
International Journal of Child-Computer Interaction 37 (2023) 100601

L

i
c
a
2
p
E
n
u
t

t
t
d
a
f
n
E
h
a
e

A

m

h
2

Contents lists available at ScienceDirect

International Journal of Child-Computer Interaction

journal homepage: www.elsevier.com/locate/ijcci

Research paper

ScratchJr design in practice: Low floor, high ceiling
Jessica C. Blake-West ∗, Marina U. Bers
ynch School of Education and Human Development, Boston College, Chestnut Hill, MA, USA

a r t i c l e i n f o

Article history:
Received 21 March 2023
Received in revised form 7 June 2023
Accepted 19 June 2023
Available online 24 June 2023

Keywords:
ScratchJr
Computer science education
Programming
Technologically rich learning environment
Early childhood

a b s t r a c t

The demand for developmentally appropriate tools and learning environments for early childhood
computer science education is greater than ever. One of the most widely used introductory coding
environments designed for children ages 5–7 is ScratchJr (Bers & Resnick, 2015; Flannery et al.,
2013), which has over 40 million users worldwide. ScratchJr was designed as a ‘‘low floor, high
ceiling’’ learning environment — meaning that it is accessible to novice users while also allowing
more experienced users to grow their knowledge. In this paper, we evaluate how the ‘‘low floor, high
ceiling’’ design of ScratchJr is received in practice through looking at the programming performance of
users at different ages, timepoints, and experience levels. We find that the youngest, and most novice
users were able to engage with the app to some extent with no instruction, but engagement was
optimized with curricular support. Additionally, we found that the oldest, and most experienced users
still had room for growth and discovery in the app. We conclude that the design decisions in ScratchJr
such as iconography, block variation, and open-endedness of the environment creates a welcoming
and engaging experience for a wide range of users, both children and adults.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Over the past two decades, the development of technology and
ts integration into everyday life has dramatically changed how
itizens engage with society. Not only are computer science skills
growing need in the workforce (Code.org, 2018; Fayer et al.,
017), but technological skills have become deeply ingrained in
eople’s ability to communicate, learn, and express themselves.
xposure to new technologies begins early in a child’s life. A
ational survey found that over 85% of parents with children
nder the age of 6 reported that their child had some degree of
echnology exposure (Erikson Institute, 2016).

As the prevalence of technology in young children’s lives con-
inues to grow, the demand for developmentally appropriate
echnological learning environments is greater than ever. Tra-
itionally, computer science education happens in high school
nd college, by which time there are achievement gaps in STEM
ields, which tend to be split along gender, race, and socioeco-
omic lines (Betancur et al., 2018; National Center for Science
ngineering Statistics, 2023). In the past decade, however, there
as been a push to introduce computer science to earlier ages
nd make programming accessible to novices of any age with
nvironments such as ScratchJr (Bers & Resnick, 2015; Portelance

∗ Correspondence to: Carney Hall at Boston College Chestnut Hill Campus,
ttn: Room 306, 281 Beacon St, Chestnut Hill, MA 02467, USA.

E-mail addresses: jessica.blake-west@bc.edu (J.C. Blake-West),
arina.bers@bc.edu (M.U. Bers).
ttps://doi.org/10.1016/j.ijcci.2023.100601
212-8689/© 2023 Elsevier B.V. All rights reserved.
et al., 2015), Code.org, Beebot robot (www.terrapinlogo.com),
KIBO robotics (Bers et al., 2014; www.kinderlabrobotics.com), etc.
Bringing computer science education to early childhood can mit-
igate achievement gaps (Sullivan & Bers, 2016) and help cultivate
a positive relationship with technology (Bers et al., 2012).

One of the most widely used introductory coding environ-
ments explicitly designed for children ages 5–7 is ScratchJr (Bers
& Resnick, 2015; Flannery et al., 2013) which is available on iPads
and Android devices, as well as Chromebooks (as of 2021) and
iPhones (as of 2023). The app was created through a National
Science Foundation grant that funded a partnership between
the DevTech Research Group directed by Marina Bers, and the
LifeLong Kindergarten group directed by Mitchel Resnick. The
two groups together, with Paula Bonta from the Playful Invention
Company, began the work of designing a coding environment that
is usable for early childhood education: ScratchJr.

ScratchJr is inspired and adapted from Scratch, created by
the LifeLong Kindergarten group at MIT Media Lab (Maloney
et al., 2010). Scratch is designed to make programming playful
and creative so programmers at all levels can orient themselves
(Myers & Stylos, 2016). In contrast to other languages, which are
syntactically difficult, Scratch offers visual programming blocks,
the ability to create interactive art and stories, and the output of
animations (Resnick et al., 2009).

Despite the inviting nature of Scratch, it has a large instruction
set and relies on complex concepts and text labels to communi-
cate ideas — all of which are barriers for most children between

the ages of 5–7. Despite the fact that research has shown that

https://doi.org/10.1016/j.ijcci.2023.100601
https://www.elsevier.com/locate/ijcci
http://www.elsevier.com/locate/ijcci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcci.2023.100601&domain=pdf
mailto:jessica.blake-west@bc.edu
mailto:marina.bers@bc.edu
http://www.terrapinlogo.com
http://www.kinderlabrobotics.com
https://doi.org/10.1016/j.ijcci.2023.100601


J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

c
p
e
m
(
t
s

m
c
p
d
o
a
S
t
a
s
c

u
A
m
i
w
r

a
b
d
o
d
t
a

s
n
o
a
a
w

g
f
S
1
b
c
c
e
a

hildren as young as 5 years old can master fundamental com-
uter science concepts such as sequencing, logic, and cause and
ffect when working with appropriate tools, there is a need to
ake developmentally appropriate programming environments

Bers & Sullivan, 2019; Strawhacker et al., 2015). Thus arose
he motivation for creating ScratchJr: an environment designed
pecifically to make programming accessible to young children.
As of February 2023, ScratchJr has been used by over 40

illion people, in 192 countries. 167 million projects have been
reated, 275 million projects have been edited, and 7 million
rojects have been shared. The DevTech Research Group has
eveloped over 60 hours of ScratchJr curricula and hundreds of
ther educators have incorporated ScratchJr into the classroom
nd posted their projects and activities on the web through
cratchJr Connect (Blake-West & Bers, 2023). ScratchJr is main-
ained by the DevTech Research Group, now at Boston College,
nd the Scratch Foundation which generously provides funding
o ScratchJr can remain a free programming environment for all
hildren across the world.
The design of ScratchJr was researched, tested, and iterated

pon in order to make it suitable for novice programmers (Ben-
ri, 1998; Kelleher & Pausch, 2003; McKeithen et al., 1981; Nor-
an & Draper, 1986) and developmentally appropriate for its

ntended user age group of 5–7 (Rader et al., 1997). Four themes
ere identified early on by the design team (Flannery et al., 2013)
egarding the design of the interface and the user experience:

‘‘1) Low Floor and (Appropriately) High Ceiling: Make it easy
to get started with ScratchJr programming. Provide room to
grow with concepts varying in complexity, but keep the tool
manageable for the range of users.

2) Wide Walls: Allow many pathways and styles of explo-
ration, creation, [expression] and learning.

3) Tinkerability: Make it easy to incrementally build up cre-
ations and knowledge by experimenting with new ideas and
features.

4) Conviviality: Make the interface feel friendly, joyful, invit-
ing, and playful, with a positive spirit of exploration and
learning’’

Each of these design themes informed different features and
ffordances of the coding environment, however little work has
een done to date to investigate the effectiveness of these design
ecisions since ScratchJr’s development back in 2014. Now, after
ver ten years and 40 million users, we have the opportunity to
raw on ScratchJr user data to investigate whether the design
hemes identified have been successfully implemented to create
developmentally appropriate coding environment.
Although user data can be explored in different ways, for the

cope of this paper, we will examine the ‘‘low floor, high ceiling’’
ature of ScratchJr through looking at programming performance
f users at different ages, timepoints, and experience levels. This
pproach will allow us to investigate whether ScratchJr has an
ppropriately low barrier for entry for the age group of 5–7, and
hether it affords growth for more experienced users.
Previous work has explored the flexible nature of other pro-

ramming environments, specifically those with a low barrier
or entry. Environments such as Logo (Papert, 1980), Boxer (Di
essa, 1985), Squeak (Ingalls et al., 1997), NetLogo (Wilensky,
999), and Scratch (Resnick et al., 2009) have been found to
e easily accessible to novices, while also engaging users in
omplex ways including the use of loops, conditionals, and syn-
hronization (Berland et al., 2013; Maloney et al., 2008). These
nvironments provide users with a simple syntax (Guzdial, 2004)
nd immediate and visible feedback (Maloney et al., 2010) to
2

support users in the acquisition of design thinking and problem-
solving skills necessary in complex programming tasks (Soloway,
1986), without being hindered by syntax errors (Maloney et al.,
2008). Although these environments were designed for children,
the target age range is for those who are already literate, which
is around age eight and older. This study is the first to evalu-
ate whether the ScratchJr programming environment is flexible
enough to meaningfully engage a wide range of users of varying
skill levels, ages, developmental needs and academic stages.

We examined the experiences of students from kindergarten
to second grade as well as their teachers using the ScratchJr
app. Adults are included in this investigation because, when
considering the user experience of an early childhood learning
environment, children are not the only users. It can be assumed
that an adult, such as a teacher or parent, will be engaging with
the app along with the child. The goal behind this investigation
is not to show that ScratchJr has no floor and no ceiling for
engagement, but rather to investigate where those boundaries
to engagement fall along age, experience and skill levels — and
whether they are appropriate for the target user group(s) of
ScratchJr.

To investigate whether ScratchJr has a ‘‘low floor’’ entry, we
asked novice users to navigate the ScratchJr interface as we
recorded their answers as successful or unsuccessful. We then
analyzed their success rates to determine whether there was a
floor effect in the data set, which would suggest that ScratchJr
does have some entry level barriers. We hypothesized that there
would not be a floor effect for the children in this study, as they
fall within the expected age range of ScratchJr: 5–7 years old,
thus showing that ScratchJr is readily accessible to children as
young as 5 years old. Similarly, to investigate whether ScratchJr
has a ‘‘high ceiling’’, we asked the same age groups to engage with
increasingly complex programming activities, after they partic-
ipated in a curricular intervention. We then examined whether
those success rates had a ceiling effect which would suggest that
ScratchJr only affords for limited growth and users may outgrow
the tool after experience and/or instruction. We hypothesized
that children K-2 would not have a ceiling effect, suggesting that
ScratchJr is a flexible educational environment that caters to a
wide range of abilities and learning paces. For adults, however,
we hypothesized that there would likely be a ceiling effect, for a
variety of reasons including reading abilities, learning pace, and
ability to grasp abstract concepts — suggesting that ScratchJr’s
ceiling is appropriately high for young children, but not limitless.

2. Background

2.1. Low floor high ceiling in technologically rich learning environ-
ments

The concept of ‘‘low floor, high ceiling (LFHC)’’ in the con-
text of learning technologies was first introduced by Seymour
Papert in the 1970s within the framework of Constructionism.
Constructionism is a learning theory which advocates for student-
led exploration and project based learning (Harel & Papert, 1991;
Papert, 1980), as well as flexible learning environments which
can accommodate this type of learning through the use of mi-
croworlds (Bers, 2020). Papert coined the term LFHC when de-
scribing his design principle for the programming language Logo
— the first programming language to be accessible to young
children while also being engaging for adults (Papert, 1980). A
‘‘low floor, high ceiling (LFHC)’’ environment means that the en-
vironment is accessible to a wide range of skill levels. At the core
of Papert’s work was enforcing the idea that ‘‘everyone can get
started, and everyone can get stuck’’, regardless of age and ability
(NRICH Team, 2019). This concept affords people to be working



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

a
m
r
n
t
s
p
t
S
p

2

2

p
e
g
g
t
w

Fig. 1. ScratchJr interface.
Note. This figure showcases key elements of the interface, most notably: the programming stage, where characters act out programs, the blocks palette: where blocks
are divided into six categories, with only one category being displayed at a time, and the programming area: where blocks are dragged from the blocks palette and
connected to create programs.
at their zone of proximal development (Vygotsky, 1978) because
they are given the space to grow when supported and scaffolded.
Through this lens, we can understand the LFHC design principle as
a pathway to universal design and inclusive education. As stated
by the NRICH team at University of Cambridge, ‘‘[LFHC] tasks
allow learners to demonstrate what they can do, rather than what
they cannot. . . When the ceiling is raised it can be surprising
what heights learners can achieve’’ (NRICH Team, 2019).

Similarly, other work (Robins et al., 2003) shows that novice
nd expert programmers interact with a programming environ-
ent and programming tasks very differently and thus an envi-

onment must offer entry points and expansions that cater to the
eeds of all types of interaction. Shertz and Weiser (1981) found
hat for novice programmers, problem solving relies on more
uperficial cues of the environment or syntax, whereas expert
rogrammers have automated their recognition of syntax and
ake on more abstract, multi-step processes (Wiedenbeck, 1985).
cratchJr’s open ended design makes both types of interaction
ossible.

.2. ScratchJr as a low floor high ceiling learning environment

.2.1. ScratchJr interface and experience
The ScratchJr interface was designed using the LFHC design

rinciples. Fig. 1 highlights the key features of the app’s project
ditor interface. Most importantly, Fig. 1 explains (1) the pro-
ramming area, where blocks can be dragged and snapped to-
ether to create programs, (2) the blocks menu and palette, where
he blocks can be selected from, and (3) the programming stage,
here the animated outputs of the programs occur.
3

2.2.2. Low floor in ScratchJr
ScratchJr is designed to be intuitive enough so that children as

young as 5 years old can get started without any formal instruc-
tion. In ScratchJr, a novice user interacting near the ‘‘floor’’ of the
coding environment may only be able to enter the environment
(creating a ScratchJr project to enter the editor) and understand
how to navigate some aspects of the interface, but not actually get
as far as making a program. For example, they can select blocks
from the block menu, drag a block to the programming area, add
and/or customize a character or background, or recognize the
symbols shown on each programming block. It is not assumed
that all these actions will come easily upon first exposure —
another design principle of ScratchJr is the ability to explore and
tinker. However, there is a certain level of engagement needed
for further exploration, specifically opening the project editor,
accessing a customizable feature and interpreting and interacting
with programming blocks.

Given that ScratchJr is a programming environment, the em-
phasis on the programming blocks is conveyed through a cen-
trally located, brightly colored blocks palette composed of icon-
based programming blocks. The largest barrier to young children
on Scratch was the platform’s reliance on words. Thus a main de-
sign choice for ScratchJr was eliminating the reliance on text and
creating simple commands with universal symbols representing
its functions (Strawhacker et al., 2015), which has been found to
improve interface usability for low-literacy users (Medhi et al.,
2011). There are other ways to meaningfully engage with the edu-
cational tool in addition to programming, including customization
and art features. This is particularly important for creating a lower
threshold for entry.



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601
Fig. 2. Block palettes on ScratchJr.
Note. This figure showcases different block categories. On the left, the yellow Start blocks are selected, and on the right the blue Motion blocks are selected.
2.2.3. High ceiling in ScratchJr
ScratchJr is an open-ended coding ‘‘playground’’ (Bers, 2020),

in which users can build on their projects with different block
types, combinations and extensions, and encounter opportunities
for high-level thinking and problem solving, characteristic of
more experienced programmers (Wiedenbeck, 1985). The more
complex blocks include the orange Control blocks — which do
not have an immediate action when used in isolation, but rather
affect (or ‘‘control’’) other blocks when used in combination.
These blocks include the Repeat Loop, the Set Speed blocks,
and the Wait block, all of which offer users an opportunity to
engage with more abstract programming concepts. Additionally,
the different types of trigger blocks begin to introduce users
to varying levels of complex conditionals and events. Finally,
ScratchJr allows for program combinations. Rather than limiting
characters to a certain number or length of programs, users are
able to create programs that run in parallel, trigger one another,
or stop one another. By offering a wide range of blocks, and the
ability to run multiple programs at a time, ScratchJr offers an
almost infinite set of possible block combinations and outputs,
giving more experienced users opportunities to push themselves.

ScratchJr affords for a high ceiling through the open-ended
experience of the app and the expansiveness of block complexity
rather than the interface design. However, with open-endedness
comes the risk that some more users may need further support
and guidance than is provided (Clarke-Midura et al., 2019). To
address this, ScratchJr has interface design choices which aim to
guide the user experience, such as streamlining the presentation
of the blocks. By focusing the users attention on a select portion of
commands, ScratchJr’s design retains an appropriately high ceiling
without overwhelming beginners. The blocks palette displays up
to eight blocks at a time, specific to a certain category of function-
ality (Start/Trigger, Motion, Looks, Sound, Control, and End) (see
Fig. 2) to help mitigate the more complex functions from being
confusing or intimidating to more novice users.

3. Study description

In this paper, we investigate the user experiences of both
novice and expert users to understand if the ‘‘low floor, high
ceiling’’ design held up in practice. In order to investigate the
LFHC hypothesis, we utilized the Coding Stages Assessment (CSA),
a validated, age appropriate, task based ScratchJr assessment
designed to measure users’ abilities to engage with coding on
ScratchJr (de Ruiter & Bers, 2021), and used in previous research

studies (Bers et al., 2023). The CSA is both authentic and adaptive

4

in order to cater to limited knowledge transfer skills and attention
spans, respectively. The CSA exposes users to all different possible
interactions with ScratchJr, for example: opening the editor, in-
teracting or interpreting blocks, and navigating the interface for
customization options. In addition, it invites users to complete
highly complex and multi-step programming processes, probing
the level of complexity to which the users are able to engage.

CSA is composed of five stages, each composed of six ScratchJr
tasks, developed upon the coding stages theoretical framework
(Bers, 2019). For example, the Emergent stage tasks begin with
basic interface interactions (Table 1) and New Knowledge stage
tasks progress to complex, multi-step program tasks (Table 2).
Each of the indicators listed in Tables 1 and 2 were identified
(Bers, 2019) and validated (de Ruiter & Bers, 2021) for chil-
dren ages 4–8 interacting with ScratchJr. This paper explores the
baseline CSA scores of children and teachers to understand if
the ScratchJr coding environment affords low levels of coding
knowledge, and the scores after intervention to understand if it
is possible to reach a ceiling effect in the types of programs that
can be created.

In this paper we are operating under the assumption that the
floor of the CSA performance is indicative of the floor of ScratchJr
interactions and thus will inform us whether the environment
itself has a low threshold for entry. To investigate the ceiling of
ScratchJr, we are operating under the assumption that the ceiling
of the CSA scores is likely lower than the actual ceiling of the
possibilities that ScratchJr offers, since there are many possible
combinations of interactions, not all of which can be measured
within the 30 tasks presented in the assessment.

3.1. Identifying floor and ceiling effects

To identify floor and ceiling effects, we examined the propor-
tion of users who scored the lowest possible score(s) as well as
the proportion of users who scored the highest possible score(s).
To determine if proportions are indicative of a true floor or
ceiling effect, and thus suggesting a barrier for entry or a lack of
flexibility for growth, we researched prior work done to identify
floor and ceiling effects in testing (McHorney & Tarlov, 1995)
and found that setting a threshold of 15% for the lowest and
highest possible scores in an assessment can be assumed to indi-
cate a floor and ceiling effect, respectively (McHorney & Tarlov,
1995). To justify this threshold, specifically threshold for entry,
we conducted a qualitative investigation on a small proportion
of the assessments which were video recorded, which allowed

us to have a more in-depth understanding of what a score of



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

K
s
p
2

3

t
e

Table 1
Emergent tasks: Indicators of entry level skills necessary for engaging with the app.
Tasks What aspect of interacting with ScratchJr is being tested?

1.1: Please open the ScratchJr app
and start a new project.

• Basic knowledge of apps
•Navigating home screen interface

1.2: Can you make a program with
these three blocks?

•Navigating interface — specifically selecting
from the block menu and dragging blocks into
the programming area
• Shapes of the blocks and order matters

1.3: Now play the program. What is
Cat doing and why?

•Understanding their role as programmer on
the app
•Navigating interface to play program

1.4: Look at this program. Which
block is making Cat get bigger?

• Iconography on blocks and understanding representation

1.5: Can you add a friend for Cat? It
can be any character.

•Navigating interface - how to add multiple
characters

1.6: Can you add a background for
Cat? It can be any background.

•Navigating interface - how to customize the
background
Table 2
New knowledge tasks: Indicators of the upper most boundary of complexity which ScratchJr Affords.
Tasks What aspect of interacting with

ScratchJr is being tested?

4.1: Watch this video. Can you
program Cat to move forever to the
side and at the same time, jump
when you tap on it?

• Are they able to parallel program (run
multiple programs simultaneously)

4.2: Watch this video. Can you
program Cat to move like this?
(move in a smooth diagonal)

• Are they able to parallel program (run
multiple programs simultaneously) with the
understanding that motions can be combined
when running simultaneously

4.3: How many times will Cat make
a pop noise?

•Use the repeat loop to create
nested loop programs

4.4: Using Message blocks, can you
program Cat to jump, then dog to
jump, then rabbit?

• Fully utilize the broadcasting function (use
the multiple color messages intentionally and
accurately)

4.5: Here are the programs for Cat
doing a cartwheel. Can you program
Dog to bump into Cat and then cat
will do the cartwheel?

• Combining multiple advanced functions on
the app to create a complex program. In this
case, Start on Bump trigger block (concept of
conditionals) and parallel programming (run
multiple programs simultaneously)

4.6: Can you program Dog to send a
message to Cat to go to the next
page?

• Combining multiple advanced functions on
the app to create a complex program. In this
case, broadcasting and multi-page projects.
0 or 1 looks like. We found that a typical ‘‘floor’’ level user
usually is not familiar with opening apps generally, and thus
needs assistance getting started (opening the app) but then is
able to recognize the meanings of the blocks, even if they are
not able to drag them to the correct area. In considering what
floor-level engagement looks like, we determined that this level
of performance accurately portrays the lowest possible amount of
engagement with the app that can still be considered meaningful.

3.2. Sample

We analyzed ScratchJr Coding Stages Assessment data of 120
-2 teachers and 1,600 K-2 students from 43 schools across two
tates, collected as a part of the Coding as Another Language (CAL)
roject, funded by the US Department of Education (Bers et al.,
023; Kapoor et al., 2023).

.3. Method

We analyzed the experiences of children ages 5–7 and their
eachers using the app for the first time, as well as after experi-
ncing curricular exposure. Teachers participated in professional
5

development and children in the CAL curricular intervention for
several months. Through observing performance of the target age
range and those outside of the target age range (teachers), at
both novice and expert time points, we measured how accessible
ScratchJr is to a wide range of skill levels and how it allows users
of all ages to grow in their skills when given curricular support.
Furthermore, in order to explore what aspects of ScratchJr create
a LFHC effect, we looked at CSA tasks with the highest success rate
among a wide range of novice users, and those with the highest
failure rate among experienced users. This analysis allowed us to
understand which aspects of the interface and user experience
lend themselves the best to creating a flexible environment at
either end.

4. Results

4.1. Low floor

4.1.1. Distribution of scores
Among novice users of all ages, there was a higher proportion

of lower scores than higher scores, resulting in a rightwards skew.
Despite this, only a small proportion of users scored at ‘‘floor’’



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

w
3
p
i
g

m
n
c
a
l
a
1
0
d
n

4

t
t
a

Fig. 3. CSA scores pre-curriculum.
Table 3
Floor percentages.
User Group Percent of scores at floor (0) Percent of scores close to floor (0 or

1 task correct)

Total 3.71% 15.67%
Kindergarten 10% 34.36%
1st Grade 3.52% 17.39%
2nd Grade 0.33% 4.47%
Teachers 0 0
(completing 0 or only 1 task correctly). Most users completed at
least 1 task correctly even if they did not progress further.

Looking closely at the floor proportions across grade in Fig. 3,
e see that when considering a score of 0 as the floor, only
% of the sample is at the floor. Among Kindergarten users, this
ercentage grows to 10%. This indicates that the youngest users
n ScratchJr’s target age range are more likely to struggle when
etting started.
We also examined the percent of scores close to the floor,

eaning that the user completed one task correctly rather than
one. The rationale behind this is that getting only one task
orrect, such as opening the app or identifying a block, still shows
low level of engagement and should be considered ‘‘floor’’

evel. Including 1 task correct in ‘‘floor’’ level scores increased
ll percentages — Kindergarten jumped to 34%, and first grade to
7.39%. Second grade remained low at 4.47% and adults remained
(Table 3). This means that without curricular support, ScratchJr
oes have a barrier for entry for the youngest users, which does
ot appear with older users.

.1.2. Item success rates
Of the interface tasks in the first stage in the CSA, the two

asks with the highest success rate among users were about (1)
he block iconography at 84%, and (2) how to add a background

t 82% (Table 4).

6

These results indicate that navigating the interface to add a
background and identify a block function was understood by the
majority of users. The results also show that opening the app
and project editor was only accessible to 50% of the users which
suggests the user flow design for initial entry to the app may
be a barrier for some users. The other tasks aimed at measuring
user flow for making a program, adding a character, and under-
standing their program, only had around 30% success rate, which
means these aspects of the ScratchJr entry experience may be less
intuitive.

4.2. High ceiling

In examining the distribution of scores of experienced users
(students having completed the 24 lessons of the CAL-ScratchJr
curriculum, and teachers completing a 4 hour of professional de-
velopment), we found that the none of the age groups, including
teachers, had a ceiling effect in their CSA scores, indicating that
ScratchJr does have a high ceiling, even for users outside of the
intended age group.

4.2.1. Distribution of scores
The distribution of children’s scores following intervention

(Fig. 4) remained slightly skewed right, however the scores grew



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

w

Fig. 4. CSA scores post-curriculum.
Table 4
Item success rates.
Task What aspect of interacting with

ScratchJr is being tested?
Percent
correct

1.1: Please open the ScratchJr app
and start a new project.
Students are assisted if unable

• Basic knowledge of apps
•Navigating home screen interface

51.06%

1.2: Can you make a program with
these three blocks?

•Navigating interface — specifically selecting
from the block menu and dragging blocks into
the programming area
• Shapes of the blocks and order matters

30.84%

1.3: Now play the program. What is
Cat doing and why?
Students shown image of program in
programming area if unable to
complete previous question

•Understanding their role as programmer on
the app
•Navigating interface to play program

33.59%

1.4: Look at this program. Which
block is making Cat get bigger?

• Iconography on blocks and
understanding representation

83.94%

1.5: Can you add a friend for Cat? It
can be any character.

•Navigating interface - how to add
multiple characters

37.94%

1.6: Can you add a background for
Cat? It can be any background.

•Navigating interface - how to
customize the background

81.77%
and show no floor effect, even for kindergarteners. While ScratchJr
may not be accessible to 30% of the youngest users with no
instruction, that percentage drops to 0% with curricular support,
as shown in Table 5. No children approached the ceiling, with
only 0.3% of second graders achieving the highest score on the
CSA. Teachers moved to a leftwards skewed distribution, meaning
there were more high scores than low, but did not approach a
ceiling effect. Only 13.5% achieved the maximum score of the CSA,
which means ScratchJr is a flexible enough environment for users
outside of the target age range.

4.2.2. Item failure rates
We measured the failure rates of all tasks and found that all

ere fairly evenly distributed between 1%–30% failure rates. The
7

Table 5
Ceiling percentages.
User Group Percent of scores at ceiling

Total 1.68%
Kindergarten 0
1st Grade 0
2nd Grade 0.36%
Teachers 13.51%

only task that stood out was task 2.6 with a failure rate of 60%,

as shown in Table 6.



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

s
p
p
a
w
t
i
t
T
<
3
o

t
o

5

e
s
m
h
w
—
u

l
t
k
g
o
e
t
i
t
s
f
n

o
i
d
t
w
l
e
t
C
t
s
s

Table 6
Item failure rates.
Task What aspect of interacting with

ScratchJr is being tested?
Percent
incorrect

2.6. Cat is programmed to move all the way to
the Rabbit Please program rabbit to become
invisible when Cat bumps into it

• Interaction between characters
• Events/Conditionals

59.8%
4.3. Comparative statistics

In addition to examining the proportions of lowest and highest
cores, we also investigated whether the novice and experienced
opulations’ difference between the lowest possible and highest
ossible scores respectively, are statistically significant through
one-way T-Test. The average of all pre-curriculum scores vs. 0
ith a 95% confidence interval, has a p-value of <2.2e−16. Thus,
he null hypothesis is rejected, confirming that the difference
n the average between all novice users’ scores is not equal to
he floor. We also split the populations across grade (K, 1, 2,
eacher) and found that all subgroups had the same p-value of
2.2e−16. Similarly, the average of all post-curriculum scores vs.
9 (max score), with a 95% confidence interval, had a p-value
f <2.2e−16. Thus, the null hypothesis is rejected, confirming

that the difference in the average between all experienced users’
scores is not equal to the ceiling. We also split the populations
across grade (K, 1, 2, Teacher) and found that all subgroups had
the same p-value of <2.2e−16. Given this analysis, we confirm
hat the majority of participants did not experience either a floor
r ceiling effect when using ScratchJr.

. Discussion

In this paper, by examining how novice and experienced users
ngaged with ScratchJr, we explored one of ScratchJr’s core de-
ign principles: to be a ‘‘low floor, high ceiling’’ coding environ-
ent. The purpose of this work is not to show that ScratchJr
as no boundaries for entry and growth, but rather to investigate
here those boundaries fall along age, experience and skill levels
and whether those boundaries are appropriate for the target

ser group(s) of ScratchJr.
The hypothesis that ScratchJr would be accessible to entry-

evel children in kindergarten through second grade and their
eachers, proved to be mostly supported, with the exception of
indergarten pre-curriculum performance. About 30% of kinder-
arteners and 17% of first graders were only able to complete
ne task correctly of the baseline entry tasks. This brought the
ntire user average to 15.7%, which, according to our determined
hreshold for identifying a floor, does indicate a slight floor effect
n user data. This finding suggests that although ScratchJr is
argeted to ages 5–7 (Kindergarten — 2nd grade in the US school
ystem), the tool is not optimized for unsupported engagement
or the youngest users and guiding activities and curriculum is
eeded.
There are a few possible explanations for why this floor effect

ccurred, the first being the users’ literacy levels and how that
mpacts their ability to engage with the app. While ScratchJr is
esigned to not rely on words, but rather communicate func-
ions through iconography, it does display the block functions as
ords if the block is tapped for longer than about 1 second (a

ong press). Many students typically discover this feature when
xploring the blocks palette for the first time, however only
hose who are able to read gain extra support from this feature.
hildren in the US school system are typically learning to read
hroughout first grade, which could explain why the floor effect
tarts to diminish among first graders and is entirely gone in
econd grade, when it is generally expected that children have
8

gained enough literacy skills to read single words. The other
possible explanation is that children may gain significantly more
technology exposure from kindergarten to second grade and have
an easier time navigating the interface of any app.

Despite a floor effect occurring for the youngest users before
curricular intervention, when we look at the distribution of post-
curriculum scores, we see that the percentage of all users who
completed no tasks correctly was 0, and those who got only one
correct was just 0.002%. This finding implies the importance of in-
troducing technological tools in early childhood with the support
of adult guidance, specifically through curricular interventions
which is consistent with Clarke-Midura et al.’s 2019 findings that
the open-ended nature of ScratchJr may lead to a higher need for
scaffolding for novice users.

The second hypothesis that ScratchJr would allow for exten-
sive exploration and growth across experienced children ages 5–7
was fully supported by our findings: only 0.17% of users ages
5–7 reached the maximum score of the coding stages assess-
ment, and when the population included adults, 1.7% reached the
maximum score. However, reaching the maximum score of the
CSA is not necessarily indicative of the true height of the ceiling
in ScratchJr, because the assessment is limited to 30 items and
does not exhaust all the ways ScratchJr can be used in complex,
advanced, or novel ways. Therefore, we assume that the lack of
ceiling effect we see in CSA scores might be even less if we were
able to thoroughly measure all complex interactions afforded on
ScratchJr. This further supports the notion that ScratchJr does not
have a ceiling for children within the target age range of 5–7.
Additionally, although we hypothesized that adults would likely
reach a ceiling effect, we found that to not be the case — only 13%
of adults reached the maximum score, suggesting that ScratchJr
affords for growth at all ages. This is particularly noteworthy,
because unlike previous flexible environments (Di Sessa, 1985;
Ingalls et al., 1997; Papert, 1980; Resnick et al., 2009; Wilensky,
1999), which focused solely on lowering the floor of still robust
programming languages, it was assumed that ScratchJr would
have a certain degree of limitations (i.e. an ‘‘appropriately’’ high
ceiling Flannery et al., 2013), considering how simplified it was
for the target age group of 5–7. Given our findings, it could be
argued that ScratchJr may be used as a learning tool outside the
scope of the K-2 classroom, while still being accessible to young
novice users.

In order to understand which aspects of ScratchJr were the
most accessible at the novice level (lowering the floor), and the
most challenging at the experienced level (raising the ceiling)
we conducted an item analysis on the success and failure rates
of each coding task. The high percentage of success for task
1.4, asking which block indicates the ‘‘grow’’ function, suggests
the successful iconography of the blocks which allows all users,
despite literacy levels, to engage with the app. Task 1.6’s similar
success rate speaks to the intuitiveness of the customization
features. Task 1.6 asks the user to change backgrounds and has
a success rate of 82%.

The most notable finding from item analysis was the 51%
success rate among all users in the sample for task 1.1: Open
the app and open a new project. This success rate dropped even
lower to 32% when looking specifically at kindergarteners. Given
the efforts to make a clear user flow for entering the app, this



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

f
b
r
h
e
f
o
a
s
‘

t
t
w
s
r
t
a
w
a
o
w
t
c

1
h
n
w
e
t
s
s
d
u
c
e
i

6

c
s
i
F
u
i
‘
h
a
o
u
t
t

o
H
c

e
o
u
a

inding is surprising and indicates that the flow for entry should
e more closely examined. One could argue that the task may just
eflect a child’s general familiarity with technology, not ScratchJr,
owever, a ‘‘low floor’’ entry point should not assume any prior
xperience or familiarity, especially with this age group. There-
ore, we interpret this finding as an opportunity for improvement
f the entry level user experience. Examples of how this could be
ddressed through a redesign include a short, animated tutorial
howing how to open a project, and/or adding a more prominent
‘new project’’ button.

Another unexpected finding was that task 2.6, proved to be
he hardest of all, with a 40% success rate (60% failure rate). The
ask asks the user to program one character to become invisible
hen another character bumps into it — with the intention of
pecifically probing the Start on Bump block. There are a few
easons why this task may have been difficult: (1) it is the first
ask to require multi-character interaction, which requires the
bility to keep track of multiple programs and predict how they
ill interact, which requires a level of abstraction difficult at this
ge; (2) The low success rate could be a reflection of the Start
n Bump block itself, specifically the iconography, however since
e did not interview the children as to why they were unable
o complete the task correctly, we are not able to make any
onclusions from this finding.
Previous works (Di Sessa, 1985; Ingalls et al., 1997; Papert,

980; Resnick et al., 2009; Wilensky, 1999) extensively explore
ow to lower the floor of programming environments to engage
ovice users of all backgrounds with complex programming. This
ork contributes to that body of literature by exploring how
nvironments, specifically ScratchJr, can be designed to engage
he earliest beginners: programmers in early childhood, while
till offering opportunities for growth and learning. Our findings
upport the notion that ScratchJr is flexible enough to accommo-
ate for the wide range of skills and abilities within its intended
ser age group. Finally, through a close examination of the spe-
ific user tasks, our work offers examples of how a programming
nvironment can be optimized for early childhood through both
nterface and user experience design decisions.

. Limitations and future work

The primary limitation of this study is the lack of a qualitative
omponent to better understand the user’s experience. In future
tudies, the ScratchJr tasks may be accompanied with a follow up
nterview probing the reasons behind any struggles or successes.
or example, if the original task was ‘‘Please make a program
sing these three blocks’’ and the user is unable to drag the blocks
nto the programming area, the assessor could follow up with
‘Where do you think the blocks should go? Why?’’ This could
elp to better understand what aspect of the interface is acting as
barrier to engagement. That being said, the quantitative nature
f this data does help to eliminate any reporting bias and allows
s to examine the aggregate of thousands of users at a time. At
he same time, interviewing young children is not an easy task as
hey might have limited abilities to explain their behaviors.

Future directions may also explore a more exhaustive method
f analyzing a user’s capacity for growth, especially for adults.
owever, because the data did not approach a ceiling effect, this
oncern is less crucial in the context of this investigation.
Finally, our results suggest that ScratchJr affords for knowl-

dge growth for all users, not just children between the ages
f 5–7. Future studies should investigate how ScratchJr may be
tilized as an educational tool for users outside of the intended
ge range — such as older children or adults.
9

7. Conclusion

In this paper we investigated the bounds of the ‘‘low floor,
high ceiling’’ design of ScratchJr. To do this, we looked at both
novice and experienced users, and both children ages 5–7 and
their teachers. We found that the youngest, and most novice
users were all able to engage with the app to some extent with
no instruction, but engagement was optimized with curricular
support. Additionally, we found that the oldest, and most experi-
enced users still had room for growth and discovery in the app,
showing the flexible nature of ScratchJr. We conclude that the
design decisions such as iconography, block variation, and open-
endedness of the environment creates a welcoming and engaging
experience for a wide range of users, both children and adults.

Selection and participation and consent statement

All the study’s participants were students and teachers from
public schools across two states in New England as a part of the
Coding as Another Language ScratchJr Randomized Control Trial.
Informed parental consent for all participants, as well as informed
assent for all participants over age 7, was obtained.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We would like to express our gratitude to the teachers, ad-
ministrators, and children who participated in this study. Their
time, effort, and cooperation were essential to the success of our
research.

Ethical statement

All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards of the
institutional research committee and with the 1964 Helsinki Dec-
laration and its later amendments or comparable ethical stan-
dards.

Funding

This research was generously supported by the US Department
of Education.

Appendix A

Task 1.1 of Coding Stages Assessment



J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

o

A

t

A

R

B

B

B

B

Note. The assessor asks: ‘‘Can you open the ScratchJr app and
pen a new project?’’

ppendix B

Task 1.2 of Coding Stages Assessment

Note. The assessor asks: ‘‘Can you make a program using these
hree blocks?’’

ppendix C

Task 1.6 of Coding Stages Assessment

Note. The assessor asks: ‘‘Can you change the background?’’

eferences

en-Ari, M. (1998). Constructivism in computer science education. In Proceedings
of the twenty-ninth SIGCSE technical symposium on computer science education
- SIGCSE ’98, vol. 30, no. 1 (pp. 257–261). http://dx.doi.org/10.1145/273133.
274308.
10
Berland, M., Martin, T., Benton, T., Smith, C., & Davis, D. (2013). Using learning
analytics to understand the learning pathways of novice programmers. The
Journal of the Learning Sciences, 22(4), 564–599, http://www.jstor.org/stable/
43828324.

Bers, M. (2019). Coding as another language: a pedagogical approach for teaching
computer science in early childhood. Journal of Computers in Education, 6(4),
499–528. http://dx.doi.org/10.1007/s40692-019-00147-3.

Bers, M. (2020). Coding as a playground: Programming and computational thinking
in the early childhood classroom (2nd ed.). New York, NY: Routledge Press.

Bers, M., Blake-West, J., Kapoor, M., Levinson, T., Relkin, E., Unahalekhaka, A.,
& Yang, Z. (2023). Coding as another language: Research-based curriculum
for early childhood computer science. Early Childhood Research Quarterly, 64,
394–404. http://dx.doi.org/10.1016/j.ecresq.2023.05.002.

ers, M., Doyle-Lynch, A., & Chau, C. (2012). Positive technological development.
In Constructing the Self in a Digital World (pp. 110–136). http://dx.doi.org/10.
1017/cbo9781139027656.007.

ers, M., Flannery, L., Kazakoff, E., & Sullivan, A. (2014). Computational think-
ing and tinkering: Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145–157.

ers, M., & Resnick, M. (2015). The official ScratchJr book: Help your kids learn to
code!. No Starch Press.

Bers, M., & Sullivan, A. (2019). Computer science education in early childhood:
The case of scratchjr. Journal of Information Technology Education: Innovations
in Practice, 18, 113–138.

Betancur, L., Votruba-Drzal, E., & Schunn, C. (2018). Socioeconomic gaps in
science achievement. International Journal of STEM Education, 5(1), http:
//dx.doi.org/10.1186/s40594-018-0132-5.

Blake-West, J., & Bers, M. U. (2023). ScratchJr Connect: Sharing resources for digital
making around the world [Poster session]. Montréal, QC, Canada: International
Society of the Learning Sciences, https://sites.bc.edu/devtech/wp-content/
uploads/sites/113/2023/06/ScratchJrConnect_ISLS2023_FinalJBW.pdf.

Clarke-Midura, J., Lee, V., Shumway, J., & Hamilton, M. (2019). The building
blocks of coding: A comparison of early childhood coding toys. Information
and Learning Science, 120(7/8), 505–518. http://dx.doi.org/10.1108/ILS-06-
2019-0059.

Code. org (2018). 2018 annual report. Code.org., Retrieved from https://code.org/
fles/annual-report-2018.pdf.

de Ruiter, L., & Bers, M. (2021). The Coding Stages Assessment: Development
and validation of an instrument for assessing young children’s proficiency
in the SCRATCHJR programming language. Computer Science Education, 32(4),
388–417. http://dx.doi.org/10.1080/08993408.2021.1956216.

Di Sessa, A. (1985). A principled design for an integrated computational
environment. Human-Computer Interaction, 1(1), 1–47.

Erikson Institute (2016). Technology and young children in the digital
age: A report from the Erikson Institute. https://www.erikson.edu/wp-
content/uploads/2018/07/Erikson-Institute-Technology-and-Young-
Children-Survey.pdf.

Fayer, S., Lacey, A., & Watson, A. (2017). BLS spotlight on statistics: STEM
occupations-past, present, and future. Washington, DC: U.S. Department of
Labor, Bureau of Labor Statistics.

Flannery, L., Silverman, B., Kazakoff, E., Bers, M., Bontá, P., & Resnick, M. (2013).
Designing ScratchJr. In Proceedings of the 12th international conference on
interaction design and children. http://dx.doi.org/10.1145/2485760.2485785.

Guzdial, M. (2004). Programming environments for novices. Comput. Sci. Edu.
Res., 127–154.

Harel, I., & Papert, S. (Eds.), (1991). Constructionism. Ablex Publishing.
Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back to the

future: The story of Squeak, a practical Smalltalk written in itself. SIGPLAN
Notices, 32(10), 318–326. http://dx.doi.org/10.1145/263700.263754.

Kapoor, M., Yang, Z., & M., B. (2023). Supporting early elementary teachers’ cod-
ing knowledge and self-efficacy through virtual professional development.
Journal of Technology and Teacher Education, 30(4), 1–31, 2023.

Kelleher, C., & Pausch, R. (2003). Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice programmers,
vol. 37 (2nd ed.). (pp. 83–137). Carnegie Mellon University.

Maloney, J., Peppier, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming
by choice: Urban youth programming learning with scratch. In Proceedings
of the 39th SIGCSE technical symposium on computer science education (pp.
367–371). New York, NY: ACM, http://dx.doi.org/10.1145/1352135.1352260.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010).
The scratch programming language and environment. ACM Transactions
on Computing Education, 10(4), 1–15. http://dx.doi.org/10.1145/1868358.
1868363.

McHorney, C., & Tarlov, A. (1995). Individual-patient monitoring in clinical prac-
tice: Are available health status surveys adequate? Quality of Life Research,
4(4), 293–307. http://dx.doi.org/10.1007/bf01593882.

McKeithen, K., Reitman, J., Rueter, H., & Hirtle, S. (1981). Knowledge organization
and skill differences in computer programmers. Cognitive Psychology, 13(3),
307–325. http://dx.doi.org/10.1016/0010-0285(81)90012-8.

http://dx.doi.org/10.1145/273133.274308
http://dx.doi.org/10.1145/273133.274308
http://dx.doi.org/10.1145/273133.274308
http://www.jstor.org/stable/43828324
http://www.jstor.org/stable/43828324
http://www.jstor.org/stable/43828324
http://dx.doi.org/10.1007/s40692-019-00147-3
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb4
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb4
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb4
http://dx.doi.org/10.1016/j.ecresq.2023.05.002
http://dx.doi.org/10.1017/cbo9781139027656.007
http://dx.doi.org/10.1017/cbo9781139027656.007
http://dx.doi.org/10.1017/cbo9781139027656.007
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb7
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb7
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb7
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb7
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb7
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb8
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb8
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb8
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb9
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb9
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb9
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb9
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb9
http://dx.doi.org/10.1186/s40594-018-0132-5
http://dx.doi.org/10.1186/s40594-018-0132-5
http://dx.doi.org/10.1186/s40594-018-0132-5
https://sites.bc.edu/devtech/wp-content/uploads/sites/113/2023/06/ScratchJrConnect_ISLS2023_FinalJBW.pdf
https://sites.bc.edu/devtech/wp-content/uploads/sites/113/2023/06/ScratchJrConnect_ISLS2023_FinalJBW.pdf
https://sites.bc.edu/devtech/wp-content/uploads/sites/113/2023/06/ScratchJrConnect_ISLS2023_FinalJBW.pdf
http://dx.doi.org/10.1108/ILS-06-2019-0059
http://dx.doi.org/10.1108/ILS-06-2019-0059
http://dx.doi.org/10.1108/ILS-06-2019-0059
https://code.org/fles/annual-report-2018.pdf
https://code.org/fles/annual-report-2018.pdf
https://code.org/fles/annual-report-2018.pdf
http://dx.doi.org/10.1080/08993408.2021.1956216
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb15
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb15
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb15
https://www.erikson.edu/wp-content/uploads/2018/07/Erikson-Institute-Technology-and-Young-Children-Survey.pdf
https://www.erikson.edu/wp-content/uploads/2018/07/Erikson-Institute-Technology-and-Young-Children-Survey.pdf
https://www.erikson.edu/wp-content/uploads/2018/07/Erikson-Institute-Technology-and-Young-Children-Survey.pdf
https://www.erikson.edu/wp-content/uploads/2018/07/Erikson-Institute-Technology-and-Young-Children-Survey.pdf
https://www.erikson.edu/wp-content/uploads/2018/07/Erikson-Institute-Technology-and-Young-Children-Survey.pdf
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb17
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb17
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb17
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb17
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb17
http://dx.doi.org/10.1145/2485760.2485785
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb19
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb19
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb19
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb20
http://dx.doi.org/10.1145/263700.263754
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb22
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb22
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb22
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb22
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb22
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb23
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb23
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb23
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb23
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb23
http://dx.doi.org/10.1145/1352135.1352260
http://dx.doi.org/10.1145/1868358.1868363
http://dx.doi.org/10.1145/1868358.1868363
http://dx.doi.org/10.1145/1868358.1868363
http://dx.doi.org/10.1007/bf01593882
http://dx.doi.org/10.1016/0010-0285(81)90012-8


J.C. Blake-West and M.U. Bers International Journal of Child-Computer Interaction 37 (2023) 100601

M

M

P

P

R

S

S

S

S

edhi, I., Patnaik, S., Brunskill, E., Gautama, S., Thies, W., & Toyama, K.
(2011). Designing mobile interfaces for novice and low-literacy users. ACM
Transactions on Computer-Human Interaction, 18(1), 1–28.

yers, B., & Stylos, J. (2016). Improving API usability. Communications of the
ACM, 59, 62–69. http://dx.doi.org/10.1145/2896587.

National Center for Science Engineering Statistics (NCSES) (2023). Diversity and
STEM: Women, minorities, and persons with disabilities 2023: Special report
NSF 23-315, Alexandria, VA: National Science Foundation, Available at https:
//ncses.nsf.gov/wmpd.

Norman, D., & Draper, S. (1986). User centered system design: New perspectives
on human-computer interaction.

NRICH Team (2019). Creating a low threshold high ceiling classroom. University
of Cambridge: Faculty of Mathematics, Retrieved March 20, 2023, from
https://nrich.maths.org/7701.

apert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic
Books.

ortelance, D., Strawhacker, A., & Bers, M. (2015). Constructing the ScratchJr
programming language in the early childhood classroom. International Journal
of Technology and Design Education, 1–16. http://dx.doi.org/10.1007/s10798-
015-9325-0.

ader, C., Brand, C., & Lewis, C. (1997). Degrees of comprehension. In Proceedings
of the ACM SIGCHI conference on human factors in computing systems (pp.
351–358). http://dx.doi.org/10.1145/258549.258793.
11
Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).
Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching pro-
gramming: A review and discussion. Computer Science Education, 13(2),
137–172.

hertz, J., & Weiser, M. (1981). A study of programming problem representation
in novice and expert programmers. Proceedings of the eighteenth annual
computer personnel research conference (pp. 302–322).

oloway, E. (1986). Learning to program= learning to construct mechanisms and
explanations. Communications of the ACM, 29(9), 850–858.

trawhacker, A., Lee, M., Caine, C., & Bers, M. (2015). ScratchJr Demo: A coding
language for Kindergarten. In Proceedings of the 14th international conference
on interaction design and children. New York, NY: ACM.

ullivan, A., & Bers, M. (2016). Girls. Boys, and bots: Gender differences in
young children’s performance on robotics and programming tasks, 15, 145–165,
Retrieved from http://www.informingscience.org/Publications/3547.

Vygotsky, L. (1978). Mind in society: Development of higher psychological processes.
Harvard University Press.

Wiedenbeck, S. (1985). Novice/expert differences in programming skills.
International Journal of Man-Machine Studies, 23(4), 383–390.

Wilensky, U. (1999). NetLogo [Computer software]. Evanston, IL: Center for
Connected Learning and Computer-Based Modeling, Retrieved from http:
//ccl.northwestern.edu/netlogo.

http://refhub.elsevier.com/S2212-8689(23)00038-7/sb28
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb28
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb28
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb28
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb28
http://dx.doi.org/10.1145/2896587
https://ncses.nsf.gov/wmpd
https://ncses.nsf.gov/wmpd
https://ncses.nsf.gov/wmpd
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb31
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb31
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb31
https://nrich.maths.org/7701
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb33
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb33
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb33
http://dx.doi.org/10.1007/s10798-015-9325-0
http://dx.doi.org/10.1007/s10798-015-9325-0
http://dx.doi.org/10.1007/s10798-015-9325-0
http://dx.doi.org/10.1145/258549.258793
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb36
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb36
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb36
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb36
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb36
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb37
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb37
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb37
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb37
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb37
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb38
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb38
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb38
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb38
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb38
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb39
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb39
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb39
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb40
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb40
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb40
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb40
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb40
http://www.informingscience.org/Publications/3547
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb42
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb42
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb42
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb43
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb43
http://refhub.elsevier.com/S2212-8689(23)00038-7/sb43
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo

	ScratchJr design in practice: Low floor, high ceiling
	Introduction
	Background
	Low Floor High Ceiling in Technologically Rich Learning Environments
	ScratchJr as a Low Floor High Ceiling Learning Environment
	ScratchJr Interface and Experience
	Low Floor in ScratchJr
	High Ceiling in ScratchJr


	Study Description
	Identifying Floor and Ceiling Effects
	Sample
	Method

	Results
	Low Floor
	Distribution of Scores
	Item Success Rates

	High Ceiling
	Distribution of Scores
	Item Failure Rates

	Comparative Statistics

	Discussion
	Limitations and Future Work
	Conclusion
	Selection and Participation and Consent Statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Ethical Statement
	Funding

	Appendix A
	Appendix B
	Appendix C
	References


