of what control structures are and how these 
blocks impact the way their KIBO programs run. The use of appropriate modules 
and sensors necessitate children’s understanding of hardware and software and how 
both are required to make the robot function. Storing data in the form of recorded 
sounds also involves hardware and software. For example, a child presses different 
buttons on the sound recorder module to record different sounds (hardware) and 
subsequently scans the corresponding sound blocks (software) to hear their sounds 
play aloud. Data are also present in the form of subroutines, or single blocks that 
are used to represent a whole sequence of actions. The use of subroutines not only 
invokes children’s understanding of symbolic representation, but these blocks also 
engage children in modular thinking. The subroutine blocks can be treated like a 
module that can be used in multiple places throughout the program.
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To further examine the programming concepts assessed in the KIBO Project 
Rubric, let’s take a look at the KIBO project displayed in Figure 10. A child scans 
her block sequence with her KIBO robot, which she has adorned with a handmade 
puppet. The first scoring criterion is syntactical accuracy (A1), referring to whether 
the constructed sequence represents a functional program. In this example, if the 
blocks were scanned in order, the KIBO robot would indeed perform the sequence 

Table 2. KIBO Project Rubric criteria

Scoring 
Criteria Sub-Categories Description

Programming 
Concepts (A)

A1. Syntactical Accuracy

Is the program functional? When the blocks are scanned 
in order from left to right, the robot will be able to 
perform the programmed actions without beeping an 
error message.

A2. Repeats Does the program utilize any repeat blocks? If so, to what 
complexity are they used?

A3. Conditionals Does the program utilize any if blocks? If so, to what 
complexity are they used?

A4. Module Use

What kinds of modules were attached to the ports on 
the KIBO body? Do these attached modules have any 
correspondence to the actual program? For instance, a 
sound sensor used without a Wait for Clap block does not 
display correspondence.

A5. Data

Does the child exhibit an understanding of information 
storage in their programming? For instance, the child 
records their own sounds using the sound recorder 
blocks/module or makes use of subroutines, which are 
blocks used to substitute a set of other blocks.

Project Design 
Elements (B)

B1. Sequencing How many blocks does the child use to construct their 
program?

B2. Block Variety What kinds of blocks does the child use to construct their 
program?

B3. Robot Customization

How is the robot decorated and customized with arts and 
crafts and/or building materials? The child will be able 
to test their creations so that decorations are securely 
attached to the robot.

B4. Setting

What (if any) additional project elements are included as 
part of the final project? Examples of project elements 
might include singing or dancing along, playing 
background music, or displaying some type of visual 
poster alongside their robotic creations.

B5. Coordination

How are project elements used purposefully to enhance 
synchronization and coordination? For example, the 
child uses a Wait for Clap block strategically to align the 
robot’s actions with a particular song or dance.

Source: IGI, 2021
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of commands. In addition to proper syntax, the child has correctly utilized a repeat 
loop (A2) with the number 4 parameter. This parameter signifies that the two forward 
motions will repeat four times. There is no use of if/conditional blocks (A3) in this 
program. The child has attached wheels and motors, as well as a sound sensor to 
the KIBO body. However, the only action the robot is programmed to do is to move 
forward, so the attachment of the sound sensor is unnecessary. Only the wheels and 
motors have appropriate correspondence (A4) to the constructed program. Finally, 
there is no use of sound recorder blocks, subroutines, or any project elements that 
require storing information, so there is no supporting evidence for the Data sub-
category (A5).

Figure 10. Child scans the sequence of KIBO blocks using the robot’s embedded 
barcode scanner. The KIBO program contains a repeat loop with a number “4” 
parameter, indicating that the two forward blocks will repeat a total of four times 
(i.e., KIBO will move forward eight times).
Source: IGI, 2021
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Project Design Elements

Project design elements refer to anything that the child adds to the project in order 
to add aesthetic appeal, display originality and creativity, or extend the complexity 
of their project. There are five sub-categories of project design elements, which are 
(B1) sequencing, (B2) block variety, (B3) robot customization, (B4) setting, and 
(B5) coordination.

Even the design elements of a KIBO project require that children utilize and display 
their CT abilities. For example, the more blocks a child uses in their KIBO project, 
the more opportunities the child has to plan and scan their programs, enabling the 
child to engage more deeply in algorithmic thinking and the design process. Using 
a variety of blocks also displays the use of more advanced CT abilities, particularly 
symbolic representation and the idea that attributes such as colors and icons signify 
specific types of actions. Symbolic representation also plays a role in how the child 
customizes their robot. What is the robot intended to be: a helper bot, an animal, a 
famous person? Whatever the child imagines the robot to be can be represented in 
the way that the child decorates and programs the robot. Even after decorating the 
robot, the child may later decide to extend their ideas by adding music, creating 
corresponding dance moves, or drawing an illustration to go along with the project. 
These additional project design elements further exemplify the design process and 
any debugging and problem-solving the child does to make their projects exactly 
as they intended.

Let’s examine these five constructs using the KIBO project displayed in Figure 11. 
Students from this kindergarten classroom participated in a curriculum that integrated 
the KIBO robotics kit with literacy and storytelling using the theme book Brown Bear, 
Brown Bear, What Do You See? written and illustrated by Bill Martin, Jr. and Eric 
Carle. In this particular project, a child designed and programmed the KIBO robot 
to move through the taped illustrations, which represent the brown bear going to a 
farm and seeing a white dog. The program utilized eight programming blocks (B1) 
of various types: yellow Light block, gray Repeat blocks, and blue Motion blocks 
(B2). On top of the KIBO robot’s platform, the child had securely affixed a paper 
plate, cup and various decorations and artwork, which personalized the project and 
enabled the child to showcase their imagination and creativity (B3). The illustrations 
taped to the floor enhance the overall project and provide a meaningful connection 
between the robot’s actions and the theme book (B4). Finally, there is no supporting 
evidence that the project required specific timing or synchronization through the use 
of multiple robots, the Wait for Clap block, or other project elements (B5).
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Similar to the ScratchJr Project Rubric, the score for each of the ten sub-categories 
ranges from 0 to 4 points, depending on the mastery level in each area. The higher 
the points received for a particular construct, the more advanced skill the child has 
exhibited. For instance, for the sub-category of Repeats, the point allocation is as 
follows:

0 points: No repeat blocks used
1 point: Repeat attempted but missing or misplaced the Begin/End and/or parameter 

or no blocks in-between Begin/End blocks
2 points: At least one successful repeat loop with number parameter
3 points: At least one successful repeat loop with sensor parameter
4 points: At least one successful repeat loop as part of nested statement

Figure 11. The KIBO robot is programmed to turn on its white light and then move 
forward and turn left for a total of three times. The robot is decorated like a brown 
bear and moves through different illustrations taped to the floor that represent 
various scenes from the children’s book Brown Bear, Brown Bear.
Source: IGI, 2021
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Table 3 displays sample KIBO programs that would receive these varying point 
values. With each successive point, it is evident that the child has demonstrated 
more advanced programming competency.

With five sub-categories (each worth 0-4 points), each set of scoring criteria is 
worth a maximum of 20 points. However, just as coding concepts were weighted 
more heavily than project design in the ScratchJr Project Rubric, so is the case for 
the KIBO rubric. The rationale for weighting the categories differently is simple. At 
its core, KIBO is a tangible programming interface, not an arts and crafts activity. 
Although the tool offers ample integration opportunities and has aesthetic appeal, 
the primary educational purpose of KIBO is to introduce foundational programming 
concepts to young children. Thus, the KIBO Project Rubric follows the same 60-40 
weighted ratio, with emphasis given to programming concepts by multiplying its 
summed score by 1.5. Therefore, the maximum number of points for programming 
concepts is 30 points, which brings the total summed score to a maximum of 50 
points. This total score is then split evenly into five levels: Budding (0-9 points), 
Developing (10-19 points), Proficient (20-29 points), Advanced (30-39 points), and 
Distinguished (40-50 points).

There are several important points to note about these final project scores and 
levels of mastery. One is the positive framing for the names of the five level categories. 
Aligned with the principles of strengths-based education (Lopez & Louis, 2009), 
the level of mastery obtained from the KIBO Project Rubric is meant to highlight 
the positive aspects of children’s efforts and achievement, rather than position any 
misconceptions in their learning as deficits. Using positive framing also serves 

Table 3. KIBO repeat loops of varying point criteria

Source: IGI, 2021
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to position children’s learning and engagement with the KIBO robotics kit as a 
developmental activity. A child who is introduced to KIBO for the very first time, 
even if older by age, may not necessarily create a “proficient” KIBO project. By 
using the terms “budding” or “developing”, we recognize that the child is growing 
their programming skills and with more experience and exposure, the child may 
have the opportunity to develop and display greater proficiency with the KIBO 
programming language.

Finally, it is essential to note that the final score does not indicate a child’s overall 
level of programming mastery. Rather, the score provides an estimated level of 
mastery as exhibited in this particular project, which means that children’s projects 
might be limited by factors outside of their control. For example, children who are 
working with KIBO-10 (an introductory kit sold by KinderLab Robotics that comes 
with the 10 most basic programming blocks) are likely to create projects that are 
less complex than children working with KIBO-21 (a more comprehensive kit that 
comes with additional advanced blocks and sensors). Unless children are prompted 
to construct a program using the most advanced KIBO parts that they have access 
to and know how to use, as well as provided with unlimited time and resources for 
building and decorating their robots, children are not necessarily expected to display 
the entire extent of their knowledge in a single project. As discussed in other parts 
of this chapter, scoring children’s project artifacts is one useful way of assessing 
what they know, but it is certainly not the only way.

COMPARING AND CONTRASTING 
SCRATCHJR AND KIBO PROJECTS

The developers designed ScratchJr’s and KIBO’s interfaces according to children’s 
developmental ranges. KIBO has a tangible interface that caters to younger learners 
(ages three and up), whereas ScratchJr is a screen-based app that targets children 
ages five and up. Despite the different interfaces, children generally enjoy playing 
with both KIBO and ScratchJr and can use either coding tool to produce creative 
projects. As ScratchJr and KIBO are both block-based programming languages, 
children are not required to be able to read text because they can differentiate 
blocks by their symbols and colors. ScratchJr and KIBO have similar programming 
concepts such as sequencing, repeats, conditionals, data, and number parameters. 
The main difference is that programming concepts in ScratchJr are more advanced 
(e.g., Parallelism). KIBO does not have parallelism because the robot can only read 
and run one sequence at a time. Furthermore, each KIBO robot represents a single 
character, whereas ScratchJr can easily have multiple characters with coordination 
happening between characters. However, KIBO has module use, which ScratchJr does 
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not have. The ability to use modules is a function that makes KIBO very appealing 
to young children. KIBO’s modules include wheels, motors, lightbulbs, and sound, 
light, and distance sensors, all of which enable children to engage more deeply with 
the computational idea of hardware versus software. In addition, children can also 
engage more physically with the KIBO robot, for example, by clapping to trigger the 
sound sensor or using their hands or other materials to trigger the distance sensor.

Although children can develop programming skills from ScratchJr and KIBO 
effectively (Pugnali, Sullivan, & Bers, 2017), the different interfaces inevitably lead 
to different levels of project creativity. As KIBO is a tangible tool, many components 
of project design also happen physically. For example, children can be creative 
with decorating the KIBO robot and creating backgrounds using different art tools, 
such as crayons, papers, and tapes as shown in Figure 12. These customizations 
differ from ScratchJr, where creativity can happen within the app through drawing 
or coloring. Additionally, ScratchJr has more than 50 characters with different 
themes (e.g., animals, nature, and people) and more than 20 backgrounds. In each 
ScratchJr project, children can add as many characters as they want with up to four 
backgrounds (pages). ScratchJr has a photo taking function, which enables children 
to add custom images to their characters and backgrounds. Due to these interface 
differences, children display different kinds of aesthetic design elements in their 
projects.

Finally, project sharing is another factor that differs between ScratchJr and KIBO. 
Project sharing is an important and beneficial approach for children to collaborate 
and learn from one another and from each other’s projects. ScratchJr has a project 
sharing function through email or airdrop. According to the DevTech website 
(ScratchJr), as of October 2020, 600 thousand projects have been shared. The 
percentage of project sharing increased by 200% during the COVID-19 pandemic 
as illustrated in Chapter 15. In contrast, the only way to share KIBO projects is to 
take pictures or videorecord KIBO’s actions, which enables viewers to see projects 
in their entirety (e.g., movements, arts and crafts, light, and music).

IMPLICATIONS FOR RESEARCH AND PRACTICE

Coding projects enable children to exhibit their CT abilities while also showcasing 
their creativity and imagination. As more states and countries adopt formal computer 
science and digital literacy standards and frameworks, the need for supporting 
educators and practitioners in how they assess students’ learning becomes more 
critical. What criteria are appropriate to examine in young children’s projects? Should 
children be provided with a prescribed rubric or set of project guidelines, or should 
the rubric merely be an educator-facing tool to examine the different elements of a 
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project? To answer these questions, we offer the following practical strategies for 
using project rubrics in educational and research settings:

• Documentation of process and outcome: Brennan and Resnick (2012) 
identified strengths and limitations of three different assessment approaches: 
project analysis, artifact-based interviews, and design scenarios. Part of the 
challenge of project analysis, which is the focus of this chapter, is that we are 
only able to examine children’s exhibition of CT concepts, rather than CT 
practices. In order to gather some sense of children’s design processes as they 
are working on their projects, we suggest a combination of project analysis 
and artifact-based interviews. Through the documentation of both process 
and outcome, we can better understand the bidirectional relationship between 
children’s computational thinking and their computational making.

• Subjectivity and ambiguity in scoring: Another challenge of a project 
portfolio assessment, identified by Grover (2020) and others, is that the 
process of assessment itself can be subjective and ambiguous. Even with 
detailed rubrics with specific scoring criteria, different individuals may 
prioritize different aspects of projects, depending on the learning setting, the 
activity prompt, and children’s own interests and motivations. Furthermore, 
children may be working in pairs or teams or receiving assistance from their 
teachers and peers, which makes assessing an individual child’s understanding 
even more challenging. For example, the presence of advanced programming 
blocks in a project merely indicates conceptual encounter but does not 
mean the child has fully understood the use and purpose of those blocks. 
Despite these limitations, however, coding projects can be an authentic way 
of examining what children know by what they can create, rather than by 
multiple-choice or task-based questions that they can answer.

• Emphasis on purposefulness: As Bers stated in the opening of this book, 
the goal of introducing computing tools and activities for young children is 
not so that they can all become future STEM professionals. Rather, in line 
with Wing’s (2006) push that computational thinking is a universal set of 
skills and not something specially reserved for computer scientists, the 
opportunities to manipulate and create digital artifacts is something that 
should be afforded to all students. Furthermore, the assessment of those 
creations should forefront purposefulness, providing insight into the child’s 
unique interests and identities. Scott, Sheridan and Clark (2015) propose 
that technological success should be considered based on “creative intent 
and social significance”. These goals can be applied here in the context of 
children’s coding projects.
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There is an increasing prevalence and use of creative computing tools in 
classrooms and informal learning settings. As such, educators and researchers are 
seeking robust assessment methods for examining children’s coding artifacts and 
extrapolating their understanding of foundational CT and programming concepts 
from these projects. In this chapter we discussed two such rubrics for ScratchJr and 
KIBO that take the perspective that CT concepts can be displayed not only through 
the act of programming, but also through the act of designing the aesthetic elements 
of a project. We believe that the ability for children to apply their CT concepts 
through project-based learning tasks is equally as important as knowing the concepts. 
Therefore, coding project rubrics will be a critical component in computer science 
education for practitioners to better understand children’s coding competency levels.
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KEY TERMS AND DEFINITIONS

Computational Artifact: Anything created by a human using a computer.
Event: An action that causes something else to happen.
KIBO: A screen-free programmable robotics kit for young children with blocks, 

sensors, modules, and art platforms.
Parallelism: Multiple codes executed concurrently for a single character.
Project-Based Learning: Student-centered pedagogy in which students acquire 

knowledge and skills by actively exploring real-world projects and challenges.
ScratchJr: A free block-based programming application for young children.
Syntax: The set of rules, principles and processes of a language that govern the 

arrangement of words and phrases.
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ABSTRACT

Over the past decade, there has been a growing interest in learning analytics for 
research in education and psychology. It has been shown to support education 
by predicting learning performances such as school completion and test scores 
of students in late elementary and above. In this chapter, the authors discuss the 
potential of learning analytics as a computational thinking assessment in early 
childhood education. They first introduce learning analytics by discussing its various 
applications and the benefits and limitations that it offers to the educational field. 
They then provide examples of how learning analytics can deepen our understanding 
of computational thinking through observing young children’s engagement with 
ScratchJr: a tablet coding app designed for K-2 students. Finally, they close this 
chapter with future directions for using learning analytics to support computer 
science education.
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UNDERSTANDING LEARNING ANALYTICS

Assessing children’s knowledge is a challenge, and when we isolate computational 
thinking as our measure, the challenge becomes even greater. Computational thinking 
is a thought process, rather than a right or wrong answer on a test, and therefore our 
question extends beyond ‘how to assess children’s knowledge’ and becomes more 
‘how to measure a child’s way of thinking’. In this chapter, we explore how Learning 
Analytics is used to try to answer this question. Learning Analytics is the process 
of collecting and analyzing data from learners in order to better understand and 
optimize their learning processes (Gašević et al., 2015). While Learning Analytics 
does not solve the issue of how to measure learning, it does offer another angle to 
look at a children’s learning process. Combined with other assessments, Learning 
Analytics can provide a richer view of a child’s learning process.

Learning Analytics collects a wide variety of data, all of which are outcomes of 
learners’ interactions with learning platforms. Learning platforms include online 
games, applications, learning management systems, and Massive Open Online 
Courses (MOOCs), such as Khan Academy, (Fischer et al, 2020; Gašević et al., 2015). 
A user interaction can be many things including number of clicks, the number of 
logins, and the duration in completing a lesson. Learning Analytics help educators 
to identify where a student is in their learning process, which allows the educators 
to better meet the needs of students of all different types of learning styles and paces 
(Baker and Siemens, 2014). Learning Analytics is most commonly used in higher 
education to measure school completion and learning performances (Ifenthaler & 
Yau, 2020). By collecting this information, higher education institutions can better 
identify needs of students and therefore work to address those needs.

While Learning Analytics is used more commonly in higher education, it can 
be applied to early childhood education as well. One example is LAP: A Learning 
Analytics Platform prototype developed by PBS KIDS, a US public broadcasting 
service catered to children (Roberts et al, 2016). In this study, the main functions 
of LAP were to track, store, and analyze children’s (ages 2-8 years) interactions 
with the PBS KIDS math and literacy content including broadcasts, online videos, 
games, and offline activities. Children’s anonymous usage data were collected and 
packaged into custom reports for parents on how to better support their children’s 
learning needs. LAP measured learning in multiple ways. One way in which LAP 
assessed math was by reporting the accuracy and speed in answering mathematical 
problems. It was found that LAP measures were able to predict a reliable level of 
children’s math proficiency compared to the TEMA-3 scale, which is a standardized 
mathematics test for children from 3-8 years old (Ginsburg & Baroody, 2003). From 
this example, we see that usage data, collected from a Learning Analytics tool can 
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successfully predict specific learning outcomes—even when the users are young 
children.

Another way in which Learning Analytics can be used, is to evaluate the 
appropriateness of the learning tools. In the case of Vatavu et al. (2015), Learning 
Analytics were used to assess the usability of touch screen devices. In the study, 
researchers asked 89 children (ages 3-6 years) to complete various tasks such as 
tapping, dragging, and dropping graphics on the touch-screen device. They found that 
children’s sensorimotor abilities, as measured by a validated sensorimotor evaluation, 
were correlated with touch performance such as task completion and accuracy rate 
(Vatavu et al., 2015). This study helps us to better understand young children’s ability 
to interact with touch screens, which in turn help us to create better age-appropriate 
touch interface designs. This is particularly relevant now, as many educational tools 
designed for young children come in the form of touchscreen apps. In this chapter, 
we explore one such app for children called ScratchJr, a freely downloadable tablet 
app that engages children ages 5-7 years in computer programming.

In order to apply Learning Analytics to evaluate computational thinking, 
researchers at the DevTech Research Group have been using Google Analytics to 
understand the kind of coding experiences and skills developed with the ScratchJr 
application. This chapter will first explore the opportunities and obstacles of using 
Learning Analytics as a computational thinking assessment tool. We will then focus 
on a particular Learning Analytics Tool: Google Analytics, and discuss how we 
have used it to analyze young children’s coding abilities by examining their usage 
patterns in ScratchJr. Then, we will discuss how analyzing these usage patterns may 
be translated into an understanding of computational thinking in early childhood. 
Finally, we will highlight a few specific drawbacks of Google Analytics as a Learning 
Analytics tool and discuss future directions for this area of research.

Learning Analytics: Applying Data Analytics to Education

Learning Analytics is a subfield Data Analytics, which is the practice of collecting 
and analyzing raw data in order to make meaningful conclusions. Data Analytics 
has proven to be instrumental in the success of many industries including medicine 
and many areas of business. By analyzing data regarding anything from scheduling 
to diagnoses, analytics in the field of medicine aids care efficiency, reduces 
administrative burdens, and accelerates diagnoses. In business, analytics aids in 
product design, sales, and business efficiency. Netflix, for example, has been one 
of the most successful users of Data Analytics to tailor their product to the user – 
which greatly contributes to its success as a business. As Andrew Medal from The 
Entrepeneur points out, “big data can help make sense of the information gathered, 
such as retention cost, average transaction value and even customer satisfaction” 
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(Medal, 2017). Businesses thrive on Data Analytics to better market their products 
because Data Analytics helps them to understand the audience.

Education, however, is not about selling a product or improving efficiency of 
medical practices – it is about understanding how children are learning and using that 
knowledge to improve educational practices (Piaget, 1952; Vygotsky, 1978; Papert, 
1980). Computational thinking, and education as a whole, should be measured by 
the child’s thoughts and reasoning process, not just the programs they produce or the 
test scores they receive. Additionally, education requires a high level of flexibility 
and attention to individualism. Student learning patterns cannot be captured in one 
number, while company profits usually can. Applying Data Analytics to education 
could be useful, but requires a larger emphasis on how to capture learning through 
data rather than just learning outcomes. To bring Data Analytics to education, we 
must think about what types of variables we can examine that will indicate something 
about a child’s learning process.

The other drawback of adapting Data Analytics to education is that in order 
to draw conclusions from data, it must be guaranteed that the data were collected 
in environments that are consistent with one another. In order to “demonstrate an 
overall effect, every learner in an intervention needs to have the same experience 
in the intervention, and the comparison group needs to be held constant in order 
for the difference to be consistent.” (Cope, 2016) Children’s learning and learning 
environments are never consistent. The lack of consistency is for good reason: 
teachers must constantly adapt to their students’ needs and alter lesson plans quickly 
to optimize engagement. For example, one group of children may be incredibly 
excited about hatching caterpillars while another group is producing a movie on 
ScratchJr with 4 iPads side by side. Should the teacher force one group to put down 
their activity and engage all together on one task? Or should the teacher allow each 
student to pursue their project? If they allow each child to pursue what they want, 
one group will gain much more experience on ScratchJr than the other, skewing that 
classroom’s ScratchJr usage data. Should that sort of adaptable teaching practice 
be discouraged in order to collect consistent data? Probably not. Therefore, due to 
the setup of early childhood classrooms and the dependence on flexibility, drawing 
reliable conclusions from Learning Analytics alone isn’t always possible.

Countless other industries have benefitted from using Data Analytics. While Data 
Analytics has incredible promise, it is clear that bringing Data Analytics to education 
through Learning Analytics faces many challenges that need consideration. Despite 
these drawbacks, there are still many Learning Analytics tools in use today. In the 
next section, we will discuss the how the use of Learning Analytics in education 
can improve educational practices as a whole.
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Learning Analytics to Improve General Education Practices

The reason Data Analytics has been so beneficial to large companies and other 
industries is because it allows researchers to observe large overarching trends of 
clients, patients, and customers. From seeing these trends, industries are able to adapt 
practices and products to meet the needs of the masses. With education, this mindset 
can be problematic. If teachers just adapted practices to the majority, then students 
with atypical learning styles would inevitably fall through the cracks. What collecting 
learner data can do, however, is find trends in the majority and the minority. Using 
Learning Analytics, trends could be found among students with atypical learning 
styles across classrooms and can provide teachers with more knowledge on how to 
address those atypical student needs. It’s no longer just one teacher observing the 
learning in her classroom, but now many teachers combining observations across 
classrooms, revealing unseen patterns. The use of Learning Analytics has the ability 
to allow educators to make connections across classrooms and isolate variables that 
may not be apparent when looking at just one child’s learning patterns.

While not specific to computational thinking, analyzing learning trends can 
improve assessment as a whole because it allows educators to gauge their students’ 
progress, and in turn, create more specialized and appropriate learning standards. 
All forms of learning are unique to the student, but in order to ensure success of 
the masses, school districts almost always align their curricula and assessments 
with a form of learning standards. It’s broadly agreed upon that measuring student 
progress and setting specific goals are crucial to school improvement (Schmoker, 
1999). In order to create these standards, the scope of the skills, knowledge, and 
all other factors impacting learning must be well defined. In order to define this 
scope, data is a very promising solution (NECRL, 2004). A curriculum designer 
can easily set unrealistic goals for students if they cannot gauge student progress or 
starting points accurately. Data can be used to define the scope of learning styles 
and current knowledge among students, which then helps teachers and education 
policy makers to design realistic and informed learning frameworks. We argue that 
with the right measures, defining learning standards and improving assessment 
with Learning Analytics can be extended and specialized to defining computational 
thinking standards and assessment as well.

Additionally, looking at trends allows us to identify gaps and irregularities in 
student performance and isolate contributing factors. Trends give us an idea of the 
norm and therefore allow us to highlight learning patterns that are outside of that 
“norm”. While children’s learning never follows a “normal” path and deviations from 
the norm are typical and healthy, identifying and addressing the deviations early on 
can prevent learning and opportunity gaps from growing. With real-time feedback 
of student performance, teachers can be proactive in adapting their teaching styles. 
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By using Learning Analytics, teachers can become more self-aware of their practices 
and can have immediate feedback on their teaching. As cited in a study conducted 
by Zwieg and colleagues, research suggests that by monitoring students’ learning 
and growth through collecting learning outcome data, educators become more 
knowledgeable about their own capacities, and can develop plans for improvement 
(Zweig et al., 2015). If specialized correctly, Learning Analytics could help identify 
learning gaps specific to computational thinking tasks. With the ability to identify 
struggling students more easily, teachers would be able to work more strategically 
to ensure computational thinking proficiency across the classroom.

Depending on which types of information are collected, Learning Analytics can 
provide insights about student demographic trends, learning patterns, geographic 
variables, and so on- the insights are fairly limitless if the right data is collected. 
One of the greatest strengths of Data Analytics in general, specifically in education, 
is the ability to zoom in and out. As said previously, trends across big groups are 
the most frequent focus of Data Analytics, but with the right tools, data can also 
be collected from a specific user. In their paper about Data Analytics coming to 
schools, Bill Cope and Mary Kalantzis pointed out that:

In the case of big data, scaling up or down, zooming in or out, offers a range of 
viable perspectives on a shared data source—a micro-moment of feedback in the 
writing process, for instance, to larger patterns of revision, to overall progress of a 
student or a class or cohort measured in terms of writing standards over a longer 
time frame. (Cope, 2016)

Not only does Learning Analytics allow researchers to zoom in and out on student 
performances, but it also has the potential to predict student performance. This 
type of prediction is possible through Machine Learning: the concept of computer 
algorithms learning from past data and using the learned patterns to predict future 
data points. Two ways in which this can be helpful to education is predicting student 
performance and improving retention. As Anozie et al., found, “by ‘learning’ about 
each student, the machine learning model can find out weaknesses and suggests ways 
to improve, such as additional lectures or study additional literature” (Anozie, N., 
Junker, B. W., 2006). This prediction is another way in which Learning Analytics 
can be used to close achievement gaps and help teachers to identify students with 
specific needs; “by identifying ‘at risk’ students, schools can reach out to those 
students and get them the help they need to be successful” (Đambić, G., Krajcar, M. 
& Bele, D., 2016). By “learning” about each student, the technology can identify 
weaknesses and help students to succeed.

While machine learning is one of the most promising applications of Data 
Analytics, it must be noted that predicting student outcomes is not always as accurate 
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as it should be to be informative. Since technology in education is fairly new and 
constantly changing, there is a large margin of error and false conclusions can easily 
be made. Using large amounts of data without any theoretical framework may lead to 
inaccurate conclusions. If we were to throw a large number of random variables into 
a predictive statistical model, it is likely that the model would show us significant 
relationships between variables that are totally unrelated in reality. This scenario 
is known as, data fishing or data dredging. Longo and Montevil (2018) explained 
the danger of data analysis without any theoretical framework and provided an 
example that there is a false correlation between people who drowned after fishing 
and marriage rate in Kentucky. These types of correlations could easily appear in 
Data Analytics for education, possibly leading educators and policy makers to devote 
attention to the wrong areas of education.

Despite notable limitations, Learning Analytics has the potential to be instrumental 
in improving learning standards, tracking student progress, closing achievement gaps, 
and understanding learners on a deeper level. In the next section, we will discuss 
how specific aspects of Learning Analytics tools lend themselves well to assessing 
mental processes such as computational thinking.

Learning Analytics to Assess Computational Thinking

Assessing Computational Thinking

Computational Thinking (CT) is a highly valuable and transferrable skill for everyday 
life that is the byproduct of coding (Chp.8, Relkin). According to Bers (2020), CT 
emerges from the “Seven Powerful Ideas” of computer science for early childhood. 
The Powerful Ideas include algorithms, modularity, control structures, debugging, 
hardware/software correspondence, debugging, and the design process. These 
computational thinking concepts are not only fundamental to computer science, but 
also to understanding the world around us. For example, the concept of modularity 
can help children think about solving complex problems in life by breaking down a 
solution into multiple small steps. One example of this could be putting on clothes. 
To a five-year-old, the task is not trivial. For this very reason, we often break the 
task up into steps: start with your head, then get your arms through, and then finally 
pull the shirt down over your body! Then, when faced with putting on a sweatshirt, 
the child will be able to recall these steps and apply them to the new task—thus 
successfully applying modularity to their everyday challenges.

While it’s clear that computational thinking is crucial in early childhood education, 
it is much less clear how this skill should be assessed. As we have mentioned, an 
ongoing challenge in the field of assessment is how to measure a thought process, 
rather than just an outcome. There are many ways to address this issue including 
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type of assessment, timing of assessment, and mode of implementation. The use of 
Learning Analytics as an assessment does not offer a solution to assessing CT, but 
it does offer benefits over other types of assessments-- specifically when thinking 
about assessment for early childhood education. In the next section we will discuss 
how Learning Analytics has the potential to be an effective assessment tool and 
could be refined to assess computational thinking in the future.

Learning Analytics as an Ongoing Assessment

While many Learning Analytics tools currently lack the level of specificity of 
measures needed to examine computational thinking, the potential is there. One of 
the most notable benefits to using analytics as an assessment tool is that unlike tests 
or project showcases, analytics offers insights that come from ongoing observation 
rather than sporadic intervention. This benefit is especially notable when working 
with young pre-school and elementary-aged children. This type of information 
collection is much more developmentally appropriate for young children, and 
therefore offers more informative data points. The National Association for the 
Education of Young Children (NAEYC) states that assessments that collect learning 
data over a longer period of time, like analytics, are the most appropriate assessment 
approach for young children whose development is highly complex, dynamic, and 
often erratic and uneven (Ackerman & Coley 2012). This makes it difficult to 
capture their learning through one-time assessments that provide only a snapshot of 
a child in a particular moment (Riley-Ayers, 2018). Observing children over longer 
periods of time allows educators and researchers to get a more accurate picture of a 
child’s development and thought processes, whereas a “snapshot” such as one test 
or one project is likely going to be inconsistent and uninformative. With this more 
accurate picture, comes the possibility of isolating specific thought processes, such 
as computational thinking. Learning Analytics tools, while not there yet, offer the 
possibility of observing infinite small moments rather than just the product of a test 
or a project. By using ongoing observation as an assessment tool, the possibility of 
isolating thought processes and cognitive patterns such as computational thinking 
becomes much more within reach than it is with traditional assessment measures.

Despite the promise that Learning Analytics tools have, the data collection 
methodologies that exist right now in the field of education don’t yet have the 
capabilities to isolate individual students’ learning processes. While we are able to 
collect student data from Learning Analytics tools, like Google Analytics, drawing 
conclusions from that data about computational thinking takes a fair bit of speculation. 
Learning Analytics offers huge amounts of information and provides many benefits 
to education as a whole. Although not specialized enough to give us information 
about something as complex as computational thinking, Learning Analytics does 
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provide incredible amounts of information about a student. In the next section, we 
will discuss how the DevTech Research Group employs Google Analytics for the 
ScratchJr coding app as a Learning Analytics tool.

LEARNING ANALYTICS TOOL: GOOGLE ANALYTICS

Google Analytics is a web analytics service that is used to track and analyze user 
metrics, evaluate usage patterns, user behavior, and much more. In education research, 
the use of Google Analytics with learning tools can help educators in finding advanced 
methods for enhancing student learning. DevTech researchers use Google Analytics to 
track and report the traffic of the ScratchJr app. Google Analytics has many features 
that allow researchers to review how and when students are interacting with the 
ScratchJr app. The buildings blocks of Google Analytics reporting are dimensions 
and metrics as shown in Figure 1. Dimensions are attributes of the data such as the 
city, state, or country where the data traffic is coming from, what browser is used, 
or what language the user was using ScratchJr in. Metrics are the numerical data 
points collected such as amount of time spent on the app, the number of users from 
a specific location, or how many new users there are on a given day.

The main measure in Google Analytics is number of users. As of January 2021, 
ScratchJr has had over 19 million users accounted for by Google Analytics. It must 

Figure 1. ScratchJr usage data from Jan. 1, 2021-Mar. 30, 2021. Dimension = 
Country. Metrics = Users, New Users, etc.
Source: IGI, 2021
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be noted, though, that Google Analytics does not record the usage on the oldest 
versions of ScratchJr, and therefore users working on older devices, such as non-
touchscreen Chromebooks, are not accounted for in this user count. Within the user 
count, we are able to see who is a new user (someone that is opening the app on 
their device for the first time) or returning users (someone that has already used 
ScratchJr for at least one session). Additionally, user data can be parsed by geography. 
Not only can we see the city, state, and country a user is from, but we can also see 
whether that user selected “Home” or “School” for their app setting. This tells us 
where a student is located when using the app and allows us to make inferences 
about how structured their ScratchJr playtime may have been. For example, if a user 
is registered as “School”, it is likely that they are using the app in the context of a 
class with instruction and supervision. If the user selected “Home”, on the other 
hand, we might infer that the child is using ScratchJr on their own time and at their 
own pace. We acknowledge that these inferences are much weaker during times of 
remote-schooling due to the COVID-19 pandemic, but we still want to emphasize the 
general importance of acknowledging a child’s setting and the impact it can have on 
their learning. Knowing the structure of users playing time could be very powerful 
and informative for future ScratchJr curricula development. Google Analytics 
also collects the time and duration that the app is used, as shown in Figure 1. The 
duration of sessions is recorded each time the app is opened and then closed and is 
often used in analysis to indicate levels of engagement and interest from the users.

In addition to knowing when and where users are on the app, Google Analytics 
also offers insights into how the user may be using the app. Google Analytics 
collects event data, meaning any type of action a user does on the app is recorded. 
In ScratchJr, this means that all the block types that are selected for programs, page 
additions, presentation mode, paint editor, new characters, etc., are all recorded and 
averaged across geographical areas. For example, in Figure 2, Google Analytics will 
record the types of blocks put in the programming area, the character used, and any 
design choices the user makes on the app. It is important to note that this data is 
never shown for a single user: the closest we come to identifying specific users is 
by the city they are in, but rarely is that used in our analysis. Therefore, all details 
about how the app is used is only informative about how the app is used across a 
large group, not from user to user.
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In short, Google Analytics data can be used to define the scope of research 
questions. It allows us to gain an overview of the app user demographics and how 
the app is most commonly being used. Beyond just broad demographic information, 
it allows us to create user personas and predict behaviors of those personas, allowing 
for more effective and targeted app development in the future. In order to highlight 
the research possibilities that Google Analytics offers, we will spend the next section 
discussing our newest findings on ScratchJr usage at home versus school, and how 
this was impacted by the COVID-19 pandemic.

Global Usage of ScratchJr Learning Analytics

ScratchJr has been using Google Analytics to track the app usage data since the 
early release. The purpose of exploring ScratchJr Analytics is to gain deeper insights 
into children’s interaction with the app and to investigate how usage pattern may 
be related to CT (Leidl et al., 2017). Since 2015, there have been over 19 million 
users across 194 countries world-wide. Users have created over 52 million projects 
and edited projects over 70 million times. Globally, there was an increasing trend in 
the number of ScratchJr sessions from 2016 to 2019 as shown in Figure 3. Children 

Figure 2. Example of a ScratchJr project
Source: IGI, 2021
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commonly used ScratchJr in schools, as shown by the fact that usage dropped during 
the US summer break from June-August. However, the usage trends in 2020 were 
different due to school closures caused by the COVID-19 pandemic.

The daily ScratchJr usage pattern differed across countries, the top ten countries 
with the most sessions in 2020 are shown in Figure 4. Figures 5 and 6 compare the 
number of users from January 1, 2020 to February 30, 2020 at home and at school 
in United States and Japan. This particular time period was chosen because it was 
before the COVID-19 pandemic severely impacted the world. Figure 5 shows the 
similarity between the usage pattern across settings, home and school, in the U.S. 
In both home and school settings, ScratchJr usage by US children peaked on the 
weekdays and dropped on the weekends. In contrast, shown in Figure 6, Japan 
showed the reversed pattern of increases and drops between home and school users. 
When comparing between each setting in Japan, there was more usage at home on 
the weekend and more usage at school on the weekday.

Figure 3. Number of ScratchJr users from 2016-2020. Note that in 2019, ScratchJr 
Analytics collected data only from January to October of 2019 due to a transition 
into the new Google Analytics version (Firebase)
Source: IGI, 2021
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A possible explanation for the different usage pattern between USA and Japan is 
that ScratchJr is commonly used at school in the US, therefore the pattern follows 
school periods. We also saw peaks of home usage in the US when children should 
have been at school. This could be explained by the possibility that the app may 
have tracked tablets used at schools as being used at home as there were reports that 
children in the US also bring their home tablet to use at school (Trends in Digital 
Learning: Students’ Views on Innovative Classroom Models, 2014).

Figure 4. The top 10 countries with most ScratchJr sessions in 2020
Source: IGI, 2021
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Figure 5. USA ScratchJr Users: January 1, 2020 to February 30, 2020. Dotted 
Line= Home users, Solid Line= School users
Source: IGI, 2021

Figure 6. Japan ScratchJr Users: January 1, 2020 to February 30, 2020. Dotted 
Line= Home users, Solid line= School users
Source: IGI, 2021

Figure 7. Japan ScratchJr Users: August 1, 2020 to March 30, 2021. Dotted Line= 
Home Users, Solid Line= School Users
Source: IGI, 2021
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Different policies for computer science education in early childhood may also 
affect the usage pattern in the US and Japan. Under the Coding for All policy 
released in 2016, it is mandatory for schools to teach computer science to students 
from kindergarten on (The Whitehouse, 2016). Many US schools have incorporated 
ScratchJr into their curriculum, such as the K-2 CS curriculum in San Francisco, CA 
(K-2 Computer Science Curriculum, n.d.). In Japan, mandatory computer science 
classes were planned to be implemented in primary school starting in 2020 (Bocconi 
et al., 2016). It is unclear if the policy was fully implemented in 2020; however, 
there was a usage spike in Japan starting in 2021, which may imply that the policy 
was implemented. Additionally, in Figure 7, the usage pattern at home and school 
in Japan became more similar to the usage trend in the US, where the usage pattern 
follows the school periods (higher usage on the weekdays).

Change in ScratchJr Usage Pattern From COVID-19

We wanted to study how the COVID-19 pandemic impacted ScratchJr usage across 
the world. In 2020, due to COVID-19, 1.7 billion children were affected by the school 
closure (Gouedard & Pont, 2020). The consequences from the COVID-19 pandemic 
can clearly be seen in Figure 3, with the number of ScratchJr sessions decreased from 
the previous years, especially in the first half of 2020 when the pandemic started. 

Figure 8. The percentage of projects shared increased significantly compared 2019 
to 2020
Source: IGI, 2021
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School closures strongly and negatively impacted the number of ScratchJr sessions. 
However, the analytics show that children globally shared their ScratchJr projects 
with others (e.g., via email) more than ever during social distancing. Particularly, 
in Figure 8, the number of ScratchJr projects shared increased by more than 100% 
after April 2020 compared to the same months in 2019. The percentage of projects 
shared skyrocketed over 200% after August 2020, which might be due to remote 
learning where students had to send projects to teachers.

What Can We Learn From the Usage Patterns?

By collecting usage data through Google Analytics, we are able to see how and 
when children are coding. While this data does not give us insights into the thought 
processes of the children, it does give us an additional viewpoint onto how children 
are coding. Different studies found that a type of Learning Analytics, or the type 
of coding blocks used may imply children’s coding understanding level (Emerson 
et al., 2020; Price & Price-Mohr, 2018). Emerson et al. (2020) identified common 
misconceptions in introductory programming by analyzing how students used 
coding blocks. The students that lacked conceptual knowledge used fewer types of 
coding blocks on average compared to the other groups of students. Furthermore, 
the students that had a disorganized programming style had longer sequences with 
more errors. A different study by Price and Price-Mohr (2018) reported that students 
that were expert programmers (college students) spent less time and were able to 
code more intentionally than novices (elementary students). We cannot assess CT 
from just these measures alone, but we do gain a more holistic view of the child’s 
knowledge, which ultimately allows us to make more accurate inferences about 
their mental processes.

A Learning Analytics study on ScratchJr analyzed young children’s block 
usage types: 1) Coding duration; 2) Block complexity; 3) Block category; 4) Block 
consistency (Unahalekhaka & Bers, in press). The researchers found differences 
in how children in the U.S. used coding blocks at home compared to at school. 
Particularly, children at home used more advanced and more diverse coding blocks 
than children at school. The more advanced coding blocks for children ages 5-7 
include control blocks such as repeat a command or trigger blocks such as if-then 
commands. Although the Learning Analytics alone cannot measure children’s CT, 
some of ScratchJr coding blocks can imply CT concepts. The control coding blocks 
(repeat loop) align with the “control structure” concept, which is one of the seven 
computational thinking concepts for early childhood (Bers, 2020).

Results from Unahalekhaka and Bers (In Press) also suggested that children at 
home most likely had a more exploratory style of coding due to more freedom in 
playing with ScratchJr. Children at home also spent more time using the paint editor, 
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a feature that supports character and background aesthetic customization. In contrast, 
children at school may have to follow a fixed curriculum that is focusing on using 
certain coding blocks. Therefore, they spent less time decorating or painting the 
characters and longer time with the actual coding. Furthermore, children at school 
used more similar coding blocks complexity level across days (Unahalekhaka & 
Bers, in press). This study implied that young children may need different computer 
science learning pedagogies across formal and informal settings to target CT centric 
actions. For example, teachers may give more free play time during each lesson, 
where children can code as they wish. Furthermore, parents may also want to 
provide more step-by-step scaffolding before children can code freely. A study by 
Strawhacker et al. (2018) reported that the teaching style such as having flexible 
teaching plans with open-ended coding time is beneficial for children’s learning.

In this section, we illustrated how Google Analytics can report a diverse ScratchJr 
usage pattern across countries, circumstances, and learning settings. However, usage 
patterns at the aggregated level alone cannot tap into understanding an individual 
child’s CT. To do so, we may need a different analytics tool to collect individual 
student’s data. With more individualized learning data, we can then compare them 
to individual’s CT scores like the measures from Grover et al. (2017). In the next 
section, we will expand on the limitations of Google Analytic as a tool to understand 
children’s learning.

LIMITATIONS OF GOOGLE ANALYTICS AS 
A LEARNING ANALYTICS TOOL

While Google Analytics as a whole has immense potential for education, it is not 
able to offer the level of specificity required for educators to get useful information 
on students learning. For example, Google Analytics can only localize data to the 
city, which is far from highlighting an individual student. Most cities have multiple 
schools, which have multiple classrooms, which have upwards of 20 students using 
learning tools, such as ScratchJr, at a time. To assess a child’s knowledge, particularly 
in early childhood, it is rarely accurate to look at big numbers and averages. Such 
reports often represent aggregate views of student and school data devoid of any 
strategic or tactical judgements. The inability to narrow down our focal point on 
analytics means that we can never look at just one child’s work, which is hugely 
limiting when trying to assess something as variable as computational thinking.

Assessing computational thinking requires not only a close look at each individual 
student, but also a report on that child’s learning process and style. Current Learning 
Analytics tools are very limited in types of measures that can be collected. Google 
Analytics can show us how a child is using the app in terms of what blocks are 
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used and what features are employed, but there is no current way to measure the 
thoughts behind block and feature choice. To draw conclusions about computational 
thinking takes a fair bit of speculation. Without more specialized measures, drawing 
conclusions about thought process and reasoning is not possible.

FUTURE DIRECTIONS

Google Analytics offers huge amounts of information, but the lack of specificity and 
adaptation to the field of education prevents most current Learning Analytics tools 
from reaching their potential in the type of information that can be shown about a 
student. Therefore, we hope that future development in this field includes finding a 
way to collect individualized student data without breaching privacy obligations of 
students. We also hope that new, more qualitative measures can be incorporated into 
the data collection. Determining the specific measures that could indicate thought 
processes like computational thinking requires further research.

One potential promising subfield of Learning Analytics is Multi Modal-Learning 
Analytics (MMLA). While Learning Analytics has become more widely used in 
higher education, there is still lack of research on how, or if, Learning Analytics can 
be applied to understand learning development in the younger population. MMLA 
does not require the screen time interaction, instead, it collects physiological data 
such as speech cues, eye gazes, facial expression, and heart rate (Oviatt et al., 2018). 
Some researchers claimed that MMLA can assess a learner’s engagement with the 
task, in contrast with “regular” Learning Analytics that can only track for usage 
pattern (e.g., number of clicks, session duration) (Crescenzi-Lanna, 2020). This 
could be a potential direction to take Learning Analytics for assessing thinking 
patterns in early childhood.

CONCLUSION

Learning Analytics, the sub field of Data Analytics that pertains to education, is 
becoming increasingly utilized by educators and researchers. It provides more 
information about students than has ever been possible, and therefore holds huge 
potential for improving teaching and understanding students better. As discussed, 
however, there are many aspects of Data Analytics that do not yet translate well to 
Learning Analytics. These drawbacks, though, are an effect of a newly emerging field 
that has not grown to its full potential yet. With further research and development, 
Learning Analytics could be an incredibly useful tool for understanding computational 
thinking and learning processes in general.
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KEY TERMS AND DEFINITIONS

COVID-19: An ongoing global pandemic of coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Early Childhood: Period of time between birth and age eight.
Google Analytics: A web data analytics platform by Google that tracks website 

and application traffics.
Learner Interactions: An action a student takes on an online learning platform. 

Actions can include number of clicks, when an app is opened or closed, what pages 
of a site were opened, etc.

Learning Analytics: The process in collecting and analyzing data from learners 
to better understand and optimize their learning processes.

Multi-Modal Learning Analytics: A sub field of Learning Analytics that collects 
and analyzes natural human signals.

ScratchJr: A free block-based programming application for young children.
Usage Patterns: A user’s behavioral patterns on a website, application, or 

electronic device.
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