
OECD Education Working Papers No. 274

The state of the field
of computational thinking

in early childhood education

Marina Umaschi Bers,
Amanda Strawhacker,

Amanda Sullivan

https://dx.doi.org/10.1787/3354387a-en

https://dx.doi.org/10.1787/3354387a-en

EDU/WKP(2022)12  1

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Organisation for Economic Co-operation and Development

EDU/WKP(2022)12

For Official Use English - Or. English

5 July 2022

DIRECTORATE FOR EDUCATION AND SKILLS

The State of the Field of Computational Thinking in Early Childhood Education

OECD Education Working Paper No. 274

By Marina Umaschi Bers, Amanda Strawhacker, and Amanda Sullivan (DevTEch Research

Group, Tufts University).

This working paper has been authorised by Andreas Schleicher, Director of the Directorate

for Education and Skills, OECD.

Marina Bers, Tufts University, marina.bers@tufts.edu

JT03498895

OFDE

This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory,

to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

mailto:marina.bers@tufts.edu

2  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

OECD EDUCATION WORKING PAPERS SERIES

OECD Working Papers should not be reported as representing the official views of the

OECD or of its member countries. The opinions expressed and arguments employed herein

are those of the author(s).

Working Papers describe preliminary results or research in progress by the author(s) and

are published to stimulate discussion on a broad range of issues on which the OECD works.

Comments on Working Papers are welcome, and may be sent to the Directorate for

Education and Skills, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France.

This document, as well as any data and map included herein, are without prejudice to the

status of or sovereignty over any territory, to the delimitation of international frontiers and

boundaries and to the name of any territory, city or area.

The use of this work, whether digital or print, is governed by the Terms and Conditions to

be found at http://www.oecd.org/termsandconditions.

Comment on the series is welcome, and should be sent to edu.contact@oecd.org.

This working paper has been authorised by Andreas Schleicher, Director of the Directorate

for Education and Skills, OECD.

www.oecd.org/edu/workingpapers

--

http://www.oecd.org/termsandconditions
http://www.oecd.org/edu/workingpapers

EDU/WKP(2022)12  3

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Acknowledgements

The authors thank members of the OECD Network on Early Childhood Education and Care

(ECEC) and the OECD team for their feedback on initial drafts of this review. A special thanks to

Olivia Tighe and Mernie Graziotin for editorial support.

4  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Abstract

Computer programming and associated Computational Thinking (CT) skills are essential

to thriving in today’s academic and professional world. There has been a growing focus

globally on fostering CT skills as well as on introducing computer programming concepts

and languages beginning as early as kindergarten and pre-primary school. Tools,

curriculum, and frameworks to promote CT in the early years must be designed and

implemented in ways that engage children who cannot yet read and write, who learn

through play, and who have a short attention span and limited working memory but also

strong natural curiosity. This review summarises empirical and theoretical literature on the

state of the field of CT as it relates to early learning and development, a time when young

children are being introduced to foundational skills, such as literacy and numeracy, which

can carefully be complemented by an exploration of CT.

EDU/WKP(2022)12  5

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Table of contents

Acknowledgements .. 3

Abstract .. 4

1. Introduction ... 7

2. Defining Computational thinking, Computer science, and programming 8

2.1. Definitions .. 8

2.2. Computer science .. 8

2.3. Computer programming .. 8

2.4. Computational thinking .. 8

2.5. Computational thinking concepts for young children ... 11

3. Computational thinking frameworks and learning standards .. 12

3.1. History of CT in learning standards and frameworks ... 12

3.2. Exploring current CT initiatives and frameworks across OECD countries. 13

3.3. Recent international research on CT in early education ... 15

4. Computational thinking and early learning and development ... 16

4.1. Support and criticism of CT in early education .. 16

4.2. Exploring the role of CT in early learning and development.. 16

4.3. CT and cognitive development ... 17

4.4. CT and social-emotional development ... 18

4.5. CT and the positive technological development framework... 19

4.6. Integrating across STEAM curricula .. 20

5. Tools for early CT learning .. 23

5.1. Designing technologies for CT learning ... 23

5.2. Open-ended coding and programming environments ... 25

5.3. Media (TV) for computational thinking.. 26

5.4. Robotic kits ... 27

5.5. Unplugged activities and products .. 29

6. Effective and scalable CT education .. 31

6.1. Overview of global CT initiatives ... 31

6.2. Professional development and qualifications of teachers and administrators 34

6.3. Assessment and documentation .. 35

6.4. Informal learning spaces ... 37

6.5. Family engagement ... 38

6.6. Summary and recommendations ... 39

7. Equity and access ... 40

7.1. Increasing diversity, access, equity, and inclusion in the fields of computational thinking and

computer science .. 40

7.2. Socio-economic inequalities in access to CT tools ... 41

7.3. Addressing issues with underrepresented groups in CT ... 42

7.4. Disabilities and accessibility ... 43

8. Concluding remarks .. 43

6  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

8.1. Key takeaways for policymakers .. 44

FIGURES

Figure 1.Relationship between computational thinking, computer science, and programming 10
Figure 2.Number of new global public academic journal articles on computational thinking (2006-2017). 16
Figure 3. Computational thinking in mathematics and science taxonomy 22

TABLES

Table 1. Aligning computational thinking with early childhood foundational skills 12
Table 2.Commercially available robotic kits for young children that introduce computer science and CT concepts 28

EDU/WKP(2022)12  7

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

1. Introduction

Computer programming powers the global digital environment in which children are

growing up today. Websites, smartphone applications, computer games, and even modern

microwaves, cars, and vacuum cleaners, all run on code. But how do we write code? And

how can young children growing up in today’s digital landscape become literate in coding

and computer science? Relevant answers to these questions relate to a process called

Computational Thinking (hereafter, CT). Along with being crucial to coding and computer

science in general, CT is an important skill set across many academic and professional

domains (Wing, 2006[1]) (Wing, 2011[2]) (Bers, 2021[3]). CT, which fosters analytical

problem solving along with creative expression, is the driving force behind new initiatives

focused on introducing young children to programming (Bers, 2021[3]). This review

summarises the state of the field of CT as it relates to early learning and development,

highlighting empirical research, theoretical and pedagogical work, curricular initiatives, as

well as commercially available products and media for supporting CT in young children

(ages 3-8).

This document begins with providing key definitions of terms related to CT and

background on the field of CT. It goes on to discuss how CT found its place in learning

standards and frameworks for early levels of education, as well as research on CT in early

learning and development. Next, the review highlights various tools, technologies, and

media that have been developed in the past decade for supporting CT in young children,

including unplugged and screen-free interfaces. Finally, the review discusses the

implementation of CT programmes in OECD countries and breaks down important issues

of equity and access in CT education.

Computer programming is becoming an essential skill in the 21st century. Each month,

there are an estimated 500,000 openings for computing jobs in the US alone, and a lack of

adequately trained people to fill them (Code.org, 2018[4]; Fayer, Lacey and Watson,

2017[5]). A recent forecast from the World Economic Forum listed computer science-

related jobs such as data and AI (artificial intelligence), machine learning, software

developers, and robotics engineers as the world’s fastest growing industries in 2025 (World

Economic Forum, 2020[6]). CT skills such as analytical thinking, complex problem solving,

and technology innovation and design are among the fastest growing gaps in skilled

employees. However, the rationale for supporting the introduction of computer science and

CT starting in kindergarten is not limited to the creation of the future workforce, but

concerns also the promotion of the future citizenry (Bers, 2021[3]).

The goal of this review is to provide an overview of recent and evidence-based

recommendations, trends, and initiatives to inform effective policy decisions for OECD

countries to maximise investments in CT education for their citizens, starting with their

youngest members. While the development of CT skills in early childhood is a burgeoning

field of research, more robust evidence on the diverse tools and approaches that have

emerged in recent years is still required to inform policy and practice, in particular to assess

the potential benefits and downsides of different CT educational programmes before they

may be introduced at scale.

8  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

2. Defining Computational thinking, Computer science, and programming

2.1. Definitions

This section defines three key terms necessary for engaging with the literature around CT

in the field of learning and education: computer science, computer programming, and

computational thinking.

2.2. Computer science

According to the Association for Computer Machinery (ACM), computer science is the

study of computers and their algorithmic processes (Tucker, 2003[7]). Computer scientists

design experimental algorithms, theorise about why they work, and use those theories to

inform new designs and data structures (Dodig-Crnkovic, 2002[8]). The field of computer

science encompasses a range of careers and academic concentrations, including artificial

intelligence, computer systems and networks, security, database systems, human computer

interaction, vision and graphics, numerical analysis, programming languages, software

engineering, and theory of computing. While programming is just one element of the vast

field of computer science, several core programming concepts are particularly relevant to

the development of CT in early learning. Perhaps the most relevant are algorithms, or

sequences of commands in which the order matters, and control structures, or instructional

commands that deal with the behaviour of algorithms (e.g. a “repeat” loop and a conditional

“if-else” statement are both control structures) (Bers, 2018[9]).

2.3. Computer programming

A programme is a series of instructions for a computer or machine to carry out (Code.org,

2021[10]). If computational logic is used to plan programmes, then coding is the process of

writing that plan in a programming language that a computer can understand. Programming

is used as a tool to create products that reflect a wide range of interests and needs. Any

machine that interacts with its environment and functions without an engineer or user

controlling its actions, from automatic doors to the Mars Rover, has been coded to behave

that way by a computer programmer.

A programmer writes code, a sequence of instructions in a programme. For instance, if

dialogue is not sequenced correctly when programming a simple animated story between

two characters, the story will not make sense. If the commands to programme a robot are

not in the correct order, the robot will not complete the task desired. Control structures

specify the order in which sequenced instructions are executed within a programme. Repeat

loops, a type of control structure, allow for the repetition of a code sequence multiple times.

For example, in a musical programme to play a favourite song, a repeat loop may be used

to repeat the chorus of the song multiple times.

2.4. Computational thinking

Although computational thinking (CT) has received considerable attention over the past

several years, there is little agreement on what a definition for CT might encompass (Barr

and Stephenson, 2011[11]; Grover and Pea, 2013[12]; Guzdial, 2008[13]; National Research

Council, 2010[14]; Relkin, 2018[15]; Relkin and Bers, 2019[16]; Shute, Sun and Asbell-Clarke,

2017[17]). The notion of CT encompasses a broad set of analytic and problem solving skills,

dispositions, habits, and approaches most often used in computer science, but that can serve

EDU/WKP(2022)12  9

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

in multiple other contexts (Barr, Harrison and Conery, 2011[18]; Barr and Stephenson,

2011[11]; Lee et al., 2011[19]).

One commonly used definition is that CT describes the thought processes involved in

formulating problems and in constructing and/or decomposing the sequential steps of a

solution in a form that can be executed by a computer, a human, or a combination of both

(Aho, 2011[20]; Kim and Lee, 2016[21]; Wing, 2011[2]). In this way, CT represents a type of

analytical thinking that shares similarities with mathematics thinking (e.g. problem

solving), engineering thinking (designing and evaluating processes), and scientific thinking

(systematic analysis) (Bers, 2010[22]; Bers, 2021[3]).

Mastery of CT includes the processes of pattern recognition, conceptualisation, planning

and problem solving. Researchers have found evidence that learning to code can improve

children’s acquisition of CT skills, perhaps because the act of coding requires logical

reasoning that itself relies on sequence and structure (Fraillon et al., 2020[23]; Grover and

Pea, 2013[12]; Lye and Koh, 2014[24]; Relkin and Bers, 2020[25]). For this reason, coding and

computer programming tools and curriculum and activities that involve logical thinking

and sequencing are the most common and accessible ways that educators can begin

fostering CT in children.

2.4.1. Summary

Figure 1 illustrates the relationship between the key terms that were defined in this section.

Computational Thinking (CT) encompasses a broad set of skills involved in constructing

and/or decomposing the sequential steps of a task so that it can be carried out by a computer.

CT skills include pattern recognition, conceptualisation, planning, and problem solving,

among others, and are used in creative and expressive tasks across computer science

disciplines, as well as non-technical disciplines such as mathematics and writing. Computer

programming is just one aspect of computer science. A computer programme is a series of

instructions for a computer or machine to carry out. These programmes are written by

humans (programmers).

10  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Figure 1.Relationship between computational thinking, computer science, and

programming

Throughout this review, these terms are explored in the context of studies primarily

concerning children aged 3-to-8, because this age span represents a critical time in

development when it comes to fostering CT and computer science education. The review

focuses on evidence regarding this age range that was collected in early childhood

education and care (ECEC) settings. This includes all arrangements providing care and

education for children under compulsory school age, regardless of setting, funding, opening

hours or programme content (depending on the international context, research may also

refer to formal school settings specifically for children in the older end of the intended age

range). Some research shows that the economic and developmental impact of interventions

that begin in early childhood tend to be associated with lower costs and more durable effects

than interventions that begin later (Cunha and Heckman, 2007[26]) (Heckman and Masterov,

2007[27]) (National Research Council, 2001[28]) (Shonkoff and Phillips, 2000[29]). From a

teaching and learning perspective, CT concepts, particularly abstract ones, can face a steep

learning curve in older students that may be avoided by introducing foundational CT earlier

on. Some research has even suggested that age 10-11 could represent a developmental

critical period for foundational CT skills (aligned with other critical periods in cognitive

development), suggesting the importance of early experiences before this developmental

window closes (Lerner and Steinberg, 2009[30]; Sun et al., 2020[31]). Thus, if promoting CT

is important in our rapidly developing information age, there are strong arguments for

introducing it during the early years of children’s education. Furthermore, it is critical that

pedagogical approaches and technologies used to introduce CT are consistent with

developmentally appropriate practice (Bredekamp, 1992[32]), and that they embrace the

maturational stages of children by inviting play, discovery, socialisation, and creativity

(Bers, 2018[9]). This review highlights developmentally appropriate practice as it relates to

digital technologies, CT, and young children.

EDU/WKP(2022)12  11

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

2.5. Computational thinking concepts for young children

Computational thinking includes mental processes such as thinking recursively, using

abstraction when figuring out a complex task, and applying heuristic reasoning to discover

a solution and to identify potential “bugs”, or problems. Wing (2006[1]) asserts that just as

the printing press facilitated the spread of the three ‘R’s (reading, writing, and arithmetic),

computers facilitate the spread of computational thinking. For this reason, it is vital that all

children, regardless of their background and gender, have an equal opportunity to acquire

CT skills.

To address pressing equity issues surrounding CT gaps, research suggests that beginning

CT education in early childhood may avoid future challenges associated with introducing

these skills in later years (Relkin and Bers, 2021[33]). One study of 169 students in Greece

aged 15 and 18 found that secondary school students can eventually master CT concepts

while engaged in an NXT LEGO Robotics curriculum focused on hands-on experiences

followed by oral or written demonstrations of how mechanical systems function. However,

the study also highlights the importance of allowing adequate time to attain CT skills,

particularly more abstract ones, with female students in their sample requiring more time

to achieve equal mastery of several CT skills (Atmatzidou and Demetriadis, 2016[34]).

Developmentally, secondary level students have already internalised several assumptions

and gender-based stereotypes about academic subjects that can inhibit performance, and

research in early childhood suggests that this stereotype threat can be mitigated by early

exposure to CT experiences (Sullivan, 2019[35]; Atmatzidou and Demetriadis, 2016[34]) also

found that in general, students showed dramatic gains in understanding near the end of the

learning unit, suggesting that truncated experiences (such as Hour of Code) may not

achieve the same level of educational enrichment.

In later childhood and elementary years, researchers looking at illustrative examples from

three National Science Foundation-funded informal education programmes serving

10-18 year-olds in the United States found that scaffolded experiences supported by

intensive staff support successfully helped learners to progress from simple tool-use

practices, such as debugging and testing, through deeper modification and eventually

creation of mechanical systems, resulting in analysis of models designed for real-world

applications (Lee et al., 2011[19]; Shonkoff and Phillips, 2000[29]). However, researchers

identified barriers in the feasibility of translating CT experiences into classrooms settings,

including limits on instructional time and challenges in teacher preparation. In contrast, the

emphasis of ECEC programmes on creative and exploratory time with hands-on object

manipulation lends itself to early accessibility to technological tools, and to developmental

readiness for beginning CT skills. Thus, early intervention might save precious

instructional time by preparing students with foundational CT awareness to begin sooner

with technology-supported design and creation in older years. This leads to the questions

of what does exploring CT look like during the early childhood years, and what are the CT

skills that young children can master at an early age. Bers (2020[36]) describes seven

“powerful ideas”1 from CT that are developmentally appropriate for young children to

master and that are not tied to a particular computer programming environment, but instead

to the discipline of computer science and its associated habits of mind. These ideas are:

algorithms, modularity, control structures, representation, hardware/software, the design

1 The term “powerful ideas” was first coined by Seymour Papert, who described them as new ways

of thinking, new ways of putting knowledge to use, and new ways of making personal and

epistemological connections with other domains of knowledge (Papert, 2000[273]).

12  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

process, and debugging. Table 1 defines these concepts and illustrates how each of them

relates to foundational early childhood skills and development.

Table 1. Aligning computational thinking with early childhood foundational skills

Computational Thinking Concepts Foundational Skills

Algorithms – A series of ordered steps taken in sequence.

Order matters

Logical organisation

Modularity – Breaking down complex tasks and

procedures into simpler, manageable units.

Breaking down a large task

Control Structures – Controlling the sequence in which a

programme is executed. Making decisions based on

conditions.

Pattern Recognition

Representation – Concepts can be represented by

symbols.

Symbolic representation of letters and numbers

Hardware/Software systems- Computing systems need

both hardware and software to operate.

Recognising objects and processes that are human

engineered

Design Process – An iterative process used to develop

programmes and artefacts with multiple steps.

Writing Process

Scientific Method

Creative Process

Debugging – Fixing problems in our programmes in a

systematic way.

Perseverance

Problem solving

Source: Bers (2020[36]), Coding as a playground: Programming and computational thinking in the early

childhood classroom, Routledge, New York, https://doi.org/10.4324/9781003022602.

3. Computational thinking frameworks and learning standards

3.1. History of CT in learning standards and frameworks

The United Kingdom was one of the first OECD countries to make an international mark

with a focus on computing education in the National Curriculum. In 1981, Computer

Studies became common for students aged 11–16 in the United Kingdom. The importance

of computer studies was recognised, and it later became a compulsory part of the National

Curriculum and in 2013, at which time it became a requirement for all students over the

age of 4. The UK’s approach to computer science education is particularly noteworthy, as

the UK’s National Computing programme (Department for Education, 2013[37])became the

https://doi.org/10.4324/9781003022602

EDU/WKP(2022)12  13

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

inspiration for the technology and computing curricula later implemented in the United

States, Australia and New Zealand (New South Wales Department of Education, 2019[38]).

Within the United States, the computing curriculum has traditionally been linked with

STEM (Science, Technology, Engineering, and Mathematics) disciplines. The STEM

acronym came into the American consciousness in the 1950s as a response to the need for

a technically oriented workforce, and to maintain national security. In 1958, during the

height of the space race, the United States passed the National Defense Education Act

(NDEA), which provided funding and incentives for schools to improve their math,

science, and engineering curricula to prepare the future workforce. The act also had

provisions for research and experimentation in the use of television, radio, and motion

pictures for educational purposes. As the cold war ended, the emphasis on national security

diminished and the perceived urgency to teach a foreign language dropped, but the need

for economic competitiveness remained. With a rapidly growing technological society,

learning computer programming provided increased career opportunities. However,

computer programming was mainly seen as part of the skillset for mathematicians,

scientists, and engineers. Thus, the teaching of computer science drew from methodologies

already used in STEM disciplines such as solving pre-set challenges and engaging in

competitions. At that time, the broader benefits for everyone to learn how to code could

not yet be perceived, as computers did not play a major role in everyday life. In fact, it was

not until the past decade that coding and CT became a focus at the national level in the

United States.

Around the world, computer science and CT education is now expanding and being

increasingly recognised within formal K-12 education settings. In a 2020 report, the

Brookings Institute surveyed 219 countries to identify which had online evidence of in-

school computer science education in place in K-12 schools (Fowler and Vegas, 2021[39]).

The report found that 44 countries mandated that schools offer it as an elective or required

course; that 15 countries offered computer science in select schools and some subnational

jurisdictions; and that 160 countries were only piloting computer science education

programmes or had no available evidence of in-school computer science education, the

curriculum being particularly rare in low-income countries.

Today, within the OECD, Israel, New Zealand, and South Korea have all included

computer science in their national secondary education curricula, and several others are

following. However, progress in this respect has been more limited when it comes to

primary school and the early education years. The following section breaks down the

current state of CT frameworks and standards across OECD countries, along with major

initiatives and organisations that are leading the way with CT in early education.

3.2. Exploring current CT initiatives and frameworks across OECD countries.

As computing has grown increasingly important in today’s world, the public demand for

education that supports CT and computer science is high (K-12 Computer Science

Framework Steering Committee, 2016[40]). Most parents report wanting their child’s school

to offer computer science (Google/Gallup, 2015[41]). In meeting these needs, a growing

number of OECD countries have taken steps in recent years to incorporate some form of

computer science or CT into their curricular frameworks. Countries like Australia, Canada,

Chile, South Africa, Korea and the United Kingdom all have computer science present in

educational frameworks or guidelines for primary school or earlier. The emergence of

curricular standards and frameworks in OECD countries generally emerged through

collaborations between local and national governments, technology industry leaders,

educators, and researchers. Examples of major initiatives in support of CT and computer

science include:

https://www.ic.gc.ca/eic/site/121.nsf/eng/h_00000.html

14  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

• The K-12 Computer Science Framework (United States): Created by educators,

local government, and the largest technology companies, used as a model in the

United States and many other countries. The framework was developed to inform

the development of standards and curriculum, build capacity for teaching computer

science, and implement computer science pathways (K-12 Computer Science

Framework Steering Committee, 2016[40]).

• CS For All (United States): A central resource for individuals and organisations

interested in K-12 computer science education in the United States. The initiative

includes policy work at the local, state, and national levels, school and district

innovation, teaching, and research.

• Informatics for All (Europe): A coalition that promotes the inclusion of computer

science and informatics in schools across European countries. The Informatics for

All coalition was formed in 2018 by the joint efforts of the ACM Europe Council,

the CEPIS Education Committee, and Informatics Europe. These organisations

share a common concern about the state of informatics education throughout

Europe, and are committed to promoting activities that will improve it. The

Informatics for All initiative deploys a two-tier strategy at all educational levels:

informatics as an area of specialisation that is, as a fundamental and independent

subject in school; and the integration of informatics with other school subjects, as

well as with study programmes in higher education.

• Computing at School (United Kingdom): A non-profit organisation which

established a coalition of industry representatives, teachers, and parents in 2008.

The organisation went on to play a pivotal role in rebranding the information and

communications technology (ICT) programme of study in 2014 into a computing

programme that placed a greater emphasis on computer science (The Royal Society,

2021[42]). By changing the programme, the government instructed schools to

provide more rigorous instruction in computer science concepts like Boolean logic

and programming languages.

• National Centre for Computing Education (NCCE) (United Kingdom): In

2018, Parliament and the Department for Education allocated 84 million pounds to

establish the National Centre for Computing Education (NCCE) to train teachers

(Cellan-Jones, 2019[43]). Drawing on help from non-profit organisation partners, the

Centre creates lesson plans and resources, runs training programmes, and offers

certification for pre-service and in-service teachers. Since its opening, the Centre

has engaged 29 500 teachers in training, 7 600 of which have benefited from

continuous professional development (Fowler and Vegas, 2021[39]).

In most countries, the main rationale for introducing CT and coding is to foster 21st century

skills, which are seen as essential for active participation and employment in the

increasingly digital job market. Approaches to doing so, however, vary distinctly from

country to country. For example: Austria, Denmark and Hungary focus mainly on logical

thinking and problem solving processes as learning outcomes. Finland and Turkey

implement both process-based learning goals (e.g. logical thinking and problem solving)

as well as skill-based learning goals specific to coding in their frameworks (New South

Wales Department of Education, 2019[38]).

In the OECD area specifically, three countries serve as case examples for their approaches

to computer science education in early childhood and the primary school years. In primary

education, Estonia has a national cross-curricular theme called ‘Technology and

Innovation’ which requires all teachers to implement technology in their teaching. In

Korea, the Software Education programme focuses on developing CT, coding skills and

https://www.informaticsforall.org/

EDU/WKP(2022)12  15

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

creative expression through software at all levels of education. Primary and lower

secondary schools were included in this focus as of 2018. Finally, the United Kingdom

introduced in 2013 a rebranded “computing” curriculum which prioritised computer

science concepts, as opposed to the computer literacy topics that were emphasised before

the change. The UK national curriculum for computing aims to ensure that all pupils can

understand and apply the fundamental principles and concepts of computer science,

including abstraction, logic, algorithms and data representation.

Having state/province and countrywide frameworks for teaching CT and computer science

in early childhood education can increase children’s exposure to CT. In a recent paper

analysing quantitative non-identifying data from Google Analytics on users of the popular

ScratchJr programming application in the United States, results show that states with

computer science standards had more ScratchJr users on average and had more total

sessions with the app on average (Sullivan and Bers, 2019[44]). Results also show

preliminary evidence that states with computer science standards in place have longer

average session duration as well as a higher average number of users returning to edit an

existing project (Sullivan and Bers, 2019[44]).

3.3. Recent international research on CT in early education

With the rising prevalence of CT initiatives and curricula, there has also been an increase

in research on CT in education, especially after Wing’s (2006[1]) seminal article proposing

CT as a critical foundational academic skill. Since then, various studies have set out to

define CT and its effective implementation in education. A recent meta-analysis by (Hsu,

Chang and Hung, 2018[45]) categorised 120 academic articles and books published between

2006 and 2016 (mostly covering education beyond pre-primary), to arrive at evidence-

based CT teaching strategies (see Figure 2). Further, the study identified 59 different

definitions based on several concepts such as problem solving, technology, thinking,

individual and social qualities, and further noted that general statements on “thinking” prior

to 2006 were replaced by statements with a focus on problem solving and technology.

The meta-analysis found that the main successful teaching strategies for primary education

and below included scaffolding (adults offering support for learners during activities),

universal design for learning (a design framework to provide flexible learning

environments and interfaces), project-based learning (a student-centred pedagogy that

involves dynamic exploration of real-world challenges and problems), and problem-based

learning (another student-driven pedagogy that involves pursuing solutions to open-ended

problems). Researchers are also exploring best practices and benefits for bringing CT to

early childhood. Results from a two-year longitudinal study in Canada on integrating tablet

(e.g. iPad) equipment in 14 kindergarten classrooms confirms research in other countries,

showing that these tools afforded children the ability to create multimodal productions that

were longer, more complex, and more varied than their literacy production with traditional

literacy tools and practices (McGlynn-Stewart et al., 2019[46]). At a policy level, the

development of numeracy performance standards in the British Columbia curriculum

provides an example of CT by taking a project/problem-based learning approach to

assessment, encouraging teachers to allow students to develop and demonstrate their

numerate thinking and communication skills (Interpret, Plan, Solve, Analyse,

Communicate) through open-ended problems in various learning areas.

16  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Figure 2.Number of new global public academic journal articles on computational

thinking (2006-2017).

Source: Hsu, Change, and Hung, (2018[45]), “How to learn and how to teach computational thinking:

Suggestions based on a review of the literature” Computers & Education, 126, 296-310,

https://doi.org/10.1016/j.compedu.2018.07.004.

4. Computational thinking and early learning and development

4.1. Support and criticism of CT in early education

CT advocates claim wide-reaching benefits of its integration in mainstream education,

primarily citing cognitive skill and competence building, creative expression and

broadened participation, as well as applications for social justice and ethics development

(Kafai, Proctor and Lui, 2020[47]). Relevant to early childhood, many claims rely on theories

of CT skills mapping onto other cognitive and socio-emotional learning domains such as

literacy, numeracy, general problem solving, and more. Empirical research is presented in

the following sections to identify trends in CT education in various domains, to highlight

potential opportunities and challenges within this burgeoning field. However, it is

important to note that this body of research is in its infancy and some claims are yet lacking

systematic verification in empirical studies. Furthermore, experiences of integration of CT

in pre-primary education at a large scale (e.g. at country or subnational levels) are rare or

very recent, which makes it difficult to assess their outcomes conclusively. Robust research

designs, including randomised controlled trials, have yet to generalise in this field in order

to generate more conclusive evidence on the potential causal links between CT skills and

different dimensions of early cognitive and socio-emotional development, as well as on the

impact of CT education interventions. With these caveats in mind, it is nonetheless worth

reviewing the existing evidence to identify both promising aspects and limitations of some

of the initiatives addressing this area of early digital literacy. Where most researchers agree

is that, in addition to technological tool and learning domain, the educational context,

instructional format, and intended pedagogy are all important when evaluating benefits and

constraints of early CT initiatives.

4.2. Exploring the role of CT in early learning and development

In 2006, Jeannette Wing proposed that acquiring CT skills can have benefits for the

development of other domains of thinking (Wing, 2006[1]). She posited that CT includes

thought processes such as thinking abstractly and using efficient problem solving strategies

https://doi.org/10.1016/j.compedu.2018.07.004

EDU/WKP(2022)12  17

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

in order to figure out the solution to complicated tasks and problems when figuring out a

complex task and using heuristic reasoning to discover a solution (Wing, 2006[1]; Wing,

2011[2]). Mastering CT includes the processes of pattern recognition, conceptualisation,

planning, and problem solving. Therefore, CT skills are not only valuable for computer

programming but helpful in a variety of other contexts such as solving mathematical

problems, planning and organising for a large event, sequencing a storyboard, and more

(Román-González, Moreno-León and Robles, 2019[48]; Zhang and Nouri, 2019[49]).

Compared to research on computer science and associated tools (e.g. robotics kits,

programming languages, apps, and games) with older children and adults, little is still

known about the connections between computer science and early learning. In recent years,

there has been a slowly growing body of work examining how computer science tools can

be used to foster CT as well as young children’s rapidly developing cognitive skills and

executive functions. The following sections look at this newer research and explore how

CT has been shown to impact cognitive and social-emotional skills during the foundational

early childhood years.

4.3. CT and cognitive development

4.3.1. Cognitive skills and executive functions

Early studies with the text-based programming language Logo were among the first studies

to demonstrate that computer programming can help young children with number sense,

language skills, and visual memory (Clements, 1999[50]). A meta-analysis of 65 studies

revealed that students who participated in computer programming typically scored higher

on various cognitive-ability assessments than children who did not participate.

More recently, research has evaluated the graphical programming language ScratchJr

which is designed for children aged five to seven and reported to have been used in all but

five countries in the world (Bers, 2018[9]; Leidl, Bers and Mihm, 2017[51]; Sullivan and

Bers, 2019[44]). Studies have found that young children are able to use ScratchJr to create

personally meaningful projects and demonstrate CT and problem solving strategies, and

that these experiences are especially successful when educators allow children to explore

and engage in child-led free-play (Bers, 2018[9]; Bers, 2020[36]; Leidl, Bers and Mihm,

2017[51]; Portelance, Strawhacker and Bers, 2015[52]; Strawhacker, Lee and Bers, 2017[53];

Strawhacker et al., 2015[54]). However, more research is needed to determine if the

observed associations in these early-stage studies can be causally linked to coding

interventions directly. For example: a controlled experimental trial of 28 children aged 4-5

years found that after a coding classroom experience, children in the experimental group

showed an increase in non-verbal cognitive abilities, but there was no statistically

significant difference in their problem solving skills (Çiftci and Bildiren, 2019[55]).

Relatedly, a study of 49 primary students (aged 10-11 years) who engaged in a coding

course with the Scratch environment found no significant differences in the problem

solving skills of the students after the intervention; instead, they found a non-significant

increase in students’ ratings of self-confidence in their own problem solving ability

(Kalelioglu and Gulbahar, 2014[56]). This suggests that future work might unpack the role

of screen-based CT motivation, engagement, and self-concept as they relate to children’s

problem solving abilities.

Behaviourally, children using ScratchJr are encouraged to engage in the engineering design

cycle to create their projects, a critical aspect of CT, as well as to leverage math concepts

of cardinality, sequencing, and order, and foundational literacy practices of drafting,

revising, and sharing story compositions, exploring and utilising narrative structures, and

decoding symbols (Bers, 2020[36]) (Flannery et al., 2013[57]) (Hassenfeld and Bers,

18  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

2020[58]). A 2014 study of 98 K-2 students and 9 teachers from 2 schools revealed that

coding with ScratchJr supported symbol recognition and sequencing skills at an appropriate

developmental level for average K-2 children (Strawhacker and Bers, 2014[59]), and that

different programming blocks (e.g. conditional statements, repeat loops) supported

increasing levels of programmatic complexity, allowing the app to “grow with the child”

from kindergarten through second grade (Portelance, Strawhacker and Bers, 2015[52]).

Additionally, a series of studies conducted with preschoolers and kindergarteners showed

that coding can significantly improve young children’s sequencing ability, an important

pre-math and pre-literacy skill, on a standardised picture sequencing assessment unrelated

to programming (Kazakoff and Bers, 2014[60]) (Kazakoff, Sullivan and Bers, 2012[61]).

Research on computer programming and tangible robotics construction sets have also

shown connections to cognitive development (Flannery et al., 2013[57]) (Strawhacker, Lee

and Bers, 2017[53]). For example, prior research has demonstrated that robotics can help

children develop a stronger understanding of mathematical concepts such as number, size,

and shape in much the same way that traditional materials like pattern blocks, beads, and

balls do (Resnick, 1998[62]) (Brosterman, 1997[63]). Other research has shown educational

computer programming as a medium to develop foundational skills of math, logic, and

sequential ordering (Kazakoff, Sullivan and Bers, 2012[61]) (Kazakoff and Bers, 2014[60])

(Pea and Kurland, 1984[64]).

Research with the KIBO robotics kit with children ranging from ages 4-8 has demonstrated

that young children can practice important cognitive skills of problem solving and

debugging when engaging with coding the robot (Sullivan, Bers and Mihm, 2017[65])

(Sullivan, Elkin and Bers, 2015[66]). More recent research with children ages 7-9 using

KIBO indicated that learning to code with robotics improves young children’s problem

solving skills, particularly in children who generalise the knowledge gained from coding

into broader CT skills (Relkin and Bers, 2020[25]).

CT and computer programming can also help young children practice their developing

executive function abilities, which consist of mental flexibility, inhibitory control, and

working memory (Center on the Developing Child at Harvard University, 2011[67]) (Blair

and Diamond, 2008[68]). CT, as a means of problem solving, taps into similar and

overlapping cognitive functions, many of which are considered under the umbrella of

executive function, and, by extension, self-regulation (Myers, 2021[69]). For example, when

using the ScratchJr programming language, children must draw on their working memory

to remember their given programming challenge, remember the programming blocks that

correspond to the actions they want their characters to take, and remember the syntax rules

inherent to this language (Kazakoff and Bers, 2014[60]).

4.4. CT and social-emotional development

Early childhood is a critical developmental period for learning necessary social skills

through peer-to-peer interactions that help develop social knowledge of the peer group and

differentiate friends from playmates (Hartup, 1983[70]; Howes, 1987[71]). For young children

who are just beginning to learn how to collaborate and work together with peers, the design

features of many computing technologies can be used to promote social and pro-social

development (Bers, 2021[3]) (Bers, 2022[72]). For example, tools that are designed to allow

multiple children to work together on one project (e.g. robotics kits that allow one child to

construct the robot while another child programmes the robot) and digital tools that allow

for sharing and “re-mixing” (e.g. programming applications with a “share” or sending

feature) can foster collaboration and social development in ways that other tools cannot.

Early work with technology and young children has shown that computers can serve as

catalysts for social interaction in early childhood education classrooms (Clements,

EDU/WKP(2022)12  19

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

1999[50]), and an experience with primary education children has shown that children can

have twice as many social interactions in front of a computer than when they are doing

other activities (Svensson, 2000[73]). Programming in groups invites children not only to

collaborate but also to engage in social play and to develop the social coordination skills

and social scripts that are necessary for negotiating, problem solving, sharing, and working

within groups (Erickson, 1985[74]; Pellegrini and Smith, 1998[75]; McElwain and Volling,

2005[76]).

Children are also more likely to ask their peers for help when using a computer, even when

an adult is present, thereby increasing the amount of peer collaboration in the classroom

(Wartella and Jennings, 2000[77]). Other research has shown that it is not just the technology

itself that serves as a catalyst to collaboration, but also the way the technology is

implemented in curricula and classroom activities. For example, research on collaboration

and the use of programmable robotics kits for young children has shown that using a more

unstructured pedagogy that embodies a “learn by doing” approach serves to foster more

peer collaboration than a more structured teaching approach with more teacher guidance

(Lee, Sullivan and Bers, 2013[78]).

Research in home settings has been sparse and less conclusive about the positive impact of

digital experiences for children’s socio-emotional learning. A study on a nationally

representative sample of 4 914 children aged 0–5 in Germany assessed children’s socio-

emotional, practical life skills, and academic competencies via a standardised parental

survey, and compared those who reported a greater access and frequency of digital tools in

the home learning environment to those with relatively more analogue home environments

(Lehrl et al., 2021[79]). The study concluded that for preschoolers, digital home learning

activities were associated with weaker socio-emotional skills but higher academic skills.

Importantly, this study does not differentiate between digital access and CT engagement,

which may point to a broader finding noted in other literature reviews about challenges in

parental uptake and understanding of how to effectively scaffold digital experiences for

children’s learning (Wan, Jiang and Zhan, 2020[80]).

4.5. CT and the positive technological development framework

The previous section described the ways that new computing technologies can be used to

foster a range of socio-emotional skills. Along these lines, the Positive Technological

Development (PTD) framework developed by Bers provides a model to guide the

development, implementation and evaluation of educational programmes that use new

technologies to promote learning as an aspect of positive youth development (Bers,

2012[81]) (Bers, 2020[36]). The PTD framework is a natural extension of the computer

literacy and the technological fluency movements that have influenced the world of

education but adds psychosocial and ethical components to the cognitive dimension. As a

theoretical framework, PTD proposes six positive behaviours (six C’s) that should be

supported by educational programmes that use new educational technologies, including but

not limited to, tools that support CT. These positive behaviours are: content creation,

creativity, communication, collaboration, community building, and choices of conduct

(Bers, 2012[81]) (Bers, 2008[82]) (Strawhacker, Lee and Bers, 2017[53]) (Lee, Sullivan and

Bers, 2013[78]). Some of these pertain to behaviours that enrich the intrapersonal domain

(content creation, creativity, and choices of conduct); others address the interpersonal

domain and look at social aspects (communication, collaboration, and community

building).

In the context of CT, the PTD framework provides practical recommendations to integrate

technology with meaningful learning goals in mind, including but not limited to CT

concepts such as debugging and sequencing, by engaging children in inter- and

20  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

intrapersonal play with technologies. This foundational research on technology-based

pedagogical approaches has inspired more recent approaches emphasising CT specifically

(Kong, 2016[83]; Tsortanidou, Daradoumis and Barberá, 2021[84]), which have similarly

taken up the perspective that CT comprises universal skills that apply broadly beyond

specific computer science fields.

4.6. Integrating across STEAM curricula

In the growing international discussion around STEM education, how to effectively teach

technology and engineering has become more pressing to researchers and educators

(Granovskiy, 2018[85]; US Government National Science and Technology Council, 2018[86];

Department for Education, 2013[37]). Research confirms that an integrated approach to

STEM education, in which activities cut across several disciplines, is developmentally

suited for early childhood contexts (Aldemir and Kermani, 2016[87]; Wortham, 2009[88]).

Historically, early childhood STEM education has focused on foundational numeracy skills

and natural sciences awareness (Bers, 2008[82]; Bers, Seddighin and Sullivan, 2013[89];

Moomaw and Davis, 2010[90]). The idea of promoting creativity and expression through

STEM is articulated in a newer acronym called “STEAM” (Science, Technology,

Engineering, Arts, Mathematics) that is growing in popularity across the United States and

worldwide (Allen-Handy et al., 2020[91]; Watson, 2020[92]; Yakman, 2008[93]). The “A” of

STEAM represents the whole spectrum of the liberal arts, including language arts, social

studies, music, visual arts, and more.

Within an early childhood context, STEAM education means finding ways for children to

explore these subjects in an integrated way through hands-on projects, books, discussions,

experiments, art explorations, collaboration, games, physical play, and more (Sullivan and

Strawhacker, 2021[94]). New technological tools such as robotics kits and programming

languages designed for young children have become a popular way to teach

interdisciplinary STEAM content, as they allow for an integration of arts and crafts,

literacy, music, and more with engineering and robotics (Barnes et al., 2017[95]) (Bravo

Sánchez, González Correal and González Guerrero, 2017[96]) (Elkin, Sullivan and Bers,

2016[97]) (Sullivan, Strawhacker and Bers, 2017[98]). For example, the Dances from Around

the World Curriculum, is a robotics and programming curriculum that promotes an

integration of technology and engineering concepts with an exploration of music and

culture, engaging children to build, code, and share a robot representation of a personally

meaningful music and dance performance (Sullivan and Bers, 2017[99]).

A primary motivation for introducing CT practices into activities targeting other areas of

the curriculum across a STEAM framework is the rapidly changing nature of many

disciplines as they are practiced in the professional world (Bailey and Borwein, 2011[100])

(Blikstein and Wilensky, 2009[101]) (Hambrusch et al., 2009[102]) (Henderson, 2007[103])

(Rubin and Nemirovsky, 1991[104]) (Sengupta et al., 2013[105]) (Settle et al., 2012[106])

(Settle, Goldberg and Barr, 2013[107]). For example, in the last 20 years, nearly every field

related to science and mathematics has seen the growth of a computational counterpart,

such as Bioinformatics, Computational Statistics, Chemometrics, and Neuroinformatics

(Weintrop et al., 2015[108]). From a pedagogical perspective, the authenticity and real-world

applicability of integrating computer science and other disciplines is important in the effort

to motivate diverse and meaningful participation in activities that require computational,

mathematical, scientific, and linguistic thinking (Blikstein, 2013[109]; Chinn and Malhotra,

2002[110]; Confrey, 1994[111]; Fisher and Margolis, 2003[112]; Margolis, 2017[113]; Ryoo et al.,

2013[114]).

EDU/WKP(2022)12  21

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

4.6.1. Literacy

Computer programming became associated with the technology (T) dimension of STEM

when it first emerged in early childhood education (Ryoo et al., 2013[114]) (Clements,

1999[50]) (Guzdial and Morrison, 2016[115]). However, this categorisation was rooted in the

assumption that disciplines complementary to programming are math and science. For

example, a recent meta-analysis of 105 empirical studies looked at transfer of computer

programming skills to other cognitive domains and found positive transfer to situations that

require creative thinking, mathematical skills and metacognition, but very little transfer

effect to students’ literacy skills (Scherer, Siddiq and Sánchez Viveros, 2019[116]). The

authors concluded that reading comprehension and writing skills must overlap only

marginally with programming skills, but CT advocates argue that this could be an issue of

implementation and ingrained traditions in CT instruction. The assumption that coding is

primarily a math and science skill has led to the creation of robotics and computer science

applications that are based on solving challenges with increased complexity and leave out

the creative and self-expressive aspects of programming that align more closely with

literacy, such as telling a story, conveying ideas, and expressing creativity (Hassenfeld

et al., 2020[117]). This has limited the exploration of using computer programming explicitly

to foster and support literacy and the arts. Researchers interested in CT and literacy

integration take a different position and argue that there is significant overlap when using

natural and artificial languages (Fedorenko et al., 2019[118]) and there may also be

theoretical overlap between writing skills and programming skills (Bers, 2019[119]; Vee,

2013[120]; Vee, 2017[121]). More recently, programming has been integrated with the

development of language and literacy to fill these gaps (Aguirre-Muñoz and Pantoya,

2016[122]) (Maguth, 2012[123]) (Sullivan and Bers, 2017[99]) (Sullivan, Strawhacker and Bers,

2017[98]) (Bers, 2019[119]).

A recent initiative in the United States called “Coding as Another Language” explores the

ways in which the process of teaching computer science to young children can resemble

the educational process used for teaching literacy and seeks to identify the overlapping

associated cognitive and socio-cultural mechanisms. The “Coding as Another Language”

project (Bers, 2019[119]) (Bers, 2019[124]), involves several dimensions: 1) the creation of

programming environments explicitly designed with a literacy approach, 2) resources, such

as the free CAL (Coding as Another Language) curriculum for ScratchJr and KIBO, which

present the process of coding as a semiotic act, a meaning making activity, and not only a

problem solving challenge, 3) a theoretical framework (Bers, 2020[36]), 4) a pedagogical

approach with professional development strategies that explicitly highlight the connection

between the activity of coding and the mastering of a language and its uses to convey

meaning, 5) research studies in classrooms to understand the affordances of this approach

compared to others, and 6) experimental studies in lab settings to characterise cognitive

mechanisms using fMRI and other neuro imaging techniques to explore the relationships

between language networks in the brain and computer programming.

The vision of “coding as literacy” is growing (Vee, 2017[121]). In 2021, researchers and

practitioners in the fields of computer science, language and literacy, and STEM education

developed a shared vision of the conceptual relationship of computing to language and

literacy development and of evidence-based perspectives on how to support multilingual

students in learning computer science (Jacob, Parker and Warschauer, 2021[125]). This

includes a theoretical model that distinguishes between CT as literacy, through literacy,

and literacy through CT.

https://sites.tufts.edu/codingasanotherlanguage/
https://sites.tufts.edu/devtech/files/2018/05/EDUCON.pdf
https://sites.tufts.edu/codingasanotherlanguage/curricula/scratchjr/
https://sites.tufts.edu/codingasanotherlanguage/curricula/kibo/
http://sites.tufts.edu/devtech/learn-with-us/educators/
http://sites.tufts.edu/devtech/research-%202/coding-brain/

22  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

4.6.2. Mathematics

As technology plays a growing role in the lives of children, the long-term trajectory of

mathematical literacy should also encompass the synergistic and reciprocal relationship

between CT and mathematical thinking. Some researchers have argued that CT supports

mathematics in many ways, but particularly because mathematical reasoning complements

the problem solving skills that encompass CT (Gadanidis, 2015[126]; Rambally, 2017[127]).

In a Canadian research study with kindergarten teachers, teachers reported that they found

a considerable overlap between CT and mathematical thinking in activities engaged in by

the children (Kotsopoulos et al., 2019[128])

Computer science has several parallels with mathematics. For example, scholars have

argued that the skill of abstraction, and intentionally moving among different levels of

abstraction (e.g. attending to a real-world phenomenon and a simulated model of that

phenomenon), is a critically important skill for both computer scientists and

mathematicians (Kramer, 2007[129]; Hazzan, 2008[130]; Rich, Yadav and Schwarz, 2019[131]).

A recent analysis of the Common Core Math Curriculum (CCSS-M) for grades K-5 in the

United States suggested that elementary mathematics concepts offer opportunities to begin

a spiral curriculum, emphasising CT ideas in early elementary mathematics, to be then

expanded in computer science contexts in later grades (Bruner, 2009[132]; Rich et al.,

2019[133]).

Although CT has been included as a core practice in mathematics’ standards, the current

questions facing CT in mathematics education focus on implementation. Weintrop et al.

(2015[108]) proposed a definition of CT for mathematics and science in the form of a

taxonomy consisting of four main categories: data practices, modelling and simulation

practices, computational problem solving practices, and systems thinking practices (Figure

3). This contribution represents an attempt to converge on concise and specific learning

concepts to further develop standards, curricula, and assessments.

Figure 3. Computational thinking in mathematics and science taxonomy

Source: (Weintrop et al., 2015[108])

4.6.3. Science

Computer science can bring creative agency and hands-on exploration to science lessons,

which can be abstract and overly structured for young children. Introducing novel scientific

EDU/WKP(2022)12  23

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

topics brings real-world relevance and context to STEM explorations, connecting

children’s learning to topics in their broader community and society. New technologies

offer children a chance to playfully explore natural organisms and phenomena, some of

which can otherwise be too microscopic, invisible, or time-consuming to explore in a

meaningful way, and even to apply concepts about software and sequencing learned from

their favourite coding toys to advanced ideas like gene sequencing (Strawhacker et al.,

2020[134]). For instance, the tangible CRISPEE technology, a prototype developed by the

DevTech Research Group at Tufts University and the Wellesley College Human Computer

Interaction Lab in the United States, engages children in coding with a tangible block-based

language to computationally design bioluminescent animals (like fireflies) to glow in

certain colours, and to change colour depending on environmental indicators (Strawhacker

et al., 2020[135]; Strawhacker et al., 2020[136]; Strawhacker et al., 2020[137]).

There are also overlapping themes that young children explore in early childhood that are

foundational to both CT and scientific reasoning. Science and computer science share

similar methodologies for asking and answering questions (i.e. the scientific method) and

for building and testing solutions to human problems (i.e. the design process). Both involve

processes that young children practice starting in kindergarten, such as ideating/imagining,

designing (experiments or prototypes), iterating, and refining. Similarly, computer science

and life sciences like biology both rely on computational concepts such as abstraction,

modularity, and algorithmic logic to understand and model how structures (e.g. of organs

and cells, or codes and functions) operate within hierarchies to function as a system. These

computational concepts may sound highly sophisticated, but educational coding tools like

the ScratchJr programming language, KIBO robotics kit, BeeBot robot, Code-a-Pillar, aim

to introduce those concepts to children as early as preschool.

5. Tools for early CT learning

Researchers are addressing the implications of young children’s exposure to digital

technology. Because so many of the tools and technologies that support CT include screen

time and/or Internet access, it is important to highlight research and recommendations on

safe and developmentally appropriate practice using digital technology in early childhood.

5.1. Designing technologies for CT learning

Research has shown that many of children’s best learning experiences come when they are

engaged not simply in interacting with materials but in designing, creating, and inventing

with them (Folk, 1981[138]; Resnick, 2002[139]; Resnick, 2006[140]). Education resources like

the Youth Maker Playbook (Davee et al., 2015[141]) espouse the importance of inspiring

children to become producers of their own creative, playful, and functional artefacts, rather

than simply consumers of other people’s work. Not all technologies are created equal, and

many described later in this review are specifically designed to empower children to be the

directors of their own playful and creative experiences.

5.1.1. Developmentally appropriate design and opportunities for play

Programming languages, as with natural languages, can be used for a variety of purposes,

from mundane and repetitive to creative tasks. The intention of the user of the language

determines how much creativity is displayed. The language is a vehicle, a medium, for

expression. Young children, with their own developmental needs and abilities, need

programming languages specifically designed for them. These must be simple languages

that still support multiple combinations, have syntax and a grammar, and offer multiple

http://www.scratchjr.org/
http://www.kinderlabrobotics.com/
http://www.terrapinlogo.com/
http://www.fisher-price.com/

24  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

ways to solve problems – and thus, be more like playgrounds rather than playpens (Bers,

2018[9]). For example, a “playground” programming environment will allow open-ended

opportunities for a child to create, explore, experience failures, and encounter challenges.

Meanwhile, a “playpen” programming environment will be more restricted and adult-

directed and might only engage children in specific drilling of concepts and follow a series

of sequential levels instead of letting the child drive the experience. Technologies also need

to provide opportunities for creating a computational artefact that can be shared with others

and support a growing range of computational literacy skills, from beginners to experts.

Children who are fluent in a particular programming language are more likely to learn a

second one with ease, and more likely to have mastered some aspects of CT and to be able

to transfer that mastery to different situations.

When designing (or choosing) developmentally appropriate programming environments

for young children, certain design features should therefore be carefully considered. For

very young children who are not yet reading independently, programming tools should

offer visual (i.e. picture, symbol, or icon based) languages as opposed to text-based

languages. The programming languages should offer a syntax and grammar that can be

mastered to create scripts of multiple levels of complexity and they should support multiple

combinations and solutions (as opposed to supporting just “one correct outcome”). In

English-speaking countries, it may also be important to consider tools that allow

programming scripts to run as a sequence from left to right instead of the traditional top-

to-bottom format of most adult programming languages, to reinforce print-awareness and

English literacy skills (Flannery et al., 2013[57]). Perhaps most importantly, (Resnick et al.,

2009[142]) proposed that programming environments should have what Seymour Papert

described as “low floors, high ceilings, and wide walls”. This means that learners should

be able to create something easily right away (low floors), maintain their interest over time

as they create progressively more complex projects (high ceilings), and allow students

across a multitude of learning styles, cultures, and interests to learn and develop (wide

walls). In this way, a programming tool can grow with children as they develop their skills

and broaden their experience (Portelance, Strawhacker and Bers, 2015[52]).

Programming tools should also be designed with a playful approach when thinking about

early childhood education (Bers, 2020[36]). Research in early childhood has shown that play

is a wonderful way for children to learn (Garvey, 1977[143]) (Fromberg and Williams,

1992[144]). Play has been described as a vehicle for the development of imagination and

intelligence, language, social skills, and perceptual motor abilities in young children (Frost,

1992[145]). Play enhances language development, social competence, creativity,

imagination, and thinking skills and has been described as the “ultimate integrator of human

experience” (Fromberg, 1990, p. 223[146]). When children play, they draw upon their past

experiences, including things they have done, seen others do, read about, watched on

television, or seen through other media. They integrate these experiences into their games

and play scenarios, and they express and communicate their fears and feelings.

When programming is taught with a playful approach, children are not afraid to make

mistakes. Pretend play in early childhood enhances the child’s capacity for cognitive

flexibility and, ultimately, creativity (Russ, 2003[147]; Singer and Singer, 2005[148]).

Csikszentmihalyi (1981[149]) describes play as “a subset of life… an arrangement in which

one can practice behaviour without dreading its consequences”. Programming with a

playground approach offers similar opportunities. It looks different from traditional

computer science courses in which students need to solve a challenge under time pressure

or find the pre-determined correct way to answer a prompt.

EDU/WKP(2022)12  25

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

5.1.2. Digital games and puzzle-style software applications

There is a growing number of digital games and puzzle-style software applications aimed

at supporting young children’s learning of computer science concepts and CT skills,

without the need of experimenting with a programming language.

Most of these focus on sequencing and logic as they engage children in progressing through

problem solving levels in a typical game-like fashion. For example, the game Lightbot is a

popular programming puzzle game for young children, in which the goal is to complete

pre-set tasks such as making a robot light up all of the blue tiles on a 3D grid. Children

programme their screen-based robot with a series of instructions. There are different

versions of Lightbot for different ages, including Lightbot Jr. for young children ages 4-8.

Other popular programming games include Kodable, which includes maze-like levels, and

Cargo Bot, which engages young children in learning programming concepts while using

a crane to move boxes back and forth between platforms. The website Code.org offers a

variety of coding games for children, ranging in age from young children (categorised as

“pre-readers”) up through high school, as well as Hour of Code activities including Candy

Quest (a multi-level coding quest for candy), Code with Anna and Elsa (explore coding

with characters from the popular movie Frozen by helping them create snowflakes and

more), Dragon Blast (embark on a quest for treasure using coding skills), and more. In

Code.org’s “Classic Maze game” kids write lines of code in a setting inspired by the

popular game Angry Birds. In this game, players help Angry Birds get to the Naughty Pigs.

Each level becomes increasingly difficult to navigate and focuses on different coding

concepts. Programming games as in these examples tend to appeal to young children who

enjoy a style of play akin to video games, with specific levels to beat and sequential tasks

to complete.

Research on students using Code.org’s “Classic Maze” activity and the “Flappy Code”

activity found that students showed significant changes in their attitudes towards and self-

efficacy with computer science after engaging in just one Hour of Code activity (Phillips

and Brooks, 2017[150]). However, it is important to note that these games present a more

limited set of experiences as compared to block-based programming languages. While

programming languages offer an open-ended setting to create any project of choice, thus

providing more opportunities for creative experiences, programming games are typically

more limiting and prompt players to explore and practice a particular aspect of

programming such as cause and effect, sequence, logic and problem solving (Sullivan and

Bers, 2019[44]).

5.2. Open-ended coding and programming environments

Many programming interfaces for children offer simple map-based puzzles with gamified

elements (e.g. move a character along a path and avoid roadblocks to earn a gold star).

These tend to use programming mainly as a directional steering technique, sometimes

within a story context, and they offer step-by-step instructions and guiding prompts

(e.g. Cato’s Hike, Code Monkey Island, Code.org’s Code Studio, Daisy the Dinosaur,

LittleCodr, Nancy Drew: Codes and Clues, Robot Turtles, Tynker). Other programming

environments take a more haptic approach, either by programming a physical robot, or by

using gestures and physical movements in the programming experience.

Open-ended coding and programming environments offer the most playful learning

opportunities. They can be tangible, screen-based, or a combination, although evidence

suggests that tangible tools may be more effective as a first introduction to programming

in the early years (Manches and Price, 2011[151]; Pugnali, Sullivan and Umashi Bers,

26  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

2017[152]). At early ages, there is a pedagogical incentive to use block-based programming,

a hands-on way to encourage the child to explore coding, as well as to use languages with

simple movement commands like forward, side or back, to support spatial, vision, and

cognitive skills (Silva, Dembogurski and Semaan, 2021[153]; Bers, 2020[36]).

ScratchJr is a digital playground for coding, designed by a team of researchers and

developers at Tufts University’ DevTech Research Group, the MIT Media Lab’s Lifelong

Kindergarten Group, and the Playful Invention Company, specifically created to invite

playful exploration (Bers and Resnick, 2015[154]; Flannery et al., 2013[57]). Children can

design characters and backgrounds and snap together graphical programming blocks to

make their characters move, jump, dance, and sing. They can modify characters in the paint

editor, create colourful backgrounds, add their own voices and sounds, and take photos of

themselves to insert into their stories, games, or animated collages.

Osmo is another digital playground-style programming environment, designed (under the

prototype name “Strawbies”) by the TIDAL Lab at Northwestern University (Hu et al.,

2015[155]). Osmo integrates a screen-based interface with tangible programming tiles,

creating an experience that draws children into collaborative play. The use of tangibles

increases the visibility of game play, allowing it to move beyond the screen and spill out

into the real world.

MaKey is a kit that lets children transform everyday objects into computer interfaces. From

make a game pad out of Play-Doh, a musical instrument out of bananas, or creative

inventions. It consists of a USB device than be plugged into a personal computer and used

to make personal switches that act like keys on the keyboard. This is where the name

originates: Make + Key = MaKey! As a “plug and play” device, it does not require any

electronics or programming skills and is automatically compatible with any existing

software users wish to use, including visual programming environments designed for

children.

Another kit called littleBits offers easy-to-use electronic building blocks that snap together

with magnets. The goal of littleBits is to make learning about circuitry and electronics

exciting and engaging for children and adults alike. The parts of the kit can connect together

to create complex circuits in seconds. In addition to simple outputs like lights, speakers,

and motors, littleBits parts include light sensors and pressure sensors, and many switches,

dimmers, and other ways to control the circuit current, allowing for advanced electrical

engineering explorations that can be coded through an on-screen app. The complex

circuitry that the kit affords, and the fact that circuit parts are small enough to be a choking

hazard for young children, makes the kit developmentally appropriate for its recommended

age range of 8+ years.

Calliope mini also offers a new and tangible way to explore coding. Similar to Makey,

Calliope mini is a microcontroller with a screen-based coding interface that allows children

to create simple programmes using many different inputs (e.g. buttons, switches), outputs

(e.g. lights, speakers), and sensors (including unique data-based sensors like a compass,

radio, and Bluetooth reader). Children can for instance explore e-textiles by making

interactive clothing, or create traditional wired circuits, but the kit requires a high level of

fine motor skills to access tiny connection ports. This kit is marketed for children ages 8+,

the high end of the age range of interest in this review.

5.3. Media (TV) for computational thinking

There are a growing number of television shows focused on introducing CT skills,

computer programming concepts, and computer science more generally. In the United

States, the Corporation for Public Broadcasting (CPB) and PBS received a Ready To Learn

EDU/WKP(2022)12  27

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

grant from the US Department of Education’s Office of Elementary and Secondary

Education to fund a comprehensive multi-media learning and station engagement initiative

(Public Broadcasting Service, 2020[156]). The initiative will result in the development of

new content to help young children build skills to help them succeed in school and life,

including CT, and show them career options in age-appropriate ways. For example, CPB

and PBS are working with experts in early learning and leading children’s media producers

to create two shows, called Wombats! and Liza Loops, that will integrate CT learning

alongside critical thinking, collaboration and other skills.

Many other popular television programmes have emerged in recent years in the United

States that reference or attempt to explicitly teach concepts about computers, computer

science, programming, and CT. These include Blaze and the Monster Machines,

Annedroids, Storybots, and more. Many of these new shows build on earlier work done by

the British Broadcasting Corporation (BBC) in 2014, when the country’s national

computing curriculum first emerged. The BBC’s technology-themed TV shows first

broadcasted around 2014 included outputs like Technobabble, an app and gadget-themed

show designed to encourage its audience to expand its computer skills; Appsolute Genius,

with interviews to prominent computer programmers, including the creators of Sonic the

Hedgehog and Pac-Man; and Nina and the Neurons: Go Digital on the CBeebies channel

targeted at children aged 6 years and under, exploring topics 3D printing, coding and

driverless cars.

5.4. Robotic kits

A growing number of robotic interfaces and platforms targeted to young children ages 8

years and younger are becoming available. While many of these are marketed as a STEM

toy or tool, it is important to note that not all robotics kits actually involve a programming

or computer science element.

Programmable robotics kits allow young children to explore the foundations of computer

science in a hands-on way. Some robotic systems are programmed using tangible

programming (Bers and Horn, 2010[157]; Horn, Crouser and Bers, 2011[158]) and others with

block-based programming in screens. The use of educational robotics can be

developmentally appropriate for early childhood education when it facilitates cognitive as

well as fine motor and social development (Bers, 2007[159]; Clements, 1999[50]; Lee,

Sullivan and Bers, 2013[78]; Wahlström et al., 2000[160]). Young children can become

engineers by playing with motors and sensors as well as storytellers by creating and sharing

personally meaningful projects that react in response to their environment (Bers, 2007[159];

Bers, 2018[9]). Thus, the use of robotic systems in early childhood has the potential to

expand the range of computer science concepts and skills and include topics related to

hardware and software, inputs, and outputs.

There are a growing number of commercially available introductory robotic systems for

young children that introduce computer science and CT concepts (Table 2). For example,

Code-a-Pillar, a robotic caterpillar toy created by the company Fisher Price, prompts

preschool aged children to arrange (and rearrange) easy-to-connect segments (i.e. pieces of

code) to decide where Code-a-Pillar should move. The Bee-Bot robot is also popular with

preschool and early childhood students. The original Bee-Bot, designed to look like a

friendly yellow bee, was programmed to move with the directional keys on its back.

A newer version called Blue-Bot is transparent, allowing children to see and explore the

technology inside the robot. Additionally, Blue-Bot is Bluetooth enabled and is compatible

with tablets and computers. This allows children to plan algorithms on screen and send

them remotely to the Blue-Bot to perform. A small study on Bee-Bot with 5 to 6-year-olds

has found that interventions with the robot can lead to significant improvement in visual-

28  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

spatial working memory and inhibition skills (Di Lieto et al., 2017[161]). However, to

programme it, children need to use screens as well as receive help from adults to manipulate

the interface.

The KIBO robotics kit, developed by the DevTech Research Group at Tufts University and

commercially available from KinderLab Robotics, offers young children ages 4 to 7 years

an opportunity to explore building and engineering (through assembling their robot) as well

as programming (using a tangible block language) without the need of screens or adult

assistance. KIBO engages children with open-ended projects of their choice by reinforcing

the design process while they build a mobile robot using wheels, motors, lights, and a

variety of sensors. KIBO is programmed using interlocking wooden programming blocks.

These wooden blocks contain no embedded electronics and are scanned by the KIBO robot.

KIBO’s design builds on extensive research on tangible programming that uses physical

objects to represent the various aspects of computer programming (Horn and Bers,

2019[162]) KIBO’s block programming language is composed of 21+ individual wooden

programming blocks. Some of these blocks represent simple motions for the robot such as,

move Forward, Backward, Spin, and Shake. Other blocks represent complex programming

concepts such as Repeat Loops and Conditional “If” statements that involve sensor input.

KIBO’s design was based on years of research in collaboration with researchers, teachers,

and early childhood experts to meet the learning needs of young children in a

developmentally appropriate and fun way (Kazakoff and Bers, 2014[60]; Sullivan and

Umashi Bers, 2016[163]; Sullivan, Elkin and Bers, 2015[66]). In addition to the tangible

programming language, the KIBO robot comes with sensors and actuators (motors and light

bulb and microphone/sound recorder), as well as art platforms. These modules can be

interchangeably combined on the robot body. The use of sensors, such as light, distance

and sound, is well aligned with early childhood curriculum that engages children in

exploring both human and animal sensors. Motors can be connected to the sides or the top

of the robot to enable mobility and rotation. All these elements increase the potential of

children to create and imagine different projects that can move around and react to the

environment (Elkin, Sullivan and Bers, 2018[164]; Sullivan, Bers and Mihm, 2017[65];

Sullivan, Elkin and Bers, 2015[66]).

Table 2.Commercially available robotic kits for young children that introduce computer

science and CT concepts

Tool Interface CT emphasis Age range

Bee-Bot Plastic “Bee” toy with movement

buttons

Algorithms 4 years +

Code-a-

pillar

Detachable plastic “caterpillar” body

parts with coding instructions

Algorithms 3-6 years

Code ‘n

Learn

Kinderbot

Plastic robot interface programmed

with buttons on head. Free-play and

challenge modes

Algorithms, Debugging 3-6 years

EDU/WKP(2022)12  29

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Cubetto Moving Wooden robot with coded

symbols on sequence board

Algorithms, Representation 3-6 years

Dash and

Dot

Plastic robots coded with tablet app Algorithms, Control

Structures, Debugging

8-12 years

KIBO

Robot

Plastic and wood robot coded with

interlocking wooden barcode blocks

Design process, Algorithms,

Representation, Control

structures, Hardware/Software

Debugging

3-8 years

LEGO

Coding

Express

Plastic train set with actions that can

be coded with action bricks along the

train’s track

Design process, Algorithms,

Control structures,

Hardware/Software,

Debugging

2 years +

LEGO

WeDo 2.0

A kit of robotic and plastic building

brick pieces coded with a tablet or

computer app

Design process, Algorithms,

Control structures,

Hardware/Software,

Debugging

7 years +

Ozobot A robot that can be coded screen-free

(using sensors that follow lines and

read “colour codes” made with

markers or sticker) or with an app

Algorithms, Control structures,

Debugging

5 years+

5.5. Unplugged activities and products

Organisations such as the World Health Organization (WHO) or the American Academy

of Paediatrics (AAP) have issued recommendations related to young children’s use of

digital technology. The AAP calls for no screen time at all for children until 18 to 24

months, except for video chatting, and says children ages 2 to 5 should get an hour or less

(Council on Communications and Media, 2016[165]). It has also developed the Family Media

Use Plan for older children, in which parents and children negotiate limits and boundaries

around screen usage. In its guidelines on physical activity, sedentary behaviour, and sleep

for young children, WHO similarly recommends no screens for children under 2, and less

than an hour a day for children 2 to 5 (World Health Organisation, 2019[166]). Aligned with

these recommendations, this section presents unplugged and “low-tech” approaches for

promoting CT.

5.5.1. Computer Science Unplugged

One of the guiding ideas behind the Computer Science Unplugged movement is that before

engaging children in learning how to programme, it is important for them to learn basic CT

30  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

concepts, including how to decompose problems into smaller more manageable parts

(decomposition), how to design precise steps to solve those problems (algorithms), and

how to represent solutions into code – all of which can actually be explored without a

computer (Bell and Vahrenhold, 2018[167]; Caeli and Yadav, 2019[168]).

Computer Science Unplugged has developed into a powerful global movement because it

provides young children (and ECEC professionals) an approachable, hands-on, and screen-

free way to explore computer science concepts. There is growing evidence that unplugged

computer science activities are effective at teaching CT (Rodriguez et al., 2017[169]).

Furthermore, unplugged approaches claim to enable the development of CT without

spending time or cognitive resources on syntax and grammar of programming languages

(Bell et al., 2009[170]; Bell and Vahrenhold, 2018[167]).

The original Computer Science Unplugged project was based at Canterbury University in

New Zealand and has since been widely adopted internationally and recommended also in

the ACM K-12 curriculum (Bell et al., 2009[170]). Computer Science Unplugged uses

activities, games, magic tricks and more to introduce children to ways of thinking about

computer science and to engage them in CT without reliance on learning computer

programming. Unplugged activities place emphasis on promoting CT, rather than focusing

on learning the syntax of a particular coding language. For example, an unplugged

computer science activity in kindergarten might involve creating bead necklaces in binary

numeric code with beads that represent 1s and 0s, using a grid and symbols to put classic

fairy tales in a logical order or making a peanut butter sandwich following a set of

instructions or algorithm.

Some activities that are described as “unplugged” are essentially coding exercises

conducted offline using some of the same symbols and syntax as actual programming

(Relkin and Strawhacker, 2021[171]). An example of this is how the website ScratchJr.org

allows print out of large programming block cards that can be used to play a game called

“Programmer Says”. This game uses programming language instead of the verbal

instructions to help students gain familiarity with coding commands (Relkin and

Strawhacker, 2021[171]). Other resources teach CT-related principles without directly

invoking coding commands. For example, CSunplugged.org’s Divide and Conquer? uses

animal playing cards to teach about algorithms and related concepts.

New research is constantly leading to revisions and refinements in educational practices

around unplugged computer science. Some explores how unplugged coding activities

(e.g. board game or paper-based coding) compare to unplugged CT activities (e.g. non-

coding sorting and pattern matching) when employed in early childhood education (e.g. see

(Barr and Stephenson, 2011[11]; Bell and Lodi, 2019[172]; Bell and Vahrenhold, 2018[167];

Upadhyaya, McGill and Decker, 2020[173]). Other examines the impact of CS Unplugged

on young children. For example, while some studies have reported that unplugged activities

do not increase interest or knowledge in CS/CT as much as traditional coding activities

(Black et al., 2013[174]), others have found that unplugged lessons alone are just as effective

(if not better) at promoting CT (Hermans and Aivaloglou, 2017[175]; Metin, 2020[176]; Wohl,

Porter and Clinch, 2015[177]). Yet other studies have suggested that the most powerful way

to promote CT in young children is to integrate unplugged exercises and coding activities

together (Metin, 2020[176]; Huang and Looi, 2020[178]; Bers, 2020[36]; Thies and Vahrenhold,

2012[179]; Thies and Vahrenhold, 2013[180]).

5.5.2. Unplugged products and resources

The Computer Science Unplugged website offers a collection of free learning activities that

teach computer science through engaging games and puzzles that use cards, string, crayons

and lots of running around. This database of activities was developed with the intention

http://www.csunplugged.com/

EDU/WKP(2022)12  31

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

that young students could dive head first into computer science, experiencing the kinds of

questions and challenges that computer scientists experience, but without having to learn

programming first. None of the activities requires computers and focus on the use of arts,

crafts, or physical activity. For example, the Sorting Network activity has teams of six

running through a network drawn on the ground.

The activities published through the CS Unplugged website are widely used in classrooms

and out-of-school instruction (Duncan and Bell, 2015[181])and have been translated into

over 20 languages and used all around the world (Bell and Vahrenhold, 2018[167]).

The unplugged approach is frequently mentioned in books on the teaching of computer

science (Clarke, 2017[182]; Bers, 2021[3]) and used as a pedagogical technique on “coding”

websites such as code.org. The CS Unplugged approach appears in curriculum

recommendations, for instance as part of the design of a middle-years school curriculum

(Schofield, Erlinger and Dodds, 2014[183])as a component of the Exploring Computer

Science course (Goode and Margolis, 2011[184]),or as a resource to support the Australian

Digital Technologies curriculum (Faulkner, 2015[185]).

Following the surge of the unplugged computer science movement, commercial companies

began developing and marketing a new range of unplugged games and products. These

offer a generally low-cost way to engage children with CT as compared with traditional

technologies. For example, the Robot Turtles board game teaches coding concepts to

children ages three and up and was the most backed board game in the history of the

Kickstarter crowdfunding platform. Playing the game is easy: it involves creating a maze

on the board with the turtles in the corners and the jewels in the centre. Young children

then play instruction cards (such as, turn right, turn left, move forward, etc.) to

“programme” their turtles to get to their jewels. The board can be set up differently each

time and, as children get more familiar with the cards, more complex instructions can be

used. This type of game engages young children in CT by having them create sequences

and solve problems.

LittleCodr is a newer example of an unplugged product designed to foster CT to young

children (ages 4-8) in an unplugged and “no-tech” capacity. LittleCodr, also originally

funded by a Kickstarter campaign, is a card game that introduces the basics of programming

by prompting young children to lay out a series of commands for other players (typically,

an adult player) to act out.

6. Effective and scalable CT education

6.1. Overview of global CT initiatives

To date, most nationwide coding initiatives target children in primary and secondary levels

of education, but a growing number of countries and regions have established clear policies

and approaches for introducing technology and computer programming to young children

(Australian Government Department of Education, Skills and Employment, 2015[186];

Department for Education, 2013[37]; Unahalekhaka and Govind, 2021[187]). This section,

organised by global regions, outlines current CT initiatives in early education.

6.1.1. Americas

In the Americas, the United States is arguably leading the way for popularizing and

implementing CT educational programmes, although many other nations are preparing to

launch curricular or out-of-school initiatives. In April 2016, the White House launched a

STEM initiative, including engineering and computer science, for early education (White

32  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

House, US, 2016[188]) by convening researchers, policy makers, industry, and educators.

The US-based Code.org initiative developed by a non-profit organisation has encountered

large success. Code.org aims to encourage people, particularly school-aged students, to

learn computer science and practice coding skills during campaigns such as Hour of Code,

which provides free resources for schools to engage students starting in kindergarten in

free, 1-hour, ready-to-run curricular games, activities, and events.

In Canada, there is no specific mention of CT in provincial and territorial early learning

frameworks. However, there are references in some curricular frameworks to related terms

and practices, such as “technological competence” in kindergarten, referring to an

understanding of technological applications and ability to apply appropriate technologies

for solving (Gouvernment of Newfoundland and Labrador, 2015[189]). Policy frameworks

such as the “Digital Action Plan for Education and Higher Education” (Ministère de

l’Éducation et de l’Enseignement, 2018[190]) and the “Educating for a Digital World” report

(Conseil supérieur de l'éducation, 2020[191]) outline plans for preparing Canadian schools,

students, and teachers to emphasise coding and robotics in education starting from a young

age. In the Canadian territory of British Columbia (BC), children ages 5-8 are supported

by the BC Early Learning Framework and the BC curriculum. The BC curriculum includes

Applied Design, Skills and Technologies, which supports CT for children. Further, many

of the generalised CT skills of metacognition, creativity, critical and reflective thinking are

embedded as core competences within the BC curriculum. Finally, Alberta, BC, and the

Northwest Territories have outlined digital literacy frameworks beginning in kindergarten,

which align philosophically with the principles of technology as a platform to support

innovation and discovery for students, rather than purely an instructional aid for teachers

(Gouvernment of Alberta, 2013[192]).

Other countries, including Chile, Argentina, Uruguay, and Brazil are all implementing

national curriculum changes to include computation or digital technologies proficiencies in

some way, with many specifically emphasising CT skills such as decomposition, pattern

recognition, and abstraction starting in early childhood (Brackmann et al., 2016[193]).

6.1.2. Europe

Europe also has a wide array of CT initiatives underway. A survey of 21 participating

European nations (Balanskat and Englehardt, 2014[194]) (reported that coding is already part

of the curriculum at a national, regional, or local level in 16 countries: Austria, Bulgaria,

Czech Republic, Denmark, Estonia, France, Hungary, Ireland, Israel, Lithuania, Malta,

Spain, Poland, Portugal, Slovakia and the United Kingdom (England). The United

Kingdom released a national curriculum framework in 2013 that included computing as an

educational domain that needed to be addressed in school beginning in early childhood. In

Finland, since 2016 all primary school students are required to learn programming (Pretz,

2014[195]). Many schools in Estonia are teaching programming to children as young starting

at age 6, and countries like Italy are working on changing their curricula to include

computer science and digital technologies (Jones, 2016[196]) (Pretz, 2014[195]) (Trevallion,

2014[197]).

In Spain, CT has been considered of great importance for several years, and it has been

included in many educational schools and in the curricula of several regions. There are

several ongoing national initiatives, for example the School of Computational Thinking

(EPCIA), which includes activities for learners aged zero to five years (Spanish

Government Ministry of Education and Vocational Training, 2021[198]). And at the regional

level, Navarra has included CT content in primary education since 2018, integrating it into

mathematics, while the regions of Madrid and Catalonia have created robotics and

programming subjects in both primary and secondary education (Spanish Government,

https://code.org/
https://curriculum.gov.bc.ca/competencies/thinking

EDU/WKP(2022)12  33

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Ministry of Education and Vocational Training, 2018[199]). Royal Decrees about the

national curriculum include the development of digital competence and CT throughout all

compulsory education, starting from ECEC. The digital competencies include, among

others, the development of CT that begins in ECEC, finding solutions to simple

technological problems (block programming, educational robotics) in primary education.

In Finland, CT is included in curriculum frameworks in ECEC, before children start

primary education. Thinking and learning skills and multi-literacy and competence in

information and communication technology are part of transversal competence in Finnish

core curricula. The National Agency of Education’s “Right to Learn: New literacy skills”

development programme is designed to strengthen children's and young people's

information and communication technology competence, media literacy and programming

skills in early childhood education and in pre-primary and primary education (Kulju,

Kupiainen and Pienimaki, 2020[200]). Additionally, the Ministry of Education and Culture

has funded programmes related to new literacy skills in 22 municipalities, and in 2021 The

Finnish National Agency for Education funded in-service training programmes and

programmes which concentrate to develop innovative digital learning in over 25

municipalities.

In the Flemish Community of Belgium (Flanders), CT has been included as a separate

building block within the key competence ‘Digital competence and media literacy’ in

ongoing curriculum reforms in secondary education. Primary education attainment targets

will be reconsidered at a later stage. In Germany, Bavaria is the only region to include

specific guidance on how to develop children’s media skills in its ECEC curriculum

framework. However, the German initiative Haus der kleinen Forscher is very active in

this area and informs pedagogues on how to promote ICT skills in ECEC centres (Gunther,

2017[201]). And in Italy, CT in ECEC and primary education is a topic of interest since the

approval of a motion in the Chamber of Deputies in 2019 (Motion 1-00117 of Feb-Mar

2019).

6.1.3. Asia, Australia, and Pacific Island nations

In the Asia-Pacific region, countries such as Korea, Taiwan, Hong Kong, and China have

all launched national curricular reforms to address the current movement in CT education

(So, Jong and Liu, 2019[202]). Singapore launched nationwide projects to bring

programming through a PlayMaker initiative that brings multiple technologies into early

childhood classrooms (Digital News Asia, 2015[203]; Sullivan and Bers, 2017[99]).

Australia and New Zealand are working on changing their curricula to include computer

science and digital technologies (Jones, 2016[196]; Australian Government Department of

Education, Skills and Employment, 2015[186]; Pretz, 2014[195]; Trevallion, 2014[197]).

In Australia, childcare services are required to base their educational programme on an

‘approved learning framework’. This assists educators to address the developmental needs,

interests, and experiences of each child, while taking into account individual differences.

One of the framework’s outcomes is for educators to support children to engage with

information and communication technologies to access information, investigate ideas, and

represent their thinking. Examples included in the framework are the use of technologies

as a tool for designing and drawing, accessing images and information, and exploring

diverse perspectives. As the two current frameworks have now been in use for close to a

decade, an update has been commissioned to ensure they continue to reflect contemporary

developments in practice and knowledge.

34  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

6.2. Professional development and qualifications of teachers and administrators

Research has shown that educators who work with young children have gaps in their

knowledge about how to teach with technology to young children and how to successfully

integrate technology in their practice (Bers, Seddighin and Sullivan, 2013[89]; Redmond

et al., 2021[204]). Gaining the relevant technological and pedagogical skills is therefore

emerging as a new demand placed on educators them (Yadav et al., 2016[205]; Bower and

Falkner, 2015[206]) spoke of an “urgent and pressing need to [help] … teachers develop

computational thinking pedagogies” and, referring to the introduction of the computing

syllabus in the United Kingdom, (Dredge, 2014[207]) contended that, as with any major

curricular change, “tens of thousands of primary schoolteachers who may be new to

programming themselves” would be “at the sharp end” of implementation.

Demands relating to teaching digital technologies translate into challenges to initial teacher

education. There is a growing need to provide pre-service teachers with the knowledge and

dispositions to successfully incorporate CT into their curricula and practice in meaningful

ways (Yadav et al., 2018[208]), and researchers have argued that teacher education needs to

“provide not only the fundamentals of digital literacy… but also the computational thinking

processes needed to understand the scientific practices that underpin technology” (Bower

and Falkner, 2015[206]). Moreover, social inequities in children’s access to technology

required for remote instruction has added strain on the educators who serve them (Dubois,

Bright and Laforce, 2021[209]). Beyond the logistical challenges, distance learning itself

poses challenges in early childhood, when hands-on and play-based learning are essential

(NAEYC, 2020[210]).

Pedagogical approaches for integrating technology and STEM in early childhood are

emerging as a promising area of focus, but these efforts are still in early adoption stages

(McClure, 2017[211]). Researchers have developed various theoretical frameworks to model

technology integration in education. The Technology, Pedagogy, and Content Knowledge

(TPACK) framework outlines the intersection of content knowledge and pedagogical

approaches that can support educators to integrate technology effectively in their

classrooms (Koehler and Mishra, 2009[212]). The Substitution Augmentation Modification

Redefinition (SAMR) framework focuses more on the context in which technology

differentially supports learning scenarios (Puentedura, 2013[213]). More recently,

(Kimmons, Graham and West, 2020[214]) attempted to integrate learning context and

instructional application through their theoretical PICRAT model, which examines

students’ engagement with a given technology (passive, interactive, or creative) and the

way the technology integration influences the educator’s practice before integration

(replacement, amplification, transformation).

Regardless of theoretical framework or approach taken, early childhood educators need

professional development to be successful in CT initiatives. A survey of pre-service

elementary school teachers in the United States demonstrated that only 10 percent

understood the concept of CT (Campbell, 2019[215]). Another study found that 75 percent

of teachers incorrectly considered “creating documents or presentations on the computer”

as a topic one would learn in a computer science course (Google/Gallup, 2015[41]). To

address this gap in computer science and CT knowledge, educators need effective training

and support. Research has shown that professional development training workshops can be

an effective way to increase educators’ confidence and competence in teaching these areas

(e.g. (Bers, Seddighin and Sullivan, 2013[89]). Yadav et al. (2018[208]) found that

professional development can help teachers better understand CT and how CT could be

helpful in their classroom.

EDU/WKP(2022)12  35

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

One example of a CT-focused professional development is the CT4EDU initiative in the

United States. CT4EDU is a project funded by the National Science Foundation bringing

together Michigan State University, Oakland Schools (Michigan) and the American

Institute for Research to design, implement, and assess a high-quality, integrated

curriculum, and professional development that supports elementary school teachers in

embedding CT into their classrooms. In addition to developing several CT teaching

resources, such as classroom posters, lesson screeners (to determine where CT concepts

may already factor in existing math and science lessons), and a “toolkit” of core

foundational concepts, definitions, and examples (e.g. debugging, abstraction), the

initiative has also generated empirical research on effective CT professional development.

Studies have identified elementary teacher perspectives and profiles for integrating CT into

mathematics and science, and productive points of overlap in mathematics instruction and

CT concepts (Rich, Yadav and Larimore, 2020[216]; Rich, Yadav and Schwarz, 2019[131]).

A growing number of post-graduate and certificate programmes, in-person workshops, and

online professional development training aim at providing teachers with these skills in

several OECD countries, although they tend to target more primary and secondary

education teachers than those in pre-primary. Many of these programmes, and especially

the longer ones, tend to be self-paced and offered in an online format. For example, the

Teacher Engineering Education Programme (TEEP) at Tufts University is to be completed

fully online in approximately 18 months. Similarly, the International Society for

Technology Education (ISTE) Professional Certification programme is proposed online

over 14 weeks and requires around 40 hours of work to build a portfolio. Another common

feature of training programmes in this area is to provide opportunities for hands-on learning

in combination with online content, as well as opportunities to test or showcase new

knowledge.

There are also a growing number of short-term training programmes and workshops both

online and in person. For example, Code.org offers in-person workshops that vary in

duration based on topic and location, but that are typically completed in about eight hours.

The Child Care Education Institute offers online professional development workshops that

take approximately two self-paced hours to complete on different topics related to CT such

as coding in early childhood education, robotics in early childhood education, and more.

6.3. Assessment and documentation

The 2018 International Computer and Information Literacy Study (ICILS) of the

International Association for the Evaluation of Educational Achievement (IEA)

investigated how well students in their eighth year of schooling are prepared for study,

work, and life in a digital world. As part of this study, participating countries could

administer an optional component to assess CT, which was defined as the “ability to

recognise aspects of real-world problems which are appropriate for computational

formulation and to evaluate and develop algorithmic solutions to those problems so that the

solutions could be operationalised with a computer” (Fraillon et al., 2020[23]). The

assessment of CT evaluated not only students’ ability to analyse and break down a problem

into logical steps but also their understanding of how computers might be used to solve a

problem. Results from ICILS 2018 indicated that access to computers at home and

experience using computers as well as socio-economic status were positively associated

with student’s CT skills. Additionally, students from non-immigrant families had

significantly higher CT scale scores than students from non-immigrant families (Fraillon

et al., 2020[23]).

Today, multiple tools exist to evaluate the effectiveness of initiatives and interventions for

children to learn computer science and CT, and to gauge where children are in their

http://ct4edu.org/

36  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

developmental progression. However, existing assessments are typically based on

programming languages geared towards older children or teenagers and tend to provide

formative feedback rather than being standardised assessments enabling comparisons

across different contexts and age groups (de Ruiter and Bers, 2021[217]). For example,

Quizly (Maiorana, Giordano and Morelli, 2015[218]) is based on the programming language

AppInventor (Magnuson, 2010[219]) and geared towards middle and high school students.

Quizly has been developed as a tool to help teachers to design problems for students and

automatically compare student answers with model answers. As such, questions must be

developed by the teachers, and are not standardised. Another tool, Dr. Scratch (Moreno-

León and Robles, 2015[220]) automatically evaluates projects created in the programming

language Scratch (Resnick et al., 2009[142]). However, Scratch is aimed for children eight

years of age and above. Dr. Scratch can only evaluate what is provided by the user. This is

different from an assessment that explicitly and purposefully tests different aspects of

coding in the same way that, for example, reading assessments probe different aspects of

reading ability (e.g. phonemic awareness, fluency, vocabulary) in an age-appropriate way.

Recently, efforts have been made to develop assessment instruments to evaluate CT skills

more broadly, and with a specific focus on young children. For instance, the Coding Stages

Assessment (CSA) is a new instrument that allows assessing young children’s coding

ability in the visual programming language ScratchJr (de Ruiter and Bers, 2021[217]). The

CSA is an interactive, developmentally appropriate assessment for children from

kindergarten (age five) through third grade (age eight). In line with the Coding as Another

Language approach, the CSA assigns children to one of the five coding stages as laid out

in the Coding Stages framework (Bers, 2019[119]), which draws parallels with literacy

development: Emergent, Coding and Decoding, Fluency, New Knowledge, or

Purposefulness (de Ruiter and Bers, 2021[217]).

Further, to understand children’s developing coding skills in the context of their creative

work, researchers have developed rubrics for project-based assessment of children’s coding

artefacts using the ScratchJr language and the KIBO robotic kit (Unahalekhaka and Bers,

2022[221]). Both rubrics evaluate programming concepts and design aspects to capture

children’s ability to transform their creative ideas into animated coding projects. Some of

the rubrics’ subcategories for programming concepts including repeat, events,

coordination, and number parameters align with CT concepts such as flow control, logical

thinking, synchronisation, and data representation (Unahalekhaka and Bers, 2022[222]).

Studies looking at the evaluation of children’s projects using the ScratchJr Project Rubric

and the KIBO Project Rubric show that both assessment tools have good reliability and

validity properties (Unahalekhaka and Bers, 2022[222]) (Govind and Bers, 2021[223])

(Callanan, Cervantes and Loomis, 2011[224]).

TechCheck (Relkin, de Ruiter and Bers, 2020[225]) (Relkin, de Ruiter and Bers, 2020[225])

(Relkin, 2021[226]) is an unplugged assessment of CT for children ages 5-9 designed to be

used both cross-sectionally and longitudinally. TechCheck was validated through expert

review by 19 computer science and child development experts (81% agreement among

raters) and tested with a cohort of 768 students in the first years of primary education. A

study had children engage with puzzle-like challenges that leveraged CT concepts but did

not require coding experience to complete, and TechCheck scores correlated moderately

with a previously validated, interview-based CT assessment tool. TechCheck probes six

domains of CT: algorithms, modularity, control structures, representation,

hardware/software and debugging. The assessment can be administered to individuals,

whole classrooms or groups, either online or in person, in under 20 minutes, and rater

feedback indicates ease of administration, ability to engage of children and simplicity

of scoring. A new version (TechCheck-2) exists, and a validation study demonstrated its

EDU/WKP(2022)12  37

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

good psychometric properties, including the ability to distinguish among young children

with different CT abilities (Relkin, 2021[226]).

6.4. Informal learning spaces

Young children’s CT can also be developed in informal learning spaces (Callanan,

Cervantes and Loomis, 2011[224]) summarise five key dimensions of informal learning as

being: 1) non-didactic, 2) highly socially collaborative, 3) embedded in meaningful

activity, 4) initiated by learner’s interest or choice, and 5) removed from external

assessment. Accordingly, the informal learning spaces discussed here refer to environments

that invite multiple pathways for attaining and transmitting knowledge, promote social and

collaborative interactions, and engage children in meaningful and self-driven activities for

the sake of enrichment, not evaluation. Examples of such spaces include children’s homes,

museums, libraries, community centres, after-school enrichment programmes, and other

spaces that are accessible to young children and their caregivers.

In informal education settings, such as museums, homes, libraries, and out-of-school

learning sites, CT learning may be most directly visible in activities described in research

as “making” or “tinkering”, learning experiences which leverage distributed knowledge,

collaborative design processes, and constructionist “learning-by-making” pedagogies

(Honey and Kanter, 2013[227]; Martin, 2015[228]; Papert and Harel, 1991[229]). Peer-supported

making and tinkering activities have been shown to have a positive effect on youth because

of the potential for “feedback-in-practice,” which contributes to deep and transformative

learning (DiGiacomo and Gutiérrez, 2015[230]).

The maker educational environment, or makerspace, is characterised by a blend of project-

based pedagogical practices alongside informal “ways of seeing, valuing, thinking, and

doing found in participatory cultures,” which contributes to participant reports of

makerspaces “feeling like a family or a group of friends” (Sheridan et al., 2014[231]). All of

these cultural elements contribute to young makers who develop cognition, character, and

social skills, as well as technical and professional attitudes (Agency by Design, 2015[232]).

By intentionally designing an environment rich with technologies, tools, resources, and

community values, makerspaces can provide makers with opportunities to develop

identities as individuals and community members.

In the early childhood context, the Reggio Emilia approach has long focused on these

issues. Loris Malaguzzi, founder of the Reggio Emilia pedagogy, coined the concept of the

environment as a “third teacher” to capture the profound role that he believed environment

plays in children’s development, along with the “first” teachers, the child’s caregivers, and

the “second” teachers, the classroom educators (Biermeier, 2015[233]). In education

communities, makerspaces have become sites to take up explorations of personally

motivated problem solving and have been tied to 21st century learning outcomes of

perseverance, creativity, persistence, and because of the emphasis on creation with digital

tools, of CT (Iwata et al., 2020[234])

Bers (2021[3]) argues that the purpose of CT is to cultivate fluency with technological tools

as a medium of expression, not necessarily as an end in itself. Computational making is

part of this expression. A maker space provides the tools, community, and dedicated space

for computational making to happen. A space combining expressive goals and a community

for making things is inherently a space in which CT turns into computational making.

38  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

6.5. Family engagement

Research has long confirmed the critical role that parents and caregivers play as children’s

first teachers of play, learning, and healthy development (NAEYC and Fred Rogers Center,

2012[235]; Rideout, 2014[236]). As caregivers of today are increasingly tasked with exposing

their young children to 21st century skills to prepare them for a global digital landscape,

CT is becoming a household term and caregivers are (Bers, New and Boudreau, 2004[237])

prioritising CT as an early learning goal. In many ways, CT is still largely situated within

the computer science discipline. However, as technology continues to grow and young

children are increasingly exposed to a wide range of technological tools, CT is being treated

more like the “universally applicable attitude and skill set” that Wing (2006[1]) and others

purported it to be. Thus, CT skills that can be learned and fostered through young children’s

everyday play and learning activities, many of which occur in informal spaces in the

presence of family members.

In the United States, the Family Coding Days project led by the DevTech Research Group

first originated in the early 2000s as Project Inter-Actions, an exploration of

intergenerational learning with robotics. Children between the ages of 4-7 and their parents

attended a series of five-week workshops, during which they were introduced to

programming using LEGO bricks. The project revealed several interesting findings about

the ways in which children and parents learn about technology and engage with powerful

ideas such as sequencing, looping, and debugging (Beals and Bers, 2006[238]; Bers,

2007[159]; Bers, New and Boudreau, 2004[237]). In particular, the project revealed how these

workshops could generate a multigenerational “community of practice” (Lee et al.,

2011[19]) that encourages families to engage with each other and with new knowledge and

skills by producing creative computational artefacts.

This project was extended when it was piloted at in local schools and museums in the

Boston area (Govind, 2019[239]). Children between five and seven years old as well as any

family members ranging from grandparents to siblings were invited to attend these family-

oriented programming events involving ScratchJr or KIBO. Using feedback from families’

experiences, a detailed protocol was devised for hosting a family coding event with these

tools and made freely accessible to anyone interested in facilitating this type of activity in

their respective community. Between 2017 and 2018, 109 participants attended

14 ScratchJr or KIBO Family Coding Day events. The goals of these sessions were to help

families learn about the technology, create a collaborative coding project, and share the

project with peers. Findings from parent surveys and observations of play sessions

indicated that these family coding events significantly enhanced both children and parents’

interest in coding (Govind, 2019[239]). Regardless of whether parents worked in a STEM-

related profession or what type of coding technology that families used, parents were able

to successfully co-engage in coding projects by asking questions, offering suggestions and

providing encouragement (Govind and Bers, 2020[240]; Relkin and Bers, 2020[25]; Relkin

et al., 2020[241]).

Initiatives that engage young children and families in collaborative activities are well

aligned with the principles of connected learning. Ito and colleagues define connected

learning as “broadened access to learning that is socially embedded, interest-driven, and

oriented towards educational, economic, or political opportunity” (Ito et al., 2013[242]).

Collaborative computing activities, such as the ones described in the Family Coding Days

project, capitalise on the interests of participants and are centred on production, inviting

parents and children to co-design robotic creations or digital stories that are personally

meaningful and interesting to them. These activities tend also to rely also peer-support and

have a shared purpose, welcoming various opportunities for collaboration, feedback, and

EDU/WKP(2022)12  39

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

community building. Finally, these activities can also be designed to be academically

oriented and openly networked, offering children the opportunity to learn new skills and

connect their learning across different settings.

6.6. Summary and recommendations

Taken together, the research summarised above can lead to practical advice and

considerations for those hoping to implement CT initiatives in formal or school-based

settings as well as in informal education settings. The following recommendations may be

helpful for administrators, instructional leaders, and educators seeking to implement CT

initiatives in formal early education settings:

• Offer CT tools that support children as creators with technology rather than as

consumers of technology. The literature highlights the many ways that children of

today’s increasingly global and technology-rich society are interacting with the

technological tools around them. However, not all technology is the same. Some

tools are made for consuming (e.g. televisions; passive digital games); others are

made for creating (e.g. open-ended programming environments). Choosing open-

ended and creative tools such as programmable robotics kits and open-ended

programming languages can help to effectively support CT skills in young children.

• Invest in developmentally appropriate tools. It is important for early childhood

initiatives and curricula to choose tools specifically designed for young children.

When choosing to dedicate resources to purchase and deploy new tools and

technologies, educators and administrators may want to ask: Can young children

effectively engage with these tools from a fine motor and cognitive perspective?

Do they require reading ability or significant adult scaffolding to be used with

young children? How can the usage of these tools evolve as children grow older

and progress in ECEC and school? How can these tools be used over the years as

technologies continue to evolve?

• Provide adequate and ongoing training and support for ECEC professionals.

Research has shown that staff require training and support in order to effectively

promote CT and computer science education in the early years. Before and during

any new CT initiatives, professional development workshops specific to the tools

and pedagogies teachers and staff are expected to implement should be provided.

Considering self-paced and ongoing programmes, mentorships with “expert” staff

and periodic check-ins can be especially useful.

• Provide time for planning and implementation. ECEC staff in different roles will

also need adequate time for planning their new curriculum and finding ways to

meaningfully inject CT into their existing curriculum and activities. Teachers

should be encouraged to think of ways to integrate CT across curricular domains

(e.g. a STEAM approach to education) and to collaborate with educators

specialising in other domains instead of trying to find additional time in an already

tight schedule.

In informal learning spaces, the following practical considerations might be helpful for

families and facilitators seeking to promote young children’s coding and CT engagement:

 Prioritise CT tools encouraging children to create with rather than to merely consume

technology. As mentioned in the recommendations for formal education settings, it is

equally important to consider offering open-ended and creative tools in informal education

settings. The ways in which families can foster children’s CT through those open-ended

and creative technologies will be more engaged than with the passive “consumer”

40  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

technologies. In any space that is “family-friendly”, parents and caregivers might consider

the following questions: What might my child do or say while they are navigating this space

and using these tools? What might I be doing or saying in turn? How does the technology

and the technology-mediated activity enable us to co-engage in CT? Facilitators and

designers of family-friendly environments might examine the variety of technological tools

in their spaces and think carefully about the kinds of interactions those tools might provide.

Facilitating bidirectional home-school connections. Families can drive their own learning

process about understanding what CT is and how it can be fostered through both unplugged

and technology-mediated activities. As computer science education becomes an

increasingly important national and international priority in schools and other formal

learning settings, continuing children’s coding and CT learning in informal settings through

family engagement initiatives will be increasingly salient. Stakeholders who play a role in

facilitating children’s informal and formal learning experiences might consider the

following questions: What activities might parents already be doing in homes and informal

learning spaces that foster children’s CT, and how can we empower parents to recognise

and extend those activities? What technological tools might be introduced in school settings

and how is that learning being shared with families?

Leveraging community resources. Facilitators should be encouraged to leverage the

existing resources within communities when planning workshops, activities, and other

events intended to support families’ coding and CT engagement. In addition to the kinds

of tools and technologies, it is crucial to think about how the community will utilise the

space and the resources needed to make the opportunity accessible and engaging for all

attendees. Facilitators might consider the following questions: Are there enough tools or

materials for all families? What resources may be needed to enhance accessibility and

inclusion? How are we supporting children and families from diverse backgrounds

(e.g. with a different home language, with special needs) with this tool and activity?

7. Equity and access

7.1. Increasing diversity, access, equity, and inclusion in the fields of computational

thinking and computer science

With the rise of global technological innovations has come a rapidly growing gender and

racial divide within technology and engineering related fields, as well as within technical

STEM fields more broadly.

Representation in technical STEM fields continue to lack diversity, despite programmes

and interventions that have been initiated across OECD countries and others focusing on

reaching a wider range of students, most often in secondary or early years of tertiary

education. However, it has become clear that computer programming needs to be taught at

earlier ages to more effectively prevent and address negative STEM stereotypes (Markert,

1996[243]; Sullivan, 2019[35]). Increasing interest in the information technology professions

is therefore seen an important objective of the inclusion of computer science education the

early years and the primary and secondary levels curricula (National Research Council,

2011[244]).

While a deep dive into these issues is beyond the scope of this review, the following

sections highlight issues of diversity, equity, and inclusion in CT as it specifically relates

to early childhood education and interventions.

EDU/WKP(2022)12  41

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

7.2. Socio-economic inequalities in access to CT tools

When it emerged in recent decades, the term “digital divide” referred mainly to the socio-

economic divide between those who had access to Internet-enabled digital devices and

those who did not. Today, Internet access is generally widespread in educational settings

in OECD countries, many of which are close to meeting the Sustainable Development Goal

targets of ensuring that all schools have access to the Internet for pedagogical purposes,

and of mobile network coverage (Burns and Gottschalk, 2019[245]).

Today, however, Internet-enabled devices and smart phones barely scratch the surface of

the types of technologies available to support education, beginning in early childhood. As

noted earlier in this review, there are now many digital tools, such as the robotics kits and

tablet applications, available for young children to explore CT and computer science, and

research has shown the many cognitive and social benefits that early exposure to such tools

can have when used with a pedagogically sound approach. But many of these new tools,

despite their benefits, are inaccessible due to the cost, the technical support, and the

professional development needed for adequate implementation. Even free coding

applications and games require schools or homes to have one-to-one (1:1) access to tablets

or computers to be used as intended. The costs of these devices alone are already prohibitive

to many, and that is without factoring in fees and time for training and professional

development for educators to feel confident using these tools with young children.

The stark costs of new coding and engineering materials for young children has opened the

door to a new type of digital divide. Now that most homes and schools do have Internet

connectivity basic hardware, this phrase has taken on a new meaning. There is now a socio-

economic gap between those with access to high-quality, open-ended, software and

technology that promotes creative STEAM learning and those that do not (Sullivan and

Strawhacker, 2021[94]). For example, access to computer science classes and clubs is

generally lowest for students from lower-income households (Google/Gallup, 2015[41]).

Unequal access to computer science education could place these students at a disadvantage

as computer technology continues to advance, especially as coding is thought of as today’s

“new literacy” today (Bers, 2018[9]).

This new version of the digital divide is continually highlighted in empirical research. In a

recent analysis of data from ICILS 2018, which tested over 46,000 students from 14

countries, researchers found that persistent gaps among students’ CT performance were

linked to their family’s socio-economic backgrounds (Fraillon et al., 2020[23]; Karpiński,

Di Pietro and Biagi, 2021[246]). Specifically, results “consistently showed that students from

less advantaged backgrounds had lower levels of computer skills than those from more

advantaged backgrounds, especially in CT” (Karpiński, Di Pietro and Biagi, 2021, p. 1[246]).

To address this divide, it is critical that adequate national level funding and support are

provided to ECEC settings and schools. It may also be important to focus on unplugged CT

curriculum in areas where the cost of other technologies is not feasible. Preliminary

research has shown that unplugged activities may be useful for addressing these gaps by

laying a foundation for later technology-mediated computer science learning (Bers,

2020[36]) (del Olmo-Muñoz, Cózar-Gutiérrez and González-Calero, 2020[247]). Young

children aged 4-8 years, with their developmental need for physical, hands-on play and

limited screen engagement, may benefit the most from foundational unplugged CT

experiences (Przybylski and Weinstein, 2017[248]; Saxena, Baber and Kumar, 2020[249]).

42  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

7.3. Addressing issues with underrepresented groups in CT

Limited gender and ethnic diversity in technological industries that rely on CT and

computer science skills continues to be a problem across OECD countries. Recent analyses

of data from the Higher Education Statistics Authority (HESA) in the United Kingdom

reveal “unacceptable” ethnic disparities in higher education STEM fields over the past

10 years, as well as in the pool of researchers eligible for the Royal Society’s early career

fellowship grants (The Royal Society, 2021[42]). Similar issues with racial diversity are

evident in other OECD countries. In the United States, Caucasian men constitute

approximately half of the scientists and engineers employed in science and engineering

occupations, with both Asian men and women being also highly represented in the STEM

workforce (National Center for Science and Engineering Statistics, 2017[250]).

Gender diversity is also a consistent issue in fields that rely on CT and computer science in

many OECD countries. Women account for less than 20% of entrants into tertiary level

computer science programmes across OECD countries and only around 18% of engineering

entrants (OECD, 2017[251]). It has been long theorised that stereotype threat may influence

the participation of women and ethnic minorities in STEM fields. Stereotype threat refers

to the anxiety that one’s performance on a task or activity will be seen through the lens of

a negative stereotype (Steele, 1997[252]). For example, Spencer, Steele and Quinn (1999[253])

found that women performed significantly worse on a math test if they were first shown

information indicating that women do not perform as highly as men on math tasks (to

induce the negative stereotype). If the negative stereotype was not triggered

(i.e. participants were told that there were no gender differences associated with the math

test) women and men performed similarly on the test.

While most research on the influence of stereotype threat has focused on adolescent and

adult research participants, research and developmental literature has shown that basic

stereotypes do begin to develop in children around two to three years of age (Kuhn, Nash

and Brucken, 1978[254]; Signorella, Bigler and Liben, 1993[255]). As children grow older,

stereotypes about sports, occupations and adult roles expand, and their gender associations

become more sophisticated (Sinno and Killen, 2009[256]). It is important for adults to be

aware of these newly forming stereotypes to expand on them (or disprove them) by

providing children with different role models, experiences and media that can help shift

children’s belief system (Sullivan, 2021[257]).

Early experiences have the potential to play an ongoing role in children’s sense of

belonging and confidence in different computer science or STEM activities and in their

own developing identity as they grow up. Forming a positive “STEM identity”

(Aschbacher, Li and Roth, 2009[258]) during this time can be pivotal to maintaining girls’

interest in these fields. Prior research has shown that early childhood experiences with

technology and engineering – or lack thereof – can continue to impact adolescents during

middle school and high school, even those on competitive robotics and programming teams

(Sullivan and Bers, 2019[44]). Children who are exposed to STEM curriculum and

programming at an early age demonstrate fewer gender-based stereotypes regarding STEM

careers, an increased interest in engineering, and fewer obstacles entering these fields later

in life (Markert, 1996[243]; McLaren, 2009[259]; Steele, 1997[252]; Sullivan and Bers, 2017[99];

Sullivan, 2019[35]). Taken together with the past body of work on stereotypes, it is critical

to begin reaching female children and those from racial or ethnic groups that are

underrepresented in STEM with positive, developmentally appropriate experiences with

CT, and computer science in general, from an early age (Sullivan and Bers, 2019[44];

Sullivan and Strawhacker, 2021[94]).

EDU/WKP(2022)12  43

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

7.4. Disabilities and accessibility

Over 1 billion people, or 15% of the world’s population, have some kind of disability.
One-fifth of the estimated global total, or between 110 million and 190 million people,

experience significant disabilities (World Health Organization and World Bank, 2011[260]).

This impacts students across OECD countries as well. For example, 14% of public-school

students in the United States ages 3-21 receive special education services under the

Individuals with Disabilities Education Act (Congress, 1975) for some form of disability,

which can range from a specific learning disorder, to a speech impairment, to autism

(National Center for Education Statistics, 2022[261]).

When it comes to digital technology and issues of equity, it is important to consider children

with disabilities and the various accessibility issues with new computing interfaces. As

ECEC systems implement initiatives that bring computer science to young children, they

face heightened demands for supporting ECEC professionals in meeting the needs of

diverse groups of children.

Researchers and educators are increasingly building an argument of the benefits of having

teachers expose and engage children with disabilities in CT and computer science (Bouck

and Yadav, 2020[262]). Unfortunately, there is still insufficient research on best practices

regarding access and exposure to CT and computer science for children with different types

of cognitive, physical, emotional, and behavioural challenges. Most research on CT

instruction for students with special needs has focused on students with low-incidence

disabilities and autism, and much of this research focuses on educational pedagogies based

around explicit instruction (Taylor, 2018[263]). These evidence-based explicit instruction

pedagogies used by special educators contrast with the constructionist pedagogies

advocated by researchers in the field of CT (Bers, 2020[36]; Levinson, Hunt and Hassenfeld,

2021[264]). While constructionist models allow for student-driven play to drive learning,

explicit instruction provides a structure for learning. Using evidence-based explicit

instruction, computer programming has been taught to students with Down syndrome,

autism, and intellectual disability (Bouck and Yadav, 2020[262]; Knight, Wright and

DeFreese, 2019[265]; Muñoz et al., 2018[266]; Pivetti et al., 2020[267]; Taylor, Vasquez and

Donehower, 2017[268]).

Additionally, a growing number of educators have shown support for teaching and learning

of CT through a Universal design for learning (UDL) approach. UDL is an instructional

planning framework for meaningfully engaging a range of learners, including children with

special needs, by proactively addressing barriers to learning (Center for Applied Special

Technology, 2011[269]; Rose and Meyer, 2002[270]). There is research demonstrating the

educational efficacy of teaching through the UDL framework (e.g. (Marino et al., 2013[271];

Rappolt-Schlichtmann et al., 2013[272]). Within the context of computing education, UDL

can serve as the instructional framework in which teachers can embed the necessary

supports, technologies, and strategies that lead to effective instruction for a broad range of

learners.

8. Concluding remarks

The early years of development are an exciting and yet challenging period of growth for

researchers, educators, and policymakers to consider when designing interfaces, curricula,

and frameworks to support CT. Tools must be carefully selected for children who cannot

yet read and write, who have a short attention span and working memory, who are honest

in expressing engagement and frustration, who are just learning how to work with others,

and who are eager to explore the world by touching, making, and breaking (Bers, 2021[3]).

44  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

The theories and empirical research reviewed in this document highlight that early

childhood is a critical time in development to build on children’s natural curiosity and

support their newly developing CT skills and abilities. Studies conducted worldwide have

shown how diverse children can learn with and about computer science, how this new

discipline can help them make connections to more traditional domains of learning, and

how CT can support cognitive and social development in general (Bers, 2020[36]) (Bers,

2021[3]).

This report has also summarised the importance of early CT education from a diversity,

equity, and inclusion perspective (Markert, 1996[243]; Sullivan, 2019[35]; Karpiński, Di

Pietro and Biagi, 2021[246]). There is a growing need for more diverse voices, truly

representative of the global community, to be heard in the STEM and computer science

fields that constitute major drivers of innovation. Early (and continued) exposure of all

children to CT from a young age is critical to making this possible (Sullivan, 2021[257])

(Sullivan, 2019[35]; Sullivan and Strawhacker, 2021[94]).

8.1. Key takeaways for policymakers

This review has summarised theoretical contributions, a survey of commercially available

technologies, curriculum development, frameworks, and empirical research focused on CT

and ECEC. While research in this area has flourished in recent years, there is still a need

for more robust scientific studies –including extensive randomised trials– to generate more

conclusive evidence on the effects of CT educational programmes and interventions, as

well as on the conditions for their potential implementation at scale. Taken together, this

body of international work points to the following key takeaways for policymakers and

other stakeholders:

• The foundational early childhood years (ages 3-8) are a critical time in development

when it comes to fostering CT and computer science education. Early exposure to

CT is also important from a social equity perspective to prevent stereotypes and

ensure all young children receive equal opportunities to develop their digital

literacy.

• Young children can master a range of CT concepts and skills including algorithms,

modularity, control structures, representation, hardware/software, the design

process, and debugging.

• There is a growing demand for countries to incorporate some form of computer

science or CT into their curricula and learning frameworks for early levels of

education. These can be helpful for increasing access to quality CT education.

However, the use of digital technology in ECEC should add to children’s

experiences rather than replace interactions with traditional learning materials and

games.

• Choosing developmentally appropriate tools for young learners is important for the

success of any CT initiative. Policymakers should consider play-based, screen-free

technologies and other “unplugged” approaches when creating programmes for

very young learners to align with research recommendations around early learning

and development, and about limited screen time.

• ECEC staff and leaders require tailored professional development and support to

be successful in integrating CT into their work. Policymakers should consider

allotting resources for training staff as part of any new initiative with CT.

EDU/WKP(2022)12  45

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

• Parents, caregivers, and families are children’s first teachers of play, learning, and

healthy development. As such, policy makers should consider family engagement

and resources as part of any new initiative with CT.

• More scientific research is needed to guide policy and practice about CT education

for young children, including on the relationship between CT skills and other early

cognitive and socio-emotional outcomes, and on the factors that may support the

large scale deployment of proven tools and approaches.

References

Agency by Design (2015), Maker-centered learning and the development of self: Preliminary findings of

the Agency by Design Project, http://www.pz.harvard.edu/sites/default/files/Maker-Centered-Learning-

and-the-Development-of-Self_AbD_Jan-2015.pdf (accessed on November 2021).

[232]

Aguirre-Muñoz, Z. and M. Pantoya (2016), “Engineering Literacy and Engagement in Kindergarten

Classrooms”, Journal of Engineering Education, Vol. 105/4, pp. 630-654,

https://doi.org/10.1002/jee.20151.

[122]

Aho, A. (2011), “Ubiquity symposium: Computation and Computational Thinking”, Ubiquity,

Vol. 2011/January, https://doi.org/10.1145/1922681.1922682.

[20]

Aldemir, J. and H. Kermani (2016), “Integrated STEM curriculum: improving educational outcomes for

Head Start children”, Early Child Development and Care, Vol. 187/11, pp. 1694-1706,

https://doi.org/10.1080/03004430.2016.1185102.

[87]

Allen-Handy, A. et al. (2020), “Black Girls STEAMing Through Dance”, in Challenges and Opportunities

for Transforming From STEM to STEAM Education, Advances in Educational Technologies and

Instructional Design, IGI Global, https://doi.org/10.4018/978-1-7998-2517-3.ch008.

[91]

Aschbacher, P., E. Li and E. Roth (2009), “Is science me? High school students’ identities, participation

and aspirations in science, engineering, and medicine”, Journal of Research in Science Teaching,

Vol. 47/5, pp. 564-582, https://doi.org/10.1002/tea.20353.

[258]

Atmatzidou, S. and S. Demetriadis (2016), “Advancing students’ computational thinking skills through

educational robotics: A study on age and gender relevant differences”, Robotics and Autonomous

Systems, Vol. 75, pp. 661-670, https://doi.org/10.1016/j.robot.2015.10.008.

[34]

Australian Government Department of Education, Skills and Employment (2015), Taking action now to

revitalise STEM study in schools, Minister’s Media Centre website,

https://ministers.dese.gov.au/pyne/taking-action-now-revitalise-stem-study-schools.

[186]

Bailey, D. and J. Borwein (2011), “High-precision numerical integration: Progress and challenges”,

Journal of Symbolic Computation, Vol. 46/7, pp. 741-754, https://doi.org/10.1016/j.jsc.2010.08.010.

[100]

Balanskat, A. and K. Englehardt (2014), Computing our Future: Computer programming and coding -

Priorities, school curricula and initiatives across Europe, http://d3780a64-1081-4488-8549-

6033200e3c03 (eun.org).

[194]

Barnes, J. et al. (2017), The influence of robot design on acceptance of social robots, IEEE,

https://doi.org/10.1109/urai.2017.7992883.

[95]

46  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Barr, D., J. Harrison and L. Conery (2011), “Computational thinking: A digital skill for everyone”,

Learning & Leading with Technology, Vol. 38/6, pp. 20-23.

[18]

Barr, V. and C. Stephenson (2011), “Bringing computational thinking to K-12”, ACM Inroads, Vol. 2/1,

pp. 48-54, https://doi.org/10.1145/1929887.1929905.

[11]

Beals, L. and M. Bers (2006), “Robotic Technologies: When parents put their learning ahead of their

child’s”, Journal of Interactive Learning, Vol. 17/4, pp. 3411-366.

[238]

Bell, T. et al. (2009), “Computer Science Unplugged: school students doing real computing”, The New

Zealand Journal of Applied Computing and Information Technology, Vol. 13, pp. 20-29.

[170]

Bell, T. and M. Lodi (2019), “Constructing computational thinking without using computers”, n

Constructivist Foundations, Vol. 14/3, pp. 342-351, https://constructivist.info/14/3/342.bell.

[172]

Bell, T. and J. Vahrenhold (2018), “CS Unplugged—How Is It Used, and Does It Work?”, in Progress in

Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer

Science, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-98355-4_29.

[167]

Bers, M. (2022), Beyond Coding. How Children Learn Human Values through Programming, MIT Press. [72]

Bers, M. (ed.) (2021), Teaching Computational Thinking and Coding to Young Children, IGI Global,

https://doi.org/10.4018/978-1-7998-7308-2.

[3]

Bers, M. (2020), Coding as a Playground, Routledge, https://doi.org/10.4324/9781003022602. [36]

Bers, M. (2019), “Coding as another language: a pedagogical approach for teaching computer science in

early childhood”, Journal of Computers in Education, Vol. 6/4, pp. 499-528,

https://doi.org/10.1007/s40692-019-00147-3.

[124]

Bers, M. (2019), “Coding as another language: Why computer science in early childhood should not be

STEM”, in Donohue, C. (ed.), Exploring Key Issues in Early Childhood and Technology: Evolving

Perspectives and Innovative Approaches, Routledge, New York, NY,

https://doi.org/10.4324/9780429457425.

[119]

Bers, M. (2018), “Coding and Computational Thinking in Early Childhood: The Impact of ScratchJr in

Europe”, European Journal of STEM Education, Vol. 3/3, https://doi.org/10.20897/ejsteme/3868.

[9]

Bers, M. (2012), Designing Digital Experiences for Positive Youth Development: From Playpen to

Playground, Oxford.

[81]

Bers, M. (2010), “The TangibleK Robotics Program: Applied Computational Thinking for Young

Children”, Early Childhood Research and Practice, Vol. 12/2, http://ecrp.uiuc.edu/v12n2/bers.html.

[22]

Bers, M. (2008), Blocks to Robots: Learning with Technology in the Early Childhood Classroom, Teachers

College Press.

[82]

Bers, M. (2007), “Project InterActions: A Multigenerational Robotic Learning Environment”, Journal of

Science Education and Technology, Vol. 16/6, pp. 537-552, https://doi.org/10.1007/s10956-007-9074-

2.

[159]

Bers, M., R. New and L. Boudreau (2004), “Teaching and Learning when no one is Expert: Children and

Parents Explore Technology”, Early Childhood Research and Practice, Vol. 6/2,

https://files.eric.ed.gov/fulltext/EJ1084881.pdf.

[237]

EDU/WKP(2022)12  47

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Bers, M. and M. Resnick (2015), Official ScratchJr Book: Help Your Kids Learn to Code, No Starch

Press, https://nostarch.com/scratchjr.

[154]

Bers, M., S. Seddighin and A. Sullivan (2013), “Ready for Robotics: Bringing Together the T and E of

STEM in Early Childhood Teacher Education”, Journal of Technology and Teacher Education,

Vol. 21/3, pp. 355-377, https://sites.tufts.edu/devtech/files/2018/02/BringingTogetherT.pdf.

[89]

Berson, R. and M. Berson (eds.) (2010), Tangible programming in early childhood: Revisiting

developmental assumptions through new technologies, Information Age Publishing.

[157]

Biermeier (2015), “Inspired by Reggio Emilia: Emergent Curriculum in Relationship-Driven Learning

Environments”, Vol. 70/5, pp. 72 - 75, https://www.naeyc.org/resources/pubs/yc/nov2015/emergent-

curriculum.

[233]

Black, J. et al. (2013), “Making computing interesting to school students”, Proceedings of the 18th ACM

conference on Innovation and technology in computer science education - ITiCSE ’13,

https://doi.org/10.1145/2462476.2466519.

[174]

Blair, C. and A. Diamond (2008), “Biological processes in prevention and intervention: The promotion of

self-regulation as a means of preventing school failure”, Development and Psychopathology, Vol. 20/3,

pp. 899-911, https://doi.org/10.1017/s0954579408000436.

[68]

Blikstein, P. and U. Wilensky (2009), “An Atom is Known by the Company it Keeps: A Constructionist

Learning Environment for Materials Science Using Agent-Based Modeling”, International Journal of

Computers for Mathematical Learning, Vol. 14/2, pp. 81-119, https://doi.org/10.1007/s10758-009-

9148-8.

[101]

Bouck, E. and A. Yadav (2020), “Providing Access and Opportunity for Computational Thinking and

Computer Science to Support Mathematics for Students With Disabilities”, Journal of Special

Education Technology, Vol. 37/1, pp. 151-160, https://doi.org/10.1177/0162643420978564.

[262]

Bower, M. and K. Falkner (2015), “Computational thinking, the notional machine, pre-service teachers,

and research opportunities”, in D’Souza, D. and K. Falkner (eds.), Proceedings of the 17th

Australasian Computing Education Conference (ACE 2015), Australian Computer Society,

http://crpit.com/confpapers/CRPITV160Bower.pdf.

[206]

Brackmann, C. et al. (2016), “Computational thinking: Panorama of the Americas”, 2016 International

Symposium on Computers in Education (SIIE), https://doi.org/10.1109/siie.2016.7751839.

[193]

Bravo Sánchez, F., A. González Correal and E. González Guerrero (2017), “Interactive Drama With

Robots for Teaching Non-Technical Subjects”, Journal of Human-Robot Interaction, Vol. 6/2, p. 48,

https://doi.org/10.5898/jhri.6.2.bravo.

[96]

Bredekamp, S. (1992), “What is “Developmentally Appropriate” and Why is it Important?”, Journal of

Physical Education, Recreation & Dance, Vol. 63/6, pp. 31-32,

https://doi.org/10.1080/07303084.1992.10606612.

[32]

Brosterman, N. (1997), Inventing kindergarten, New York: H. N. Abrams. [63]

Bruner, J. (2009), The Process of Education (Revised edition), Harvard University Press. [132]

Burns, T. and F. Gottschalk (eds.) (2019), Educating 21st Century Children: Emotional Well-being in the

Digital Age, Educational Research and Innovation, OECD Publishing, Paris,

https://dx.doi.org/10.1787/b7f33425-en.

[245]

48  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Caeli, E. and A. Yadav (2019), “Unplugged Approaches to Computational Thinking: a Historical

Perspective”, TechTrends, Vol. 64/1, pp. 29-36, https://doi.org/10.1007/s11528-019-00410-5.

[168]

Callanan, M., C. Cervantes and M. Loomis (2011), “Informal learning”, Wiley Interdisciplinary Reviews:

Cognitive Science, Vol. 2/6, pp. 646-655, https://doi.org/10.1002/wcs.143.

[224]

Campbell, L. (2019), “Building Computational Thinking”, in Recruiting, Preparing, and Retaining STEM

Teachers for a Global Generation, BRILL, https://doi.org/10.1163/9789004399990_007.

[215]

Cellan-Jones, R. (2019), Computing in schools in ’steep decline’, https://www.bbc.com/news/technology-

48188877 (accessed on 17 May 2022).

[43]

Center for Applied Special Technology (2011), Universal Design for Learning Guidelines version 2.2. [269]

Center on the Developing Child at Harvard University (2011), “Building the Brain’s “Air Traffic Control”

System: How Early Experiences Shape the Development of Executive Function”, No. 11, Harvard,

MA, http://www.developingchild.harvard.edu.

[67]

Chinn, C. and B. Malhotra (2002), “Epistemologically authentic inquiry in schools: A theoretical

framework for evaluating inquiry tasks”, Science Education, Vol. 86/2, pp. 175-218,

https://doi.org/10.1002/sce.10001.

[110]

Çiftci, S. and A. Bildiren (2019), “The effect of coding courses on the cognitive abilities and problem-

solving skills of preschool children”, Computer Science Education, Vol. 30/1, pp. 3-21,

https://doi.org/10.1080/08993408.2019.1696169.

[55]

Clarke, B. (2017), Computer Science Teacher: Insight into the computing classroom, BCS Learning

Development Limited, Swindon.

[182]

Clements, D. (1999), “Subitizing: What Is It? Why Teach It?”, Teaching Children Mathematics, Vol. 5/7,

pp. 400-405, https://doi.org/10.5951/tcm.5.7.0400.

[50]

Code.org (2021), Glossary. CS Fundamentals for Elementary Schools (Grade K-5),

https://code.org/curriculum/docs/k-5/glossary.

[10]

Code.org (2018), Code.org 2018 Annual Report., https://code.org/about/2018. [4]

Confrey, J. (1994), “A theory of intellectual development”, For the Learning of Mathematics, Vol. 14/3,

pp. 2-8, https://www.jstor.org/stable/40248118.

[111]

Conseil supérieur de l’éducation (2020), Educating For A Digital World: Report on the State and Needs of

Education 2018-2020, Conseil supérieur de l’éducation, Quebec,

https://www.cse.gouv.qc.ca/en/educating-for-a-digital-world/.

[191]

Council on Communications and Media (2016), “Media use in school-aged children and adolescents”,

Pediatrics, Vol. 138/5, https://doi.org/10.1542/peds.2016-2592.

[165]

Csikszentmihalyi, M. (1981), “Some paradoxes in the definition of play”, in Cheska, A. (ed.), Play as

Context, Leisure Press, NY.

[149]

Cunha, F. and J. Heckman (2007), “The Technology of Skill Formation”, American Economic Review,

Vol. 97/2, pp. 31-47, https://doi.org/10.1257/aer.97.2.31.

[26]

Davee, S. et al. (2015), Youth Makerspace Playbook, https://makered.org/wp-

content/uploads/2015/09/Youth-Makerspace-Playbook_FINAL.pdf (accessed on 17 May 2022).

[141]

EDU/WKP(2022)12  49

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

de Ruiter, L. and M. Bers (2021), “The Coding Stages Assessment: development and validation of an

instrument for assessing young children’s proficiency in the ScratchJr programming language”,

Computer Science Education, pp. 1-30, https://doi.org/10.1080/08993408.2021.1956216.

[217]

del Olmo-Muñoz, J., R. Cózar-Gutiérrez and J. González-Calero (2020), “Computational thinking through

unplugged activities in early years of Primary Education”, Computers & Education, Vol. 150,

https://doi.org/10.1016/j.compedu.2020.103832.

[247]

Department for Education (2013), National curriculum in England: computing programmes of study,

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-

of-study/national-curriculum-in-england-computing-programmes-of-study (accessed on 17 May 2022).

[37]

Di Lieto, M. et al. (2017), “Educational Robotics intervention on Executive Functions in preschool

children: A pilot study”, Computers in Human Behavior, Vol. 71, pp. 16-23,

https://doi.org/10.1016/j.chb.2017.01.018.

[161]

DiGiacomo, D. and K. Gutiérrez (2015), “Relational Equity as a Design Tool Within Making and

Tinkering Activities”, Mind, Culture, and Activity, Vol. 23/2, pp. 141-153,

https://doi.org/10.1080/10749039.2015.1058398.

[230]

Digital News Asia (2015), IDA launches $1.5m pilot to roll out tech toys for preschoolers,

https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-for-

preschoolers.

[203]

Dodig-Crnkovic, G. (2002), “Scientific methods in computer science”, in Proceedings of the Conference

for the Promotion of Research in IT at New Universities and at University Colleges in Sweden,

Skövde.

[8]

Dredge, S. (2014), “Coding at school: a parent’s guide to England’s new computing curriculum”, The

Guardian, https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-

programming.

[207]

Dubois, E., D. Bright and S. Laforce (2021), “Educating Minoritized Students in the United States During

COVID-19: How Technology Can be Both the Problem and the Solution”, IT Professional, Vol. 23/2,

pp. 12-18, https://doi.org/10.1109/mitp.2021.3062765.

[209]

Duncan, C. and T. Bell (2015), “A Pilot Computer Science and Programming Course for Primary School

Students”, Proceedings of the Workshop in Primary and Secondary Computing Education,

https://doi.org/10.1145/2818314.2818328.

[181]

Elkin, M., A. Sullivan and M. Bers (2018), “Books, butterflies, and ‘bots: Integrating engineering and

robotics into early childhood curricula”, in English, L. and T. Moore (eds.), Early Engineering

Learning, Early Mathematics Learning and Development, Springer, Singapore,

https://doi.org/10.1007/978-981-10-8621-2_11.

[164]

Elkin, M., A. Sullivan and M. Bers (2016), “Programming with the KIBO Robotics Kit in Preschool

Classrooms”, Computers in the Schools, Vol. 33/3, pp. 169-186,

https://doi.org/10.1080/07380569.2016.1216251.

[97]

Erickson, F. (1985), Qualitative Methods in Research on Teaching, Michigan State University, Institute

for Research on Teaching, East Lansing.

[74]

Faulkner, K. (2015), Coding Across the Curriculum Resource Review,

http://dx.doi.org/10.13140/RG.2.1.2293.1929.

[185]

50  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Fayer, S., A. Lacey and A. Watson (2017), “STEM occupations: Past, present, and future”, US Bureau of

Labor Statistics: Spotlight on Statistics, Vol. 1, pp. 1-35.

[5]

Fedorenko, E. et al. (2019), “The Language of Programming: A Cognitive Perspective”, Trends in

Cognitive Sciences, Vol. 23/7, pp. 525-528, https://doi.org/10.1016/j.tics.2019.04.010.

[118]

Fisher, A. and J. Margolis (2003), “Unlocking the clubhouse”, ACM SIGCSE Bulletin, Vol. 35/1,

https://doi.org/10.1145/792548.611896.

[112]

Flannery, L. et al. (2013), “Designing ScratchJr”, Proceedings of the 12th International Conference on

Interaction Design and Children, https://doi.org/10.1145/2485760.2485785.

[57]

Folk, M. (1981), “Review of “Mindstorms: Children, Computers, and Powerful Ideas by Seymour Papert”,

Basic Books: New York, 1980”, ACM SIGCUE Outlook, Vol. 15/1, pp. 23-24,

https://doi.org/10.1145/1045071.1045074.

[138]

Fowler, B. and E. Vegas (2021), How England Implemented its Computer Science Education Program,

Center for Universal Education, Brookings, Washington DC, https://www.brookings.edu/wp-

content/uploads/2021/01/How-England-implemented-its-computer-science-education-program.pdf

(accessed on 17 May 2022).

[39]

Fraillon, J. et al. (2020), Preparing for Life in a Digital World: IEA International Computer and

Information Literacy Study 2018 International Report, Springer, Cham, https://doi.org/10.1007/978-3-

030-38781-5.

[23]

Fromberg, D. and L. Williams (eds.) (1992), “Perspectives on children”, in Encyclopedia of Early

Childhood Education, Routledge, Oxfordshire, https://doi.org/10.4324/9780203813546.

[144]

Fromberg, D. (1990), “Play issues in early childhood education”, in Seefeldt, C. (ed.), Continuing Issues in

Early Childhood Education, Merrill, Columbus, OH, http://Back-to-Basics: Play in Early Childhood

(studylib.net).

[146]

Frost, J. (1992), Play and Playscapes, Delmar Publishers, Albany, NY. [145]

Gadanidis, G. (2015), “Coding as a Trojan horse for mathematics education reform”, Journal of

Computers in Mathematics and Science Teaching, Vol. 34/2, pp. 155-173.

[126]

Garvey, C. (1977), Play, Harvard University Press, Cambridge, MA. [143]

Goode, J. and J. Margolis (2011), “Exploring computer science”, ACM Transactions on Computing

Education, Vol. 11/2, pp. 1-16, https://doi.org/10.1145/1993069.1993076.

[184]

Google/Gallup (2015), Searching for Computer Science: Access and Barriers in U.S. K-12 Education,

https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf (accessed on

17 May 2022).

[41]

Gouvernment of Alberta (2013), Learning and Technology Policy Framework, http://learning-and-

technology-policy-framework-web.pdf (alberta.ca).

[192]

Gouvernment of Newfoundland and Labrador (2015), Completely Kindergarten,

https://www.gov.nl.ca/education/files/k12_curriculum_guides_completely_kinder_9.-section-5-

curriculum-framework-final.pdf.

[189]

EDU/WKP(2022)12  51

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Govind, M. (2019), “Families that code together learn together: Exploring family-oriented programming in

early childhoo with ScratchJr and KIBO Robotics”, unpublished master’s thesis, Tufts University,

https://sites.tufts.edu/devtech/files/2019/07/Madhu-Govind_MA-Thesis_v5final.pdf.

[239]

Govind, M. and M. Bers (2021), “Assessing robotics skills in early childhood: Development and testing of

a tool for evaluating children’s projects”, Journal of Research in STEM Education, Vol. 7/1, pp. 47-68,

https://doi.org/10.51355/jstem.2021.102.

[223]

Govind, M. and M. Bers (2020), “Family Coding Days: Engaging Children and Parents in Creative Coding

and Robotics”, in Kalir, J. and D. Filipiak (eds.), Proceedings of the 2020 Connected Learning Summit,

Carnegie Mellon University: - ETC Press, Pittsburgh, PA,

https://2020.connectedlearningsummit.org/proceedings/.

[240]

Granovskiy, B. (2018), Science, Technology, Engineering, and Mathematics (STEM) Education: An

Overview, Congressional Research Service, Washington, DC,

https://crsreports.congress.gov/product/pdf/R/R45223/4 (accessed on 17 May 2022).

[85]

Grover, S. and R. Pea (2013), “Computational Thinking in K–12”, Educational Researcher, Vol. 42/1,

pp. 38-43, https://doi.org/10.3102/0013189x12463051.

[12]

Gunther, C. (2017), “Informatik entdecken – mit und ohne Computer [Discover computer science – with

and without a computer]”, in Diethelm, I. (ed.), Informatische Bildung zum Verstehen und Gestalten

der digitalen Welt [Informatics education to understand and shape the digital world], Gesellschaft für

Informatik e.V.(GI), Bonn, https://dl.gi.de/handle/20.500.12116/4347.

[201]

Guzdial, M. (2008), “Education: Paving the way for computational thinking”, Communications of the

ACM, Vol. 51/8, pp. 25-27, https://doi.org/10.1145/1378704.1378713.

[13]

Guzdial, M. and B. Morrison (2016), “Growing computer science education into a STEM education

discipline”, Communications of the ACM, Vol. 59/11, pp. 31-33, https://doi.org/10.1145/3000612.

[115]

Hambrusch, S. et al. (2009), “A multidisciplinary approach towards computational thinking for science

majors”, ACM SIGCSE Bulletin, Vol. 41/1, pp. 183-187, https://doi.org/10.1145/1539024.1508931.

[102]

Hassenfeld, Z. and M. Bers (2020), “Debugging the Writing Process: Lessons From a Comparison of

Students’ Coding and Writing Practices”, The Reading Teacher, Vol. 73/6, pp. 735-746,

https://doi.org/10.1002/trtr.1885.

[58]

Hassenfeld, Z. et al. (2020), “If You Can Program, You Can Write: Learning Introductory Programming

Across Literacy Levels”, Journal of Information Technology Education: Research, Vol. 19, pp. 065-

085, https://doi.org/10.28945/4509.

[117]

Hazzan, O. (2008), “Reflections on teaching abstraction and other soft ideas”, ACM SIGCSE Bulletin,

Vol. 40/2, pp. 40-43, https://doi.org/10.1145/1383602.1383631.

[130]

Heckman, J. and D. Masterov (2007), The Productivity Argument for Investing in Young Children,

National Bureau of Economic Research, Cambridge, MA, https://doi.org/10.3386/w13016.

[27]

Henderson, L. (2007), “Theorizing a Multiple Cultures Instructional Design Model for E-Learning and E-

Teaching”, in Globalized E-Learning Cultural Challenges, IGI Global, https://doi.org/10.4018/978-1-

59904-301-2.ch008.

[103]

Hermans, F. and E. Aivaloglou (2017), “To Scratch or not to Scratch?”, Proceedings of the 12th Workshop

on Primary and Secondary Computing Education, https://doi.org/10.1145/3137065.3137072.

[175]

52  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Honey, M. and D. Kanter (eds.) (2013), Design, Make, Play: Growing the next generation of STEM

innovators, Routledge, New York, NY, https://www.routledge.com/Design-Make-Play-Growing-the-

Next-Generation-of-STEM-Innovators/Honey/p/book/9780415539203.

[227]

Horn, M. and M. Bers (2019), “Tangible computing”, in Robins, A. and S. Fincher (eds.), The Cambridge

Handbook of Computing Education Research, Cambridge University Press, Cambridge,

https://doi.org/10.1017/9781108654555.023.

[162]

Horn, M., R. Crouser and M. Bers (2011), “Tangible interaction and learning: the case for a hybrid

approach”, Personal and Ubiquitous Computing, Vol. 16/4, pp. 379-389,

https://doi.org/10.1007/s00779-011-0404-2.

[158]

Howes, C. (1987), “Social competence with peers in young children: Developmental sequences”,

Developmental Review, Vol. 7/3, pp. 252-272, https://doi.org/10.1016/0273-2297(87)90014-1.

[71]

Hsu, T., S. Chang and Y. Hung (2018), “How to learn and how to teach computational thinking:

Suggestions based on a review of the literature”, Computers & Education, Vol. 126, pp. 296-310,

https://doi.org/10.1016/j.compedu.2018.07.004.

[45]

Huang, W. and C. Looi (2020), “A critical review of literature on “unplugged” pedagogies in K-12

computer science and computational thinking education”, Computer Science Education, Vol. 31/1,

pp. 83-111, https://doi.org/10.1080/08993408.2020.1789411.

[178]

Hu, F. et al. (2015), “Strawbies: Explorations in tangible programming”, in Proceedings of the 14th

International Conference on Interaction Design and Children, Association for Computing Machinery,

New York, NY, https://doi.org/10.1145/2771839.2771866.

[155]

Ito, M. et al. (2013), Connected Learning: An Agenda for Research and Design, Digital Media and

Learning Research Hub, Irvine, CA.

[242]

Iwata, M. et al. (2020), “Exploring potentials and challenges to develop twenty-first century skills and

computational thinking in K-12 Maker Education”, Frontiers in Education, Vol. 5,

https://doi.org/10.3389/feduc.2020.00087.

[234]

Jones, N. (2016), “Digital technology to be added to education curriculum”, NZ Herald,

http://www.nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11668961.

[196]

K-12 Computer Science Framework Steering Committee (2016), K–12 Computer Science Framework,

https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

(accessed on 17 May 2022).

[40]

Kafai, Y., C. Proctor and D. Lui (2020), “From theory bias to theory dialogue”, ACM Inroads, Vol. 11/1,

pp. 44-53, https://doi.org/10.1145/3381887.

[47]

Kalelioglu, F. and Y. Gulbahar (2014), “The Effects of Teaching Programming via Scratch on Problem

Solving Skills: A Discussion from Learners’ Perspective”, Informatics in Education, Vol. 13/1, pp. 33-

50, https://doi.org/10.15388/infedu.2014.03.

[56]

Karpiński, Z., G. Di Pietro and F. Biagi (2021), “Computational thinking, socioeconomic gaps, and policy

implications”, IEA Compass: Briefs in Education No. 12, https://www.iea.nl/publications/series-

journals/iea-compass-briefs-education-series/january-2021-computational.

[246]

Kazakoff, E. and M. Bers (2014), “Put Your Robot in, Put Your Robot out: Sequencing through

Programming Robots in Early Childhood”, Journal of Educational Computing Research, Vol. 50/4,

pp. 553-573, https://doi.org/10.2190/ec.50.4.f.

[60]

EDU/WKP(2022)12  53

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Kazakoff, E., A. Sullivan and M. Bers (2012), “The Effect of a Classroom-Based Intensive Robotics and

Programming Workshop on Sequencing Ability in Early Childhood”, Early Childhood Education

Journal, Vol. 41/4, pp. 245-255, https://doi.org/10.1007/s10643-012-0554-5.

[61]

Kim, K. and J. Lee (2016), “Analysis of the effectiveness of computational thinking-based programming

learning”, The Journal of Korean association of computer education, Vol. 19/1, pp. 27-39.

[21]

Kimmons, R., C. Graham and R. West (2020), “The PICRAT model for technology Integration in teacher

preparation”, Contemporary Issues in Technology and Teacher Education, Vol. 20/1,

https://citejournal.org/volume-20/issue-1-20/general/the-picrat-model-for-technology-integration-in-

teacher-preparation.

[214]

Kirkman, G. (ed.) (2002), Rethinking learning in the digital age, Oxford University Press. [139]

Knight, V., J. Wright and A. DeFreese (2019), “Teaching Robotics Coding to a Student with ASD and

Severe Problem Behavior”, Journal of Autism and Developmental Disorders, Vol. 49/6, pp. 2632-

2636, https://doi.org/10.1007/s10803-019-03888-3.

[265]

Koehler, M. and P. Mishra (2009), “What is techlological pedagogical content knowledge?”,

Contemporary Issues in Technology and Teacher Education, Vol. 9/1, https://citejournal.org/volume-

9/issue-1-09/general/what-is-technological-pedagogicalcontent-knowledge.

[212]

Kong, S. (2016), “A framework of curriculum design for computational thinking development in K-12

education”, Journal of Computers in Education, Vol. 3/4, pp. 377-394, https://doi.org/10.1007/s40692-

016-0076-z.

[83]

Kotsopoulos, D. et al. (2019), “Mathematical or Computational Thinking? An Early Years Perspective”, in

Mathematical Learning and Cognition in Early Childhood, Springer International Publishing, Cham,

https://doi.org/10.1007/978-3-030-12895-1_6.

[128]

Kramer, J. (2007), “Is abstraction the key to computing?”, Communications of the ACM, Vol. 50/4, pp. 36-

42, https://doi.org/10.1145/1232743.1232745.

[129]

Kuhn, D., S. Nash and L. Brucken (1978), “Sex Role Concepts of Two- and Three-Year-Olds”, Child

Development, Vol. 49/2, p. 445, https://doi.org/10.2307/1128709.

[254]

Kulju, P., R. Kupiainen and M. Pienimaki (2020), Raportti luokanopettajien käsityksistä monilukutaidosta

2019 [Report on class teachers’ perceptions of multi-literacy 2019], National Audiovisual Institute,

Helsinki, https://trepo.tuni.fi/bitstream/handle/10024/123472/978-952-03-1762-

1.pdf?sequence=2&isAllowed=y.

[200]

Lee, I. et al. (2011), “Computational thinking for youth in practice”, ACM Inroads, Vol. 2/1, pp. 32-37,

https://doi.org/10.1145/1929887.1929902.

[19]

Lee, K., A. Sullivan and M. Bers (2013), “Collaboration by Design: Using Robotics to Foster Social

Interaction in Kindergarten”, Computers in the Schools, Vol. 30/3, pp. 271-281,

https://doi.org/10.1080/07380569.2013.805676.

[78]

Lehrl, S. et al. (2021), “The Home Learning Environment in the Digital Age—Associations Between Self-

Reported “Analog” and “Digital” Home Learning Environment and Children’s Socio-Emotional and

Academic Outcomes”, Frontiers in Psychology, Vol. 12, https://doi.org/10.3389/fpsyg.2021.592513.

[79]

54  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Leidl, K., M. Bers and C. Mihm (2017), “Programming with ScratchJr: A review of the first year of user

analytics”, in Kong, S., J. Sheldon and R. Li (eds.), Conference Proceedings of International

Conference on Computational Thinking Education 2017, The Education University of Hong Kong,

Hong Kong,

https://ase.tufts.edu/devtech/publications/Leidl_Bers_Mihm_ScratchJrAnalyticsHongKong.pdf.

[51]

Lerner, R. and L. Steinberg (eds.) (2009), Handbook of Adolescent Psychology, John Wiley & Sons, Inc.,

Hoboken, NJ, USA, https://doi.org/10.1002/9780470479193.

[30]

Levinson, T., L. Hunt and Z. Hassenfeld (2021), “Including Students With Disabilities in the Coding

Classroom”, in Teaching Computational Thinking and Coding to Young Children, Advances in Early

Childhood and K-12 Education, IGI Global, https://doi.org/10.4018/978-1-7998-7308-2.ch012.

[264]

Lye, S. and J. Koh (2014), “Review on teaching and learning of computational thinking through

programming: What is next for K-12?”, Computers in Human Behavior, Vol. 41, pp. 51-61,

https://doi.org/10.1016/j.chb.2014.09.012.

[24]

Magnuson, B. (2010), “Building blocks for mobile games: A multiplayer framework for app inventor for

Android”, doctoral dissertation, Massachusetts Institute of Technology, Dept. of Electrical Engineering

and Computer Science, https://dspace.mit.edu/handle/1721.1/61253.

[219]

Maguth, B. (2012), “Investigating Student Use of Technology for Engaged Citizenship in A Global Age”,

Education Sciences, Vol. 2/2, pp. 57-76, https://doi.org/10.3390/educsci2020057.

[123]

Maiorana, F., D. Giordano and R. Morelli (2015), “Quizly: A live coding assessment platform for App

Inventor”, 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond),

https://doi.org/10.1109/blocks.2015.7368995.

[218]

Manches, A. and S. Price (2011), “Designing learning representations around physical manipulation”,

Proceedings of the 10th International Conference on Interaction Design and Children - IDC ’11,

https://doi.org/10.1145/1999030.1999040.

[151]

Margolis, J. (2017), Stuck in the Shallow End, updated edition: Education, Race, and Computing, MIT

Press.

[113]

Marino, M. et al. (2013), “UDL in the Middle School Science Classroom”, Learning Disability Quarterly,

Vol. 37/2, pp. 87-99, https://doi.org/10.1177/0731948713503963.

[271]

Markert, L. (1996), “Gender related success in science and technology”, The Journal of Technology

Studies, Vol. 22/2, pp. 21-29, https://www.jstor.org/stable/43604473.

[243]

Martin, L. (2015), “The Promise of the Maker Movement for Education”, Journal of Pre-College

Engineering Education Research (J-PEER), Vol. 5/1, https://doi.org/10.7771/2157-9288.1099.

[228]

McClure, E. (2017), STEM Starts Early, http://Joan Ganz Cooney Center - STEM Starts Early: Grounding

Science, Technology, Engineering, and Math Education in Early Childhood.

[211]

McElwain, N. and B. Volling (2005), “Preschool children’s interactions with friends and older siblings:

relationship specificity and joint contributions to problem behavior.”, Journal of Family Psychology,

Vol. 19/4, pp. 486-496, https://doi.org/10.1037/0893-3200.19.4.486.

[76]

McGlynn-Stewart, M. et al. (2019), “Open-Ended Apps in Kindergarten: Identity Exploration Through

Digital Role-Play”, Language and Literacy, Vol. 20/4, pp. 40-54,

https://doi.org/10.20360/langandlit29439.

[46]

EDU/WKP(2022)12  55

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

McLaren, P. (2009), “Women and minorities in science, technology, engineering and mathematics:

Upping the numbers. Edited by Ronald J. Burke and Mary C. Mattis (2007) Cheltenham, UK: Edward

Elgar Publishing Limited, 379pp. ISBN: 978-1845428884”, Canadian Journal of Administrative

Sciences / Revue Canadienne des Sciences de l’Administration, Vol. 26/2, pp. 170-171,

https://doi.org/10.1002/cjas.99.

[259]

Metin, S. (2020), “Activity-based unplugged coding during the preschool period”, International Journal of

Technology and Design Education, pp. 1 - 17, http://Activity-based unplugged coding during the

preschool period. International Journal of Technology and Design Education, 1-17. - Google Search.

[176]

Ministère de l’Éducation et de l’Enseignement (2018), Plan d’action numérique, http://Plan d'action

numérique en éducation et en enseignement supérieur | Ministère de l'Éducation et Ministère de

l'Enseignement supérieur (gouv.qc.ca).

[190]

Moomaw, S. and J. Davis (2010), “STEM comes to Preschool”, YC Young Children, Vol. 65/5, pp. 12-14,

16-18.

[90]

Moreno-León, J. and G. Robles (2015), “Dr. Scratch”, Proceedings of the Workshop in Primary and

Secondary Computing Education, https://doi.org/10.1145/2818314.2818338.

[220]

Muñoz, R. et al. (2018), “Developing Computational Thinking Skills in Adolescents With Autism

Spectrum Disorder Through Digital Game Programming”, IEEE Access, Vol. 6, pp. 63880-63889,

https://doi.org/10.1109/access.2018.2877417.

[266]

Mussen, P. and L. Carmichael (eds.) (1983), Peer relations, Wiley. [70]

Myers, E. (2021), “The Role of Executive Function and Self-Regulation in the Development of

Computational Thinking”, in Teaching Computational Thinking and Coding to Young Children,

Advances in Early Childhood and K-12 Education, IGI Global, https://doi.org/10.4018/978-1-7998-

7308-2.ch004.

[69]

NAEYC (2020), “Developmentally Appropriate Practice”, Position Statement Adopted by the NAEYC

National Governing Board April 2020, https://www.naeyc.org/sites/default/files/globally-

shared/downloads/PDFs/resources/position-statements/dap-statement_0.pdf (accessed

on November 2021).

[210]

NAEYC and Fred Rogers Center (2012), “Technology and Interactive Media as Tools in Early Childhood

Programs Serving Children from Birth through Age 8”, A joint position statement issued by the

National Association for the Education of Young Children and the Fred Rogers Center for Early

Learning and Children’s Media at Saint Vincent College,

https://www.naeyc.org/resources/topics/technology-and-media/resources.

[235]

National Center for Education Statistics (2022), Students With Disabilities: Condition of Education, U.S.

Department of Education, Institute of Education Sciences,

https://nces.ed.gov/programs/coe/indicator/cgg (accessed on 17 May 2022).

[261]

National Center for Science and Engineering Statistics (2017), “Women, Minorities, and Persons with

Disabilities in Science and Engineering”, Special Report NSF 17-310, National Science Foundation,

Arlington, VA, https://www.nsf.gov/statistics/2017/nsf17310/.

[250]

National Research Council (2011), Successful K-12 STEM Education: Identifying Effective Approaches in

Science, Technology, Engineering, and Mathematics, The National Academies Press,

https://doi.org/10.17226/13158.

[244]

National Research Council (2010), Report of a Workshop on The Scope and Nature of Computational

Thinking, National Academies Press, Washington, D.C., https://doi.org/10.17226/12840.

[14]

56  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

National Research Council (2001), Eager to Learn: Educating Our Preschoolers, National Academies

Press, Washington, D.C., https://doi.org/10.17226/9745.

[28]

New South Wales Department of Education (2019), Coding and Computational thinking: What is the

Evidence?, https://education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-

for-a-changing-world/media/documents/Coding-and-Computational-Report_A.pdf (accessed on

17 May 2022).

[38]

OECD (2017), The Pursuit of Gender Equality: An Uphill Battle, OECD Publishing, Paris,

https://dx.doi.org/10.1787/9789264281318-en.

[251]

Ottenbreit-Leftwich, A. and A. Yadav (eds.) (2021), Integration of computational thinking into English

language arts, ACM and the Robin Hood Learning + Technology Fund.

[125]

Papert, S. (2000), “What’s the big idea? Toward a pedagogy of idea power”, IBM Systems Journal,

Vol. 39/3.4, pp. 720-729, https://doi.org/10.1147/sj.393.0720.

[273]

Papert, S. and I. Harel (1991), “Situating constructionism”, in Constructionism, Ablex Publishing

Corporation, Norwood, NJ, http://www.papert.org/articles/SituatingConstructionism.html.

[229]

Pea, R. and D. Kurland (1984), “On the cognitive effects of learning computer programming”, New Ideas

in Psychology, Vol. 2/2, pp. 137-168, https://doi.org/10.1016/0732-118x(84)90018-7.

[64]

Pellegrini, A. and P. Smith (1998), “Physical Activity Play: The Nature and Function of a Neglected

Aspect of Play”, Child Development, Vol. 69/3, pp. 577-598, https://doi.org/10.1111/j.1467-

8624.1998.tb06226.x.

[75]

Phillips, R. and B. Brooks (2017), The Hour of Code: Impact on Attitudes Towards and Self-Efficacy with

Computer Science, https://code.org/files/ HourOfCodeImpactStudy_Jan2017.pdf.

[150]

Pivetti, M. et al. (2020), “Educational Robotics for children with neurodevelopmental disorders: A

systematic review”, Heliyon, Vol. 6/10, p. e05160, https://doi.org/10.1016/j.heliyon.2020.e05160.

[267]

Portelance, D., A. Strawhacker and M. Bers (2015), “Constructing the ScratchJr programming language in

the early childhood classroom”, International Journal of Technology and Design Education, Vol. 26/4,

pp. 489-504, https://doi.org/10.1007/s10798-015-9325-0.

[52]

Pretz, K. (2014), Computer science classes for kids becoming mandatory, The IEEE News Source,

http://BeeBots and Tiny Tots - Learning & Technology Library (LearnTechLib).

[195]

Przybylski, A. and N. Weinstein (2017), “Digital Screen Time Limits and Young Children’s Psychological

Well‐Being: Evidence From a Population‐Based Study”, Child Development, Vol. 90/1,

https://doi.org/10.1111/cdev.13007.

[248]

Public Broadcasting Service (2020), CPB and PBS Awarded Ready To Learn Grant from the U.S.

Department of Education, http://CPB and PBS Awarded Ready To Learn Grant from the U.S.

Department of Education.

[156]

Puentedura, R. (2013), SAMR: Moving from Enhancement to Transformation,

http://www.hippasus.com/rrpweblog/archives/2013/05/29/SAMREnhancementToTransformation.pdf.

[213]

Pugnali, A., A. Sullivan and M. Umashi Bers (2017), “The Impact of User Interface on Young Children’s

Computational Thinking”, Journal of Information Technology Education: Innovations in Practice,

Vol. 16, pp. 171-193, https://doi.org/10.28945/3768.

[152]

EDU/WKP(2022)12  57

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Rambally, G. (2017), “Integrating Computational Thinking in Discrete Structures”, in Emerging Research,

Practice, and Policy on Computational Thinking, Springer International Publishing, Cham,

https://doi.org/10.1007/978-3-319-52691-1_7.

[127]

Rappolt-Schlichtmann, G. et al. (2013), “Universal Design for Learning and elementary school science:

Exploring the efficacy, use, and perceptions of a web-based science notebook.”, Journal of

Educational Psychology, Vol. 105/4, pp. 1210-1225, https://doi.org/10.1037/a0033217.

[272]

Redmond, P. et al. (2021), “Primary teachers’ self-assessment of their confidence in implementing digital

technologies curriculum”, Educational Technology Research and Development, Vol. 69/5, pp. 2895-

2915, https://doi.org/10.1007/s11423-021-10043-2.

[204]

Relkin, E. (2021), “TechCheck”, in Teaching Computational Thinking and Coding to Young Children,

Advances in Early Childhood and K-12 Education, IGI Global, https://doi.org/10.4018/978-1-7998-

7308-2.ch013.

[226]

Relkin, E. (2018), Assessing young children’s computational thinking abilities,

http://hdl.handle.net/10427/015529.

[15]

Relkin, E. and M. Bers (2021), TechCheck-K: A Measure of Computational Thinking for Kindergarten

Children.

[33]

Relkin, E. and M. Bers (2020), Exploring the Relationship Between Coding, Computational Thinking and

Problem Solving in Early Elementary School Students.

[25]

Relkin, E. and M. Bers (2019), “Designing an Assessment of Computational Thinking Abilities for Young

Children”, in STEM in Early Childhood Education, Routledge,

https://doi.org/10.4324/9780429453755-5.

[16]

Relkin, E., L. de Ruiter and M. Bers (2020), “TechCheck: Development and Validation of an Unplugged

Assessment of Computational Thinking in Early Childhood Education”, Journal of Science Education

and Technology, Vol. 29/4, pp. 482-498, https://doi.org/10.1007/s10956-020-09831-x.

[225]

Relkin, E. et al. (2020), “How Parents Support Children’s Informal Learning Experiences with Robots”,

Journal of Research in STEM Education, Vol. 6/1, pp. 39-51, https://doi.org/10.51355/jstem.2020.87.

[241]

Relkin, E. and A. Strawhacker (2021), “Unplugged Learning”, in Teaching Computational Thinking and

Coding to Young Children, Advances in Early Childhood and K-12 Education, IGI Global,

https://doi.org/10.4018/978-1-7998-7308-2.ch003.

[171]

Resnick, M. (2006), “Computer as Paintbrush: Technology, Play, and the Creative Society”, in Play =

Learning, Oxford University Press, https://doi.org/10.1093/acprof:oso/9780195304381.003.0010.

[140]

Resnick, M. (1998), “Technologies for Lifelong Kindergarten”, Educational Technology Research and

Development, Vol. 46/4, pp. 43-55, http://www.jstor.org/stable/30220216.

[62]

Resnick, M. et al. (2009), “Scratch”, Communications of the ACM, Vol. 52/11, pp. 60-67,

https://doi.org/10.1145/1592761.1592779.

[142]

Rich, K. et al. (2019), “Synergies and differences in mathematical and computational thinking:

implications for integrated instruction”, Interactive Learning Environments, Vol. 28/3, pp. 272-283,

https://doi.org/10.1080/10494820.2019.1612445.

[133]

58  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Rich, K., A. Yadav and R. Larimore (2020), “Teacher implementation profiles for integrating

computational thinking into elementary mathematics and science instruction”, Education and

Information Technologies, Vol. 25/4, pp. 3161-3188, https://doi.org/10.1007/s10639-020-10115-5.

[216]

Rich, K., A. Yadav and C. Schwarz (2019), “Computational Thinking, Mathematics, and Science:

Elementary Teachers’ Perspectives on Integration”, Journal of Technology and Teacher Education,

Vol. 27/2, pp. 165-295.

[131]

Rideout, V. (2014), Learning at Home: Families’Educational Media Use in America, The Joan Ganz

Cooney Center at Sesame Workshop, https://eric.ed.gov/?id=ED555586.

[236]

Rodriguez, B. et al. (2017), “Assessing Computational Thinking in CS Unplugged Activities”,

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education,

https://doi.org/10.1145/3017680.3017779.

[169]

Román-González, M., J. Moreno-León and G. Robles (2019), “Combining Assessment Tools for a

Comprehensive Evaluation of Computational Thinking Interventions”, in Computational Thinking

Education, Springer Singapore, Singapore, https://doi.org/10.1007/978-981-13-6528-7_6.

[48]

Rose, D. and A. Meyer (2002), Teaching Every Student in the Digital Age: Universal Design for Learning,

Association for Supervision and Curriculum Development, Alexandria, VA,

https://www.cast.org/products-services/resources/2002/universal-design-learning-udl-teaching-every-

student-rose.

[270]

Rubin, A. and R. Nemirovsky (1991), “Cars, computers, and air pumps: thoughts on the roles of physical

and computer models in learning the central concepts of calculus”, in Underbill, R. (ed.), Proceedings

of the 13th Annual Meeting, North American Chapter of the International Group for the Psychology of

Mathematics Education, Blacksburg, VA.

[104]

Russ, S. (2003), Play in Child Development and Psychotherapy, Routledge,

https://doi.org/10.4324/9781410609397.

[147]

Ryoo, J. et al. (2013), “Democratizing computer science knowledge: transforming the face of computer

science through public high school education”, Learning, Media and Technology, Vol. 38/2, pp. 161-

181, https://doi.org/10.1080/17439884.2013.756514.

[114]

Saxena, C., H. Baber and P. Kumar (2020), “Examining the Moderating Effect of Perceived Benefits of

Maintaining Social Distance on E-learning Quality During COVID-19 Pandemic”, Journal of

Educational Technology Systems, Vol. 49/4, pp. 532-554, https://doi.org/10.1177/0047239520977798.

[249]

Scherer, R., F. Siddiq and B. Sánchez Viveros (2019), “The cognitive benefits of learning computer

programming: A meta-analysis of transfer effects.”, Journal of Educational Psychology, Vol. 111/5,

pp. 764-792, https://doi.org/10.1037/edu0000314.

[116]

Schofield, E., M. Erlinger and Z. Dodds (2014), “MyCS”, Proceedings of the 45th ACM technical

symposium on Computer science education, https://doi.org/10.1145/2538862.2538901.

[183]

Sengupta, P. et al. (2013), “Integrating computational thinking with K-12 science education using agent-

based computation: A theoretical framework”, Education and Information Technologies, Vol. 18/2,

pp. 351-380, https://doi.org/10.1007/s10639-012-9240-x.

[105]

Settle, A. et al. (2012), “Infusing computational thinking into the middle- and high-school curriculum”,

Proceedings of the 17th ACM annual conference on Innovation and technology in computer science

education - ITiCSE ’12, https://doi.org/10.1145/2325296.2325306.

[106]

EDU/WKP(2022)12  59

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Settle, A., D. Goldberg and V. Barr (2013), “Beyond computer science”, Proceedings of the 18th ACM

conference on Innovation and technology in computer science education - ITiCSE ’13,

https://doi.org/10.1145/2462476.2462511.

[107]

Sheridan, K. et al. (2014), “Learning in the Making: A Comparative Case Study of Three Makerspaces”,

Harvard Educational Review, Vol. 84/4, pp. 505-531,

https://doi.org/10.17763/haer.84.4.brr34733723j648u.

[231]

Shonkoff, J. and D. Phillips (2000), From Neurons to Neighborhoods, National Academies Press,

Washington, D.C., https://doi.org/10.17226/9824.

[29]

Shute, V., C. Sun and J. Asbell-Clarke (2017), “Demystifying computational thinking”, Educational

Research Review, Vol. 22, pp. 142-158, https://doi.org/10.1016/j.edurev.2017.09.003.

[17]

Signorella, M., R. Bigler and L. Liben (1993), “Developmental Differences in Children′s Gender

Schemata about Others: A Meta-analytic Review”, Developmental Review, Vol. 13/2, pp. 147-183,

https://doi.org/10.1006/drev.1993.1007.

[255]

Silva, E., B. Dembogurski and G. Semaan (2021), “A Systematic Review of Computational Thinking in

Early Ages”, ArXiv, https://arxiv.org/pdf/2106.10275.pdf.

[153]

Singer, J. and D. Singer (2005), “Preschoolers’ Imaginative Play as Precursor of Narrative

Consciousness”, Imagination, Cognition and Personality, Vol. 25/2, pp. 97-117,

https://doi.org/10.2190/0kqu-9a2v-yam2-xd8j.

[148]

Sinno, S. and M. Killen (2009), “Moms at Work and Dads at Home: Children’s Evaluations of Parental

Roles”, Applied Developmental Science, Vol. 13/1, pp. 16-29,

https://doi.org/10.1080/10888690802606735.

[256]

So, H., M. Jong and C. Liu (2019), “Computational Thinking Education in the Asian Pacific Region”, The

Asia-Pacific Education Researcher, Vol. 29/1, pp. 1-8, https://doi.org/10.1007/s40299-019-00494-w.

[202]

Spanish Government Ministry of Education and Vocational Training (2021), Escuela de Pensamiento

computacional e Inteligencia Artificial [School of Computational Thinking and Artificial Intelligence],

https://intef.es/tecnologia-educativa/pensamiento-computacional/.

[198]

Spanish Government, Ministry of Education and Vocational Training (2018), Programación, Robótica y

Pensamiento Computacional en el Aula [Programming, robotics and Computational Thinking in the

Classroom], Ministry of Education and Vocational Training, Madrid, https://code.intef.es/wp-

content/uploads/2017/09/Fase-2-Informe-sobre-la-situaci%C3%B3n-en-Espa%C3%B1a-actualizado-y-

propuesta-normativa-inf-y-prim.pdf.

[199]

Spencer, S., C. Steele and D. Quinn (1999), “Stereotype Threat and Women’s Math Performance”,

Journal of Experimental Social Psychology, Vol. 35/1, pp. 4-28,

https://doi.org/10.1006/jesp.1998.1373.

[253]

Steele, C. (1997), “A threat in the air: How stereotypes shape intellectual identity and performance.”,

American Psychologist, Vol. 52/6, pp. 613-629, https://doi.org/10.1037/0003-066x.52.6.613.

[252]

Strawhacker, A. and M. Bers (2014), “ScratchJr: Computer Programming in Early Childhood Education as

a Pathway to Academic Readiness and Success”, Poster session presented at the DR K-12 PI Meeting,

https://cadrek12.org/2014-dr-k-12-pi-meeting/posterhall.

[59]

Strawhacker, A. et al. (2020), “The Role of Picture Books in supporting Young Children’s Learning about

Bioengineering [Poster session]”, SRCD 2020 Special Topic Meeting: Learning through Play and

Imagination, St. Louis, MO.

[137]

60  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Strawhacker, A., M. Lee and M. Bers (2017), “Teaching tools, teachers’ rules: exploring the impact of

teaching styles on young children’s programming knowledge in ScratchJr”, International Journal of

Technology and Design Education, Vol. 28/2, pp. 347-376, https://doi.org/10.1007/s10798-017-9400-

9.

[53]

Strawhacker, A. et al. (2015), “ScratchJr demo: A coding language for kindergarten”, IDC’15:

Proceedings of the 14th International Conference on Interaction Design and Children, Boston, MA,

21-24 June 2015, https://doi.org/10.1145/2771839.2771867.

[54]

Strawhacker, A. et al. (2020), “Debugging as Inquiry in Early Childhood: A case study using the

CRISPEE prototype”, in Roundtable Session (Chair: K. Mills): Computational Thinking for Science

Learning at the Annual Meeting of the American Educational Research Association (AERA), AERA.

[136]

Strawhacker, A. et al. (2020), “Designing with Genes in Early Childhood: An exploratory user study of the

tangible CRISPEE technology”, International Journal of Child-Computer Interaction, Vol. 26,

p. 100212, https://doi.org/10.1016/j.ijcci.2020.100212.

[134]

Strawhacker, A. et al. (2020), “Young Children’s Learning of Bioengineering with CRISPEE: a

Developmentally Appropriate Tangible User Interface”, Journal of Science Education and Technology,

Vol. 29, pp. 319-339, https://doi.org/10.1007/s10956-020-09817-9.

[135]

Sullivan, A. (2021), “Supporting Girls’ Computational Thinking Skillsets”, in Teaching Computational

Thinking and Coding to Young Children, Advances in Early Childhood and K-12 Education, IGI

Global, https://doi.org/10.4018/978-1-7998-7308-2.ch011.

[257]

Sullivan, A. (2019), Breaking the STEM stereotype: Reaching girls in early childhood, Rowman &

Littlefield Publishers.

[35]

Sullivan, A. and M. Bers (2019), “Computer Science Education in Early Childhood: The Case of

ScratchJr”, Journal of Information Technology Education: Innovations in Practice, Vol. 18, pp. 113-

138, https://doi.org/10.28945/4437.

[44]

Sullivan, A. and M. Bers (2017), “Dancing robots: integrating art, music, and robotics in Singapore’s early

childhood centers”, International Journal of Technology and Design Education, Vol. 28/2, pp. 325-

346, https://doi.org/10.1007/s10798-017-9397-0.

[99]

Sullivan, A., M. Bers and C. Mihm (2017), “Imagining, Playing, & Coding with KIBO: Using KIBO

Robotics to Foster Computational Thinking in Young Children”, in the Proceedings of the

International Conference on Computational Thinking Education, Education University of Hong Kong.

[65]

Sullivan, A., M. Elkin and M. Bers (2015), “KIBO robot demo”, Proceedings of the 14th International

Conference on Interaction Design and Children, https://doi.org/10.1145/2771839.2771868.

[66]

Sullivan, A. and A. Strawhacker (2021), “Screen-Free STEAM: Low-Cost and Hands-on Approaches to

Teaching Coding and Engineering to Young Children”, in Embedding STEAM in Early Childhood

Education and Care, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-

65624-9_5.

[94]

Sullivan, A., A. Strawhacker and M. Bers (2017), “Dancing, Drawing, and Dramatic Robots: Integrating

Robotics and the Arts to Teach Foundational STEAM Concepts to Young Children”, in Robotics in

STEM Education, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-57786-

9_10.

[98]

Sullivan, A. and M. Umashi Bers (2016), “Girls, Boys, and Bots: Gender Differences in Young Children’s

Performance on Robotics and Programming Tasks”, Journal of Information Technology Education:

Innovations in Practice, Vol. 15, pp. 145-165, https://doi.org/10.28945/3547.

[163]

EDU/WKP(2022)12  61

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

Sun, L. et al. (2020), “STEM learning attitude predicts computational thinking skills among primary

school students”, Journal of Computer Assisted Learning, Vol. 37/2, pp. 346-358,

https://doi.org/10.1111/jcal.12493.

[31]

Svensson, A. (2000), “Computers in School: Socially Isolating or a Tool to Promote Collaboration?”,

Journal of Educational Computing Research, Vol. 22/4, pp. 437-453, https://doi.org/10.2190/30kt-

1vlx-fhtm-rcd6.

[73]

Taylor, M. (2018), “Computer Programming With Pre-K Through First-Grade Students With Intellectual

Disabilities”, The Journal of Special Education, Vol. 52/2, pp. 78-88,

https://doi.org/10.1177/0022466918761120.

[263]

Taylor, M., E. Vasquez and C. Donehower (2017), “Computer Programming with Early Elementary

Students with Down Syndrome”, Journal of Special Education Technology, Vol. 32/3, pp. 149-159,

https://doi.org/10.1177/0162643417704439.

[268]

The Royal Society (2021), “STEM sector must step up and end unacceptable disparities in Black staff and

students academic progression and success”, https://royalsociety.org/news/2021/03/stem-ethnicity-

report/ (accessed on 17 May 2022).

[42]

Thies, R. and J. Vahrenhold (2013), “On plugging “unplugged” into CS classes”, Proceeding of the 44th

ACM technical symposium on Computer science education - SIGCSE ’13,

https://doi.org/10.1145/2445196.2445303.

[180]

Thies, R. and J. Vahrenhold (2012), “Reflections on outreach programs in CS classes”, Proceedings of the

43rd ACM technical symposium on Computer Science Education - SIGCSE ’12,

https://doi.org/10.1145/2157136.2157281.

[179]

Trevallion, D. (2014), “Connecting to Australia’s first digital technology curriculum”, The Conversation,

http://theconversation.com/connecting-to-australias-first-digital-technology-curriculum-23507.

(accessed on 17 May 2022).

[197]

Tsortanidou, X., T. Daradoumis and E. Barberá (2021), “A K-6 computational thinking curricular

framework: pedagogical implications for teaching practice”, Interactive Learning Environments, pp. 1-

21, https://doi.org/10.1080/10494820.2021.1986725.

[84]

Tucker, A. (2003), A model curriculum for k--12 computer science: Final report of the ACM K-12 task

force curriculum committee, Association for Computing Machinery (ACM),

https://dl.acm.org/doi/book/10.1145/2593247.

[7]

Unahalekhaka, A. and M. Bers (2022), “Clustering Young Children’s Coding Project Scores with Machine

Learning”, 2022 IEEE Global Engineering Education Conference (EDUCON),

https://doi.org/10.1109/educon52537.2022.9766579.

[221]

Unahalekhaka, A. and M. Bers (2022), “Evaluating young children’s creative coding: rubric development

and testing for ScratchJr projects”, Education and Information Technologies,

https://doi.org/10.1007/s10639-021-10873-w.

[222]

Unahalekhaka, A. and M. Govind (2021), “Examining Young Children’s Computational Artifacts”, in

Teaching Computational Thinking and Coding to Young Children, Advances in Early Childhood and

K-12 Education, IGI Global, https://doi.org/10.4018/978-1-7998-7308-2.ch014.

[187]

Upadhyaya, B., M. McGill and A. Decker (2020), “A Longitudinal Analysis of K-12 Computing

Education Research in the United States”, Proceedings of the 51st ACM Technical Symposium on

Computer Science Education, https://doi.org/10.1145/3328778.3366809.

[173]

62  EDU/WKP(2022)12

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

US Government National Science and Technology Council (2018), Charting a Course for Success:

America’s Strategy for STEM Education, US Government, Office of Science and Technology Policy,

Washington D.C., https://www.energy.gov/sites/default/files/2019/05/f62/STEM-Education-Strategic-

Plan-2018.pdf.

[86]

Vee, A. (2017), Coding Literacy, The MIT Press, https://doi.org/10.7551/mitpress/10655.001.0001. [121]

Vee, A. (2013), “Understanding Computer Programming as a Literacy”, Literacy in Composition Studies,

Vol. 1/2, pp. 42-64, https://doi.org/10.21623/1.1.2.4.

[120]

Wahlström, J. et al. (2000), “Differences between work methods and gender in computer mouse use”,

Scandinavian Journal of Work, Environment & Health, Vol. 26/5, pp. 390-397,

https://doi.org/10.5271/sjweh.559.

[160]

Walter-Herrmann, J. and C. Buching (eds.) (2013), Digital fabrication and ‘making’in education: The

democratization of invention, Transcript Publishers.

[109]

Wan, Z., Y. Jiang and Y. Zhan (2020), “STEM Education in Early Childhood: A Review of Empirical

Studies”, Early Education and Development, Vol. 32/7, pp. 940-962,

https://doi.org/10.1080/10409289.2020.1814986.

[80]

Wartella, E. and N. Jennings (2000), “Children and Computers: New Technology. Old Concerns”, The

Future of Children, Vol. 10/2, p. 31, https://doi.org/10.2307/1602688.

[77]

Watson, E. (2020), “STEM or STEAM?: the Critical Role of Arts in Technology Education (and the

Critical Role of Art in Technology)”, Irish Journal of Academic Practice, Vol. 8/1,

https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1079&context=ijap (accessed on 17 May 2022).

[92]

Weintrop, D. et al. (2015), “Defining Computational Thinking for Mathematics and Science Classrooms”,

Journal of Science Education and Technology, Vol. 25/1, pp. 127-147, https://doi.org/10.1007/s10956-

015-9581-5.

[108]

White House, US (2016), “Fact sheet: Advancing active STEM for our yongest learners”, The White

House Office of the Press Secretary news release of 21 April 2016,

https://obamawhitehouse.archives.gov/the-press-office/2016/04/21/fact-sheet-advancing-active-stem-

education-our-youngest-learners.

[188]

Wing, J. (2011), “Research notebook: Computational thinking—What and why”, The link magazine 6,

pp. 20-23, http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why.

[2]

Wing, J. (2006), “Computational thinking”, Communications of the ACM, Vol. 49/3, pp. 33-35,

https://doi.org/10.1145/1118178.1118215.

[1]

Wohl, B., B. Porter and S. Clinch (2015), “Teaching Computer Science to 5-7 year-olds”, Proceedings of

the Workshop in Primary and Secondary Computing Education,

https://doi.org/10.1145/2818314.2818340.

[177]

World Economic Forum (2020), The Future of Jobs Report 2020, Geneva: World Economic Forum.,

http://www.weforum.org/reports/the-future-of-jobs-report-2020/in-full.

[6]

World Health Organisation (2019), Guidelines on Physical Activity, Sedentary Behaviour and Sleep for

Children under 5 Years of Age, World Health Organisation, Geneva,

https://apps.who.int/iris/handle/10665/311664.

[166]

EDU/WKP(2022)12  63

THE STATE OF THE FIELD OF COMPUTATIONAL THINKING IN EARLY CHILDHOOD EDUCATION

For Official Use

World Health Organization and World Bank (2011), World report on disability 2011, World Health

Organization, https://apps.who.int/iris/handle/10665/44575.

[260]

Wortham, S. (2009), Early Childhood Curriculum: Developmental Bases for Learning and Teaching,

Pearson Merrill Prentice Hall, Upper Saddle River, NJ.

[88]

Yadav, A. et al. (2016), “Expanding computer science education in schools: understanding teacher

experiences and challenges”, Computer Science Education, Vol. 26/4, pp. 235-254,

https://doi.org/10.1080/08993408.2016.1257418.

[205]

Yadav, A. et al. (2018), “Computational thinking in elementary classrooms: measuring teacher

understanding of computational ideas for teaching science”, Computer Science Education, Vol. 28/4,

pp. 371-400, https://doi.org/10.1080/08993408.2018.1560550.

[208]

Yakman, G. (2008), STEAM Education: an Overview of Creating a Model of Integrative Education.,

https://www.researchgate.net/publication/327351326_STEAM_Education_an_overview_of_creating_a

_model_of_integrative_education (accessed on 17 May 2022).

[93]

Zhang, L. and J. Nouri (2019), “A systematic review of learning computational thinking through Scratch

in K-9”, Computers & Education, Vol. 141, p. 103607,

https://doi.org/10.1016/j.compedu.2019.103607.

[49]

	Acknowledgements
	Abstract
	1. Introduction
	2. Defining Computational thinking, Computer science, and programming
	2.1. Definitions
	2.2. Computer science
	2.3. Computer programming
	2.4. Computational thinking
	2.4.1. Summary

	2.5. Computational thinking concepts for young children

	3. Computational thinking frameworks and learning standards
	3.1. History of CT in learning standards and frameworks
	3.2. Exploring current CT initiatives and frameworks across OECD countries.
	3.3. Recent international research on CT in early education

	4. Computational thinking and early learning and development
	4.1. Support and criticism of CT in early education
	4.2. Exploring the role of CT in early learning and development
	4.3. CT and cognitive development
	4.3.1. Cognitive skills and executive functions

	4.4. CT and social-emotional development
	4.5. CT and the positive technological development framework
	4.6. Integrating across STEAM curricula
	4.6.1. Literacy
	4.6.2. Mathematics
	4.6.3. Science

	5. Tools for early CT learning
	5.1. Designing technologies for CT learning
	5.1.1. Developmentally appropriate design and opportunities for play
	5.1.2. Digital games and puzzle-style software applications

	5.2. Open-ended coding and programming environments
	5.3. Media (TV) for computational thinking
	5.4. Robotic kits
	5.5. Unplugged activities and products
	5.5.1. Computer Science Unplugged
	5.5.2. Unplugged products and resources

	6. Effective and scalable CT education
	6.1. Overview of global CT initiatives
	6.1.1. Americas
	6.1.2. Europe
	6.1.3. Asia, Australia, and Pacific Island nations

	6.2. Professional development and qualifications of teachers and administrators
	6.3. Assessment and documentation
	6.4. Informal learning spaces
	6.5. Family engagement
	6.6. Summary and recommendations

	7. Equity and access
	7.1. Increasing diversity, access, equity, and inclusion in the fields of computational thinking and computer science
	7.2. Socio-economic inequalities in access to CT tools
	7.3. Addressing issues with underrepresented groups in CT
	7.4. Disabilities and accessibility

	8. Concluding remarks
	8.1. Key takeaways for policymakers
	References

