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A B S T R A C T   

This longitudinal study examined changes in Computational Thinking (CT) skills in first and 
second grade students exposed to a developmentally appropriate coding curriculum. The “Coding 
as Another Language” (CAL) curriculum spans seven weeks and uses the KIBO robot to engage 
students in learning that integrates programming and literacy concepts. We compared children 
receiving CAL (N = 667) to a control group (N = 181) who participated in typical classroom 
activities without coding (No-CAL). TechCheck, a validated “unplugged” CT assessment suitable 
for young children regardless of their coding experience, was used to measure CT. Over the course 
of the study, children who received CAL-KIBO improved on TechCheck (Mchange = 0.94, p < .001) 
whereas the No-CAL group did not change significantly (Mchange = 0.27, p = .07). Accounting for 
demographic factors, baseline performance and classroom (teacher) effects, CAL exposure was a 
significant predictor of post-test CT scores (p < .01). Improvements in CT measured by TechCheck 
over seven weeks of the CAL-KIBO curriculum were consistent with approximately six months of 
development without coding instruction. Secondary analysis stratified by grade revealed decisive 
evidence that CAL exposure improved scores in first grade and anecdotal evidence that second 
grade scores improved. The CT domains that showed improvement in children who received CAL- 
KIBO included algorithms, modularity, and representation. Young children who learned to code 
improved in solving unplugged problems that were not explicitly taught in the coding curriculum. 
This provides evidence that a developmentally appropriate curriculum for teaching young chil-
dren to code can accelerate their acquisition of CT skills.   

1. Introduction 

One of the most important goals of teaching computer science (CS) to young children is to foster the development of computational 
thinking (CT) skills that are applicable to many educational disciplines and areas of life (Barr & Stephenson, 2011; Chen et al., 2017; 
Cuny et al., 2010; Wing, 2006). Papert (1980) alluded to CT in his book Mindstorms in a discussion of the challenge of integrating 
Computer Science (CS) education with children’s everyday experiences. Later, Wing popularized the term and defined it as a set of 
reasoning skills for formulating and solving problems using computers and other information technologies (Wing, 2006, 2011). She 
emphasized that CT is not only useful in CS but also other disciplines such as mathematics, science, design, economics, and linguistics 
(Wing, 2011). Since that time there has been increasing interest in CT, as documented in several recent reviews describing CT’s 
definitions, methods of assessment and educational initiatives (Lye & Koh, 2014; Román-González et al., 2019; Tang et al., 2020; 
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Zhang & Nouri, 2019). 
There is an ongoing debate about whether CT is truly a singular concept (Barr et al., 2011; Grover & Pea, 2013; National Research 

Council, 2011). Zhang and Nouri (2019) identified three types of definitions of CT in the published literature: generic definitions that 
focus on universal problem-solving skills (e.g., Aho, 2012; Wing, 2011); operational definitions that provide a vocabulary and identify 
CT sub-domains (e.g., CSTA, 2011; Selby & Woollard, 2013) and educational definitions that provide concepts and competencies (e.g., 
Barr & Stephenson, 2011; Brennan & Resnick, 2012). Tang et al. (2020) later distinguished CT definitions that are 
programming-related (e.g., Grover, et al., 2015) from those of a general problem-solving nature (e.g., CSTA, 2011; Selby & Woollard, 
2013). The existence of many different definitions is an indication that CT is still an evolving concept but one recognized to have 
considerable importance for CS education. For present purposes, we define CT to be a set of heuristic reasoning skills that can be 
categorized into discrete sub-domains applicable to problem-solving in computer science and other disciplines. 

Coding (programming) has been described as “the instrumental skill of CT” and “the primary means of teaching CT in primary 
school” (Arfé et al., 2019; Román-González, 2017; Wing, 2006). Programming languages are specifically designed to communicate 
instructions and solve problems with computers, and children as young as 3–4 years of age are capable of learning to code (Bers, 2018; 
Clements & Gullo, 1984; Kazakoff & Bers, 2014; Strawhacker & Bers, 2019). However, in a 2014 review Lye and Koh (2014) found that 
the majority of past studies of coding and CT were carried out in higher educational settings, and only 25% involved kindergarten 
through 12th grade students. Lockwood and Mooney (2018) conducted a systematic review of CT in secondary schools (children ages 
11–18) and concluded that educational programs promoting CT in middle and high schools are becoming more widespread. While 
there has been an increase in CT educational initiatives and professional development programs for younger students and their 
teachers (Fraillon et al., 2018; Tang et al., 2020), more work is needed in this area. In particular, there is still only a limited under-
standing of the effects of learning to code on young children’s cognitive development and how to best promote the development of CT. 

1.1. Teaching computational thinking to young children 

Educational initiatives relating to CT in young children must take into account the progression of cognitive development. A 
typically developing young child does not possess fully mature literacy, numeracy, and abstract reasoning skills (Piaget, 1971). Ac-
cording to developmental theorists, first and second grade children are typically in the preoperational or concrete operations stage. At 
the preoperational stage from around two years to six years of age, children tend to engage in concrete, egocentric thinking and are just 
beginning to develop knowledge about physical symbols and representation. By the concrete operations stage from approximately six 
to twelve years, they are better able to organize their thoughts, use logical reasoning skills, and rely less directly on physical repre-
sentations of ideas (Bruner et al., 1966; Feldman, 2004; McDevitt & Ormrod, 2002; Piaget, 1953). 

A young child’s stage of development can constrain the CS concepts and CT skills they can readily master (Chen et al., 2017; 
Goldstein & Flake, 2016). For example, early elementary school children may have difficulty grasping “if-then” conditionals (Bar-
rouillet & Lecas, 1999; Janveau-Brennan & Markovits, 1999; Muller et al., 2001). Likewise, they may have a hard time understanding 
abstract representations such as variables. They may engage in magical thinking or personification rather than recognize the me-
chanical basis for the actions of machines (Flavell et al., 1993; Mioduser et al., 2009). These and other developmental considerations 
must be taken into account when designing educational programs to teach CT to young children. 

In an effort to provide a developmentally appropriate framework for teaching coding and other CS concepts to children between the 
ages of 4–9 years, Bers (2018) described the seven powerful ideas of CS. This framework is based on experience with a variety of coding 
initiatives for children, such as Google for Education, 2010; Scratch (Brennan & Resnick, 2012); the KIBO robotics kit (Sullivan & Bers, 
2015) and ScratchJr (Portelance et al., 2015). The seven powerful ideas identify child-friendly concepts within the domains of 
hardware/software, algorithms, modularity, control structures, representation, debugging, and design process (see Table 1). 

The powerful ideas provided the foundation for the CS curriculum used in the current study called “Coding as Another Language” 
(CAL). This curriculum is designed to teach coding and CT to young children while simultaneously promoting literacy skills (Bers, 
2018; Hassenfeld et al., 2020). Programming in elementary education has typically been associated with Science, Technology, En-
gineering and Mathematics (STEM) curricula (Bers, 2019; Clements et al., 2001; Guzdial & Morrison, 2016). However, there are 

Table 1 
The seven powerful ideas, associated concepts, and examples from the CAL-KIBO curriculum.  

Powerful Idea Associated Concepts Example from CAL-KIBO Curriculum 

Algorithms Sequencing/order, logical organization Child learns to program KIBO in a specific sequence to dance the “Hokey Pokey” 
Modularity Breaking up larger task into smaller parts, 

instructions 
Students break up the “If You’re Wild and You Know It” song into smaller components that 
KIBO can be programmed to perform 

Control 
Structures 

Recognizing patterns and repetition, cause 
and effect 

Children learn to trigger sound sensors using “wait for clap” command 

Representation symbolic representation, models Child learns that each programming block translates into a unique KIBO action. 
Hardware/ 

Software 
Smart objects are not magical, objects are 
human engineered 

Children play a game about what is and isn’t a robot and learn that you must give the KIBO 
robot a program in order for it to perform 

Design Process Problem solving, perseverance, editing/ 
revision 

Children are tasked with creating a final “Wild Rumpus” KIBO project in which they plan, 
code, test and revise with peer sharing and feedback 

Debugging Identifying problems, problem solving, 
perseverance 

Children identify problems in either hardware or software of KIBO and brainstorm solutions 
to fix it  
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creative and self-expressive aspects of programming that align more closely with literacy and other aspects of the humanities (Bers, 
2018, 2020; Resnick & Siegel, 2015). The CAL curriculum draws on principles of literacy education to create lessons that blend el-
ements of learning to read and write with CS and coding concepts (Bers, 2019; Hassenfeld et al., 2020). This pedagogical approach 
emphasizes creative programming and provides children with opportunities for self-expression analogous to those experienced when 
using a symbolic written language (Bers, 2018, 2019). 

One of the greatest challenges to integrating CT into early elementary school education has been a lack of validated, develop-
mentally appropriate assessments to measure young children’s CT skills in classroom and online settings (Lockwood & Mooney, 2018; 
Lee et al., 2011; Román-González et al., 2019). In the following section, we review the development of CT assessments for young 
children and describe the recent advent of “unplugged” CT assessments such as TechCheck, the instrument employed in this study. 

1.2. Assessing computational thinking in young children 

CT assessment instruments for young children must use developmentally appropriate language and tasks to assure that factors such 
as literacy and fine motor skills are not limiting (Chen et al., 2017; Sattler, 2014). Cultural biases should be avoided, and the activities 
and artifacts employed must be familiar and non-threatening to young children (McMillan, 2013; Mullis & Martin, 2019; Tang et al., 
2020). The duration of the assessment should be relatively brief in light of the shorter attention span of young children (Moyer & 
Gilmer, 1953). The range of difficulties covered by the assessment should allow for children with little or no CT training to be assessed 
with equal ease and precision to students with extensive CT talent (Relkin et al., 2020). It has been suggested that CT assessments 
should incorporate measures that evaluate reasoning processes, not just the end product of a program or a problem solved (Brennan & 
Resnick, 2012; Fields et al., 2019; Román-González et al., 2019). However, this is arguably an aspirational goal that has yet to be 
achieved in a brief CT assessment that can be administered to large numbers of young students simultaneously in a classroom setting. 

Román-González et al. (2019) reviewed CT assessment tools for kindergarten through 12th grade and found most were designed for 
students in middle school, high school and/or adults (Chen et al., 2017; Fraillon et al., 2018; Román-González et al., 2018; Werner 
et al., 2012). Some CT assessments require hours and/or multiple sessions to complete, making them impractical for routine use in 
educational settings (Basu et al., 2016; Chen et al., 2017; Werner et al., 2014). CT assessments that employ programming challenges 
that require some prior knowledge of coding may conflate programming abilities with CT skills (Yadav et al., 2017). Such instruments 
cannot readily be used to assess baseline CT abilities in coding-naive students. To the extent that it is desirable to be able to measure CT 
skills in children regardless of whether they have past knowledge or experience with computer programming, coding exercises alone 
may not be the best way to assess CT (Grover et al., 2014). 

Recently, our research group and others have explored the use of coding-free instruments to assess CT skills in children. These 
newer instruments leverage the fact that CT skills can be exercised without programming through the use of unplugged activities (Bell 
& Vahrenhold, 2018; Zapata-Cáceres et al., 2020). Unplugged activities consist of puzzles, games and other exercises that draw upon 
CS concepts without requiring explicit knowledge of coding or computers. Unplugged activities have been used to teach CS concepts 
for over two decades (e.g., CSUnplugged.com; code.org) and can also be used for assessment purposes. 

One of the first unplugged CT assessments was designed for post-elementary school students by Román-González et al. (2018) who 
created a 45-min unplugged assessment called the Computational Thinking Test (CTt). This instrument was used to measure CT 
abilities in over 300 middle school students (ages 12–14) before and after they took part in an informatics course that included ele-
ments of the code.org curriculum (Román-González et al., 2018). After the coding intervention, CTt assessment scores improved and 
correlated positively (p < .01) with language (r = 0.42), grade point average (r = 0.47), mathematics (r = 0.36) and informatics (r =
0.43). In its original form, the CTt is not suitable for use in younger, elementary school-age children. 

Arfé et al. (2019) used four traditional neuropsychological tests to measure executive functioning in first and second graders who 
received components of the code.org curriculum. The tests did not involve coding or computer technology and as such could be 
considered “unplugged.” Among n = 42 first graders who received 8 h of coding instruction, the measures of response inhibition and 
planning improved more than in a control group (n = 34) that received non-coding STEM activities (Arfé et al., 2019). The authors also 
followed n = 17 second grade students longitudinally and found that changes in planning and response inhibition after one month of 

Table 2 
Comparison of Two “Unplugged” CT assessments for young children: The BCTt and TechCheck based on Zapata-Cáceres et al., 2020 and Relkin et al., 
2020.   

BCTt TechCheck 

Average Admin 
Time 

40 min 13 min 

Format Pen and paper Pen and paper, Online 
Validation 

Sample 
299 students 768 students 

Validated Age 
Range 

5-12 (1st- 6th grade) 5-9 (1st - 2nd grade) 

Age Sensitivity Significant difference between 2nd grade vs. 4th and 6th graders in initial 
validation study. No significant difference between 1st and 2nd graders 
reported. No difference between 4th and 6th graders 

Significant difference between 1st and 2nd graders. No data 
on older or younger children in initial validation study. 

CT Concepts Sequences, Loops (Simple, Nested), Conditionals (If-Then, If-Then-Else, While) Algorithms, Modularity, Debugging, Hardware/Software, 
Control Structures, Representation  
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the coding intervention were comparable to those that occurred over seven months of normal development. This study provides 
evidence from a randomized, control trial that learning to code can accelerate the development of executive functions critical to CT in 
young children. However, the number of participants was relatively small and the assessment measures employed focused on a specific 
subset of the various skills involved in CT. In light of this, further studies are needed to evaluate the impact of learning to code on young 
children’s CT skills. 

Cross-sectional validation studies were recently completed on two unplugged CT assessments designed specifically for young 
children. The CTt for Beginners (BCTt) (Zapata-Cáceres et al., 2020) and TechCheck (Relkin et al., 2020) both use unplugged challenges 
to probe CT domains and can be administered to children who lack prior coding experience. These instruments differ in the types of 
unplugged challenges they include, the CT domains assessed, the targeted age ranges and the time required to complete the assess-
ments (see Table 2). 

Although both the BCTt and TechCheck assessment instruments have unique merits, TechCheck was chosen for the present study for 
several reasons. TechCheck’s CT constructs are based on Bers’ seven powerful ideas, the same conceptual foundation as the CAL coding 
curriculum used in this study. On average, TechCheck takes approximately 13 min to administer while the BCTt requires approximately 
40 min. Some of the concepts probed by the BCTt such as conditionals may be problematic for younger children on developmental 
grounds (Barrouillet & Lecas, 1999; Janveau-Brennan & Markovits, 1999; Muller et al., 2001). Mean scores on TechCheck were 
significantly different in first and second graders whereas no significant difference between these grades was reported for the BCTt 
(Zapata-Cáceres et al., 2020). In addition, TechCheck can be administered to large groups of children simultaneously using an online 
platform, which is useful in the context of the present study involving hundreds of students. 

By obtaining a better understanding of how learning to code impacts the acquisition of CT in young children, it may be possible to 
improve teaching methods designed to promote the development of these reasoning skills (Nouri et al., 2020). The advent of the CAL 
curriculum and validated unplugged CT assessments for elementary school children provides a new opportunity to explore the 
interaction of coding education and CT. We set out to answer the following research question: How does a coding intervention impact 
young children’s CT skills as measured by an unplugged CT assessment? 

2. Method 

The present study has a quasi-experimental longitudinal design. The intervention is a version of the CAL curriculum called “CAL- 
KIBO” that uses the KIBO robot to teach children programming and literacy concepts. It examines CT skills in children between ages 5 
and 9 (first and second grade) before and after they participate in the CAL-KIBO curriculum. Grade-matched students who engage in 
their usual classroom activities without learning to code provide a comparison group for identifying incidental and/or maturation- 
related changes in CT skills. The TechCheck unplugged assessment is administered before and after the intervention to evaluate 
changes in CT. In the following section, we describe the specifics of the methods we employ. 

2.1. The intervention: the CAL-KIBO curriculum 

The CAL-KIBO curriculum is implemented using the KIBO robotics platform, a screen-free programmable robot that is develop-
mentally appropriate for young children. Young children often learn to code using simple sequencing and graphical or tangible coding 
interfaces (Bers, 2020; Guzdial & Morrison, 2016; Jenkins, 2002; Resnick & Silverman, 2005; Strawhacker et al., 2017; Sullivan et al., 
2015). KIBO is programmed with tangible wooden blocks that a child sequences and then scans using a barcode scanner embedded in 
the robot. Each block represents an action that the robot performs. The combination of KIBO’s blocks, sensors, modules, and art 
platforms gives children a unique opportunity to not only explore programming concepts but also to use their creativity to create 
personally meaningful projects (see Fig. 1). 

Fig. 1. The KIBO robot, programming blocks, parameter stickers, modules/sensors, and attachable art platforms.  
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KIBO has been shown to engage young children as young as four years old in expressive and creative coding (Elkin et al., 2016; 
Sullivan et al., 2015, 2017). The CAL-KIBO curriculum incorporates lessons and exercises that teach algorithms, modularity, hard-
ware/software, control structures, debugging, representation, and design process. 

The CAL-KIBO curriculum teaches coding as a symbolic system of representation for expressive purposes and not only problem- 
solving. CAL-KIBO includes time spent working with coding, game-play as well as an emphasis on activities involving social in-
teractions, creativity and movement. Individual and group activities in this curriculum include warm-up games to playfully introduce 
or reinforce concepts, design challenges to solidify skills, free explorations to allow students to tinker and expand their skills, 
expressive explorations to promote creativity, writing activities and technology circles to share and reflect on activities. The curric-
ulum was first created and tested with second graders and was then modified for first graders. Feedback from teachers, administrators 
and students was taken into account when designing this curriculum. The CAL-KIBO curriculum is aligned with the Common Core 
English Language Arts (ELA)/Literacy Framework, as well as Virginia CS Standards of Learning and other nationally recognized CS 
frameworks (ISTE Standards for Students, 2017; K-12 Computer Science Framework Steering Committee, 2016; Massachusetts 
Department of Elementary and Secondary Education, 2016; National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010; Virginia Department of International Society for Technology in Education, 2017). 

The second grade CAL-KIBO curriculum consisted of 12 1-h lessons. Lessons were designed to be carried out in 1–2 h of instruction 
each week over 6–7 consecutive weeks. Each lesson consisted of structured KIBO challenges, opportunities for free exploration and 
writing activities. The advanced programming concepts in this curriculum included repeat loops, the use of light and distance sensors, 
and conditionals. The final lesson involved a multi-day project based on the popular children’s book Where the Wild Things Are by 
Maurice Sendak, which was referenced at several points throughout the curriculum. This book was chosen because it fosters discussion 
and creative thinking and allows teachers to integrate literacy and computer science concepts into their lessons. 

The first grade CAL-KIBO curriculum followed the same implementation timeline and used the same story Where the Wild Things Are 
and covered much of the same KIBO concepts but did not cover conditional statements. Additionally, 3 h of additional lesson time were 
added to the original 12-h curriculum based on teacher feedback. The “Wild Rumpus” compositional activity was omitted so that 
students could focus more on programming and student-centered discussions with KIBO. First grade teacher and classroom support 
materials were enhanced to better assist teachers in implementing the curriculum. 

An example of a CAL lesson involves one of the main scenes in Where the Wild Things Are consisting of six pages of illustrations 
showing the main character Max participating in a “Wild Rumpus Party.” Students were asked to write a creative composition about 
what would happen at their own Wild Rumpus Party. The class then discussed their compositions as a group and collaborated with one 
another to decide whether or not what they had written about could be rendered as a program for KIBO to perform. Children then 
programmed the KIBO to perform their Wild Rumpus party activities (see Fig. 2A). For example, one child wrote that her KIBO would 
sing karaoke and dance. The child used stickers corresponding to those on the KIBO blocks to plan her program and subsequently 
programmed KIBO using actual programming blocks and a recording of her own singing made using the KIBO sound recorder module. 

2.2. Participants 

Participants in this study were first and second graders from an urban school district in Norfolk, Virginia. Students were from 
military and non-military families with a mixture of different racial/ethnic and socio-economic backgrounds (Table 3). Ten schools 
were invited to participate in this study. Eight of the ten schools received a grant from the U.S. Department of Defense and were chosen 
to receive the CAL-KIBO curriculum. Two additional schools were included for comparison purposes. Students from the No-CAL 
control schools followed a standard curriculum without exposure to CAL or coding. No-CAL students underwent assessments at 
comparable time intervals to the CAL schools. The No-CAL schools had similar overall demographics to the schools that received CAL 
(Table 3). 

Among the eight schools invited to implement the CAL curriculum, two schools contributing first graders did not participate due to 
administrative and/or staffing issues. Among the No-CAL schools, one first grade class inadvertently received coding instruction during 

Fig. 2. A: Students’ CAL-KIBO final projects. B: KIBOs decorated by teachers at the CAL-KIBO training, Note. Photograph 2A courtesy of Angela de 
Mik, Norfolk Public Schools. 
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the study window in violation of the study protocol and was excluded from the analysis. 

2.3. Inclusion criteria 

Inclusion criteria for this study were: 1. parental opt-out consent and child assent; 2. adequate English language skills to participate 
in the curricular activities and study assessment. Inclusion criterion for the main analysis was the completion of baseline and end point 
TechCheck. Inclusion criterion for the baseline analysis was the completion of the pre-CAL TechCheck assessment. 

2.4. Professional development 

Educators attended a full day, CAL-KIBO training led by multiple researchers where they participated in hands-on play with the 
KIBO robot and were introduced to the CAL approach and curriculum. At the training, teachers participated in activities from the 
curriculum such as creating their own Where the Wild Things Are KIBO final projects (see Fig. 1B). Opportunities were provided to 
practice and plan for classroom implementation. Teachers were given hard copies of the curriculum and children’s books to aid their 
instruction as well as online resources such as videos of others teaching the curriculum, links to the curriculum lessons, and lesson 
slides. Ongoing professional development and support was given to educators through phone calls with researchers and in-person 
assistance from administration staff, researchers, and instructional technology resource teachers. 

Instructional Technology Resource Teachers (ITRTs) from the school district attended both the CAL-KIBO training and separate in- 
person assessment workshops. At the assessment workshops, ITRTs were taught to administer TechCheck including what to do in 
various scenarios (e.g., a child needing to leave the room, or asking them if they got the correct answer). ITRTs were given time to 
practice administration. A log was created to keep track of which classes received assessments and when. Additionally, throughout the 
study ITRTs and researchers engaged in multiple phone conferences to provide feedback on assessment administration. 

2.5. Computational thinking assessment 

The TechCheck assessment used in this study consists of fifteen multiple-choice questions. TechCheck is considered an “unplugged” 
assessment because its challenges probe CT but do not require the use of technology or knowledge of computer programming to be 
completed. In the present study, TechCheck was administered using computers and tablets rather than pencil and paper. However, it is 
the content rather than the mode of administration that leads to the characterization of TechCheck as an unplugged assessment. The 
child responds to prompts on TechCheck by clicking on one of four options. Each correct response is awarded one point, with a 
maximum total score of 15 points. Two practice questions are included in the beginning of the assessment to familiarize students with 
the format but are not included in the scoring. All questions must be answered to complete the assessment. The TechCheck assessment 
typically takes an average of 13 min for children to complete. TechCheck was previously validated with a sample (N = 768) of 5-9-year- 
old children in first and second grade (Relkin et al., 2020). The assessment showed good discrimination of children between different 
skill levels and an adequate difficulty level for first grade. The difficulty level for second graders was low and a ceiling effect was 
evident for the highest performers. Children’s scores on TechCheck correlated moderately and positively (r = 0.53) with a CT measure 
(TACTIC-KIBO) that requires knowledge of coding with the KIBO robot (Relkin et al., 2020). 

TechCheck probes six of the seven powerful ideas from computer science described by Bers (2018) as developmentally appropriate 
for children ages 4–9. This includes algorithms, modularity, control structures, representation, hardware/software, and debugging. 
Design process, the seventh powerful idea, was not included in TechCheck because it is an inherently open-ended process that cannot be 
readily measured in a multiple-choice format assessment (Relkin et al., 2020). A variety of different tasks are used to probe the six CT 
domains: sequencing challenges, shortest path puzzles, missing symbol series, object decomposition, obstacle mazes, symbol shape 
puzzles, identifying technological concepts, and symmetry problems (see Appendix). 

Table 3 
Demographics of the study population.   

All 
CAL 

All 
No-CAL 

Grade 1 
CAL 

Grade 1 
No-CAL 

Grade 2 
CAL 

Grade 2 
No-CAL 

Number of students 667 181 271 71 396 110 
Mean Age (Years) 7.41 7.38 6.23 6.28 7.56 7.61 
Age Range (Years) 5–9 6–9 5–8 6–7 7–9 7–9 
Gender 

Male (%) 47.20 42.54 48.34 43.66 46.46 41.81 
Female (%) 51.87 56.35 50.92 56.34 52.53 56.36 
Not specified (%) 0.93 1.01 0.74 0 1.01 1.82 

Race 
Black/African American (%) 41.25 53.59 35.42 57.75 45.21 50.91 
Hispanic (%) 10.19 14.26 10.33 16.90 10.10 12.73 
Mixed (%) 8.54 5.52 9.59 5.63 7.83 5.45 
White (%) 36.58 24.97 40.59 18.32 33.83 29.09 
Asian/Pacific Islander (%) 2.99 1.66 3.32 1.40 2.78 1.82 
Native American (%) 0.45 0 0.74 0 0.25 0  
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2.6. Procedure 

After attending in-person professional development, the teachers were given two weeks to prepare their classroom schedules. One 
week prior to initiating the curriculum, the TechCheck assessment was administered by one of eight ITRT proctors (one per school). The 
endpoint TechCheck was given after the full curriculum had been taught. 

ITRTs were trained to administer the TechCheck assessments consistently. Entire classrooms were tested together on individual 
tablets. Before children arrived, ITRTs prepared enough devices for the classroom and opened the TechCheck assessment application 
saved to the desktop. ITRTs first established rapport with children, then asked children for their assent to participate. Since the 
TechCheck assessment is designed for use in children who may be pre-literate or marginally literate, administrators were instructed to 
project a copy of the assessment onto a board and read each question out loud to the students twice. There were two practice questions 
that the classroom did as a group to ensure that children knew how to use the application and select answers using the interface. 
Students were then told to work individually and were given up to 1 min to answer each question. Each question required a response 
and children were instructed to guess if they did not know the answer. 

2.7. Data analysis 

Statistical analyses were conducted in R (Version 3.6.1, R Core Team, 2019) using R Studio version 1.2 (R Core Team, 2019). To 
assess longitudinal changes over time, we analyzed the data with a General Linear Mixed Model (GLMM) using the “lme4” package 
(Bates et al., 2015) and the “lmerTest” package (Kuznetsova et al., 2017). Pre-analysis data screening showed adequate normality of 
the variables used in the models. The GLMM fixed effects were: CAL vs No-CAL status, age, self-reported gender, grade, and Baseline 
TechCheck score. The random effect was classroom/teacher. P-values were obtained by likelihood ratio tests for the full model with 
CAL and the model without CAL and by using the “summary” function on R studio. A post-hoc analysis of residuals showed adequate 
normality on histogram and P–P plots. VIF and Tolerance assumptions of multicollinearity were met. Although the majority of the data 
appeared to obey the assumptions of homoscedasticity, there was some sparseness of data at the lower end of the range of TechCheck 

Fig. 3. The Distribution of Baseline TechCheck Scores by grade(3A) and by group (3B).  
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scores, so the assumption of homoscedasticity may not have been met. No influential outliers were identified. 
We calculated the expected rate of change of TechCheck scores over time in the absence of a coding intervention by subtracting the 

mean baseline TechCheck score in first graders from the mean score in second graders and dividing that by the difference in mean ages 
between the two grades. 

To further assess CAL-KIBO’s contributions to the study outcomes, we conducted Bayesian Linear Mixed Modeling (BLMM) with the 
“BayesFactor” package (Morey & Rouder, 2018). BLMM was used in this study to supplement classical hypothesis testing since one 
cannot infer from this type of analysis whether the null hypothesis is true if, for example, results are non-significant (see Dienes, 2014). 
Bayesian analyses can provide information about the relative strength of the statistical evidence for both the null and alternative 
hypotheses. A Bayes factor is the likelihood ratio of one hypothesis divided by that of another hypothesis. 

A post-hoc item analysis was carried out examining change in the percentage of correct responses in the six TechCheck CT domains. 
First, the percentages of correct responses on each of the 15 TechCheck items were calculated and then averaged within each CT 
domain. Baseline percentages were then subtracted from endpoint percentages to determine change over the course of the 7-week 
intervention for the students who received the CAL-KIBO curriculum (CAL) and those who did not (No-CAL). For comparison pur-
poses, predicted change over seven weeks of typical development was calculated by subtracting the percentage of correct responses for 
all first graders at baseline from those of all second graders at baseline, and multiplying the resulting percentages by 7/67.8 to adjust 
for the 1.3-year average difference in age between the two grades. 

3. Results 

3.1. Baseline score distributions 

The distributions of TechCheck scores at baseline for first and second grades are shown in Fig. 3a. Scores were approximately 
normally distributed. A rightward skew is visible in the second grade distribution, consistent with the ceiling effect on TechCheck 
previously observed in second graders (Relkin et al., 2020). A Welch Two Sample t-test showed that there was a significant difference 
in baseline TechCheck scores between first (M = 8.45 points, SD = 2.33) and second (M = 10.99 points, SD = 2.20) grades; t (703.81) =
15.92, p < .001. We used the mean difference in baseline scores (2.54 points) divided by the mean difference in the ages of first and 
second graders (1.30 years) to calculate the approximate expected change in TechCheck scores between first and second grade (1.95 
points/year). Since most of the study participants (>75%) indicated they had little or no past coding experience, this rate of change can 
be taken to approximate maturation-related changes in CT skills over time. 

Fig. 3b shows the distribution of scores for students in the CAL and No-CAL groups. A Welch Two Sample t-test showed that baseline 
performance was higher in the schools that received CAL (M = 10.09 points, SD = 2.61) compared to the No-CAL schools, (M = 9.50 
points, SD = 2.38; t (307.73) = 2.93, p < .01). This difference in baseline scores occurred by chance rather than by design. 

3.2. Primary outcome 

Students who received the CAL-KIBO curriculum (CAL group) improved on TechCheck (Mchange = 0.94, SD = 2.28). Paired sample t- 
tests showed that the CAL group’s change from baseline (M = 10.09, SD = 2.61) to endpoint (M = 11.03, SD = 2.61) was significant; t 
(666) = 10.55, p < .001. Students in the No-CAL control group who engaged in typical classroom studies without coding instruction did 

Fig. 4. Unadjusted mean change in TechCheck scores (+/− S.E.) from baseline (pre) to endpoint (post) in students receiving the CAL-KIBO coding 
curriculum ● versus control (No-CAL) students ○. 
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not significantly improve (Mchange = 0.27 points, SD = 2.04) from baseline (M = 9.50, SD = 2.38) and the study endpoint (M = 9.77, SD 
= 2.55) assessments; t(180) = 1.81, p = .07) (see Fig. 4). 

The observed change of 0.94 points in the CAL group equates to the increase in TechCheck scores that would be expected to occur 
over approximately 6 months without instruction based on the observed increase of 1.95 points per year in baseline scores. The change 
of 0.27 points in the No-CAL control group is consistent with the expected change over seven weeks, which is the actual interval over 
which the testing was performed. 

Results were stratified by grade and paired sample t-tests were conducted. In first grade the CAL group significantly improved 
(Mchange = 1.32 points, SD = 2.31) from baseline (M = 8.63, SD = 2.35) to endpoint (M = 9.95 SD = 2.34) of the study; t(270) = 9.21, p 
< .001. Likewise, the second grade CAL group significantly improved (Mchange = 0.68 points, SD = 2.23) from baseline (M = 11.15 SD 
= 2.20) to the study endpoint (M = 11.83 SD = 2.46); t(395) = 6.11, p < .001. No significant improvements were found for the No-CAL 
control group in first grade (Mchange = 0.01, SD = 2.10) from baseline (M = 8.03, SD = 2.05) to endpoint (M = 8.10, SD = 2.27) 
assessments; t(358.31) = 1.07, p = .95). A borderline significant improvement was found in the second grade No-CAL control group 
(Mchange = 0.44, SD = 2.00) from baseline (M = 10.43 SD = 2.10) to endpoint (M = 10.87, SD = 2.07); t(109) = 2.34, p = .05), (see 
Table 4). 

3.3. GLMM results 

To take into account baseline differences and to evaluate the contribution of other effects such as age, gender, ethnicity and 
classroom differences, we used Generalized Linear Mixed Model (GLMM) analysis. For the two grades combined, the effects found to be 
significant on the GLMM included the intercept (p < .001), CAL (p < .01), grade (p < .01) and baseline TechCheck score (p < .001) (See 
Table 5 and Fig. 5). Gender and age did not significantly contribute to the model. This indicates that exposure to the CAL-KIBO 
curriculum was a significant predictor of endpoint TechCheck outcome, even when taking into account differences in baseline Tech-
Check performance and other effects. The Bayes factor for this model compared to a model without CAL was >100. This is classified as 
“decisive evidence” against the null hypothesis (Wetzels et al., 2011) and strongly supports CAL being a significant factor in the overall 
TechCheck outcomes. Interaction terms did not improve the model’s fit to the data and were therefore not included. 

When data from the first grade students only were modeled, CAL (p < .01) and baseline score (p < .001) were significant effects. 
Gender, age, and the intercept were not significant. The Bayes factor for the model including CAL compared to one without CAL was 
>100, a level considered decisive evidence that exposure to CAL is a predictor of post-test CT scores. When data from second grade 
students were examined, gender was significant at the p < .05 level, as were the baseline score (p < .001) and the intercept (p < .001). 
Notably, CAL did not reach significance in this model. The Bayes factor, in this case was 1.88, which is considered “anecdotal evidence” 
(Wetzels et al., 2011). Thus, in contrast to the results in first graders, we cannot say with certainty that exposure to CAL is a predictor of 
TechCheck score in second graders. 

3.4. TechCheck item analysis 

We sought to determine if changes in TechCheck scores after exposure to the CAL-KIBO curriculum were related to improved 
performance in specific CT domains. To do so, we carried out a post-hoc analysis of change in percentage of correct responses averaged 
over the questions within each CT domain. Fig. 6 shows the change in percentage of students whose scores improved from the study 
baseline to endpoint on each of the six domains measured by TechCheck. 

All TechCheck CT domains showed change with typical development as calculated from differences between first and second grades 
at baseline. Hardware/software and debugging showed slightly less change with typical development than the other domains. There 
was likely a ceiling effect for these two domains since an average of 90% of students responded to hardware/software probes correctly 
and 87% responded correctly to debugging probes at baseline. 

Across all six TechCheck domains, the average percentage increase in students responding correctly after the coding intervention 
was 6% for the CAL group and 2% for No-CAL controls. The largest percentage of student improvement in the CAL group was asso-
ciated with the CT domains of Modularity, Algorithms and Representation, respectively (see Fig. 6). 

Table 4 
TechCheck results for CAL and No-CAL Control Groups.  

Group N TechCheck Baseline 
(M ± SD) 

TechCheck End Point 
(M ± SD) 

Mean Points 
Changed 

Median Points 
Changed 

Paired t-test p 
Value 

Bayes Factor 
(Bayesian t-test) 

All CAL 667 10.09± 2.61 11.03± 2.61 0.94 1 p < .001 >1000 
All No-CAL 181 9.50±2.38 9.77±2.55 0.27 0 p = .07 0.42 
CAL 

Grade 1 
271 8.63±2.35 9.95±2.34 1.32 1 p < .001 >1000 

No-CAL 
Grade 1 

71 8.06± 2.05 8.07± 2.28 0.01 0 p = 0.95 0.13 

CAL 
Grade 2 

396 11.15±2.20 11.83±2.46 0.68 1 p < 0.001 <1000 

No CAL Grade 
2 

110 10.43±2.10 10.87±2.07 0.44 .5 p < 0.05 1.42  
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4. Discussion 

This study provides empirical evidence, from a large-scale, quasi-experimental study, that teaching first and second grade students 
(ages 5–9) to code through the CAL-KIBO curriculum can accelerate the acquisition of CT skills. The current study is the first to use 
TechCheck to document longitudinal changes in CT in association with an educational intervention. The CAL-KIBO curriculum teaches 
coding without explicitly providing children with unplugged CT challenges of the kind encountered in TechCheck. Consequently, the 
observed increase in TechCheck scores following the CAL-KIBO coding curriculum can be taken to reflect improvements in CT skills 
rather than practice effects or other assessment artifacts. This conclusion is further bolstered by the observation that the No-CAL group 

Table 5 
GLMM results modelling exposure to CAL and outcome of TechCheck.   

Estimate CI (95%) Standard Error T-value DF P value 

Intercept 4.50 5.92 0.87 5.20 774.08 p < .001 
CAL 0.87 1.33 0.29 3.05 56.13 p < .01 
Age − 0.06 0.14 0.12 − 0.46 817.23 p = .05 
Grade 0.84 1.32 0.30 2.86 142.82 p <. 01 
Gender − 0.19 0.03 0.13 − 1.40 808.23 p = .36 
Baseline score .57 0.61 .03 18.51 831.59 p < .001  

Fig. 5. Magnitude of effect and 95% C.I for fixed effects in GLMM  

Fig. 6. Changes in percent of students making correct responses in the six CT domains measured by TechCheck. For the CAL and No-CAL groups, 
colored bars represent the percent difference in correct TechCheck responses between the baseline and end of study assessments. The “7 week 
predicted” results are calculated from the percent difference in correct responses between first and second graders at their respective baseline 
assessments, multiplied by 7/67.8. Error bars indicate standard errors of the means. 
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did not demonstrate comparable improvement on TechCheck over the same time interval. 
Most past studies in young children that explore the effects of learning to code on CT skills used coding exercises, interviews or 

measures such as neuropsychological tests as the means of assessment (Grover et al., 2014; Yadav et al., 2017). By utilizing an easily 
administered unplugged CT assessment, we were able to conduct the first longitudinal large-scale study in early elementary school 
children with a sizable non-coding control group. Our approach allowed assessment of baseline CT skills in these children regardless of 
their past coding experience and avoided conflating coding abilities with CT skills. The study also demonstrates the potential utility of 
TechCheck for assessing young children’s CT in routine education settings. 

The mean change in TechCheck scores in students exposed to the CAL-KIBO coding curriculum was slightly less than one point out of 
a maximum score of 15 points. This magnitude of improvement after seven weeks of coding instruction is consistent with the estimated 
change in baseline TechCheck scores in the absence of coding instruction over approximately six months. This change is comparable in 
magnitude to the improvements in executive functions reported by Arfé et al. (2019) in a group of n = 17 second graders, in whom 
exposure to the code.org curriculum for one month resulted in improvements in executive functions equal to 7 months in age-matched 
students who received non-coding STEM instruction (Arfé et al., 2019). 

Our data also indicate that young children’s performance on a CT assessment can improve in the course of typical development. CT 
may improve as a consequence of brain maturation, practice effects, as a result of learning in other disciplines and through various life 
experiences. The present study does not allow us to say whether CT acquired in the context of learning to code is the same or different 
in nature from that gained through typical development or non-coding experiences. However, by accelerating the acquisition of CT, 
coding interventions in early childhood may exert long-term benefits analogous to the improved academic outcomes associated with 
early acquisition of literacy skills (Heckman & Masterov, 2007; Stanovich, 1986, 2000). 

In this study, first graders in the CAL group improved more on TechCheck than the CAL group second graders. It is possible that the 
higher baseline TechCheck scores in second graders reduced the range of possible improvement compared to first graders. Previous 
psychometric analysis of the TechCheck assessment revealed a less-than-optimal difficulty level for higher performing second graders 
(Relkin et al., 2020) which may have led to a ceiling effect in the present study. Another possible explanation for the observed dif-
ferences between grades would be if the CAL-KIBO curriculum was more effective in first graders. This possibility can neither be 
confirmed nor ruled out based on the currently available data. 

There were significant differences at baseline in the TechCheck scores of the CAL-KIBO versus the No-CAL control groups. We 
carried out GLMM modeling to take those differences into account and evaluate the effects of other demographic and environmental 
variables on the study’s outcomes. The results of the GLMM analyses indicate that exposure to CAL-KIBO was a highly significant 
predictor of TechCheck outcome even when taking the other variables into account. GLMM analysis did not confirm a significant effect 
for CAL in second graders which we believe is due at least in part to a ceiling effect in that grade discussed above. 

The inclusion of a control group that did not receive coding instruction is important for several reasons. This is the first study in 
which TechCheck was administered serially to large numbers of students, and it was therefore important to control for the possibility of 
a learning effect from repeated exposure to the assessment. The results from the No-CAL control group suggest that any learning effects 
from repeated testing did not profoundly affect the study’s outcome. The inclusion of a No-CAL control group also allowed for 
observation of changes in TechCheck performance related to the maturation of students over the time interval of the study. 

Our findings suggest that some students who received coding instruction were able to transfer the knowledge they gained from 
coding into CT skills useful for solving unplugged problems. Although TechCheck is not designed to quantitatively assess CT skills in 
specific CT subdomains, post hoc analysis suggests that the domains of CT that improved most after the CAL-KIBO curriculum were 
algorithms, modularity, and representation. These are similar in nature to the domains identified in surveys of educators as being 
enhanced in young children who learn to code (Nouri et al., 2020). 

It is worthwhile considering why the items designed to probe algorithms, modularity and representation may have shown the 
highest percentage of improvers. CAL-KIBO emphasizes the relationship between CS concepts and literacy, drawing on children’s 
stories as inspiration for programming projects and other exercises. As students engage in KIBO coding activities, they learn pro-
gramming fundamentals such as recognizing the relationship between symbols on the KIBO programming blocks and concrete actions 
(e.g., movement of the robot). They also learn that using certain blocks results in tangible actions while others exert effects that are not 
as readily visible (e.g., conditionals). As children learn these coding fundamentals, the CAL-KIBO curriculum challenges them to 
achieve goals such as programming simulations of storybook characters and robotic re-enactments of story elements from children’s 
literature. Participating in these challenges requires learning about symbolism (representation), decomposition of multistep processes 
into executable steps (modularity) and sequencing multiple steps to achieve a desired set of actions (algorithms). By recognizing 
patterns that repeat within and across these creative activities, children may acquire CT skills in the above-mentioned domains. Hands- 
on experience with creative activities may better enable students to generalize the knowledge they acquire from coding and apply it to 
new situations (Basawapatna et al., 2010). Another possible reason for seeing greater effects in algorithms, modularity and repre-
sentation could be if TechCheck is inherently more sensitive to changes in these domains. Since experience with TechCheck in longi-
tudinal studies is currently limited, additional studies will be needed to examine this possibility. 

TechCheck’s probes of hardware/software and control structures did not show differences between the CAL and No-CAL groups. 
There was likely a ceiling effect for these domains since close to 90% of students across the two grades responded correctly at baseline. 
This left little room for improvement after the coding intervention. The TechCheck probes for control structures involve navigating 
through a maze with obstacles by following a set of conditional instructions. Young children tend to have trouble learning conditionals 
(Elkin et al., 2014; Strawhacker & Bers, 2015) and it is possible that this concept was not fully developed in this version of the 
CAL-KIBO curriculum. 

The change score for debugging showed a numerically greater change for the No-CAL group than the CAL group. However, the 
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difference was within the variance of the results. The debugging probes in this version of TechCheck involve correcting an unbalanced 
seesaw. It is possible that the children in the No-CAL group learned problem-solving through another school subject that increased 
their debugging skills. In interpreting all of these post-hoc, domain-specific results, it should be kept in mind that TechCheck is designed 
as a composite measure of CT across all six domains, not as a way to precisely quantify performance in individual CT domains. 

At least one author has argued that transfer of CT skills to other disciplines may not occur effectively if children are introduced to 
problem-solving exclusively in the context of learning to code (Curzon, 2013). Curzon (2013) suggested that teaching young children 
programming primarily helps them develop coding-related reasoning rather than thinking skills in other domains. By introducing 
unplugged activities, Curzon argued that one can invoke more powerful skills of improved logical thinking and problem solving. 
However, participation in unplugged activities alone may not foster the development of higher reasoning skills. Thies and Vahrenhold 
(2012, 2013) studied the impact of CSunplugged in elementary and middle school children using qualitative and semi-quantitative 
assessments. They did not find evidence of improvements in higher-level reasoning skills and suggested that exposure to unplugged 
activities alone does not necessarily lead to a generalization of learning or promote the development of higher reasoning skills. While 
other studies have concluded that unplugged activities alone are ineffective (Black et al., 2013), some have found unplugged activities 
to be equally effective to coding in promoting CT (Hermans & Aivaloglou, 2017; Metin, 2020; Wohl et al., 2015). Some authors have 
argued that CS education is more effective when lessons include actual technology and coding in addition to unplugged activities (Bers, 
2020; Huang & Looi, 2020; Thies & Vahrenhold, 2012, 2013). More research is needed to establish whether this is true and if so, to 
clarify the optimal approach to integrating these elements into a CS curriculum. 

The importance of knowledge transfer and generalization of learning in the emergence of CT from coding education has been 
emphasized by several investigators (Angeli et al., 2016; Grover et al., 2015; Ioannidou et al., 2011; Repenning et al., 2015). “Near 
transfer” of knowledge refers to circumstances in which there is a generalization of learning sufficient to facilitate learning of new 
material that is similar in nature to the original learning materials. “Far transfer” refers to the adaptation of knowledge from a learned 
skill to help solve entirely new types of problems which may be in completely different disciplines (Reschly & Robinson-Zañartu, 
2000). While the unplugged challenges in TechCheck were not actual coding exercises, they were selected as probes from the same 
domains of CT as are embodied in the CAL-KIBO coding curriculum. In this context, the improvement in unplugged problem-solving 
skills observed in the CAL group can be considered a form of near transfer of knowledge. 

4.1. Limitations 

Our initial intention was to carry out this study with kindergarten students as well as first and second graders. Although kinder-
garten teachers attended professional development, we were unable to implement the kindergarten CAL-KIBO curriculum due to 
school closure from the COVID-19 pandemic. 

The No-CAL and CAL groups were not chosen at random. CAL schools were invited to participate first and No-CAL schools were 
added later based on having similar school level demographics to the CAL group. We did not include specific measures of SES in this 
study. Socioeconomic status (SES) can impact the acquisition of coding skills and CT (Google & Gallup, 2016; Scherer & Siddiq, 2019). 
We cannot rule out the possibility that between-group differences in SES contributed to the observed TechCheck outcomes. 

TechCheck is a relatively new screening instrument and the version used in this study did show ceiling effects that may have reduced 
the magnitude of the observed outcomes, particularly in second graders. We are in the process of validating a revised version of the 
TechCheck assessment designed to more effectively discriminate a range of CT skill levels across three grades (K, 1, 2). We recognize 
that children’s engagement in open-ended creativity and self-expression are integral to the learning and development of CT. However, 
TechCheck does not assess students in this domain owing to limitations imposed by its multiple-choice format. In the future, other more 
open-ended forms of assessment may be beneficial to implement in combination with TechCheck to get a more comprehensive picture 
of the child’s CT development. 

Although TechCheck successfully detected improvement of CT skills in this study, the percentage of students showing improvement 
was relatively small. We hope that the revisions to the assessment that have been made subsequent to this study will render it even 
more sensitive to change particularly in the domains that showed ceiling effects. In addition, we hope future enhancements to the 
coding curriculum will lead to greater improvements in CT skills after coding instruction. Due to timing restrictions with the second- 
grade public schools that participated, we were not able to use the full version of the CAL-KIBO curriculum that we had originally 
intended to implement. Our original version for second graders had an additional 24 lessons (24 h) of instruction. Future iterations of 
the CAL-KIBO curriculum will be extended and should allocate more time to help scaffold abstract and advanced programming 
concepts. 

4.2. Future directions 

This study has implications for the design of future coding and CT curricula for young children. Currently, many CS professional 
development programs for teachers focus on the syntax and implementation of programming languages rather than techniques that 
foster CT skill acquisition and authentic learning in other content areas (Sands et al., 2018). It may be beneficial for professional 
development to emphasize teaching methods that foster students’ self-expression and creativity through coding to better promote 
young children’s CT skills. Future studies comparing technically focused coding programs to curricula like CAL-KIBO that integrate 
literacy and creativity components can help to establish best practices for young children. 

We believe it is important that these findings be extended to other cohorts and grades, as well as other curricula and educational 
contexts. The TechCheck assessment has been translated into multiple languages (i.e., Spanish, Chinese, Turkish) and is currently being 
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administered in diverse research and educational settings. Future studies should explore its use in children from various cultures and 
neuro-diverse children. 

More work is needed to understand best practices for teaching CT to young children. Future longitudinal studies should compare 
different the effects of different coding curricula. A logical next iteration might be to compare the effects of CAL-KIBO with those of a 
conventional coding curriculum and one that combines coding with unplugged activities. By this approach, we can hope to learn 
whether young children best acquire CT when they are taught using platform-specific coding exercises, unplugged activities or a 
hybrid approach using both methods. 
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