
The Development of Computational Thinking Skills in Young Children

A Dissertation Submitted by

Emily Vera Relkin

In partial fulfillment of the requirements for the degree of Doctor of Philosophy

in Child Study and Human Development

TUFTS UNIVERSITY

June 10, 2022

Committee Members:

Marina U. Bers, Ph.D. (chair)

Eliot-Pearson Department of Child Study & Human Development, Tufts University

Sara K. Johnson, Ph.D.

Eliot-Pearson Department of Child Study & Human Development, Tufts University

Brian E. Gravel, Ph.D.

Department of Education, Tufts University

Gregory K.W. K. Chung, Ph.D.

National Center for Research on Evaluation, Standards, and Student Testing (CRESST), UCLA

2

Abstract

This study explores how children from two to nine years of age develop Computational Thinking

(CT) skills. The term “CT” denotes a set of cognitive processes that are useful for framing and

solving problems using computers and other information processing agents. Acquisition of CT

skills is traditionally associated with learning to code but other factors may influence accrual in

the course of normal development. To explore this issue, I examined two- to nine-year-old

children’s performance on four grade-specific versions of the 15-item TechCheck “unplugged”

assessment probing six domains of CT. I collected data from coding-naive children receiving the

version of TechCheck designed for their grade and compared their performance to that of

coding-naive students in one grade higher who were administered the same TechCheck version.

TechCheck scores in all grades were normally distributed. Mean scores were significantly greater

in students in the higher of each grade pair. This finding suggests that average performance in

solving unplugged problems that probe CT skills may improve with advancing grade in the

absence of coding instruction. Linear mixed modeling identified grade and the interaction of

grade with age as predictors of TechCheck performance in coding-naive students. Next, I

examined TechCheck data obtained from first graders before and after they received one of three

coding educational interventions. TechCheck scores improved significantly after children learned

to code compared to a non-coding control group, providing evidence that the acquisition of CT

can be accelerated by coding education. Finally, I explored whether grade and coding

interventions differentially affected performance across CT domains. With each advancing grade,

coding-naive students scored higher in all six CT domains evaluated. Children who were taught

to code showed more selective improvements in specific CT domains depending on which

coding educational intervention they received. Limitations to this study include the use of

heterogeneous cohorts drawn from multiple studies and the exploratory nature of domain

analysis using TechCheck. I conclude that CT skills can improve in the course of early childhood

without CS instruction, perhaps as a result of learning from everyday experiences, non-CS

education, and/or brain maturation. Learning to code at a young age, which is known to foster

improved communication and creative self-expression, can accelerate the acquisition of CT but

may have more selective effects on specific CT domains depending on how coding is taught.

Keywords

Assessment, Computer Science, Coding, Early Childhood, Child Development

3

Acknowledgements

This dissertation would not have been possible without those who have provided me with

immense support throughout my Ph.D. process.

First and foremost, to my wonderful advisor, Dr. Marina Bers. I am extremely fortunate

to have had you as my mentor. One of the best decisions I ever made was to volunteer at your lab

six years ago. Despite knowing absolutely nothing about the field at this time, I saw how special

the environment you had cultivated at DevTech was and I wanted nothing more than to be a part

of it. As soon as I became your Ph.D. student I realized I had found my academic niche. I’m sure

it wasn’t always easy mentoring me, especially in the beginning when I needed extra support to

get caught up to speed. You have consistently gone above and beyond for me and have provided

me countless invaluable learning opportunities that I never imagined I would have. It has been

truly an honor to be your student and to be consistently inspired, guided, and supported by your

leadership. You have had such a profound impact on both my personal and academic

development and I want you to stay my mentor and a big part of my life forever! I’ll be sure to

bring everything I have learned from you with me wherever I go next.

I truly believe I have the best possible Ph.D. committee. Dr. Sara Johnson is one of the

most caring and generous professors I have ever had. I cannot thank you enough for your

feedback and advice on my work throughout my Ph.D. and on my dissertation. The way that you

mentor your students is really something I admire. Dr. Brian Gravel was also an invaluable

member of my Master’s thesis committee. Your thoughts and feedback really molded TechCheck

into a better assessment. Thank you for completely changing my understanding of computational

thinking and research methods in general and continuing to push me to think in new ways. Thank

you to Dr. Gregory Chung who has been my biggest advocate and supporter, both with my

4

dissertation work and in my outside work at UCLA CRESST over the last two years. It has been

such a privilege to have had the opportunity to work alongside and learn from you and your

brilliant team. I hope I can continue to do so for many years to come.

I am deeply grateful to my family members who have provided me with unconditional

support throughout this process. My two incredible parents, my father, Dr. Norman Relkin, and

my mother, Dr. Felicia Relkin, both deserve their own honorary Ph.D. in Child Study and Human

Development for the immense support they have both given me not only during this process but

also through the hard work of raising me. Thank you for both pushing me to pursue a Masters

and Ph.D. in the first place. Thank you for the copious amounts of phone calls in which you were

asked to proofread, edit, practice presentations, or give research advice. Thank you in particular

for the moral support during the occasional late-night panicked phone call from me, such as the

time I spilled coffee on my computer and lost my 34-page final the day before it was due. I truly

couldn’t have done any of it without you. To my older brother, Paul Relkin, the family computer

scientist, thank you for always trying to teach me to code, hack, or play with robots when we

were kids and sorry that I was never interested in learning. As you can see from this dissertation

you finally succeeded in sparking my interest in this topic.

To my significant other, Dr. Myles Dworkin, you do the most amazing job of balancing

stress and lack of sleep due to life as a surgical resident while still providing me with immense

amounts of support in so many ways. Your dedication to your profession and research is

incredibly admirable and something that pushes me to also do better every day. I particularly

appreciate the cakes and celebrations that were provided after each Ph.D. milestone (shout out to

Sivan and Rosie Adler because we all know he didn't have time during work and they were the

5

real ones to pull that off). Thank you also to Myles’ parents and siblings who have welcomed me

into their family and have taken such good care of the two of us during these eventful years.

My sincere appreciation goes to the best team of researchers I could have asked for at the

DevTech Research Group. Each of you has had such an impact on my life! A special thanks to

Aim Unahalekhaka, Dr. Amanda Strawhacker, Dr. Madhu Govind, Dr. Amanda Sullivan, Dr. Jan

Yang, and Tess Levinson. Thank you to Dr. Laura de Ruiter who taught me how to analyze data

with R! The wonderful lab managers Riva Dhamala, Anne Drescher, and Jessica Blake-West

were so important in holding everything at the lab together and helping me stay on top of my

work. I also want to thank the following undergraduate and graduate students who helped with

these projects: Elizabeth Hunt, Melissa Veizel, Dr. Ziva Hassenfeld, Maya Morris, Jaclyn Tsiang,

Ari Lerner, Brendan Brennan, Hasan Khan, Alexa Hasse, Patrick Nero, Megan Bennie, Rachel

Viselman, Kaylyn Adams, and Hannah Riehl. Each of you made significant contributions to this

work, and I could not have gotten to this point without you.

Thank you to the members of the CRESST team at UCLA who have supported me in

various ways. Dr. Markus Iseli has been such a pleasure to work with and has helped me

understand the definition of computational thinking more comprehensively through natural

language processing. I’ll be sure to visit you in Switzerland! Dr. Yon Soo Suh is an incredible

research scientist and psychometrician and has taught me so many new statistical techniques.

Teanna Feng is one of the most dedicated and skilled Ph.D. students I’ve come across.

The Norfolk study project coordinator, Angela de Mik, I think, had the toughest job on

the project. Thank you for the immense amount of work you did on the ground to lead all of the

educators and students. You did whatever it took to help the teachers and students, even if that

meant jumping in and teaching the kids yourself! Thank you to the DOE study project

6

coordinators Parastu Dubash and Megan Bennie for your amazing organization skills and

willingness to help and answer any questions I had throughout these projects. This work would

not be possible without the Norfolk Public School ITRTs, The Shaffer Evaluation Group, and the

DevTech Assessment Team.

Thank you to Mika Fifi Relkin-Dworkin, the best cat I could have ever asked for. Thank

you for keeping me happy and giving me the best company while I wrote this dissertation.

Last but not least, I want to sincerely thank all of the educators, students, and parents who

made this project possible. My greatest hope is that this work can give back to them by

supporting young children’s learning and development.

This dissertation research utilized data from various studies generously supported by the
following grants:

Department of Defense Education Activity (DoDEA) through Grant “Operation: Break the Code
for College and Career Readiness”, Unique Entity Identifier: “WORLDCL10” awarded to the
Norfolk, Virginia Public Schools.

Education Innovation and Research, The U.S. Department of Education Through grant
PR/Award Number: U411C190006 awarded to the Tufts University DevTech Research Group.

The Institute of Education Sciences, U.S. Department of Education, through Grant Award
Number: R305A190433 awarded to the University of California, Los Angeles.

LEGO Foundation though Grant “Supporting and Amplifying Local Organizations Engaged in
Playful Engineering-Based Learning Post-COVID” awarded to the Tufts University DevTech
Research Group

7

TABLE OF CONTENTS

Abstract………………………………………………………………………………………….. 2

Acknowledgements…………………………...…………………………………..…………….. 3

Introduction…………………………...…………………………………..…………………….. 8

Statement of the Problem………...…………………………………..………………...……….. 12

Research Questions……………………………………………………..………………………..14

Background…………………………...…………………………………..………………….…..14

A Brief History of CT……...…………………………………..………………….……..14

Defining CT Domains.……...…………………………………..………………….…… 20

Powerful Ideas of CT for Early Childhood……………………..…………………….… 22

CT Assessment in Young Children……………………..……………………………..… 25

Unplugged CT Assessment……………………..………………….…………………… 27

The TechCheck CT Assessment………………..………………………..……………….29

Method………………………………...…………………………………..……………………..32

Experimental Design………………………………...………………………………….. 32

Data Sources………………………………...…………………………………………... 34

Coding Interventions………………………………...………………………………….. 35

Coding Curricula………………………………...……………………………………… 37

CT Assessment Administration………………………………...……………………….. 39

Data Analysis……..……………………………………………...………………………41

Results……………………………………………...…………………………………………… 43

RQ1……………………………………………...……………………………….43

RQ2……………………………………………...……………………………….54

RQ3……………………………………………...……………………………….57

Discussion…………………………………………….………………………………………… 65

Limitations and Future Work…………………………………………………….75

Conclusions……………………………………………………………………... 81

References………………………………………………………………………………………. 84

Appendix ………………………………………………………………………..……………...105

8

Introduction

In today’s digital world, technologies play an increasingly important role in nearly every

child’s life and development. In many countries, children begin to use smart technologies before

the age of two (AVG Technologies, 2018; Gerson, et al., 2022; OECD, 2010). Children’s access

to technology, their technological engagement, and their family’s perceptions of technologies can

have a significant impact on their developmental trajectory (Hartle, 2019). There is an evolving

need to align education with the socio-digital revolution that has impacted our lives and

educational systems so pervasively (Ezeamuzie & Leung, 2021).

Accordingly, one of the goals of computer science (CS) education is to foster the

development of a class of thought processes that facilitate problem solving with computers and

other technologies; these processes are known as “Computational Thinking” (CT). The

acquisition of CT skills is considered a vital goal of CS education because it can provide the

necessary cognitive framework for succeeding in today’s technology-driven society. CT skills

can enhance coding ability and promote problem-solving in other disciplines (Barr &

Stephenson, 2011; Bers, 2020; Chen et al., 2017; Cuny et al., 2010; Wing, 2006).

The precise definition of CT remains the subject of controversy. The definition has been

debated, as has the question of whether CT represents a singular unified concept or is

multifaceted (Barr & Stephenson, 2011; Grover & Pea, 2013; National Research Council, 2011).

For present purposes, CT can be broadly defined as a set of skills and processes that can be used

to represent and solve problems in a form that can be carried out by an information-processing

agent (human or machine) (Iseli et al., 2022; Wing, 2006, 2011). Further discussion of the history

of CT, its scope, and constituent domains is presented in the Background section below.

https://www.sciencedirect.com/science/article/pii/S0360131519303483#bib70

9

Until recently, most research on CT did not take into account the context of early

childhood. To address this gap, Bers (2018) reviewed the literature and identified twenty

powerful ideas of CT and CS that could be considered developmentally appropriate for young

children. The twenty ideas were based on frameworks such as Brennan and Resnick (2012),

Google for Education (2010), and years of research with the KIBO robotics kit and the ScratchJr

coding application (e.g., Portelance & Bers, 2015; Strawhacker et al., 2017; Sullivan et al., 2017;

Sullivan & Bers, 2017). Those ideas were ultimately distilled down to seven powerful ideas that

are developmentally appropriate for early childhood CS education. They include the domains of

hardware/software, algorithms, modularity, control structures, representation, debugging, and

design process.

Once the importance of CT was recognized in the context of CS education, a need arose

for reliable and valid methods of assessing CT. The majority of validated CT assessments are

designed for older children and adults (Chen et al., 2017; Fraillon et al., 2018; Román-González

et al., 2018; Werner et al., 2012). Very few CT assessments have been created for early

elementary school children and fewer have been tested with a substantial number of children to

confirm they have acceptable psychometric properties (Santos et al., 2020). The lack of a

gold-standard assessment of CT in early childhood made it very difficult to measure young

children’s progress in learning or gauge the effectiveness of CS lessons. The paucity of suitable

measures has been identified as an obstacle towards integrating CS education into early

elementary school settings (Lee et al., 2011; Lockwood & Mooney, 2018; Román-González et

al., 2019).

When I began my graduate studies in 2016, perspectives on children’s CT development

either came from small observational/interview-based studies in young children (e.g., Mioduser,

10

et al., 2009; Portelance & Bers, 2015) or were extrapolations from studies carried out in older

children and adults (e.g., Basu et al., 2016; Werner et al., 2014). At the time, the assessments that

did exist for early elementary school students were qualitative and typically required expert

scoring and administration. Instruments for assessing CT in older students and adults have

existed for some time and typically involved coding challenges requiring some familiarity with a

programming language (Chen et al., 2017; Fraillon et al., 2018; Werner et al., 2012). However,

coding-based CT instruments are subject to a floor effect in coding-naive students, which largely

precludes their use as a baseline measure in longitudinal studies. Furthermore, such measures

potentially conflate coding and CT skills (Yadav, et al., 2017a).

My initial venture into the area of CT assessments for young children occurred while

carrying out research towards my Master’s degree. It involved my creation of an adaptive,

interview-based assessment of CT and coding called “Tufts Assessment of Computational

Thinking in Children - KIBO Robot Version” (TACTIC-KIBO) (Relkin, 2018). This instrument

used the KIBO robot programming platform and employed coding challenges of increasing

complexity to evaluate CT proficiency in four to nine-year-old-children. TACTIC-KIBO drew

upon Bers (2018)’s Seven Powerful Ideas of CS as a basis for developmentally appropriate

assessment. Scores on this instrument showed good inter-rater reliability and content validity

when compared to expert ratings. However, TACTIC-KIBO suffered from the same scalability

issues, floor effects, and conflation of coding with CT as other coding platform-specific CT

assessment instruments.

By the time I started my doctoral studies, it was clear that a new approach was needed to

measure CT in young children. A major challenge was finding an approach that was free of any

dependency on a particular coding platform. In 2018, my advisor, Dr. Marina Bers, asked me to

11

create a version of TACTIC-KIBO that could be used in a large-scale study involving two

different coding educational platforms (KIBO and code.org). Because the instrument needed to

be administered to hundreds of students in classroom settings, I transformed TACTIC-KIBO

from an interview/play-based format into a multiple-choice assessment. Given the impracticality

of creating new versions of TACTIC every time a new programming platform was encountered,

Dr. Bers had the foresight to suggest that I start thinking about a future iteration of this

assessment that could be platform-independent.

The exercise of designing a version of TACTIC for the code.org platform ultimately

provided me with the inspiration for creating a platform-independent CT instrument, in line with

Dr. Bers’ suggestion. The inspiration came from the fact that the version of TACTIC for code.org

contained a few questions that can be described as “unplugged” challenges. Unplugged activities

have been used in CS education for many years as a means of invoking the principles of CS

and/or CT without requiring children to have any knowledge of programming (Bell &

Vahrenhold, 2018). Unplugged activities typically involve puzzles, games, and exercises that are

well known to most K-12 children and exemplify CS concepts without requiring knowledge of

coding or the use of computers. These activities have been used to teach CS concepts for over

two decades (e.g., CSUnplugged.com; code.org). Realizing that unplugged activities could

potentially be used to resolve the dependency on coding exercises used in previous instruments, I

set about creating a new type of CT assessment for young children.

I designed the TechCheck assessment to measure CT in early childhood in a format

suitable for use in general classrooms as well as large-scale research studies (Relkin et al., 2020,

2021; Relkin & Bers, 2021). TechCheck presents children with engaging puzzle-like challenges

that are analogous to those that arise in the course of computer programming but do not require

12

computers or coding experience to complete (Relkin et al., 2020, 2021; Relkin & Bers, 2020). In

2018-2019, I field-tested TechCheck in Boston area schools to establish its age-appropriateness

and criterion validity. TechCheck was then included among the instruments administered to

hundreds of kindergarten, first, and second grade students taking part in a study in Norfolk,

Virginia of a computer coding curriculum called “Coding as Another Language” (CAL). As a

consequence, TechCheck then became one of the first unplugged assessments of CT for young

children that had evidence of validity and reliability obtained from a large sample of students.

TechCheck was subsequently shown to be sensitive to change when applied longitudinally with

or without a coding intervention (Relkin et al., 2021).

Originally, I created a single version of TechCheck for kindergarten through second

grade. Initial experience with the assessment indicated that CT skills changed sufficiently over

this age range to warrant the creation of grade-specific versions. At the time of this writing, there

are four versions of TechCheck in use (PreK, K, Grade 1, and Grade 2). Although all of these

versions have been tested fairly extensively, only limited analyses have been performed across

studies. The availability of data on young children’s CT skills obtained from multiple studies

employing TechCheck presents a unique opportunity to explore how CT develops and how CS

education influences its development. Ways in which CT education and assessment can be

improved, in turn, may be suggested.

Statement of the Problem

Much of the current understanding about how children develop CT skills has been closely

tied to coding and CS education. There is little information available about how other processes

such as brain maturation, everyday interactions with technology, non-technological experiences

(including everyday problem solving), and educational interventions influence the ability of

13

young children to engage and master CT concepts. Using unplugged assessment, it is now

possible to study how these and other factors influence the acquisition and mastery of CT. This

recognition provides the motivation for the exploratory studies described in this dissertation.

An important question that has been largely unexplored in the childhood CT literature is

the extent to which CT skills accrue incidentally in the course of normal development versus

being acquired through CS education. There is an accepted relationship between learning to code

and the development of CT skills (Arfé et al., 2020; Lodi, 2020). However, there is little

information available on whether CT can be acquired in the absence of learning to code, and if

so, how that compares to CT skills acquired through coding and other CS education.

Figure 1

CT and Its Relationship to Young Children’s Everyday Life

Figure 1 lists examples of CT-related concepts that have analogies to activities that young

children typically engage in during the course of their everyday lives. It seems possible that

children can learn aspects of the reasoning involved in CT through these and other routine

experiences without necessarily having exposure to coding or other CS instruction. Likewise,

brain development throughout childhood could contribute to improvements in the various

14

cognitive functions that subserve CT skills, exclusive of learning to code (Arfé, et al., 2020).

This is a testable hypothesis, to the extent that one would expect at least some coding-naive

children to score well on unplugged CT assessments and for performance to improve with

advancing age/grade/experience.

Research Questions

In this dissertation, I explore how children develop CT skills in early childhood through

the following research questions:

RQ1. To what extent do CT skills differ in coding-naive children in preschool through third

grade?

RQ2. Which demographic and environmental factors predict baseline CT performance in

children ages 2-9?

RQ3. How do coding educational interventions (specifically CAL-ScratchJr, CAL-KIBO,

and codeSpark) affect the rate of acquisition of CT skills overall and in select subdomains?

Background

A Brief History of CT

Although the past two decades have seen a precipitous rise in interest in CT, it is not an

entirely new concept or term. The word “computation” comes from the Latin root

“computationem” which originally meant an “act, process, or method of arithmetic calculation”.

Earliest recorded use of the word “computational” reportedly dates to 1857 when it was taken to

mean, “pertaining to or of the nature of a computation” (etymonline.com). A few years prior to

the emergence of the term “computational”, Charles Babbage invented his “Difference Engine”,

which is often cited as the predecessor of modern programmable computers (Babbage, 1832;

Swade, 2005). In the 1940s, the term “computational thinking” was used to describe the types of

thought processes involved in projecting and quantifying future needs (Prakken, 1942). In this

15

context, “computational thinking” represented the thought processes one might use (perhaps

aided by a slide rule or an adding machine) to estimate future tax payments or calculate projected

travel expenses (The Mathematics Teacher, 1943).

It is important to clearly distinguish CT from terms such as “computing”, “Computer

Science (CS)” and “coding”, which are sometimes used interchangeably in ways that blur the

boundaries between them (Zhang & Nouri, 2019). “Computing” is a broad term that includes CS,

computer and software engineering, information technology, data science, and information

systems (Denning, 2007). CS is the study of computation. It is a discipline that includes artificial

intelligence, graphics, virtual reality, databases, and other branches (Barr & Stephenson, 2011).

Thus, CS is not limited to coding or CT, nor is CT exclusively a part of computer science as it is

applicable to a variety of fields and can be involved in everyday life activities (Li et al., 2020;

Relkin & Strawhacker, 2021). Coding (programming) is a technical skill that is described as “the

instrumental skill of CT” and is currently considered “the primary means of teaching CT in

primary school” (Arfé et al., 2020; Relkin et al., 2021; Román-González, et al., 2017; Wing,

2006). Coding is considered a part of CS and essential for all computer scientists to learn

(Ezeamuzie & Leung, 2021). CT skills may be acquired without the use of coding, for example

through unplugged activities (Bell et al., 2009; Hermans & Aivaloglou, 2017; Metin, 2020; Wohl

et al., 2015). Although CT is essential for programming computers, coding can be carried out

without CT. For example, coding using a copy-and-paste approach or rote memorization of

syntax could be considered programming without invoking CT (Bers, 2018; Bortz et al., 2019).

In reviewing the history of CT, at least three periods can be identified in which the

associated concepts underwent progressive development and refinement. I will refer to these as

the “Foundational,” Transitional” and “Modern” periods, respectively.

16

1. Foundational Period of CT

The foundations of modern conceptions of CT can be traced back to the 1960s. Alan

Perlis was one of the first computer scientists to advocate for the inclusion of computer

programming in higher education. He argued “One of the problems is that the pedagogy for

computers hasn’t yet been developed properly” (Katz, 1960, p. 522). Knuth (1974), another

well-regarded computer scientist and mathematician, echoed this notion and wrote about how

using an algorithmic approach to programming can deepen understanding of concepts in many

disciplines. The computer scientist Edsger Dijkstra (1979) wrote about computational habits that

aided in successful computer programming. These habits included separation of concerns,

effective use of abstraction, the design and use of notations tailored to one's manipulative needs,

and avoiding case analyses.

One of the first uses of the actual term “CT” in relation to computer science was by

Seymour Papert in his book Mindstorms (Papert, 1980). Papert made a brief reference to CT in

the context of discussing the challenge of integrating CS education with children’s everyday

experiences. Papert briefly mentioned CT again in reference to the expertise of the scientists who

first used computers to calculate missile trajectories (Papert, 1993). He later used the term in a

discussion of methods for solving geometric problems in which he contrasted the use of a Monte

Carlo simulation with the application of Euclidean geometry tools. He made the point that

computational solutions could foster a better understanding of underlying mathematical concepts

(Papert, 1996). In these and other publications, Papert’s concept of CT is tied to Constructionism,

which is the principle of epistemology that posits that knowledge can be acquired by the physical

manipulation/ programming of objects such as computers and other technological tools (Papert &

Harel, 1991). Papert had added to Piaget’s Constructivist theory by taking into account the

17

environment, artifacts, and individual decisions involved in constructing knowledge. Papert’s

conception of CT includes the principle that social and emotional involvement with technology

can make programming an effective tool for learning other disciplines (Lodi & Martini, 2021).

Papert used the term “powerful ideas” more frequently than “computational thinking” in

referring to concepts that afford new ways of thinking and applying knowledge (Bers, 2017;

Papert, 2000).

2. Transitional Period of CT

diSessa (2000) wrote about the concept of “computational literacy,” a term that overlaps

with modern definitions of CT. Both CT and computational literacy highlight the importance of

engaging in computation for the development of certain aspects of cognition. diSessa

distinguished between computer literacy, which primarily involves familiarity with the operation

of computers, and computational literacy, which he likened to textual literacy in its breadth and

importance. In more recent publications, diSessa (2018) and Li et al., (2020) have argued that

computational literacy is a broader concept than CT because it emphasizes the social and cultural

aspects of computing and not just the cognitive impact of learning to code.

Wing’s seminal article popularized CT as a fundamental skill set useful for solving

problems, designing systems, and understanding human behavior (Wing, 2006). She argued that

“everyone could benefit from thinking like a computer scientist” and that CT should be added to

every child’s education just like reading, writing, and arithmetic. Cuny et al. (2010) later

redefined CT as “...the thought processes involved in formulating problems and their solutions so

that the solutions are represented in a form that can be effectively carried out by an

information-processing agent” (p. 1). Wing’s perspective on CT differed from that of Papert and

other CS scholars that preceded her (Denning, 2017). Papert emphasized the value of knowledge

18

and intuitions built from interactive experiences with technological tools. Wing’s definition

placed more of an emphasis on the concepts associated with programming and less on learning

from experience through exposure to technological tools. Wing (2008) argued:

We also do not want people just to be able to use the tool but not have learned the

concepts (a case in point: using a calculator versus understanding arithmetic). Worse, we

do not want people to come away thinking they understand the concepts because they are

adept at using the tool (p 3721).

Barba (2016) notes that CT as proposed by Wing (2006) does not embody many of the

main ideas Papert (1996) proposed. Wing’s formulation is contrary to Papert’s “Power Principle”

which is the idea that students should first experience computational tools and later

construct/understand the associated concepts. Papert recognized when concepts are taught out of

context they can become disempowered and no longer personally meaningful to the student. An

editorial by Denning (2017) summarized the difference between “Traditional CT” (as envisioned

by Papert, Knuth, Dijkstra, etc) and “New CT” (as followed from Wing’s seminal 2006 article).

(Table 1). Denning notes that in “Traditional CT” the process of coding leads to the acquisition

of CT, whereas in “New CT” learning CT concepts tends to promote programming skills.

3. Modern Period of CT

Inspired by the groundwork of Papert, diSessa, Wing, and others, the Modern period has

produced a plethora of definitions and categorizations of CT. The operationalization of CT

helped establish it as a core competency of CS education. The lack of consensus about the

definition of CT may be attributed to the diverse backgrounds and perspectives of the defining

experts and their varied motivations (e.g., educational, research, policy). Another factor is

changes in affordances as programmable technologies evolve.

19

Table 1

Differences between “Traditional” and new CT

Note: This table is from Denning (2017)

CT is now characterized in many different ways. Many researchers agree that CT can be

broadly and generically defined in ways that focus on universal problem-solving skills (Lodi,

2020; Tikva & Tambouris; 2021; Zhang & Nouri, 2019). CT has also been operationalized as a

multifaceted concept, practice, or competency that includes domains such as sequences, loops,

algorithmic thinking, debugging, parallelism, and events (Brennan & Resnick, 2012; Ezeamuzie

& Leung, 2021; Tikva & Tambouris, 2021; Zhang & Nouri, 2019). Iseli et al. (2022) further

broke down these concepts into emergent constructs (that arise from CT), contributing constructs

(that contribute to CT), and coding concepts (directly related to computer programming). Some

20

scholars define CT as “transversal” or allowing for the transfer of knowledge and expansion of

CT beyond computer science and programming (Li et al., 2020; Lodi, 2020). CT has been

recognized as having psychological effects that change views students form about the world

around them and about themselves (Brennan & Resnick, 2012; Li et al., 2020). The majority of

definitions relate CT to coding in some way, as well as with more general problem-solving skills.

During the “modern” period of CT, various scholars tried to define the domains

underlying CT as part of establishing it as a core competency in K-12 education. An even clearer

tendency to connect coding and CT concepts is evident in the categorization of CT domains,

described below.

Defining CT Domains

The plethora of CT domain definitions in the literature has made it difficult to

standardize and compare studies and methods of teaching (Ezeamuzie & Leung, 2021). A

summary of the domains in major papers within the CT literature can be found in Table 2.

Table 2

CT domains that have been identified by key authors

21

Wing (2008) subsequently refined her previously broad statements by identifying certain

domains of CT. She emphasized that abstraction and automation were the core concepts of CT. In

2010, the National Research Committee conducted a workshop to discuss how to best introduce

CT to students (NRC, 2010). Wing’s (2006,2008) statements about CT were expanded with

concepts such as debugging, testing, and abstraction. Wing and her colleagues added some of the

same concepts mentioned by NRC (2010) such as logic, algorithms, parallelism, pattern

matching, recursion and procedural thinking to the earlier 2006 and 2008 formulations (Cuny et

al., 2010).

Barr and Stephenson (2011) and The Computer Science Teachers Association (CSTA), as

well as the International Society for Technology in Education (ISTE), were the first to frame CT

domains in the specified context of grades K-12. Barr and Stephenson (2011) provided examples

of CT applications in disciplines such as Math, Science, Social Studies, & Language Arts (see

table 2). CSTA and ISTE developed a framework for grades K-12 that includes nine concepts of

CT (CSTA & ISTE, 2011). They also provide a list of problem-solving characteristics that CT

includes, such as “logically organizing and analyzing data” and dispositions/ attitudes that are

essential to CT such as “persistence in working with difficult problems”. Google (n.d.) reiterated

the list of CT characteristics and dispositions/ attitudes put forth by CSTA and ISTE (2011).

Google also adds a list of CT concepts/ mental processes (e.g. abstraction, algorithm design,

decomposition, pattern recognition) and tangible outcomes (e.g. automation, data representation,

pattern generalization) associated with solving problems in computing (Google, n.d.; Lodi,

2020).

As the body of CT literature grew, a plethora of review articles followed, some of which

attempted to reach a consensus about the domains underlying CT. Selby and Woollard (2013)

22

reviewed some of the same CT domains as mentioned by previous scholars but excluded ones

such as automation and modeling/ simulation from their definition because of lack of appearance

within the previous CT literature of that time. Kalelioğlu et al. (2016) conducted an inductive

qualitative content analysis on 125 CT papers. The authors analyzed CT definitions and features

of CT domains. They then formulated their own framework for CT as a problem-solving process.

Shute et al. (2017) described CT as having 6 main facets (see table 2). As shown in table 2,

www.CSunplugged.org categorized CT into six skills that are used throughout their lessons to

teach unplugged CT to children (Bell & Lodi, 2019). The skills were based on previous work by

Selby and Woollard (2013). Ezeamuzie and Leung (2021) classified CT components as either

“significant components” or “non-significant components” and found that “abstraction” was the

most mentioned subdomain in their literature review. Abstraction has also been mentioned as a

central concept of CT by a plethora of other authors (Aho, 2012; Cetin & Dubinsky, 2017;

Grover & Pea, 2013; ISTE & CSTA, 2011; Kalelioğlu et al., 2016; Wing, 2006, 2011). Similarly,

Tikva and Tambouris (2021) reviewed 57 papers and listed the most common CT elements which

were “abstraction”, “sequences” and “loops” among other domains.

Nearly all categorizations of CT domains draw upon the computer programming

nomenclature, which furthers the perception that CT and coding are inexorably linked. Although

educators have recognized that students can be introduced to the concepts embodied in the

various CT domains through “unplugged” exercises, the CT domain nomenclature tends to be

based on CS terms and coding-related concepts.

Powerful Ideas of CT for Early Childhood

Among the many CT domains that have been enumerated by authors in this field, a subset

can be considered developmentally appropriate constructs for young children. A

23

developmentally appropriate construct is one that can be learned and understood at a particular

stage of cognitive and social/emotional development. Developmental stage can impact a child’s

ability to understand certain CS concepts and their readiness for CT assessment (Chen et al.,

2017). Bers (2018) used the various domain definitions described above to identify seven

powerful ideas of CS and CT that could be considered developmentally appropriate for early

elementary school children. These included the following:

1. Algorithms: A series of ordered steps that help solve problems or complete tasks (Yadav

et al., 2017b). Sequencing is related to algorithmic thinking. Some have suggested that

one exercises algorithmic thinking in everyday life activities such as brushing teeth or

following a cooking recipe (Relkin & Strawhacker, 2021; Yadav et al., 2017b). Others

suggest that sequencing and algorithmic thinking differ because algorithmic thinking

must always be used to control “some abstract machine or computational model without

requiring human judgment.” (Denning, 2017). Bers (2018) suggested that it is helpful to

teach the concepts of algorithmic thinking and sequencing together to young children. As

they get older, it becomes possible for them to untangle the two concepts.

2. Modularity: Modularity uses decomposed units (or modules) to break down complex

processes and make them easier to handle. The modules can then be combined and/or

reused to create a more complex process (Bers, 2018; Shute et al., 2017). Bers (2018)

states that unplugged modularity and decomposition are often practiced in early

childhood and gives an example of breaking down steps needed to plan a birthday party.

3. Representation: Representation involves understanding and applying symbol systems

(Grover & Pea, 2013). Representation allows us to collect and interpret data.

24

Understanding that concepts can be represented with symbol systems is foundational to

early childhood math, literacy, coding, and other disciplines (Bers, 2018).

4. Debugging: Debugging is the process of systematically finding and fixing errors (bugs)

to solve a problem or complete a task. It is often an iterative process involving testing and

modifying (Grover & Pea, 2013). It often involves using skills such as logical thinking,

problem solving, evaluation, and perseverance (Bers, 2018). In early childhood, children

learn to “debug” as part of their everyday lives, for example, by fixing mismatched socks

or by identifying and editing mistakes in their writing.

5. Control Structures: Control structures involve a set of rules that only operate under

certain conditions and determine the order or sequence of subsequent events in an

automated process (Bers, 2018). As children develop abstract reasoning skills, they may

engage with control structures involving repeat functions, loops, conditionals, events, and

nested structures. Use of statements such as “if, then, else, or while” often indicate that

conditionals contributing to control structures are being used (Relkin & Strawhacker,

2021).

6. Hardware/Software: Hardware and software can be seen as a basis for understanding

automation. In early childhood, children begin to understand the differences between

hardware and software as well as the relationship between the two. As children grow they

start to recognize that smart objects are programmed by humans and are not magical

(Bers, 2018).

7. Design Process: In computer science, creative design is an iterative process that involves

using technological materials to create, design, and express oneself (Brennan & Resnick,

2012). Bers (2018) describes the design process in early childhood as a series of often

25

iterative steps that have no correct order or starting point: ask, imagine, plan, create, test

and improve, and share.

Although the above definitions appear to describe discrete concepts, many of the domains

of CT are closely related and may therefore be interdependent. Few formulations of CT have

taken these interactions into account. For the purposes of this dissertation, domains will be

treated as separate entities and interactions between domains will not be considered.

CT Assessment in Young Children

Defining CT and its constituent domains has provided an important foundation for the

creation of CT assessments. Designing a developmentally appropriate CT instrument for young

children is challenging. For example, a kindergarten student may not be able to fully understand

abstract CT/ programming concepts such as complex “if-then” conditionals (Barrouillet & Lecas,

1999; Janveau-Brennan & Markovits, 1999; Muller et al., 2001). Aspects of abstract

representations such as programming variables may be inaccessible. They may express magical

thinking as an explanation for the action of computers and other technology (Flavell et al., 1993;

Mioduser et al., 2009). Cognitive development in early elementary school progresses rapidly,

which may necessitate using different instruments in different grades (as is the case in the present

study). These and other considerations must be taken into account when designing CT

assessments for young children (Tang et al., 2020).

Initial attempts to create CT instruments for early age groups used techniques such as

portfolio analysis, including interviews and/or observational methods (Bakala et al., 2021). For

example, Mioduser and Levy (2010) presented pre-programmed LEGO robotics construction

tasks to kindergarten-age children and their CT level was qualitatively assessed by analyzing the

terms that children used to describe the robot’s actions as it navigated through a constructed

26

environment. In that study, children who attributed the robot’s actions to magic were given low

CT skills ratings, whereas those who provided mechanical explanations were considered more

advanced. Wang et al. (2014) used a similar approach with five to nine year-old-children, who

were asked open-ended questions about a tangible programming task that they created called

“T-maze”. "T-maze" uses TopCode to convert physical programs into digital code (Horn, 2012).

The researchers identified elements of CT in the children’s responses (e.g., abstraction,

decomposition) as a basis for determining whether the children grasped these concepts. Bers et

al. (2014) created a checklist to assess programs created by kindergarteners (ages 4.9 to 6.5 years

old) exposed to a tangible and graphical programming language called CHERP. During one

session, children were tasked with programming their robot to dance the “Hokey Pokey”. The

researchers then assessed four CT concepts by scoring children’s projects on a Likert-type

response scale. Moore et al. (2020) used task and interview techniques to assess CT. Three

participants were videotaped while they were interviewed and performed tasks using the Code

and Go Robot Mouse Coding Activity (Learning Resources, Vernon Hills, IL). Researchers

explored qualitatively how children use representations and translations to invent strategies for

solving problems. Portelance and Bers (2015) conducted an exploratory study that assessed CT

in young children by analyzing ScratchJr artifact-based video interviews of students in pairs.

Researchers then analyzed videos of the dyads using holistic coding to identify categories.

Although interview and observational assessments can provide useful information about a

child’s CT skills, the format of these assessments and the time they require makes them

unsuitable for administration outside of specific research settings. The interview-based approach

is time-consuming, subjective, and may be further limited by a child’s capacity to verbalize their

thought processes.

27

Some recent attention has been paid to creating activity-based CT assessments for young

children. Marinus et al. (2018) created the Coding Development (CODE) Test 3–6 (for children

between three and six years of age), which uses the robot Cubetto. CODE requires children to

program the robot to go to a specified location on a mat by inserting wooden blocks into a

“remote control.” The task is to either build the program from scratch or debug an existing

program. Children are given maximally three trials to complete each of the 13 items, with more

points being awarded if fewer attempts are needed. Although the authors state that CODE is

meant to measure CT, their assessment requires coding knowledge which raises the possibility

that their assessment conflates coding with CT skills.

Unplugged CT Assessment

It is advantageous to be able to measure CT skills in children regardless of whether they

have past knowledge or experience with computer programming (Grover et al., 2014). With this

in mind, my colleagues and I at the DevTech Research Group at Tufts University and other

groups began exploring the use of code-free instruments to assess CT skills in children. In recent

years, unplugged challenges have started to be used for the purposes of assessment in older

children (e.g., Dagienė & Stupurienė, 2016; Román-González et al., 2018). Unplugged

assessments offer certain advantages because they do not rely on a particular computer language

or curriculum and may therefore be “purer” reflections of CT abilities (Dagienė, & Futschek,

2008).

Since 2018, at least five different studies characterizing unplugged CT assessments

designed specifically for young children have been published. The measures include: the

Computational Thinking Assessment (CTA) (Tran, 2019), TechCheck (Relkin et al., 2020; Relkin

& Bers, 2021), The Computational Thinking Test for Beginners (BCTt) (Zapata-Cáceres et al.,

28

2020), the Computerized Adaptive Programming Concepts Test (CAPCT) (Hogenboom et al.,

2021), The Competent Computational Thinking Test (cCTt) (El-Hamamsy et al., 2022). All five

use unplugged challenges to probe CT domains and can be administered to children who lack

prior coding experience. These instruments differ in the types of unplugged challenges they

include, the CT domains assessed, the age ranges they cover, and the time required to complete

and score the respective assessments (see Table 3). The cCTt is an updated, more difficult

version of the BCCt designed specifically for 3rd and 4th grade students. Some of the concepts

probed by the cCTt, the BCCt, the CAPCT, and the CTA such as complex conditionals may be

too difficult for very young children on developmental grounds (Barrouillet & Lecas, 1999;

Janveau-Brennan & Markovits, 1999; Muller et al., 2001). In addition, the CAPCT and the CTA

require more advanced language and mathematical skills than typical K-2 students possess.

Table 3

A Comparison of Five Unplugged CT Measures for Young Children (ages 2-10)

The CTt for
Beginners
(BCTt)

The Competent
Computational
Thinking Test
(cCTt)

TechCheck Computerized
Adaptive
Programming
Concepts Test
(CAPCT)

Computational
Thinking
Assessment
(CTA)

CT Concepts Sequences,
Loops
(Simple,
Nested),
Conditionals
(If-Then,
If-Then-Else,
While)

Sequences, Loops
(Simple, Nested),
Conditionals
(If-Then,
If-Then-Else,
While)

Algorithms,
Modularity,
Debugging,
Hardware/Software,
Control Structures,
Representation

Basic Sequences,
Loops,
Conditions (If &
If-Else
Statements),
Debugging,
Multiple Agents,
Procedures,
Generalization

Sequences,
Algorithms,
Loops,
Debugging,
Conditionals

Format
Type

Pen and paper
Multiple
choice

Pen and paper
Multiple choice

Pen and paper
Online
Multiple choice

Online
Adaptive

Pen and paper
Yes/No
Prose responses

Items 25 items 25 items 15 items 4486 items
(utilizes
alternative forms
of the same
items)

10 items

29

Administrator
Needed

Yes Yes Yes No No

Average
Testing Time

40 minutes 30-35 minutes 13 minutes Children play for
as long as they
want

6-10 minutes

Sample 299 students 1519 students 1844 students 93,341 students 183 students

Age Range 5-12
(1- 6th grade)

7-9
(3-4th grade)

2-9
(PreK – 2nd grade)

6-13
(1– 7th grade)

N/A
(3rd grade)

Note. BCTt: The CTt for Beginners (Zapata-Cáceres et al., 2020); cCTt: the Competent

Computational Thinking Test (El-Hamamsy et al., 2022); TechCheck (Relkin et al., 2020),

CAPCT: the Computerized Adaptive Programming Concepts Test (CAPCT) (Hogenboom et al.,

2021); CTA: the Computational Thinking Assessment (Tran, 2018).

The TechCheck CT Assessment

I have gone into considerable detail in describing unplugged CT assessment because the

current study leverages the benefits of unplugged assessment for evaluating CT skills of

coding-naive children, which could not be readily done with instruments that require

platform-dependent coding skills.

This study employs TechCheck (Relkin et al., 2020), which was developed based on six

of the seven Powerful Ideas of CS put forth by Bers (2018). Design Process, one of the Powerful

Ideas, was excluded because it is an iterative and open-ended process that does not lend itself to

a short, multiple-choice assessment. A group of nineteen evaluators (CS researchers, educators

and students) with various levels of expertise in CT were assembled to establish a consensus

about which of the domains of Bers’ Seven Powerful Ideas were embodied in each of the

questions. Inter-rater agreement was then assessed. There was an average agreement of 81%

among raters. Fleiss’ Kappa indicated consensus among evaluators about the CT domain most

associated with each question κ = 0.63 (95% CI) p < 0.001. Although all prototypes were judged

to probe the intended CT domains, some questions were rejected because their content was

30

judged to fall outside the common knowledge base of typical five- to nine-year-old children

(Relkin et al., 2020).

TechCheck was initially tested in a cohort of 768 first and second graders (ages 5-9)

participating in a research study involving the CAL-KIBO curriculum. Students from eight

schools were involved in the coding, robotics, and literacy curriculum for 2 hours per week over

6 weeks (second graders) or 7 weeks (first graders). Scores on TechCheck showed good

reliability and validity according to classical test theory (CTT) and item response theory (IRT),

models that are commonly used to better understand the relationship of assessment items to the

underlying concepts being measured (Kingsbury & Weiss, 1983). The mean difficulty index of

all items was − 1.25 (range = − 2.63, .7), the mean discrimination index was 1.03 (range = 0.65,

1.41). The coefficient alpha indicated a moderate level of internal consistency (α = 0.68) (Hinton

et al., 2004). The assessment scores were normally distributed, and the assessment readily

distinguished among young children with different CT abilities. TechCheck scores correlated

moderately (r = .53, p < .001) with the previously validated CT assessment tool called

TACTIC-KIBO that classifies each child in one of four programming proficiency levels derived

from the Developmental Model of Coding (Vizner, 2017). Scores were also highly correlated

with expert ratings of children’s CT skills, indicating criterion validity.

In a prospective longitudinal study, Relkin et al. (2021) used TechCheck to compare

children receiving the CAL-KIBO programming curriculum (N = 667) to a control group (N =

181) who participated in typical classroom activities without coding (No-CAL). Over the course

of the study, children who received CAL-KIBO improved on TechCheck (Mchange= 0.94, p <

0.001) whereas the No-CAL group did not change significantly (Mchange=0.27, p = .07). The mean

difference in baseline scores (2.54 points) divided by the mean difference in the ages of first and

31

second graders (1.30 years) was used to calculate the approximate expected change in TechCheck

scores between first and second grade (1.95 points/year). The CAL-KIBO group’s TechCheck

change scores equated to the change in scores estimated to occur over approximately 6 months of

typical development. Generalized Linear Mixed Model (GLMM) and Bayesian linear mixed

modeling revealed that exposure to the CAL-KIBO curriculum predicted the TechCheck outcome

score, considering differences in baseline TechCheck performance and other demographic and

environmental effects. Regression analyses indicated that baseline TechCheck scores predicted

performance on KIBO Mastery Challenges (KMCs), a formative measure of coding proficiency

(Relkin & Bers, 2020). In addition, teacher proficiency in CT as measured by the TACTIC-KIBO

instrument prior to implementation of the CAL-KIBO curriculum as well as school significantly

predicted changes in student learning as measured by TechCheck (Relkin & Bers, 2021).

Children who received CAL-KIBO showed the most improvement in the CT domains

algorithms, modularity, and representation.

The results observed with TechCheck scores in the above-described longitudinal study

indicate that the assessment is sensitive to change. The longitudinal study was the first to use an

unplugged CT assessment designed for young children with a sizable control group of

coding-naive students. Although results using TechCheck in first and second graders were

encouraging, there was a noticeable ceiling effect in the second-grade cohort manifesting in a

smaller window to observe change compared to the first-grade cohort. The observed ceiling

effect motivated the creation of grade-specific versions of TechCheck (Figure 2). The original

version was renamed “TechCheck-1” for first graders. I created and collected validity evidence

for TechCheck-K for Kindergarten aged children (5-6 years old) (Relkin & Bers, 2021) and

TechCheck-2 for children in second grade (7-9 years old) (Relkin, 2021). TechCheck-Pre-K was

32

created more recently and validated for preschool children between three to five years of age

(Relkin & Bers, under preparation). In the preschool version, item difficulty was reduced and all

text was removed to limit distraction. TechCheck-PreK requires a proctor to read a script to the

child and currently must be administered in a one-on-one setting.

Figure 2

Example Algorithms items from the grade-specific versions of TechCheck

Method

This dissertation draws on data obtained with the four grade-specific versions of

TechCheck to explore how young children learn and develop CT skills.

Experimental Design

RQ1: To what extent do CT skills differ in coding-naive children in pre-K through third

grade?

The strategy for addressing this question involves the analysis of TechCheck data collected from

coding-naive children in grade pairs, as shown in Figure 3. I collected data from coding-naive

children receiving the version of TechCheck designed for their grade and compared their

performance to that of coding-naive students in one grade higher who were administered the

same TechCheck version. The data analyses include the Welch two sample t-tests to examine

33

statistical significance of differences between means, linear regression to estimate the annualized

rate of change between grades, and Crossed Random Effects Modeling for domain analysis

examining the percent correct responses in each of the six CT domains for children in each grade

pair.

Figure 3

Grade pairings used to address RQ 1.

RQ2: What demographic and environmental factors predict CT skills in coding-naive

children?

To answer this question, I conducted Linear Mixed Modeling (LMM) on TechCheck data for

coding naive children in grades Pre-K, K, 1 and 2 who received the grade-optimal version of

TechCheck. The outcome variable for the model is TechCheck total score. Fixed effects included

age, grade, gender, disability status and race/ethnicity. Random effects included

Teacher/Classroom, School and District. Possible interactions were also included in the model. I

previously created a normalized scoring system to compare TechCheck total scores across grades

using the grade-specific versions of TechCheck (Relkin et al., 2022; Relkin, 2022). The

34

normalization uses z-scores to take into account differences in baseline score distributions for the

grade-specific versions of TechCheck. Percentile ranks were then derived from the z-scores.

RQ3: How do coding educational interventions (specifically CAL-ScratchJr, CAL-KIBO,

and codeSpark) affect the rate of acquisition of CT skills overall and CT domains?

To explore this question, I examined longitudinal outcomes from three coding interventions in

which TechCheck was administered before and after children participated either in a curriculum

teaching them to code or regular classroom activities (control group). Analysis methods included

paired sample t-tests and Cohen’s d effect size calculations, as well as LMMs of longitudinal

changes in total score and domain change scores.

Data Sources

The analyses described in this dissertation include newly collected data (Table 4, study 1)

and data from past studies. Newly collected data included students in preschool, kindergarten and

first grade with no formal coding education prior to enrollment in the study. The historical data

used for this dissertation (Table 4, studies 2-8) included students in pre-kindergarten through 3rd

grade who were enrolled in studies using TechCheck conducted at various times between 2019

and 2022. The children were between the ages of two and nine and enrolled in schools located in

Virginia, California, Minnesota, Arkansans, Massachusetts, and Missouri.

All studies were approved by the Tufts Social and Behavioral Research IRB (protocols

1105050, 1810044) and/or the University of California Los Angeles IRB (protocol 19-002034).

In addition to parent/guardian consent, student verbal assent was obtained prior to the

administration of TechCheck.

35

Table 4

Summary of Data Sources

Study N RQ Location Year Control
Group

Grades Assessed

1 Dissertation
Data Collection

72 1,2 NYC; MA 2022 K,1

2 CAL-KIBO 848 1,2,3 VA 2019-20 X K,1,2
3 Pilot

CAL-ScratchJr
161 1,2,3 MN; AR;

CA
2020-21 K,1,2

4 DOE Impact
CAL-ScratchJr

1244 1,2 MA; RI 2021-
Ongoing

X K,1,2

5 UCLA CRESST
codeSpark
Academy

72 1,2,3 CA 2021-22 1,3

6 CAL-ScratchJr
Camp

59 1,2 Virtual 2020 K,1,2

7 Head Start 79 1,2 MO 2021-22 X PreK

8 Horizons
CAL-KIBO

55 1,2 MA 2021-22 PreK

Coding Interventions

The platforms and curricula that were employed as educational interventions in these

studies are as follows:

KIBO

KIBO is a screen-free robotics kit that is developmentally appropriate for PreK through

second grade children. KIBO teaches children to code using tangible wooden blocks that can be

sequenced and scanned with the robot’s embedded barcode reader. Each block represents an

action that the robot performs. In addition to the programming blocks, children can connect

sensors, modules, and art platforms to their robot which gives them a unique opportunity to use

their creativity to make personally meaningful projects.

36

ScratchJr

ScratchJr is a free screen-based programming application for young children grades K

through 2. ScratchJr allows children to engage with open-ended programming by utilizing virtual

coding blocks. Children can create their own games, stories and other projects. ScratchJr allows

children to learn programming concepts such as sequencing, loops, conditionals, parallelism, and

more. Children can also exercise their creativity by customizing their projects with backgrounds

and characters. As of October 2021, ScratchJr had been downloaded over 27 million times across

194 different countries (Bers et al., 2022).

codeSpark

codeSpark Academy is a screen-based programming application for children ages 5-10.

The self-paced game uses virtual programming blocks to engage children in multiple levels that

vary in terms of puzzle difficulty. The game covers various coding concepts such as sequences,

parameters, loops, events, and conditionals. In addition to solving pre-determined puzzles,

codeSpark includes a more open-ended “Game Maker” in which children can create and

customize their own puzzles that they can then play themselves or share with others.

Prior Research on Included Coding Platforms

Both KIBO and ScratchJr have been subjected to numerous studies that have found

benefits for young children including, but not limited to, promoting self-expression and

social-emotional skills, sequencing skills, problem solving, parent-child interactions,

communication, coding, and CT skills (Bers, 2020; Govind et al., 2020; Strawhacker & Bers,

2019; Strawhacker et al., 2017; Relkin et al., 2020; Relkin et al., 2021)

To date, limited research exists on the codeSpark platform. One exploratory study

conducted by KnowProgress with 27 children found that children’s sequencing, CT, and

37

problem-solving skills all significantly improved after just 90 minutes playing codeSpark

(Denniston et al., 2015). In another study conducted by WestEd, 93 children either assigned to

receive codeSpark or a control group were administered a sequencing assessment. Although

children’s scores increased from baseline to after the intervention, there was no significant

difference between treatment and control (Grillo-Hill et al., 2019). These pilot studies were

preliminary and more research is needed to determine codeSpark’s impact.

Coding Curricula

Coding as Another Language (CAL) Curricula

The CAL curricula are designed to teach coding and CT to young children while

simultaneously promoting literacy skills (Bers, 2019; Hassenfeld et al., 2020). The curricula

promote self-expression analogous to that provided by use of symbolic written languages (Bers,

2018, 2019). Bers’ Powerful Ideas provided the main content foundation for the curricula.

Beyond coding, CT, and literacy, these curricula strongly emphasize the building of

social-emotional skills. The curriculum aligns with the Positive Technological Development

(PTD) framework, which encourages students to engage in six positive behaviors: content

creation, creativity, choices of conduct, communication, collaboration and community building

(Bers, 2008, 2012, 2017, 2020). Each lesson in the curriculum also promotes multiple virtues

from “The Pallet of Virtues”: Curiosity, Perseverance, Open-Mindedness, Optimism, Honesty,

Patience, Generosity, Gratitude, Forgiveness, and Fairness (Bers, 2022).

The CAL curricula are platform-specific. There are three curricula for the ScratchJr

platform (CAL-ScratchJr) designed for kindergarten, first and second grade respectively called

CAL-ScratchJr. There are four curricula for the KIBO platform (CAL-KIBO) designed for

preschool, kindergarten, first, and second grade students. The curricula align with various

https://www.sciencedirect.com/science/article/pii/S0360131521000993#bib11
https://www.sciencedirect.com/science/article/pii/S0360131521000993#bib38
https://www.sciencedirect.com/science/article/pii/S0360131521000993#bib11
https://www.sciencedirect.com/science/article/pii/S0360131521000993#bib11
https://www.sciencedirect.com/science/article/pii/S0360131521000993#bib12

38

standards for CS, literacy, and math such as the Common Core English Language Arts

(ELA)/Literacy Framework, Common Core Math Standards, ISTE Student Standards, and the

K-12 Computer Science Framework.

codeSpark Academy Curriculum

The codeSpark curriculum consists of twenty-five 30-minute lessons that cover ten CS

concepts. The lesson activities are categorized in an “Engage, Explore, Enrich” framework.

“Engage” involves children first being introduced to the concept, typically through unplugged

activities. “Explore” involves hands-on codeSpark game-play. Lastly, “Enrich” involves

connecting the concept to the real world, often through additional unplugged activities and/or

discussion. The curriculum aligns with math, science, and computer science standards such as

CSTA (2017) and the Common Core English Language Arts (ELA)/Literacy Framework.

Comparison of Curricula

The interventions described above have many similarities and differences. There is only

one curriculum for codeSpark that covers all elementary school ages, whereas CAL-KIBO and

CAL-ScratchJr feature 3-4 different curricula based on a child’s grade. CAL-KIBO and

CAL-ScratchJr curricula were both designed to cover the same topics of coding and literacy

skills and to promote social-emotional development. However, the coding platforms they involve

(screen-free robot vs. screen-based interface) may afford the child inherently different

experiences.

The coding and CS concepts in which the children engage when participating in the

CAL-KIBO, CAL-ScratchJr and codeSpark curricula are very similar. For example, they all

involve children debugging, engaging in the design process, learning about loops, and engaging

in algorithmic thinking. In general, throughout the CAL curricula, children first have hands-on

39

experiences where they freely explore concepts and then later their learning is reinforced through

direct teaching (as per constructionism pedagogy). This pedagogical method is reversed in the

codeSpark curricula as concepts and terms are typically first explicitly taught then later explored

by children (as recommended by Wing, 2008). Both curricula involve ill-structured and

well-structured activities. However, CAL largely emphasizes open-ended problem solving and

codeSpark largely involves puzzles with specific solutions. Both curricula suggest opportunities

for differentiation in which teachers can modify the content to address the specific needs of their

students.

CT Assessment Administration

Due to the COVID-19 pandemic and school resource limitations, five formats of

administration of the various grade-specific versions of the TechCheck assessment were

implemented across the various studies contributing to this dissertation. Regardless of the format,

proctors were trained to administer the assessment in a consistent fashion. Students were

administered the assessment in one of the five formats shown in Table 5. Across all formats of

administration, each question was read out loud to the students by a proctor who asked them to

provide a single answer from a set of multiple choice responses. There were two practice

questions that were included at the beginning of the assessment to ensure that children felt

comfortable with the format of administration and knew how to indicate their answers. Students

were allowed to take breaks for up to 5 minutes during the assessment. Students were instructed

to guess if they did not know the answer.

In-person via tablet group administration

For this type of administration, each student received a tablet with a link to a secure

online survey platform with the TechCheck assessment on the home screen. Proctors projected a

40

PDF of the assessment onto a board in front of the class and read each question out loud to the

group. This enabled pre-literate children to easily follow along. Students were instructed to tap

the correct answer. The assessment was forced-choice and the survey could not progress until an

answer had been inputted.

In-person via tablet one-on-one administration

In this format, students had one-on-one sessions with a proctor in which TechCheck was

administered on tablets. The format of the TechCheck-PreK assessment involves using a script

(instead of written text on the questions) and proctors allowed children to either tap the correct

answer or verbally indicate their answer. The assessment was forced-choice and the survey could

not progress until an answer had been inputted.

In-person via paper and pencil

Pen and pencil administration involved giving students a packet containing the

assessment printed in color. Proctors also projected a PDF of the assessment onto a board in front

of the class so that preliterate children could easily follow along. After proctors read each

question, students circled their chosen answer. Proctors checked the packets throughout the

session to ensure each question was answered by the students.

Virtually via one-on-one Zoom sessions

Virtual administration was employed when students were either located at home or at

school and required the use of private Zoom sessions owing to the COVID-19 pandemic. The

proctors shared their screens and navigated to the TechCheck secure online survey platform

where they read each question out loud and asked children to verbally indicate their responses.

Proctors then noted the students’ responses on the secure online survey platform. The assessment

was forced-choice and the survey could not progress until an answer had been inputted.

41

Virtually via Zoom group administration

Some students were located at home due to the COVID-19 pandemic and joined a group

link to a Zoom session with their peers and a proctor. The proctor administered the assessment

through an online platform that allowed the proctor to control the advancement of slides and all

children to see each question at the same time. After the proctor read the questions, students

clicked on their answers. For this particular administration format, the automation did not

mandate a response to every question. The proctors continued administration after the majority

of students had inputted their answers.

Table 5

Administration Format of TechCheck used in each study

Study Format

1 Dissertation Data Collection Virtually via one-on-one Zoom sessions; In-person via
tablet one-on-one administration

2 CAL-KIBO In-person via tablet group administration

3 Pilot CAL-ScratchJr Virtually via one-on-one Zoom sessions

4 DOE Impact CAL-ScratchJr Virtually via one-on-one Zoom sessions

5 UCLA CRESST codeSpark
Academy

Virtually via Zoom group administration; In-person via
paper and pencil

6 CAL-ScratchJr Camp Virtually via one-on-one Zoom sessions

7 Head Start In-person via tablet one-on-one administration

8 Horizons CAL-KIBO In-person via tablet one-on-one administration

Data Analysis

Calculation of CT Domain Scores

To assess performance within the six powerful ideas probed by TechCheck, domain score

analysis was carried out. To perform the analysis, I took clusters of questions that were

42

associated with individual CT domains and calculated the average percentage of correct answers

in that domain. There were 2 to 5 items per CT domain with the questions being determined by

the TechCheck grade-specific version employed (see table 6). Results were averaged over all of

the questions in the domain and expressed as a percentage. Each student was given an average

percentage correct score for each of the six domains, which was used to prepare bar charts and

build Crossed-Random Effect models. Table 6 shows which questions probe each of the six CT

domains for the various TechCheck versions.

Table 6

Mapping of Questions on Versions of TechCheck by CT domains the Questions Probe

CT Domain TechCheck-PreK TechCheck-K TechCheck-1 TechCheck-2

Hardware/Software Q1, Q2 Q1, Q2 Q1, Q2 Q1, Q2

Debugging Q3,Q4 Q3,Q4 Q3,Q4 Q3,Q4

Modularity Q8,Q9 Q6,Q7 Q6,Q7 Q5,Q6, Q7

Algorithms Q5, Q6, Q7,
Q12, Q13

Q5, Q8,Q9,
Q10, Q11

Q5, Q8,Q9,
Q10, Q11

Q8,Q9,Q10,
Q11

Representation Q14,Q15 Q12,Q13 Q12,Q13 Q12,Q13

Control Structures Q10,Q11 Q14,Q15 Q14,Q15 Q14,Q15

Statistical Analyses

All statistical analyses were conducted in R (Version 2021.09.2) using R Studio version

4.1.2 (R Core Team, 2021). All plots were generated using the “ggplot2” function in R

(Wickham, 2016). I built Linear Mixed Models (LMMs) and Crossed Random Effects Models

using the “lmer” function in R Studio (Bates et al., 2015). For the majority of analyses, LMMs

were chosen over regression due to the nested nature of the data (e.g., students within classrooms

within schools).LMMs are multilevel models (assuming linearity of relationship between

43

predictors and the outcome) that contain both fixed and random effects. Fixed effects are

variables that are expected to predict the outcome variable. Random effects are categorical and

typically grouping variables that are ideally accounted for, such as student or teacher. There can

be random effects of slopes or intercepts. Crossed Random Effect Models can be conducted

when every observation at level 1 is nested within two random variables at level 2 (in this case,

domain scores were nested within domains and students). Missing cases were removed with

list-wise deletion for the purposes of this study. Pre-analysis data screening prior to each model

showed adequate normality of the variables used in all of the models.

In each case, I started with an empty model including just the outcome variable and a

random effect of an intercept. Then I added each predictor to the model sequentially and

conducted likelihood ratio tests to examine whether those predictors improved the model fit. I

then added interaction terms. If the model fit did not improve with the addition of that predictor

or interaction, it was removed from the final model. Post analysis examinations of residuals were

conducted on the final model to ensure normality based on histogram and P–P plots. VIF (<10)

and Tolerance (>.02) values were used to evaluate multicollinearity, and I also tested the

assumptions of homoscedasticity of residuals and influential outliers (Field, 2009).

Results

Results obtained for the three research questions are presented below. Each section

consists of a description of the demographics of the study participants followed by the results for

that question.

RQ 1: To what extent do CT skills differ in coding-naive children in preschool through

third grade?

RQ 1 Part 1: Examining differences in mean TechCheck scores across grade pairs

44

Participants (RQ1 Part 1)

Data from a total of 2775 coding-naive students were obtained from eight different

studies in which students were administered a version of TechCheck that was either optimal for

their grade or designed for one grade below. The data reflect one administration of TechCheck

per child carried out prior to their engagement in any formal coding instruction. Altogether, 2121

children were given the assessment designed for their grade and 654 students were administered

the version of TechCheck designed for one grade below their own. Children were between the

ages of 2.81 and 9.04 years. The average age difference between the grade pairs was 1.28 years

for TechCheck-PreK, 0.64 years for TechCheck-K, 1.12 years for TechCheck-1, and 0.25 years for

TechCheck-2. Sample sizes ranged from a minimum of 17 students in Grade 1 taking

TechCheck-K to a maximum of 935 students in first grade taking TechCheck-1. The third grade

sample had a large percentage of students that were English Language Learners (52.78%). Table

7 shows the demographics for each grade included in this analysis.

I first examined differences in TechCheck scores for each of the four grade pairs receiving

the grade-specific versions of TechCheck. Figure 4 shows the resulting density plots of the four

grade pairs. Descriptive statistics for the grade pair analyses are shown in Table 8. Because

scores were relatively normally distributed, means were used to represent the central tendencies

of each distribution. A substantial ceiling effect is evident in the kindergarten students taking the

pre-K version of TechCheck. A smaller ceiling effect is present in the second grade cohort who

were administered the first grade version. In the context of the current analysis, ceiling effects

may lead to an under-estimation of the difference between the grade pairs.

45

Table 7

Research Question 1 Demographics by Grade

TC Version TC -PreK TC-K TC- 1 TC-2

Grade Pair PreK K K 1 1 2 2 3

Number of students 173 27 395 17 935 574 618 36

Mean Age (SD) 4.02
(0.62)

5.30
(0.61)

5.86
(0.42)

6.50
(0.52)

6.50
(0.56)

7.62
(0.47)

7.81
(0.35)

8.06
(0.24)

Missing data 2 0 55 1 185 0 299 1

Gender

Male 82 17 164 6 399 275 162 17

Female 84 10 171 9 400 295 157 19

Non-Binary 0 0 0 1 0 0 0 0

Missing data 7 0 60 0 136 4 299 0

Race

Black/African
American 96 1 34 0 154 262 20 0

Hispanic/ Latino 29 2 42 1 113 66 56 36

Biracial/Multiracial 7 0 23 0 42 40 15 0

White 23 12 220 5 398 184 206 0

Asian 7 9 12 10 30 13 16 0

Other 3 2 4 0 8 1 6 0

Missing data 8 1 60 3 190 8 299 0

Disability 7 0 38 0 77 57 33 0

Missing data 93 27 70 17 244 107 299 36

Note. TC is the abbreviation for TechCheck

46

The difference in TechCheck mean scores for the four grade pairs examined as well as the

associated Welch two sample t-tests results are shown in Table 9. The t-tests show that there

were significant differences in baseline TechCheck scores for all grade pairs.

Figure 4

Density plot distributions by TechCheck grade pair

47

Table 8

Descriptive Statistics for paired grade analyses

Grade TechCheck
Version

N Mean SD Median Min Max

Pre-K Pre-K 173 8.40 2.49 8 3 15

K Pre-K 27 12.67 1.92 13 7 15

K K 395 7.48 2.52 7 0 14

1 K 17 9.94 1.78 10 7 13

1 1 935 7.98 2.46 8 0 15

2 1 574 10.89 2.25 11 4 15

2 2 618 7.48 2.75 7 0 15

3 2 36 9.81 2.40 10 5 15

Plots of results of grade pair differences by grade and by grade adjusted for age are

shown in Figure 5. Data on the ages of children in the respective grades were used to adjust for

differences in the mean age of children in each grade pair. This exploratory analysis suggests that

CT skills improve in students from PreK to grade 3 even in the absence of formal CS education.

Table 9

TechCheck baseline grade pair results

TechCheck Version
Administered

Grade
Pair

△Mean
(SD)

T-value Significance

TechCheck-PreK PreK-K 4.27 t (703.81) = 15.92 p < .0001

TechCheck-K K-1 2.46 t (18.86) = 5.46 p < .0001

TechCheck-1 1-2 2.91 t (1293.2) = 23.51 p < .0001

TechCheck-2 2-3 2.33 t (40.53)=5.60 p < .0001

Note. This table shows that there is a significantly higher score across each grade pair of

TechCheck

48

Next, I examined the differences based on age within each grade pair by conducting

linear regression and calculating the coefficients for predicting TechCheck total scores as a

function of age. Table 10 shows the predicted differences in TechCheck scores for the respective

grade pairs as a function of age. Age was a significant predictor for preschool/kindergarten (β =

0.54), kindergarten/ first grade (β = 0.13), and first grade/second grade (β = 0.33) . Between

preschool and kindergarten, 1.95 percent of the variance in baseline TechCheck score was

attributable to the child’s age F(1, 196) = 83.2, p < .001. Between kindergarten and first grade

1.91 percent of the variance in baseline TechCheck score was attributable to the child’s age F(1,

354) = 6.91, p = .008. Between first and second grade, 10.84 percent of the variance in baseline

TechCheck score was attributable to the child’s age F(1, 1300) = 158.1, p < .0001). Age was not

a significant predictor of total score between second and third grade (β = 0.07), F(1, 353) = 2.14,

p =.14. The lack of a predicted difference may relate to the small sample size of third graders as

well as the small difference in age between the second and third graders (0.26 years).

Figure 5

Unadjusted and adjusted mean differences for grade pairs receiving TechCheck

49

Table 10

Predicted TechCheck Change Scores for grade pairs

Grade
Pair

Predicted
change

per year

Standard
Error R2 Significance Relationship

PreK-K 0.81 0.21 .29 p < .001

K-1 0.77 0.29 .02 p = .008

1-2 1.19 0.10 .11 p < .001

2-3 0.59 0.40 0 p = .14

RQ 1 Part 2 Examining differences in TechCheck outcome within and across CT domains

Participants (RQ1 Part 2)

Analysis of CT domain differences in coding-naive students was carried out in a subset of

n = 2121 from the same cohort of participants from preschool through second grade. This subset

only included students who received the version of TechCheck designed for their grade. Students

50

one grade higher were not included in this analysis. The subset was composed of coding-naive

students between the ages of 2.81-9.04 years who received TechCheck at one time point prior to

any formal coding instruction. The sample consisted of n = 812 (50.15%) female students and n

= 807 (49.84%) male students. The majority of students, n = 847 (54.16%), were White followed

in frequency by Black, n = 304 (19.44%), Hispanic, n= 240 (15.34%), Biracial or multiracial,

n= 87, (5.56%), Asian, n= 65 (4.15%), and “Other” n = 21 (1.34%). The group characterized as

“other” consisted of children identified as American Indian, Alaskan Native, Pacific Islander or

Native Hawaiian. One hundred fifty five children were diagnosed with a disability such as

autism, developmental delays, specific learning disabilities, specific language impairments, and

other health impairments. For the purposes of the present study, children diagnosed with any

disability were grouped together. The gender of n = 502 students, the age of n = 541, the

race/ethnicity of n = 557 students, and the disability status of n = 706 could not be determined

because the data were either derived from pilot studies that did not collect those data or from

ongoing studies in which demographic information was not yet available. Demographics for this

sample are shown in Table 11.

51

Table 11

RQ 1 Part 2 Demographics by Grade

PreK K 1st 2nd All data

Number of students 173 395 935 618 2121
Mean Age
SD

4.02
0.62

5.86
0.42

6.50
0.56

7.81
0.35

6.36
1.15

Missing data 2 55 185 299 541
Gender

Male 82 164 399 162 807
Female 84 171 400 157 812

Missing data 7 60 136 299 502
Race
Black/African American 96 34 154 20 304

Hispanic/ Latino 29 42 113 56 240
Biracial/Multiracial 7 23 42 15 87

White 23 220 399 206 848
Asian 7 12 30 16 65
Other 3 4 8 6 21

Missing data 8 60 190 299 556
Disability 7 38 77 33 155

Missing data 93 70 244 299 706

Results (RQ1 Part 2)

The percent correct by domain for students receiving all four versions of TechCheck

appropriate for their grade are shown in Figure 6.

To establish whether the scores were statistically different within and across domains,

I conducted a crossed random-effects multilevel model using REML estimation. In this

model, domain and subject (individual) were crossed and grade was a fixed effect predicting

the domain score. I started with an empty model with percent of questions correct within

each CT domain as the outcome variable and a random effect of CT domain. The Intra-Class

Correlation (ICC) was .27, which indicates that about 27% of the variation in CT domain

52

Figure 6

Baseline TechCheck Domain scores by grade

percent correct was between domains (with the remaining percentage being differences

between students across domains). I then added in a random effect of the intercept for the

student variable. The deviance significantly decreased and the likelihood ratio test was

significant, indicating the model with a random effect for both domain and student had a

better fit (Δχ2 (1) =377.31, p < .0001) (in other words, there were overall differences between

students when considering all domains together). Lastly, I added the predictor of grade (type of

assessment administered). This addition did not decrease deviance in the model, indicating

that there is no difference across domains by grade. Upon examining the random effects,

between-subjects variance attributable to the student and domain was .01 and .04 respectively,

53

indicating only a small contribution to the total variance (see Table 12). The ICC of .36 suggests

approximately 36% of the variation is between domains.

Table 12

Random Effects Table for Cross-random Effects Model Examining Baseline CT Domain Scores

Random Effect Parameter

τ00 (Student) .01

τ00 (Domain) .04

σ2 .09

ICC .36

Deviance (-2LL) 6440.6

Having established that the four versions of TechCheck had comparable within-domain

performance across grades, I next analyzed performance by domain in the grade pairs. Figure 7

shows the percentage of questions in each domain answered correctly for each of the grade pairs.

In most cases, a greater percentage of correct responses were made by children in the higher of

the two grades in the pair. Overall, differences from one grade to the next appears to be fairly

uniform across all CT domains with the exception of TechCheck-2 which shows some variability.

The data were noisier for the TechCheck-2 pair, likely because there was a very small difference

in age between the second and third graders and because a majority of third graders were English

Language Learners (52.78%).

54

Figure 7

Grade Pair Performance by Domain for the Four Grade-specific Versions of TechCheck

Research Question 2: Which demographic and environmental factors predict baseline CT

performance in children ages 2-9?

Participants (RQ2)

Research question two included the same subset of n = 2121 participants that were used

in Research Question 1 part 2. Demographic information and descriptives are presented above in

Table 11.

Results (RQ2)

To further characterize the development of CT variables related to CT in young children,

I conducted Linear Mixed Modeling (LMM) to explore demographic and environmental factors

that could predict TechCheck performance in coding-naive students. Children with missing

information about age, gender, or race/ethnicity were excluded from this analysis. I used the

baseline TechCheck raw scores from all eight studies as the outcome variable and included in the

model the variables of age, grade, gender, disability status, race/ethnicity as predictors with a

55

random intercept for classroom/teachers. A null model was first estimated and from that, an

Intra-Class Correlation (ICC) of .12 was calculated. This indicates that 12% of the variation of

student TechCheck scores was between classrooms/teachers.

To explore whether the variables age, grade, gender, disability status, and race/ethnicity

predicted TechCheck scores, I added in each variable as a fixed effect sequentially. Using a

likelihood ratio test, I found that a model with the fixed effects of gender and disability status did

not improve the fit relative to the null model (Δχ2 (2) = 3.39, p = .18). Therefore, those two

variables were dropped from the model. The model now included age, grade, and race/ethnicity

as fixed effect variables and teacher with a random effect of the intercept. Next, I conducted a

likelihood ratio test comparing a model that added a term for the interaction of grade and age to

the model without that interaction term. The model with the interaction term had a significantly

better fit (Δχ2 (3) = 11.74, p < .001). Relative to the first grade reference group, grade (preschool

and kindergarten) were significant negative predictors of TechCheck outcome. The interaction of

age and grade (preschool, kindergarten, and first grade) was a positive predictor in the model.

This suggests that on average older students in each grade tended to score higher than their

younger counterparts. Table 13 shows the results from the final model in more detail.

To provide a further measure of the robustness of the LMM model in RQ2, the same

analyses were replicated using percentile ranks instead of TechCheck raw scores. The results

using percentile ranks were nearly identical to those obtained with the previous raw score model

in RQ2, suggesting that the model was not compromised by differences in the baseline score

distributions for the respective versions of TechCheck. The equivalence of results supports the

hypothesis that grade and age are genuine predictors of baseline TechCheck performance, not an

56

artifact of differences in the versions of the TechCheck assessment. Figure 8 shows a comparison

of the magnitude of fixed effects (95% C.I.) when raw and normalized TechCheck scores were

used as the outcome variable.

Table 13

Final Model Results Predicting TechCheck Baseline Raw Scores

Parameter Estimate
Standard

Error T-value DF P value

95% Confidence
Interval

Lower
Bound

Upper
Bound

White 0.05 0.40 0.14 1350.83 p = .05 -0.73 0.83

Other -0.03 0.71 -0.04 1346.68 p = 0.97 -1.42 -1.36

Hispanic -.53 0.43 -1.24 1357.14 p = 0.22 -1.37 0.31

Black -.59 0.43 -1.39 1358.73 p = 0.17 -1.43 0.25

Biracial or
Multiracial .44 0.48 0.92 1341.76 p = .36 -0.49 1.37

Second Grade -2.33 3.24 -0.72 1356.98 p = .47 -8.76 4.11

Preschool -5.92 2.58 -2.30 1347.57 p = .02 0.465 2.71

Kindergarten -6.81 2.49 -2.73 1339.44 p = .01 -11.80 -1.81

Age*Second Grade 0.19 0.43 .44 1355.77 p = .66 -0.66 1.04

Age*Preschool 1.58 0.57 2.77 1342.21 p = .01 0.46 2.71

Age*Kindergarten 1.01 0.41 2.45 1355.57 p = .01 0.21 1.82

Age -0.07 0.18 -0.38 1007.27 p = .70 -0.43 0.29

Intercept 8.65 1.26 6.86 1023.99 p <.0001 6.18 11.12

Random Effect
(Teacher/Class)

Parameter

τ00 0.38

σ2 5.41

Deviance (-2LL) 6217.0

Note. First grade and Asian were used as reference group for the fixed effects of grade and race

57

Figure 8

Comparison of Fixed Estimates in LMM by Scoring System

The LMM did not show a significant difference based on race/ethnicity. However, there

were limited numbers of students within many of the race/ethnicity categories. To explore this

variable further, I recoded the race/ethnicity variable into two categories: white and non-white.

The mean total TechCheck score of the white category was 7.82 while that of the non-white

category was 7.72. Unadjusted means for the two race/ethnicity categories were not significantly

different t = 0.76, df = 1534, p =.45.

RQ 3 How do coding educational interventions (specifically CAL-ScratchJr, CAL-KIBO,

and codeSpark) affect the rate of acquisition of CT skills overall and in select subdomains?

RQ 3 Part 1: How do coding educational interventions affect CT in young children?

Participants (RQ3 part 1)

58

The effects of coding interventions were examined using data from three completed

studies involving first graders who were administered the assessment before and after learning to

code. No other grades were included in this analysis owing to lack of availability of suitable

datasets. A control group of students who participated in regular classroom activities without

engaging in coding from the CAL-KIBO study was included in the analyses. Demographics of

the respective study populations are shown in Table 14.

Table 14

Demographic Information for Coding Interventions and a Control Group (RQ3 part 1)

CAL-KIBO CAL-ScratchJr codeSpark Control All data
Number of students 273 88 46 71 478
Mean Age (SD) 6.23 (0.51) - 6.06 (0.23) 6.28 (0.45) 6.23(0.48)

Missing data 0 88 1 0 89
Gender

Male 133 38 27 31 229
Female 138 38 19 40 235

Missing data 2 12 0 0 14
Race

Black/African
American 96 - 0 41 137

Hispanic/ Latino 28 - 31 12 71
Biracial/Multiracial 26 - 0 4 30

White 110 - 1 13 124
Asian 7 - 2 0 9
Other 4 - 1 1 6

Missing data 2 88 11 0 101
Disability 26 - - 7 33

Missing data 0 88 47 0 135

Results (RQ3 part 1)

Figure 9 shows the longitudinal change scores of three coding interventions on TechCheck

total scores.

59

Figure 9

TechCheck Change Scores for Three Coding Interventions and a Control Group

Paired sample t-tests were carried out to examine whether children’s scores changed

significantly as a result of participation in a coding intervention. Cohen’s d effect sizes were

also calculated as a measure of the magnitude of differences in growth scores by each of the

interventions. Table 15 shows t-test and effect size results by intervention. The effect size

within the control group was considered negligible. All of the coding interventions had effect

sizes within the small to medium ranges (Romano et al., 2006).

There were differences in the durations of respective interventions. The average

length of time between pre and post-test was 60 days for CAL-KIBO, 89 days for Scratchjr,

64 days for codeSpark, and 54 days for the control group. Owing to the lack of availability of

data on the precise number of hours of participation, no adjustment of intervention hours was

carried out.

60

Table 15

Magnitude of Effect on CT Skills by Coding Intervention and a Control Group

First Grade
Intervention

T-value Significance Cohen’s d (Effect
Size)

CAL-KIBO t(272)=9.28 p < .0001 0.54

CAL-ScratchJr t(87)=4.52 p < .0001 0.47

codeSpark t(46)=2.05 p = .04 0.25

Control t(70)=0.04 p = .97 0.01

LMM was conducted with data from first grade students to examine how different

interventions affect student learning of CT skills. The change in TechCheck total score

(baseline subtracted from end-point) was the outcome variable. I started by fitting an empty

model with TechCheck change score as the outcome variable and teacher/classroom as a

random effect of the intercept. The ICC value for the empty model was .05 indicating

approximately 5% of variation in the change scores is due to the child’s class membership.

Next, I added in type of intervention (CAL-KIBO, codeSpark, CAL-ScratchJr, or a control

group) as a fixed effect variable, which resulted in an improved model fit (Δχ2 (3) =12.09, p

=.007). I then added in the child’s baseline Techcheck score to account for baseline score

differences. Once again, model fit significantly improved (Δχ2 (3) =137.04, p <.0001). Gender

and duration of the intervention did not contribute significantly to the model. These two

variables were therefore removed. The model with the best Akaike Information Criterion

(AIC) value was one with a random effect of the intercept for teacher/classroom. The final

model included the outcome variable of TechCheck change score with the predictors of type

of intervention, baseline score, and a random effect of the intercept of classroom/teacher.

61

Table 16 shows the estimates obtained with the final model. Among the interventions, only

CAL-KIBO was found to be a significant predictor of TechCheck change with the control

group as a reference group in this model.

Table 16

Final Model Results Predicting TechCheck Change Score by Intervention

Parameter Estimate
Standard

Error t-value DF p value

95% Confidence
Interval

Lower
Bound

Upper
Bound

CAL-ScratchJr 0.86 .45 1.91 22.04 .05 -0.03 1.75

codeSpark 0.80 .52 1.54 20.91 .12 -0.22 1.82

CAL-KIBO 1.51 .37 4.11 21.06 <.001 0.78 2.23

Baseline TechCheck score -0.53 .04 -12.65 459.00 <.001 -0.61 -0.45

Intercept 4.29 .47 9.09 70.04 <.001 3.36 5.22

Random Effects

σ2 4.27

τ00 Teacher 0.20

ICC 0.04

N Teacher 34

Observations 464

Marginal R2 / Conditional R2 0.280 / 0.312

RQ3 Part 2: Coding educational interventions and CT domain-specific TechCheck Score

Participants (RQ3 part 2)

RQ3 part 2 was addressed using the same data as RQ3 part 1. See Table 14 for details.

62

Results (RQ3 part 2)

To examine performance by domain in first grade, the change in the percentage of correct

responses within each domain was calculated for each of the three coding interventions (see

Figure 10). To assess whether the domain change scores for first grade were statistically different

from each other, I estimated another crossed random-effects multilevel model with the same

sources of variation as Research Question 1 Part 2.

To establish whether there is a difference within and across domains by intervention, I

conducted a cross random effects model using ML estimation. I started with an empty model

with each participant’s change in percent of questions correct per CT domain as the outcome

variable and a random effect of the intercept for the type of domain. Next, I added a random

effect of the intercept for the student variable which significantly reduced the deviance (Δχ2 (1)

=7.13, p = .008), which indicates there were between-student differences in overall scores across

all domains. In the model which did not include coding intervention as a variable, the ICC for

students was .03 and the ICC for domain was 0. Those values indicate that little to none of the

variation in change in CT domain score was between students or domains. I then added in a fixed

effect for the intervention the child received (CAL-KIBO, CAL-ScratchJr, codeSpark, or a

control group participating in everyday classroom activities). The deviance significantly

decreased and the likelihood ratio test was significant, indicating the model with the intervention

variable had a better fit (Δχ2 (3) =34.76, p < .0001). Results of the model are shown in Table 17.

63

Figure 10

Change in CT Domain Scores Across Coding Interventions and a Control Group

Table 17

Estimates from LMM of Domain Change Score by Coding Intervention

Predictors Estimates CI p

(Intercept) -0.01 -0.05 – 0.03 0.596

ScratchJr 0.08 0.03 – 0.13 0.002

codeSpark 0.06 0.00 – 0.12 0.040

CAL-KIBO 0.09 0.04 – 0.13 <0.001

Random Effects

σ2 0.13

τ00 Student 0.00

64

τ00 Domain 0.00

ICC 0.03

N Domain 6

N Student 478

Observations 2867

Marginal R2 / Conditional R2 0.006 / 0.038

Finally, I prepared a plot showing the differences between grades on TechCheck domain

scores based on data from the RQ1 grade pair analysis compared to the effects of coding

interventions as analyzed in RQ3 (see Figure 11). It is evident that the magnitude of

improvement is greater for grade than coding interventions across all domains. This finding is

not unexpected since the coding interventions are relatively brief compared to the interval of one

grade level. It is also notable that the effects of grade are relatively consistent across CT domains

whereas the interventions appear to have more selective effects on particular domains.

Figure 11

Comparison of the CT domain score differences by grade and coding intervention

65

Discussion

Although there has been increasing interest in CT over the past several decades, there is

still only a limited understanding of how young children develop these thinking skills. In this

dissertation, I attempted to address three research questions relating to the acquisition of CT

skills in early childhood. I first examined TechCheck performance in coding naive children

across several grades to gain insights into CT skill acquisition in the absence of coding

instruction. Next, I explored whether demographic and environmental factors predict CT

performance in children between 3 and 9 years of age. I then explored whether CT skills

acquired in the course of normal development differed from those that were obtained following

various coding/CS educational interventions. The studies in which educational interventions

were implemented also provided an opportunity to compare the effects of different coding

interventions on CT skills, which has not been extensively studied in children in this age group.

The implications of the outcomes I obtained for the three research questions are discussed below.

RQ1: To what extent do CT skills differ in coding-naive children in preschool through third

grade?

One of the principal aims of this study was to explore how young children’s CT skills

change in the absence of coding instruction. I approached this by administering grade-specific

versions of TechCheck to groups of coding-naive children and comparing their performance to

that of coding-naive students in one grade higher who were given the same version of

TechCheck. This design was inspired by an earlier study examining the longitudinal impact of the

CAL-KIBO curriculum on the CT skills of first and second graders. At the time that study was

carried out, the original TechCheck (TechCheck-1) was the only version available. It was

therefore administered to both first and second graders. To provide a yardstick for understanding

66

the magnitude of the change in TechCheck scores attributable to the coding intervention in that

study, I calculated the mean difference in baseline TechCheck scores and divided it by the mean

difference in age between first and second graders. That calculation was used to estimate the

change in TechCheck scores associated with the six to seven week-long CAL-KIBO curriculum.

The calculation suggested it was approximately equivalent to the change occurring over a span of

six months of normal development (Relkin et al., 2021). A similar approach was taken by Arfé et

al., (2020) in measuring the effects of a coding intervention on neuropsychological test results.

The present study extended this design to five grades (pre-K, K, 1, 2, 3) and used four

grade-specific versions of TechCheck (TechCheck pre-K, K 1 and 2). All grades had a normal

distribution of scores, which was important to confirm as a prerequisite for the parametric

statistical modeling I carried out on the assessment data. I found the mean TechCheck scores to

be significantly greater in the higher grade of each pair. The magnitude of the differences in the

means between grades, even after age adjustment, was greater in this study than that observed

between first and second graders in the earlier study by Relkin et al., (2020). This discrepancy

may in part be related to differences in the samples enrolled in the respective studies. Regression

analysis using age as the independent variable did provide estimates of TechCheck score change

per year that were closer to those obtained in the earlier study. It is possible that the use of means

alone as measures of central tendencies in the grade pair analyses was inadequate. Regression

analysis adjusted for age may provide a more accurate estimate of change in CT skills across

grades than taking differences in age-adjusted means.

Although TechCheck has not been validated as a measure of performance within

individual CT domains, the association of each question with a particular CT domain was

previously confirmed by expert consensus (Relkin et al., 2020). It was therefore reasonable to

67

carry out exploratory analyses using groups of related questions as probes of each of six CT

domains. Analysis of the baseline TechCheck data revealed that the percentage of correct

responses by domain in pre-K through second grade were uniformly higher in all six domains in

the upper of the two grades in each pair (see Figure 7). The second versus third grade pair did

show some inter-domain variability but these results were likely influenced by the make-up of

the third grade cohort. That group was relatively small and contained a sizable percentage of

English language learners.

The uniform increase in CT skills across the six domains in Pre-K through second grade

is an interesting and somewhat unexpected finding that contrasts with the results I obtained from

longitudinal studies of the effects of the three coding educational interventions (see RQ3

discussion below). Because students in this age range are transitioning from a preliterate stage to

early literacy, one might expect to see more selective improvements in certain domains such as

representation, which is exercised extensively in learning to read and write. Bers (2020) has

outlined the possible relationship between the acquisition of literacy and each of the powerful

ideas of CS. However, I found no evidence of a selective effect on representation or the five

other CT domains when comparing pre-literate (eg: pre-K) to literate (eg: second grade)

coding-naive students.

One possible explanation for the broad improvement in TechCheck scores across domains

with advancing grade is the effects of brain maturation. A young child’s literacy, numeracy, and

abstract reasoning are known to undergo gradual development as they grow (Piaget, 1971). The

period of growth between the ages of three through nine is one of rapid cognitive development

paralleled by changes in the functional connectivity within the brain (Gerdes et al., 2013; Vogel

& Smedt, 2021). There is preliminary evidence that TechCheck scores correlate with certain

68

executive function measures (M. Willoughby, personal communication, February 14, 2022). Past

studies have found that CT skills correlate with various neuropsychological measures such as

fluid intelligence, working memory, planning, sequencing, mental rotation, vocabulary, and early

math precursors such as numerical transcoding and symbolic magnitude comparison (Arfé et al.,

2020; Gerosa et al., 2021). Neuropsychologists use age-adjusted norms to interpret these

measures, indicating that they are subject to change as a function of age in the course of normal

development.

Abilities such as reading and writing (and likely CT) are mediated by multiple brain

regions that originally evolved to serve other purposes (Peters & Smedt, 2018). As a

consequence, exercise of these abilities requires the coordinated activity of multiple brain

regions (Fias et al., 2013). As the brain progressively myelinates in the decades after birth,

communication between interconnected brain areas becomes more efficient. This may

particularly enhance cerebral functions that are spatially distributed in the brain and are therefore

dependent on signal transmission between different regions. The uniform increase across all CT

domains with advancing grade observed in the present study could be consistent with a

generalized effect of brain maturation on cognitive skills in early childhood. Future studies

should examine the extent to which the improvement in CT with advancing grade correlates with

other cognitive abilities as well as measurable aspects of brain development, such as white

matter myelination seen on MRIs (Chrysikou, et al., 2022).

Another factor that could contribute to improvement in CT in coding-naive students as

they advance in grade is cumulative learning experiences. Various scholars have emphasized that

children learn as a product of engagement with their environment and introduction to new

materials (Odegard, 2012; Penfold, 2019). It is possible that coding-naive students’ baseline

69

performance on TechCheck reflects their cumulative exposure to everyday experiences, including

engagement in solving day-to-day problems that are analogous to TechCheck’s unplugged

challenges. This possibility cannot be readily ruled in or ruled out from the available data since

there are no included measures of everyday experience. To help discern whether children acquire

CT skills from everyday challenges, future studies might examine the correlation between

TechCheck scores and specific life experiences such as participation in summer camp activities

that expose children to different challenges than they confront during the regular school year. It

may also be useful to examine whether children growing up in environments with less resources

(eg: lower SES) have lower baseline scores on TechCheck than those growing up in more

privileged circumstances.

RQ2 Which demographic and environmental factors predict baseline CT performance in

children ages 2-9?

The second research question examined possible intrinsic and extrinsic predictors of

TechCheck scores in coding-naive young children. Using LMM analyses, only grade was found

to be a predictive variable. I did not find significant predictive effects for age, gender,

race/ethnicity or disability. An interaction was observed between age and grade, suggesting that

within a given grade, older children tend to score higher than younger ones. Age was not a

significant predictor on its own in models that included grade as a variable.

Females are historically underrepresented in the field of computer science (Kanaki &

Kalogiannakis, 2022). Some past studies have shown that children can develop gender

stereotypes about technology that can influence their acquisition of coding and CT skills (Jenson

& Droumeva, 2016; Sullivan, 2016; Sullivan & Bers 2016). Others have found that there is no

gender difference in coding or CT skills in young children (Kanaki & Kalogiannakis, 2022;

70

Papavlasopoulou et al., 2020). Despite a fairly robust representation of male and female students

in the current study, no indications of a difference in CT skills by gender were found. This

finding does not diminish the importance of initiatives that promote gender equality in STEM

and coding education, such as the National Girls Collaborative, National Center for Women &

Information Technology and Girls Who Code. If successful, such initiatives can help to reduce

the gender disparities that persist in computer science and related fields.

Likewise, the lack of a predictive effect of race/ethnicity in the present study should not

be taken as conclusive proof of the absence of such effects. Previous researchers have reported

that some children from racial minority groups have limited access to technologies (Margolis, et

al., 2017; Wang & Hejazi Moghadam, 2017). Other studies have found that race can be a proxy

measure for other factors such as SES (Williams et al., 2016). The lack of an observed effect of

race/ethnicity in the current study neither supports nor rules out a relationship between race and

CT since the cohort is not a representative sample of minority groups nor was the study

necessarily powered to examine the effects of race/ethnicity on CT. There may still be

differences in CT skills related to these demographic variables as well as related to factors such

as differential access to technology. Future studies should incorporate race, SES and measures of

technology access to further examine how these variables are related to CT outcomes.

The present study did not find disability to be a significant predictor of TechCheck

performance in coding-naive students. Data on the disability status of participants were

incomplete, which may have contributed to the lack of an observed effect. Specified disability

numbers were often small and several sites chose not to share information about specific types of

disability out of concern about identifying specific children. Other studies have shed light on the

importance of inclusive initiatives and curricula for those with disabilities such as

71

AccessCSforAll (Ladner, & Stefik, 2017). Recently, Levinson and Bers (2022) found that coding

naive students diagnosed with disabilities had lower baseline TechCheck scores than students

without disabilities, but improved on TechCheck to a comparable extent as non-disabled students

following a coding intervention.

RQ3 How do coding educational interventions (specifically CAL-ScratchJr, CAL-KIBO,

and codeSpark) affect the rate of acquisition of CT skills overall and in select subdomains?

The approach to the third research question involved analyzing data on changes in

TechCheck scores from students engaging in one of three coding curricula. Results support the

hypothesis that CS educational initiatives that promote learning to code can accelerate the

acquisition of CT. In particular, in children receiving the CAL-KIBO curriculum, TechCheck

total scores increased significantly more than in students carrying out regular classroom activities

over a comparable time period. Although the ScratchJr and codeSpark studies did not include

control groups, TechCheck scores increased significantly compared to baseline after each of these

coding interventions. Although the effects of all three coding interventions were smaller in

magnitude than the changes observed between grade pairs (see Figure 11), this finding is not

unexpected given that the coding interventions were relatively brief (6-12 weeks) compared to

the age differences between grades in the grade-pair analyses.

This study is also notable for providing some of the first (preliminary) evidence that

different coding curricula involving tangible (i.e. KIBO) or screen-based (i.e. ScratchJr and

codeSpark) coding platforms may impact CT domain scores in different ways. Specifically,

different domain-specific patterns of response were observed for the three coding interventions

(see Figure 10). Keeping in mind caveats about the exploratory nature of the CT domain

analysis, one can speculate about possible factors contributing to the differences in domain

72

change scores across the three coding interventions. Although children engage with all of the

powerful ideas probed by TechCheck when coding with all of these platforms, there are

differences in the manner in which they are engaged. One difference is the use of tangible versus

screen-based programming platforms. Another difference is in the grade-appropriateness of the

content and differences in emphasis on specific CT domains with different coding curricula. A

third consideration relates to the unplugged nature of the questions on TechCheck and the extent

to which the three curricula include similar unplugged activities.

A possible difference in the impact of tangible versus screen-based platforms may be

exemplified by the results obtained in this study in the domain of hardware/software. The

percentage of correct responses on hardware/software challenges were numerically lower in

students who learned to code with the tangible KIBO platform than with the screen-based

ScratchJr and codeSpark applications. KIBO’s software does not have to be loaded by the child

and its coding blocks are actual physical entities. This could lead to some confusion about the

difference between hardware and software. On screen-based platforms such as ScratchJr and

codeSpark, coding elements appear only after the software application is loaded on a hardware

device. The only physical manipulatives for those platforms are the computer/tablet running the

software and the input device, which may be the screen or a mouse. It is possible that as a result

of these differences, some children learning to code on a tangible platform such as KIBO less

readily grasp the distinction between hardware and software than those learning coding on

screen-based platforms.

Students receiving the CAL-KIBO curriculum had fewer correct responses in the domain

of control structures compared to students receiving CAL-ScratchJr or codeSpark. All three

curricula teach children about loops, conditionals, and nested statements, which are important

73

elements of control structures. However, KIBO’s conditionals are limited to eight “If, End-If” or

“Repeat-Until, End-Repeat” commands that have a relatively high level of difficulty for young

children. These commands are consequently introduced later in the CAL-KIBO curriculum at

about the 9th lesson (out of 12 total lessons). The types of conditionals and events offered by the

two other curricula have a greater range of complexity and are implemented sooner than the

CAL-KIBO curriculum. For example, ScratchJr’s “Start on Tap” command is typically

considered to have an easy to medium level of difficulty. In contrast, ScratchJr’s “Start on

Orange Message” commands can be difficult for young children to comprehend. Likewise,

children may find codeSpark’s “Start on Bump” blocks to be easier to grasp than the more

advanced “If Hungry” commands. It is conceivable that some of the conditionals introduced by

the screen-based curricula were easier to master than those introduced by CAL-KIBO, resulting

in the observed difference in control structure domain scores across curricula.

Different coding curricula emphasize certain concepts to different degrees. Students

engaging with codeSpark had the highest percentage of correct responses in the

hardware/software domain. Perhaps this finding is due to the codeSpark curriculum explicitly

teaching about the meaning of “computers” and “programming” and how different smart devices

are programmed. In contrast, the majority of CAL-KIBO and CAL-ScratchJr lessons that were

designed to teach about hardware/software focused on enhancing the child’s competency in using

the coding platform (e.g., understanding KIBO’s sensors; learning how to open up a new project

on ScratchJr). Less emphasis was placed on defining computers, programs, or understanding

how smart objects work. However, in the CAL curricula, other concepts not assessed by

TechCheck were introduced such as comparing and contrasting human languages vs.

programming languages.

74

The coding projects that children were asked to engage in during CAL-KIBO and

CAL-ScratchJr interventions were open-ended in nature, allowing children to use any coding

blocks they wished. In addition, the KIBO and ScratchJr platforms were designed to have a “low

floor, high ceiling, wide walls” (Grover & Pea, 2013; Resnick & Robinson, 2017). This meant

that the platforms were simple enough for a beginner to engage with but also could become

challenging for more advanced users. Although there were often multiple possible solutions to

advance through the codeSpark puzzles, they typically required children to use a set amount of

coding blocks in a particular order. Children in first grade are still developing working memory

skills and it is possible that some of the codeSpark puzzles contained algorithms that were too

lengthy for this age group. In fact, there is some preliminary evidence that third graders

presented with the same puzzles improved on TechCheck at a much higher rate (Iseli et al.,

2021a).

One lesson in the CAL-KIBO curriculum also coincidentally resembled elements of the

representation questions on TechCheck. The lesson involved the child learning about KIBO’s

sound recorder module that allows children to record up to three different sounds by pressing

either a triangle, circle, or square. Students played a “shape-shifting” game in which volunteers

chose a sound or action to go with each shape. For example, one student might decide to jump on

one foot for the circle, another student might decide to yell “Hooray!” for the Triangle, and a

third student might decide to hold up a book for the Square. To play the game, when the teacher

held up one of the three symbols, the class would only perform the action associated with that

symbol’s shape. Figure 12 shows a representation question from TechCheck next to the sound

recorder module and sound symbol blocks. The child needs to exercise a very similar kind of

thinking and problem solving skills to succeed in the “shape-shifting” game as they do to get the

75

representation questions on TechCheck correct. The “shape-shifting” game could help explain

why children in the CAL-KIBO group scored higher in the representation domain than children

learning to code with the ScratchJr or codeSpark apps.

There has been a paucity of past studies comparing the impact of different coding

interventions on the CT skills of young children or comparing different curricula’s effects on

specific CT domains. Although the present study involves posthoc analysis of previously

collected intervention data and uses an assessment instrument that was not optimally designed

for CT domain analyses, these exploratory findings provide a rationale for future studies

comparing CS curricula using the yardstick of unplugged CT assessment.

Figure 12

Example of a Representation Question on TechCheck (left) compared to coding block used with

KIBO’s sound recorder module (right).

Limitations and Future Work

The primary aim of this study is to better understand the development of CT in young

children. Although longitudinal intervention studies were included in the analyses, many of the

conclusions were drawn based upon cross-sectional data from coding-naive students in different

76

grades. The analysis of CT performance in groups of students at a given time point is not

equivalent to serial observations performed on the same children over time. The cross-sectional

analyses provide information about group tendencies rather than individual development

trajectories. The design and implementation of prospective longitudinal studies of the acquisition

of CT will take many years and considerable resources to complete. It may not be feasible or

ethical to have a control group of children who remain coding-naive for several years, bringing

into question whether true randomized control trials can be performed. It is therefore imperative

to examine all available data to generate plausible hypotheses about how children acquire CT

skills. Although some of the data included in this work were collected specifically for this

dissertation, I also drew upon data from several completed large-scale studies that were carried

out for other purposes. Although this is an acknowledged limitation, I believe the exploratory

studies I have carried out in this dissertation represent important groundwork for future

investigations.

I have already pointed out that past studies using coding exercises to measure CT may

conflate programming ability with CT skills. While the use of an unplugged assessment can help

circumvent this issue, the use of unplugged challenges may introduce another potential

confounder. Unplugged challenges, by definition, draw upon activities and experiences derived

from children’s everyday lives. It is therefore difficult to say whether the outcomes observed in

the present study truly reflect the acquisition of CT skills or are measuring children’s exposure to

everyday experiences that resemble the types of unplugged challenges embodied in TechCheck.

Stated another way, if coding challenges can conflate the measurement of CT skills and coding

abilities, unplugged challenges may conflate the measurement of CT skills and exposure to

everyday life experiences.

77

The cross-sectional method employed in this dissertation to answer RQ1 and RQ2 are

subject to potential biases. For example, there may be other unmeasured demographic or

environmental differences between the students in the respective grades (e.g., SES, certain types

of disabilities) that influence their performance on TechCheck or alter the differences based on

age in CT development. As such, these analyses must be considered exploratory and

hypothesis-generating rather than conclusive measures of intra-individual change.

TechCheck was originally designed to be administered to groups of students working on

computers or tablets in a classroom setting. This dissertation combines data from several studies

in which the four grade-specific versions of TechCheck were administered in five different ways.

Administration formats for this dissertation included in-person via tablet group administration,

in-person via tablet one-on-one administration, in-person via paper and pencil format, virtual via

one-on-one Zoom sessions, and virtual via Zoom group administration. These different modes of

administration were necessary to accommodate school closures and remote learning during the

COVID-19 pandemic as well as computer/staffing resource limitations at certain schools. A

training and certification program for all TechCheck proctors was implemented to foster

consistency regardless of the mode of administration. Because there was no direct comparison

across modes of administration, it is possible that this introduced some additional variation in

results. For example, the one-on-one virtual version of the assessment requires children to

verbally indicate their answers. Thus that version may require more verbal skills and less manual

dexterity than the version of the assessment in which children tap or circle their answer. Another

possibility is that children assessed in groups may have been more distracted and/or less easily

re-directed by a proctor than children in a one-on-one assessment session. Future studies should

compare each method of administration to evaluate their equivalence.

78

This dissertation contains data collected prospectively as well as pooled re-analyses of

previously collected data. The use of data from multiple studies increased power by expanding

the number of participants available for analysis. It also allowed for comparisons across a

broader range of grades than the individual studies would allow. However, the design, research

questions and student cohorts from each of the contributing studies were somewhat different.

There was also variation on the demographic and background data collected across studies.

It is possible that the COVID-19 pandemic impacted the study’s outcomes. As a result of

the COVID-19 pandemic, studies have shown that children are significantly behind in their

academic performance as compared to pre-pandemic students (Dorn et al., 2020). Some of the

data in this study were collected prior to the pandemic, while other data were collected during its

course. Additional analyses using time of administration (pre or post pandemic) as a predictive

variable may provide further information about the effects of the pandemic on the acquisition of

CT skills.

Although this study includes a large sample of students from different U.S. states and

demographic backgrounds, the results are not representative of all students in the target age

range. To obtain a more representative sample and allow for truly standardized norms to be

produced, this research should be replicated and extended to other cohorts. The TechCheck

assessment has been translated into at least six different languages and is currently being

administered in diverse research and educational settings in many countries around the world

(e.g., Bosgoed & Fanchamps, 2022; Hançer, et al., 2021; Yang et al., 2020) Future studies

should further explore its use in children from various cultures and in neuro-diverse children.

The analyses described in this dissertation have generated some interesting hypotheses

about the processes that may be involved in the acquisition of CT in early childhood. However,

79

to draw robust conclusions and confirm results, the findings should be replicated with

methodological adjustments. Sample size limitations as well as missing data likely affected the

outcomes of analyses for all three of the research questions.

In examining the development of CT in young children for RQ1, cross-sectional data

comparing different grades is not a satisfying substitute for longitudinal measurements in

individual students. Ideally, the same children would have been assessed longitudinally at

multiple time points as they progressed through successive grade levels, with careful attention

paid to their CS and non-CS educational experiences over time. With a large-scale longitudinal

study of CT development, it might be possible to identify “critical periods” of CT development

in which the most change and/or domain-specific changes occur. This did not prove possible

with the current study design.

Domain analysis was carried out in the present study for exploratory purposes. It is quite

possible this was not a reliable way of measuring performance in these domains. TechCheck was

not originally designed to measure performance in specific domains of CT. There are as few as

two questions and as many as five questions per domain in this assessment. The number of

questions per domain differed by version of TechCheck which may have added noise to the data.

Prior research has shown that there is an increased level of reliability and construct validity when

multiple items (above three) are used to measure a given construct (Diamantopoulos et al., 2012;

Hair et al., 2010). Future studies might give students a greater number of questions to better

probe each domain. Factor analysis or other methods could then be used to identify the subset of

questions that provide a rapid and valid measure of performance within each CT domain.

RQ2 examined which demographic and environmental factors predicted baseline CT

skills in children. A more ideal study might have included students from a sample with numbers

80

of each racial/ethnic category that are more representative of the US population as a whole. In a

prospective study with balanced recruitment it may become possible to detect small effects and

interactions that were inapparent in the current study.

RQ3 examined how coding educational interventions affect the rate of acquisition of CT

skills. However, the participants in each study were somewhat different and each intervention

spanned a different length of time (e.g., 12 hours for CAL-ScratchJr vs. 6 hours for codeSpark).

Ideally, each intervention would have its own control group and samples would be matched in

terms of demographics, baseline scores, and testing intervals.

Within the last few years, assessment of CT in early elementary school children has made

considerable strides. Unplugged CT assessment offers some distinct advantages and is gaining

increasing acceptance in the field. However, for the field to move forward, assessments such as

TechCheck must be compared to other measures. Future work should include CT assessments of

children using multiple measures such as TechCheck, the BCTt, cCTt, CTA, and/or CAPCT.

Comparative studies represent the best way to determine the strengths and weaknesses of each

measure. This comparison could help guide researchers and educators in choosing the best

possible measures for their particular classrooms or studies.

No one measure can capture all there is to be learned about CT in young children. I

advocate the use of a combination of assessment methods to get the most holistic interpretation

of a child’s CT skills. Other types of CT measures such as interviews, observations and

game-based tasks can be helpful in determining a child’s skill level. However, children should

not be subjected to multiple forms of lengthy assessments that will take time away from their

learning. In fact, to avoid just this, TechCheck was designed to be engaging and administered in

15 minutes or less. A useful model is one put forth by the CRESST laboratory at UCLA, which

81

combined the TechCheck assessment with naturalistic CT assessment via collection of real-time

telemetry data from coding game-play (Iseli, et al., 2021a; Iseli et al., 2021b). The CRESST

group formulated CT indicators that could be automatically scored as children are learning to

code with the codeSpark application without any deviation from normal gameplay. It is not yet

the case that educators and researchers can automatically collect meaningful naturalistic CT

assessment data with strong validity and reliability evidence from young children’s participation

in activities such as coding. However, I believe in the near future many coding platforms for

young children will move in this direction and incorporate naturalistic formative assessment.

This type of assessment would allow us to track children’s CT development in a more

contextualized fashion and establish benchmarks of performance that can alert educators and

researchers when a child is in need of extra support or would benefit from special enrichment.

Conclusions

The advent of developmentally appropriate unplugged CT assessments for young

children such as TechCheck has opened a new window on the study of CT skills in young

children. Much of the current understanding about how children develop CT skills has been

inextricably linked to coding and other elements of CS education. The extent to which everyday

experiences and brain maturation influence the acquisition of CT skills has received much less

attention. The availability of unplugged CT assessments makes it possible to examine how

phenomena associated with brain development, everyday interactions with technology,

non-technological experiences as well as CS and non-CS educational interventions influence the

acquisition of CT skills as children grow.

The studies described in this dissertation represent initial steps in exploring this topic.

The outcomes demonstrate that preschool and early elementary school children are capable of

82

engaging in aspects of CT that were once considered too complex and abstract for young

learners. The study also establishes that unplugged challenges that exercise CT skills can be

carried out by many children who have not learned to code. Furthermore, these CT skills can

improve as children grow even in the absence of formal CS instruction. There is also evidence

that early childhood CS educational interventions that teach coding can accelerate the process of

learning CT in distinctive ways. Children may acquire basic intuitions about CT from learning to

code, from their day-to-day experiences and from non-CS education. CT skills may also improve

as a consequence of normal brain development (see Figure 13).

Figure 13

Processes that may influence the progressive acquisition of CT skills in young children

One of the tacit goals of this dissertation is to assist in identifying the best practices to

enhance the acquisition of CT in young children. This work has helped to establish the utility of

83

unplugged CT assessment as a means for educators and researchers to measure and follow the

progress of young children as they acquire CT skills (or fail to do so). It is my hope that CS

education for young children can be improved by applying the information gained from this

research. Non-CS interventions may also be improved in ways that foster the acquisition and

mastery of CT skills.

The present study is among the first to demonstrate that children can acquire CT

problem-solving skills without necessarily learning to code or engaging in unplugged CS

educational activities. The ability of children to acquire CT skills without CS education should

not be taken as an argument against the importance of teaching coding at a young age.

Developmentally appropriate coding platforms allow children to create personally meaningful

projects and can foster positive social and emotional development. Coding provides children

with a means of communication and constructive self-expression which are worthwhile ends in

themselves. The longitudinal study data presented here and in other studies indicate that learning

to code can accelerate the acquisition of CT. Previous work by scholars such as Heckman and

Mosso (2014) and Stanovich (1986) has shown that there is a much higher “return of

investment” in the long term when interventions target younger populations. For these and other

reasons, teaching coding at a young age is advantageous, even if learning to code isn’t the only

way to acquire CT skills. This work supports a broader view of computational thinking as a

foundational skill set that children acquire through a combination of learning from experience,

pedagogical interventions and brain development. It is my hope that this new perspective will

help guide researchers, educators, parents and other shareholders as they seek to promote the

development of CT skills in young children.

84

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7),

832–835. https://doi.org/10.1093/comjnl/bxs074

Arfé, B., Vardanega, T., & Ronconi, L. (2020). The effects of coding on children’s planning and

inhibition skills. Computers & Education, 148, 103807.

https://doi.org/10.1016/j.compedu.2020.103807

AVG Technologies research shows number of children aged nine and under able to use an app on

a smartphone or tablet increased 38 percent over the last three years (2018).

https://now.avg.com/digital-abilities-overtake-key-development-milestones-for-todays-co

nnected-children

Babbage, C. (1832). On the economy of machinery and manufactures. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 1(3), 208–213.

https://doi.org/10.1080/14786443208647876

Bakala, E., Gerosa, A., Hourcade, J. P., & Tejera, G. (2021). Preschool children, robots, and

computational thinking: A systematic review. International Journal of Child-Computer

Interaction, 29, 100337. https://doi.org/10.1016/j.ijcci.2021.100337

Barba, L. A. (2016). Computational thinking: I do not think it means what you think it means.

http://lorenabarba.com/blog/computational-thinking-i-do-notthink-it-means-what-you-thi

nk-it-means/.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved

and what is the role of the computer science education community? ACM Inroads, 2(1),

48-54. https://doi.org/10.1145/1929887.1929905

https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1016/j.compedu.2020.103807
https://now.avg.com/digital-abilities-overtake-key-development-milestones-for-todays-connected-children
https://now.avg.com/digital-abilities-overtake-key-development-milestones-for-todays-connected-children
https://doi.org/10.1080/14786443208647876
https://doi.org/10.1016/j.ijcci.2021.100337
http://lorenabarba.com/blog/computational-thinking-i-do-notthink-it-means-what-you-think-it-means/
http://lorenabarba.com/blog/computational-thinking-i-do-notthink-it-means-what-you-think-it-means/
https://doi.org/10.1145/1929887.1929905

85

Barrouillet, P., & Lecas, J. (1999). Mental models in conditional reasoning and working memory.

Thinking & Reasoning, 5(4), 289–302. https://doi.org/10.1080/135467899393940

Basu, S., Mustafaraj, E., & Rich, K. (2016). CIRCL primer: Computational thinking. In CIRCL

Primer Series. https://circlcenter.org/computationalthinking

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67(1), 1–48.

https://doi.org/10.18637/jss.v067.i01

Bell, T., & Lodi, M. (2019). Constructing computational thinking without using computers.

Constructivist Foundations,14(3), 342–351. https://constructivist.info/14/3/342.bell

Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work? In H.-J.In

H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures Between Lower Bounds

and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th

Birthday, 497–521. https://doi.org/10.1007/978-3-319-98355-4_29

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School

students doing real computing without computers. New Zealand Journal of Applied

Computing and Information Technology, 13, 20–29.

Bers, M. U. (2008). Blocks to robots learning with technology in the early childhood classroom.

New York, NY: Teachers College Press.

Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen

to playground. New York, NY: Oxford University Press.

Bers, M. U. (2017). The Seymour Test: Powerful ideas in early childhood education. Int. J.

Child-Comp. Interact., 14(C), 10–14. https://doi.org/10.1016/j.ijcci.2017.06.004

https://circlcenter.org/computationalthinking
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1016/j.ijcci.2017.06.004

86

Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the

early childhood classroom. Routledge.

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer

science in early childhood. Journal of Computers in Education, 6(4), 499–528.

https://doi.org/10.1007/s40692-019-00147-3

Bers, M. U. (2020). Coding as a playground: Programming and computational thinking in the

early childhood classroom, Second edition. Routledge Press.

Bers, M. U. (2022). Beyond Coding: How Children Learn Human Values through Programming.

MIT Press.

Bers M.U., Blake-West J., Govind M., Levinson T., Relkin E., Unahalekhaka A., Yang Z. (2022).

Coding as another language: Research-based curriculum for early childhood computer

science [Manuscript submitted for publication]. Eliot-Pearson Department of Child Study

and Human Development, Tufts University.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and

tinkering: Exploration of an early childhood robotics curriculum. Computers &

Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

Bortz, W. W., Gautam, A., Tatar, D., & Lipscomb, K. (2019). The availability of pedagogical

responses and the integration of computational thinking. In R. M. Reardon & J. Leonard

(Eds.), Integrating Digital Technology in Education School-University-Community

Collaboration (pp. 81–109). Information Age Publishing-Iap.

https://doi.org/10.1007/s10956-019-09805-8

https://doi.org/10.1016/j.compedu.2013.10.020

87

Bosgoed L., & Fanchamps, N. (2022). The effect of unplugged programming and visual

programming on computational thinking in children aged 5 to 7. CTE-STEM 2022

Conference. https://doi.org/10.34641/ctestem.2022.451

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In Proceedings of the 2012 Annual American

Educational Research Association Meeting. https://doi.org/10.1.1.296.6602

Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. Journal of

Mathematical Behavior, 47, 70–80. https://doi.org/10.1016/j.jmathb.2017.06.004

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing

elementary students’ computational thinking in everyday reasoning and robotics

programming. Computers in Education, 109, 162–175.

https://doi.org/10.1016/j.compedu.2017.03.001.

Chrysikou, E. G., Caulfield, M. D., & Kan, I. P. (2022). Large-scale network connectivity as a

predictor of age: Evidence across the adult lifespan from the Cam-CAN data set.

Psychology and Aging. Advance online publication. https://doi.org/10.1037/pag0000683

CSTA & ISTE. (2011). Computational Thinking in K-12 Education: Teacher resources (Version

2, 2nd ed.). Computer Science Teachers Association (CSTA) and the International

Society for Technology in Education (ISTE).

https://id.iste.org/docs/ct-documents/ct-teacher-resources_2ed-pdf.pdf?sfvrsn=2

Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards,

Revised 2017. Computer Science Teachers Association.

https://doi.org/10.1.1.296.6602
https://doi.org/10.1016/j.jmathb.2017.06.004
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.03.001
https://psycnet.apa.org/doi/10.1037/pag0000683
https://id.iste.org/docs/ct-documents/ct-teacher-resources_2ed-pdf.pdf?sfvrsn=2

88

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for

non-computer scientists. [Unpublished manuscript].

http://www.cs.cmu.edu/~CompThink/ resources/TheLinkWing.pdf

Dagienė, V., & Futschek, G. (2008). Bebras international contest on informatics and computer

literacy: Criteria for good tasks. In R. T. Mittermeir & M. M. Sysło (Eds.), Informatics

Education—Supporting Computational Thinking (Vol. 5090, pp. 19–30). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-540-69924-8_2

Dagienė, V., & Stupurienė, G. (2016). Bebras--a sustainable community building model for the

concept based learning of informatics and computational thinking. Informatics in

education, 15(1), 25–44. https://doi.org/10.15388/infedu.2016.02.

Denning, P. J. (2007). Computing is a Natural Science. Commun. ACM. 50(7), 13–18.

https://doi.org/10.1145/1272516.1272529

Denning, P. J. (2017). Remaining Trouble Spots with Computational Thinking. Commun. ACM,

60(6), 33–39. https://doi.org/10.1145/2998438

Denniston, C., Roome, B. R., & Wilson, N. (2015). Efficacy Study of The Foos Game. [White

Paper]. KnowProgress.

https://edcuration.com/resource/vendor/348/The%20Foos%20Efficacy%20Study%20Wh

ite%20Paper%20-%20KnowProgress.pdf

Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for

choosing between multi-item and single-item scales for construct measurement: A

predictive validity perspective. Journal of the Academy of Marketing Science, 40(3),

434–449. https://doi.org/10.1007/s11747-011-0300-3

https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.15388/infedu.2016.02
https://doi.org/10.1145/2998438
https://edcuration.com/resource/vendor/348/The%20Foos%20Efficacy%20Study%20White%20Paper%20-%20KnowProgress.pdf
https://edcuration.com/resource/vendor/348/The%20Foos%20Efficacy%20Study%20White%20Paper%20-%20KnowProgress.pdf
https://doi.org/10.1007/s11747-011-0300-3

89

Dijkstra, E. (1979). My hopes for computing science.

https://www.cs.utexas.edu/users/EWD/transcriptions/ EWD07xx/EWD709.html

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy. MIT Press.

diSessa, A. A. (2018). Computational Literacy and “The Big Picture” Concerning Computers in

Mathematics Education. Mathematical Thinking and Learning. 20(1), pp. 3-31,

https://doi.org/10.1080/10986065.2018.1403544

Dorn, E., Hancock, B., Sarakatsannis, J., & Viruleg, E. (2020). COVID-19 and student learning

in the United States: The hurt could last a lifetime. McKinsey & Company, 1.

El-Hamamsy, L., Zapata-Cáceres, M., Barroso, E. M., Mondada, F., Zufferey, J. D., & Bruno, B.

(2022). The competent Computational Thinking Test: Development and Validation of an

Unplugged Computational Thinking Test for Upper Primary School. Journal of

Educational Computing Research, 07356331221081753.

https://doi.org/10.1177/07356331221081753

etymonline. (n.d.). Computational | Etymology, origin and meaning of computational by

https://www.etymonline.com/word/computational

Ezeamuzie, N., & Leung, J. (2021). Computational Thinking Through an Empirical Lens: A

Systematic Review of Literature. Journal of Educational Computing Research,

073563312110331. https://doi.org/10.1177/07356331211033158

Fias, W., Menon, V., & Szucs, D. (2013). Multiple components of developmental dyscalculia.

Trends in Neuroscience and Education, 2(2), 43–47.

https://doi.org/10.1016/j.tine.2013.06.006

Field, A. (2009) Discovering Statistics Using SPSS. 3rd Edition, Sage Publications Ltd., London.

https://doi.org/10.1177/07356331211033158
https://doi.org/10.1177/07356331221081753
https://doi.org/10.1177/07356331221081753
https://www.etymonline.com/word/computational
https://doi.org/10.1177/07356331211033158
https://doi.org/10.1016/j.tine.2013.06.006
https://doi.org/10.1016/j.tine.2013.06.006

90

Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd ed.). Prentice

Hall. NJ.

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Duckworth, D. (2018). Preparing for life in a

digital world: IEA International computer and information literacy study 2018

international report (Vol. 297). Springer Nature.

https://doi.org/10.1007/978-3-030-38781-5

Gerdes, J., Durden, T., & Poppe, L. (2013). Brain Development and Learning in the Primary

Years .G2198. Faculty Publications from Nebraska Center for Research on Children,

Youth, Families, and Schools. https://digitalcommons.unl.edu/cyfsfacpub/77

Gerosa, A., Koleszar, V., Gonzalo, T., Leonel, G.-S., & Alejandra, C. (2021). Cognitive abilities

and computational thinking at age 5: Evidence for associations to sequencing and

symbolic number comparison. Computers and Education Open, 2, 100043.

https://doi.org/10.1016/j.caeo.2021.100043

Gerson, S. A., Morey, R. D., & van Schaik, J. E. (2022). Coding in the cot? Factors influencing

0–17s’ experiences with technology and coding in the United Kingdom. Computers &

Education, 178, 104400. https://doi.org/10.1016/j.compedu.2021.104400’

Google. (n.d.). Exploring Computational Thinking. http://g.co/exploringct – The page has now

been removed, but can be found in the “CT overview” tab here:

https://web.archive.org/web/20181001115843/https://edu.google.com/resources/programs

/exploring-computational-thinking/#!ct-overview

Govind, M., Relkin, E., & Bers, M. U. (2020). Engaging Children and Parents to Code Together

Using the ScratchJr App. Visitor Studies.https://doi.org/10.1080/10645578.2020.1732184

https://doi.org/10.1016/j.tine.2013.06.006
https://digitalcommons.unl.edu/cyfsfacpub/77
https://doi.org/10.1016/j.caeo.2021.100043
https://doi.org/10.1016/j.compedu.2021.104400
https://web.archive.org/web/20181001115843/https:/edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview
https://web.archive.org/web/20181001115843/https:/edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview
https://doi.org/10.1016/j.compedu.2021.104400

91

Grillo-Hill, A., Mahoney, C., Chow, E., & Li, L. (2019). StoryCoder Classroom Feasibility Study

[White Paper]. WestEd.

 https://edcuration.com/resource/vendor/348/codeSpark_Feasibility%20Memo_Draft.pdf

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.

Educational researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12. In

Proceedings of the 2014 conference on Innovation & technology in computer science

education (pp. 57–62). ACM. https://doi.org/10.1145/2591708.2591713.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th

ed.). Englewood Cliffs: Prentice Hall

Hartle, L. C. (2019). Technology and Young Children: Processes, Context, Research, and

Practice. In L.E. Cohen & S. Waite-Stupiansky (Eds.), STEM for Early Childhood

Learners: How Science, Technology, Engineering and Mathematics Strengthen Learning

(pp. 22-45). New York, NY: Routledge.

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. (2020). If You Can Program, You

Can Write: Learning Introductory Programming Across Literacy Levels. Journal of

Information Technology Education: Research, 19, 65-85. https://doi.org//10.28945/4509

Heckman, J. J., & Mosso, S. (2014). The Economics of Human Development and Social

Mobility. Annual review of economics, 6, 689–733.

https://doi.org/10.1146/annurev-economics-080213-040753

Hermans, F., & Aivaloglou, E. (2017). To Scratch or Not to Scratch? A Controlled Experiment

Comparing Plugged First and Unplugged First Programming Lessons. Proceedings of the

https://edcuration.com/resource/vendor/348/codeSpark_Feasibility%20Memo_Draft.pdf
https://doi.org/10.3102%2F0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1146/annurev-economics-080213-040753

92

12th Workshop on Primary and Secondary Computing Education, 49–56.

https://doi.org/10.1145/3137065.3137072

Hinton, P., Brownlow, C., Mcmurray, I., & Cozens, B. (2004). SPSS explained.

Abingdon-on-Thames: Taylor & Francis. https://doi.org/10.4324/9780203642597.

Hogenboom, S. A. M., Hermans, F. F. J., & Maas, H. L. J. V. der. (2021). Computerized adaptive

assessment of understanding of programming concepts in primary school children.

Computer Science Education, 0(0), 1–30.

https://doi.org/10.1080/08993408.2021.1914461

Horn, M. (2012). TopCode: Tangible Object Placement Codes.

http://users.eecs.northwestern.edu/~mhorn/topcodes.

Iseli, M. R., Feng, T., Relkin, E., & Chung, G. K. W. K. (2021a). Evaluation of Code

Manipulation in Coding Games. Virtual Annual Meeting of the American Educational

Research Association (AERA).

 Iseli, M. R., Feng, T., Chung, G. K. W. K., Ruan, Z., Shochet, J., & Stachman, A. (2021b).

Using Visualizations of Students’ Coding Processes to Detect Patterns Related to

Computational Thinking. Paper presented at 2021 ASEE Virtual Annual Conference

Content Access, Virtual Conference. https://peer.asee.org/38006.

Iseli, M. R., Relkin, E., Zhang, Y., Chung, G. K.W. K., Shochet, J., Strachman, A., Hosford, G.,

(2022). Defining Computational Thinking Using Semantic Analysis of Prior Definitions.

[Manuscirpt in Preparation]. CRESST, UCLA

Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with causal

conditionals. Developmental Psychology, 35(4), 904–911.

https://doi.org/10.1145/3137065.3137072
https://doi.org/10.1145/3137065.3137072
https://doi.org/10.1080/08993408.2021.1914461
https://doi.org/10.1080/08993408.2021.1914461

93

Jenson, J., & Droumeva, M. (2016). Exploring media literacy and computational thinking: A

game maker curriculum study. Electronic Journal of e-Learning, 14(2), 111-121.

https://academic-publishing.org/index.php/ejel/article/view/1748

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based

on a systematic research review.

https://www.researchgate.net/publication/303943002_A_Framework_for_Computational

_Thinking_Based_ on_a_Systematic_Research_Review

Kanaki, K., & Kalogiannakis, M. (2022). Assessing Algorithmic Thinking Skills in Relation to

Gender in Early Childhood. Educational Process International Journal, 11, 44–59.

https://doi.org/10.22521/edupij.2022.112.

Katz, D. L. (1960). Conference report on the use of computers in engineering classroom

instruction. Communications of the ACM, 3(10), 522–527.

https://doi.org/10.1145/367415.993453

Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive mastery testing

and a sequential mastery testing procedure. In New horizons in testing (pp. 257-283).

Academic Press. https://doi.org/10.1016/B978-0-12-742780-5.50024-X.

Knuth, D. E. (1974). Computer science and its relation to mathematics. The American

Mathematical Monthly, 81(4), 323-343.

https://doi.org/10.1080/00029890.1974.11993556

Ladner, R. E., & Stefik, A. (2017). AccessCSforall: Making Computer Science Accessible to

K-12 Students in the United States. SIGACCESS Access. Comput., 118, 3–8.

https://doi.org/10.1145/3124144.3124145

https://doi.org/10.22521/edupij.2022.112.3
https://doi.org/10.22521/edupij.2022.112
https://doi.org/10.22521/edupij.2022.112.3
https://doi.org/10.1145/367415.993453
https://doi.org/10.1080/00029890.1974.11993556
https://doi.org/10.1145/3124144.3124145
https://doi.org/10.1145/3124144.3124145

94

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L.

(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37. doi:

https://doi.org/10.1145/1929887.1929902

Levinson, T., & Bers, M. U. (2022). Student Centered Computational Thinking for Children with

Disabilities. American Educational Research Association (AERA) Annual Meeting, San

Diego, CA.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., &

Duschl, R. A. (2020). Computational Thinking Is More about Thinking than Computing.

Journal for STEM Education Research, 3(1), 1–18.

https://doi.org/10.1007/s41979-020-00030-2

 Lockwood, J., & Mooney, A. (2018). Computational Thinking in education: Where does it fit? A

systematic literary review. International Journal of Computer Science Education in

Schools, 2(1), 41-60. https://doi.org/10.21585/ijcses.v2i1.26

Lodi, M. (2020). Informatical Thinking. Olympiads in Informatics: An International Journal,

Vilnius University, International Olympiad in Informatics, 2020, 14, pp.113-132.

https://doi.org/10.15388/ioi.2020.09 . hal- 02981734

Lodi, M., & Martini, S. (2021). Computational Thinking, Between Papert and Wing. Science &

Education, 30(4), 883–908. https://doi.org/10.1007/s11191-021-00202-5

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2017). Stuck in the shallow end:

Education, race, and computing. MIT Press.

https://mitpress.mit.edu/books/stuck-shallow-end

Marinus, E., Powell, Z., Thornton, R., McArthur, G., & Crain, S. (2018). Unravelling the

cognition of coding in 3-to-6-year olds: the development of an assessment tool and the

https://doi.org/10.1145/3124144.3124145
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.21585/ijcses.v2i1.26
https://doi.org/10.1145/3124144.3124145
https://doi.org/10.1007/s11191-021-00202-5

95

relation between coding ability and cognitive compiling of syntax in natural language.

Proceedings of the 2018 ACM Conference on International Computing Education

Research - ICER ’18, 133–141. https://doi.org/10.1145/3230977.3230984.

Metin, S. (2020). Activity-based unplugged coding during the preschool period. International

Journal of Technology and Design Education, 32(1), 149–165.

https://doi.org/10.1007/s10798-020-09616-8

Mioduser, D., & Levy, S. T. (2010). Making Sense by Building Sense: Kindergarten Children’s

Construction and Understanding of Adaptive Robot Behaviors. International Journal of

Computers for Mathematical Learning, 15(2), 99–127. https://eric.ed.gov/?id=EJ924252

 Mioduser, D., Levy, S. T., & Talis, V. (2009). Episodes to scripts to rules: Concrete-abstractions

in kindergarten children’s explanations of a robot’s behavior. International Journal of

Technology and Design Education, 19(1), 15–36.

https://doi.org/10.1007/s10798-007-9040-6

Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., &

Gajdzik, E. (2020). Multiple representations in computational thinking tasks: a clinical

study of second-grade students. Journal of Science Education and Technology, 29(1),

19–34. https://doi.org/10.1007/s10956-020-09812-0.

Muller, U., Overton, W. F., & Reene, K. (2001). Development of conditional reasoning: A

longitudinal study. Journal of Cognition and Development, 2(1), 27–49.

National Research Council. (2010). Report of a workshop on the scope and nature of

computational thinking. Washington, DC: National Academies Press.

National Research Council. (2011). Report of a workshop on the pedagogical aspects of

computational thinking. National Academies Press.

https://doi.org/10.1007/s10798-020-09616-8
https://doi.org/10.1007/s10798-020-09616-8
https://doi.org/10.1007/s10798-020-09616-8
http://dx.doi.org/10.1007/s10798-007-9040-6

96

Odegard, N. (2012). When matter comes to matter – working pedagogically with junk

materials. Education Inquiry, 3(3), p.387-400.

Organisation for Economic Co-operation and Development (OECD), (2010). What do we know

about children and technology? Educational Research and Innovation, OECD

Publishing, Paris. https://www.oecd.org/education/ceri/Booklet-21st-century-children

Peters, L., & Smedt, B. D. (2018). Arithmetic in the developing brain: A review of brain imaging

studies. Developmental Cognitive Neuroscience, 30, 265–279.

https://doi.org/10.1016/j.dcn.2017.05.002

Papavlasopoulou, S., Sharma, K., & Giannakos, M. N. (2020). Coding activities for children:

Coupling eye-tracking with qualitative data to investigate gender differences. Computers

in Human Behavior, 105, Article 105939. https://doi.org/10.1016/j.chb.2019.03.003

Papert, S. (1993). The children’s machine: Rethinking schools in the age of the computer. New

York: Basic Books.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic

Books.

Papert, S. (1996). An Exploration in the Space of Mathematics Educations, International Journal

of Computers for Mathematical Learning, Vol. 1, No. 1, pp. 95-123.

Papert, S. (2000). What’s the big idea? Toward a pedagogy of idea power. IBM Systems Journal,

39(3.4), 720–729. https://doi.org/10.1147/sj.393.0720

Papert, S., & Harel, I. (1991). Situating Constructionism. In Constructionism. Ablex Publishing

Corp.

Penfold, L. (2019). Material Matters in Children’s Creative Learning. Journal of Design and

Science. https://jods.mitpress.mit.edu/pub/bwp6cysy

https://www.oecd.org/education/ceri/Booklet-21st-century-children
https://doi.org/10.1016/j.dcn.2017.05.002
https://doi.org/10.1016/j.dcn.2017.05.002
https://doi.org/10.1147/sj.393.0720
https://jods.mitpress.mit.edu/pub/bwp6cysy

97

Perlis. A. J. (1963). The computer in the university. In M. Greenberger, Ed., Computers and the

World of the Future, MIT Press, Cambridge, MA, 180–219.

Piaget, J. (1971). Developmental stages and developmental processes. In D. R. Green, M. P.

Ford, & G. B. Flamer (Eds.), Measurement and Piaget (pp. 172–188). New York:

McGraw-Hill.

Portelance, D. J., & Bers, M. U. (2015). Code and tell: Assessing young children’s learning of

computational thinking using peer video interviews with ScratchJr. Proceedings of the

14th International Conference on Interaction Design and Children - IDC ’15, 271–274.

https://doi.org/10.1145/2771839.2771894

Prakken, L. W. (1942). The Education Digest Vol 8 Page 49

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Relkin E. &, Bers, M. (2021). TechCheck-K: A Measure of Computational Thinking for

Kindergarten Children. In 2021 IEEE Global Engineering Education Conference

(EDUCON). IEEE. https://sites.tufts.edu/devtech/files/2021/05/1487.pdf

Relkin E., de Ruiter., L., Bers, M.U. (2021). Learning to Code and the Acquisition of

Computational Thinking by Young Children. Computers & Education.

https://doi.org/10.1016/j.compedu.2021.104222

Relkin, E. (2018). Assessing young children’s computational thinking abilities (Master’s thesis).

Retrieved from ProQuest Dissertations and Theses database. (UMI No. 10813994).

Relkin, E. (2021). Creation of an unplugged computational thinking assessment for young

children. In M. U. Bers (Ed.) Teaching Computational Thinking and Coding to Young

Children (pp. 250-264). IGI Global. https://doi.org/10.4018/978-1-7998-7308-2.ch013

https://doi.org/10.1145/2771839.2771894
https://doi.org/10.1145/2771839.2771894
https://www.r-project.org/
https://sites.tufts.edu/devtech/files/2021/05/1487.pdf
https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1016/j.compedu.2021.104222

98

Relkin, E. & Bers, M. U. (2020). Exploring the Relationship Among Coding, Computational

Thinking, and Problem Solving in Early Elementary School Students [Symposium].

Annual Meeting of the American Educational Research Association (AERA), San

Francisco, CA (Conference Cancelled).

https://sites.tufts.edu/devtech/files/2021/05/RelkinBersAERA20.pdf

Relkin, E., & Strawhacker, A. (2021). Unplugged learning: Recognizing computational thinking

in everyday life. In M. U. Bers (Ed.) Teaching Computational Thinking and Coding to

Young Children (pp. 41-62). IGI Global.

https://doi.org/10.4018/978-1-7998-7308-2.ch003

Relkin, E., de Ruiter., L., Bers, M.U. (2020). TechCheck: Development and Validation of an

Unplugged Assessment of Computational Thinking in Early Childhood Education.

Journal of Science Education and Technology.

https://doi.org/10.1007/s10956-020-09831-x

Resnick, M., & Robinson, K. (2017). Lifelong kindergarten: Cultivating creativity through

projects, passion, peers, and play. MIT press.

https://mitpress.mit.edu/books/lifelong-kindergarten

Román-González, M., Moreno-León, J., Robles, G. (2019). Combining Assessment Tools for a

Comprehensive Evaluation of Computational Thinking Interventions. In: Kong, SC.,

Abelson, H. (eds) Computational Thinking Education. Springer, Singapore.

https://doi.org/10.1007/978-981-13-6528-7_6

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive

abilities underlie computational thinking? Criterion validity of the Computational

https://doi.org/10.4018/978-1-7998-7308-2.ch003
https://doi.org/10.1007/s10956-020-09831-x
https://doi.org/10.1007/s10956-020-09831-x
https://mitpress.mit.edu/books/lifelong-kindergarten
https://doi.org/10.1007/978-981-13-6528-7_6

99

Thinking Test. Computers in Human Behavior, 72, 678–691.

https://doi.org/10.1016/j.chb.2016.08.047

Román-González, M., Pérez-González, J.-C., Moreno-León, J., & Robles, G. (2018). Extending

the nomological network of computational thinking with non-cognitive factors.

Computers in Human Behavior, 80, 441–459. https://doi.org/10.1016/j.chb.2017.09.030

Romano, J., Kromrey, J., Coraggio, J. & Skowronek, J. (2006). Appropriate statistics for ordinal

level data: Should we really be using t-test and Cohen'sd for evaluating group differences

on the NSSE and other surveys?. In annual meeting of the Florida Association of

Institutional Research (pp. 1-3) .

Santos, J. S., Andrade, W. L., Brunet, J., & Araujo Melo, M. R. (2020). A Systematic Literature

Review of Methodology of Learning Evaluation Based on Item Response Theory in the

Context of Programming Teaching. 2020 IEEE Frontiers in Education Conference (FIE),

1–9. https://doi.org/10.1109/FIE44824.2020.9274068

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition

[Monograph]. https://eprints.soton.ac.uk/356481/

Shute, V., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review, 22. 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual

differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360-407.

Strawhacker, A. L., Lee, M. S. C., & Bers, M. U. (2017). Teaching tools, teachers’ rules:

exploring the impact of teaching styles on young children’s programming knowledge in

ScratchJr. International Journal of Technology and Design Education.

https://doi.org/10.1007/s10798-017-9400-9

https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1109/FIE44824.2020.9274068
https://eprints.soton.ac.uk/356481/
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.edurev.2017.09.003

100

Strawhacker, A., & Bers, M. U. (2019). What They Learn When They Learn Coding:

Investigating cognitive domains and computer programming knowledge in young

children. Educational Technology Research and Development, 67(3), 541-575.

https://doi.org/10.1007/s11423-018-9622-x

Sullivan, A. (2016). Breaking the STEM Stereotype: Investigating the Use of Robotics to

Change Young Children’s Gender Stereotypes About Technology & Engineering.

ProQuest Dissertations and Theses database. http://hdl.handle.net/10427/011851

Sullivan, A. & Bers, M.U. (2017). Computational Thinking and Young Children: Understanding

the Potential of Tangible and Graphical Interfaces. In Ozcinar, H., Wong, G., & Ozturk,

T. (Eds.) Teaching Computational Thinking in Primary Education. IGI Global.

https://doi.org/10.4018/978-1-5225-3200-2.ch007

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in young children’s

performance on robotics and programming tasks. Journal of Information Technology

Education: Innovations in Practice, 15, 145- 165.

http://www.informingscience.org/Publications/3547

Sullivan, A., Bers, M. U., Mihm, C. (2017). Imagining, Playing, & Coding with KIBO: Using

KIBO Robotics to Foster Computational Thinking in Young Children. Proceedings of the

International Conference on Computational Thinking Education. Wanchai, Hong Kong.

https://www.eduhk.hk/cte2017/doc/CTE2017%20Proceedings.pdf#page=121

 Swade, D. D. (2005). The Construction of Charles Babbage’s Difference Engine No. 2. IEEE

Annals of the History of Computing, 27(3), 70–78.

https://doi.org/10.1109/MAHC.2005.45

https://doi.org/10.1016/j.edurev.2017.09.003
http://hdl.handle.net/10427/011851
https://doi.org/10.1016/j.edurev.2017.09.003
http://www.informingscience.org/Publications/3547
https://www.eduhk.hk/cte2017/doc/CTE2017%20Proceedings.pdf#page=121
https://doi.org/10.1109/MAHC.2005.45

101

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A

systematic review of empirical studies. Computers & Education, 148, 103798.

https://doi.org/10.1016/j.compedu.2019.103798

The Mathematics Teacher (1943). National Council of Teachers of Mathematics Vol 36 Issue 2

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in

K-12 education: A conceptual model based on a systematic literature Review. Computers

& Education, 162, 104083. https://doi.org/10.1016/j.compedu.2020.104083

Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-grade

students know and can do. Journal of Educational Computing Research, 57(1), 3–31.

https://doi.org/10.1177/0735633117743918

Hançer, N., Çiftçi, A., & Topcu, M. (2021). Turkish Early Childhood Children’s Computational

Thinking Skills: Adaptation of TechCheck-K to Turkish. In The International Conference

on Science and Education, Antalya, Turkey.

https://www.isres.org/conferences/2021_Antalya/ICONSE2021_Abstract.pdf

Vogel, S. E., & De Smedt, B. (2021). Developmental brain dynamics of numerical and arithmetic

abilities. NPJ Science of Learning, 6(1), 22. https://doi.org/10.1038/s41539-021-00099-3

Vizner M. Z. (2017). Big robots for little kids: investigating the role of scale in early childhood

robotics kits (Master’s thesis). Available from ProQuest Dissertations and Theses

database. (UMI No.10622097).

Wang, J., & Hejazi Moghadam, S. (2017). Diversity Barriers in K-12 Computer Science

Education: Structural and Social. Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, 615–620.

https://doi.org/10.1145/3017680.3017734

https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1177/0735633117743918
https://doi.org/10.1038/s41539-021-00099-3
https://doi.org/10.1145/3017680.3017734
https://doi.org/10.1145/3017680.3017734

102

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for children to cultivate

computational thinking. Scientific World Journal, 428080.

https://doi.org/10.1155/2014/428080

Wang, C., Chao, J., & Shen, J. (2021). Integrating Computational Thinking in STEM

Education: A Literature Review. International Journal of Science and Mathematics

Education. https://doi.org/10.1007/s10763-021-10227-5

Wang, J., & Hejazi Moghadam, S. (2017). Diversity barriers in K-12 computer science

education: structural and social. Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, 615-620.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining computational thinking for mathematics and science classrooms. Journal of

Science Education and Technology, 25(1), 127–147.

https://doi.org/10.1007/s10956-015-9581-5

Werner, L., Denner, J., & Campe, S. (2014). Using computer game programming to teach

computational thinking skills. Learning. Education And Games, 37.

https://dl.acm.org/citation.cfm?id=2811150.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The Fairy Performance

Assessment: Measuring Computational Thinking in Middle School. Proceedings of the

43rd ACM Technical Symposium on Computer Science Education, 215–220.

https://doi.org/10.1145/2157136.2157200

Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

https://ggplot2.tidyverse.org

https://doi.org/10.1155/2014/428080
https://doi.org/10.1155/2014/428080
https://doi.org/10.1007/s10763-021-10227-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1145/2157136.2157200
https://ggplot2.tidyverse.org

103

Williams, D. R., Priest, N., & Anderson, N. B. (2016). Understanding associations among race,

socioeconomic status, and health: Patterns and prospects. Health psychology : official

journal of the Division of Health Psychology, American Psychological Association,

35(4), 407–411. https://doi.org/10.1037/hea0000242

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),33–35.

https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2011). Research notebook: Computational thinking—What and why? The Link

Magazine, Spring. Carnegie Mellon University, Pittsburgh.

https://www.cs.cmu.edu/link/research- notebookcomputational-thinking-what-and-why

Wohl, B., Porter, B., & Clinch, S. (2015). Teaching computer science to 5–7 yearolds: An initial

study with scratch, cubelets and unplugged computing. Proceedings of the Workshop in

Primary and Secondary Computing Education, 55–60. 10.1145/2818314.2818340

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017a). Computational Thinking as an Emerging

Competence Domain. In M. Mulder (Ed.), Competence-based Vocational and

Professional Education: Bridging the Worlds of Work and Education (pp. 1051–1067).

Springer International Publishing. https://doi.org/10.1007/978-3-319-41713-4_4

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017b). Computational Thinking in Teacher

Education. In P. J. Rich & C. B. Hodges (Eds.), Emerging Research, Practice, and Policy

on Computational Thinking (pp. 205–220). Springer International Publishing.

https://doi.org/10.1007/978-3-319-52691-1_13

https://doi.org/10.1037/hea0000242
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1007/978-3-319-41713-4_49
https://doi.org/10.1007/978-3-319-52691-1_13

104

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking

in elementary and secondary teacher education. Acm Transactions on Computing

Education, 14(1), 5. https://doi.org/10.1145/2576872

Yang, W., Ng, D. T. K., & Gao, H. (2021). Robot programming versus block play in early

childhood education: Effects on computational thinking, sequencing ability, and

self-regulation. British Journal of Educational Technology.

https://doi.org/10.1111/bjet.13215

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). Computational

thinking test for Beginners: Design and content validation. In 2020 IEEE global

engineering education conference (EDUCON) (pp. 1905–1914). IEEE.

https://doi.org/10.1109/EDUCON45650.2020.9125368.

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through

Scratch in K-9. Computers & Education, 141, 103607.

https://doi.org/10.1016/j.compedu.2019.103607.

https://doi.org/10.1145/2576872
https://doi.org/10.1111/bjet.13215
https://doi.org/10.1016/j.compedu.2019.103607

Computers & Education 169 (2021) 104222

Available online 29 April 2021
0360-1315/© 2021 Elsevier Ltd. All rights reserved.

Learning to code and the acquisition of computational thinking by
young children

E. Relkin *, L.E. de Ruiter, M.U. Bers
Eliot-Pearson Department of Child Study and Human Development, Tufts University, USA

A R T I C L E I N F O

Keywords:
Computational thinking
Coding
Early childhood education
Unplugged assessment
Curriculum

A B S T R A C T

This longitudinal study examined changes in Computational Thinking (CT) skills in first and
second grade students exposed to a developmentally appropriate coding curriculum. The “Coding
as Another Language” (CAL) curriculum spans seven weeks and uses the KIBO robot to engage
students in learning that integrates programming and literacy concepts. We compared children
receiving CAL (N = 667) to a control group (N = 181) who participated in typical classroom
activities without coding (No-CAL). TechCheck, a validated “unplugged” CT assessment suitable
for young children regardless of their coding experience, was used to measure CT. Over the course
of the study, children who received CAL-KIBO improved on TechCheck (Mchange = 0.94, p < .001)
whereas the No-CAL group did not change significantly (Mchange = 0.27, p = .07). Accounting for
demographic factors, baseline performance and classroom (teacher) effects, CAL exposure was a
significant predictor of post-test CT scores (p < .01). Improvements in CT measured by TechCheck
over seven weeks of the CAL-KIBO curriculum were consistent with approximately six months of
development without coding instruction. Secondary analysis stratified by grade revealed decisive
evidence that CAL exposure improved scores in first grade and anecdotal evidence that second
grade scores improved. The CT domains that showed improvement in children who received CAL-
KIBO included algorithms, modularity, and representation. Young children who learned to code
improved in solving unplugged problems that were not explicitly taught in the coding curriculum.
This provides evidence that a developmentally appropriate curriculum for teaching young chil-
dren to code can accelerate their acquisition of CT skills.

1. Introduction

One of the most important goals of teaching computer science (CS) to young children is to foster the development of computational
thinking (CT) skills that are applicable to many educational disciplines and areas of life (Barr & Stephenson, 2011; Chen et al., 2017;
Cuny et al., 2010; Wing, 2006). Papert (1980) alluded to CT in his book Mindstorms in a discussion of the challenge of integrating
Computer Science (CS) education with children’s everyday experiences. Later, Wing popularized the term and defined it as a set of
reasoning skills for formulating and solving problems using computers and other information technologies (Wing, 2006, 2011). She
emphasized that CT is not only useful in CS but also other disciplines such as mathematics, science, design, economics, and linguistics
(Wing, 2011). Since that time there has been increasing interest in CT, as documented in several recent reviews describing CT’s
definitions, methods of assessment and educational initiatives (Lye & Koh, 2014; Román-González et al., 2019; Tang et al., 2020;

* Corresponding author. Eliot-Pearson Department, 105 College Ave, Medford, MA, 02155, USA.
E-mail address: Emily.relkin@tufts.edu (E. Relkin).

Contents lists available at ScienceDirect

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

https://doi.org/10.1016/j.compedu.2021.104222
Received 3 September 2020; Received in revised form 19 April 2021; Accepted 21 April 2021

mailto:Emily.relkin@tufts.edu
www.sciencedirect.com/science/journal/03601315
https://www.elsevier.com/locate/compedu
https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1016/j.compedu.2021.104222
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compedu.2021.104222&domain=pdf
https://doi.org/10.1016/j.compedu.2021.104222

Computers & Education 169 (2021) 104222

2

Zhang & Nouri, 2019).
There is an ongoing debate about whether CT is truly a singular concept (Barr et al., 2011; Grover & Pea, 2013; National Research

Council, 2011). Zhang and Nouri (2019) identified three types of definitions of CT in the published literature: generic definitions that
focus on universal problem-solving skills (e.g., Aho, 2012; Wing, 2011); operational definitions that provide a vocabulary and identify
CT sub-domains (e.g., CSTA, 2011; Selby & Woollard, 2013) and educational definitions that provide concepts and competencies (e.g.,
Barr & Stephenson, 2011; Brennan & Resnick, 2012). Tang et al. (2020) later distinguished CT definitions that are
programming-related (e.g., Grover, et al., 2015) from those of a general problem-solving nature (e.g., CSTA, 2011; Selby & Woollard,
2013). The existence of many different definitions is an indication that CT is still an evolving concept but one recognized to have
considerable importance for CS education. For present purposes, we define CT to be a set of heuristic reasoning skills that can be
categorized into discrete sub-domains applicable to problem-solving in computer science and other disciplines.

Coding (programming) has been described as “the instrumental skill of CT” and “the primary means of teaching CT in primary
school” (Arfé et al., 2019; Román-González, 2017; Wing, 2006). Programming languages are specifically designed to communicate
instructions and solve problems with computers, and children as young as 3–4 years of age are capable of learning to code (Bers, 2018;
Clements & Gullo, 1984; Kazakoff & Bers, 2014; Strawhacker & Bers, 2019). However, in a 2014 review Lye and Koh (2014) found that
the majority of past studies of coding and CT were carried out in higher educational settings, and only 25% involved kindergarten
through 12th grade students. Lockwood and Mooney (2018) conducted a systematic review of CT in secondary schools (children ages
11–18) and concluded that educational programs promoting CT in middle and high schools are becoming more widespread. While
there has been an increase in CT educational initiatives and professional development programs for younger students and their
teachers (Fraillon et al., 2018; Tang et al., 2020), more work is needed in this area. In particular, there is still only a limited under-
standing of the effects of learning to code on young children’s cognitive development and how to best promote the development of CT.

1.1. Teaching computational thinking to young children

Educational initiatives relating to CT in young children must take into account the progression of cognitive development. A
typically developing young child does not possess fully mature literacy, numeracy, and abstract reasoning skills (Piaget, 1971). Ac-
cording to developmental theorists, first and second grade children are typically in the preoperational or concrete operations stage. At
the preoperational stage from around two years to six years of age, children tend to engage in concrete, egocentric thinking and are just
beginning to develop knowledge about physical symbols and representation. By the concrete operations stage from approximately six
to twelve years, they are better able to organize their thoughts, use logical reasoning skills, and rely less directly on physical repre-
sentations of ideas (Bruner et al., 1966; Feldman, 2004; McDevitt & Ormrod, 2002; Piaget, 1953).

A young child’s stage of development can constrain the CS concepts and CT skills they can readily master (Chen et al., 2017;
Goldstein & Flake, 2016). For example, early elementary school children may have difficulty grasping “if-then” conditionals (Bar-
rouillet & Lecas, 1999; Janveau-Brennan & Markovits, 1999; Muller et al., 2001). Likewise, they may have a hard time understanding
abstract representations such as variables. They may engage in magical thinking or personification rather than recognize the me-
chanical basis for the actions of machines (Flavell et al., 1993; Mioduser et al., 2009). These and other developmental considerations
must be taken into account when designing educational programs to teach CT to young children.

In an effort to provide a developmentally appropriate framework for teaching coding and other CS concepts to children between the
ages of 4–9 years, Bers (2018) described the seven powerful ideas of CS. This framework is based on experience with a variety of coding
initiatives for children, such as Google for Education, 2010; Scratch (Brennan & Resnick, 2012); the KIBO robotics kit (Sullivan & Bers,
2015) and ScratchJr (Portelance et al., 2015). The seven powerful ideas identify child-friendly concepts within the domains of
hardware/software, algorithms, modularity, control structures, representation, debugging, and design process (see Table 1).

The powerful ideas provided the foundation for the CS curriculum used in the current study called “Coding as Another Language”
(CAL). This curriculum is designed to teach coding and CT to young children while simultaneously promoting literacy skills (Bers,
2018; Hassenfeld et al., 2020). Programming in elementary education has typically been associated with Science, Technology, En-
gineering and Mathematics (STEM) curricula (Bers, 2019; Clements et al., 2001; Guzdial & Morrison, 2016). However, there are

Table 1
The seven powerful ideas, associated concepts, and examples from the CAL-KIBO curriculum.

Powerful Idea Associated Concepts Example from CAL-KIBO Curriculum

Algorithms Sequencing/order, logical organization Child learns to program KIBO in a specific sequence to dance the “Hokey Pokey”
Modularity Breaking up larger task into smaller parts,

instructions
Students break up the “If You’re Wild and You Know It” song into smaller components that
KIBO can be programmed to perform

Control
Structures

Recognizing patterns and repetition, cause
and effect

Children learn to trigger sound sensors using “wait for clap” command

Representation symbolic representation, models Child learns that each programming block translates into a unique KIBO action.
Hardware/

Software
Smart objects are not magical, objects are
human engineered

Children play a game about what is and isn’t a robot and learn that you must give the KIBO
robot a program in order for it to perform

Design Process Problem solving, perseverance, editing/
revision

Children are tasked with creating a final “Wild Rumpus” KIBO project in which they plan,
code, test and revise with peer sharing and feedback

Debugging Identifying problems, problem solving,
perseverance

Children identify problems in either hardware or software of KIBO and brainstorm solutions
to fix it

E. Relkin et al.

Computers & Education 169 (2021) 104222

3

creative and self-expressive aspects of programming that align more closely with literacy and other aspects of the humanities (Bers,
2018, 2020; Resnick & Siegel, 2015). The CAL curriculum draws on principles of literacy education to create lessons that blend el-
ements of learning to read and write with CS and coding concepts (Bers, 2019; Hassenfeld et al., 2020). This pedagogical approach
emphasizes creative programming and provides children with opportunities for self-expression analogous to those experienced when
using a symbolic written language (Bers, 2018, 2019).

One of the greatest challenges to integrating CT into early elementary school education has been a lack of validated, develop-
mentally appropriate assessments to measure young children’s CT skills in classroom and online settings (Lockwood & Mooney, 2018;
Lee et al., 2011; Román-González et al., 2019). In the following section, we review the development of CT assessments for young
children and describe the recent advent of “unplugged” CT assessments such as TechCheck, the instrument employed in this study.

1.2. Assessing computational thinking in young children

CT assessment instruments for young children must use developmentally appropriate language and tasks to assure that factors such
as literacy and fine motor skills are not limiting (Chen et al., 2017; Sattler, 2014). Cultural biases should be avoided, and the activities
and artifacts employed must be familiar and non-threatening to young children (McMillan, 2013; Mullis & Martin, 2019; Tang et al.,
2020). The duration of the assessment should be relatively brief in light of the shorter attention span of young children (Moyer &
Gilmer, 1953). The range of difficulties covered by the assessment should allow for children with little or no CT training to be assessed
with equal ease and precision to students with extensive CT talent (Relkin et al., 2020). It has been suggested that CT assessments
should incorporate measures that evaluate reasoning processes, not just the end product of a program or a problem solved (Brennan &
Resnick, 2012; Fields et al., 2019; Román-González et al., 2019). However, this is arguably an aspirational goal that has yet to be
achieved in a brief CT assessment that can be administered to large numbers of young students simultaneously in a classroom setting.

Román-González et al. (2019) reviewed CT assessment tools for kindergarten through 12th grade and found most were designed for
students in middle school, high school and/or adults (Chen et al., 2017; Fraillon et al., 2018; Román-González et al., 2018; Werner
et al., 2012). Some CT assessments require hours and/or multiple sessions to complete, making them impractical for routine use in
educational settings (Basu et al., 2016; Chen et al., 2017; Werner et al., 2014). CT assessments that employ programming challenges
that require some prior knowledge of coding may conflate programming abilities with CT skills (Yadav et al., 2017). Such instruments
cannot readily be used to assess baseline CT abilities in coding-naive students. To the extent that it is desirable to be able to measure CT
skills in children regardless of whether they have past knowledge or experience with computer programming, coding exercises alone
may not be the best way to assess CT (Grover et al., 2014).

Recently, our research group and others have explored the use of coding-free instruments to assess CT skills in children. These
newer instruments leverage the fact that CT skills can be exercised without programming through the use of unplugged activities (Bell
& Vahrenhold, 2018; Zapata-Cáceres et al., 2020). Unplugged activities consist of puzzles, games and other exercises that draw upon
CS concepts without requiring explicit knowledge of coding or computers. Unplugged activities have been used to teach CS concepts
for over two decades (e.g., CSUnplugged.com; code.org) and can also be used for assessment purposes.

One of the first unplugged CT assessments was designed for post-elementary school students by Román-González et al. (2018) who
created a 45-min unplugged assessment called the Computational Thinking Test (CTt). This instrument was used to measure CT
abilities in over 300 middle school students (ages 12–14) before and after they took part in an informatics course that included ele-
ments of the code.org curriculum (Román-González et al., 2018). After the coding intervention, CTt assessment scores improved and
correlated positively (p < .01) with language (r = 0.42), grade point average (r = 0.47), mathematics (r = 0.36) and informatics (r =
0.43). In its original form, the CTt is not suitable for use in younger, elementary school-age children.

Arfé et al. (2019) used four traditional neuropsychological tests to measure executive functioning in first and second graders who
received components of the code.org curriculum. The tests did not involve coding or computer technology and as such could be
considered “unplugged.” Among n = 42 first graders who received 8 h of coding instruction, the measures of response inhibition and
planning improved more than in a control group (n = 34) that received non-coding STEM activities (Arfé et al., 2019). The authors also
followed n = 17 second grade students longitudinally and found that changes in planning and response inhibition after one month of

Table 2
Comparison of Two “Unplugged” CT assessments for young children: The BCTt and TechCheck based on Zapata-Cáceres et al., 2020 and Relkin et al.,
2020.

BCTt TechCheck

Average Admin
Time

40 min 13 min

Format Pen and paper Pen and paper, Online
Validation

Sample
299 students 768 students

Validated Age
Range

5-12 (1st- 6th grade) 5-9 (1st - 2nd grade)

Age Sensitivity Significant difference between 2nd grade vs. 4th and 6th graders in initial
validation study. No significant difference between 1st and 2nd graders
reported. No difference between 4th and 6th graders

Significant difference between 1st and 2nd graders. No data
on older or younger children in initial validation study.

CT Concepts Sequences, Loops (Simple, Nested), Conditionals (If-Then, If-Then-Else, While) Algorithms, Modularity, Debugging, Hardware/Software,
Control Structures, Representation

E. Relkin et al.

http://CSUnplugged.com
http://code.org
http://code.org

Computers & Education 169 (2021) 104222

4

the coding intervention were comparable to those that occurred over seven months of normal development. This study provides
evidence from a randomized, control trial that learning to code can accelerate the development of executive functions critical to CT in
young children. However, the number of participants was relatively small and the assessment measures employed focused on a specific
subset of the various skills involved in CT. In light of this, further studies are needed to evaluate the impact of learning to code on young
children’s CT skills.

Cross-sectional validation studies were recently completed on two unplugged CT assessments designed specifically for young
children. The CTt for Beginners (BCTt) (Zapata-Cáceres et al., 2020) and TechCheck (Relkin et al., 2020) both use unplugged challenges
to probe CT domains and can be administered to children who lack prior coding experience. These instruments differ in the types of
unplugged challenges they include, the CT domains assessed, the targeted age ranges and the time required to complete the assess-
ments (see Table 2).

Although both the BCTt and TechCheck assessment instruments have unique merits, TechCheck was chosen for the present study for
several reasons. TechCheck’s CT constructs are based on Bers’ seven powerful ideas, the same conceptual foundation as the CAL coding
curriculum used in this study. On average, TechCheck takes approximately 13 min to administer while the BCTt requires approximately
40 min. Some of the concepts probed by the BCTt such as conditionals may be problematic for younger children on developmental
grounds (Barrouillet & Lecas, 1999; Janveau-Brennan & Markovits, 1999; Muller et al., 2001). Mean scores on TechCheck were
significantly different in first and second graders whereas no significant difference between these grades was reported for the BCTt
(Zapata-Cáceres et al., 2020). In addition, TechCheck can be administered to large groups of children simultaneously using an online
platform, which is useful in the context of the present study involving hundreds of students.

By obtaining a better understanding of how learning to code impacts the acquisition of CT in young children, it may be possible to
improve teaching methods designed to promote the development of these reasoning skills (Nouri et al., 2020). The advent of the CAL
curriculum and validated unplugged CT assessments for elementary school children provides a new opportunity to explore the
interaction of coding education and CT. We set out to answer the following research question: How does a coding intervention impact
young children’s CT skills as measured by an unplugged CT assessment?

2. Method

The present study has a quasi-experimental longitudinal design. The intervention is a version of the CAL curriculum called “CAL-
KIBO” that uses the KIBO robot to teach children programming and literacy concepts. It examines CT skills in children between ages 5
and 9 (first and second grade) before and after they participate in the CAL-KIBO curriculum. Grade-matched students who engage in
their usual classroom activities without learning to code provide a comparison group for identifying incidental and/or maturation-
related changes in CT skills. The TechCheck unplugged assessment is administered before and after the intervention to evaluate
changes in CT. In the following section, we describe the specifics of the methods we employ.

2.1. The intervention: the CAL-KIBO curriculum

The CAL-KIBO curriculum is implemented using the KIBO robotics platform, a screen-free programmable robot that is develop-
mentally appropriate for young children. Young children often learn to code using simple sequencing and graphical or tangible coding
interfaces (Bers, 2020; Guzdial & Morrison, 2016; Jenkins, 2002; Resnick & Silverman, 2005; Strawhacker et al., 2017; Sullivan et al.,
2015). KIBO is programmed with tangible wooden blocks that a child sequences and then scans using a barcode scanner embedded in
the robot. Each block represents an action that the robot performs. The combination of KIBO’s blocks, sensors, modules, and art
platforms gives children a unique opportunity to not only explore programming concepts but also to use their creativity to create
personally meaningful projects (see Fig. 1).

Fig. 1. The KIBO robot, programming blocks, parameter stickers, modules/sensors, and attachable art platforms.

E. Relkin et al.

Computers & Education 169 (2021) 104222

5

KIBO has been shown to engage young children as young as four years old in expressive and creative coding (Elkin et al., 2016;
Sullivan et al., 2015, 2017). The CAL-KIBO curriculum incorporates lessons and exercises that teach algorithms, modularity, hard-
ware/software, control structures, debugging, representation, and design process.

The CAL-KIBO curriculum teaches coding as a symbolic system of representation for expressive purposes and not only problem-
solving. CAL-KIBO includes time spent working with coding, game-play as well as an emphasis on activities involving social in-
teractions, creativity and movement. Individual and group activities in this curriculum include warm-up games to playfully introduce
or reinforce concepts, design challenges to solidify skills, free explorations to allow students to tinker and expand their skills,
expressive explorations to promote creativity, writing activities and technology circles to share and reflect on activities. The curric-
ulum was first created and tested with second graders and was then modified for first graders. Feedback from teachers, administrators
and students was taken into account when designing this curriculum. The CAL-KIBO curriculum is aligned with the Common Core
English Language Arts (ELA)/Literacy Framework, as well as Virginia CS Standards of Learning and other nationally recognized CS
frameworks (ISTE Standards for Students, 2017; K-12 Computer Science Framework Steering Committee, 2016; Massachusetts
Department of Elementary and Secondary Education, 2016; National Governors Association Center for Best Practices & Council of
Chief State School Officers, 2010; Virginia Department of International Society for Technology in Education, 2017).

The second grade CAL-KIBO curriculum consisted of 12 1-h lessons. Lessons were designed to be carried out in 1–2 h of instruction
each week over 6–7 consecutive weeks. Each lesson consisted of structured KIBO challenges, opportunities for free exploration and
writing activities. The advanced programming concepts in this curriculum included repeat loops, the use of light and distance sensors,
and conditionals. The final lesson involved a multi-day project based on the popular children’s book Where the Wild Things Are by
Maurice Sendak, which was referenced at several points throughout the curriculum. This book was chosen because it fosters discussion
and creative thinking and allows teachers to integrate literacy and computer science concepts into their lessons.

The first grade CAL-KIBO curriculum followed the same implementation timeline and used the same story Where the Wild Things Are
and covered much of the same KIBO concepts but did not cover conditional statements. Additionally, 3 h of additional lesson time were
added to the original 12-h curriculum based on teacher feedback. The “Wild Rumpus” compositional activity was omitted so that
students could focus more on programming and student-centered discussions with KIBO. First grade teacher and classroom support
materials were enhanced to better assist teachers in implementing the curriculum.

An example of a CAL lesson involves one of the main scenes in Where the Wild Things Are consisting of six pages of illustrations
showing the main character Max participating in a “Wild Rumpus Party.” Students were asked to write a creative composition about
what would happen at their own Wild Rumpus Party. The class then discussed their compositions as a group and collaborated with one
another to decide whether or not what they had written about could be rendered as a program for KIBO to perform. Children then
programmed the KIBO to perform their Wild Rumpus party activities (see Fig. 2A). For example, one child wrote that her KIBO would
sing karaoke and dance. The child used stickers corresponding to those on the KIBO blocks to plan her program and subsequently
programmed KIBO using actual programming blocks and a recording of her own singing made using the KIBO sound recorder module.

2.2. Participants

Participants in this study were first and second graders from an urban school district in Norfolk, Virginia. Students were from
military and non-military families with a mixture of different racial/ethnic and socio-economic backgrounds (Table 3). Ten schools
were invited to participate in this study. Eight of the ten schools received a grant from the U.S. Department of Defense and were chosen
to receive the CAL-KIBO curriculum. Two additional schools were included for comparison purposes. Students from the No-CAL
control schools followed a standard curriculum without exposure to CAL or coding. No-CAL students underwent assessments at
comparable time intervals to the CAL schools. The No-CAL schools had similar overall demographics to the schools that received CAL
(Table 3).

Among the eight schools invited to implement the CAL curriculum, two schools contributing first graders did not participate due to
administrative and/or staffing issues. Among the No-CAL schools, one first grade class inadvertently received coding instruction during

Fig. 2. A: Students’ CAL-KIBO final projects. B: KIBOs decorated by teachers at the CAL-KIBO training, Note. Photograph 2A courtesy of Angela de
Mik, Norfolk Public Schools.

E. Relkin et al.

Computers & Education 169 (2021) 104222

6

the study window in violation of the study protocol and was excluded from the analysis.

2.3. Inclusion criteria

Inclusion criteria for this study were: 1. parental opt-out consent and child assent; 2. adequate English language skills to participate
in the curricular activities and study assessment. Inclusion criterion for the main analysis was the completion of baseline and end point
TechCheck. Inclusion criterion for the baseline analysis was the completion of the pre-CAL TechCheck assessment.

2.4. Professional development

Educators attended a full day, CAL-KIBO training led by multiple researchers where they participated in hands-on play with the
KIBO robot and were introduced to the CAL approach and curriculum. At the training, teachers participated in activities from the
curriculum such as creating their own Where the Wild Things Are KIBO final projects (see Fig. 1B). Opportunities were provided to
practice and plan for classroom implementation. Teachers were given hard copies of the curriculum and children’s books to aid their
instruction as well as online resources such as videos of others teaching the curriculum, links to the curriculum lessons, and lesson
slides. Ongoing professional development and support was given to educators through phone calls with researchers and in-person
assistance from administration staff, researchers, and instructional technology resource teachers.

Instructional Technology Resource Teachers (ITRTs) from the school district attended both the CAL-KIBO training and separate in-
person assessment workshops. At the assessment workshops, ITRTs were taught to administer TechCheck including what to do in
various scenarios (e.g., a child needing to leave the room, or asking them if they got the correct answer). ITRTs were given time to
practice administration. A log was created to keep track of which classes received assessments and when. Additionally, throughout the
study ITRTs and researchers engaged in multiple phone conferences to provide feedback on assessment administration.

2.5. Computational thinking assessment

The TechCheck assessment used in this study consists of fifteen multiple-choice questions. TechCheck is considered an “unplugged”
assessment because its challenges probe CT but do not require the use of technology or knowledge of computer programming to be
completed. In the present study, TechCheck was administered using computers and tablets rather than pencil and paper. However, it is
the content rather than the mode of administration that leads to the characterization of TechCheck as an unplugged assessment. The
child responds to prompts on TechCheck by clicking on one of four options. Each correct response is awarded one point, with a
maximum total score of 15 points. Two practice questions are included in the beginning of the assessment to familiarize students with
the format but are not included in the scoring. All questions must be answered to complete the assessment. The TechCheck assessment
typically takes an average of 13 min for children to complete. TechCheck was previously validated with a sample (N = 768) of 5-9-year-
old children in first and second grade (Relkin et al., 2020). The assessment showed good discrimination of children between different
skill levels and an adequate difficulty level for first grade. The difficulty level for second graders was low and a ceiling effect was
evident for the highest performers. Children’s scores on TechCheck correlated moderately and positively (r = 0.53) with a CT measure
(TACTIC-KIBO) that requires knowledge of coding with the KIBO robot (Relkin et al., 2020).

TechCheck probes six of the seven powerful ideas from computer science described by Bers (2018) as developmentally appropriate
for children ages 4–9. This includes algorithms, modularity, control structures, representation, hardware/software, and debugging.
Design process, the seventh powerful idea, was not included in TechCheck because it is an inherently open-ended process that cannot be
readily measured in a multiple-choice format assessment (Relkin et al., 2020). A variety of different tasks are used to probe the six CT
domains: sequencing challenges, shortest path puzzles, missing symbol series, object decomposition, obstacle mazes, symbol shape
puzzles, identifying technological concepts, and symmetry problems (see Appendix).

Table 3
Demographics of the study population.

All
CAL

All
No-CAL

Grade 1
CAL

Grade 1
No-CAL

Grade 2
CAL

Grade 2
No-CAL

Number of students 667 181 271 71 396 110
Mean Age (Years) 7.41 7.38 6.23 6.28 7.56 7.61
Age Range (Years) 5–9 6–9 5–8 6–7 7–9 7–9
Gender

Male (%) 47.20 42.54 48.34 43.66 46.46 41.81
Female (%) 51.87 56.35 50.92 56.34 52.53 56.36
Not specified (%) 0.93 1.01 0.74 0 1.01 1.82

Race
Black/African American (%) 41.25 53.59 35.42 57.75 45.21 50.91
Hispanic (%) 10.19 14.26 10.33 16.90 10.10 12.73
Mixed (%) 8.54 5.52 9.59 5.63 7.83 5.45
White (%) 36.58 24.97 40.59 18.32 33.83 29.09
Asian/Pacific Islander (%) 2.99 1.66 3.32 1.40 2.78 1.82
Native American (%) 0.45 0 0.74 0 0.25 0

E. Relkin et al.

Computers & Education 169 (2021) 104222

7

2.6. Procedure

After attending in-person professional development, the teachers were given two weeks to prepare their classroom schedules. One
week prior to initiating the curriculum, the TechCheck assessment was administered by one of eight ITRT proctors (one per school). The
endpoint TechCheck was given after the full curriculum had been taught.

ITRTs were trained to administer the TechCheck assessments consistently. Entire classrooms were tested together on individual
tablets. Before children arrived, ITRTs prepared enough devices for the classroom and opened the TechCheck assessment application
saved to the desktop. ITRTs first established rapport with children, then asked children for their assent to participate. Since the
TechCheck assessment is designed for use in children who may be pre-literate or marginally literate, administrators were instructed to
project a copy of the assessment onto a board and read each question out loud to the students twice. There were two practice questions
that the classroom did as a group to ensure that children knew how to use the application and select answers using the interface.
Students were then told to work individually and were given up to 1 min to answer each question. Each question required a response
and children were instructed to guess if they did not know the answer.

2.7. Data analysis

Statistical analyses were conducted in R (Version 3.6.1, R Core Team, 2019) using R Studio version 1.2 (R Core Team, 2019). To
assess longitudinal changes over time, we analyzed the data with a General Linear Mixed Model (GLMM) using the “lme4” package
(Bates et al., 2015) and the “lmerTest” package (Kuznetsova et al., 2017). Pre-analysis data screening showed adequate normality of
the variables used in the models. The GLMM fixed effects were: CAL vs No-CAL status, age, self-reported gender, grade, and Baseline
TechCheck score. The random effect was classroom/teacher. P-values were obtained by likelihood ratio tests for the full model with
CAL and the model without CAL and by using the “summary” function on R studio. A post-hoc analysis of residuals showed adequate
normality on histogram and P–P plots. VIF and Tolerance assumptions of multicollinearity were met. Although the majority of the data
appeared to obey the assumptions of homoscedasticity, there was some sparseness of data at the lower end of the range of TechCheck

Fig. 3. The Distribution of Baseline TechCheck Scores by grade(3A) and by group (3B).

E. Relkin et al.

Computers & Education 169 (2021) 104222

8

scores, so the assumption of homoscedasticity may not have been met. No influential outliers were identified.
We calculated the expected rate of change of TechCheck scores over time in the absence of a coding intervention by subtracting the

mean baseline TechCheck score in first graders from the mean score in second graders and dividing that by the difference in mean ages
between the two grades.

To further assess CAL-KIBO’s contributions to the study outcomes, we conducted Bayesian Linear Mixed Modeling (BLMM) with the
“BayesFactor” package (Morey & Rouder, 2018). BLMM was used in this study to supplement classical hypothesis testing since one
cannot infer from this type of analysis whether the null hypothesis is true if, for example, results are non-significant (see Dienes, 2014).
Bayesian analyses can provide information about the relative strength of the statistical evidence for both the null and alternative
hypotheses. A Bayes factor is the likelihood ratio of one hypothesis divided by that of another hypothesis.

A post-hoc item analysis was carried out examining change in the percentage of correct responses in the six TechCheck CT domains.
First, the percentages of correct responses on each of the 15 TechCheck items were calculated and then averaged within each CT
domain. Baseline percentages were then subtracted from endpoint percentages to determine change over the course of the 7-week
intervention for the students who received the CAL-KIBO curriculum (CAL) and those who did not (No-CAL). For comparison pur-
poses, predicted change over seven weeks of typical development was calculated by subtracting the percentage of correct responses for
all first graders at baseline from those of all second graders at baseline, and multiplying the resulting percentages by 7/67.8 to adjust
for the 1.3-year average difference in age between the two grades.

3. Results

3.1. Baseline score distributions

The distributions of TechCheck scores at baseline for first and second grades are shown in Fig. 3a. Scores were approximately
normally distributed. A rightward skew is visible in the second grade distribution, consistent with the ceiling effect on TechCheck
previously observed in second graders (Relkin et al., 2020). A Welch Two Sample t-test showed that there was a significant difference
in baseline TechCheck scores between first (M = 8.45 points, SD = 2.33) and second (M = 10.99 points, SD = 2.20) grades; t (703.81) =
15.92, p < .001. We used the mean difference in baseline scores (2.54 points) divided by the mean difference in the ages of first and
second graders (1.30 years) to calculate the approximate expected change in TechCheck scores between first and second grade (1.95
points/year). Since most of the study participants (>75%) indicated they had little or no past coding experience, this rate of change can
be taken to approximate maturation-related changes in CT skills over time.

Fig. 3b shows the distribution of scores for students in the CAL and No-CAL groups. A Welch Two Sample t-test showed that baseline
performance was higher in the schools that received CAL (M = 10.09 points, SD = 2.61) compared to the No-CAL schools, (M = 9.50
points, SD = 2.38; t (307.73) = 2.93, p < .01). This difference in baseline scores occurred by chance rather than by design.

3.2. Primary outcome

Students who received the CAL-KIBO curriculum (CAL group) improved on TechCheck (Mchange = 0.94, SD = 2.28). Paired sample t-
tests showed that the CAL group’s change from baseline (M = 10.09, SD = 2.61) to endpoint (M = 11.03, SD = 2.61) was significant; t
(666) = 10.55, p < .001. Students in the No-CAL control group who engaged in typical classroom studies without coding instruction did

Fig. 4. Unadjusted mean change in TechCheck scores (+/− S.E.) from baseline (pre) to endpoint (post) in students receiving the CAL-KIBO coding
curriculum ● versus control (No-CAL) students ○.

E. Relkin et al.

Computers & Education 169 (2021) 104222

9

not significantly improve (Mchange = 0.27 points, SD = 2.04) from baseline (M = 9.50, SD = 2.38) and the study endpoint (M = 9.77, SD
= 2.55) assessments; t(180) = 1.81, p = .07) (see Fig. 4).

The observed change of 0.94 points in the CAL group equates to the increase in TechCheck scores that would be expected to occur
over approximately 6 months without instruction based on the observed increase of 1.95 points per year in baseline scores. The change
of 0.27 points in the No-CAL control group is consistent with the expected change over seven weeks, which is the actual interval over
which the testing was performed.

Results were stratified by grade and paired sample t-tests were conducted. In first grade the CAL group significantly improved
(Mchange = 1.32 points, SD = 2.31) from baseline (M = 8.63, SD = 2.35) to endpoint (M = 9.95 SD = 2.34) of the study; t(270) = 9.21, p
< .001. Likewise, the second grade CAL group significantly improved (Mchange = 0.68 points, SD = 2.23) from baseline (M = 11.15 SD
= 2.20) to the study endpoint (M = 11.83 SD = 2.46); t(395) = 6.11, p < .001. No significant improvements were found for the No-CAL
control group in first grade (Mchange = 0.01, SD = 2.10) from baseline (M = 8.03, SD = 2.05) to endpoint (M = 8.10, SD = 2.27)
assessments; t(358.31) = 1.07, p = .95). A borderline significant improvement was found in the second grade No-CAL control group
(Mchange = 0.44, SD = 2.00) from baseline (M = 10.43 SD = 2.10) to endpoint (M = 10.87, SD = 2.07); t(109) = 2.34, p = .05), (see
Table 4).

3.3. GLMM results

To take into account baseline differences and to evaluate the contribution of other effects such as age, gender, ethnicity and
classroom differences, we used Generalized Linear Mixed Model (GLMM) analysis. For the two grades combined, the effects found to be
significant on the GLMM included the intercept (p < .001), CAL (p < .01), grade (p < .01) and baseline TechCheck score (p < .001) (See
Table 5 and Fig. 5). Gender and age did not significantly contribute to the model. This indicates that exposure to the CAL-KIBO
curriculum was a significant predictor of endpoint TechCheck outcome, even when taking into account differences in baseline Tech-
Check performance and other effects. The Bayes factor for this model compared to a model without CAL was >100. This is classified as
“decisive evidence” against the null hypothesis (Wetzels et al., 2011) and strongly supports CAL being a significant factor in the overall
TechCheck outcomes. Interaction terms did not improve the model’s fit to the data and were therefore not included.

When data from the first grade students only were modeled, CAL (p < .01) and baseline score (p < .001) were significant effects.
Gender, age, and the intercept were not significant. The Bayes factor for the model including CAL compared to one without CAL was
>100, a level considered decisive evidence that exposure to CAL is a predictor of post-test CT scores. When data from second grade
students were examined, gender was significant at the p < .05 level, as were the baseline score (p < .001) and the intercept (p < .001).
Notably, CAL did not reach significance in this model. The Bayes factor, in this case was 1.88, which is considered “anecdotal evidence”
(Wetzels et al., 2011). Thus, in contrast to the results in first graders, we cannot say with certainty that exposure to CAL is a predictor of
TechCheck score in second graders.

3.4. TechCheck item analysis

We sought to determine if changes in TechCheck scores after exposure to the CAL-KIBO curriculum were related to improved
performance in specific CT domains. To do so, we carried out a post-hoc analysis of change in percentage of correct responses averaged
over the questions within each CT domain. Fig. 6 shows the change in percentage of students whose scores improved from the study
baseline to endpoint on each of the six domains measured by TechCheck.

All TechCheck CT domains showed change with typical development as calculated from differences between first and second grades
at baseline. Hardware/software and debugging showed slightly less change with typical development than the other domains. There
was likely a ceiling effect for these two domains since an average of 90% of students responded to hardware/software probes correctly
and 87% responded correctly to debugging probes at baseline.

Across all six TechCheck domains, the average percentage increase in students responding correctly after the coding intervention
was 6% for the CAL group and 2% for No-CAL controls. The largest percentage of student improvement in the CAL group was asso-
ciated with the CT domains of Modularity, Algorithms and Representation, respectively (see Fig. 6).

Table 4
TechCheck results for CAL and No-CAL Control Groups.

Group N TechCheck Baseline
(M ± SD)

TechCheck End Point
(M ± SD)

Mean Points
Changed

Median Points
Changed

Paired t-test p
Value

Bayes Factor
(Bayesian t-test)

All CAL 667 10.09± 2.61 11.03± 2.61 0.94 1 p < .001 >1000
All No-CAL 181 9.50±2.38 9.77±2.55 0.27 0 p = .07 0.42
CAL

Grade 1
271 8.63±2.35 9.95±2.34 1.32 1 p < .001 >1000

No-CAL
Grade 1

71 8.06± 2.05 8.07± 2.28 0.01 0 p = 0.95 0.13

CAL
Grade 2

396 11.15±2.20 11.83±2.46 0.68 1 p < 0.001 <1000

No CAL Grade
2

110 10.43±2.10 10.87±2.07 0.44 .5 p < 0.05 1.42

E. Relkin et al.

Computers & Education 169 (2021) 104222

10

4. Discussion

This study provides empirical evidence, from a large-scale, quasi-experimental study, that teaching first and second grade students
(ages 5–9) to code through the CAL-KIBO curriculum can accelerate the acquisition of CT skills. The current study is the first to use
TechCheck to document longitudinal changes in CT in association with an educational intervention. The CAL-KIBO curriculum teaches
coding without explicitly providing children with unplugged CT challenges of the kind encountered in TechCheck. Consequently, the
observed increase in TechCheck scores following the CAL-KIBO coding curriculum can be taken to reflect improvements in CT skills
rather than practice effects or other assessment artifacts. This conclusion is further bolstered by the observation that the No-CAL group

Table 5
GLMM results modelling exposure to CAL and outcome of TechCheck.

Estimate CI (95%) Standard Error T-value DF P value

Intercept 4.50 5.92 0.87 5.20 774.08 p < .001
CAL 0.87 1.33 0.29 3.05 56.13 p < .01
Age − 0.06 0.14 0.12 − 0.46 817.23 p = .05
Grade 0.84 1.32 0.30 2.86 142.82 p <. 01
Gender − 0.19 0.03 0.13 − 1.40 808.23 p = .36
Baseline score .57 0.61 .03 18.51 831.59 p < .001

Fig. 5. Magnitude of effect and 95% C.I for fixed effects in GLMM

Fig. 6. Changes in percent of students making correct responses in the six CT domains measured by TechCheck. For the CAL and No-CAL groups,
colored bars represent the percent difference in correct TechCheck responses between the baseline and end of study assessments. The “7 week
predicted” results are calculated from the percent difference in correct responses between first and second graders at their respective baseline
assessments, multiplied by 7/67.8. Error bars indicate standard errors of the means.

E. Relkin et al.

Computers & Education 169 (2021) 104222

11

did not demonstrate comparable improvement on TechCheck over the same time interval.
Most past studies in young children that explore the effects of learning to code on CT skills used coding exercises, interviews or

measures such as neuropsychological tests as the means of assessment (Grover et al., 2014; Yadav et al., 2017). By utilizing an easily
administered unplugged CT assessment, we were able to conduct the first longitudinal large-scale study in early elementary school
children with a sizable non-coding control group. Our approach allowed assessment of baseline CT skills in these children regardless of
their past coding experience and avoided conflating coding abilities with CT skills. The study also demonstrates the potential utility of
TechCheck for assessing young children’s CT in routine education settings.

The mean change in TechCheck scores in students exposed to the CAL-KIBO coding curriculum was slightly less than one point out of
a maximum score of 15 points. This magnitude of improvement after seven weeks of coding instruction is consistent with the estimated
change in baseline TechCheck scores in the absence of coding instruction over approximately six months. This change is comparable in
magnitude to the improvements in executive functions reported by Arfé et al. (2019) in a group of n = 17 second graders, in whom
exposure to the code.org curriculum for one month resulted in improvements in executive functions equal to 7 months in age-matched
students who received non-coding STEM instruction (Arfé et al., 2019).

Our data also indicate that young children’s performance on a CT assessment can improve in the course of typical development. CT
may improve as a consequence of brain maturation, practice effects, as a result of learning in other disciplines and through various life
experiences. The present study does not allow us to say whether CT acquired in the context of learning to code is the same or different
in nature from that gained through typical development or non-coding experiences. However, by accelerating the acquisition of CT,
coding interventions in early childhood may exert long-term benefits analogous to the improved academic outcomes associated with
early acquisition of literacy skills (Heckman & Masterov, 2007; Stanovich, 1986, 2000).

In this study, first graders in the CAL group improved more on TechCheck than the CAL group second graders. It is possible that the
higher baseline TechCheck scores in second graders reduced the range of possible improvement compared to first graders. Previous
psychometric analysis of the TechCheck assessment revealed a less-than-optimal difficulty level for higher performing second graders
(Relkin et al., 2020) which may have led to a ceiling effect in the present study. Another possible explanation for the observed dif-
ferences between grades would be if the CAL-KIBO curriculum was more effective in first graders. This possibility can neither be
confirmed nor ruled out based on the currently available data.

There were significant differences at baseline in the TechCheck scores of the CAL-KIBO versus the No-CAL control groups. We
carried out GLMM modeling to take those differences into account and evaluate the effects of other demographic and environmental
variables on the study’s outcomes. The results of the GLMM analyses indicate that exposure to CAL-KIBO was a highly significant
predictor of TechCheck outcome even when taking the other variables into account. GLMM analysis did not confirm a significant effect
for CAL in second graders which we believe is due at least in part to a ceiling effect in that grade discussed above.

The inclusion of a control group that did not receive coding instruction is important for several reasons. This is the first study in
which TechCheck was administered serially to large numbers of students, and it was therefore important to control for the possibility of
a learning effect from repeated exposure to the assessment. The results from the No-CAL control group suggest that any learning effects
from repeated testing did not profoundly affect the study’s outcome. The inclusion of a No-CAL control group also allowed for
observation of changes in TechCheck performance related to the maturation of students over the time interval of the study.

Our findings suggest that some students who received coding instruction were able to transfer the knowledge they gained from
coding into CT skills useful for solving unplugged problems. Although TechCheck is not designed to quantitatively assess CT skills in
specific CT subdomains, post hoc analysis suggests that the domains of CT that improved most after the CAL-KIBO curriculum were
algorithms, modularity, and representation. These are similar in nature to the domains identified in surveys of educators as being
enhanced in young children who learn to code (Nouri et al., 2020).

It is worthwhile considering why the items designed to probe algorithms, modularity and representation may have shown the
highest percentage of improvers. CAL-KIBO emphasizes the relationship between CS concepts and literacy, drawing on children’s
stories as inspiration for programming projects and other exercises. As students engage in KIBO coding activities, they learn pro-
gramming fundamentals such as recognizing the relationship between symbols on the KIBO programming blocks and concrete actions
(e.g., movement of the robot). They also learn that using certain blocks results in tangible actions while others exert effects that are not
as readily visible (e.g., conditionals). As children learn these coding fundamentals, the CAL-KIBO curriculum challenges them to
achieve goals such as programming simulations of storybook characters and robotic re-enactments of story elements from children’s
literature. Participating in these challenges requires learning about symbolism (representation), decomposition of multistep processes
into executable steps (modularity) and sequencing multiple steps to achieve a desired set of actions (algorithms). By recognizing
patterns that repeat within and across these creative activities, children may acquire CT skills in the above-mentioned domains. Hands-
on experience with creative activities may better enable students to generalize the knowledge they acquire from coding and apply it to
new situations (Basawapatna et al., 2010). Another possible reason for seeing greater effects in algorithms, modularity and repre-
sentation could be if TechCheck is inherently more sensitive to changes in these domains. Since experience with TechCheck in longi-
tudinal studies is currently limited, additional studies will be needed to examine this possibility.

TechCheck’s probes of hardware/software and control structures did not show differences between the CAL and No-CAL groups.
There was likely a ceiling effect for these domains since close to 90% of students across the two grades responded correctly at baseline.
This left little room for improvement after the coding intervention. The TechCheck probes for control structures involve navigating
through a maze with obstacles by following a set of conditional instructions. Young children tend to have trouble learning conditionals
(Elkin et al., 2014; Strawhacker & Bers, 2015) and it is possible that this concept was not fully developed in this version of the
CAL-KIBO curriculum.

The change score for debugging showed a numerically greater change for the No-CAL group than the CAL group. However, the

E. Relkin et al.

http://code.org

Computers & Education 169 (2021) 104222

12

difference was within the variance of the results. The debugging probes in this version of TechCheck involve correcting an unbalanced
seesaw. It is possible that the children in the No-CAL group learned problem-solving through another school subject that increased
their debugging skills. In interpreting all of these post-hoc, domain-specific results, it should be kept in mind that TechCheck is designed
as a composite measure of CT across all six domains, not as a way to precisely quantify performance in individual CT domains.

At least one author has argued that transfer of CT skills to other disciplines may not occur effectively if children are introduced to
problem-solving exclusively in the context of learning to code (Curzon, 2013). Curzon (2013) suggested that teaching young children
programming primarily helps them develop coding-related reasoning rather than thinking skills in other domains. By introducing
unplugged activities, Curzon argued that one can invoke more powerful skills of improved logical thinking and problem solving.
However, participation in unplugged activities alone may not foster the development of higher reasoning skills. Thies and Vahrenhold
(2012, 2013) studied the impact of CSunplugged in elementary and middle school children using qualitative and semi-quantitative
assessments. They did not find evidence of improvements in higher-level reasoning skills and suggested that exposure to unplugged
activities alone does not necessarily lead to a generalization of learning or promote the development of higher reasoning skills. While
other studies have concluded that unplugged activities alone are ineffective (Black et al., 2013), some have found unplugged activities
to be equally effective to coding in promoting CT (Hermans & Aivaloglou, 2017; Metin, 2020; Wohl et al., 2015). Some authors have
argued that CS education is more effective when lessons include actual technology and coding in addition to unplugged activities (Bers,
2020; Huang & Looi, 2020; Thies & Vahrenhold, 2012, 2013). More research is needed to establish whether this is true and if so, to
clarify the optimal approach to integrating these elements into a CS curriculum.

The importance of knowledge transfer and generalization of learning in the emergence of CT from coding education has been
emphasized by several investigators (Angeli et al., 2016; Grover et al., 2015; Ioannidou et al., 2011; Repenning et al., 2015). “Near
transfer” of knowledge refers to circumstances in which there is a generalization of learning sufficient to facilitate learning of new
material that is similar in nature to the original learning materials. “Far transfer” refers to the adaptation of knowledge from a learned
skill to help solve entirely new types of problems which may be in completely different disciplines (Reschly & Robinson-Zañartu,
2000). While the unplugged challenges in TechCheck were not actual coding exercises, they were selected as probes from the same
domains of CT as are embodied in the CAL-KIBO coding curriculum. In this context, the improvement in unplugged problem-solving
skills observed in the CAL group can be considered a form of near transfer of knowledge.

4.1. Limitations

Our initial intention was to carry out this study with kindergarten students as well as first and second graders. Although kinder-
garten teachers attended professional development, we were unable to implement the kindergarten CAL-KIBO curriculum due to
school closure from the COVID-19 pandemic.

The No-CAL and CAL groups were not chosen at random. CAL schools were invited to participate first and No-CAL schools were
added later based on having similar school level demographics to the CAL group. We did not include specific measures of SES in this
study. Socioeconomic status (SES) can impact the acquisition of coding skills and CT (Google & Gallup, 2016; Scherer & Siddiq, 2019).
We cannot rule out the possibility that between-group differences in SES contributed to the observed TechCheck outcomes.

TechCheck is a relatively new screening instrument and the version used in this study did show ceiling effects that may have reduced
the magnitude of the observed outcomes, particularly in second graders. We are in the process of validating a revised version of the
TechCheck assessment designed to more effectively discriminate a range of CT skill levels across three grades (K, 1, 2). We recognize
that children’s engagement in open-ended creativity and self-expression are integral to the learning and development of CT. However,
TechCheck does not assess students in this domain owing to limitations imposed by its multiple-choice format. In the future, other more
open-ended forms of assessment may be beneficial to implement in combination with TechCheck to get a more comprehensive picture
of the child’s CT development.

Although TechCheck successfully detected improvement of CT skills in this study, the percentage of students showing improvement
was relatively small. We hope that the revisions to the assessment that have been made subsequent to this study will render it even
more sensitive to change particularly in the domains that showed ceiling effects. In addition, we hope future enhancements to the
coding curriculum will lead to greater improvements in CT skills after coding instruction. Due to timing restrictions with the second-
grade public schools that participated, we were not able to use the full version of the CAL-KIBO curriculum that we had originally
intended to implement. Our original version for second graders had an additional 24 lessons (24 h) of instruction. Future iterations of
the CAL-KIBO curriculum will be extended and should allocate more time to help scaffold abstract and advanced programming
concepts.

4.2. Future directions

This study has implications for the design of future coding and CT curricula for young children. Currently, many CS professional
development programs for teachers focus on the syntax and implementation of programming languages rather than techniques that
foster CT skill acquisition and authentic learning in other content areas (Sands et al., 2018). It may be beneficial for professional
development to emphasize teaching methods that foster students’ self-expression and creativity through coding to better promote
young children’s CT skills. Future studies comparing technically focused coding programs to curricula like CAL-KIBO that integrate
literacy and creativity components can help to establish best practices for young children.

We believe it is important that these findings be extended to other cohorts and grades, as well as other curricula and educational
contexts. The TechCheck assessment has been translated into multiple languages (i.e., Spanish, Chinese, Turkish) and is currently being

E. Relkin et al.

Computers & Education 169 (2021) 104222

13

administered in diverse research and educational settings. Future studies should explore its use in children from various cultures and
neuro-diverse children.

More work is needed to understand best practices for teaching CT to young children. Future longitudinal studies should compare
different the effects of different coding curricula. A logical next iteration might be to compare the effects of CAL-KIBO with those of a
conventional coding curriculum and one that combines coding with unplugged activities. By this approach, we can hope to learn
whether young children best acquire CT when they are taught using platform-specific coding exercises, unplugged activities or a
hybrid approach using both methods.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing in-
terests: Marina Umaschi Bers co-founded the company Kinderlab that manufactures the KIBO robot and has entered into a licensing
agreement with Tufts University for the technology. The research presented is not expected to have any direct financial impact. No
other authors have competing interest relating to this work.

Acknowledgements

The authors would like to thank the project coordinator Angela de Mik as well as members of the DevTech research group that
contributed to this project (Madhu Govind, Ziva Hassenfeld, Pat Nero, Maya Morris, Ari Lerner, and Jaclyn Tsiang) who this work
would not be possible without. The authors would also like to thank the Instructional Technology Resource Technicians. Lastly, we
would like to thank all of the teachers, administrators, and children involved in this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compedu.2021.104222.

Funding

This work was supported by the Department of Defense Education Activity (DoDEA) “Operation: Break the Code for College and
Career Readiness”. Unique Entity Identifier: “WORLDCL10”.

Credit author statement

Emily Relkin: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing – original draft,
Writing – review & editing, Visualization, Project administration Laura de Ruiter: Conceptualization, Validation, Formal analysis, Data
curation, Writing- Original Draft, Writing – review & editing, Visualization, Supervision Marina Bers: Conceptualization, Methodol-
ogy, Validation, Investigation, Writing – original draft, Writing – review & editing, Supervision, Project administration.

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074
Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 Computational Thinking curriculum framework: Implications for

teacher knowledge. Educational Technology & Society, 19(3), 47–57. Retrieved from https://www.jstor.org/stable/10.2307/jeductechsoci.19.3.47.
Arfé, B., Vardanega, T., Montuori, C., & Lavanga, M. (2019). Coding in primary grades boosts children’s executive functions. Frontiers in Psychology, 10(2713). https://

doi.org/10.3389/fpsyg.2019.02713
Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning and Leading with Technology, 38(6), 20–23. Retrieved from

https://id.iste.org/docs/learning-and-leading-docs/march-2011-computational-thinking-ll386.pdf.
Barrouillet, P., & Lecas, J. (1999). Mental models in conditional reasoning and working memory. Thinking & Reasoning, 5(4), 289–302.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community?

Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905
Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using scalable game design to teach computer science from middle school to graduate school. In Proceedings

of the fifteenth annual conference on Innovation and technology in computer science education (pp. 224–228). https://doi.org/10.1145/1822090.1822154. ACM.
Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school students’ challenges in computational thinking-based

science learning. Research and Practice in Technology Enhanced Learning, 11(1), 13. https://doi.org/10.1186/s41039-016-0036-2
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/

10.18637/jss.v067.i01
Bell, T., & Vahrenhold, J. (2018). CS unplugged—how is it used, and does it work? In H.-J. In H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures between

lower bounds and higher altitudes: Essays dedicated to Juraj Hromkovič on the occasion of his 60th birthday (pp. 497–521). https://doi.org/10.1007/978-3-319-98355-
4_29

Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge.
Bers, M. U. (2019). Coding as Another Language: A pedagogical approach for teaching computer science in early childhood. Journal of Computers in Education, 6(4),

499–528. https://doi.org/10.1007/s40692-019-00147-3
Bers, M. U. (2020). Coding as a playground: Programming and computational thinking in the early childhood classroom (2nd ed.). New York, NY: Routledge Press.

E. Relkin et al.

https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1093/comjnl/bxs074
https://www.jstor.org/stable/10.2307/jeductechsoci.19.3.47
https://doi.org/10.3389/fpsyg.2019.02713
https://doi.org/10.3389/fpsyg.2019.02713
https://id.iste.org/docs/learning-and-leading-docs/march-2011-computational-thinking-ll386.pdf
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref5
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1822090.1822154
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-319-98355-4_29
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref11
https://doi.org/10.1007/s40692-019-00147-3
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref13

Computers & Education 169 (2021) 104222

14

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan, P. W., & Meagher, L. R. (2013). Making computing interesting to school students: Teachers’ perspectives. In
Proceedings of the 18th ACM conference on innovation and technology in computer science education (pp. 255–260). Association for Computing Machinery.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting
of the American educational research association, Vancouver, Canada, 1 p. 25). Retrieved from https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_
AERA2012_CT.pdf.

Bruner, J. S., Olver, R., & Greenfield, P. (1966). Studies in cognitive growth. New York: Wiley.
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and

robotics programming. Computers in Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001
Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and Geometry. In E. Yackel (Ed.), Journal for research in mathematics education monograph series, 10. https://

doi.org/10.2307/749924
Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of Educational Psychology, 76(6), 1051–1058. https://

doi.org/10.1037/0022-0663.76.6.1051
CSTA. (2011). Operational definition of computational thinking for K–12 education, 2011. Retrieved from http://www.csta.acm.org/Curriculum/sub/CompThinking.

html.
Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-computer scientists. Unpublished manuscript in progress, referenced in http://

www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.
Curzon, P. (2013). cs4fn and computational thinking unplugged. In Proceedings of the 8th workshop in primary and secondary computing education (pp. 47–50). ACM.

https://doi.org/10.1145/2532748.2611263.
Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5(781). https://doi.org/10.3389/fpsyg.2014.00781
Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology

Education: Innovations in Practice, 13, 153–169.
Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 33(3), 169–186. https://doi.

org/10.1080/07380569.2016.1216251
Feldman, D. H. (2004). Piaget’s stages: The unfinished symphony of cognitive development. New Ideas in Psychology, 22, 175–231. https://doi.org/10.1016/j.

newideapsych.2004.11.005
Fields, D. A., Lui, D., & Kafai, Y. B. (2019). Teaching computational thinking with electronic textiles: Modeling iterative practices and supporting personal projects in

exploring computer science. In Computational thinking education (pp. 279–294). Singapore: Springer. https://doi.org/10.1007/978-981-13-6528-7_16.
Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd ed.). Prentice Hall. NJ.
Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2018). International computer and information literacy study: ICILS 2018: Technical report.
Goldstein, J., & Flake, J. K. (2016). Towards a framework for the validation of early childhood assessment systems. Educational Assessment, Evaluation and

Accountability, 28(3), 273–293. https://doi.org/10.1007/s11092-015-9231-8
Google for Education. (2010). Exploring computational thinking. Retrieved from www.google.com/edu/resources/programs/exploring-computational-thinking/index.

html#!home.
Google & Gallup. (2016). Diversity gaps in computer science: Exploring the underrepresentation of girls, blacks and hispanics. Retrieved from https://services.google.com/

fh/files/misc/diversity-gaps-in-computer-science-report.pdf.
Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12. In Proceedings of the 2014 conference on Innovation & technology in computer science

education (pp. 57–62). ACM. https://doi.org/10.1145/2591708.2591713.
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/

0013189X12463051
Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25

(2), 199–237. https://doi.org/10.1080/08993408.2015.1033142
Guzdial, M., & Morrison, B. (2016). Seeking to making computing education as available as mathematics or science education. Communications of the ACM, 59(11),

31–33. https://doi.org/10.1145/3000612
Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. (2020). If you can program, you can write: Learning introductory programming across literacy levels.

Journal of Information Technology Education: Research, 19, 65–85. https://doi.org/10.28945/4509
Heckman, J., & Masterov, D. (2007). The productivity argument for investing in young children. Review of Agricultural Economics, 29(3), 446–493.
Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch?: A controlled experiment comparing plugged first and unplugged first programming lessons. In

Proceedings of the 12th workshop on primary and secondary computing education (pp. 49–56). Association for Computing Machinery.
Huang, W., & Looi, C.-K. (2020). A critical review of literature on “unplugged” pedagogies in K-12 computer science and computational thinking education. Computer

Science Education. Advance online publication. https://doi.org/10.1080/08993408.2020.1789411
International Society for Technology in Education. (2017). ISTE standards for students. Retrieved from https://www.iste.org/standards/for-students.
Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011). Computational thinking patterns. Paper presented at the annual meeting of the American

educational research association. New Orleans, LA. Retrieved from https://files.eric.ed.gov/fulltext/ED520742.pdf.
Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with causal conditionals. Developmental Psychology, 35(4), 904–911.
Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the 3rd annual. Conference of the LTSN centre for information and computer sciences (pp.

53–58). Leeds, UK. Retrieved from http://www.psy.gla.ac.uk/~steve/localed/jenkins.html.
K-12 Computer Science Framework Steering Committee. (2016). K–12 computer science framework. Retrieved from https://k12cs.org.
Kazakoff, E. R., & Bers, M. U. (2014). Put your robot in, Put your robot out: Sequencing through programming robots in early childhood. Journal of Educational

Computing Research, 50(4), 553–573. https://doi.org/10.2190/EC.50.4.f
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.

https://doi.org/10.18637/jss.v082.i13
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2

(1), 32–37. https://doi.org/10.1145/1929887.1929902
Lockwood, J., & Mooney, A. (2018). Computational thinking in education: Where does it fit? A systematic literary review. International Journal of Computer Sciences

and Engineering Systems, 2(1), 41–60. https://doi.org/10.21585/ijcses.v2i1.26
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
Massachusetts Department of Elementary and Secondary Education. (2016). Massachusetts digital literacy and computer science (DLCS) curriculum framework june 2016.

http://www.doe.mass.edu/frameworks/dlcs.pdf.
McDevitt, T. M., & Ormrod, J. E. (2002). Child development and education. Upper Saddle River, NJ: Merrill/Prentice Hall.
McMillan, J. H. (2013). Classroom assessment: Principles and practice for effective instruction (6th ed.). Boston: Pearson/Allyn and Bacon.
Metin, S. (2020). Activity-based unplugged coding during the preschool period. International Journal of Technology and Design Education, 1–17.
Mioduser, D., Levy, S. T., & Talis, V. (2009). Episodes to scripts to rules: Concrete-abstractions in kindergarten children’s explanations of a robot’s behavior.

International Journal of Technology and Design Education, 19(1), 15–36.
Morey, R., & Rouder, J. (2018). BayesFactor: Computation of Bayes factors for Common designs. R package version 0.9.12-4.2 https://CRAN.R-project.org/

package=BayesFactor.
Moyer, K., & Gilmer, B. V. H. (1953). The concept of attention spans in children. Elementary School Journal, 54(1), 464. https://doi.org/10.1086/458623
Muller, U., Overton, W. F., & Reene, K. (2001). Development of conditional reasoning: A longitudinal study. Journal of Cognition and Development, 2(1), 27–49.

E. Relkin et al.

http://refhub.elsevier.com/S0360-1315(21)00099-3/sref14
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref14
https://web.media.mit.edu/%7Ekbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://web.media.mit.edu/%7Ekbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref16
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.2307/749924
https://doi.org/10.2307/749924
https://doi.org/10.1037/0022-0663.76.6.1051
https://doi.org/10.1037/0022-0663.76.6.1051
http://www.csta.acm.org/Curriculum/sub/CompThinking.html
http://www.csta.acm.org/Curriculum/sub/CompThinking.html
http://www.cs.cmu.edu/%7ECompThink/resources/TheLinkWing.pdf
http://www.cs.cmu.edu/%7ECompThink/resources/TheLinkWing.pdf
https://doi.org/10.1145/2532748.2611263
https://doi.org/10.3389/fpsyg.2014.00781
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref24
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref24
https://doi.org/10.1080/07380569.2016.1216251
https://doi.org/10.1080/07380569.2016.1216251
https://doi.org/10.1016/j.newideapsych.2004.11.005
https://doi.org/10.1016/j.newideapsych.2004.11.005
https://doi.org/10.1007/978-981-13-6528-7_16
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref29
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref30
https://doi.org/10.1007/s11092-015-9231-8
http://www.google.com/edu/resources/programs/exploring-computational-thinking/index.html#!home
http://www.google.com/edu/resources/programs/exploring-computational-thinking/index.html#!home
https://services.google.com/fh/files/misc/diversity-gaps-in-computer-science-report.pdf
https://services.google.com/fh/files/misc/diversity-gaps-in-computer-science-report.pdf
https://doi.org/10.1145/2591708.2591713
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1145/3000612
https://doi.org/10.28945/4509
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref39
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref40
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref40
https://doi.org/10.1080/08993408.2020.1789411
https://www.iste.org/standards/for-students
https://files.eric.ed.gov/fulltext/ED520742.pdf
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref44
http://www.psy.gla.ac.uk/%7Esteve/localed/jenkins.html
https://k12cs.org
https://doi.org/10.2190/EC.50.4.f
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.21585/ijcses.v2i1.26
https://doi.org/10.1016/j.chb.2014.09.012
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref53
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref54
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref55
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref56
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref56
https://CRAN.R-project.org/package=BayesFactor
https://CRAN.R-project.org/package=BayesFactor
https://doi.org/10.1086/458623
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref59

Computers & Education 169 (2021) 104222

15

Mullis, I. V., & Martin, M. O. (2019). PIRLS 2021 assessment frameworks. International association for the evaluation of educational achievement. Herengracht 487.
Amsterdam, 1017 BT, The Netherlands. Retrieved from https://eric.ed.gov/?id=ED606056.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core state standards. Washington, DC. Retrieved
from http://www.corestandards.org/about-the-standards/branding-guidelines/.

National Research Council. (2011). Report of a workshop on the pedagogical aspects of computational thinking. Washington, DC: National Academies Press.
Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital competence and 21st century skills when learning programming

in K-9. Education Inquiry, 11(1), 1–17. https://doi.org/10.1080/20004508.2019.1627844
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Piaget, J. (1953). The origins of intelligence in the child. London: Routledge and Kegan Paul.
Piaget, J. (1971). Developmental stages and developmental processes. In D. R. Green, M. P. Ford, & G. B. Flamer (Eds.), Measurement and Piaget (pp. 172–188). New

York: McGraw-Hill.
Portelance, D. J., Strawhacker, A., & Bers, M. U. (2015). Constructing the ScratchJr programming language in the early childhood classroom. International Journal of

Technology and Design Education. https://doi.org/10.1007/s10798-015-9325-0
R Core Team. (2019). R: A language and environment for statistical computing. R foundation for statistical computing. Vienna: Austria. https://www.R-project.org/.
Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and validation of an unplugged assessment of computational thinking in early childhood

education. Journal of Science Education and Technology. https://doi.org/10.1007/s10956-020-09831-x
Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Her Many Horses, I., Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., &

Repenning, N. (2015). Scalable game design: A strategy to bring systemic computer science education to schools through game design and simulation creation.
ACM Transactions on Computing Education, 15(2). https://doi.org/10.1145/2700517

Reschly, D. J., & Robinson-Zañartu, C. (2000). Evaluation of aptitudes. Handbook of Psychological Assessment, 183–202.
Resnick, M., & Siegel, D. (2015). A different approach to coding. International Journal of People-Oriented Programming, 4(1), 1–4. https://doi.org/10.4018/

IJPOP.2015010101
Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids. In Proceeding of the 2005 conference on interaction design and children - IDC

’05 (pp. 117–122). https://doi.org/10.1145/1109540.1109556
Roman-Gonzalez, M., Moreno-Leon, J., & Robles, G. (2019). Combining assessment tools for a comprehensive evaluation of computational thinking interventions. In

Computational thinking education (pp. 79–98). Singapore: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-981-13-6528-7_6.
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the

computational thinking test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
Roman-Gonzalez, M., Perez-Gonzalez, J. C., Moreno-Leon, J., & Robles, G. (2018). Can computational talent be detected? Predictive validity of the computational

thinking test. International Journal of Child-Computer Interaction, 18, 47–58. https://doi.org/10.1016/j.ijcci.2018.06.004
Sands, P., Yadav, A., & Good, J. (2018). Computational thinking in K-12: In-service teacher perceptions of computational thinking: Foundations and research

highlights. In Computational thinking in the STEM disciplines: Foundations and research highlights (pp. 151–164). https://doi.org/10.1007/978-3-319-93566-9_8
Sattler, J. M. (2014). In J. M. Sattler (Ed.), Foundations of behavioral, social and clinical assessment of children. Publisher, Incorporated.
Scherer, R., & Siddiq, F. (2019). The relation between students’ socioeconomic status and ICT literacy: Findings from a meta-analysis. Computers & Education, 138,

13–32. https://doi.org/10.1016/j.compedu.2019.04.011
Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing definition. In Paper Presented at the 18th annual conference on innovation and Technology in

Computer Science Education. Canterbury. Retrieved from https://eprints.soton.ac.uk/356481/.
Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4),

360–407. https://doi.org/10.1598/RRQ.21.4.1
Stanovich, K. E. (2000). Progress in understanding reading: Scientific foundations and new frontiers. Guilford Press.
Strawhacker, A. L., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing children’s programming comprehension using tangible, graphical, and hybrid

user interfaces. International Journal of Technology and Design Education, 25(3), 293–319. https://doi.org/10.1007/s10798-014-9287-7
Strawhacker, A. L., Lee, M. C., & Bers, M. U. (2017). Teaching tools, teachers’ rules: exploring the impact of teaching styles on young children’s programming

knowledge in ScratchJr. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-017-9400-9
Strawhacker, A., & Bers, M. U. (2019). What They Learn when They Learn Coding: Investigating cognitive domains and computer programming knowledge in young

children. Educational Technology Research & Development, 67(3), 541–575. https://doi.org/10.1007/s11423-018-9622-x
Sullivan, A., & Bers, M. U. (2015). Robotics in the early childhood classroom: Learning outcomes from an 8-week robotics curriculum in pre-kindergarten through

second grade. International Journal of Technology and Design Education.
Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo: Engaging young children in programming and engineering. Medford, MA, June 21–25. In Proceedings

of the 14th international conference on interaction design and children (IDC ’15). New York, NY: ACM. Retrieved from https://sites.tufts.edu/devtech/files/2018/02/
IDC-KIBO-Demo-Complete.pdf.

Sullivan, A., Strawhacker, A., & Bers, M. U. (2017). Dancing, drawing, and dramatic robots: Integrating robotics and the arts to teach foundational STEAM concepts to
young children. In M. S. Khine (Ed.), Robotics in STEM education: Redesigning the learning experience. (pp. 231–260). Springer Publishing.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers in Education, 148
(103798). https://doi.org/10.1016/j.compedu.2019.103798

Thies, R., & Vahrenhold, J. (2012). Reflections on outreach programs in CS classes: Learning objectives for" unplugged" activities. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education (pp. 487–492). https://doi.org/10.1007/978-3-319-98355-4_29

Thies, R., & Vahrenhold, J. (2013). On plugging unplugged into CS classes. https://doi.org/10.1145/2445196.2445303
Virginia Department of Education. (2017). VDOE: Computer science standards of learning. retrieved from http://www.doe.virginia.gov/testing/sol/standards_docs/

computer-science/index.shtml.
Werner, L., Denner, J., & Campe, S. (2014). Using computer game programming to teach computational thinking skills. Learning. Education And Games, 37. Retrieved

from https://dl.acm.org/citation.cfm?id=2811150.
Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: Measuring computational thinking in middle school. Proceedings of

the 43rd ACM Technical Symposium on Computer Science Education, 215–220. https://doi.org/10.1145/2157136.2157200
Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. J. (2011). Statistical evidence in experimental psychology: An empirical

comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291–298. https://doi.org/10.1177/1745691611406923
Wing, J. (2006). Computational thinking. CACM, 49(3), 33–36. https://doi.org/10.1145/1118178.1118215. March 2006.
Wing, J. (2011). Research notebook: Computational thinking—what and why? The link magazine. Pittsburgh: Spring. Carnegie Mellon University. Retrieved from https://

www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why.
Wohl, B., Porter, B., & Clinch, S. (2015). Teaching computer science to 5–7 year-olds: An initial study with scratch, cubelets and unplugged computing. In Proceedings

of the workshop in primary and secondary computing education (pp. 55–60).
Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an emerging competence domain. In Technical and vocational education and training (Vol.

23, pp. 1051–1067). https://doi.org/10.1007/978-3-319-41713-4_49
Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). Computational thinking test for Beginners: Design and content validation. In 2020 IEEE global

engineering education conference (EDUCON) (pp. 1905–1914). IEEE. https://doi.org/10.1109/EDUCON45650.2020.9125368.
Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers in Education, 141(103607). https://doi.org/

10.1016/j.compedu.2019.103607

E. Relkin et al.

https://eric.ed.gov/?id=ED606056
http://www.corestandards.org/about-the-standards/branding-guidelines/
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref62
https://doi.org/10.1080/20004508.2019.1627844
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref64
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref65
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref66
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref66
https://doi.org/10.1007/s10798-015-9325-0
https://www.R-project.org/
https://doi.org/10.1007/s10956-020-09831-x
https://doi.org/10.1145/2700517
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref71
https://doi.org/10.4018/IJPOP.2015010101
https://doi.org/10.4018/IJPOP.2015010101
https://doi.org/10.1145/1109540.1109556
https://link.springer.com/chapter/10.1007/978-981-13-6528-7_6
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.ijcci.2018.06.004
https://doi.org/10.1007/978-3-319-93566-9_8
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref78
https://doi.org/10.1016/j.compedu.2019.04.011
https://eprints.soton.ac.uk/356481/
https://doi.org/10.1598/RRQ.21.4.1
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref82
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s10798-017-9400-9
https://doi.org/10.1007/s11423-018-9622-x
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref85
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref85
https://sites.tufts.edu/devtech/files/2018/02/IDC-KIBO-Demo-Complete.pdf
https://sites.tufts.edu/devtech/files/2018/02/IDC-KIBO-Demo-Complete.pdf
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref87
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref87
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1145/2445196.2445303
http://www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml
http://www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml
https://dl.acm.org/citation.cfm?id=2811150
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1177/1745691611406923
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref97
http://refhub.elsevier.com/S0360-1315(21)00099-3/sref97
https://doi.org/10.1007/978-3-319-41713-4_49
https://doi.org/10.1109/EDUCON45650.2020.9125368
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2019.103607

TechCheck: Development and Validation of an Unplugged
Assessment of Computational Thinking in Early Childhood Education

Emily Relkin1
& Laura de Ruiter1 & Marina Umaschi Bers1

Springer Nature B.V. 2020

Abstract
There is a need for developmentally appropriate Computational Thinking (CT) assessments that can be implemented in early
childhood classrooms. We developed a new instrument called TechCheck for assessing CT skills in young children that does not
require prior knowledge of computer programming. TechCheck is based on developmentally appropriate CT concepts and uses a
multiple-choice “unplugged” format that allows it to be administered to whole classes or online settings in under 15 min. This
design allows assessment of a broad range of abilities and avoids conflating coding with CT skills. We validated the instrument in
a cohort of 5–9-year-old students (N = 768) participating in a research study involving a robotics coding curriculum. TechCheck
showed good reliability and validity according to measures of classical test theory and item response theory. Discrimination
between skill levels was adequate. Difficulty was suitable for first graders and low for second graders. The instrument showed
differences in performance related to race/ethnicity. TechCheck scores correlated moderately with a previously validated CT
assessment tool (TACTIC-KIBO). Overall, TechCheck has good psychometric properties, is easy to administer and score, and
discriminates between children of different CT abilities. Implications, limitations, and directions for future work are discussed.

Keywords Computational thinking . Assessment . Unplugged . Educational technology . Elementary education

Introduction

Children need to be computer-literate to be able to fully partic-
ipate in today’s computer-based society—be it as users or cre-
ators of digital technology. Educators, researchers, and policy
makers in the USA are recognizing the need to give children
access to computer science (CS) education from an early age
(Barron et al. 2011; Bers and Sullivan 2019; Code.org 2019;
White House 2016). In recent years, efforts have shifted away
from teaching children only specific CS concepts and program-
ming skills towards helping them engage with a set of under-
lying abilities that have been termed computational thinking
(CT) skills. CT involves a range of analytical skills that are
inherent to the field of CS but applicable to many domains of
life, such as thinking recursively, applying abstraction when
figuring out a complex task, and using heuristic reasoning to
discover a solution (Wing 2006; Wing 2011). Due to the cen-
trality of CT, policy makers are now mandating that early

childhood education include interventions that exercise and
develop CT skills (Fayer et al. 2017; US Department of
Education, Office of Educational Technology 2017).

Unlike other skills such as language, literacy, or mathemat-
ical thinking, there are no valid and reliable assessments to
measure young learners’ CT skills. However, assessing CT
skills can provide proof of learning and useful feedback for
students, educators, and researchers evaluating the efficacy of
education programs, curricula, or interventions (K-12
Computer Science Framework Steering Committee 2016;
Resnick 2007; Sullivan and Bers 2016).

Despite these recognized benefits, there is currently a lack of
validated CT assessments for early elementary school students
(Lee et al. 2011). Most CT assessments to date have focused on
older children and adults (Fraillon et al. 2018; Román-González
et al. 2018; Werner et al. 2012; Chen et al. 2017). Prior work in
early age groups involved observational rubrics, interview pro-
tocols, project-based coding assessments, or programming
language-specific assessments (Bers 2010; Bers et al. 2014;
Botički et al. 2018; Mioduser and Levy 2010; Wang et al.
2014). These methods require training the scorers on the evalu-
ation metrics and are often time-intensive, unsuitable for class-
room use, and/or require children to be familiar with a specific
programming platform (Relkin and Bers 2018).

* Emily Relkin
Emily.relkin@tufts.edu

1 Eliot-Pearson Department of Child Study and Human Development,
Tufts University, 105 College Ave, Medford, MA 02155, USA

https://doi.org/10.1007/s10956-020-09831-x
Journal of Science Education and Technology (2020) 29:482–498

Published online: 26 May 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-020-09831-x&domain=pdf
https://orcid.org/0000-0002-9031-6847
https://orcid.org/0000-0002-6590-4073
https://orcid.org/0000-0003-0206-1846
mailto:Emily.relkin@tufts.edu

To fill this gap and provide an easily administrable, platform-
neutral classroom-based CT assessment for young children, we
have developed a new instrument called TechCheck. TechCheck
draws upon developmentally appropriate CT concepts and skills
(Bers 2018) as well as the underlying principles of CS “un-
plugged” activities that have been used to teach coding without
computers over the past two decades (Bell andVahrenhold 2018;
Rodriguez et al. 2016;www.code.org).We evaluatedTechCheck
in a large test to answer the following questions:

1. Is TechCheck a valid and reliable measure of first and
second grade children’s CT skills (i.e., what are
TechCheck’s psychometric properties)?

2. Can TechCheck be readily administered to first and sec-
ond grade children across multiple early elementary
school classrooms?

We will first discuss the concept of CT and provide an oper-
ational definition. We then give an overview of existing CT
assessments for children and discuss some of their characteristics.
We explain the concept of unplugged activities and how it was
applied to the creation of the assessment. After describing the
content and format of TechCheck and its development process,
we report the results of the study. The article concludes with a
discussion of our findings and future directions.

Computational Thinking

Seymour Papert (1980) alluded to CT in describing the thought
processesofchildren learning toprograminLOGO.Wing(2006)
later popularized the idea that CT is a vital skill that is relevant to
problem solving in technologic as well as non-technological
fields.Wing defined CT as “taking an approach to solving prob-
lems,designingsystemsandunderstandinghumanbehaviour that
draws on concepts fundamental to computing” (Wing 2008, p.
3717).Although there is increasing recognitionof the importance
of CT, its conceptual boundaries are still murky. A number of
different definitions have been put forward (e.g., Aho 2012;
Barr and Stephenson 2011; Cuny et al. 2010; Grover and Pea
2013; Kalelioğlu et al. 2016; Lu and Fletcher 2009; Shute et al.
2017;Wing 2006;Wing 2008; Tang et al. 2020).

Zhang and Nouri (2019) argue that there are three types of
CT definitions: generic definitions that focus on the universally
applicable skill set involved in solving problems (e.g., Wing
2011; Aho 2012); operational definitions that provide a vocab-
ulary for CT and characterize CT into different sub domains
(e.g., CSTA 2011); and educational definitions that provide
concepts and competencies (e.g., Brennan and Resnick 2012).

All of these definitions place CT outside of the context of
child development. However, when working with young chil-
dren, CT concepts need to be considered in light of the
cognitive and social development that occurs at different ages.
Taking a developmental approach, Bers (2018) describes CT in

early education as the ability to abstract computational behav-
iors and identify bugs (Bers 2018: 70). Bers drew on Papert’s
definition of “powerful ideas” as skills within a domain or
discipline that are individually meaningful and change how
we think or perceive the world and problem solve (Papert
1980). This led to the formation of the “Seven Powerful
Ideas” that operationalize CT in terms that are developmentally
appropriate and that can be taught through a CS or robotics
curriculum explicitly designed for young children (Bers
2018). These Powerful Ideas are as follows: algorithms, mod-
ularity, control structures, representation, hardware/software,
design process, and debugging. Table 1 provides further defi-
nitions for each.

There is a relative paucity of research on CT’s cognitive
underpinnings in young children (Kalelioğlu et al. 2016;
Yadav et al. 2017). Prior work explored how CT is comprised
of several subdomains rather than constituting a unified con-
struct (Grover and Pea 2013; ISTE 2015; Wing 2011). For
example, Barr and Stephenson (2011) brought together a
group of educators and leaders and proposed that CT
embodies nine different subdomains including data
collection, data analysis, data representation, problem
decomposition, abstraction, algorithm and procedures,
automation, parallelization, and simulation. Selby and
Woollard (2013) narrowed CT to five subdomains by analyz-
ing prior CT definitions and argued that a CT should be de-
fined as a thought process that involves abstraction, decom-
position, algorithmic thinking, evaluation, and generalization.
As a consequence, instruments that measure CT skills must
probe diverse areas and may not perform as uniformly as
standardized tests of other abilities (Román-González et al.
2019). These authors have pointed out that CT is a “liquid
term” that represents an approach to problem solving rather
than a singular concept. They also extend the concept of CT to
include “soft skills” such as “persistence, self-confidence, tol-
erance to ambiguity, creativity, and teamwork”. As such, most
CT assessments are different from standardized tests that fo-
cus on more unitary academic skills.

Assessment of CT in Early Childhood

Over the past two decades, there have been several instruments
developed to measure CT skills, but only a small subset of stud-
ies focused on CT in young children in early elementary school
ages four through nine. Most prior work in early age groups uses
interview protocols or project-based coding assessments.

In an interview-based approach, researchers have analyzed
the responses that children give during one-on-one interviews
as they observe the execution of programming tasks. Mioduser
and Levy (2010) showed the outcome of LEGO robotics con-
struction tasks to kindergarteners. The children’s CT level was
qualitatively assessed by analyzing the terms that children used
to describe the robot’s actions as it navigated through a

J Sci Educ Technol (2020) 29:482–498 483

http://www.code.org

constructed environment. For example, children who attributed
the robot’s actions to magic were given low CT skills ratings
and those who provided mechanical explanations were consid-
ered more advanced. Wang et al. (2014) used a similar ap-
proach with 5-to-9-year-old children, who were asked open-
ended questions about a tangible programming task that they
created called “T-maze”. "T-maze" uses TopCode to convert
physical programs into digital code (Horn 2012). The re-
searchers identified elements of CT in the children’s responses
(e.g., abstraction, decomposition) to determinewhether the chil-
dren grasped these concepts. Bers et al. (2014) analyzed pro-
grams created by kindergarteners (ages 4.9 to 6.5 years old)
using a tangible and graphical programming language called
CHERP. For example, children were tasked with programming
their robot to dance the Hokey Pokey. The researchers then
assessed four CT concepts by scoring children’s projects on a
Likert scale. Moore et al. (2020) used task-based interview
techniques to assess CT. Three participants were video record-
ed while they were asked questions and performed tasks using
the Code and Go Robot Mouse Coding Activity Set developed
by Learning Resources. Researchers explored qualitatively how
children use representations and translations to invent strategies
for solving problems.

Although interview and project-based assessments provide
a window into children’s thinking, the format of these assess-
ments and the time they require makes them unsuitable for
administration outside of specific research settings. Most spe-
cifically, the interview-based approach is both time-
consuming and subjective, and may be further limited by the
children’s capacity to verbalize their thought processes.

Some recent effort has been put into creating CT assessments
for young children. Marinus et al. 2018created the Coding
Development (CODE) Test 3–6 (for children between 3 and
6 years of age), which uses the robot Cubetto. CODE requires
children to program the robot to go to a specified location on a
mat by insertingwooden blocks into a “remote control.”The task
is to either build the program from scratch or debug an existing
program. Children are given maximally three trials to complete
each of the 13 items, with more points being awarded if fewer
attempts are needed. Although the authors state that CODE is
meant to measure CT, their assessment requires coding knowl-
edge raising the possibility that their assessment conflates coding
with CT skills.

Relkin and Bers (2019) developed a platform-specific one-
on-one instrument called TACTIC-KIBO, for children aged 5
to 7 years. TACTIC-KIBO involves pre-programmed KIBO
robot activities that serve as a basis for the questions and tasks
that the child is asked to complete. TACTIC-KIBO probes CT
skills based on the concepts embodied in the Seven Powerful
Ideas described by Bers (2018) (see Table 1). TACTIC-KIBO
classifies each child in one of four programming proficiency
levels derived from the Developmental Model of Coding
(Vizner 2017). Scores were highly correlated with expert rat-
ings of children’s CT skills, indicating criterion validity.
TACTIC-KIBO is scored objectively and can be uniformly
administered and scored in an average of 16 min. However,
like the project-based assessment used by Bers et al. (2014)
and the qualitative assessment by Wang et al. (2014),
TACTIC-KIBO requires that the child has already learned
how to use a particular programming platform (in this case,
coding associated with the KIBO robot).

Assessments that require prior coding experience are general-
ly unsuitable for use in pre-/post-test designs to evaluate the
effectiveness of curricula. Most CT assessments are designed
for older children or require skills which are not developmentally
appropriate for young children. In addition, there is a risk with
assessment of this kind that CT skills may be conflated with
coding abilities (Yadav et al. 2017). Research with older children
has indicated that coding can become automatic and does not
always require thinking computationally (Werner et al. 2014). It
is therefore desirable to havemethods ofmeasuringCT skills that
do not require knowledge of computer programming.

Unplugged Assessments

Assessments that do not require specific programming knowl-
edge are called “unplugged” assessments. The term comes from
activities used in teaching, where educators integrate activities
that do not require knowledge of computers or other technologies
into the CS curriculum. Such activities are often referred to as
“unplugged” to reflect that they do not require electronic tech-
nology (Bell and Vahrenhold 2018). Typically, unplugged activ-
ities are used to exemplify CT principles and provide a hands-on
experience without the use of computers or other technologies.
An example of an unplugged activity aligned with the concept of
algorithms is having students recount the process of brushing

Table 1 Developmentally
appropriate powerful ideas of CT
(Bers 2018)

Powerful idea Definition

Algorithms Sequencing, putting things in order, logical organization
Modularity Breaking up large tasks into smaller parts, instructions
Control structures Recognizing patterns and repetition, cause and effect
Representation Symbolic representation, models
Hardware/software Recognizing that smart objects are not magical but are human engineered
Design process Understanding the cyclic nature of creative processes and its six steps, perseverance
Debugging Identifying and solving problems, developing strategies for making things work, and

troubleshooting

J Sci Educ Technol (2020) 29:482–498484

their teeth. Each of the steps (e.g., finding the toothbrush, finding
the toothpaste, wetting the brush, applying toothpaste to the
brush) must be identified and applied in a specific sequence.
By presenting a readily understood analogy, unplugged activities
convey CS concepts without requiring students to have access to
a computer or actual computer programming experience.

In recent years, unplugged activities have been used in the
context of assessment for pedagogical purposes and more re-
cently applied to the assessment of CT skills, mostly in higher
elementary and older school children. Code.org (www.code.
org) provides a widely used online resource for teaching
computer programming to elementary school children in
kindergarten to fifth grade (ages four to thirteen). Code.org
uses unplugged activities as assessments in its end-of-lesson
quizzes. However, code.org does not provide a scoring system
or basis for interpreting the results of the quizzes, and there is
no way to compile results over multiple lessons for summative
assessment purposes.

The “Bebras” challenge (www.bebras.org) is a name that is
strongly associated with unplugged assessments. It is an
international contest for 8-to-18-year-olds, in which participants
need to solve tasks that are intended to measure CT skills’
transfer to real-life problems. Participants receive points for solv-
ing tasks of varying levels of complexity and difficulty. It is,
however, not a validated assessment nor is it suitable for routine
classroom use (Dagiene and Stupurienė 2016).

One of the most sophisticated and best validated unplugged
assessment tools to date has been created by Román-González
et al. 2017 The “Computational Thinking test” (CTt) was de-
signed to identify “computationally talented” children among
Spanish middle school students (i.e., 10 to 15 years old). It is a
28-item, multiple-choice test covering the computational con-
cepts of sequences, loops, conditionals, and operators. Each item
is one of three tasks types: sequencing (bringing a set of com-
mands in sequence), completion (complete an incomplete given
set of commands), or debugging (find and correct an error in a
given set of commands). The CTt has been found to correlate
with spatial ability, reasoning ability, and problem-solving abil-
ity, as well as verbal ability. It is administered online, allowing
collective administration, and it is used in pre-/post-test designs
(Román-González et al. 2018). Since it was designed for middle
school students, it is, however, not developmentally appropriate
for use with early elementary school children. It is also worth
pointing out that the CTt does not cover all CT domains as
described above (Table 1). For example, the test does not in-
clude questions on representation or modularization.

To summarize, for older children, the CTt offers a reliable
and valid assessment of CT ability that does not require famil-
iarity with a particular technological platform. For younger
children, all existing assessments are tied to a particular plat-
form, and they are mostly qualitative in nature.

To fill this gap, we developed TechCheck, the first un-
pluggedCT assessment specifically designed for administration

to children between 5 and 9 years of age in a classroom or
online setting, regardless of the level of their prior coding ex-
perience or exposure to programming platforms.

Method

Domains and Content

TechCheck has been developed to assess various domains of
CT described by Bers’ (2018) as developmentally appropriate
for young children (see Table 1): algorithms, modularity, con-
trol structures, representation, hardware/software, and
debugging, with the exception of the design process. A variety
of different tasks are used to probe these domains: sequencing
challenges, shortest path puzzles, missing symbol series, ob-
ject decomposition, obstacle mazes, symbol shape puzzles,
identifying technological concepts, and symmetry problems
(see Appendix 1). Figure 1 provides an example of a
TechCheck symmetry problem question designed to probe
debugging skills. Although it is one of the Seven Powerful
Ideas, design process was not included because it is an itera-
tive and open-ended process with many solutions that cannot
be readily assessed with the short multiple-choice format im-
plemented in TechCheck.

Face Validity Process

After developing prototypes for these tasks, we solicited feed-
back from nineteen evaluators (researchers, CS educators, stu-
dents) with various levels of expertise in CT to determine
whether the questions embodied the domains they were de-
signed to assess, and to evaluate the questions’ appropriateness
for the target age groups. Evaluators were given an item and
asked to select from four options the one domain that they
thought the item was probing. Writing in other domains was
also an option. Inter-rater agreement was then assessed. There
was an average agreement of 81% among raters. Fleiss’ Kappa
indicated consensus among evaluators about the CT domain
most associated with each question κ = 0.63 (95% CI)
p < 0.001. Although all prototypes were confirmed to probe
the intended CT domain, some questions were rejected because
their content was judged to fall outside the common knowledge
of typical 5-to-9-year-olds. Figure 2 shows two examples of
prototype questions that were rejected on those grounds.

Format and Administration

The current version of TechCheck consists of 15 questions pre-
sented in a forced-selection multiple-choice format with four
options. Responses are given by clicking on one of the four
presented options. Each correct response is awarded with one
point, with a maximum score of 15 points. Two practice

J Sci Educ Technol (2020) 29:482–498 485

http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org

questions are included in the beginning of the assessment to
familiarize students with the format but are not included in the
scoring. All questions must be answered to complete the assess-
ment. TechCheck is administered online (currently via a secure
online survey platform), which allows it to be administered on
multiple platforms including PCs, Android, and Apple devices.
The assessment can be administered to children who are pre-
literate, and for this reason, administrators are instructed to read
each question out loud to the students twice and give them up to
1 min to answer each question.

Test

We administered TechCheck to determine its psychometric
properties in a test involving a total of 768 students from the
first and second grades (ages five to nine). The study took
place during a period in which students from eight schools

participated in coding, robotics, and literacy curriculum for
2 h per week over 6 weeks (second graders) or 7 weeks (first
graders).

Participants

Participants were recruited with parental opt-out consent from
eight schools in the same school district in Virginia. All
schools had a high number of military-connected and low-
income students. Owing to absenteeism and other causes, sev-
eral participants did not complete all scheduled assessments.
Altogether, 768 5-to-9-year-olds (mean age 7 years, 6 months)
participated. Only participants that were reported to be
neurotypical and understood English were included.
Figure 3 shows the participant selection diagram indicating
how many participants completed TechCheck as well as the
subgroup that took both TechCheck and TACTIC-KIBO.

Fig. 1 TechCheck symmetry problem question designed to probe debugging skills

Fig. 2 Examples of two rejected items. These questions fall outside of common knowledge for 4–8-year-olds. Prior knowledge is needed to understand
how to make a paper airplane and what pixels are

J Sci Educ Technol (2020) 29:482–498486

Table 2 shows the first and second grade students who
completed in TechCheck, as well as the demographics for
the subset of students that completed both TechCheck and
TACTIC-KIBO assessments. As shown in Table 2, the subset
of students who completed the required assessments was rel-
atively well-matched to the entire cohort of students.

Procedure

Eight proctors (one per school) were trained to administer the
assessment in a consistent manner. Proctors first established rap-
port with children, and then asked children for their assent to
participate. TechCheckwas administered to each class as a group.
TechCheckwas administered up to three times over the course of
a 6- to 7-week curriculum for the purpose of a longitudinal anal-
ysis, which is part of a different research project. In order to
establish criterion validity of TechCheck, students were asked to
take an updated version of the TACTIC-KIBO assessment, a pre-
viously validated coding platform-specific CT measure (Relkin
and Bers 2019; Relkin 2018). TACTIC-KIBO was administered
on a tablet on the same week that students completed TechCheck
for the third time. The updated version of TACTIC-KIBO allows
for simultaneous administration to a full classroom. TACTIC-
KIBO probes similar domains of CT as TechCheck but requires
knowledge of the KIBO programming language (see Fig. 4).

Data Analysis

All statistical analyses were conducted in R (Version 3.6.1, R
Core Team 2019) using R Studio version 1.2 (RStudio Team
2018). The Item Information and Item Characteristic Curves for
TechCheck were used to evaluate the difficulty and discrimina-
tion power of individual questions and were calculated using the
ltm package in R (Rizopoulos 2006). Inter-rater agreement
(Fleiss’ Kappa) was conducted using the irr package in R
(Gamer et al. 2019). We used Bayesian t tests and Bayesian
linear regression to examine the effects of gender and race/
ethnicity using the BayesFactor R package version 0.9.12-2
(Morey and Rouder 2015). Bayes factors allow determining
whether non-significant results support a null hypothesis (e.g.,
no difference between genders) or whether there is not enough
data (Dienes 2014).

Results

Descriptives

Across all administrations and both grades, the average
TechCheck score was 10.65 (SD = 2.58) out of a possible 15
points. The range was 1–15 points. The average administration

Fig. 3 Participant selection diagram

J Sci Educ Technol (2020) 29:482–498 487

time was 13.40 min (SD = 05:40). Only 1.50% of all participants
scored at or below chance levels (4 or fewer questions correct)
and 4.58% answered all questions correctly (see Fig. 5).

Across all administrations in the second grade sample, the
mean TechCheck score was 11.58 (SD = 2.28) out of a possi-
ble 15 points. The range was 3–15 points. Administration time
averaged 12 min (SD, 4.50 min). Across all administrations in
the first grade sample, the mean TechCheck score was 9.35
(SD = 2.39).The range was 1–15 points. Administration time
averaged 16 min (SD = 5.50 min).

For the second grade subgroup that completed both
TechCheck and TACTIC-KIBO (used to establish criterion va-
lidity), themean TechCheck score was 11.86 points (SD = 2.37).
The mean TACTIC-KIBO score was 18.28 points (SD = 3.90)
out of a possible 28 points. Cronbach’s alpha for TACTIC-KIBO
was α = 0.70. The average TACTIC-KIBO administration time
in this subgroup was 17 min (SD = 10 min 32 s).

An abbreviated version of TACTIC-KIBO was adminis-
tered to first graders with 21 questions in three different levels
of difficulty. The subgroup that completed both TechCheck
and the abbreviated TACTIC-KIBO had an average
TechCheck score of 9.84 (SD = 2.43). The average TACTIC-
KIBO score for first graders that took both TechCheck and
TACTIC-KIBO was 13.10 out of a possible 21 points (SD =
3.33). Cronbach’s alpha for TACTIC-KIBO in this subgroup
was α = 0.67. The average administration time for TACTIC-
KIBO was 22 min (SD = 4 min 33 s).

Gender Differences

The mean TechCheck score for males in the second grade
inclusion group was 11.34 points (SD = 2.33). The mean for
second grade girls was 11.00 points (SD = 2.12). There was no
statistically significant difference between the two genders

Table 2 Demographics of all students who participated in the field test

Second grade First grade

TechCheck
inclusion
subgroup

TACTIC-KIBO
+ TechCheck subgroup

TechCheck
inclusion
subgroup

Abbreviated TACTIC-
KIBO + TechCheck subgroup

Total N 480 398 288 214
Self-reported age Mean 7.61 7.8 6.23 6.54

SD 0.58 0.57 0.52 0.62
Range 6–9 6–9 5–9 5–9

Self-reported
gender

Girl 233 (48.54%) 208 (52.26%) 141 (48.96%) 114 (53.27%)
Boy 243 (50.63%) 177 (44.47%) 144 (50.00%) 94 (43.93%)
Rather not say 4 (0.83%) 13 (3.27%) 3 (1.04%) 6 (2.80%)

Race/ethnicity Black/African American 207 (43.13%) 177 (44.47%) 102 (35.42%) 73 (34.11%)
Hispanic or Latino/a 46 (9.58%) 40 (10.05%) 32 (11.11%) 29 (13.55%)
Biracial/Multiracial 42 (8.75) 34 (8.54%) 27 (9.38%) 19 (8.88%)
Asian or Pacific Islander 14 (2.92%) 10 (2.51%) 10 (3.47%) 10 (4.67%)
White 189 (39.38%) 152 (38.19%) 115 (39.93%) 81 (37.85%0
American Indian/Native

American
4 (0.83%) 1 (0.25%) 2 (0.70%) 2 (0.94%)

NA 20 (4.17%) 22 (5.53%) 0 (0%) 0 (0%)

The race/ethnicity “Hispanic or Latino/a” group was not a mutually exclusive category for second graders but was mutually exclusive for first graders
due to differences in standardized assessment instruments

Fig. 4 An example of corresponding types of questions from TechCheck and TACTIC-KIBO assessment in the CT domain of representation

J Sci Educ Technol (2020) 29:482–498488

(t = 1.66, df = 465.56, p > .05). The Bayes factor of 0.38 sug-
gests “anecdotal evidence” of there being no difference be-
tween genders (adapted from Jeffreys 1961, cited in Wetzels
et al. 2011). Likewise there was no significant difference by
gender in first graders, in whom the mean score for boys was
8.66 (SD = 2.29) and the mean score for girls was 8.69 (SD =
2.35) (t = .05, df = 282.42, p > .05). The Bayes factor of 0.13
suggests “substantial evidence” that there is no difference be-
tween genders. Figure 6 shows the distribution of scores of
males vs. females in both grades.

Differences by Racial/Ethnic Background

In the inclusion subgroups, the mean score for Black/African
American was 10.21 (SD = 2.18) in second grade and 7.94
(SD = 2.05) for first grade. Asian/Pacific Islander second
grade students had a mean of 11.29 (SD = 2.33) and first
graders scored on average 11.29 (SD = 2.33). White students
had an average of 12.21 (SD = 1.72) in second grade and an
average of 9.27 in first grade (SD = 2.4). Latino/a second
grade students had a mean of 11.20 (SD = 1.98) and first
graders had a mean of 8.56 (SD = 2.14). Students belonging
to other ethnicities/races had a mean of 11.06 (SD = 2.36) in
second grade and 8.93 (SD = 2.66) in first grade. Figure 7
shows the mean scores by race/ethnicity by grade.

A one-way ANOVA examining TechCheck scores by
race/ethnicity for second graders showed a highly sig-
nificant difference between groups (F(5, 467) = 20.60,
p < .001). Post hoc analysis (Tukey’s HSD) showed sig-
nificant differences between Whites and Black/African
Americans (p < .001) as well as between Whites and
biracial/multiracial groups (p < .01). A one-way
ANOVA examining TechCheck scores by race/ethnicity
for first graders also showed a significant difference
between groups (F(5, 282) = 19.78, p < .01). Post hoc

analysis (Tukey’s HSD) showed significant differences
between Whites and Black/African Americans (p < .001).

Multivariate Modeling

Multiple regression models including gender and race/ethnicity
as predictor variables of TechCheck score were significant in first
graders (p < .001) and second graders (p < .001). Race/ethnicity
was a significant predictor in both of these models (first grade:
β = .25 p < .001; second grade:β = .50 p< .001). Genderwas not
a significant predictor for either grade. Using Bayesian linear
regression, we found a Bayes factor of 5.93 for first graders
and 6.98 for second graders indicating that the models provided
“substantial evidence” that race/ethnicity contributes to the vari-
ation in total scores (adapted from Jeffreys 1961, cited inWetzels
et al. 2011).

Criterion Validity

To establish criterion validity, TechCheck scores were corre-
lated with scores on an updated version of the TACTIC-KIBO
assessment (Relkin and Bers 2019; Relkin 2018). TACTIC-
KIBO is a previously validated assessment that includes 28
questions in four different levels of difficulty.

The association between TACTIC-KIBO and TechCheck is
shown graphically in Fig. 8. A linear correlation is evident but
noisy, particularly at lower scores on the two measures. The
correlation was moderate at r = .53 (p < .001).

Reliability

We used both Classical Test Theory (CTT) and Item
Response Theory (IRT) to evaluate TechCheck’s reliability.
Using the combination of both CTT and IRT has been

Fig. 5 Histogram of the
TechCheck scores across all
administrations (N = 2204)

J Sci Educ Technol (2020) 29:482–498 489

recommended in the context of instrument validation
(Embretson and Reise 2000; Cappelleri et al. 2014).

Cronbach’s alpha was calculated as a CTT measure of in-
ternal consistency. The observed α = 0.68 is considered mod-
erate to high, and an acceptable level of internal consistency
for psychological assessments (Hinton et al. 2004).

IRT covers a family of models called item response
models and the measurement theory that they all have in
common (Ramsay and Reynolds 2000). Item response
models describe the (mathematical) relationship between

an individual’s response to an item (in our case a
TechCheck question), and the individual’s underlying trait
or ability that the item was intended to measure, in our case
CT ability (Kingsbury and Weiss 1983). We used a two-
parameter model, which provides information both about
the difficulty of each question and its discrimination abil-
ity. A questions’ discrimination index indicates how well
the question distinguishes between low and high per-
formers. It is desirable to have questions of varying diffi-
culty level and high discrimination.

Fig. 6 Histograms of the TechCheck scores for males in second grade (n = 233), females in second grade participants (n = 243); males in first grade (n =
144) and females in first grade (number of n = 141). Total number of observations N = 768

Fig. 7 Bar plot showing the mean
scores (and standard errors) by
race/ethnicity (N = 480 second
graders; N = 288 first graders)

J Sci Educ Technol (2020) 29:482–498490

The IRT analysis results are shown in Fig. 9 (Item
Characteristic Curves) and Fig. 10 (Item Information
Curves). Item Characteristic Curves (ICC) are S-shaped
curves that show the probability of selecting the correct re-
sponse in TechCheck for participants with a given level CT
ability. The curves indicate which questions are more difficult
and which questions are better at discriminating between stu-
dents with high and lowCT ability. The location of the peak of
the curve indicates the level of difficulty, with more difficult
questions peaking towards the higher (right) end of the x-axis
(ability). The steepness of the curve indicates the question’s
discrimination, with steeper curves discriminating better.

The ICCs show peaks at a variety of ability levels, indicat-
ing TechCheck successfully challenges children with low as
well as high CT skill levels. The curves vary in steepness, with
all questions showing acceptable levels of discrimination. The
mean difficulty index of all items was − 1.25 (range = − 2.63,
.7), the mean discrimination index was 1.03 (range = 0.65,
1.41). All indices can be found in Appendix 2.

Item Information Curves (IIC) indicate how much informa-
tion about the latent ability an item provides. IIC peak at the
point at which the item has the highest discrimination. The
further the ability levels are away from the peak, the less infor-
mation can be gained from a particular item for those ability

Fig. 8 Scatterplot showing the
relationship between TACTIC-
KIBO and TechCheck (N = 612)

Fig. 9 Item Characteristic Curves for all TechCheck administrations. The x-axis represents the latent ability of participants, the y-axis the probability of
responding correctly to the question (N = 2204)

J Sci Educ Technol (2020) 29:482–498 491

levels. In the present sample, most peaks occur either towards
the middle or to the left end of the x-axis (latent ability), indi-
cating that TechCheck is better at providing information about
students with average or lower CT ability.

Discussion and Future Directions

CT ability has become a focal point of early Computer
Science education. However, up to now, no validated and
reliable assessments were available to measure CT ability in
younger children who do not have previous coding experi-
ence. TechCheck, an unplugged assessment in multiple-
choice format, was developed to fill this gap. It is designed
to be developmentally appropriate for children from kinder-
garten (age five) through second grade (age nine). In a test
with 480 second graders and 288 first graders, we investigated
TechCheck’s psychometric properties and evaluated whether
it could be easily administered across multiple early elemen-
tary school classrooms.

Overall, TechCheck proved to have moderate to good
psychometric properties. This is the first study to show
a correlation between the results of an unplugged CT
assessment in young children (TechCheck) and those
obtained using a coding-specific CT instrument
(TACTIC-KIBO). Their correlation implies that both in-
struments measure the same underlying ability.

The range of responses was normally distributed without
indication of a floor effect. TechCheck succeeded in engaging
students in a range of CT ability levels. However, a few (less

than 8%) students in second grade received the maximum
number of points (15), suggesting that there was a ceiling
effect for small number of high-ability children.

The IRT analyses similarly indicated that the level of difficul-
ty was overall appropriate for first and second graders although
slightly lower than anticipated.We are planning to assess kinder-
garten students with TechCheck in a future study. Extrapolating
from present results, we expect TechCheck to perform well in
Kindergarten.

Scoring of TechCheck was straightforward due to the use
of a multiple-choice format and a one point-per-question scor-
ing system. The online platform used in this study did not
permit instantaneous reporting of group results upon comple-
tion of assessment sessions. We hope to add that functionality
in the future. Our platform-specific CT measure, TACTIC-
KIBO, uses a more complex scoring system that converts
raw scores into levels of performance ranging from proto-
programmer to fluent- programmer (Relkin 2018). Such a
leveling systemwould not be appropriate for TechCheck since
it is explicitly not a programming assessment. However, once
the data are available for the younger age groups, we plan to
develop age-adjusted standards.

The administration of the assessment was feasible in the class-
room, and we observed good compliance with the assessment
protocol. There were no reported adverse administration experi-
ences. The assessment elicited positive feedback from the
teachers and administrators who reported that children were con-
sistently excited to take TechCheck. TechCheckwas successfully
administered by multiple proctors working in several classrooms
in diverse schools. By these criteria, TechCheck demonstrated

Fig. 10 Item Information Curves for all TechCheck administration (N = 2204)

J Sci Educ Technol (2020) 29:482–498492

ease of administration and utility in the setting of early elemen-
tary school classrooms.

Overall, TechCheck proved to be both a valid and reliable in-
strument tomeasureCTability inyoungchildren,andtobereadily
administered to first and second graders. Román-González et al.
(2019) pointed out that CT assessments often focus on concepts
rather than “practices and perspectives”, and as a consequence
become “static and decontextualized.” Although TechCheck is
concept- rather than practice-driven, it provides a practical means
of assessing CT skills in large numbers of students in a way that
correlateswithmore context-based assessments such asTACTIC-
KIBO. In the context of education, TechCheckmay be useful for
identifying students with computational talent who can benefit
from enriched instruction aswell as identifying studentswith spe-
cial challengeswho require extra support.

To date, there has been no gold standard for measuring CT
skills in young children. We used TACTIC-KIBO for criterion
validation because it was previously validated against experts’
assessments. Some of the data used for this validation was
obtained after students were exposed to a KIBO coding cur-
riculum to assure they were familiar with the KIBO coding
language. There is a possible bias introduced by exposure to
the coding curriculum since students participate in exercises
that are somewhat similar to those in the TACTIC-KIBO as-
sessment. However, the curriculum did not include unplugged
activities of the kind in TechCheck making it less likely that
bias influenced these results. As additional indicators of crite-
rion validity, the ongoing studies of TechCheck with younger
children will include measures of standardized mathematical
and reading ability (literacy).

Although internal consistency was acceptable from a psycho-
metric testing standpoint, the moderate Cronbach’s alpha raises
the issue ofwhether all questions uniformlymeasureCT abilities.
As discussed in the “Introduction” section, CT is not a fully
unified construct but rather a complex mixture of several do-
mains of thinking and problem-solving abilities.

The fact that CT is not a single unified construct may
reduce the internal consistency of any given CT measure.
The Computational Thinking test (CTt) for older children
(Román-González et al. 2017) has a Cronbach’s alpha of
0.79, which is marginally higher than the 0.68 observed
for TechCheck in this study. We note, however, that the
CTt covers fewer CT domains than TechCheck, which is
likely to contribute to a higher internal consistency score.
TechCheck is a composite assessment that probes multiple
domains and combines the results into a single total score.
TechCheck in itself is not designed to quantify CT skills
in each of the individual domains it incorporates.

One of the challenges of designing a CT assessment for
early elementary school students is variability in reading
skills. In the target age group for TechCheck, there is typically
a combination of literate and emergent-literate children. In this
study, proctors read all questions out loud to minimize the

effects of literacy level on the outcome of the assessment.
However, it is still expected that literacy level may correlate
with CT skills and this represents a potential confounder to
this type of analysis. As mentioned above, future studies will
also collect measures of children’s literacy skills, allowing us
to examine their relationship with TechCheck scores to shed
light on this question. Alternative methods of administration
(e.g., auditory presentation through headphones with an auto-
mated proctor) and interactive computerized assessment
methods are also worthy of further exploration.

The cohort of this study was ethnically diverse and had a
balanced representation of gender. We observed a clear differ-
ence in TechCheck scores as a function of race/ethnicity. The
current study does not allow us to ascertain the basis for the
observed difference. Administering TechCheck in future studies
to students from other backgrounds (e.g., other parts of the USA,
other countries) and taking into account socioeconomic and cul-
tural differences as well as students’ performance on other aca-
demic measures may shed further light on this issue. Future
studies should also explore whether TechCheck can be used to
accurately assess children who are not typically developing or
who are English language learners.

Conclusions

TechCheck has acceptable psychometric properties, is easy to
administer and score, and identifies different CT skill levels in
young children. TechCheck has a suitable design for use in
research as well as educational settings. Characterization of
TechCheck’s utility in longitudinal assessments and in other
age groups is currently underway.

Acknowledgments We sincerely appreciate our Project Coordinator,
Angela de Mik, who made this work possible. We would also like to
thank all of the educators, parents, and students who participated in this
project, as well as members of the DevTech research group at Tufts
University.

Funding Information This work was generously supported by the
Department of Defense Education Activity (DoDEA) grant entitled
“Operation: Break the Code for College and Career Readiness.”

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the Tufts
University Social, Behavioral & Educational IRB protocol no. 1810044.

Informed Consent Informed consent was obtained from the educators
and parents/guardians of participating students. The students gave their
assent for inclusion.

J Sci Educ Technol (2020) 29:482–498 493

Appendix 1. The six CT domains covered
in TechCheck along with examples of the
different tasks used to probe those domains

CT domain Task type Example of a task

Algorithms Missing symbol
series

Algorithms Shortest path
puzzles

Algorithms Sequencing
challenge

Modularity Object
decomposi�on

J Sci Educ Technol (2020) 29:482–498494

Control
Structures

Obstacle mazes

Representa�o
n

Symbol shape
puzzles

Hardware/
so�ware

Iden�fying
technological

concepts

Debugging Symmetry
problem
solving

J Sci Educ Technol (2020) 29:482–498 495

Appendix 2. Difficulty and discrimination
indexes for the TechCheck assessment

References

Aho, A. V. (2012). Computation and computational thinking. The
Computer Journal, 55(7), 832–835. https://doi.org/10.1093/
comjnl/bxs074.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to
K-12: what is involved and what is the role of the computer science
education community? Inroads, 2(1), 48–54. https://doi.org/10.
1145/1929887.1929905.

Barron, B., Cayton-Hodges, G., Bofferding, L., Copple, C., Darling-
Hammond, L., & Levine, M. (2011). Take a giant step: a blueprint
for teaching children in a digital age. New York: The Joan Ganz
Cooney Center at Sesame Workshop Retrieved from https://
joanganzcooneycenter.org.

Bell, T., & Vahrenhold, J. (2018). CS unplugged—how is it used, and
does it work?. In Adventures between lower bounds and higher
altitudes (pp. 497–521). Springer, Cham. https://doi.org/10.1007/
978-3-319-98355-4_29.

Bers, M. U. (2010). The TangibleK robotics program: applied computa-
tional thinking for young children. Early Childhood Research and
Practice, 12(2) Retrieved from http://ecrp.uiuc.edu/v12n2/bers.
html/.

Bers, M. U. (2018). Coding as a playground: programming and compu-
tational thinking in the early childhood classroom. Routledge.
https://doi.org/10.4324/9781315398945 .

Bers, M. U., & Sullivan, A. (2019). Computer science education in early
childhood: the case of ScratchJr. Journal of Information Technology
Education: Innovations in Practice, 18, 113–138. https://doi.org/10.
28945/4437.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014).
Computational thinking and tinkering: exploration of an early child-
hood robotics curriculum. Computers in Education, 72, 145–157.
https://doi.org/10.1016/j.compedu.2013.10.020.

Botički, I., Kovačević, P., Pivalica, D., & Seow, P. (2018). Identifying
patterns in computational thinking problem solving in early primary
education. Proceedings of the 26th International Conference on
Computers in Education. Retrieved from https://www.bib.irb.hr/
950389?rad=950389

Brennan, K., & Resnick, M. (2012). New frameworks for studying and
assessing the development of computational thinking. In
Proceedings of the 2012 annual meeting of the American education-
al research association, Vancouver, Canada (Vol. 1, p. 25).

Cappelleri, J. C., Lundy, J. J., & Hays, R. D. (2014). Overview of clas-
sical test theory and item response theory for the quantitative assess-
ment of items in developing patient-reported outcomes measures.
Clinical Therapeutics, 36(5), 648–666. https://doi.org/10.1016/j.
clinthera.2014.04.006.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy,M.
(2017). Assessing elementary students’ computational thinking in
everyday reasoning and robotics programming. Computers in
Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.
03.001.

Code.org (2019). Retrieved from https://code.org/
Core Team, R. (2019). R: a language and environment for statistical

computing. Vienna: R Foundation for Statistical Computing
Retrieved from https://www.R-project.org/.

Computer Science Teachers Association (CSTA) Standards Task Force
CSTA K-12 computer science standards (2011), p. 9 Retrieved
from: http://c.ymcdn.com/sites/www.csteachers.org/resource/
resmgr/Docs/Standards/CSTA_K-12_CSS.pdf

Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying computational
thinking for non-computer scientists. Unpublished manuscript in
progress, referenced in http://www.cs.cmu.edu/~CompThink/
resources/TheLinkWing.pdf

Dagiene, V., & Stupurienė, G. (2016). Bebras–a sustainable community
building model for the concept based learning of informatics and
computational thinking. Informatics in education, 15(1), 25–44.
https://doi.org/10.15388/infedu.2016.02.

Dienes, Z. (2014). Using Bayes to get the most out of non-significant
results. Frontiers in Psychology, 5, 781. https://doi.org/10.3389/
fpsyg.2014.00781.

Embretson, S. E., & Reise, S. P. (2000). Multivariate applications
books series. Item response theory for psychologists.
Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
Retrieved from https://psycnet.apa.org/record/2000-03918-
000

Fayer, S., Lacey, A., & Watson, A. (2017). BLS spotlight on statistics:
STEM occupations-past, present, and future. Washington, D.C.:
U.S. Department of Labor, Bureau of Labor Statistics. Retrieved
from https://www.bls.gov.

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T.
(2018). International Computer and Information Literacy Study:
ICILS 2018: technical report. Retrieved from https://www.
springer.com/gp/book/9783030193881

Question Difficulty index Discrimination index Question Difficulty index Discrimination index
1 − 2.62 1.41 9 − 1.00 0.73

2 − 2.32 1.12 10 − 1.61 1.02

3 − 2.35 1.29 11 − 1.19 1.30

4 − 1.67 1.35 12 − 0.22 1.20

5 − 2.63 0.83 13 − 0.094 1.08

6 0.71 0.98 14 − 1.05 0.65

7 − 1.76 1.06 15 .70 0.525

8 − 1.63 0.88

J Sci Educ Technol (2020) 29:482–498496

https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
http://www.code.org
http://www.code.org
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-319-98355-4_29
http://www.code.org
http://www.code.org
https://doi.org/10.4324/9781315398945
https://doi.org/10.28945/4437
https://doi.org/10.28945/4437
https://doi.org/10.1016/j.compedu.2013.10.020
http://www.code.org
http://www.code.org
https://doi.org/10.1016/j.clinthera.2014.04.006
https://doi.org/10.1016/j.clinthera.2014.04.006
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.03.001
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
https://doi.org/10.15388/infedu.2016.02
https://doi.org/10.3389/fpsyg.2014.00781
https://doi.org/10.3389/fpsyg.2014.00781
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org

Gamer, M., Lemon, J., Fellows, I. & Singh, P. (2019) Package ‘irr’.
Various coefficients of interrater reliability and agreement.
Retrieved from https://CRAN.R-project.org/package=irr

Grover, S., & Pea, R. (2013). Computational thinking in K–12: a review
of the state of the field. Educational Research, 42(1), 38–43. https://
doi.org/10.3102/0013189X12463051.

Hinton, P., Brownlow, C., Mcmurray, I., & Cozens, B. (2004). SPSS
explained. Abingdon-on-Thames: Taylor & Francis. https://doi.
org/10.4324/9780203642597.

Horn, M. (2012). TopCode: Tangible Object Placement Codes.
Retrieved from: http://users.eecs.northwestern.edu/~mhorn/
topcodes.

ISTE. (2015). CT leadership toolkit. Retrieved from http://www.iste.
org/docs/ct-documents/ct-leadershipttoolkit.pdf?sfvrsn=4

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Oxford
University Press.

K-12 Computer Science Framework Steering Committee. (2016). K–12
computer science framework. Retrieved from https://k12cs.org .

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for com-
putational thinking based on a systematic research review.
Retrieved from https://www.researchgate.net/publication/
303943002_A_Framework_for_Computational_Thinking_Based_
on_a_Systematic_Research_Review

Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based
adaptive mastery testing and a sequential mastery testing procedure.
In New horizons in testing (pp. 257-283). Academic Press. https://
doi.org/10.1016/B978-0-12-742780-5.50024-X.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan,W., Erickson, J., Malyn-
Smith, J., &Werner, L. (2011). Computational thinking for youth in
practice. ACM Inroads, 2(1), 32–37. https://doi.org/10.1145/
1929887.1929902.

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational think-
ing. In ACM SIGCSE Bulletin (Vol. 41, No. 1, pp. 260-264). ACM.
https://doi.org/10.1145/1539024.1508959.

Marinus, E., Powell, Z., Thornton, R., McArthur, G., & Crain, S. (2018).
Unravelling the cognition of coding in 3-to-6-year olds: the devel-
opment of an assessment tool and the relation between coding ability
and cognitive compiling of syntax in natural language. Proceedings
of the 2018 ACM Conference on International Computing
Education Research - ICER ’18, 133–141. https://doi.org/10.1145/
3230977.3230984.

Mioduser, D., & Levy, S. T. (2010). Making sense by building sense:
kindergarten children’s construction and understanding of adaptive
robot behaviors. International Journal of Computers for
Mathematical Learning, 15(2), 99–127. https://doi.org/10.1007/
s10758-010-9163-9.

Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C.,
Hynes, M. M., & Gajdzik, E. (2020). Multiple representations in
computational thinking tasks: a clinical study of second-grade stu-
dents. Journal of Science Education and Technology, 29(1), 19–34.
https://doi.org/10.1007/s10956-020-09812-0.

Morey, R. D., & Rouder, J. N. (2015). BayesFactor 0.9. 12-2.
Comprehensive R Archive Network Retrieved from https://cran.
r-project.org/web/packages/BayesFactor/index.html.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas.
New York: Basic Books. Retrieved from https://dl.acm.org/
citation.cfm?id=1095592.

Ramsay, M. C., & Reynolds, C. R. (2000). Development of a scientific
test: a practical guide. Handbook of psychological assessment, 21–
42. https://doi.org/10.1016/B978-008043645-6/50080-X.

Relkin, E. (2018). Assessing young children’s computational thinking
abilities (Master’s thesis). Retrieved from ProQuest Dissertations
and Theses database. (UMI No. 10813994).

Relkin, E., & Bers, M. U. (2019). Designing an assessment of computa-
tional thinking abilities for young children. In L. E. Cohen & S.
Waite-Stupiansky (Eds.), STEM for early childhood learners: how

science, technology, engineering and mathematics strengthen
learning. New York: Routledge. https://doi.org/10.4324/
9780429453755-5.

Resnick, M. (2007). All I really need to know (about creative thinking) I
learned (by studying how children learn) in kindergarten in
Proceedings of the 6th Conference on Creativity & Cognition (CC
‘07), pp. 1–6, ACM. https://doi.org/10.1145/1254960.1254961.

Rizopoulos, D. (2006). ltm: an R package for latent variable modelling
and item response theory analyses. Journal of Statistical Software,
17(5), 1–25. https://doi.org/10.18637/jss.v017.i05.

Rodriguez, B., Rader, C., & Camp, T. (2016). Using student performance
to assess CS unplugged activities in a classroom environment. In
Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education (pp. 95-100). ACM.
https://doi.org/10.1145/2899415.2899465.

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C.
(2017). Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test.Computers in
Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.
08.047.

Román-González, M., Pérez-González, J. C., Moreno-León, J., &
Robles, G. (2018). Can computational talent be detected?
Predictive validity of the Computational Thinking Test.
International Journal of Child-Computer Interaction, 18, 47–58.
https://doi.org/10.1016/j.ijcci.2018.06.004.

Román-González, M., Moreno-León, J., & Robles, G. (2019).
Combining assessment tools for a comprehensive evaluation of
computational thinking interventions. In Computational thinking
education (pp. 79–98). Springer, Singapore. Retrieved from
https://link.springer.com/chapter/10.1007/978-981-13-6528-7_6.

RStudio Team. (2018). RStudio: integrated development for R. Boston:
Studio, Inc. Retrieved from http://www.rstudio.com/.

Selby, C. C., & Woollard, J. (2013). Computational thinking: the devel-
oping definition. Paper Presented at the 18th annual conference on
innovation and Technology in Computer Science Education,
Canterbury. Retreived from https://eprints.soton.ac.uk/356481/.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying compu-
tational thinking. Educational Research Review, 22, 142–158.
https://doi.org/10.1016/j.edurev.2017.09.003.

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: gender differ-
ences in young children’s performance on robotics and program-
ming tasks. Journal of Information Technology Education:
Innovations in Practice, 15, 145–165. https://doi.org/10.28945/
3547.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing
computational thinking: a systematic review of empirical studies.
Computers in Education, 148, 103798. https://doi.org/10.1016/j.
compedu.2019.103798.

U.S. Department of Education, Office of Educational Technology (2017).
Reimagining the role of technology in education: 2017 National
Education Technology Plan update. Retrieved from https://tech.
ed.gov/teacherprep.

Vizner M. Z. (2017). Big robots for little kids: investigating the role of
Sale in early childhood robotics kits (Master’s thesis). Available
from ProQuest Dissertations and Theses database. (UMI No.
10622097).

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for
children to cultivate computational thinking [research article].
https://doi.org/10.1155/2014/428080.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy
performance assessment: measuring computational thinking in mid-
dle school. Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, 215–220. https://doi.org/10.1145/
2157136.2157200.

Werner, L., Denner, J., & Campe, S. (2014). Using computer game pro-
gramming to teach computational thinking skills. Learning,

J Sci Educ Technol (2020) 29:482–498 497

http://www.code.org
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.4324/9780203642597
https://doi.org/10.4324/9780203642597
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
https://doi.org/10.1016/B978-0-12-742780-5.50024-X
https://doi.org/10.1016/B978-0-12-742780-5.50024-X
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1539024.1508959
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1007/s10758-010-9163-9
https://doi.org/10.1007/s10758-010-9163-9
https://doi.org/10.1007/s10956-020-09812-0
http://www.code.org
http://www.code.org
http://www.code.org
http://www.code.org
https://doi.org/10.1016/B978-008043645-6/50080-X
https://doi.org/10.4324/9780429453755-5
https://doi.org/10.4324/9780429453755-5
https://doi.org/10.1145/1254960.1254961
https://doi.org/10.18637/jss.v017.i05
https://doi.org/10.1145/2899415.2899465
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.ijcci.2018.06.004
http://www.code.org
http://www.code.org
http://www.code.org
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.28945/3547
https://doi.org/10.28945/3547
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2019.103798
http://www.code.org
http://www.code.org
https://doi.org/10.1155/2014/428080
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1145/2157136.2157200

Education And Games, 37. Retrieved from https://dl.acm.org/
citation.cfm?id=2811150.

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., &
Wagenmakers, E. J. (2011). Statistical evidence in experimental
psychology: an empirical comparison using 855 t tests.
Perspectives on Psychological Science, 6(3), 291–298. https://doi.
org/10.1177/1745691611406923.

White House. (2016). Educate to innovate. Retrieved from: https://
www.whitehouse.gov/issues/education/k-12/educate-innovate.

Wing, J. M. (2006). Computational thinking. CACM Viewpoint, 49(3),
33–35. https://doi.org/10.1145/1118178.1118215.

Wing, J. M. (2008). Computational thinking and thinking about comput-
ing. Philosophical transactions of the royal society of London A:
mathematical, physical and engineering sciences, 366(1881), 3717–
3725. https://doi.org/10.1098/rsta.2008.0118.

Wing, J. (2011). Research notebook: computational thinking—What and
why? The Link Magazine, Spring. Carnegie Mellon University,
Pittsburgh. Retrieved from: https://www.cs.cmu.edu/link/research-
notebookcomputational-thinking-what-and-why.

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational think-
ing as an emerging competence domain. In Technical and vocation-
al education and training (Vol. 23, pp. 1051–1067). https://doi.org/
10.1007/978-3-319-41713-4_49.

Zhang, L., & Nouri, J. (2019). A systematic review of learning compu-
tational thinking through Scratch in K-9. Computers in Education,
141, 103607. https://doi.org/10.1016/j.compedu.2019.103607.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

J Sci Educ Technol (2020) 29:482–498498

http://www.code.org
http://www.code.org
https://doi.org/10.1177/1745691611406923
https://doi.org/10.1177/1745691611406923
http://www.code.org
http://www.code.org
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
http://www.code.org
https://doi.org/10.1007/978-3-319-41713-4_49
https://doi.org/10.1007/978-3-319-41713-4_49
https://doi.org/10.1016/j.compedu.2019.103607

	080922Relkin_Final_Dissertation.pdf
	Relkinetal2021ComputersandEducation.pdf
	Learning to code and the acquisition of computational thinking by young children
	1 Introduction
	1.1 Teaching computational thinking to young children
	1.2 Assessing computational thinking in young children

	2 Method
	2.1 The intervention: the CAL-KIBO curriculum
	2.2 Participants
	2.3 Inclusion criteria
	2.4 Professional development
	2.5 Computational thinking assessment
	2.6 Procedure
	2.7 Data analysis

	3 Results
	3.1 Baseline score distributions
	3.2 Primary outcome
	3.3 GLMM results
	3.4 TechCheck item analysis

	4 Discussion
	4.1 Limitations
	4.2 Future directions

	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Funding
	Credit author statement
	References

	Original TechCheck Validation Publication-3.pdf
	TechCheck: Development and Validation of an Unplugged Assessment of Computational Thinking in Early Childhood Education
	Abstract
	Introduction
	Computational Thinking
	Assessment of CT in Early Childhood
	Unplugged Assessments

	Method
	Domains and Content
	Face Validity Process
	Format and Administration
	Test
	Participants
	Procedure
	Data Analysis

	Results
	Descriptives
	Gender Differences
	Differences by Racial/Ethnic Background
	Multivariate Modeling
	Criterion Validity
	Reliability

	Discussion and Future Directions
	Conclusions
	Appendix 1. The six CT domains covered in TechCheck along with examples of the �different tasks used to probe those domains
	Appendix 2. Difficulty and discrimination indexes for the TechCheck assessment
	References

