
Early Childhood Research Quarterly 64 (2023) 394–404

Contents lists available at ScienceDirect

Early Childhood Research Quarterly

journal homepage: www.elsevier.com/locate/ecresq

Coding as another language: Research-based curriculum for early

childhood computer science

✩

Marina Umaschi Bers a , ∗ , Jessica Blake-West a , Madhu Govind Kapoor b , Tess Levinson

a ,

Emily Relkin

c , Apittha Unahalekhaka

b , Zhanxia Yang

a

a DevTech Research Group, Lynch School of Education and Human Development, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
b Eliot-Pearson Dept of Child Study and Human Development, Tufts University, 105 College Ave, Medford, MA 02155, USA
c Educational Development Center, 300 5th Ave Suite 2010, Waltham, MA 02451, USA

a r t i c l e i n f o

Keywords:

Design-based research

Coding

Computational Thinking

Powerful Ideas

ScratchJr

a b s t r a c t

This paper describes the iterative research and evaluation of the Coding as Another Language (CAL) curricu-

lum that utilizes the free ScratchJr programming language in kindergarten to second grade. CAL was designed

using principles of three theoretical frameworks: Curriculum Research Framework (CRF), which proposes differ-

ent phases in the creation of research-based curriculum; Constructionism, which presents a computationally-rich

project-based methodology based on identifying powerful ideas from a learning domain; and Positive Techno-

logical Development, which intentionally integrates socio-emotional and ethical dimensions into curricular ex-

periences. The pedagogical foundation of CAL involves the understanding of coding as a literacy, that is, putting

developmentally-appropriate powerful ideas of computer science in conversation with those taught in language

arts. The paper first describes CAL and then presents results from both a pilot study and a cluster randomized con-

trolled trial that set to evaluate CAL’s feasibility and impact on students’ learning outcomes. Our findings showed

that the CAL curriculum was not only feasible to implement, but also effective for improving coding skills. How-

ever, CAL’s impact on computational thinking is less clear given that in the cluster randomized controlled trial,

both the control and the intervention groups improved equally on a measure of computational thinking.

1

t

I

l

p

l

p

s

B

&

a

a

b

S

a

l

a

e

e

i

t

w

s

i

m

v

p

c

F

C

h

R

0

. Introduction

Educators, researchers, and policymakers are recognizing the need

o introduce computer science (CS) to children starting at an early age.

n recent years, the focus has expanded from programming skills (i.e.,

earning to code) to also include cognitive abilities known as com-

utational thinking (CT), a broad set of universally applicable ana-

ytic and problem-solving skills, dispositions, and habits rooted in com-

uter science. Examples of CT skills and abilities include thinking recur-

ively, using abstraction, and applying heuristic reasoning (Aho, 2012 ;

ers et al., 2021 ; Barr & Stephenson, 2011 ; Lodi & Martini, 2021 ; Grover

 Pea, 2013 ; Wing, 2006 , 2011). In addition, developmentally appropri-

te programming languages for young children, previously introduced

s prototypes, have expanded to serve as functional and widely accessi-

le tools, evaluated for use in multiple contexts (Bers & Resnick, 2015 ;

ullivan & Bers, 2019).
✩ The findings reported in this manuscript have not been previously published, and

nd I do not have any interests that might be interpreted as influencing the research,
∗ Corresponding author.

E-mail address: Marina.bers@bc.edu (M.U. Bers) .

ttps://doi.org/10.1016/j.ecresq.2023.05.002

eceived 15 December 2021; Received in revised form 12 April 2023; Accepted 9 Ma

885-2006/© 2023 Elsevier Inc. All rights reserved.
This paper describes the Coding as Another Language (CAL) curricu-

um which uses the free introductory ScratchJr programming language

nd integrates the teaching of early literacy with early computer sci-

nce. This work addresses the research question whether and how an

arly childhood computer science curriculum can be developed follow-

ng both a theoretical and evidence-based approach. In order to address

he question, the paper introduces three theoretical frameworks upon

hich CAL was iteratively designed and evaluated: the Curriculum Re-

earch Framework (CRF) developed by Clements (2007) , Construction-

sm proposed by Papert (1980) , and Positive Technological Develop-

ent (PTD) created by Bers (2012) . Second, it describes the core inno-

ation of the CAL curriculum, the integration of early literacy and com-

uter science by identifying overlapping developmentally appropriate

ore concepts and skills – the powerful ideas covered in the curriculum.

inally, it presents two sets of results: from a pilot study, which explored

AL’s feasibility and initial student learning outcomes regarding coding
the manuscript is not being simultaneously submitted elsewhere. My coauthors

 and APA ethical standards were followed in the conduct of the study.

y 2023

https://doi.org/10.1016/j.ecresq.2023.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ecresq
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecresq.2023.05.002&domain=pdf
mailto:Marina.bers@bc.edu
https://doi.org/10.1016/j.ecresq.2023.05.002

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

a

t

i

2

f

d

r

t

h

i

B

d

u

C

2

b

l

c

i

C

t

b

t

f

o

&

t

fi

t

o

a

p

a

f

s

e

a

t

e

i

t

(

e

p

p

o

i

m

f

o

t

2

o

d

e

o

t

m

o

(

c

g

B

d

e

K

c

(

d

t

a

a

m

p

o

H

d

C

e

o

c

o

p

c

y

t

fi

s

a

p

m

a

2

p

t

o

o

D

t

g

f

m

g

a

A

o

s

a

t

w

m

f

i

a

nd computational thinking, and from a cluster randomized controlled

rial which interrogated the relationship between computational think-

ng and coding.

. Three theoretical frameworks

Three frameworks grounded the development of CAL. First, the CRF

or creating evidence-based curriculum (Clements, 2007) informed the

ifferent phases of the research conducted over a decade and a half

esulting in CAL. Second, Papert’s Constructionism (Papert, 1980) posi-

ions CAL as a computationally-rich design-based curriculum focused on

ands-on, project-based learning for young children to program mean-

ngful projects with ScratchJr. Third, the PTD framework developed by

ers (2012) provides a lens to incorporate socio-emotional and ethical

imensions alongside computer science knowledge and skills in every

nit. Each of these three frameworks will be described as they informed

AL.

.1. Curriculum research framework

Work in early childhood has emphasized the importance of evidence-

ased curricular materials (Clements, 2007 ; Code.org, CSTA, & ECEP Al-

iance, 2021 ; Manches & Plowman, 2017 ; Tucker et al., 2003). While

omputer science curricular units have been developed with vary-

ng levels of adaptation and success (Century, Ferris & Zuo, 2020 ;

ode.org, 2016 , Coleman et al., 2016 ; Lavigne et al., 2020), few of

hose have undergone a process of development and testing informed

y a theoretical framework. In contrast, the CAL curriculum followed

he phases described by Clements (2007) . Although Clements’ work

ocused on early mathematics curriculum, his CRF can be applied to

ther disciplines such as computer science (Clements, 2008 ; Clements

 Sarama, 2011).

CRF proposes a 10-phase process of curriculum design to warrant

he claim that a curriculum is based on research (Clements, 2007). The

rst of these phases is the process of identifying subject-matter content

hat is valid within the discipline of choice (Tyler, 1949). This stage

f CRF was CAL’s major contribution given that CS education is a rel-

tively new field in early childhood education. CRF’s second research

hase identifies philosophies that offer new perspectives on students’

nd teachers’ experiences with curricula. In CAL, this involved identi-

ying ways of knowing that are specific for CS, such as learning by de-

igning and programming, as well as perspectives that integrate socio-

motional growth alongside technical skills. CRF’s third phase identifies

n a priori pedagogical foundation. In CAL, the pedagogical founda-

ion is the understanding of coding as a literacy and draws from the

xtensive knowledge gained over the years about successful literacy

nstruction in early childhood. CRF’s fourth phase is focused on struc-

uring activities in accordance with domain-specific models of learning

 Clements & Battista, 2000 ; Clements et al., 1992). In the domain of

arly childhood computer science, these activities involve playfulness,

roject-based team work, coding and unplugged experiences. The fifth

hase presented by CRF is market research at several points in the devel-

pment cycle. The remaining five phases span both formative research

n small groups, single classrooms and multiple classrooms, and sum-

ative research in small and large scale. This paper will present results

rom a pilot study and a cluster randomized controlled trial focusing

n two computer science learning outcomes: coding and computational

hinking.

.2. Constructionism

Constructionism, developed by Papert (1980) , has its name as a play

n Piaget’s Constructivism to highlight the importance of learning by

oing (Ackermann, 2001 ; Papert & Harel, 1991). While Piaget’s work

xplains how knowledge is constructed in our heads through a process

f accommodation and assimilation, Papert pays particular attention to
395
he role of computationally rich constructions in the world. Program-

ing is both a vehicle for creating meaningful projects and for devel-

ping powerful ideas such as sequencing, abstraction, and modularity

 Bers, 2008).

Constructionism is consistent with the general agreement in early

hildhood education about the efficacy of “learning by doing ” and en-

aging in project-based learning (Diffily & Sassman, 2002 ; Krajcik &

lumenfeld, 2006). It extends these approaches to also engage chil-

ren in “learning by designing ” and “learning by programming ” and

mphasizes interest-driven and peer-supported activities (Papert, 1993 ,

afai & Burke, 2014 , Kafai, 1994). When taken into the early childhood

lassroom, Constructionism supports the creation of coding playgrounds

 Bers, 2012 ; 2018 ; 2020b ; 2022) in which students can gain deeper un-

erstandings through the process of coding, reflecting and explaining

heir own creations.

Starting with LOGO, the first programming language specifically cre-

ted for children and then expanding to various coding platforms such

s Scratch, ScratchJr and KIBO, constructionist programming environ-

ents are designed to be open-ended with a “low floor, high ceiling ” ap-

roach so children can become creative producers instead of consumers

f technology (Bers, 2020b ; Bers, 2021 ; Feurzeig et al., 1970 ; Papert &

arel, 1991 ; Resnick et al., 2009).

In addition, these coding playgrounds must also engage children in

iscovering powerful ideas. In his seminal work “Mindstorms: Children,

omputers and Powerful Ideas, ” Papert (1980) coined the term “pow-

rful ideas ” to refer to a central concept within a domain that is at

nce personally useful, epistemologically interconnected with other dis-

iplines, and rooted in intuitive knowledge that a child has internalized

ver a long period of time (Bers, 2017).

According to Papert, powerful ideas afford new ways of thinking,

utting knowledge to use, and making personal and epistemological

onnections with other domains of knowledge (Papert, 2000). Over the

ears, a growing community of researchers and educators have used

he term powerful ideas to refer to sets of intellectual tools identi-

ed as important by a community of experts in each of the fields of

tudy (Bers, 2008 ; Resnick, 2021). Although programming languages

re changing rapidly, the powerful ideas of CS are consistent over long

eriods of time. The CAL curriculum is organized around seven develop-

entally appropriate powerful ideas from the field of computer science

ligned with powerful ideas from literacy.

.3. Positive technological development

PTD is a natural extension of Constructionism, but it explicitly incor-

orates psychosocial, civic, and ethical components. PTD builds on the

radition of Positive Youth Development (PYD), which looks at pathways

r developmental assets of thriving individuals in the first two decades

f their lives and identifies positive characteristics (Benson et al., 2006 ;

amon, 2004 ; Lerner, Almerigi, Theokas, & Lerner, 2005). PTD extends

his work to technologically rich interventions, such as the coding play-

round. However, instead of emphasizing developmental assets, PTD

ocuses on behaviors: content creation, creativity, collaboration, com-

unication, community building, and choices of conduct (Fig. 1). Pro-

ramming languages, like many other technologies, empower individu-

ls to do things, to engage in activities, and to act within a community.

s shown in Fig. 1 , there is a bidirectional relationship between devel-

pmental assets and technology-supported behaviors within a particular

ociocultural context.

The PTD framework is inspired by the question: “How can we live

 purposeful life? ” and extends the question to the domain of learning

echnologies by asking “How can we use new technologies in purposeful

ays to become better versions of who we are and create better com-

unities? ” CAL answers this question by offering a curriculum with a

ocus beyond CS mastery and technical skills that also supports children

n their quest to develop a sense of identity, values, and purpose within

 community (Bers, 2012 , 2022).

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Fig. 1. Positive technological development framework

the PTD framework showing the bidirectional relation-

ship between developmental assets and technology-

supported behaviors. reprinted from coding as a play-

ground: programming and computational thinking in

the early childhood classroom, second edition (p.131),

by M. U. Bers, 2020a , Routledge press. copyright 2020

by Routledge press.

3

c

a

o

h

a

i

w

a

n

p

s

(

c

m

s

e

d

A

i

(

t

p

s

b

b

g

c

u

a

s

a

i

r

n

e

4

p

C

f

p

m

(

b

k

5

J

c

c

g

s

o

a

K

2

t

2

l

r

s

(

m

l

o

C

a

r

i

t

s

c

d

B

a

h

a

F

w

. Pedagogical premise: coding as a literacy

CAL’s pedagogical premise is that coding is a literacy for the 21 st

entury. As a literacy, coding is perceived as involving a set of skills

nd knowledge that today’s society highly values (Vee, 2017). While

ther domains such health literacy, cultural literacy, and visual literacy

ave also come to be understood as literacies, alphabetical literacy is

 unique historical and social phenomenon with strong epistemological

mplications. It restructures the way we know the world and the way

e think (Ong, 1982). The CAL curriculum builds on this function of

lphabetical literacy.

CAL supports the exploration of similarities and differences between

atural and artificial languages during the creation of computational

rojects (Ivanova et al., 2020 ; Fedorenko et al., 2019) and applies

trategies for teaching alphabetical literacy to the coding playground

 Bers, 2019b). The goal of literacy, as addressed in CAL, is not only for

hildren to master the syntax and grammar of language, but also the

eanings and uses of words, sentences, and genres. CAL puts problem

olving at the service of personal expression, just as best practices in lit-

racy education place decoding and writing skills at the service of stu-

ent meaning-making and self-expression (Shanahan & Lonigan, 2013).

 literate person knows that reading and writing are tools for mean-

ng making and, ultimately, tools of power. The same is true of coding

 Bers, 2020a ; Govind et al., 2021).

CAL proposes that programming, as a literacy, engages new ways of

hinking, communicating, and expressing ideas. Thus, within the CAL

edagogy, learning to program is akin to learning how to use a symbolic

ystem, such as a written language, to generate and communicate ideas

y making a shareable product that can travel away from the author and

e read and interpreted by others (Bers, 2018).

Developing alphabetical literacy involves a progression of skills be-

inning with the ability to understand spoken words, followed by the

apacity to code and decode written words, and culminating in the deep

nderstanding, interpretation, and production of text (Chall, 1983). The

ssumption is that literacy is not a naturally developing process like

peech, which unfolds in a child given the right conditions, but requires

ppropriate instruction (Goldenberg, 2013). The same applies to learn-

ng to code. The coding progression does not just happen naturally, but

equires appropriate instructional strategies applied to the learning of a

ew domain, computer science, and the identification of its most pow-

rful ideas that are developmentally appropriate.

. Powerful ideas of CAL

Three phases were involved in selecting CAL’s developmentally ap-

ropriate powerful ideas: first, identifying powerful ideas in the field of
396
S; second, evaluating if those ideas were developmentally appropriate

or young children; and third, selecting powerful ideas from other disci-

lines taught in early childhood that could naturally intersect with CS,

ost specifically with math (Flannery et al., 2013) and with literacy

 Hassenfeld & Bers, 2020 ; Hassenfeld et al., 2020). The following ta-

le (Table 1) summarizes powerful ideas that could be integrated across

indergarten, first grade and second grade.

. The CAL curriculum

The term “curriculum ” has different meanings (Beauchamp, 1986 ;

ackson, 1992 ; Pinar et al., 1995 ; Walker, 2003). Whereas some define

urriculum as the totality of learning experiences provided by an edu-

ational institution that reflect the society’s broader social and political

oals, others narrow the definition to focus on a particular course of

tudy. In this paper, the term refers to a written scope and sequence

f instructional activities within the domain of computer science using

 particular programming language, ScratchJr (Flannery et al., 2013 ;

azakoff & Bers, 2013 ; Strawhacker et al., 2015 ; Strawhacker et al.,

015 ; Portelance, Strawhacker, & Bers, 2015).

To determine the scope and sequence of CAL’s instructional ac-

ivities, design-based research was used (Brown, 1992 ; Cobb et al.,

003 ; Collins, Joseph, & Bielaczyc, 2004 ; Design-Based Research Col-

ective, 2003). This process involved the development, field testing, and

evision of each of the units in the curriculum, with this cycle repeated

everal times, and the grounding on appropriate theoretical frameworks.

 Bannan-Ritland, 2003 ; Cunningham et al., 2020).

Once the first version of CAL was developed, we shared it with a 28-

ember cohort of educators and practitioners participating in a year-

ong graduate certificate program focused on early childhood technol-

gy (Strawhacker et al., 2022). These graduate-level students reviewed

AL and shared feedback on the scope and sequence, lesson activities,

nd feasibility of implementation, all of which was incorporated in cur-

iculum revisions.

Later, we conducted studies involving hundreds of children, admin-

strators, curriculum coordinators, and technology specialists from mul-

iple schools. We administered and analyzed pre- and post-instructional

urveys completed by educators implementing CAL activities in their

lassrooms, and we reviewed student work and coding projects pro-

uced by the children (Leidl, Bers, & Mihm, 2017 ; Unahalekhaka, &

ers, 2022) We conducted expert review of materials for content, ped-

gogy, and accuracy to evaluate alignment of standards. We explored

ow different options for wording and timing of the activities worked

nd which prompting and scaffolding strategies were most successful.

urthermore, with a lens towards equity (Confrey, 2000 ; NCTM, 2000),

e made inclusive choices of books and songs to be integrated in CAL.

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Table 1

Powerful ideas.

Powerful Ideas

Computer Science

Powerful Ideas

Literacy

Powerful Ideas

Mathematics

Connecting the Powerful Ideas

Algorithms Sequencing Counting and

Patterns

Emphasis on “order matters ” and on how complex tasks can be broken down into step-by-step instructions in

a logical way.

Design Process Writing Process Problem Solving Creative, iterative, cyclic processes that involve imagining, planning, revising, and sharing, often with

different starting points.

Representation Alphabet and

Letter-Sound

Correspondence

Cardinality and

Interpreting

Charts/Graphs

Sounds and symbols have different attributes that can be used to represent something else (e.g., a letter or

quantity).

Debugging Editing and

Audience Awareness

Error Checking and

Problem Analysis

Systematic analysis, testing, and evaluation to get to the right outcome. Whenever miscommunication occurs,

the individual uses a variety of strategies to solve the problem.

Control Structures Literary Devices Order of Operations Advanced strategies that determine how a set of ideas or commands are executed.

Modularity Phonological

Awareness

Place Value Decomposition, or breaking down a complex task into smaller tasks and re-using those new modules in

different ways.

Hardware/Software Tools of

Communication and

Language

Tools for

Measurement and

Computation

Communicating abstract ideas through tangible means.

Fig. 2. Elements of PTD and the palette of virtues emphasized in a lesson of

the CAL curriculum. Each lesson of the CAL curriculum highlights elements of

the positive technological development framework and the palette of virtues

metaphor that can be emphasized throughout the lesson. In this figure, Les-

son 1 of the first-grade curriculum highlights both communication and open-

mindedness

a

v

m

s

c

t

c

s

t

h

l

a

a

b

g

t

a

T

s

w

s

f

a

a

n

s

t

"

e

t

t

w

t

n

p

s

u

t

s

s

(

c

a

v

g

T

o

i

g

m

v

c

p

6

b
These early formative experiences allowed us to solidify CAL’s scope

nd sequence of both coding and unplugged activities, as well as de-

elop better interdisciplinary integrations. Our research with teachers

ade evident that, while integration with multiple domains was de-

ired, alphabetical literacy had to be strongly prioritized in the early

hildhood setting. In addition, we heard from teachers that, for most of

hem, the CAL curriculum did a good job at integrating the teaching of

oding skills with literacy, but they needed more pedagogical support to

trengthen socio emotional learning in the coding playground. Based on

his feedback, we revised each lesson to add activities to promote and

ighlight the different C’s of the PTD framework and the values high-

ighted in the palette of virtues (Bers, 2022). These pedagogical elements

re now indicated in the top section of the curriculum documents as well

s shown through icons on each of the lessons on the website (Fig. 2).

Based on teachers’ feedback, we modified some of our original

ook choices. For example, teachers indicated that the original first-
397
rade nonfiction book we selected, Ada Lovelace: Poet of Science, was

oo advanced for first grade students. We replaced it with another book

bout the same female computer scientist: Ada Byron Lovelace and the

hinking Machine. Finally, teachers expressed the need to support all

tudents in their classrooms, including those who might be gifted or

ho tend to finish their work earlier than others. Thus, we created a

ection for differentiated learning with proposed projects or challenges

or the advanced students.

The resulting CAL curriculum (Fig. 3) has 24 lessons designed for

 total of 18 hours, each lesson consisting of warm up and unplugged

ctivities, structured and expressive ScratchJr explorations, and jour-

aling and discussion activities that strengthen the literacy connection,

uch as word time. The CAL curriculum is free and publicly available on

his website: https://sites.bc.edu/codingasanotherlanguage/ .

CAL embeds formative and summative assessments. There are six

Checks for Understanding" so teachers can evaluate students’ knowl-

dge and skills in a formative way. Based on the computational concepts

aught up to that point in the curriculum, these are a series of fun ques-

ions that teachers can ask their students as a group. Children respond

ith a thumbs up for “yes ” or a thumbs down for “no. ” Depending on

he responses, teachers can stop and re-explain concepts and skills as

eeded. For example, in Lesson 8 for kindergarten, children learn about

arameters. The Check for Understanding shows two programs side by

ide: 1) move right, move right, move up; and 2) move right two, move

p. The question is: "Will the programs make Cat do the same thing?" If

he child has a grasp on how parameters work in ScratchJr, they will re-

pond positively. If not, this will indicate to the teacher that parameters

hould be reviewed again before moving forward with the curriculum.

For summative evaluation, CAL uses the Show What You Know

SWYK) tool (Fig. 5). SWYK are designed to be run synchronously in

lass at the beginning of Lesson 22 for every grade. Each child receives

 paper answer booklet, and the teacher presents slides with images and

ideos while they read out loud the questions to the class. The teacher

ives the class about two minutes for each question before moving on.

he questions begin with the most basic concepts, such as sequencing

f movement blocks, and progress to more complex concepts such as

dentifying specific blocks within a repeat loop or choosing which trig-

er block should be used for a certain context. The SWYK assessment is

apped closely to the curriculum, meaning each grade has a different

ersion of SWYK to match the different curriculums. This assessment

onsists of 10 multiple choice questions, and students receive 1 point

er correct answer for a total score between 0 and 10.

. CAL in action: studies description

After the CAL curriculum was completed using the iterative design-

ased process described earlier, we set up to conduct research to un-

https://sites.bc.edu/codingasanotherlanguage/

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Fig. 3. Curriculum roadmap note. After launching the CAL website, we learned it was hard for teachers to understand the overall flow of the powerful ideas and

curricular activities in CAL, without reading the complete document. Thus, we added lesson arcs in the form of “visual roadmaps ” for the kindergarten, first, and

second grade curricula, as well as for each individual lesson, allowing teachers to have a quick and easy option for reviewing materials and powerful ideas in addition

to reading through the entire lesson plan (Figure 4).

Fig. 4. Visual Roadmap for a lesson within the CAL curriculum Note. This figure shows a visual overview of Lesson 1, which was created as a resource for teachers

to understand the flow of the lesson.

d

i

c

t

i

a

t

c

w

s

6

c

C
erstand whether CAL is feasible to implement and effective in help-

ng children develop coding skills and computational thinking. First, we

onducted a pilot study in classrooms in three different states to evaluate

he feasibility of teaching CAL in different contexts and of administer-

ng our research instruments. While analyzing this preliminary data, we

lso explored whether the time spent on CAL, which took away from the

eaching of literacy and math, had an impact on language and math out-

omes. In the pilot phase, no control classrooms were involved. Second,
398
e conducted a cluster-randomized controlled trial through a partner-

hip with the Rhode Island Department of Education.

.1. Methods

In this article, we report results of a pilot study and a randomized

ontrol trial (RCT) to evaluate the feasibility and learning outcomes of

AL curriculum. The pilot and the RCT studies share the same method-

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Fig. 5. An Example of show what you know

(SWYK) Note. Question 3 of the show what

you know (SWYK) assessment presents a sce-

nario to the class in which a seahorse is pro-

grammed to move towards a fairy. The question

asks “Which block should start Fairy’s program

to run away? ” and presents three options: the

Start on Flag, Start on Tap, and Start on Bump

blocks.

Fig. 6. An Overview of the CAL research study note. Overview of all research elements in the CAL Research study, divided by teacher and student experience.

o

I

m

c

t

d

S

p

s

f

a

w

i

d

t

d

b

(

m

f

t

p

p

h

G

p

i

a

a

o

r

m

e

t

p

f

I

l

6

d

a

s

&

C

(

s

e

f

t

u
logical procedures. However, the RCT design included a control group.

n this methods section, we first present the shared procedures and com-

on measures by the two studies and then methods for each study in-

luding participants and specific instruments.

Fig. 6 provides an overview of the research activities around the in-

ervention. The top panel shows the assessments that participating stu-

ents completed before, during, and after the experience with the CAL-

cratchJr curriculum from left to right. The large block indicates the

eriod of curriculum implementation, and the small rectangles repre-

ent assessments and surveys. Students completed two instruments be-

ore and after participating in the CAL curriculum: TechCheck, which

ssesses computational thinking, and Coding Stages Assessment (CSA),

hich evaluates coding knowledge with ScratchJr. The CSA is admin-

stered one-on-one between researcher and participant. The researcher

isplays either images or videos to accompany each question. The par-

icipant answers each question on a tablet, and the researcher then in-

icates the answer as satisfactory or unsatisfactory. We administered

oth CSA and TechCheck assessment virtually over a video chat platform

Zoom) to accommodate for COVID-19 safety precautions. The instru-

ents are described in detail later and shown at their collection points

or teachers and students.

While this article does not focus on teacher outcomes, to describe

he overall experience, Fig. 6 also includes teacher activities. The lower

anel of this figure shows the teachers’ experience. Teachers first com-

leted the pre-training survey and the CSA, and then they attended a 4-

our professional development (PD) training with the DevTech Research

roup. The PD training involved guided explorations and open-ended

lay with the ScratchJr app, a deep-dive into the CAL curriculum and an
 f

399
ntroduction to the pedagogical approach for making the classroom into

 coding playground (Bers, 2020a). After the training, teachers filled out

 post-training survey and completed the CSA again and some teachers

pted in to do a focus group interview. The teaching of the CAL cur-

iculum spanned 12 weeks, comprising a total of 24 sessions of 30-45

inutes each. During the CAL-ScratchJr curriculum experience, teach-

rs filled out curriculum implementation surveys and lesson logs; after

he curriculum implementation, once again, teachers completed out the

ost-implementation survey, CSA, and focus group interview. Results

rom this experience have been previously shared (Kapoor et al., 2023).

n this paper we report in coding and computational thinking student

earning outcomes.

.2. Measures

The Coding Stages Assessment (CSA). The CSA was used to un-

erstand individual learning trajectories regarding coding knowledge

nd skills using ScratchJr. CSA is a validated assessment that has a

eries of open-ended task-based questions about ScratchJr (de Ruiter

 Bers, 2021). It is constructed around five coding stages: Emergent,

oding and Decoding, Fluency, New Knowledge, and Purposefulness

 Bers, 2019a). Each of the coding stages has six questions that probe the

pecific skills and thought processes that define the coding stage. For

xample, questions targeting the emergent coding stage focus on inter-

ace comprehension and symbolic representation whereas the questions

argeting the fluency stage ask participants to produce programs that

tilize complex blocks such as messages and trigger blocks. The first

our stages progress linearly through levels of difficulty and complex-

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Table 2

Pre- and post- curriculum scores for coding skills and computational thinking.

Assessment N Baseline Score (M ± SD) End Point Score (M ± SD) Points Changed(M ± SD) Paired Sample t-test p value

Weighted CSA a 166 6.5 (4.9) 17 (7.5) 10.7 (7.2) P < .0001

TechCheck b 163 8.53 (2.67) 9.85 (2.69) 1.31 (2.28) P < .0001

Note. CSA

a : Coding Stages Assessment measures ScratchJr coding skills

TechCheck b : Unplugged assessment for computational thinking

Table 3

Descriptive statistics of pre- and post-curriculum CSA scores from three

grade levels.

CSA Scores

Min. Max. Mean SD

Pre Post Pre Post Pre Post Pre Post

Kindergarten 1.1 4.4 11.7 20.9 5.4 13 3 4.6

1 st Grade 0 3.3 22 29 5 14.9 3.8 5.8

2 nd Grade 1.1 0 29.1 39 9 20.8 5.6 8.5

K-2 0 0 29.1 39 6.5 17 4.9 7.5

i

t

a

t

a

s

C

d

s

a

t

d

f

t

c

t

s

t

a

v

t

c

t

R

6

a

i

i

i

r

d

t

a

s

C

T

d

W

C

(

t

w

a

i

6

a

T

t

s

g

b

l

t

d

p

s

m

w

i

a

a

w

d

s

s

a

.

p

g

c

G

n

s

d

e

d

p

l

c

w

n

s

i

t

p

t

ty. If the participant answers five out of six correctly, she will move on

o the next stage. If not, the assessment will end. To accommodate the

daptive nature of the CSA, a weighted score is calculated. Specifically,

he number of questions correctly answered for each stage are totaled

nd differentially weighted, with weights ranging from 1.1 for Emergent

tage questions to 1.5 for Purposefulness questions. Possible weighted

SA scores range from 0 to 39.

To further ensure inter-rater reliability, 20% of students were ran-

omly assigned a second rater, andthe data in this study indicated a

ubstantial interrater reliability (Cohen’s 𝜅= 0.85).

TechCheck. In addition to the CSA, children completed TechCheck to

ssess computational thinking skills before and after the CAL interven-

ion. TechCheck is a 15-item, multiple-choice assessment that probes six

omains of CT described by Bers’ (2018) as developmentally appropriate

or young children (algorithms, modularity, control structures, represen-

ation, hardware/software, and debugging). This assessment presents

hildren with puzzle-like challenges and it does not require the child

o have programming knowledge or computing experience. Items are

cored as correct or incorrect, and the number of correct answers is to-

aled with possible scores ranging from 0 to 15. The assessment can be

dministered in several modalities – online or in person, and to indi-

iduals, whole classrooms, or groups of students – and can be adminis-

ered in 20 minutes or less. TechCheck has been validated and used both

ross-sectionally and longitudinally with kindergarten, first, second, and

hird grade students between five and nine years old (Relkin et al., 2021 ;

elkin & Bers 2021 ; Relkin et al., 2020 ; Relkin et al, 2023).

.3. Pilot Study

Participants. During the pilot study, the CAL curriculum was evalu-

ted in four schools: two in San Francisco, one in Minnesota, and one

n Arkansas, reaching a total of 224 students. Even though demograph-

cs such as socioeconomic status (SES) were not provided from each

ndividual student by the schools, these school sites in this pilot study

epresent a diverse student population. For example, 71.9% of the stu-

ents in Arkansas, 53.1% of the students in San Francisco, and 19% of

he students in Minnesota were eligible to participate in the federal free

nd reduced-price meal program. We purposefully chose to run a pilot

tudy in locations with different populations to understand feasibility of

AL implementation and administration of research instruments.

Math and Literacy Assessments. In addition to the CSA and

echCheck, in the pilot study, we obtained three different types of stan-

ardized literacy and math assessments from two different time points:

inter (before the CAL curriculum was taught) and Spring (after the
400
AL curriculum was taught). Specifically, Measure of Academic Progress

MAP) literacy and math assessments were obtained from first grade par-

icipants in Arkansas. FastBridge reading and math assessment scores

ere obtained from first grade students in Minnesota. STAR Reading

nd Math assessment scores were collected from second grade students

n Minnesota.

.4. Results of pilot study: student learning outcomes

Over the course of CAL implementation, both students’ coding skills

nd their computational thinking showed significant growth (Table 2).

he TechCheck assessment, measuring computational thinking, was

aken by students before and after the CAL intervention. The TechCheck

ample consisted of 173 total students: 12 kindergarten students, 88 first

rade students, and 63 second grade students. Overall, the mean score at

aseline was 8.53 (SD = 2.67), and the mean score following the curricu-

um was 9.85 (SD = 2.69). This change was highly significant according

o a paired sample t-test (t(162) = 5.02, p < 0.001).

The CSA, measuring coding skills, was taken by a total of 188 stu-

ents, of which 166 students completed both the pre-curriculum and

ost-curriculum assessments. The sample consisted of 15 kindergarten

tudents, 87 first grade students, and 64 second grade students. The

ean weighted score at baseline was 6.5 (SD = 4.9), and the mean

eighted score following the curriculum was 17.0 (SD = 7.5) (27.43%

ncrease out of a total 39 points), which was a highly significant change

ccording to paired sample t-test, t(165) = 19.05, p < 0.0001.

Table 3 presents descriptive statistics (minimum, maximum, mean,

nd standard deviation) of the pre-curriculum and post-curriculum

eighted CSA scores from kindergarten, first, and second grade stu-

ents.

Students from all grade levels had a significant increase in their CSA

cores following the curriculum implementation (Table 3). The paired

ample t-test statistics for kindergarten, first grade, and second grade

re t (14) = 5.02, p < .001, t (86) = 14.91, p < .001, t (63) = 10.41, p <

001, respectively. ANOVA analysis showed the change of score between

re-curriculum and post-curriculum CSA is significantly different across

rades, F (2, 163) = 4.04, p < .05. All grade levels had significant in-

rease of CSA after the curriculum implementation, but estimation of a

ames-Howell post-hoc test revealed that second grade students had sig-

ificantly higher improvement of CSA when compared to kindergarten

tudents (d = 4.9, p < .05). It is not clear whether the between-grade

ifferences reflect age-related changes in coding performance or differ-

nces between grades in the psychometric performance of the CSA. Stu-

ents’ CSA growth over the curriculum implementation had a significant

ositive correlation with TechCheck difference scores over the curricu-

um implementation (r (148) = .18, p = .03).

CAL was taught during academic hours that would have been allo-

ated to the math or literacy block. Thus, during the pilot study, we

anted to examine whether time spent learning to code has or does

ot have a detrimental effect on students’ achievements in these other

ubjects. This finding would determine CAL’s feasibility. Thus, standard-

zed literacy and math scores were obtained from a subset of students in

wo study locations (Arkansas and Minnesota) from two different time

oints: Winter (before the CAL curriculum was taught) and Spring (after

he CAL curriculum was taught).

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Table 4

Background characteristics.

Background Characteristics Control Group (n) % of Control group (n = 488) Treatment Group (n) % of Treatment group (n = 464)

Female 251 51.4% 233 50.2%

Limited English Proficiency 33 6.8% 54 11.6%

Individualized Education Plan 60 12.3% 54 11.6%

Free/reduced-price lunch 87 17.8% 83 17.9%

Table 5

Descriptive statistics of pre- and post-curriculum CSA scores from three grade levels.

Control Treatment

n

Mean SD

n

Mean SD

Pre Post Pre Post Pre Post Pre Post

Kindergarten 89 2.31 4.21 1.47 2.43 145 1.88 8.69 1.26 3.82

1 st Grade 200 3.10 5.30 1.86 3.38 136 3.16 14.08 1.99 6.81

2 nd Grade 164 4.50 7.23 2.71 4.49 149 4.63 15.69 3.40 8.32

a

A

f

s

n

a

o

1

s

t

t

t

p

t

t

c

t

c

a

i

6

p

p

i

i

g

2

d

v

i

w

i

p

g

r

t

p

c

s

g

t

E

Table 6

Fixed effects of treatment on post coding performance (Post-

CSA) controlling for covariates.

Fixed effects B SE_B p value

Intercept 4.89 2.30 0.06

Condition (Treatment) 7.28 0.83 < 0.001

Pre-CSA 0.88 0.07 < 0.001

Grade (2nd) 0.35 0.41 0.39

Grade (K) -3.07 0.48 < 0.001

Gender (Male) 0.71 0.33 0.03

IEP (Yes) -1.64 0.52 0.002

LEP (Yes) -0.92 0.68 0.17

Free/Reduced Lunch (Yes) -0.09 0.50 0.86

School level Pre-CSA -0.35 0.65 0.60

School % of Free/Reduced Lunch -2.02 2.29 0.40

6

w

i

b

t

a

p

a

fi

i

i

p

c

o

a

a

c

s

m

t

fi

T

g

h

t

s

a

Results from the Measure of Academic Progress (MAP) literacy

nd math assessments were obtained from 59 first grade students in

rkansas. FastBridge reading and math assessment scores were obtained

rom 48 first grade students in Minnesota. STAR reading and math as-

essment scores were collected from 41 second grade students in Min-

esota.

Wilcoxon signed-rank tests indicate that MAP Rasch Unit (RIT) math

nd literacy measures showed significant improvement over the course

f CAL implementation among first grade students in Arkansas (V =
414.5, p < .001; V = 1368.5, p < .001). FastBridge math and reading

cores in the first grade from Minnesota showed significant growth over

he course of the curriculum implementation (t (46) = 8.95, p < .001;

 (46) = 16.26, p < .001), as well as the STAR math and reading scores in

he second grade from Minnesota (t (40) = 16.86, p < .001; t (40) = 11.29,

 < -.001). Overall, there was improvement seen over time. However,

o answer if such improvement was due to maturation or implementa-

ion of the CAL curriculum would require an experiment including a

ontrol group. Although in the pilot study the cause of improvement in

he standardized scores is unknown, there is evidence that learning to

ode during the academic school day had no negative impact on math

nd reading performance. Following the pilot study, a clusterrandom-

zed controlled trial was conducted.

.5. Randomized controlled trial study

Participants. 952 students from 13 schools in Rhode Island through

artnerships with The Rhode Island Department of Education partici-

ated in this research. Thirteen schools were randomly assigned to the

ntervention or control conditions. Specifically, 98 kindergarten partic-

pants from five schools were in the control condition and 158 kinder-

arten students from four schools were in the intervention condition;

19 first-grade participants from seven schools were in the control con-

ition and 146 first-grade students from five schools were in the inter-

ention condition; and 171 second-grade students from six schools were

n the control condition and 160 second-grade students from five schools

ere in the intervention condition. The schools in the intervention group

mplemented the CAL curriculum from Fall 2021 to Spring 2022 (ap-

roximately 5 months). The control group did business as usual. Both

roups were assessed around the same time before and after the cur-

iculum regarding students’ coding ability as measured by CSA and

heir computational thinking ability as measured by TechCheck. Table 4

resents the demographics of the student participants in treatment and

ontrol groups. Regarding the demographic equivalence, gender, IEP

tatus, and social-economic status are very similar between the two

roups, but for students’ limited English proficiency (LEP) status, the

reatment group contained a higher percentage of students with limited

nglish proficiency.
401
.6. Results of RCT study: student learning outcomes

Multi-level modeling was used to analyze the two-level nested data

ith individual student data serving as the first level and school serv-

ng as the second level nesting variable. Before the model specification,

aseline equivalence was examined. Both outcomes, coding and compu-

ational thinking, met the baseline equivalence between the treatment

nd the control group. To estimate the impact of the curriculum im-

lementation, fixed effects of the treatment condition were examined

t level-one, and random intercept was included at level-two. Finally,

xed effects of student-level baseline score, disability (IEP) status, lim-

ted English proficiency (LEP) status, and free/reduced lunch status were

ncluded as covariates at level-one and school-level baseline score and

ercentage of students with free/reduced lunch status were included as

ovariates at level-two. Table 5 shows the mean and standard deviation

f pre and post coding proficiency scores from all grade levels.

According to the unconditional model, students’ post CSA shows

n ICC of 0.31, which indicates that 31% of the post CSA variance,

 very large variance, is due to the between school variability. This

onfirmed the need of the proposed multilevel modeling adjusting the

chool clustering effect. After controlling the given covariates, the treat-

ent showed significantly higher post-curriculum CSA scores compared

o the control group in all grades studied with an unstandardized coef-

cient of 6.19 with a large effect size, Hedge’s g of 0.47, (see table 6).

his indicates that when all the covariates were held constant, the first-

rade students in the treatment group showed an average of 6.19 point

igher increase than the control group in the coding proficiency after

he CAL curriculum implementation. The results suggest evidence that

tudents’ growth in their coding proficiency is due to the intervention

nd not maturation.

Table 6 .

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

Table 7

Descriptive statistics of pre- and post-curriculum TechCheck from three grade levels by condition.

Control Treatment

n

Mean SD

n

Mean SD

Pre Post Pre Post Pre Post Pre Post

Kindergarten 87 7.07 7.98 2.39 2.38 141 7.07 8.49 2.33 2.43

1st Grade 195 7.57 9.05 2.37 2.45 132 7.33 8.99 2.57 2.56

2nd Grade 160 7.19 8.89 2.47 2.64 146 6.99 8.60 2.53 2.91

Table 8

Fixed effects of treatment on post-TechCheck controlling for covariates.

Fixed effects B SE_B p value

Intercept 1.77 1.16 0.57

Condition (Treatment) 0.20 0.16 0.10

Pre-TechCheck 0.48 0.03 < 0.001

Grade (2nd) -0.15 0.17 0.35

Grade (K) -0.63 0.19 0.001

Gender (Male) 0.53 0.15 < 0.001

IEP (Yes) -1.06 0.23 < 0.001

LEP (Yes) -0.12 0.28 0.45

Free/Reduced Lunch (Yes) -0.13 0.21 0.39

School level Pre-TechCheck 0.51 0.16 0.001

School % of Free/Reduced Lunch -1.09 0.76 0.18

t

g

t

f

g

T

i

u

T

i

p

t

e

t

p

b

7

t

t

i

s

t

i

f

y

d

a

t

R

m

o

s

w

g

t

s

u

t

i

a

a

f

g

H

p

u

t

o

s

i

s

i

p

s

s

t

C

o

w

t

r

i

b

i

t

i

i

t

n
In addition, given that the focus of this article is on the main

reatment impact and not the demographics, the effects of the demo-

raphics are not discussed in detail. However, it is worth mentioning

hat students’ coding proficiency did not differ by their LEP status or

ree/reduced lunch status, but differed by their IEP status. IEP students

enerally scored lower than their counterparts.

Table 7 presents descriptive statistics of students’ pre and post

echCheck scores in each grade by condition. Students showed increases

n their computational thinking from baseline scores. According to the

nconditional model, students’ post-TechCheck showed an ICC of 0.09.

his means that 9% of variance is due to the between school variabil-

ty. As a result of multilevel modeling controlling for all the covariates

roposed, TechCheck scores did not show significant difference between

he treatment and control group (see Table 8). These results suggest that

veryone improved in their computational thinking, but students in the

reatment group did not differ significantly compared to their counter-

arts in the control group, interrogating the similarities and differences

etween coding and computational thinking processes.

. Discussion

Early childhood education is currently changing to encompass the

eaching and learning of new domains of knowledge that are relevant

o today’s society, such as computer science and computational think-

ng. Policies and frameworks are slowly being adapted to mandate or

trongly suggest their teaching in the early childhood classroom. With

his effort, there is a need for research-based curricula that not only

nclude a structured scope and sequence but that also identify power-

ul ideas from these domains that are developmentally appropriate for

oung children. The work presented in this paper describes such an en-

eavor: the Coding as Another Language (CAL) curriculum for the free

nd widely available introductory programming language, ScratchJr.

In this paper, we described the process of iteratively developing and

esting CAL by building on three theoretical foundations: Curriculum

esearch Framework, which provided a roadmap for steps to follow to

ake CAL into an evidence-based curriculum; Constructionism, which

riented the scope and sequence of project-based activities to be de-

igned upon powerful ideas; and Positive Technological Development,

hich integrated socio-emotional and ethical dimensions. CAL’s peda-
402
ogical premise is that coding is another language and therefore can be

aught by integrating powerful ideas of literacy with computer science.

In addition to these pedagogical foundations, this paper presents re-

ults from a pilot study and a cluster randomized controlled trial to eval-

ate CAL’s feasibility in the classroom and its efficacy in meeting its goal

o teach coding and computational thinking. Results from the pilot study

ndicate that the CAL curriculum was not only feasible to implement, but

lso effective. Furthermore, despite the time taken away from the math

nd literacy blocks to teach computer science, standardized test scores

or literacy improved and scores for math remained the same.

During the cluster-randomized controlled trial, the treatment group’s

rowth in coding skills surpassed the control group at all grade levels.

owever, both the intervention and control groups improved on com-

utational thinking. This result regarding computational thinking was

nexpected and requires further exploration.

There are many plausible explanations for this. First, it is possible

hat improvements in the control group were a product of typical devel-

pment and schooling that equaled the effects of the intervention. Past

tudies have shown that CT skills as measured by TechCheck improve

n the course of natural development, even in the absence of coding in-

truction (Relkin, 2022). Children in this age group change rapidly and it

s plausible that in a study that lasted around 5 months between pre and

ost testing, all children further develop their computational thinking

kills. Given that CT is defined as being present in everyday analytical

kills (Wing, 2006 ; 2011), it is possible that some of the constructs of

he TechCheck instrument captured what was happening in both the

AL intervention group and business as usual, learning math, literacy

r STEM, in the control group. Further research is needed to determine

hether students showed greater improvement for some computational

hinking constructs than others and to examine what the control class-

ooms were learning at the time of the study by interviewing teachers

n the control group.

A second possible explanation is that the CAL curriculum may not

e as effective at increasing CT skills (measured by TechCheck), as it is

n teaching children expressive coding activities (measured by CSA). At

he heart of computational thinking is abstraction (Kramer, 2007), that

s, the ability to identify salient pieces of a problem or model and ignore

nessential details. CAL’s premise is that coding is another language, and

herefore, CAL’s aim is to help children express themselves through this

ew language. The focus is not necessarily on abstraction in problem

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

s

g

b

c

g

p

w

c

f

n

p

g

8

s

a

t

a

b

s

s

d

r

s

t

h

d

v

i

l

t

i

p

t

t

f

e

i

p

b

s

e

a

s

t

b

t

t

p

T

t

e

D

A

o

R

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

A

C

C

C

C

D

d

olving, but rather on making abstract ideas concrete through the pro-

ramming language (Papert, 1980) and using and manipulating a sym-

olic representational system to create a sharable product that others

an interpret (Bers, 2020). Thus, when children in the CAL intervention

roup were given an abstract measure, such as TechCheck, they did not

erform significantly better than their peers in the control group. They

ere not taught how to work with abstraction, but to make abstractions

oncrete through the use of the ScratchJr language to create meaning-

ul projects. Further investigation regarding this possible explanation is

eeded by looking at the different items on TechCheck and comparing

erformance on specific items for students in the treatment and control

roups.

. Conclusion

Computer science education is reaching the younger populations. As

chools make room in their busy schedules to include coding projects

nd unplugged computational thinking activities, there is an urgent need

o work with evidence-based curricular resources that have been piloted

nd evaluated. These need to be both developmentally-appropriate and

ased on theoretical foundations that position the teaching of computer

cience in the broader educational discourse. The work on CAL pre-

ented in this paper addresses all of these issues. CAL was iteratively

esigned and tested using three established bodies of literature: Cur-

iculum Research Framework (CRF), which informed the steps to en-

ure an evidence-based final product, Constructionism, which informed

he project-based and designed-based approach to coding in early child-

ood, and Positive Technological Development, which provided the

evelopmentally appropriate grounding on socio-emotional aspects in-

olved in learning. Furthermore, CAL’s design core innovation is the

ntegration of early literacy and computer science by identifying over-

apping powerful ideas in a developmentally appropriate way. Finally,

his paper provides evidence about CAL’s feasibility, and student learn-

ng outcomes regarding coding and computational thinking, from both a

ilot study and a cluster randomized controlled trial which interrogated

he relationship between computational thinking and coding.

As more work is done, the relationship between coding and computa-

ional thinking in early childhood needs to be further explored, not only

or better discerning the impact of CAL, but also for achieving equity in

ducation. As shown in the work presented here, computational think-

ng and learning how to use a programming language for expressive

urposes are not the same. However, both are important and need to be

etter understood. As children grow, there is a demand for a technically-

avvy workforce to fulfill the needs of the economy. The pipeline starts

arly on, and those children who are not exposed to coding at an early

ge might face hardships later. The literature shows that by third grade,

tereotypes regarding STEM start to form, and girls and minorities are

he most impacted.

The current growing trend showing that computational thinking can

e developed in unplugged ways through many disciplinary connec-

ions, might also hide the fact that coding is not the same as compu-

ational thinking. And while thinking is important, learning how to ex-

ress that thinking through a programming language is a valued skill.

he work reported in this paper can help illuminate other’s endeavors

o create and evaluate research-based curriculum in this nascent field of

arly childhood computer science.

ata availability

The authors do not have permission to share data.

cknowledgment

Funding: This work was supported by the United States Department

f Education [Grant No U411C220202].
403
eferences

ckermann, E. (2001). Piaget’s constructivism, papert’s constructionism: What’s the dif-

ference. Future of Learning Group Publication, 5 (3), 438–448 .

ho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55 (7),

832–835 .

annan-Ritland, B. (2003). The role of design in research: The integrative learning design

framework. Educational Researcher, 32 (1), 21–24 .

arr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is In-

volved and what is the role of the computer science education community? Acm In-

roads, 2 (1), 48–54 .

eauchamp, G. A. (1986). Curriculum theory: Meaning, development, and use. Theory Into

Practice, 21 (1), 23–27 .

enson, P. L., Scales, P. C., Hamilton, S. F., Sesma, A., Jr., Lerner, R. M., & Da-

mon, W. (2006). Positive youth development: Theory, research, and applications. In

Handbook of child psychology: Theoretical models of human development (pp. 894–941).

John Wiley & Sons Inc .

ers, M. (2020a). Coding as a playground: Programming and computational thinking in the

early childhood classroom, second edition . New York, NY: Routledge Press .

ers, M. U. (2020b). Playgrounds and microworlds: Learning to code in early childhood.

Designing constructionist futures: The art, theory and practice of learning designs .

ers, M., & Bers, M. U. (2021). From computational thinking to computational do-

ing. Teaching computational thinking and coding to young children . IGI Global.

10.4018/978-1-7998-7308-2 .

ers, M. U. (2008). Blocks to robots learning with technology in the early childhood classroom .

New York, NY: Teachers College Press .

ers, M. U. (2012). Designing digital experiences for positive youth development: From playpen

to playground . New York, NY: Oxford University Press .

ers, M. U. (2017). The seymour test: Powerful ideas in early childhood education. Inter-

national Journal of Child-Computer Interaction .

ers, M. U. (2018). Coding and computational thinking in early childhood: the impact of

ScratchJr in Europe. European Journal of STEM Education, 3 (3), 08 .

ers, M. U., & Donohue, C. (2019a). Coding as another language. In Exploring key is-

sues in early childhood and technology: Evolving perspectives and innovative approaches

(pp. 63–70). New York, NY: Routledge .

ers, M. U. (2019b). Coding as another language: a pedagogical approach for teaching

computer science in early childhood. Journal of Computers in Education, 6 (4), 499–528 .

ers, M. U. (2022). Beyond Coding: How Children Learn Human Values through Programming .

Cambridge, MA: MIT Press .

ers, M., Govind, M., & Relkin, E. (2021). Coding as another language: Computational

thinking, robotics and literacy in first and second grade. ACM Special Issue on K-5

Computational Thinking .

ers, M. U., & Resnick, M. (2015). The official ScratchJr book . San Francisco, CA: No Starch

Press .

rown, A. L. (1992). Design experiments: Theoretical and methodological challenges in

creating complex interventions. Journal of the Learning Sciences, 2 (2), 141–178 .

entury, J., Ferris, K. A., & Zuo, H. (2020). Finding time for computer science in the ele-

mentary school day: a quasi-experimental study of a transdisciplinary problem-based

learning approach. International Journal of STEM Education, 7 (1) .

hall, J. S. (1983). Literacy: Trends and explanations. Educational Researcher, 12 (9), 3–8 .

lements, D. H. (2007). Curriculum research: Toward a framework for research-based

curricula. Journal for research in mathematics education, 38 (1), 35–70 .

lements, D. H. (2008). Handbook of design research methods in education: Innovations in

science, technology, engineering, and mathematics learning and teaching, (pp. 410–422).

20 Design Experiments and Curriculum Research .

lements, D. H., & Battista, M. T. (2000). Handbook of research design in mathematics and

science education (pp. 761–776). Designing effective software .

lements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science,

333 (6045), 968–970 .

lements, D. H., Meredith, J. S., Battista, M. T., Geeslin, W., & Graham, K. (1992). Design

of a Logo environment for elementary geometry. In Proceedings of the sixteenth annual

meeting of the North American chapter of the international group for the psychology of

mathematics education: 1 (p. 152). Durham, NH: Program Committee .

obb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments

in educational research. Educational Researcher, 32 (1), 9–13 .

ode.org. (2016). Evaluation summary report 2015-2016 https://code.org/files/

EvaluationReport2015-16.pdf .

lliance. (2021). 2021 State of computer science education: Accelerating action through

advocacy. Code.org, CSTA, & ECEP . https://advocacy.code.org/stateofcs .

oleman, L. O., Gibson, P., Cotten, S. R., Howell-Moroney, M., & Stringer, K. (2016). Inte-

grating computing across the curriculum: The impact of internal barriers and training

intensity on computer integration in the elementary school classroom. Journal of Ed-

ucational Computing Research, 54 (2). 10.1177/0735633115616645 .

ollins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and method-

ological issues. The Journal of the Learning Sciences, 13 (1), 15–42 .

onfrey, J. (2000). Improving research and systemic reform toward equity and quality. In

Handbook of research design in mathematics and science education (pp. 87–106). Mah-

wah, NJ: Lawrence Erlbaum Associates .

unningham, C. M., Lachapelle, C. P., Brennan, R. T., Kelly, G. J., Tunis, C., & Gen-

try, C. A. (2020). The impact of engineering curriculum design principles on elemen-

tary students’ engineering and science learning. Journal of Research in Science Teaching,

57 (3), 423–453 .

amon, W. (2004). What is positive youth development? The Annals of the American

Academy of Political and Social Science, 591 (1), 13–24 .

e Ruiter, L. E., & Bers, M. U. (2021). The coding stages assessment: devel-

opment and validation of an instrument for assessing young children’s profi-

https://doi.org/10.13039/100000138
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0001
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0002
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0003
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0004
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0005
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0006
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0007
https://doi.org/10.4018/978-1-7998-7308-2
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0010
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0011
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0012
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0013
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0014
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0015
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0016
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0017
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0018
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0019
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0020
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0021
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0022
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0023
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0024
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0025
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0026
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0027
https://code.org/files/EvaluationReport2015-16.pdf
https://advocacy.code.org/stateofcs
https://doi.org/10.1177/0735633115616645
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0031
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0032
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0033
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0034

M.U. Bers, J. Blake-West, M.G. Kapoor et al. Early Childhood Research Quarterly 64 (2023) 394–404

D

D

F

F

F

G

G

G

H

H

I

J

K

K

K

K

K

K

L

L

L

L

M

N

O

P

P

P

P

P

P

R

R

R

R

R

R

S

S

S

S

T

T

U

V

W

W

W
ciency in the ScratchJr programming language. Computer Science Education , 1–30.

10.1080/08993408.2021.1956216 .

esign-Based Research Collective. (2003). Design-based research: An emerging paradigm

for educational inquiry. Educational Researcher, 32 (1), 5–8 .

iffily, D., & Sassman, C. (2002). Project-based learning with young children . Westport, CT:

Heinemann, Greenwood Publishing Group, Inc .

edorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The language of program-

ming: a cognitive perspective. Trends in Cognitive Sciences, 23 (7), 525–528 .

eurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1970). Programming-lan-

guages as a conceptual framework for teaching mathematics. ACM SIGCUE Outlook,

4 (2), 13–17 .

lannery, L. P., Kazakoff, E. R., Bontá, P., Silverman, B., Bers, M. U., & Resnick, M. (2013).

Designing ScratchJr: Support for early childhood learning through computer program-

ming. In Proceedings of the 12th international conference on interaction design and children

(IDC ’13) (pp. 1–10). New York, NY: ACM. 10.1145/2485760.2485785 .

oldenberg, C. (2013). Unlocking the research on english learners: What we know–and

don’t yet know–about effective instruction. American Educator, 37 (2), 4–11 .

ovind, M., Hassenfeld, Z., de Ruiter, L., & Bers, M. U. (2021). Rhyme and reason: the con-

nections among coding, computational thinking, and literacy. Teaching computational

thinking and coding to young children . IGI Global .

rover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the

field. Educational researcher, 42 (1), 38–43 .

assenfeld, Z. R., & Bers, M. U. (2020). Debugging the writing process: Lessons from

a comparison of students’ coding and writing practices. The Reading Teacher, 73 (6),

735–746. 10.1002/trtr.1885 .

assenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. (2020). If you can program,

you can write: Learning introductory programming across literacy levels. Journal of

Information Technology Education: Research, 19 , 65–85. 10.28945/4509 .

vanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O’Reilly, U.-M., . . .

Fedorenko, E. (2020). Comprehension of computer code relies primarily on domain-

general executive brain regions. ELife, 9 , Article e58906. 10.7554/eLife.58906 .

ackson, P. (1992). Handbook of research on curriculum . Macmillan No. 375.00973 J1321h

Ej. 1 003726 .

afai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming .

Cambridge, MA: The MIT Press .

afai, Y., & Soloway, E. (1994). Computational gifts for the Barney generation. Communi-

cations of the ACM, 37 (9), 19–22 .

apoor, M. G., Yang, Z., & Bers, M. (2023). Supporting early elementary teachers’ cod-

ing knowledge and self-efficacy through virtual professional development. Journal of

Technology and Teacher Education, 30 (4), 1–31 2023 .

azakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive

robotics and programming workshop on sequencing ability in early childhood. Early

Childhood Education Journal, 41 (4), 245–255 .

rajcik, J. S., Blumenfeld, P. C., & Sawyer, R. K. (2006). Project based learning. In The

Cambridge handbook of learning sciences (pp. 317–334). New York, New York: Cam-

bridge University Press .

ramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50 (4),

36–42 .

avigne, H., Presser, A. L., Rosenfeld, D., Wolsky, M., & Andrews, J. (2020). Creating

a preschool computational-thinking learning blueprint to guide the development of

learning resources for young children. Connected Science Learning, 2 (2) .

eidl, K. D., Bers, M. U., & Mihm, C. (2017). Programming with ScratchJr: a review of the

first year of user analytics. In Proceedings of the conference proceedings of international

conference on computational thinking education (pp. 116–121) .

erner, R. M., Lerner, J. V., Almerigi, J. B., Theokas, C., Phelps, E., Gestsdottir, S., . . . Von

Eye, A. (2005). Positive youth development, participation in community youth devel-

opment programs, and community contributions of fifth-grade adolescents: Findings

from the first wave of the 4-H study of positive youth development. The Journal of

Early Adolescence, 25 (1), 17–71 .

odi, M., & Martini, S. (2021). Computational thinking, between papert and wing. Science

& Education , 1–26 .

anches, A., & Plowman, L. (2017). Computing education in children’s early years: A call

for debate. British Journal of Educational Technology, 48 (1), 191–201 .

CTM. (2000). Standards for school mathematics . Reston, VA: National Council of Teachers

of Mathematics .
404
ng, W. (1982). Orality and literacy: The technologizing of the word . Routledge .

aper, S. (1980). Mindstorms: Children, computers, and powerful ideas . New York, NY: Basic

Books, Inc .

apert, S. (1993). The children’s machine: Rethinking school in the age of the computer . New

York, NY: BasicBooks .

apert, S. (2000). What’s the big idea? toward a pedagogy of idea power. IBM Systems

Journal, 39 (3.4), 720–729 .

apert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36 (2), 1–11 .

inar, W. F., Reynolds, W. M., Taubman, P. M., & Slattery, P. (1995). Understanding cur-

riculum: An introduction to the study of historical and contemporary curriculum discourses :

17. Peter Lang .

ortelance, D. J., Strawhacker, A., & Bers, M. U. (2015). Constructing the ScratchJr pro-

gramming language in the early childhood classroom. International Journal of Tech-

nology and Design Education , 1–16. 10.1007/s10798-015-9325-0 .

elkin E. & Bers M.U. (2021). Factors influencing learning of computational thinking skills

in young children. Virtual Annual Meeting of the American Educational Research

Association (AERA).

elkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the ac-

quisition of computational thinking by young children. Computers & Education .

10.1016/j.compedu.2021.104222 .

elkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: development and val-

idation of an unplugged assessment of computational thinking in early child-

hood education. Journal of Science Education and Technology, 29 , 428–498.

10.1007/s10956-020-09831-x .

elkin, E. V. (2022). The development of computational thinking skills in young chil-

dren(Order No. 29326738) . ProQuest Dissertations & Theses Global (2725323425).

Retrieved from https://www.proquest.com/dissertations-theses/development-

computational-thinking-skills-young/docview/2725323425/se-2 .

elkin, E., Johnson, S. K., & Bers, M. U. (2023). A normative analysis of the TechCheck

computational thinking assessment. Educational Technology & Society, 26 (2), 118–130 .

esnick, M., Flanagan, M., Kelleher, C., MacLaurin, M., Ohshima, Y., Perlin, K., & Tor-

res, R. (2009). CHI’09 Extended Abstracts on Human Factors in Computing Systems

(pp. 3293–3296). Growing up programming: democratizing the creation of dynamic,

interactive media .

hanahan, T., & Lonigan, C. J. (2013). Early childhood literacy: The national early literacy

panel and beyond . Towson: MD: Paul H. Brookes Publishing Company .

trawhacker, A., Portelance, D., Lee, M., & Bers, M. U. (2015). Designing Tools for devel-

oping minds: The role of child development in educational technology. In Proceedings

of the 14th International Conference on Interaction Design and Children (IDC ’15) . New

York, NY: ACM Medford, MA, June 21-25 .

ullivan, A., & Bers, M. U. (2019). Computer science education in early childhood: The

case of ScratchJr. Journal of Information Technology Education: Innovations in Practice,

18 , 113–138 .

trawhacker, A., Govind, M., & Bers, M. (2022). Understanding the experiences of early

childhood professionals’ navigation of remote teaching and learning with technology

[Paper presentation]. American Educational Research Association Annual Meeting.

San Diego, CA.

ucker A., Deek F., Jones J., McCowan D., Stephenson C., & Verno A. (2003). A model

curriculum for k–12 computer science: final report of the ACM K–12 task force cur-

riculum committee. https://dl.acm.org/doi/book/10.1145/2593247 .

yler, R. W. (1949). Basic principles of curriculum and instruction . Chicago, IL: University

of Chicago press .

nahalekhaka, A., & Bers, M. U. (2022). Clustering young children’s coding project scores

with machine learning. In Proceedings of the IEEE global engineering education conference

(EDUCON) (pp. 79–85) .

ee, A. (2017). Coding literacy: How computer programming is changing writing . Cambridge,

MA: The MIT Press .

alker, D. (2003). Fundamentals of curriculum: Passion and professionalism (2nd ed.). Mah-

wah, NJ: Lawrence Erlbaum .

ing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33–35 .

ing J.M. (2011). Research notebook: Computational thinking —what and why. The link

Magazine, 6, 20-23.

https://doi.org/10.1080/08993408.2021.1956216
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0036
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0037
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0038
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0039
https://doi.org/10.1145/2485760.2485785
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0041
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0042
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0043
https://doi.org/10.1002/trtr.1885
https://doi.org/10.28945/4509
https://doi.org/10.7554/eLife.58906
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0047
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0048
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0049
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0050
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0051
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0052
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0053
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0054
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0055
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0056
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0057
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0058
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0060
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0061
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0062
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0063
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0064
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0065
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0066
https://doi.org/10.1007/s10798-015-9325-0
https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1007/s10956-020-09831-x
https://www.proquest.com/dissertations-theses/development-computational-thinking-skills-young/docview/2725323425/se-2
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0072
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0075
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0077
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0080
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0081
https://dl.acm.org/doi/book/10.1145/2593247
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0083
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0084
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0085
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0086
http://refhub.elsevier.com/S0885-2006(23)00057-1/sbref0087

	Coding as another language: Research-based curriculum for early childhood computer science
	1 Introduction
	2 Three theoretical frameworks
	2.1 Curriculum research framework
	2.2 Constructionism
	2.3 Positive technological development

	3 Pedagogical premise: coding as a literacy
	4 Powerful ideas of CAL
	5 The CAL curriculum
	6 CAL in action: studies description
	6.1 Methods
	6.2 Measures
	6.3 Pilot Study
	6.4 Results of pilot study: student learning outcomes
	6.5 Randomized controlled trial study
	6.6 Results of RCT study: student learning outcomes

	7 Discussion
	8 Conclusion
	Acknowledgment
	References

