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Abstract Research involving tangible interaction and

children has often focused on how tangibles might sup-

port or improve learning compared to more traditional

methods. In this paper, we review three of our research

studies involving tangible computer programming that

have addressed this question in a variety of learning envi-

ronments with a diverse population of children. Through

these studies, we identify situations in which tangible

interaction seems to offer advantages for learning; how-

ever, we have also identify situations in which tangible

interaction proves less useful and an alternative interaction

style provides a more appropriate medium for learning.

Thus, we advocate for a hybrid approach—one that offers

teachers and learners the flexibility to select the most

appropriate interaction style to meet the needs of a specific

situation.

Keywords Tangible interaction � TUIs �
Hybrid tangible interface � Computer programming �
Education � Children � Robotics

1 Introduction

Research involving tangible interaction and children has

often focused on how tangibles might support or improve

learning compared to more traditional methods [1, 7, 10, 14,

15]. This research has included an emphasis on the pro-

duction of frameworks that seek to guide designers toward

promising activities and learning situations for tangible

interaction. Our own research involving computer pro-

gramming has compared tangible and graphical interaction

in a variety of learning environments with a diverse popu-

lation of children [3, 5, 10]. Through these studies, we have

identified situations in which tangible interaction seems to

offer advantages for learning; however, we have also

identified situations in which tangible interaction is less

useful and an alternative interaction style provides a more

appropriate medium for learning. These situations are not

always clear-cut. We cannot, for example, say that tangible

interaction is better for young children and graphical

interaction for older. Rather, the distinctions are subtler.

Tangibles might be better for certain situations or for certain

children in certain phases of the learning process. In this

article, we advocate for a hybrid approach—one that offers

users the flexibility to select the most appropriate interac-

tion style for a given context and the ability to fluidly

change from one interaction style to another.

Our position on hybrid tangible interfaces is based on

analysis of data from research conducted in classrooms,

after-school settings, and museums. In this paper, we will

review findings from three studies that have compared the

use of tangible and mouse-based interaction. Each study

involved the use of Tern, a tangible programming language

designed to allow students to control educational robots by

constructing computer programs out of a collection of

wooden blocks (Fig. 1) [9]. The first two studies compared
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tangible and mouse-based computer programming using a

between-subject approach, in which participants used only

one of the two interaction styles for the duration of the

study [3, 10]. The results of the first two studies motivated

us to create the first hybrid version of Tern, which com-

bined tangible and graphical interaction into one interface.

The third study presented this hybrid prototype to children

as part of a weeklong, summer robotics camp. The goal of

this third study was to explore how children used the

hybrid interface to explore powerful ideas of computation

and robotics introduced during the intervention.

We conclude this paper by summarizing the situations in

which tangible interaction seems to offer concrete advan-

tages for learning.

2 Tangible programming languages

Since the 1960s a large number of programming languages

targeted at novice users have been created [12]. Notable

recent languages include Scratch [23], Alice [5], and

ROBOLAB [21]. Much of the effort to create these lan-

guages has been motivated by the belief that learning to

program is not only necessary for technological fluency [2],

but that it is also beneficial as an academic endeavor in its

own right [18]. In other words, that computational thinking

[30], as a more general abstraction of computer program-

ming, is a powerful cognitive skill that can have a positive

impact on other areas of children’s intellectual growth.

Research has indicated that learning how to program

computers can have a positive and measurable effect on

children’s achievement, not only in areas such as math and

science, but also in language skills, creativity, and social-

emotional interaction [2, 4].

Kelleher and Pausch [12] offer a taxonomy containing

well over fifty novice computer programming systems, a

great number of which aim to ease or eliminate the process

of learning language syntax, perhaps the most often cited

source of novice frustration. Beyond syntax, there are many

specific conceptual hurdles faced by novice programmers [4,

13, 22]. A relatively recent approach to ease the learning

process has been the creation of tangible programming

languages [16]. By combining computer programming and

tangible interaction, researchers are beginning to explore the

exciting potentials of programming in and with the physical

world. Some ideas that have been generated include the

blending of physical space and digital programming [8, 17],

robots that are also embodied algorithmic structures [27,

31], the incorporation of found or crafted materials into

algorithmic expressions [28], or the integration of physical

activity and play with programming [25]. All of this work on

tangible programming is pioneering; however, there is

notable lack of evidence that tangible systems offer any

benefits compared to onscreen counterparts.

The research studies in this paper involve a tangible

programming language called Tern [9] (Fig. 1). We

designed Tern for use in educational settings to engage

children in computer programming and robotics activities.

Rather than using a keyboard or mouse to write programs

on a computer screen, children instead use a collection of

interlocking wooden blocks to build physical computer

programs. Each block represents an action, a flow-of-con-

trol construct, a parameter, or a sensor value. Tern uses

computer vision fiducials (the circular, black-and-white

symbols printed on each block in Fig. 1) to convert phys-

ical programs into digital code [9]. These fiducials allow

the computer vision system to identify each block and

determine its position in relation to the other blocks. This

computer vision system works reliably in a variety of

lighting conditions with a standard desktop or laptop

computer and a consumer web camera.

3 Hybrid interfaces

In this paper, we consider combining tangible and mouse-

based computer programming to create hybrid interfaces.

We use the term hybrid interface to refer to single inter-

active system that consists of two or more equivalent

interfaces. Users have the freedom to select an interface to

meet their current needs or preferences, and they may

transition from one interface to another at any time, ideally

assisted by the interactive system itself. Each interface

controls the same digital system, and the various input

mechanisms may or may not be synchronized with one

another. This differs from augmented- or mixed-reality

systems [e.g., 24, 29], which blend the physical and digital

worlds but tend to offer a single fixed input mechanism.

We use the term equivalent interfaces to refer to inter-

faces with distinct interaction styles that nonetheless share

Fig. 1 The Tern tangible programming languages allow children to

create computer programs by connecting wooden blocks
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a common essential interaction metaphor. The idea is that

designers will select an essential interaction metaphor to

assist users in the transition between interaction styles. For

example, with Tern, the essential interaction metaphor is

one of connecting interlocking blocks—this action repre-

sents the process of constructing syntactically correct

computer programs. In the tangible system, these pro-

gramming elements are real wooden blocks, and in the

graphical system, they are pictures on a computer screen.

In our research, we have found that children as young as

4 years old can grasp this metaphor and easily transition

between its graphical and tangible instantiations.

Our use of the term interaction style is more general

than that proposed in early human–computer interaction

literature (e.g., [26]). We use the term to refer to a col-

lection of conventions and techniques that facilitates user

interaction. Interaction style is related to but not neces-

sarily equivalent to the specific input and output devices

involved in the interface. For example, command line

interfaces and graphical user interfaces are two distinct

interaction styles that typically involve a mouse, keyboard,

and computer screen. Likewise, tangible interaction, as

defined by Hornecker and Buur [11], could refer to several

distinct interaction styles. For example, an interface that

emphasizes the manipulation of physical objects has a

different interaction style than one that emphasizes the

movement of a person’s body in space.

4 Science museum study

Our first study comparing the use of tangible and mouse-

based programming languages was conducted at the

Museum of Science in Boston (see [10] for a full

description of this study and the results). The study

involved observations of museum visitors using Tern to

program a robot at a museum exhibit.

4.1 Research questions

For this study, we were interested in several research

questions related to informal science education:

• Inviting: Does the type of interface (tangible or

graphical) affect how likely visitors are to interact

with the exhibit?

• Active Collaboration: Does the type of interface affect

active visitor collaboration?

• Apprehendable: Does the type of interface affect

whether or not visitors are able to develop an

understanding of how the exhibit works?

• Engaging: Does the type of interface affect how long

visitors interact with the exhibit?

• Visitor Computer Programs: Does the type of interface

affect either the number or the complexity or programs

that visitors create to control the robot?

4.2 Methods

For the purposes of the study, we created two experimental

conditions, tangible and graphical. In the tangible condition

(TUI), visitors create programs using physical wooden

blocks shaped like jigsaw puzzle pieces (Fig. 2). In the

graphical condition (GUI), visitors create programs on a

computer screen using a single computer mouse. We

designed graphical and tangible conditions to be as similar

as possible, using the essential metaphor of connected

jigsaw puzzle pieces. All other aspects of the physical

exhibit installation remained the same. During the study,

we set up only one of the two interfaces for visitors to use

on a given observation day, and we alternated conditions

on subsequent days. Visitors used the exhibit without

interacting with researchers and without help from the

museum staff.

4.2.1 Measurements

To measure the inviting quality of the exhibit, we kept a

tally of the number of people who noticed (looked or

glanced at) the exhibit within a five-foot radius of the

installation. Of the people who noticed the exhibit, we

recorded the number of people who touched the exhibit

with their hands. The time that a visitor first touched the

exhibit was recorded as the start of a session. Session data

were recorded on a per-group basis.

Fig. 2 At the museum exhibit,

visitors create programs using

wooden blocks shaped like

jigsaw puzzle pieces (left). The

graphical condition (right)
preserves the essential metaphor

of connected jigsaw puzzle

pieces
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To measure active collaboration, we compared the

number of active participants to the number of passive

participants in each interaction session. An active partici-

pant is someone who touches or physically interacts with

the exhibit in some way, while a passive participant is a

visitor who simply observes other members of his or her

social group using the exhibit.

To measure apprehendability, we noted whether or not a

social group was able to develop an understanding of how

the exhibit worked. In other words, did visitors understand

that pressing the run button caused the robot to execute a

program? For our purposes, programming the robot one

time was not sufficient evidence of understanding. Instead,

we required evidence that visitors were purposefully putt-

ing pieces together to create more than one program.

Specifically, they had to press the run button more than

once, and they had to rearrange the program at least once.

To measure engagement, we recorded the duration of each

group interaction session. This was recorded as the time the

first group member started interacting with the exhibit to the

time that the last group member left the exhibit.

Finally, to analyze visitor computer programs, we con-

figured the exhibit computer to log every program com-

piled by participants. This was in the form of a screen shot

for the GUI condition and an image captured by the digital

camera for the TUI condition. In analyzing these logs, we

were interested in three questions: does the type of inter-

face affect (1) the number of programs created by visitors

per session; (2) the length of programs created; and (3) the

complexity of programs created?

4.2.2 Participants

We observed a total of 260 individuals at the Museum of

Science (108 for the GUI condition and 152 for the TUI

condition). Of these, 104 of the participants were children (47

for the GUI condition and 58 for the TUI condition). We

defined a child as an individual 16 years old or younger.

However, for these observations, we did not interview the

visitors, so our participant ages are estimates. Several of our

measures involve observations of social groups. In the GUI

condition, there were 25 such groups, 16 of which were family

groups, containing at least one adult and one child. In the TUI

condition, there were 39 total groups, 18 of which were family

groups. In analyzing visitor computer programs, we looked at

programs created during the first 2 days of observations

(1 day for each condition). This included 13 groups in the GUI

condition and 20 groups in the TUI condition.

4.3 Results

For two of our research questions (inviting and active

collaboration), we found significant differences between

the two conditions. In terms of being inviting, we

hypothesized that the use of familiar objects (wooden

blocks) would transform an unfamiliar and potentially

intimidating activity like computer programming into an

inviting and playful experience. For the graphical condi-

tion, 33 of the 108 visitors (30.6%) who noticed the exhibit

stopped to try it. And, for the tangible condition, 78 out of

152 visitors (51.3%) who noticed the exhibit stopped to try

it. A two-tailed z-test resulted in a significantly difference

between the two proportions, z = 3.34, p = 0.0009. This

difference was especially pronounced for children and for

girls in particular. For the graphical system, 33.3% of girls

who noticed the exhibit also tried it. This number rose to

85.7% when the tangible system was presented. Figure 3

shows the percentage of who interacted with the exhibit

after noticing it by age and gender.

For active collaboration, we expected that the tangible

blocks would provide better support for simultaneous

active participants. Our results confirmed this expectation.

The average percentage of active participants in the 25

groups in the graphical condition was 59.9% (SD = 22.6),

while the average in the 39 groups in the tangible condition

was 82.8% (SD = 24.7). We conducted an independent

t-test and found a significant difference between the

means, t(62) = 3.75, p = .0002. The average group size in

the graphical condition was 2.44 (SD = 1.08), while the

average groups size in the tangible condition was 2.56

(SD = 1.45).

For our remaining research questions, we found no

significant differences between the two conditions. For

apprehendability, of the 25 groups that we observed in the

graphical condition, 18 (72%) successfully developed an

understanding of how the exhibit worked, while in the

Fig. 3 Percentage of visitors who interacted with the exhibit after

noticing it by age and gender
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tangible condition, 29 out of the 39 (74%) groups were

successful (z = 0.21, p = 0.83). For engagement, visitors

spent an average of 4.02 min interacting with graphical

condition (SD = 4.87) and 5.03 min with the tangible

condition (SD = 5.84). Results of a t-test showed no

significant difference between the means, t(62) = 0.72,

p = 0.475. We did, however, observe a significant differ-

ence in average session length between groups with only a

single active participant (2.2 min, SD = 1.99) and groups

with multiple active participants (7.0 min, SD = 6.59),

regardless of the interface condition, t(62) = 3.64, p =

0.0006. This suggests that for engagement, the type of

interface might be less important than actively involving

multiple participants. Finally, for visitor computer pro-

grams, despite our expectations that visitors would create

longer and more complex programs with the tangible

interface, we found no significant differences between the

conditions for any of our measures.

4.4 Summary

This study suggests some ways in which tangible interac-

tion might be advantageous for informal science education.

In particular, we found that the use of wooden blocks was

more inviting for visitors and encouraged (or facilitated)

simultaneous active participation. However, once visitor

groups decided to try the exhibit, they spent roughly equal

amounts of time interacting, and they produced similar

programs in both conditions.

5 Kindergarten classroom study

For the second study, we conducted an eight-week inter-

vention in a suburban elementary school [3]. This study

was guided by the following questions: given access to

different styles (i.e., TUI vs. GUI) of age-appropriate

technology, are young children capable of programming

their own robotics projects without direct adult assistance?

At the same time, to what extent do young children

understand the underlying powerful ideas behind computer

programming?

5.1 Methods

We collected qualitative data in the form of observation

notes, photographs, and videotape. We also collected stu-

dent work (both programming code as well as the robotic

artifacts) and conducted one-on-one semi-structured inter-

views with a sample of children and teachers in the

classroom. Three researchers were involved in this study:

two collected data, while the third acted in the role of lead

teacher.

For this study, we developed an 8-h curriculum unit

designed to introduce a series of powerful ideas [2, 19] from

computer science in a structured, age-appropriate way. The

curriculum was made up of whole-class instruction, small-

group challenge activities, and open-ended student projects.

We provided students with pre-assembled robot cars to

teach preliminary computer programming concepts. These

cars were built using LEGO Mindstorms RCX construction

kits. As the unit progressed, students disassembled these

cars to build diverse robotic creations that incorporated arts

and craft materials, recycled goods, and LEGO parts. All

classes were taught in the school’s science activity room. In

this room, there were four desktop computers in a back

corner of the classroom for students to use. In addition,

there was an LCD projector available and a large projection

screen in the front of the classroom.

5.1.1 Participants

The study involved four classrooms of kindergarten chil-

dren, including 74 children (ages 5–6) and eight teachers.

In attempt to understand the implications of tangible versus

graphical programming in kindergarten, we divided these

four classrooms into two groups. Two of the classrooms

used sets of the tangible programming blocks (TUI) that we

redesigned for younger children. The other two classrooms

used an equivalent graphical programming language

(GUI). Table 1 summarizes the four classrooms involved

in this study.

5.2 Results

For our first research question, we were interested in

whether young children could create their own computer

programs. Based on observation notes and an analysis of

videotape, we found that children were able to manipulate

the tangible blocks to form their own programs. For chil-

dren in the GUI condition, however, we observed a range

of capabilities in terms of being able to manipulate the

computer mouse. For some children, the process of build-

ing graphical programs was tedious, while for other chil-

dren, the mouse-based interface seemed easy to use.

Table 1 Breakdown of classrooms and participants for each

condition

Condition Time of day # Girls # Boys

TUI Morning 11 7

GUI Morning 11 9

TUI Afternoon 11 7

GUI Afternoon 8 10
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Beyond physical manipulation, we observed that chil-

dren were able to understand the icon-based programming

syntax, even if they could not read. We found that most

students were able to differentiate the blocks and discern

their meanings in both the GUI and TUI conditions. While

not all of the children could read the text labels on the

blocks, we saw evidence that children were able to use

the icons as a way to interpret meaning. For example, in the

initial sessions, we asked children to look at the blocks and

describe what they saw. Some children were simply able to

read the text labels on the blocks. Other children said

things like: ‘‘mine says arrow’’ or ‘‘mine says music.’’ In

reality, the text on the blocks reads ‘‘Forward’’ and ‘‘Sing.’’

We used whole class games to reinforce the meaning of

each block in terms of the robot’s actions.

The children also seemed to understand that the blocks

were to be connected in a sequence and interpreted from left

to right. For example, one student in an introductory TUI

session pointed out, ‘‘they connect; some have these [pegs]

and some have these [holes].’’ Another student added, ‘‘the

End block doesn’t have one [peg],’’ with another classmate

adding, ‘‘the Start block doesn’t have a hole.’’ Likewise, in

the GUI classes, we saw no evidence that children were

confused by the visual interaction metaphor.

For our second research question, we were interested in

how children understood the concepts introduced by the

curriculum. As the unit progressed, we moved beyond

programs consisting of simple sequences of actions and

introduced more advanced constructs such as loops, sen-

sors, and numeric parameter values. Through these activi-

ties, we found evidence that children could engage these

concepts, reasoning about possible outcomes of different

blocks to form, and test solutions to challenge activities.

For example, in one activity, we prompted teams of four

students with this challenge: Your robot is hungry. Can you

program it to drive to the cookies? A picture taped on the

wall approximately four feet from the robot represented the

cookies. Each Forward block would cause the robot to

drive forward approximately one foot.

After the challenge activity, one of the researchers dis-

cussed students’ solutions with one of the GUI classrooms.

One group determined that they needed eight forward

blocks to reach the cookies. After learning the repeat

syntax, they realized that largest parameter value for a

repeat block was five, so they needed 3 more forward

blocks. The students then suggested this program:

Repeat ð5Þ ! Forward! Forward! Forward

! End Repeat

When we tested to see if that program would work, the

students saw that the robot actually went forward 15 times.

One student noticed that 15 was a ‘‘5 number,’’ and another

said it was the 3rd ‘‘5 number.’’

Later in the unit, we introduced students to the idea of

sensors through a Bird in the cage activity. Here the cage

was a cardboard box and the bird was a robot with a light

sensor attached. The lead teacher told a story of a bird who

liked to sing when released from her cage. We used this

program to have the robot act out the story.

Begin! Repeat ðforeverÞ !Wait for Light! Sing

! End Repeat! End

The students were curious how the robot was able to sing

when it was removed from the cage. We used this curiosity

to prompt students to explore the idea of sensors and to

develop hypotheses about how the robot is able to sing

when it emerges from the box. Finally, we demonstrated the

program that controls the robot. The following transcript is

from one of the TUI condition classrooms:

Teacher: Do you recognize all of the blocks?

Student 1: No. The moon one. [Wait for Dark]

Student 2: The sun and moon [Wait for Light]

Teacher: Can one of you read this?

Student 2: Wait for Light

Student 1: It means you’re going to wait for the dark to

come.

Teacher: What are these?

Students together: Repeat

Teacher: What do they do?

Student 3: Start all over again.

Teacher: The bird is outside.

Student 2: The witch catches the bird

Student 1: If we turn this block over we could make him

sing when it’s dark outside. It might be shy so he sings in

the dark.

Here the child was pointing out that it would be possible

to use a Wait for Dark block instead of a Wait for Light to

achieve the opposite effect, a bird that sings only when it is

inside the cage—alternating sides of the same cube had

Wait for Light and Wait for Dark labels.

For the remainder of the curriculum unit, the children

worked in pairs to create robotic creatures that ideally

incorporated one moving part and one sensor. The children

struggled with many aspects of this activity and required

substantial help from teachers. This difficulty might have

reflected a limitation of our curriculum, which did not

include time for children to explore the RCX brick and

understand its role in robotic constructions. As part of the

final project presentations, we asked students not only to

demonstrate their robots, but also to show the class the

blocks they used to program it. In many cases, students

selected blocks that had little to do with their actual pro-

grams. In other cases, however, students were able to

recreate programs more accurately. For example, in this

transcription, two girls described their toucan robot:
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Teacher: So what does it do?

Student 1: We have to make the program first.

Student 1: [Starts connecting blocks] Begin. Wait for

Dark…
Teacher: Can you tell us what we’re doing while you’re

doing it?

Student 2: Yes. I think we should use a repeat block.

Student 1: Great idea

Teacher: E., why don’t you show us your robot while S.

builds the program.

Student 2: This is our robot… [she starts to demonstrate

how it works]

Student 1: The program isn’t done yet!

Student 2: [Looking at the blocks] It’s supposed to

repeat the shake

Student 1: Yes. It’s going to repeat the shake over and

over again.

The program student 1 has created is:½ �
Begin!Wait for Dark! Beep! Turn Left! Repeat

! Shake! End

Student 2: [Runs the program on the robot for the class

to see. The actual program waits for dark, turns, beeps,

and then shakes once.]

Student 1: These are the three blocks we used [She puts

these blocks in the middle of the rug: Begin, Wait For

Dark, Beep]

Here it is clear that there is some confusion on the part of the

students about the concept of a program being stored on the

RCX robot. However, the blocks the students chose to

explain their robot’s behavior are consistent with the blocks

they used to program the robot earlier that day. Moreover,

they seemed to understand the notion of repeating an action.

And, although there was no verbal evidence, the first student

seemed to understand the notion of waiting for dark given

her correct inclusion of that block in her program.

5.3 Summary

In terms of the first research question, our work with both a

tangible and a graphical condition suggests that while

many young children do struggle with the mouse-based

interfaces, graphical languages can nonetheless serve a

useful role in the classroom. For certain activities and for

certain children, the tangible version of Tern was clearly

advantageous. On the other hand, the most independent

student work that we observed was done with the graphical

interface. In many cases, we believe that other factors such

as teacher involvement and time of day overshadowed the

effects of a particular interaction style on the quality of

students’ activities.

Thus, one conclusion that we drew from this study is

that while there were many situations for which it was

advantageous to use physical blocks, it is worthwhile to

support the integration of tangible and graphical (and

perhaps even text-based) programming in learning envi-

ronments. Providing multiple representations affords edu-

cators and learners the flexibility to choose the most

appropriate tool for a given situation. It also opens exciting

new possibility for programming language design—imag-

ine, for example, being able to create a subroutine in a

graphical system that is then embodied in a physical block.

One way to think about this motivation is to consider the

variety of participant structures [20] commonly used in

kindergarten classrooms. For example, in whole-class

activities, the teachers would sit with the entire class on a

large rug in an open area of the classroom. We used these

situations to introduce new programming concepts, to

model activities for students, or to consolidate knowledge

after an activity. For the graphical condition, we projected

the programming environment on a large screen in the front

of the room. The graphical condition worked, but it

imposed additional constraints on the classroom structure.

The children had to be oriented around the fixed projection

screen, and often the lights in the classroom needed to be

dimmed. In contrast, the tangible interface offered a more

flexible alternative. Children could sit in a circle and focus

on the tangible blocks that would either be passed out to

children or collected in a pile in the middle of the rug.

Other participant structures included individual work,

small-group work (2–3 students), and large-group work

(4–6 students). There were also situations in which teachers

would interact with individuals or groups of students,

constituting additional participant structures. Many factors

could influence student/teacher preference for one inter-

action style or another in these settings, including such

things as the fine motor skills of individual students and the

willingness of group members to share single user input

devices offered by the graphical system. Likewise, some

students found the graphical system easier and quicker to

use, or in some cases, a more sophisticated or ‘‘grown up’’

style of interface.

6 Hybrid tern interface

Based on results from our first two studies, we developed an

initial hybrid prototype of Tern in the spring of 2009. This

prototype is a single computer program that runs on a desktop

or a laptop computer. Users can elect to create programs

either using physical wooden blocks or using graphical

programming elements from an onscreen tool palette

(Fig. 4). When a child compiles a tangible program (by

pressing the space bar or by clicking on a button on the
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computer screen), the system takes a photograph of the

program and converts it into digital code. The system then

displays this photograph onscreen alongside a graphical

version of the same program. To revise the program, the child

can either rearrange the physical blocks or rearrange the

virtual blocks on the screen. In this way, the system provides

an automatic translation from a tangible to a graphical rep-

resentation. To translate from a graphical program to a tan-

gible program, however, the child must manually copy the

onscreen program using the wooden blocks.

7 Robotics summer camp study

To evaluate the hybrid Tern implementation and to uncover

any usability problems, we conducted an evaluation with 15

children entering kindergarten through second grade during

a weeklong summer robotics camp at Tufts University.

7.1 Research questions

Our research questions centered around three major topics:

• Comprehension: How deeply do children understand

the powerful ideas of computation and robotics that are

introduced through the intervention?

• Collaboration: How often do children interact with one

another while working on their robotics projects?

• Interaction: How do children engage with each of the

interaction styles offered by the hybrid interface

(tangible and graphical)?

7.2 Methods

During the camp, children worked together in freeform

groups to build a robotic city using LEGO Mindstorms

construction kits. They designed and built robots based on

their own interests and programmed them using the hybrid

Tern interface. Each day, we introduced a robotic pro-

gramming concept followed by a small-group challenge

activity that encouraged the use of these new concepts. The

goal of these small-group activities was to have children

practice and solidify their understanding of the new con-

cepts and then apply them to their own projects later in the

day.

7.2.1 Measures

To assess the children’s comprehension of computer pro-

gramming and robotics concepts, the researchers conducted

semi-structured interviews with the children about their

projects throughout the workshop. The researchers also

administered a 10-question assessment at the beginning

and the end of the week. Each child was asked a series of

ten ‘‘yes’’ or ‘‘no’’ questions such as: ‘‘Robots can think by

themselves’’ and ‘‘Robots are alive.’’ The complete list of

questions is shown in Table 2.

To measure children’s collaboration on their robotic

projects, we developed an instrument that we call a col-

laboration web or ‘‘thank you’’ web. At the beginning of

each day, the children were presented with a personalized

printout with their photograph in the center of the page and

the photographs and names of all other children in the class

arranged in a circle surrounding their own photo (Fig. 5).

Throughout the day, each time a child collaborated with

another child (where ‘‘collaboration’’ is defined as getting

or giving help with a project, programming together,

lending or borrowing materials, or working together on a

common project), the child was told to draw a line from his

or her own photo to the photo of the collaborator.

To understand children’s interactions with the two

versions of the Tern interface (tangible and graphical), all

programming activity on the laptop PCs was logged. At the

end of the session, these logs were analyzed to determine

how the children interacted with Tern during their free

Fig. 4 A screenshot of the Tern hybrid prototype. Users can select to

program graphically or tangibly

Table 2 Pre/post-assessment questions

1. Robots are machines

2. All robots are made of the same materials

3. Robots must have moving parts

4. Robots can think by themselves

5. All robots look like alike

6. Robots must be able to move around the room

7. Robots are operated using remote controls

8. People tell robots how to behave using a list of instructions

called a program

9. Some robots can tell what is going on around them

10. Robots are alive
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building and programming time. In particular, our analysis

sought to uncover usage patterns that emerged between the

two interaction styles.

7.2.2 Participants

A total of 15 participants (ages 5–7) enrolled in the summer

camp (12 boys and 3 girls). Seven children were entering

kindergarten (6 boys and 1 girl), four were entering first

grade (2 boys and 2 girls), and four were entering second

grade (all boys).

7.3 Results

Our first research question sought to explore how deeply

the children understood the computer programming and

robotics concepts that we introduced. We scored the pre/

post-assessment into three categories: Needs to Develop

(0–2 correct responses), Developing (3–6 correct respon-

ses), and Developed (7–10 correct responses). Seven of the

children scored in the Developed range on both the pre-and

post-assessment; four improved from Developing on the

pre-assessment to Developed on the post-assessment; two

improved from Needs to Develop to Developing; and the

remaining three children scored in the Developing range on

both the pre- and post-assessment. By the end of the pro-

gram, all children were able to correctly identify the fol-

lowing characteristics of robots:

• Robots are machines.

• Robots cannot think by themselves.

• Robots are told what to do using a list of commands

called a program.

• Robots can use sensors to get information from their

environment.

• Robots are not alive

In interviews, children revealed that their projects involved

the use of many of the ideas introduced throughout the

week. For example, one child explained that his robotic

drawbridge used a touch sensor to signal that the bridge

should go up. He explained, ‘‘the bridge waits until a boat

comes by’’ (here he brushed the touch sensor with his

finger to simulate a passing boat) ‘‘and then the bridge

knows it needs to go up.’’ The final projects were designed

and implemented by the children with minimal intervention

from the camp coordinators. These projects included racecars

that used infinite loops to move forward, a button-operated

factorywithaconveyorbelt,andahumanoidrobotthatwavedher

armswhen‘‘tickled.’’

Analysis of interviews indicated that the children

involved in the program were engaged in active exploration

of robotics and had become acquainted with many concepts

from this domain. For example, one student noted that the

button that makes the double doors in the building acces-

sible to people with disabilities ‘‘works like a touch sen-

sor.’’ He noted that because the door does not move until

someone presses the button, ‘‘it must have a Wait For

block’’ in its program.

For our second research question, results of the collab-

oration web analysis indicated that each child collaborated

with an average of 4.5 other participants each day (with a

reported low of 2 and a reported high of 7).

Our third research question sought to understand pat-

terns of interaction with the hybrid interface. One pattern

that emerged from the log analysis provided evidence that

children prefer to use the graphical interface for what we

refer to as ‘‘rapid prototyping.’’ In this interaction style,

children first compile a program using either the tangible or

graphical interface. There is then a one- to three-minute

gap in the log where there is no activity, after which a new

program is compiled using the graphical interface that is

similar to the first program, with the addition or subtraction

of at most two blocks or containing some permutation of

the original blocks. From this logged interaction, we infer

that during the short gap between compiles, the child was

observing his or her robot as it executed the program,

noting areas that needed slight modifications, and then

going back to the computer to make these modifications

using the graphical interface. Of the 10 computer logs that

were analyzed, 8 contained this behavior. We found it

particularly interesting that in all 8 examples of rapid

prototyping behavior, children utilized the graphical

interface to make their minor modifications regardless of

their original programming method.

Another pattern that appeared in the data analysis was

the tendency for children to program using the tangible

interface earlier in the morning, gradually moving over to

the graphical interface later in the session. This aligns with

the curriculum schedule of introducing a new concept and

its corresponding block and icon at the group meeting upon

the children’s arrival in the morning. This suggests that the

Fig. 5 A ‘‘thank you’’ web for one of the camp participants
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children in this program might have felt more comfortable

exploring a new programming concept using the tangible

blocks and shifted toward the graphical interface as they

became more secure in their understanding.

Some children elected to utilize only one of the inter-

action styles for the duration of the workshop. For exam-

ple, one child whose guardians indicated that he found

laptop trackpads particularly engaging elected to exclu-

sively use the graphical interface. Two other children, who

were among the youngest in the program elected to use the

tangible blocks for the majority of their programming

because they found the mouse difficult to maneuver in a

reliable manner.

8 Discussion

Our emphasis in this paper is to propose that it is advan-

tageous to combine tangible interaction with more tradi-

tional interfaces to create hybrid systems. Based on our

research, we believe that this leads to several immediate

advantages. The most important of these is that it gives

actual participants in learning environments—teachers,

students, museum staff, etc.—the freedom to select the type

of interaction style most appropriate for a given learning

situation. This flexibility is especially important in class-

room settings, where teachers are often determine if and

when a particular technology will be used [6]. In addition,

the use of hybrid interfaces means that not every feature of

a software system needs to be implemented tangibly. For

example, saving student work on a file system and setting

precise parameter values are features that might be better

left to the graphical version of the interface. In a similar

vein, it is much easier to deploy a pure software system

(e.g., over the Internet) than to deploy a tangible system.

Thus, a teacher might be able to download and try out the

graphical side of a hybrid interface before investing in the

tangible components.

Beyond these immediate advantages of hybrid interfaces

is the potential to provide layered scaffolding to students as

they progress toward increasingly authentic programming

environments. For example, students might start with a

tangible system and then transition to a graphical system

with increased capabilities and complexity. Taking this

idea further, students might later transition from a graphi-

cal programming environment to a text-based environment

with advanced features and capabilities. In this scenario,

students would progress through a tiered hybrid interface.

For a tiered hybrid interface, the essential interaction

metaphor connecting the tangible and graphical interfaces

could be different from the essential metaphor connecting

the graphical and text-based interfaces. Other interaction

techniques might fit this model as well. For example, many

multi-touch tabletop devices can recognize tangible input

by means of computer vision fiducials. Such interaction

platforms might provide an even more direct bridge

between tangible and graphical interaction.

8.1 Advantages of tangible interaction

In exploring tangible, graphical, and hybrid systems, we

have identified several potential advantages of tangible

interaction that might merit further investigation. In our

museum study, we found that our tangible interface was

more inviting and better at supporting active collaboration.

This result was especially important because the tangible

interface seemed to appeal to girls as well as boys, which

was not the case with the graphical interface in the

museum. An open question is whether these effects trans-

late into learning environments where students have some

choice in the activities in which they participate (for

instance, a hybrid interface used in a classroom).

In classroom environments, the tangible interfaces

seemed to be advantageous for whole-class activities—

students can sit in a circle and refer to a shared set of

physical objects. These activities can be conducted in dif-

ferent locations without the need for students to gather

around a large shared display or projection screen. For

young children with developing fine motor skills, the tan-

gible blocks have an obvious advantage in that they allow

participation in an activity that might otherwise be

impossible. We should point out that Tern does not take

full advantage of interaction with physical objects in the

world. For example, rich actions like shaking, turning,

squeezing are meaningless to our system. Thus, there are

many potential pedagogical advantages that we have not

considered.

9 Conclusion

In this paper, we have reviewed three research studies

involving the use of programming languages with children

in a variety of learning settings. The first two studies—

conducted in a science museum and kindergarten class-

rooms—took a between-subject approach, in which chil-

dren used either a tangible or a graphical interface to create

computer programs. Through these studies, we identified

situations in which tangible interaction seems to offer

advantages for learning. For example, in classrooms, the

tangible interface seemed especially well suited for whole-

class activities and discussions. Likewise, in museums, the

tangible blocks seemed to do a better job of enticing chil-

dren to explore programming activities. In other situations,

however, the graphical interface seemed more appropriate.

For example, some of the most productive small-group
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work that we observed in kindergarten classrooms involved

the graphical interface. Given these findings, we decided to

explore the idea of creating hybrid tangible/graphical

interfaces that give learners and educators the freedom to

select and interaction style to meet their needs or prefer-

ences as dictated by the situation. After building an initial

hybrid prototype, we evaluated it with children in the setting

of a weeklong robotics camp. Findings from this final

evaluation suggest ways in which children interact with

hybrid tangible interfaces. We observed that children were

able to fluidly transition from one interaction style to the

other and that they seemed to prefer the tangible interface

for early exploration and the graphical interface for sub-

sequent ‘‘rapid prototyping.’’
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