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Abstract

In considering ways to improve the use of digital technology in educational settings,

it is helpful to look beyond desktop computers and conventional modes of interaction

and consider the flood of emerging technologies that already play a prominent role in

the everyday lives of children. In this dissertation, I will present a research project

that builds on tangible user interface (TUI) technology to support computer pro-

gramming and robotics activities in education settings. In particular, I will describe

the design and implementation of a novel tangible computer programming language

called Tern. I will also describe an evaluation of Tern’s use in both formal and

informal educational settings—as part of an interactive exhibit on robotics and com-

puter programming called Robot Park on display at the Boston Museum of Science;

and as part of a curriculum unit piloted in several kindergarten classrooms in the

greater Boston area. In both cases, Tern allows children to create simple computer

programs to control a robot. However, rather than using a keyboard or mouse to

write programs on a computer screen, children instead use Tern to construct physical

algorithmic structures using a collection of interlocking wooden blocks. The goal of

this work is not to propose that tangible programming languages are general pur-

pose tools that should replace existing graphical programming languages; rather, I

will present evidence to support the argument that tangible programming begins to

make sense when one considers the contexts and constraints of specific educational

settings. Moreover, in these settings tangible languages can compensate for some of

the shortcomings of graphical and text-based systems that have limited their use.
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Chapter 1

Introduction

Real world learning environments such as K-12 classrooms and science museums are

complex and often chaotic places (Allen, 2004; Serrell, 1996; Cuban, 1984). Teachers

in classrooms must learn how to balance the needs of anywhere from 20 to 30 stu-

dents at a time with the demands of curriculum and the constraints of a regimented

school day. In science museums, the challenge is different. Program developers and

exhibit designers must work without the structure and guidance provided by teachers

and curriculum. Instead, the goal in these informal settings is to devise activities

and exhibits that engage a diverse audience and promote self-guided learning and

discovery (Allen, 2004).

Given these challenges, it is not surprising that technology, of one form or another,

has long been used to support teaching and learning in these environments (Cuban,

1984). The role of computer technology, in particular, has been the focus of close to

four decades of research and innovation—not to mention heated debate (see Papert,

1980; Cuban, 2001; Oppenheimer, 2003). For educators, the decision to incorporate
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computer-based learning activities can be fraught with risk (AAUW, 2000; Cuban,

1984, 2001; Serrell, 1996). Not only are there concerns about what exactly students

are doing on multi-media computers connected to the Internet, but teachers may

also feel a sense of loss of control and self-doubt about their own proficiency with

technology (AAUW, 2000). Furthermore, modern desktop computers, designed pri-

marily as single-user productivity tools for businesses, can be inappropriate for many

educational applications (Stewart et al., 1998; Scott et al., 2003). In many cases, stu-

dents are required to leave their normal work space, crowd around a limited number

of desktop computers, and share single user input devices. Likewise, in museums,

although computer-based exhibits can be very engaging for individual visitors, they

are often detrimental to the interactions of social groups as a whole (Heath et al.,

2005; Hornecker & Buur, 2006; Serrell, 1996). As a result, many potentially beneficial

computer-based activities are simply not included as educational activities (Serrell,

1996; Cuban, 2001).

In this dissertation, I will present a project that builds on emerging human-computer

interaction techniques to facilitate the inclusion of computer-based activities in real

world educational environments. In particular, I am interested in the potential of

tangible user interface (TUI) technology (Ishii & Ullmer, 1997) to support computer

programming activities. To this end, I will describe the design and implementation of

a novel tangible computer programming language that I created called Tern. I will also

describe the use of Tern in both formal and informal educational settings—as part of

an exhibit on robotics and computer programming at the Boston Museum of Science;

and as part of a curriculum unit on robotics piloted in five kindergarten classrooms

with 93 children (ages 5–7) in the greater Boston area. Tern is similar to many other

educational computer programming languages in that it features kid-friendly syntax

that children can use to create computer programs consisting of sequences of com-
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Figure 1.1: Tern is a tangible programming language that allows children to construct
physical algorithmic structures using interlocking wooden blocks.

mands combined with basic flow-of-control structures. However, rather than program

with a keyboard or mouse on a computer screen, Tern instead builds on tangible in-

terface technology to allow children to construct physical algorithmic structures using

a collection of interlocking wooden blocks (Figure 1.1). Tern uses reliable computer

vision techniques to convert these physical programs into digital code that is then

downloaded to an autonomous robot.

This idea of tangible programming poses many challenges, especially for use in educa-

tional environments such as classrooms and science museums. How do students save

their work? What if there aren’t enough blocks to go around? Isn’t this needlessly

expensive? Is computer vision really reliable enough? Despite these challenges, I will

argue that one contribution of my work is a tangible interface for computer program-

ming that is durable, inexpensive, and reliable. Furthermore, while far from perfect, I

propose that if one considers the contexts and constraints of specific educational envi-

ronments, then this type of system can address some of the shortcomings of graphical

and text-based languages that I believe have restricted their use in education.
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1.1 Overview

My work in tangible programming languages was originally inspired by informal ob-

servations of teachers in classrooms over a period of two years who were grappling

with the challenge of incorporating computer-based learning activities into their cur-

riculum. My work on early Tern prototypes led to discussions and an eventual part-

nership with program directors at the Boston Museum of Science who were interested

in creating hands-on computer programming and robotics activities. The result of

this partnership was the development of a permanent exhibit in the Cahners Com-

puterPlace Discovery Space at the Museum over a period of two years. The primary

contribution of this dissertation involves a study comparing the use of a tangible and

a graphical interface as part of this exhibit. For this study, we collected observations

of 260 museum visitors and conducted interviews with 13 family groups. Our results

show that the tangible and the graphical systems are roughly equally easy for visitors

to understand. However, with the tangible interface, visitors were significantly more

likely to try the exhibit and significantly more likely to actively participate in groups.

In turn, we show that regardless of the condition, involving multiple active partici-

pants leads to significantly longer interaction times. Finally, we examine the roles of

children and adults in each condition and present evidence that children were more

actively involved in the tangible condition—an effect that seems to be particularly

strong for girls.

In addition to the study conducted at the Museum, I will describe a pilot study

involving the use of tangible programming in five kindergarten classrooms in the

greater Boston area. This work is part of a project called Tangible Kindergarten,

which has the goal of providing age-appropriate curriculum and technology for use

in early elementary school classrooms. This project explores the idea that when
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given access to appropriate tools, young children can actively engage in computer

programming and robotics activities in a way that is consistent with developmentally

appropriate practice. Our vision is that these types of activities will not only provide

children with positive technology and teamwork experiences, but will also provide

valuable connections to other academic areas, including literacy, math, science, and

engineering.

Despite the substantial differences between learning in science museums and class-

rooms, many of the design considerations for tangible programming in museum set-

tings such as cost, durability, simplicity, apprehendability, and robustness, are also

applicable in classrooms settings. Thus, I will describe the adaptation of Tern for

use in kindergarten classrooms based on my experiences in the Museum. I will also

describe results from our pilot study, which, in part, explored the differences between

tangible and graphical programming in the classroom. These results suggest that

both tangible and graphical systems may have advantages for use in the classroom

depending on the situation. I will conclude with a discussion of implications for future

work and a list of lessons learned from the design and deployment of Tern.

1.2 Educational Philosophy

My educational philosophy falls in the constructivist tradition and has been influ-

enced by the work of Jean Piaget, Lev Vygotsky, and Seymour Papert in particu-

lar (Richardson, 1998; Vygotsky, 1978; Papert, 1980). In designing technology-based

interventions for educational settings, my goal is to provide learning activities that

are intrinsically motivated. In other words, as much as possible, my goal is for chil-

dren to be the principle driving force behind their own learning experiences. Thus,
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rather than trying to transmit knowledge in a one-way stream from the teacher to

the learner—or from the multi-media computer to the child—I seek to provide in-

teractive experiences that allow children to construct knowledge through meaningful

activity. In particular, Papert’s notion of constructionism proposes that learning is

most effective when children are engaged in creating meaningful projects in the real

world (Papert, 1980). In addition, Vygotsky’s theory of the zone of proximal de-

velopment (ZPD) defines a critical for educators and designers. In particular, ZPD

suggests that children learn best when provided with learning experiences that are at

or slightly above their current level of development (Vygotsky, 1978).

1.3 Methodological Approach: Design-Based Re-

search

My work in both classrooms and museums has been influenced by a methodological

approach known as design-based research. Design-based research (DBR) is an ap-

proach to studying novel tools and techniques for education in the context of real-life

learning settings (Dede et al., 2004). As a methodology, DBR acknowledges the sub-

stantial limitations of conducting research in chaotic environments like classrooms;

however, in exchange researchers hope that the resulting designs will be effective and

practical for future use. DBR is based on an iterative process of design, evaluation,

and testing. By collecting both qualitative and quantitative data in non-laboratory

settings, design-based research has the additional goal of developing theories of learn-

ing that will inform future research. This approach has roots in user-centered design

principals (Norman, 1986), in that the focus of the iterative design and testing pro-

cess is on the end users, be they students or teachers, museum visitors or staff. My

6



approach, however, has typically not involved cooperative or participatory methods

as end users have not been directly involved in the design process. Rather, I created

designs based on assumptions of the needs and capabilities of end users. I then at-

tempted to validate those assumptions through the testing of prototypes in real world

settings with representatives from my target user population.
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Chapter 2

Background

2.1 Technology in Education

This dissertation concerns educational technology, which I define broadly as any tool

used in educational settings (both formal and informal) to support learning. This

includes technologies that have been designed specifically for education as well as

technologies that have been appropriated by teachers and students to support learning

activities. To put this in context, Figure 2.1 shows a photograph that I took of the

Learning Tools shelf in a 4th/5th grade (ages 9–11) classroom in an urban, Title I1

school in Boston, Massachusetts where I worked for two years as a National Science

Foundation GK-12 Fellow.2 This shelf is full of excellent examples of educational

technology, including both tools that have been appropriated from other contexts

for use in the classroom—clipboards, rulers, markers, crayons, etc.—as well as tools

1In the 2008-2009 school year 44% of the students enrolled at this school qualified for free or
reduced price lunch.

2http://www.nsfgk12.org/
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Figure 2.1: A picture of the Learning Tools shelf in a 4th/5th grade (ages 9–11
)classroom at an urban, Title I school in Boston, Massachusetts (taken 2006).

that were specifically designed for educational use—the fraction stackers and the

powers of ten flip-chart. Throughout the course of the school day, the teacher in this

classroom would use this area of the room to help manage classroom dynamics. For

example, he would often say things like, “Group 1, grab some clipboards and go out

in the hallway and work on revising your essays; group 2, grab some map pencils

and continue working on your observational drawings; Emily, grab a calculator and

come over here to work on your math homework that you missed when you were out

last week.”3 These tools fit comfortably within the routine of a classroom and are

useful to students for learning and teachers for maintaining a positive and productive

learning environment (Cuban, 1984).

The technologies available on the learning tools shelf share many common traits that

make them advantageous for use in classrooms. Four traits of particular importance

are cost-effectiveness, reliability, flexibility, and usefulness.

3These are not direct quotes from the teacher.
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• Cost-Effectiveness: Cost-effectiveness implies that a technology is worth its

investment. That is, the technology is either inexpensive (e.g. crayons), or it is

useful enough that its cost can be amortized over a period of months or years

(e.g. calculators).

• Reliability: Reliability implies that a particular technology either works well

over a long period of time, requiring only minimal maintenance (e.g. clipboards

and calculators), or it is easily repaired or replaced (e.g. pencils and markers).

• Flexibility: Related to reliability, flexibility implies that a tool can be used for

a variety of tasks in a variety of contexts. Furthermore, it is readily adaptable

to meet the needs of new or unexpected situations. Flexible technology can

thus empower a teacher to organize the dynamics of the classroom, responding

to the needs of the students and the demands of the environment in a more

fluid manner. Flexibility, in many cases, also implies portability. That is, the

tool can be easily carried from one place to another.

• Usefulness: Building on the previous traits, usefulness implies that a particular

technology contributes to the role of the teacher or the student in a meaningful

way, either as a tool to facilitate educational activities indirectly or as a tool to

directly support learning. For example, overhead projectors and chalkboards in-

directly support education by allowing teachers to present material to an entire

class, while a math manipulative might directly support learning by allowing

students to explore and reflect on a concept of interest.

Turning now to a different type of educational technology, Figure 2.2 shows a picture

that I took in the same 4th/5th grade (ages 9–11) classroom in Boston. It shows

a common configuration of desktop computers in an elementary school classroom—

four desktop computers arranged around the periphery of the classroom to serve
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Figure 2.2: A picture showing the computer setup in the same 4th / 5th grade (ages
9–11) classroom in Boston.

the needs of around 25 students. This digital technology shares some of the traits

of its counterparts from the learning tools shelf on the opposite side of the room.

Namely, the computers are cost-effective, especially since older computer equipment

is often donated to schools; they are reliable, although perhaps not to the degree

of the learning tools from across the room; and they are flexible, in the sense that

many different tasks can be accomplished with what Seymour Papert has termed the

“protean machine” (Papert, 1980). But are they useful? Or, perhaps more to the

point, what are the computers actually used for? In my experience, the answer is

almost exclusively for word processing and Internet-based research, but little else.4

And, for this small subset of tasks, the computers certainly are useful. But why aren’t

they used for more, especially since there is ample evidence pointing to benefits of the

thoughtful inclusion of computer-based activities in classrooms (Clements, 1999b,c;

Haugland, 1992; Haugland & Shade, 1994)? As the AAUW puts it, “Computers

4My observations seem congruent with other studies of computer use in classrooms (see Cuban,
2001).
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can no longer be treated as a set aside, lab-based activity. Computation should be

integrated across the curriculum, into such subject areas and disciplines as art, music,

and literature, as well as engineering and science. This integration supports better

learning for all, while it invites more girls into technology through a range of subjects

that already interest them” (AAUW, 2000).

Larry Cuban argues that part of the answer to this question is that educators face

what he calls contextually constrained choices that influence their decision to incorpo-

rate computer-based activities in the classroom (Cuban, 2001). In essence, individual

teachers become gatekeepers for the kinds of technology that are present in their class-

room and the ways in which those technologies are used (Cuban, 2001). Furthermore

“...teachers will alter classroom behavior selectively to the degree that certain tech-

nologies help them solve problems they define as important and avoid eroding their

classroom authority. They will either resist or be indifferent to changes that they

see as irrelevant to their practice” (Cuban, 1984). In other words, in the real-world

context of the classroom, shaped by history, culture, and day-to-day pragmatic deci-

sions, teachers must ask themselves if the inclusion of a particular technology makes

sense. Cuban therefore predicts that the incorporation of in-depth technology-based

activities such as computer programming will be rare (Cuban, 1984). And, indeed, in

his investigation into computer use in Silicon Valley schools he found that less than

5 percent of high school students had intense “tech-heavy” experiences, and that less

than 5 percent of teachers integrated computer technology into their regular curricu-

lum and instructional routines (Cuban, 2001). And, while my personal experience

in classrooms is limited, this assessment seems in line with what I have observed in

public schools in Bostons.

In particular, Cuban’s concept of contextually constrained choice helps explain some
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of my observations working in schools as a GK–12 fellow. While I was working in the

4th/5th grade (ages 9–11) classrooms, the school used an elementary mathematics

curriculum called TERC investigations. This curriculum includes a unit called Pic-

turing Polygons which, in turn, includes a set of computer-based activities based on

a variant of the Logo programming language (Papert, 1980). These activities were

designed to allow students to explore concepts of geometry by writing short computer

programs to draw polygons by moving the Logo turtle on a grid. This seemed to me

to be an excellent example of a computer-based activity thoughtfully integrated into

the larger classroom curriculum.

However, despite access to the TERC software, computers, and well-designed curricu-

lum, the teacher chose not to implement the Logo activities. Why not? It’s not that

the teacher was opposed to using computers or even computer programming in the

classroom—on the contrary, he is technologically savvy, and, in general, has a posi-

tive view of the role of technology in the classroom. Cuban’s concept of contextually

constrained choice perhaps offers a better explanation. He was a first year teacher

who often confided that he was overwhelmed by the demands of the job; he had fifty

minutes every day to teach mathematics to around 25 children; and, at the time, there

were four working desktop computers available in the classroom. To make the Logo

activity work, he would have had to have divided the children into small groups and

rotated them between computer-based and non-computer-based work. The groups of

students, in turn, would have had to crowd around the desktop computers and figure

out how to share the single-user input devices (mouse and keyboard). And, while I

believe this was within this teacher’s capacity as a manager of classroom activities,

the effort might have seemed more trouble than it was worth.

From a human-computer interaction perspective, part of the problem has to do with
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the desktop computers themselves. Primarily productivity tools for single users in

business settings, modern desktop computers are in many ways poorly designed for

classroom use (Cuban, 2001). For one thing, many young children lack the fine motor

skills necessary to effectively use mouse-based interfaces (Hourcade et al., 2004), which

is an important consideration when conducting programming activities in preschool

and kindergarten classrooms (ages 4–6). Furthermore, group work is often the norm

in both formal and informal learning settings. And, several research studies have

demonstrated that overcoming the inherent single-user limitation of desktop comput-

ers can improve children’s experiences with technology (Stewart et al., 1998; Scott

et al., 2000; Inkpen et al., 1995b,a). For example, in a pilot study conducted with 72

elementary school children, Stewart, Raybourn, Bederson, & Druin (1998) observed

the behavior of children collaborating on a computer-based activity with a single user

input device (a computer mouse). They found that with a single mouse children

would frequently fight for control of the input device and that, in general, their col-

laborative communication was poor. Furthermore, the passive collaborator (the child

without the mouse) would often exhibit signs of frustration and lack of attention.

Similarly, Scott, Mandryk, & Inkpen (2003) conducted a study with 40 elementary

school children (ages 9–11) comparing children working in pairs on a puzzle game

with both a single-mouse and a multiple-mouse system. They found that, “quanti-

tative and qualitative analysis of computer log files, videotapes, and questionnaires

revealed that providing children with technology that supports concurrent, multi-user

interaction can positively impact their engagement, participation, and enjoyment of

the activity.”
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2.2 Computer Programming and Education

Computational thinking is a fundamental skill for everyone, not just for

computer scientists. To reading, writing, and arithmetic, we should add

computational thinking to every childs analytical ability. Just as the print-

ing press facilitated the spread of the three Rs, what is appropriately in-

cestuous about this vision is that computing and computers facilitate the

spread of computational thinking.

—Wing (2006)

Since the 1960s a large number of programming languages and systems targeted at

novice users have been created (Kelleher & Pausch, 2005). Logo (Papert, 1980) is

one of the earliest and perhaps the most influential educational programming lan-

guage, and, the constructionist theories of its central proponent, Seymour Papert,

have shaped the field of educational computer programming ever since. Notable re-

cent languages include PicoBlocks, Scratch (Resnick, 2007), Alice (Conway et al.,

1994), and ROBOLAB. Much of the effort to create these languages has been mo-

tivated by the belief that learning how to program is not only necessary for tech-

nological fluency (Bers, 2008; AAUW, 2000) in the digital age, but that it is also

somehow beneficial as an academic endeavor in its own right (Papert, 1980). In other

words, that computational thinking (Wing, 2006), as a more general abstraction of

computer programming, is a powerful intellectual skill that can have a positive impact

on other areas of children’s intellectual growth. Indeed, some research has indicated

that learning how to program computers can have a positive and measurable effect

on children’s achievement, not only in math and science, but also in language skills,

creativity, and social-emotional interaction (Bers, 2008; Clements, 1999b; Haugland,

1992). Of course, the decades of research involving computer programming in schools
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is diverse, and much depends on the age of the students, the context in which the com-

puter programming activities are introduced, and the ways in which the activities are

integrated within the broader curriculum (Clements, 1999b; AAUW, 2000). As the

American Association of University Women (AAUW) Educational Foundation puts

it, “Fluency is best acquired when students do coherent, ongoing projects to achieve

specific goals in subjects that are relevant and interesting to them” (AAUW, 2000).

If children are merely exposed to programming there seems to be little measurable

benefit (Clements, 1999b; Rader et al., 1999). Again, the AAUW emphasizes the need

to integrate computer science throughout the curriculum, “have computer science go

beyond programming to emphasize how computer science (including programming)

is used to solve real-life problems” (AAUW, 2000).

One barrier to this vision is that computer programming is difficult for novices of

any age. Kelleher & Pausch (2005) offer a taxonomy containing well over 50 novice

programming systems, a great number of which aim to ease or eliminate the process

of learning language syntax, perhaps the most often cited source of novice frustra-

tion. Beyond syntax, there are many specific conceptual hurdles faced by novice

programmers as well as fundamental misconceptions about the nature of computers

and computer programming (Ben-Ari, 1998). According to Norman (1986), the pri-

mary problem facing novice programmers is the gap between the representation the

brain uses when thinking about a problem and the representation a computer will

accept. Likewise, Levy and Mioduser present a study in which they detail children’s

struggles to construct technical explanations for robot behaviors, presenting evidence

of Norman’s gap from the opposite direction (Levy & Mioduser, 2008). In other

words, the children were struggling to formulate technical language to describe the

actions of a robot that the researchers had programmed ahead of time.
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Part of this dissertation will describe the use of tangible programming languages

by kindergarten-aged children (ages 5–6). Therefore, in addition to the above chal-

lenges faced by novice programmers, we must also consider the developmental needs

and capabilities of young children. McKeithen, Reitman, Rueter, & Hirtle (1981)

conducted a study that explored the differences in the ability of expert and novice

computer programmers to recall details of computer programs. In their analysis, they

theorize that because novice programmers lack adequate mental models for program-

ming tasks, they rely on rich common language associations for these concepts. For

example, computer words like LOOP, FOR, STRING, and CASE have very different

common language meanings. Reflecting on this result, it seems reasonable to expect

that young children will have a more difficult time building conceptual models for

programming concepts because they have fewer mental schemas on which to build.

Likewise Rader, Brand, & Lewis (1999) conducted a study with the Apple’s KidSim

programming system in which 2nd/3rd graders (ages 7–9) and 4th/5th (ages 9–11)

graders used the system for one year with minimal structured instruction. At the end

of the year, the younger children had significantly more difficulty with programming

concepts such as individual actions, rule order, and subroutine. However, the authors

suggest that had the children received a structured introduction to programming

concepts, they would have developed a much better understanding of the system.

Despite these concerns, previous research has shown that even children as young as

four years old can understand the basic concepts of computer programming and can

build and program simple robotics projects (Bers, 2008; Cejka et al., 2006; Bers et al.,

2006). Furthermore, early studies with the text-based language, Logo, have shown

that computer programming, when introduced in a structured way, can help young

children with variety of cognitive skills, including basic number sense, language skills,
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and visual memory (Clements, 1999b).

For example, Clements & Gullo (1984) conducted a study comparing six-year-old chil-

dren who spent twelve weeks working with either computer programming or computer-

aided instruction. The computer programming group performed significantly better

on post-tests measuring certain aspects of reflectivity, divergent thinking, and meta-

cognitive abilities. The interesting aspect of this study was that six-year-olds, with

adult help, could write text-based Logo programs and demonstrated at least short-

term gains in some cognitive abilities. Clements and Gullo also proposed the hy-

pothesis, originally attributed to Papert (1980), that “if computer programming can

allow children to master ideas formerly though too abstract for their developmen-

tal level, it may accelerate cognitive development including operational competence.”

They tested this hypothesis using an operational competence instrument based on

experiments of Piaget and Inhelder but found no significant difference between the

groups.

In a more recent example, Levy & Mioduser (2008) present a study in which six

kindergarten children (ages 5–6) used a simple programming environment to com-

plete a sequence of description and programming tasks with an autonomous robot.

In describing the behavior of autonomous robots to researchers, the children em-

ployed two distinct modes of explanations—engineering (viewing the robot in terms

of technical systems) and bridging (combining a technological and psychological per-

spective). The children used psychological perspective as a way to transition into a

more technical understanding of the robot’s behavior. An analysis of the children’s

dialog with researchers revealed surprisingly sophisticated understandings of the un-

derlying concepts:
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On their own, the children were capable of deciphering the simpler robots

behavior. However, with further support their abilities were augmented.

They appropriated the offered tools, thinking in “concrete-abstractions”

about the robot’s behavior and relating larger functional information to

the intricate causal technological underpinnings. Furthermore, they could

use these tools to construct desired robot behaviors (Levy & Mioduser,

2008).

Levy and Mioduser conclude that:

In light of the encouraging results of our exploratory studies, we believe

that the interaction with knowledge-embedded artifacts in a supportive

and playful classroom, represent clear opportunities for the children’s in-

tellectual growth and development.

However, regardless of children’s intellectual capabilities with respect to computer

programming, most current programming environments are poorly suited for young

children. One problem is that the syntax of text-based computer languages, such as

Logo, can be unintuitive and frustrating for novice programmers. This is exacerbated

for young children who are still learning how to read and write. Modern visual

programming languages such as Scratch or ROBOLAB allow children to program

by dragging and connecting icons on the computer screen. Many recent languages

have also adopted a puzzle piece metaphor, whereby programs are constructed by

connecting interlocking visual elements. Tern follows this metaphor as well, although

in our case the puzzle pieces are physical blocks rather than icons on a screen. And,

while this approach simplifies language syntax, the interfaces require young children

to use a mouse to navigate hierarchical menus, click on icons, and drag lines to very
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Figure 2.3: A screen shot from the Scratch programming language from the Life-
long Kindergarten group at the MIT Media Lab. Scratch is one of several recent
educational programming languages to adopt a puzzle piece graphical metaphor.

small target areas on a computer screen. All of this requires fine motor skills that

make it difficult for many young children to participate (Hourcade et al., 2004). As a

result, adults often have to sit with young children and give click-by-click instructions

to make programming possible, which poses challenges for children’s learning (Beals &

Bers, 2006). It also makes it difficult to implement computer programming in average

schools, where there are often only one or two adults for twenty to thirty children.

And, from a research perspective, it makes it difficult to understand what children

can accomplish both with and without direct adult help. Attempts have been made

to create simpler versions of these languages. However, the resulting interfaces can

obscure some of the most important aspects of programming, such as the notion of

creating a sequence of commands to form a program’s flow-of-control.

2.3 Robotics, Programming, and Young Children

“Computer technology” is a broad term that can mean many things, especially in the

context of a classroom. Robotics is one type of educational computer technology that
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has received much recent attention. Bers (2008) argues for the potential of robotics

in early childhood classrooms as a path to technological fluency and as an integrator

of curricular content areas. She argues that in early childhood classrooms, content

areas tend not to be isolated, but integrated more broadly into classroom curriculum

that encompasses different content and skills; learning can be project-driven and

open-ended; and student work does not have to fit into an hour-long class period.

While using these tools, children learn about sensors, motors, and the

digital domain in a playful way by building their own cars that follow a

light, elevators that work with a touch sensor, or puppets that play music.

Young children can become engineers by playing with gears, levers, mo-

tors, sensors, and programming loops, and they can become storytellers

by creating their own meaningful projects that move in response to a stim-

ulus (either another robot or the environment... Robotic manipulatives

are a gateway for helping children learn about mathematical concepts and

the scientific method of inquiry. (Bers, 2008)

Robotics, however, is about more than just creating physical artifacts. In order to

bring robots to “life” children must also create computer programs—digital artifacts

that allow robots to move, blink, sing, and respond to their environment. One goal of

the Tern project is to give these digital artifacts a physical presence in the classroom.

Since the process of constructing programs can now be situated in the classroom

at large—on children’s desks or on the floor—children’s programming work can be

more open and visible and can become more a part of presentations and discussions

of technology projects. Likewise physical programming elements can be incorporated

into whole-class instruction activities without the need for a large computer or a large

monitor that the entire classroom can see.
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2.4 Tangible Interfaces for Education

Building on foundations of ubiquitous computing and augmented reality, Ishii and

Ullmer describe their vision of tangible user interfaces (TUIs) as systems that “will

augment the real physical world by coupling digital information to everyday physical

objects and environments” (Ishii & Ullmer, 1997) And, over the past decade, research

in tangible user interfaces (TUIs) has expanded our definition of what it means to

interact with computers. Much of the research conducted with tangible user interfaces

has focused on education (O’Malley & Fraser, 2004). Perhaps this is not surprising

given that many of the benefits of moving interfaces into the physical world seem

especially beneficial for children in the classroom.

In the Reality Based Interaction framework, we propose that tangible interfaces have

potential advantages for users because they build directly on existing knowledge and

experience from the real world such as an understanding of naive physics, body aware-

ness and skills, and social awareness and skills (Jacob et al., 2008). This seems ad-

vantageous for education because it de-emphasizes the process of learning how to

manipulate an interface and focuses instead on the concepts to be learned. As an

example, a potential advantage of tangible programming languages is that they can

encode syntax in the physical form of the objects that make up the language, thus

decreasing syntax that children must learn before they can create computer programs

on their own. Tern, for example, uses a jigsaw puzzle metaphor at the Robot Park ex-

hibit. The blocks thus afford (Norman, 1986) chaining together in a linear sequence.

It is important to note that graphical languages can do this as well through the use of

visual metaphors, and our work in kindergarten classrooms (ages 5–6) suggests that

the graphical metaphors may be just as easy for children to understand as physical

metaphors. Indeed, Marshall points out a general lack of empirical evidence support-
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ing value of tangible interfaces for educational use compared to standard computer

interfaces (Marshall, 2007).

Marshall, Price, & Rogers (2003) propose two main classes of tangible systems to sup-

port learning: expressive and exploratory. Expressive tangible systems allow learners

to create their own external representations of a concept or an activity, while ex-

ploratory tangible systems allow learners to explore a model presented by someone

else. Marshall et al. go on to propose that productive learning results from a cycle of

alternately attending to a task at hand and reflecting on the tangible object used to

accomplish the task (i.e. ready-at-hand and present-at-hand) (Marshall et al., 2003).

Marshall (2007) expands this framework with six perspectives on learning with TUIs.

Although cautioning that little comparative work has been done, Marshall posits

(among other things) that tangibles might engage children in playful learning and

that novel links between physical and digital systems might increase engagement and

reflection.

In this vein, Fails, Druin, Guha, Chipman, Simms, & Churaman (2005) compared the

use of desktop and physical environments for preschool-aged children in the context of

a “content-infused story” game designed to teach about environmental health hazards.

The game used a collection of props (either physical or virtual depending on the

condition) and audio clips. A qualitative evaluation with 16 children found that “the

physical environment to have several advantages over the desktop environment. These

were interest, engagement, and understanding [...] This suggests that embedding

technology in the physical world, rather than simply presenting them with traditional

desktop applications may be beneficial to young children.”

Likewise, Rogers, Scaife, Gabrielli, Smith, & Harris (2002) explored the coupling

of digital and physical inputs and outputs in an educational color-mixing game for

23



children called Chromarium. Here the author’s compared each of the four possible

combinations of digital to physical couplings (i.e. digital → physical, digital → digi-

tal, physical→ digital, and physical→ physical). They discovered that the unfamiliar

coupling of physical input to digital output was highly effective at producing reflec-

tion, collaboration, and exploration on the part of children. In a sense, Tern follows

this physical → digital transformation. While, strictly speaking, the physical manip-

ulation of blocks in Tern results in physical output (motion of the robot), the output

is greatly mediated by a digital system. Moreover, this digital system is designed to

be highly visible to users.

In designing novel couplings of physical and digital systems, the work of Mitchel

Resnick and the Technologies for Lifelong Kindergarten group at the MIT Media

Lab is notable for its focus on digital manipulatives, or educational manipulative

augmented with digital technology. For example, BitBall (Resnick et al., 1998) allows

children to explore concepts of motion and acceleration with a rubber ball with an

embedded microcontroller and colored LEDs. Using a Logo-like language, children

can program the ball to respond in different ways to motion. Zuckerman, Arida,

& Resnick (2005) also created two digital manipulative systems called FlowBlocks

and SystemBlocks, both of which model abstract system dynamics concepts. Testing

these systems with children, ages 4–11, Zuckerman et al. conclude that, “our findings

suggest that [these systems] are engaging for children, and successfully introduce

specific concepts such as rate, accumulation, feedback, and probability to different

age groups.”

Ananny and Cassell (2002) created TellTale, a tangible toy designed to support chil-

dren’s language development. Presented as a toy caterpillar with five body segments,

TellTale allows children to record 20-second audio clips into each body segment and
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then to rearrange those segments in any order. By attaching the caterpillar’s head to

the body, children can hear their entire story played back to them. TellTale shares

attributes of tangible programming systems in that children can combine compo-

nents to create sequences of actions that are then executed in order. And, indeed,

Ananny and Cassell make the hypothesis that, “by carefully designing technology-

enhanced language toys that give children control over both the structure and content

of their language, young children may be able to engage in literacy activities previ-

ously thought to be too advanced for their age.”

Mazalek, Davenport, & Ishii (2002) take storytelling using tangible interfaces in a

different direction with a system called Tangible Viewpoints. Tangible Viewpoints

combines tokens (representing characters and points-of-view) with an augmented sur-

face to create an interactive narrative. By placing a token on the surface, users can

see the story segments associated with that character projected around it. Users can

then manipulate a lens-like object to selection story content to view in more detail.

Furthermore, when two tokens are touched together, users see only the story segments

that involve both of the represented characters. Mazelek et al. tested this system

over a period of 10 days in a informal clubhouse learning setting.

Raffle, Parkes, & Ishii (2004) produced Topobo, a construction kit that has been ac-

tuated to produce kinetic memory. Using Topobo, children can construct imaginative

creatures composed of passive and active building components. The active compo-

nents have the ability to record and play back physical motion, allowing children to

learn about concepts such as animal movement and their own bodies in the process.

Chipman, Druin, Beer, Fails, Guha, & Simms (2006) created a system called tangible

flags that allows children to create a share “digital knowledge artifacts” in physical

environments–such as on field trips. The system allows children to flag objects of
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interest in the physical environment and then add digital notes about those objects

using a tablet computer. Other children can then access and annotate these digital

artifacts as they explore the physical space. The researchers evaluated this system

with visitors at a national park and concluded, among other things, that the chil-

dren in their study were naturally able to use tangible interaction to access digital

information.

2.5 Tangible Programming Languages

The idea of tangible programming was first introduced in the mid-1970’s by Ra-

dia Perlman, then a researcher at the MIT Logo Lab. Perlman believed that the

syntax rules of text-based computer languages represented a serious barrier to learn-

ing for young children. To address this issue she developed an interface called Slot

Machines (Perlman, 1976) that allowed young children to insert cards representing

various Logo commands into three colored racks, which in turn represented subrou-

tines. The idea of tangible programming was revived nearly two decades later with

projects such as Madea and McGee’s solid programming (Maeda & McGee, 1993)

and Suzuki and Kato’s AlgoBlocks (Suzuki & Kato, 1995). With solid programming,

physical instantiations of conditional logic elements (AND, OR, and NOT gates) can

be embedded with sensors and motors in a robotic agent to describe responses to

various input conditions. With AlgoBlocks children create Logo-like programs using

interlocking aluminum blocks with embedded electronic components to control a vir-

tual environment on a computer screen. LEDs in the aluminum blocks light up as the

execution of a program passes through each successive command. This allows physical

programs to both demonstrate their flow-of-control and to provide for a rudimentary

tangible debugger. More recently, a variety of tangible programming languages have
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Figure 2.4: Tim McNerney’s Tangible Computation Bricks (McNerney, 2000) features
a LEGO-like construction kits with embedded microprocessors that allow children to
experiment with programming concepts in real-time.

been created. Some involve program by example systems such as StoryKits (Mon-

temayor et al., 2002), Topobo (Parkes et al., 2008), and Curlybot (Frei et al., 2000).

Others fall more into Ullmer’s constructive assembly classification for tangible inter-

faces (Ullmer, 2002). Frei, Su, Mikhak, & Ishii (2000) created Curlybot, an example

of a program-by-demonstration system. With Curlybot children can program a robot

by dragging it on the floor to demonstrate its motion. An LED on the robot indi-

cates its mode: red for record, and green for playback. In playback mode, the robot

repeats its recorded motion indefinitely. Tangible Computation Bricks (McNerney,

2000), on the other hand, feature LEGO bricks with embedded Cricket (Martin et al.,

2000) microprocessors. McNerney described several types of tangible programming

languages that could be expressed with the bricks. The bricks also accept a single

parameter card which can interchangeably be a constant, a timer, a sensor, or some

user-adjustable value. Likewise, Blackwell, Hague, & Greaves (2001) at the University

of Cambridge developed Media Cubes, tangible programming elements for controlling

networks of consumer electronic devices. Media Cubes are blocks with bidirectional,

infra-red communication capabilities. Induction coils embedded in the cubes also

allow for the detection of adjacency with other cubes.
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Researchers have also begun to explore the exciting potentials of programming in and

with the physical world. Some ideas that have been generated include the blending of

physical space and digital programming (Fernaeus & Tholander, 2006; Montemayor

et al., 2002), robots that are also embodied algorithmic structures (Schweikardt &

Gross, 2008; Wyeth, 2008), the incorporation of found or crafted materials into al-

gorithmic expressions (Smith, 2008), or the integration of physical activity and play

with programming (Smith, 2007; Scharf et al., 2008). Scharf, Winkler, and Herczeg

designed a programming system called Tangicons that builds on the TopCodes com-

puter vision library to create a game in which teams of kindergarten children (ages

5–6) combine physical exercise with simple programming activities (Scharf et al.,

2008). Work on tangible programming languages has often focused on young chil-

Figure 2.5: An early prototype of the Tangicons (Scharf et al., 2008) system from the
University of Lubeck which uses my TopCode library to create a game for kindergarten
children that combines physical exercise with simple programming activities.

dren. For example, Montemayor et al. created a prototype system called StoryKits

that allowed children aged 4–6 to explore and program an interactive environment

called (StoryRoom) (Montemayor et al., 2002). In this work, Montemayor et al., in

collaboration with children as design partners (Druin, 1999), rejected the idea of using

a visual programming language to control a physical environment. They found that
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children had difficulty conceptually connecting what was on the screen with what

they used in the physical room. In this process, they developed a set of physical

icons to program the room by demonstration including items such as a magic wand

to enter authoring mode, a hand to make an object touch sensitive, and a light to

make an object light up (see Figure 2.6). In evaluating their prototype, they found

that children could easily comprehend and participate in stories set in physically in-

teractive environments. However, Montemayor et al. also concluded that while most

children could understand relationships between physical icons and the interactive

props around the room, they had some trouble understanding the difference between

programming and participation in an existing story. Another example is the Elec-

Figure 2.6: Montemayor et al. developed a set of physical icons called StoryKits to
program an interactive physical room for storytelling.

tronic Blocks language created by Wyeth & Purchase (2002). This language consists

of sensor blocks for detecting light, sound, and touch; logic blocks containing and,

negate, delay, and toggle features; and action blocks for generating light, sound, and

motion. The physical affordances of the blocks enforce simple syntax rules such as

stacking blocks to chain input and output elements. When children create stacks

of these blocks, they can experiment with sensors, actuators, and logic components

in a free form, interactive way. Wyeth conducted a recent study to determine how

twelve 7- and 8-year-old children were able to learn different aspect of programming

through interaction with the blocks while trying to complete 20 programming tasks of
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varying complexity (Wyeth, 2008). Wyeth concludes that, “children developed a fun-

damental understanding of programming—that inputs affect outputs and that output

behavior is reliant on specific combinations of input instructions. The input-output

relationships of the blocks are not directly visible; these conceptual relationships were

discovered by study participants through exploration and observation. Tangible activ-

ity enabled the successful learning of simple abstract programming concepts.” (italics

added).

While all of this work on tangible programming is pioneering, there is notable lack of

evidence that tangible systems offer any benefits compared to onscreen counterparts.

Wyeth’s conclusion that the tangibility of her language enabled successful learning

seems overly optimistic given the scope of her study. And, the question of whether

children would have had similar success with a comparable graphical language is

never addressed. In general, while some of these systems provide unique programming

experiences that have no reasonable graphical comparison, many could be compared

to onscreen systems through controlled experiments. Even though the results of such

experiments are always difficult to interpret when it comes to the use of technology in

real life educational settings, knowledge gained from such research might offer useful

directions for tangible programming as well as the field of tangible interaction as a

whole.

2.6 Passive Tangible Interfaces

Tangible interfaces have been cited as being well-suited for use in educational envi-

ronments such as classrooms and science museums (Hornecker & Stifter, 2006), but

there are potential problems involving cost and reliability that come in to play when
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incorporating cutting-edge technology outside of laboratory settings. This is not to

say that tangible interfaces cannot be reliable and inexpensive; however, designers

must make careful tradeoffs between the type of interaction desired and the relia-

bility and expense of the technology needed to support that interaction. One such

tradeoff involves the closeness of the coupling between digital and physical aspects

of a tangible system. In the framework for tangible interaction advanced by Hor-

necker & Buur (2006), this property is called Isomorph Effect—how closely coupled

in space and time physical actions are to digital responses. Some examples of systems

Figure 2.7: Our tangible programming interface, Tern, consists of a collection of
wooden blocks shaped like jigsaw puzzle pieces.

with close coupling are FlowBlocks (Zuckerman et al., 2006), Tangible Programming

Bricks (McNerney, 2004), and Electronic Blocks (Wyeth, 2008). In these systems,

electronic components are embedded in the physical elements of the interface. As

blocks are assembled physically, the digital response is immediate, both in time and

space—lights blink and motors move. Ideally, this supports playful and exploratory

interaction, well-suited for informal experimentation and learning. The downside is

that each element of the system requires embedded electronics and a connection to a

power supply, potentially adding cost and decreasing reliability.
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On the opposite end of this tradeoff are systems with weak isomorph effects. For

such systems, the digital response to physical manipulation is remote in time and/or

space, but there are substantial potential advantages in terms of robustness, durabil-

ity, and cost. I have proposed the term passive tangible interface (Horn et al., 2008)

to describe these types of systems. Passive tangible interfaces consist of a collection

of unpowered physical components with, in many cases, a non-continuous link to a

digital system. The physical components can be inexpensive to produce and make use

of passive sensor technology like computer vision fiducials or RFID tags. For this rea-

son, passive tangible systems may give interaction designers greater freedom to choose

materials and forms that make sense for an application rather than the technology

used to implement it. Some examples of passive tangible interfaces include Smith’s

GameBlocks programming language (Smith, 2007) and our Tern system. With these

interfaces, it is not essential for a user’s physical actions (i.e. moving, connecting, and

disconnecting blocks) to be tracked in real time. For example, in the case of Tern,

it is only when a user compiles his or her program that a connection between the

physical and digital is made. For Tern, the choice of a passive tangible interface has

two advantages. First, it allows the use of inexpensive and durable interaction objects

like wooden blocks. Second, by decoupling physical actions and digital responses, we

hoped to introduce an opportunity for visitors to reflect on and discuss the outcome

of their program design, ideally reinforcing the learning process. In other words, we

hoped to implicitly enforce a workflow that involves design, testing, reflection, and

revision. In this sense, it is important to emphasize that it is the technology, not

the users, that are passive. As Resnick points out, all too often, it is the other way

around (Resnick et al., 1996).
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2.7 Tangible Programming and Educational Ma-

nipulatives

Much of the research dealing with educational manipulatives has focused on math-

ematics instruction. Sowell, for example, conducted a meta analysis of the results

of 60 studies concerning the use of manipulative materials in mathematics educa-

tion (Sowell, 1989). While the results of these studies were mixed, Sowell found that

for treatment lengths of a year or more there were significant advantages for the use

of concrete manipulatives in terms of attitude and acquisition for elementary grades

(ages 5–11) compared to more abstract instruction—Sowell uses the word “abstract”

to refer to instruction without manipulative materials including pencil and paper

work, reading, and lecture. She cautions, however, that there are still substantial

open questions about the situations and concepts for which manipulatives are best

suited, and that a one size fits all mentality should be avoided.

Zuckerman, Arida, & Resnick (2005) offer a classification of educational manipulatives

into two broad categories, “Froebel-inspired Manipulatives” (FiMs) and “Montessori-

inspired Manipulatives” (MiMs). FiMs are typically construction kits (e.g. LEGO

bricks), that allow children to build structures and models that represent real-world

things. MiMs, on the other hand are physical manipulatives that attempt to model

concepts or ideas (e.g. Cuisenaire rods to model numerical proportion). In their

discussion of Montessori-inspired manipulatives, Zuckerman et al. go on to argue

that if we consider tangible interfaces as an extension of educational manipulatives,

they offer advantages for learning. The advantages of these digital manipulatives

include things such as multi-sensory engagement, improved accessibility (for young

children or children with learning disabilities), and better support for group learning
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through multi-hand interaction. Moreover, digital manipulatives can better model

temporal changes or computational processes in a way that is impossible with static,

non-interactive manipulatives.

Clements provides a different perspective on this research, pointing out that the use

of the word “concrete” (as in concrete versus abstract) may be misleading (Clements,

1999a). He draws a distinction between sensory concrete knowledge and integrated

concrete knowledge. The former refers to thinking through and with the use of con-

crete objects: “at early stages, children cannot count, add, or subtract meaningfully

unless they have actual [physical] things” (Clements, 1999a). The latter, meanwhile,

refers to knowledge that we construct as we learn and that is well connected to other

concepts and situations. In a sense, this kind of knowledge is what is commonly re-

ferred to as “abstract.” In other words, concepts that are meaningful beyond specific

settings and situations and that can be applied to a variety of domains. “Good manip-

ulatives are those that aid students in building, strengthening, and connecting various

representations of mathematical ideas” (Clements, 1999a). Moreover, Clements pro-

poses a general definition of concrete manipulative that goes beyond physical objects

to include other materials and representations, including objects which may be ma-

nipulated on a computer screen.

Uttal, Scudder, & DeLoache (1997) also argue for a new perspective on educational

manipulatives. They propose that while “educators have concluded that manipula-

tives are useful because they are concrete and hence do not require children to reason

abstractly or symbolically,” it would be more productive to think of manipulatives as

symbol systems that children must learn to relate to underlying concepts. “To learn

from manipulatives, children must comprehend how the manipulative represents a

concept or written symbol. Concrete objects can be an effective aid in the mathe-

34



matics classroom, but to use them effectively, teachers must take into account how

children do (or do not) understand symbolic relations.”

Uttal et al. (1997) also advance a dual representation hypothesis, which states that

children will either attend to a manipulative as an object in its own right or as a

representation of something else. Furthermore, the more a child attends to the object

itself, the less they will make the connection to the concept that it is intended to

represent (and vice verse). Thus, Uttal et al. in part conclude that attractive or

intricate physical manipulatives may be counter–productive because children will be

more likely to focus on the properties of the object itself rather than the concept

to be learned. Zuckerman et al. agree with assessment, arguing that MiMs should

“maintain a high level of abstraction of the constructed simulations and structures,

so concreteness would come from a childs analogies rather than a structures visual

form” (Zuckerman et al., 2006). Furthermore, they encourage building systems that

provide a way for children concretize their meanings—for example, providing a way

for children to write notes on blocks to annotate their meanings.

With this context, I propose that Tern is not an educational manipulative in the

traditional sense—it is not a physical object that somehow embodies “abstract” con-

cepts of programming, thereby allowing children to think more “concretely”. Rather,

I propose that it is more productive to think of Tern in the sense of Uttal, Scudder,

and DeLoache’s symbol system definition. That is, Tern, is a collection of symbols

that can be manipulated according to syntactic rules to produce computation. If

one accepts this definition, then the dual representation hypothesis might apply as

well. That is, there is a danger that if the blocks are too attractive or interesting,

then children might only focus on the superficial qualities of the blocks. Indeed, in

observing children use Tern, I have seen evidence to support this. When children first
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encounter Tern, their actions often seem purely playful—they will make the longest

chain of blocks they can, or they will build a tower, or they will twirl a cube on the

end of a finger. However, because Tern is a working programming language, it is more

than a symbol system. By manipulating the blocks, children can create sequences of

instructions that are executed by a computer, and, in this sense, Tern is a tool as well.

Thus, Marshall et al. (2003) proposal that productive learning results from a cycle

of alternately attending to a task at hand and reflecting on the tangible object used

to accomplish the task puts the dual representation hypothesis in a more positive

light. Perhaps in playing with the blocks children are entering the first phase of this

cycle. More than that, though, perhaps through play children are building a positive

emotional relationship with the technology that will not only make future learning

experiences more enjoyable, but might also make that learning more effective. While

speculative, this line of thinking might be a potential area for future research.
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Chapter 3

The Tern Programming Language

In this chapter I describe the Tern tangible programming language, including both

its physical design and language specification. I also describe the evolution of the

language over time as a result of an iterative development process. In the next chapter,

I will provide implementation details, including a description of the computer vision

techniques, the tangible compiler, and the runtime interpreter.

3.1 Tern Origins

My interest in tangible programming began in 2004 when I started work on a pro-

gramming language called Quetzal (Horn, 2006; Horn & Jacob, 2007). My original

goal with the Quetzal project was to develop a non-working tangible programming

language that could be tested in educational settings. However, I soon moved on to

the idea of using computer vision techniques to implement low-cost functional pro-
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totypes that would allow me to test ideas in real educational settings. Ultimately,

many features of the Tern language evolved directly from iterative design and testing

with Quetzal.

I constructed the earliest Quetzal prototypes out of materials such as wood and foam

core to test the basic image processing techniques and physical language designs

(Figure 3.1). My first attempt to create a fully functional prototype involved using

Figure 3.1: Early prototypes constructed of wood (top left) and foam core (top right).
The bottom four pictures illustrate the process of creating molded urethane parts from
machined aluminum originals.

molded urethane parts based on machined aluminum originals (Figure 3.1). These
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parts were designed to be connected together into chains of blocks using 2.5mm

audio jacks and plugs. Unfortunately, this design proved to be expensive and time

consuming to fabricate. Worse, because the individual statements could be connected

together using audio plugs on the end of flexible wires, the resulting image processing

techniques were unreliable.1

To solve these problems, I built the next Quetzal prototype using flat tiles laser

cut from a sheet of extruded acrylic. Instead of 2.5mm audio jacks and flexible

wire, I allowed statements to be chained together using rigid connection arms and

pivot joints. I then glued printed paper faceplates showing both a human-readable

statement name and a computer vision fiducial on to the top surface of the tiles

(Figure 3.2).

Figure 3.2: The final Quetzal prototype consisted of flat tiles laser cut from an acrylic
sheet. Printed paper faceplates show both a human-readable statement name and a
computer vision fiducial. The statements can be chained together at pivot points at
the end of rigid connection arms.

1Because the angular orientation of the connectors plugs is unrelated to the angular orientation
of the blocks themselves, both the statements and the connector plugs need to be tagged with a
computer vision fiducial to construct a digital representation of a physical chain of blocks.

39



One feature of the Quetzal language is that, similar to flowchart notation, flow-of-

control structures such as loops and branches have physical embodiments that are

consistent with the algorithmic structures they represent. For example, to form a

loop using Quetzal, a child would create a chain of statements that circled back on

itself (e.g. Figure 3.3). Thus, if a child were to trace through the program using

her finger, she would eventually end up on the same statement where she started.

While somewhat appealing, this language feature also imposes limitations on the

type and complexity of programs that can be expressed. For example, it is impossible

to use Quetzal to create a loop consisting of a single statement because the individual

tiles are rigid and connected at fixed pivot points. Likewise, creating nested control

structures (e.g. a loop within a loop or a branch statement within a loop) is nearly

impossible.

Figure 3.3: This picture shows a simple infinite loop represented in the Quetzal
language. Here the physical form of the loop is consistent with the control structure
that it represents (i.e. a list of statements that repeats itself over and over again).
This feature makes it difficult to create nested control structures in Quetzal.

To address these limitations, I decided to abandon flowchart-style notations and adopt

more of a structured programming approach. In this sense, code blocks are demar-

40



cated with BEGIN and END tokens, and control structures can be easily nested.

With this design decision it is no longer necessary to have physical joints that can

pivot as is the case with Quetzal (e.g. Figure 3.3). Instead, much simpler block

connections are feasible—for example, interlocking blocks shaped like jigsaw puzzle

pieces. These design decisions led to the first set of prototypes for the Tern language

(Figure 3.4).

Figure 3.4: I built the earliest Tern prototypes using laser cut plastic and a jig-
saw puzzle piece metaphor. The language itself was modeled after the educational
programming language, Karel the Robot. This picture shows a recursive subroutine.

Initial Tern prototypes consisted of laser cut plastic tiles; however, in later prototypes,

I switched to toy wooden train tracks. The train tracks are more durable, commer-

cially available, and have a more attractive look and feel. One problem with wooden

train tracks is that it is not obvious how to represent parameter values for state-

ments. To solve this problem, I attached laser cut parameter sockets to the back side

of particular wooden blocks. This allowed me to create different shaped connectors to

represent different data types such as numbers and Boolean values. In this way, the

language syntax is enforced by the physical form of the blocks themselves. In other

words, a Boolean token can only be connected to a statement requiring a Boolean
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parameter, and a number token can only be connected to a statement requiring a

number parameter (e.g. Figure 3.5).

Figure 3.5: Design for tangible programming blocks used in the exhibit.

The version of Tern in use at the Robot Park exhibit at the Boston Museum of

Science uses these wooden train track parts, which seem to work well in the museum

environment. However, the train track blocks have several drawbacks for use in

the classroom that became obvious when we observed children using them in our

kindergarten interventions. First, the blocks are only big enough to allow space for a

computer vision fiducial and a small amount of text. This is problematic for children

who are still learning to read. As we discovered with our current prototype, children

rely heavily on icons as well as text to interpret a particular block’s meaning.

Second, although children have little difficulty chaining these jigsaw puzzle blocks

together to form programs, the blocks tend to fall apart when children try to carry

their programs around the classroom 3.6. Unfortunately, children need to be able to
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carry their programs to a specific location in the classroom (the computer with the

web camera attached) in order to download their programs to the robot. Finally,

the blocks are designed to lie flat on a table surface. As a result, in order for the

computer vision system to function properly, we have to suspend a web camera above

the programming surface pointing down. This relatively elaborate setup limits the

system’s portability, increases the teacher’s preparation time, and limits the number

of stations that can be set up in the classroom for children to use. To address these

Figure 3.6: The wooden train tracks seem to work well at the Boston Museum of
Science; however, they are less ideal in classrooms. One problem is that programs are
difficult to carry around a classroom. In this picture a child has improvised a way to
carry his program to the scanning station.

problems, I redesigned the blocks using wooden cubes with interlocking pegs and

holes instead of jigsaw puzzle tiles. These cubes provide a slightly larger surface

area on which to include both text and an icon and the computer vision fiducial (see

Figure 3.7). Furthermore, because the cubes interlock, they are easier for children to

carry around the classroom. Finally, because I place a computer vision fiducial on

every available face of the cube, pictures of programs can be taken from the side rather

than from above. This allows the web camera to be placed flat on a table rather than

suspended from above. As expected, the prototype based on wooden cubes was much

easier for students to use. However, for our next round of evaluation, I plan to make

several additional improvements. These include creating slightly smaller and lighter
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Figure 3.7: To address drawbacks of the wooden train track blocks for use in kinder-
garten, I redesigned the language to use interlocking wooden cubes with pegs on one
side and holes on the other. Mary Murray, an intern a the Boston Museum of Sci-
ence and a masters student at the Massachusetts College of Art and Design was the
originator of this concept.

cubes and exploring better ways to represent the syntax of flow-of-control structures

such as loops, parameters, and branches. Children also struggle with the mechanics

of downloading their program to a robot. This process involved several discrete steps:

1) turning the robot on; 2) placing the robot in front of an infrared transmitter; 3)

placing their program in front of the web camera; 4) pressing the space bar on the

computer; and 5) waiting several seconds for their code to download to the robot.

From our experience, this process is still too complicated to be practical for young

children. It’s easy to forget a step, and there are multiple points of possible failure.

For example, a child might do everything right but have the robot pointing in the

wrong direction. Or, a child might accidentally cover up one of the computer vision

fiducials while the computer is taking a picture of the program. In these cases, it can

be difficult for children to figure out and fix the problem without the help of an adult.

We are investigating a number of potential improvements to this system to simplify

the process and reduce the amount of adult assistance necessary.
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3.2 Karel the Robot

The inspiration for the syntax of the Tern language came from the educational pro-

gramming language, Karel the Robot (Pattis et al., 1995). Karel presents novice

programmers with a virtual robot inhabiting a grid world on a computer screen.

Karel can be programmed to navigate around obstacles (walls) and accomplish tasks

with simple objects in its environment (beepers). Figure 3.8 shows a typical pro-

gramming challenge from Karel the Robot. The Karel programming language was

Figure 3.8: Karel the Robot inhabits a grid world on a computer screen. Novice
programmers can create programs to navigate the robot around obstacles and to
accomplish tasks with simple objects in its environment. Here the challenge is to
have the robot climb the stairs and collect all of the beepers.

an appealing starting point for me because it features a very small set of built-in

instructions for controlling the robot (e.g. move, turnleft, and pickbeeper). This

small instruction set could be easily represented with a reasonable number of tangible

programming blocks. Furthermore, Karel instructions are parameterless, further sim-

plifying the task of creating a tangible language. Karel also includes a small number
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of flow-of-control structures including an IF/THEN/ELSE construct, an ITERATE loop,

and a WHILE loop. The IF and WHILE structures query a small number of Boolean

sensor values, and the ITERATE structure accepts a single positive integer argument.

The richness of the Karel language, however, comes from the ability of programmers

to define new instructions (subroutines) for the robot. For example, an early pro-

gramming task in Karel is to define a turnright instruction. This program following

Karel program shows this definition:

DEFINE-NEW-INSTRUCTION turnright AS
BEGIN

turnleft;
turnleft;
turnleft;

END;

Of course, with a text-based language, programmers have the freedom to define an

arbitrary number of subroutines and give them descriptive names. This is not so

straightforward with a tangible language, especially one based on passive tangible

technology. One challenge is to determine a way to allow for similar capabilities with

a tangible representation.

3.2.1 Tangible Karel Concept

My original vision of Tern was to support a full-class programming activity that

would allow up to four groups of students (16 to 20 children) to participate in a

single virtual world. The teacher would need a single computer with an attached

LCD projector and four sets of tangible blocks (one for each group). To conduct the

activity, the teacher would project a virtual world onto the wall of the classroom.
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The virtual world (see Figure 3.9) would include four robots–one for each team–as

well as obstacles and objects for the robots to interact with. The goal of the activity

Figure 3.9: My original Tern concept would have allowed groups of children in a
classroom to program virtual robots in a grid world.

could have been something as simple as, program your robot to navigate the maze and

collect as many red dots as possible. Students would have then worked together in

their groups to define Skills (Tern’s version of subroutines) and programs for their

robot. Students might start with simplistic programs to solve immediate goals for the

robot, almost as if they were using a remote control. However, because the process of

building and compiling programs is time consuming, ideally groups would realize that

they could gain a competitive advantage by writing more general-purpose programs

that would allow the robot to navigate autonomously through the maze. In this

system, the idea was that Skills would be linked into the system. In other words,

once defined, a subroutine would persist in the system, available for use in future

programs, until it was redefined. This concept of using Tern to program robots in a

virtual world never made it past the early prototyping phase and was never tried in a

classroom. However, many of the same ideas still exist in the current Tern language

for controlling real robots rather than virtual robots.
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3.3 Language Specification

In this section I will describe the version of Tern in use at the Boston Museum of

Science. All of the figures included in this section reflect what is currently on the

floor at the Museum.

3.3.1 Action Blocks

Action blocks tell the robot to do something. These blocks can be chained together

into sequences that the robot will perform one at a time, in order from left-to-right.

Start

Every program must begin with a Start

block. Tern only considers blocks con-

nected to a Start block to be part of a pro-

gram. There are other types of Start blocks

used to declare subroutines discussed be-

low.

Forward and Reverse

These blocks tell the robot to move forward

or backward approximately one foot in a

straight line.

Left and Right

These blocks tell the robot to turn in place

90 degrees to the left or right.
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Sounds

These blocks tell the robot to make differ-

ent types of sounds—beep, sing, growl, and

whistle. The piezoelectric speakers on the

iRobot Create and the LEGO Mindstorms

platforms are only capable of producing a

sequence of beeps; as a result the sounds

produced by these blocks are at best styl-

ized imitations of singing, whistling, and

growling.

Dance Moves

These blocks tell the robot to perform one

of its dance moves—shake, spin around, or

wiggle.

Unlike other educational languages for robotics, these actions are designed to be dis-

crete and observable with a small delay separating one action from another. For

example, to make a differential-drive robot spin around using the language, ROBO-

LAB, would require the following program:

For this language, students must learn that the start and stop commands commands
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execute instantaneously, causing the motors to turn on and off in unison. Tern offers

the higher-level Spin block to accomplish the same effect. Kelleher et al. (2007)

employ a similar strategy for Storytelling Alice, providing young programmers with a

set of high-level actions to help in the creation of animated stories. Ideally the tangible

language would provide the ability to program a robot at both levels of abstraction.

Teachers could then introduce lower-level blocks as students gained proficiency.

3.3.2 Sensor Blocks

Sensor blocks are used to sample real-time binary sensor data from the robot in order

to create programs that react to the robot’s environment. All sensor blocks evaluate

to a Boolean value of TRUE or FALSE that changes depending on the state of the

robot in the world.
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Bump Sensors

These blocks check the state of the robot’s front bumper. If

the bumper is pressed on the right side, BUMP-RIGHT will

have a value of TRUE. Likewise, if the bumper is pressed on

the left side, BUMP-LEFT will have a value of TRUE. If the

bumper is pressed from either side, BUMP will be TRUE.

Finally, if the bumper is not pressed at all, the sensor blocks

will all have a value of FALSE.

IR Sensor

The Create robot has a sensor that detects near infra-red

(IR) light transmitted over a specific carrier frequency. If

the robot detects infra-red light, the IR-BEAM sensor will

have a value of TRUE. Otherwise it will have a value of

FALSE.

Cliff Sensor

The cliff sensor is used to keep the robot from falling down

stairs or off the edge of a table. The cliff sensor works by

emitting a beam of infra-red light down towards the floor. If

the light beam bounces back, then the CLIFF sensor has a

value of FALSE. If the light beam doesn’t bounce back, then

the CLIFF sensor has a value of TRUE.

3.3.3 Control Flow Blocks

There are several types of control blocks can be used with sensor blocks and number

parameters to create programs with loops, branches, and pauses.
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Repeat

This block tells the robot to repeat a set of actions. When

combined with a number block, the loop will repeat for a

finite number of iterations. For example, this program tells

the robot to move forward and then turn left four times in a

row. If no number block is provided, then the loop will repeat

infinitely. The version of Tern we are using in kindergarten

classrooms (ages 5–6) includes an END REPEAT block as

well, allowing for nested control structures.

While

This block tells the robot to repeat a set of actions as long

as the value of a sensor is TRUE. For example, this program

moves the robot backwards until the bumper is no longer

pressed. A while loop will repeat at most 10 times.
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Wait For

The WAIT FOR block pauses a program until the value of

a sensor becomes TRUE. For example, this program causes

the robot to growl whenever it sees a beam of infra-red light.

If

The IF block allows you to ask a question in your pro-

gram. The robot will do one thing or another depending

on the answer. For example, this program tells the robot

to move forward until it bumps into something. Then it

will turn right.

No–Op

This block has no associated action. It’s only purpose is

to redirect the physical chain of blocks 90 degrees, which

is useful if a program takes up too much space on the

table.
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3.3.4 Logic Blocks

Logic blocks allow for the combination of sensor blocks using logical operations.

OR Block

The OR block combines two sensors to-

gether. It has a value of TRUE if either

sensor is TRUE. Otherwise, it has a value

of FALSE.

AND Block

The AND block combines two sensors to-

gether. It has a value of TRUE only if both

sensors are also TRUE. Otherwise, it has

a value of FALSE.

NOT Block

The value of a NOT block is the opposite

of the sensor that is connected to it. If the

sensor is TRUE, then the value of the NOT

block is FALSE. Likewise, if the sensor is

FALSE, then the value of the NOT block

is TRUE.

Here is an example program that tells the robot to beep if its bumper isn’t pressed

and it sees a beam of infra-red light at the same time.
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3.3.5 Skills

Skills are the equivalent of parameterless subroutines or procedures in other structured

languages.

Start Skill

START SKILL There are two blocks available to define skills.

These blocks are labeled with two symbols, a star and triangle,

representing the skill names. For example, this skill instructs

the robot to drive in a square.
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Skill Blocks

Once defined, a skill can be invoked in a program

using a skill block. For example, this program

uses the star skill defined above to tell the robot

to drive in a square two times in a row.

Start When

This block lets you define a skill that runs automatically

when a certain event happens. For example, this skill

tells the robot to shake whenever it gets picked up (caus-

ing its cliff sensors to activate).

3.3.6 Kindergarten Blocks

As described above, the version of Tern in use in kindergarten classrooms (ages 5–

6) is based on interlocking wooden cubes. Cubes allow us to represent up to four

different statements on a single block. For the most part all sides of a cube are the
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same. However, in certain cases such as number parameters, light on/off, or sensors,

the faces of the cubes have different meanings.

Figure 3.10: This figure shows the latest faceplate designs used for the Tangible
Kindergarten project. These blocks combine English text with simple icons repre-
senting each block’s purpose.

3.4 Future Work

The design of the Tern language is an ongoing process, and the current prototype is

far from perfect. In particular, while the basic command blocks (such as FORWARD,

SHAKE, etc.) seem to work well, the flow-of-control blocks need improvement. For

these blocks, much could be done to use physical syntax to help guide children in the

construction of logically correct programs. Furthermore, the parameter blocks that
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work with the flow-of-control blocks could be improved to provide a broader range

of possible values and to physically indicate their place in the program. Finally, the

idea of subroutines or skills needs to be elaborated. For example, it would be ideal if

students could create an arbitrary number of skills and provide their own names or

symbols to describe these skills. For example, students might use physical tokens of

their own choosing, perhaps tagged with RFID, to name a skill.
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Chapter 4

Tern Implementation

This chapter describes a system–level overview of the tangible programming system

deployed at the Boston Museum of Science. This includes a description of the user

interface, the hardware interface, and the major software components and libraries.

Figure 4.1 provides a summary diagram of these three levels.

Visitors interact with the exhibit through three user interface components. First,

visitors can arrange and connect the wooden blocks to create physical programs for the

robot to execute. Then, once a program has been created, visitors can compile it using

an arcade button labeled Run1. The third user interface component is called block

tester, which is a block-shaped indentation on the programming console that allows

users to test block functionality instantaneously. The block tester is described in

more detail below. Visitors also receive feedback from the system through a computer

monitor mounted on the far left side of the programming console.

1This button press is converted into a keyboard event using a Ultimarc I-PAC arcade controller
(http://www.ultimarc.com)
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Figure 4.1: System diagram for the Museum of Science exhibit showing the user
interface, hardware interface, and major software modules.

4.1 Image Processing

To convert physical Tern programs into digital code, I created a computer vision

fiducial library called TopCodes. TopCodes are circular, black-and-white symbols

that resemble barcodes. Each statement (or block) in the language is imprinted with

a single TopCode that allows the system to determine its position, orientation, relative

size, and statement type from a digital image. Because Tern is a compiled language,

it is not limited by real-time processing constraints faced by many other computer

vision applications. In other words, the system only needs to process an image when

a program is compiled, at most a few times a minute rather than ten or more times

a second. Because of this, it is possible to use a relatively high-resolution camera

and computer vision algorithms that are optimized for accuracy rather than speed.
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However, there is a tradeoff to be made. If compile times are too long, there is a

danger that users will become frustrated or confused, especially in museum settings.

This section discusses the details of the TopCode library.

4.1.1 Digital Camera Interface

For the earliest prototypes of the Tern system, I used a 2.0 megapixel Canon Pow-

erShot S200 digital camera to capture images for for processing. This camera has a

shutter, flash, manually operated power button, and requires an external AC power

adapter or battery. Canon provides a C-language development kit (CanonSDK) for

its PowerShot series of digital cameras, on top of which I implemented a Java native

interface (JNI) library. The Java interface could control the flash, optical zoom, and

image resolution. Captured images were transferred to the host computer through a

USB 1.0 connection with a maximum transfer rate of 12 Mbits/s.

The use of this device was problematic for many reasons. The need for a battery or

power supply added complexity to the system and increased setup time in a classroom.

The manual power switch and other user-adjustable controls introduced several poten-

tial points of failure into the system that were difficult to mitigate through software.

Worse, the shutter and relatively slow USB 1.0 connection added approximately seven

seconds to the overall compile time, by far the longest part of the process. Finally,

the use of a third-party API limited me to a specific device and operating system.

Switching to a consumer web camera would have solved these problems; however,

at the time, web cameras were limited to VGA resolutions (640 x 480), which was

insufficient for accurate recognition of TopCodes on a reasonably large programming

surface.
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Fortunately, in 2007 several companies released 2.0 megapixel web cameras. To use

a web camera instead of the Canon PowerShot, I implemented a Java native inter-

face (JNI) library using the Microsoft DirectShow API. This interface allows Java

applications to capture 2.0 megapixel still images on demand from the web camera,

which results in dramatically faster compile times (under two seconds overall), elimi-

nates the need for a power supply, reduces possible points of failure, and provides the

potential for a cross-platform implementation.

For the museum exhibit we suspended a Logitech QuickCam Pro camera in a light

fixture approximately three feet above the programming surface. At this height, a

programming surface approximately 4 feet wide and 1.5 feet deep is visible to the

camera.

4.1.2 The TopCode Symbol Format

TopCodes (Tangible Object Placement Codes) are black-and-white circular fiducials

designed to identify and track tangible objects on a flat surface. By tagging physical

objects with a TopCode the library will return an ID number, the location of the tag

(in pixel coordinates), the angular orientation of the tag, and the diameter of the tag

(in pixels). The TopCode library can identify 99 unique codes and can accurately

recognize codes as small as 25 x 25 pixels. The image processing algorithms work

in a variety of lighting conditions without the need for human calibration. The core

TopCode library is 100% Java.

The TopCode library is based on SpotCode2 symbol format, which was developed by

a company called High Energy Magic to commercialize research from the University

2http://www.cl.cam.ac.uk/research/srg/netos/uid/spotcode.html
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of Cambridge (de Ipina et al., 2002). SpotCodes encode a 42-bit integer in two

concentric data rings with 21 sectors each, allowing for a large number of unique

codes. A variation of the CRC-32 checksum algorithm is used to detect decoding

errors. To simplify the image processing algorithm and to increase accuracy and

speed, I reduced the symbol to one data ring with 13 sectors and replaced the CRC-

32 algorithm with a simple parity check.

TopCodes are drawn in arbitrary units. The center bulls-eye is drawn in white and

is two units in diameter. A black locator ring surrounds the bulls-eye and is one unit

thick and four units in diameter. A white locator ring surrounds the black ring and is

one unit thick and six units in diameter. Finally, a data ring one unit thick and eight

units in diameter completes the symbol. The data ring is divided into 13 equal black

or white sectors, with a black sector representing a binary zero and a white sector

representing a binary one. Bits are read in a clockwise direction around the symbol

with the lowest-order bits read first, as shown in figure 4.2. For accurate decoding

each TopCode symbol should occupy a region at least 25 × 25 pixels in an image.

Tern uses TopCodes that 0.65 inches in diameter.

Figure 4.2: A TopCode symbol encoding the number 307. The 13 sectors in the data
ring have been labeled in this figure for clarity. A black sector indicates a binary
zero, and a white sector indicates a binary one. Bits are read from the outer ring, in
a clockwise order around the symbol. The lowest-order bits are read first.

63



Because TopCodes are circular, they may be read at any angular orientation in the

plane. Thus, only the angular orientation that results in the lowest numeric value

is considered valid. A simple checksum function is used to reduce the occurrence of

false positive symbol recognition. Specifically, the algorithm requires that codes have

exactly five white sectors (five sectors with binary 1 values).

4.1.3 TopCode Decoder

Based on the TopCode symbol format, I implemented an efficient algorithm in Java

to recognize and decode multiple TopCode symbols in a single image. The algorithm

begins with an adaptive thresholding operation which converts full-color images into

binary images (black and white pixels only). This thresholding algorithm, developed

by Wellner (Wellner, 1993), requires only a single pass over the pixel data to accurately

distinguish black pixels from white pixels in a wide variety of lighting conditions. The

algorithm requires no human calibration and is capable of compensating for shadows

or glare that alter lighting conditions within a single image.

After thresholding, the algorithm scans the image line by line to identify candidate

TopCodes. Any pattern of pixels corresponding to a cross-section of TopCode locator

ring is marked. Marked pixels are at the center of a pattern: WHITE1–BLACK1–

WHITE2–BLACK2–WHITE3, where horizontally adjacent pixels of the same color

contribute to one element in the pattern. The pattern must also conform to cer-

tain proportion rules. Specifically, the sum of the pixels contributing to BLACK1

and BLACK2 should be roughly equal to the pixels contributing to WHITE2. Fur-

thermore, the absolute value of the difference of the pixels making up BLACK1 and

BLACK2 should be less than either the pixel count of BLACK1 or BLACK2 alone.
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Any marked pixel surrounded by four adjacent marked pixels (horizontal and vertical

neighbors) constitute the center of a candidate TopCode. This stage of the algorithm

also requires a single pass over the image; however, it can be combined with adaptive

thresholding so that only a single pass is required to both perform thresholding and

to identify candidate TopCodes. Although fast, one disadvantage of this technique is

that the viewing plane of the camera must be roughly parallel to the programming

surface to accurately identify TopCodes. Related algorithms that first locate nested

ellipses are accurate even when the camera is not orthogonal to the programming

surface (see de Ipina et al., 2002).

The final stage of the decoding process attempts to recognize each of the candidate

TopCodes. If the decoding process for a symbol results in a valid ID number (one

that has both a valid checksum and corresponds to one of the statements in the Tern

language), the TopCode is added to a list of valid codes in the image.

To decode an individual TopCode, its center must first be determined. The TopCode

location algorithm will only identify seed pixel locations somewhere in the center

bulls-eye of candidate codes. To find a more accurate center, the algorithm scans

up, down, left, and right from the seed location until it reaches a black pixel in each

direction. The midpoint of the left-to-right and top-to-bottom distances between

black pixels provides adequate x- and y-coordinates for the center of the code.

The next step is to determine the diameter of a TopCode and, in turn, its base

unit size measured in pixels. Again, the algorithm scans in four directions from the

center of the code to the outer edge of the black locator ring. The sum of these four

distances divided by eight provides an approximate measure of the unit size. The

overall diameter is eight times the unit size. If the vertical distance to the black

locator ring differs from the horizontal distance by more than one unit, the candidate
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code is rejected.

The algorithm must also be able to determine a TopCode’s angular orientation in

order to accurately read its data sectors. Since the orientation of a TopCode in

an image is unknown, the decoder takes 10 readings of the code at small angular

increments (2π/(21 × 10) radians) and uses the reading that returns the highest

confidence level (see below). Readings that are poorly aligned will result in a low

confidence level or will fail to decode a TopCode altogether. It would be possible

to return as soon as the first valid reading was made, however, the Tern compiler

requires more fine-grained information to accurately decode programs. If none of the

ten readings produces a valid TopCode, then the candidate is rejected.

To read the bits of a TopCode, a linear cross-section of the entire symbol (a core) is

sampled at 13 evenly-spaced angles around the center of the code. A core consists of

eight evenly-spaced pixel samples taken from the binary image, moving in a straight

line from left-to-right across the symbol. Each sample is stored as an integer value

between 0 and 255 representing average pixel intensities in a 3×3 pixel region around

the sample point. Black pixels have an intensity of 0 and white pixels have an intensity

of 255. Thus, a sample consisting entirely of black pixels would have a value of zero,

and a sample consisting entirely of white pixels would have a value of 255.

The exact pixels sampled in a core are determined by three parameters: 1) the ap-

proximate center pixel of the TopCode; 2) the approximate unit size of the TopCode;

and 3) the angular orientation of the core. Each core reading has a corresponding

confidence level: a number between 0 and 255 that represents the accuracy with which

the pixels in the core were decoded. If the three parameters are accurate, the core

should have a high confidence level. However, if the parameters are inaccurate, or

the area being decoded is not actually a TopCode, then the core sample should have

66



a low confidence level. The confidence level is determined according to the following

formula:

C = s1 + s3 + s4 + s6 + (255− s2) + (255− s5)+

|2s0 − 255|+ (255− |2s7 − 255|)

where C is the confidence level, and s0 . . . s7 are the eight core samples taken from

left to right across the symbol (as shown in the figure below).

Figure 4.3: A core consists of eight evenly-spaced pixel samples taken from left-to-
right in a straight line across the symbol. 13 core samples are taken (one for each
sector) during symbol decoding.

Note that samples 1, 3, 4, and 6 should be white (full intensity) and samples 2 and

5 should be black (zero intensity). Sample 0 is the data sector currently being read.

Its intensity value should be as close to black or white as possible, if the core is well-

aligned with the symbol’s sector boundaries. Using the formula |2s− 255| minimizes

medium intensity samples (gray values) and maximizes fully black or fully white

samples. Finally, because there are an odd number of sectors, core sample 7 should

fall roughly between two data sectors. This means that the sample should often have

a medium intensity—when it falls between a black sector and a white sector. Thus,

the formula rewards gray intensity values for these two samples (255−|2s−255|). The
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total confidence of the entire TopCode reading is just the average of the confidence

levels for the 13 core samples.

The actual bits of the code are read from core sample 0. If the intensity of a sample

is greater than or equal to 128, a binary 1 is recorded. Otherwise, a binary 0 is

recorded. After all 13 core samples are recorded, the bits of the code are rotated to

their lowest value and then compared to the checksum. If valid, the algorithm has

found a TopCode.

To summarize, the decoding process produces four important pieces of information

for each TopCode in an image:

1. The center of the TopCode

2. The diameter of the TopCode

3. The TopCode’s angular orientation

4. The TopCode’s 13-bit ID number

Taken together, these four characteristics allow the compiler to decode an entire

program.

4.1.4 Drawbacks of Computer Vision

While the TopCode library works well in a variety of normal lighting conditions,

there are, nonetheless several drawbacks to using computer vision to implement a

programming language compiler. The primary limitation has to do with occlusion.
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If a TopCode is blocked by a hand or an arm, for example, there is no way for

the vision system to decode the full program. In the worst case scenario, a child

will not realize the problem, and the resulting program will not run as expected. I

have tried to include visual cues to help children detect these types of problems 3;

however, occlusion is still commonplace. Another drawback relates to the size of

the programming area that can be recognized by the camera. In the museum, we

constructed the programming table itself to correspond to the camera’s field of view.

We were also able to control the lighting condition to result in reliable computer

vision. In the classroom, however, we have much less control over these variables.

Glare, shadow, and other inconsistent lighting conditions may result in computer

vision failures. If the operator of the system is not familiar with the computer vision

system, he or she may not be able to correct the problem.

4.2 Tangible Compiler

The Tern system includes a Tangible Compiler that is responsible for using informa-

tion provided by the TopCode computer vision library to convert physical programs

into digital code. The section provides a brief overview of the Tangible Compiler

algorithm.

The first task of the compiler is to convert a list of TopCodes provided by the com-

puter vision library into a list of Statement objects. Statement is an abstract Java

class (one that cannot be instantiated), and each type of block provided by Tern is

represented with a subclass of Statement. So, for example, there is a Start class, a

Shake class, and a Forward class, each of which extends Statement. Each statement

3In the latest version of Tern, I use animation and sound to create an effect in which the TopCodes
pop out in order on the computer screen
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subclass has a preassigned TopCode ID number and implements a small number of

abstract methods.

To convert TopCodes to statement objects, the compiler uses a StatementFactory

object. The StatementFactory maintains a lookup table of TopCode ID numbers

and corresponding statement object types. So, for example, the StatementFactory

will generate Wiggle statements for TopCodes with ID 155 and Bump statements for

TopCodes with ID 55.

As these statement objects are instantiated, each statement registers the location

of its sockets and connectors in relation to the location of its corresponding Top-

Code. For the purposes of the compiler, a socket represents an incoming connection

point, while a connector represents an outgoing connection point (see figure 4.4).

Each statement’s TopCode provides a unit length value and an angular orientation.

This information allows statements to define vectors that determine the location of

its sockets and connectors in relation to the TopCode’s center coordinate (see fig-

ure 4.5). It is possible for statements to have at most one socket and zero or more

connectors. For example, the Start block has one connector and no sockets; an End

block has one socket and no connectors; and an If block has one socket and three

connectors. When statements have more than one connector, they are given labels

to differentiate one from another. Once the locations of the connectors and sockets

have been determined, the compiler pairs connectors and sockets that are coincident

within a fixed error radius. The result is a linked-list data structure of statement

objects. It is possible to have several disconnected chains of statements as well as

individual unconnected statements in a program (see figure 4.6). This will not result

in a syntax error as it did in Quetzal (Horn & Jacob, 2007). The goal of this step

is to create a faithful representation of the state of the physical blocks in computer
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Figure 4.4: Sockets represent incoming connection points while connectors represent
outgoing connection points. Statements may have zero or one sockets and zero or
more connectors. For example, the If block (shown above) has one socket and three
connectors. One of its connectors is for a parameter value.

Figure 4.5: TopCodes provide a unit length, angular orientation, and an (x,y) posi-
tion. This information allows statements to define vectors that determine the posi-
tions of its sockets and connectors.

memory. That is, if two blocks are physically connected, then their corresponding

statement objects should be linked together. Likewise, if the physical blocks are dis-

connected, then their corresponding statement objects should not be linked. After

forming chains of statement objects, the compiler identifies all statements that imple-

ment the StartStatement interface. Typically, there will only be one physical Start

block available. However, when subroutines are allowed, there may be several blocks

that implement the StartStatement interface—one for the main program and one for

each possible subroutine definition. The compiler then calls a compile() method on

each of these statement objects. This, in turn, calls a compile() method on the next

statement in the chain using polymorphic object recursion. The compile() method
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Figure 4.6: Physical programs may contain several disjoint chains of blocks as well
individual unconnected blocks. Only the chain that begins with a Start block will be
compiled.

is an abstract method, declared in the Statement superclass and defined differently

in each of the subclasses. To make this concrete, here is the compile method defined

in the Forward class.

public void compile(Program program) throws CompileException {
program.addInstruction("; --FORWARD");
program.addInstruction("load-address forward");
program.addInstruction("call");
program.addInstruction("pop");
if (this.next != null) next.compile(program);

}

Two things happen in this method. First, the method generates several lines of assem-

bly code. Here the Program object passed as a parameter value simply accumulates

lines of code from each statement object in the chain. Second, the method calls the

compile() method for the next statement in the chain, if that statement exists.
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4.2.1 Parameters and Sensors

Certain statements such as If, While, Repeat, and Wait accept optional parameter

or sensor values. Physically, a parameter or sensor is a block with a specially shaped

socket or connector that corresponds to its data type, either Boolean or Integer.

For the compiler, parameters and sensors are simply subclasses of Statement, which

typically define a single socket and no connector. Likewise, statements that accept

a parameter value will define a special connector for the parameter block (see fig-

ure 4.4). When the compile() method is called on these statements, they will use

the designated parameter connector to get a value from the parameter. If no param-

eter is connected, a default value will be substituted. The compile() method for a

parameter simply adds its value to the accumulated program. For example, here is

the compile() method for a Bump sensor statement:

public void compile(Program program) throws CompileException {
program.addInstruction("; -- BUMP SENSOR");
program.addInstruction("load-literal " + BUMP_CODE);
program.addInstruction("sensor");

}

And here is the corresponding compile() method for a While loop block. Note, that

if there is no parameter connected, a default value of zero (false) is substituted in.

This code has been simplified for clarity.

public void compile(Program program) throws CompileException {
program.addInstruction("; --WHILE");
setDebugInfo(program);
String loop = ":loop" + program.genLabel();
String done = ":done" + program.genLabel();
program.addInstruction(loop);

// check condition
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if (param != null) {
param.compile(program);

} else {
program.addInstruction("load-literal 0");

}
program.addInstruction("load-address " + done);
program.addInstruction("if-false");
program.addInstruction("yield");

// execute the next statement in the loop
if (this.next != null) next.compile(program);

// loop
program.addInstruction("load-address " + loop);
program.addInstruction("goto");
program.addInstruction(done);

}

4.3 Behavior-Based Assembly Language

In the sample code above, the compile() methods for the various statement types

generate assembly code. This is an example of PCODE, a stack-based assembly lan-

guage that I created in collaboration with Daniel Ozick, a former iRobot software

engineer. PCODE is a behavior-based language that builds on the notion of sub-

sumption architectures (Brooks, 1986). PCODE supports a single data type, a 16-bit

integer, and provides three first-class language elements: functions, processes, and

behaviors.

4.3.1 Functions

A function is a named section of code that can accept any number of arguments

from the stack and leaves a single return value on the stack. The instructions call,
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return, and frame facilitate the stack discipline for function calling (see table C.1

for details), including pushing a return address onto the stack and jumping back to

the return address when the function call is complete.

4.3.2 Processes

A process in PCODE is similar to a thread in a language like Java or C++. Each

process maintains its own stack, instruction pointer, stack pointer, and frame pointer.

However, unlike threads, processes are not arbitrarily preempted by an kernel. In-

stead, a process must include a yield instructions to transfer control to the next

waiting process. Furthermore, processes have no priority levels. Instead, processes

are serviced in a fixed, round-robin order. Thus, it is incumbent on the programmer

to write process code that does not starve other processes or extend the cycle time

(the time it takes to process all of the processes and behaviors in turn) beyond an

acceptable performance limit. Here is an example that shows the first 20 lines of

the blink process. This process flashes the LEDs on the iRobot Create to create a

heartbeat effect.

process blink
:while32
load-literal 1
load-address :done32
if-false
load-literal 1
load-literal 2
led-on-off
load-literal 0
load-literal 3
led-on-off
load-literal 700
timer
:sleep33
yield
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load-address :done33
if-timer
load-address :sleep33
goto
; ...

Looking at this example, it is clear that it would be error-prone and tedious to write

programs in assembly language by hand. Thus, to improve this process, I created a

simple, high-level language based on the syntax of the Python programming language.

The same blink process can be defined in the high-level language using this code:

process blink:
while true:

led2 on
led3 off
sleep 700ms
led2 off
led3 on
sleep 700ms

I implemented a compiler for the high-level language using Python and the open

source pyparsing module4, which allows for the definition and execution of simple

context-free grammars.

4.3.3 Behaviors

A behavior is similar to a process but has several important differences. First, behav-

iors have fixed priority levels, and only one behavior may be active in a given cycle.

Furthermore, behaviors must include a small piece of code called a checkpoint that

determines whether or not they should be activated. In every cycle, the interpreter

4http://pyparsing.wikispaces.com/
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runs this checkpoint code for all latent behaviors with a higher priority level than the

current active behavior. If any behavior’s checkpoint returns true, it will take the

place of the current active behavior. In general, behaviors are used to allow the robot

to react to sensor events from its environment. For example, in Tern, user programs

run as a low-priority behavior. One problem is that a user program might accidentally

cause the robot to drive off the edge of a table and crash onto the floor—this was an

actual problem for one of our prototype installations at the museum. Fortunately, the

iRobot Create has built-in cliff sensors that help it avoid falling down stairs or off of

ledges. Tern includes a higher-level behavior that will interrupt the user’s programs

and stop the drive motors if the robot’s cliff sensors are activated. This behavior is

implemented with the following high-level code:

behavior [5] cliff-avoid:
start-when: <cliff>
stop()
while <cliff>:

go(-100, 0)
yield

stop()

Here the number five in square brackets indicates the behavior’s priority level, and

the start-when line is the behavior’s checkpoint code. The full PCODE language

specification is provided in Appendix C.

4.4 PCODE Interpreter

I implemented two different PCODE interpreters. The first runs on the iRobot Cre-

ate Command Module. The command module consists of an Atmel AVR ATMega168
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microcontroller packaged to plug into the iRobot Create cargo bay. The Command

Module can be programmed through a USB interface using an open source imple-

mentation of the GNU C compiler. The command module plugs into the iRobot

Create and issues commands to the robot’s onboard processor through a serial inter-

face. PCODE programs are stored as an array of bytes in the command module’s

flash memory. The command module and the iRobot Create are a self-contained unit.

That is, users can create tangible programs that are compiled into PCODE instruc-

tions and then permanently stored in the command module. These programs can

then be run anywhere at any time without needing a tether to the PC that originally

generated them.

The second PCODE interpreter works differently. I implemented this interpreter in

Java specifically for the Museum of Science exhibit. This interpreter is designed to

run on a PC and remotely control the iRobot Create through a wireless Bluetooth

serial connection. In this way, the PC knows which Tern instruction the robot is

currently executing and can also receive sensor data in real time. The PC, in turn,

displays this information to museum visitors on a computer monitor that is part of

the exhibit installation. A screen shot is shown in figure 4.7.

4.5 Serial Command Interface

iRobot Corporation publishes an open command interface (OCI) for its Create and

Roomba line of robots to allow developers to control their robots through exposed

serial ports. This command interface includes opcodes to set the state of various

actuators (including the drive motors, LEDs, the speaker, and auxiliary I/O ports)

and to query the state of onboard sensors. A third-party company, Element Direct,
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Figure 4.7: The exhibit computer displays the Tern statement currently being ex-
ecuted by the robot as well as realtime sensor data. This figure shows a cropped
screenshot from the exhibit computer monitor. The screenshot shows a debug arrow
over the Growl statement as well as the current state of the robot’s sensors, showing
that the right bump sensor is activated.

sells a Bluetooth serial adapter for the iRobot Create that allows the creation of a

virtual serial connection between a Create and the host exhibit computer. I created a

Java interface layer to facilitate communication between the runtime interpreter and

the iRobot Create.

4.6 The Block Tester

The block tester is a user-interface component of the exhibit that allows visitors to

instantaneously test the functionality of a block without having to go through the

process of creating and compiling a program. It consists of a black laser-cut piece of

extruded acrylic with a block-shaped hole cut in the middle. This part is mounted

flat on the lower-left side of the programming surface. Directly beneath this part on

the bottom side of the programming console, I mounted a Phidgets 125kHz RFID

reader.5 This reader can recognize one RFID tag at a time and has a range of

5http://www.phidgets.com
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approximately four inches for tags in plane with the antenna. The reader includes a

jack for an external LED indicator light. We threaded an LED through a hole in the

programming surface to indicate to visitors when a block is recognized by the system.

Figure 4.8: The block tester is a block shaped indentation on the programming surface
of the exhibit installation. This photograph shows a prototype of the block tester in
use. One block below the block tester is turned over revealing its RFID tag. The
current exhibit uses blocks with RFID tags embedded inside the blocks.

The Phidgets board connects to the exhibit computer through a USB port. Phidgets

also provides a Java language API that triggers software events when tags are added or

removed from the reader’s field of view. For the block tester to work, we embedded

a single 125 kHz RFID tag (approximately 1 inch in diameter) inside the wooden

blocks (see Figure 4.9). In software, a lookup table provides a translation between a

unique RFID tag and a Tern statement type. When a tag is recognized, the exhibit

computer performs three actions. First, it produces a small snippet of assembly

code that is sent to the runtime interpreter and immediately executed by the robot.

Second, the application displays a help message on the computer screen that explains

the function of a particular block (Figure 4.10). This is particularly useful for flow-

of-control blocks that produce no observable effect on the part of the robot. Finally,
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Figure 4.9: We embed a one inch diameter 125 kHz RFID tag inside each programming
block. A software lookup table provides a translation between the unique RFID tag
number and a Tern statement type. An RFID tag has been placed in a hole drilled
in the block shown on the left. The hole has been filled with a wood filler and sanded
smooth on the block on the right.

the exhibit computer plays an audio clip that says the name of the block in both

English and Spanish. The design decision to include the block tester was based on

Figure 4.10: When a block is placed in the block tester, a help message describing
the block is displayed on the exhibit computer screen. This figure shows an example
help message, the Growl block. In addition to displaying this message, the exhibit
computer also plays an audio file that says the name of the block in English and
Spanish, and it produces a snippet of assembly code that causes the iRobot Create
to immediately act out the command.

two goals: First, we thought that the block tester might serve as an entry point into

the exhibit and then, in turn, into programming. Our hope was that in their initial

exploration of the exhibit, visitors would notice the block tester and place a block in

it. The immediate reaction of the robot might then encourage further exploration of
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the exhibit. In other words, we were providing early success for visitors—what Sue

Allen terms immediate apprehendability (Allen, 2004). Second, we thought that the

block tester might serve as a handy reference for visitors in the process of creating a

program—imagine the equivalent of a tooltip for a tangible interface. The block tester

design decision was a tradeoff with a potential downside. We were concerned that once

visitors discovered the block tester they would ignore the programming capabilities

of the exhibit, using the block tester exclusively as a sort of remote control system.

Through informal observations, we confirmed that these fears were not unfounded.

Indeed, some visitors do use the block tester exclusively, never creating a program.

However, while we have not done a formal evaluation of this aspect of the exhibit,

the current consensus of the museum staff is that the block tester adds more to the

exhibit than it detracts.
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Chapter 5

Robot Park: Tangible

Programming at the Boston

Museum of Science

In their mission to engage, inspire, and open minds, science museums have been

at the forefront of innovative interaction design for children. They seek to provide

memorable learning experiences that cannot be duplicated in schools, libraries, or the

home. In an effort to engage diverse populations, science museums have adopted a

constructivist approach, offering self-guided, authentic experiences that allow visitors

to construct their own knowledge by exploring scientific or technological concepts in

a hands-on way (Allen, 2004; Humphrey & Gutwill, 2005; Zheng et al., 2007). In

this sense, museums attempt to foster learning that is intrinsically motivated. In

other words, visitors themselves should be the principle driving force behind their

own explorations (Allen, 2004; Papert, 1980; Resnick et al., 1996). For these types

of interactions, visitors are encouraged to form their own opinions and hypotheses,
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discuss them with friends and family, and test them in real time.

Not surprisingly, computer technology plays a role in many interactive exhibits, em-

powering designers to enrich the visitor experience. Yet, with this power, there is also

a temptation to program not just the computer, but also the learning experience itself.

Rather than facilitating self-guided, authentic experiences, computer-based exhibits

often lead visitors through scripted presentations with predetermined-determined out-

comes. Physical manipulation is replaced by pressing buttons or rolling trackballs.

As Ansel (Ansel, 2003) points out, most computer-based exhibits could just as easily

be experienced from home over the Internet. And, despite the fact that people tend to

visit museums in social groups (families or class visits), computer-based exhibits tend

to encourage single user interaction, sometimes to the detriment of the social group

as a whole (Heath et al., 2005; Hornecker & Buur, 2006; Serrell, 1996). By combining

Figure 5.1: The Robot Park exhibit is a permanent installation in Cahners Comput-
erPlace at the Boston Museum of Science. Visitors use our tangible programming
interface, called Tern, to control a robot on display.

the capabilities of computer technology with the richness of physical interaction, Tan-

gible User Interfaces (TUIs) have been cited as an appealing alternative to traditional

screen-based computer interaction for informal science learning (Hornecker & Stifter,
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2006). Unfortunately, however, TUI technology can be expensive and unreliable, of-

ten making it impractical for use outside of laboratory settings. Of course, this is

not always the case, and there are many examples of thoughtfully designed TUIs in

informal science learning settings (see Hornecker & Stifter, 2006; Rizzo & Garzotto,

2007). For example, Hornecker and Stifter describe a museum exhibit that combines

a physical abacus with a digital display to create an engaging, collaborative, and

interactive informal learning experience (Hornecker & Stifter, 2006).

In this chapter I describe the design and evaluation of Robot Park, a tangible com-

puter programming and robotics exhibit that I developed in collaboration with the

Boston Museum of Science (Horn et al., 2008, 2009). This exhibit is a permanent

installation at the Museum and has been on display since October 2007. In its first

year, the exhibit was visited by approximately 20,000 people. The goal of the exhibit

is to provide a hands-on learning experience for children to introduce concepts of

computer programming and robotics. In describing the exhibit I discuss five design

considerations for the use of tangibles in museum settings that guided both the devel-

opment and the evaluation of this exhibit. In doing so, I revisit the notion of passive

tangible interfaces. For the exhibit, the use of a passive tangible interface served both

as a way to address practical issues involving tangible interaction in public settings

and as a design to promote reflective thinking.

For the evaluation of the exhibit I worked with Erin Solovey from the Tufts Univer-

sity Human-Computer Interaction Lab to conduct a study involving observations of

260 people that compares mouse-based computer programming to tangible computer

programming in the museum setting. Our results show that the tangible language

and the graphical language are equally easy for visitors to understand. However, the

tangible language offers several significant advantages from an informal science edu-
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cation perspective. Among these, the tangible interface is more inviting and provides

better support for active collaboration. Furthermore, the use of the tangible interface

results in a more child-focused experience, in which children seem to be more actively

involved and self-motivated. Parents, in turn, take on more of a supporting role and

less of an instructing role. While there is still much work to be done in this area, I

hope that this study will provide concrete evidence that tangible interaction can be

an effective way to promote intrinsically motivated educational activities for children.

Figure 5.2: The Robot Park sign will light up and move when visitors program the
robot to move to a special target area at the back of the exhibit platform.

5.0.1 Exhibit Overview

The Robot Park exhibit allows museum visitors to control an iRobot Create robot by

creating computer programs using the Tern tangible programming language. These

programs consist of chains of wooden blocks shaped like jigsaw puzzle pieces that

represent actions for the robot to perform, such as SHAKE, BEEP, or TURN LEFT;

control-flow structures such as a WHILE loop and a REPEAT loop; and robot sen-

sor values such as a bump sensor, and an infra-red light detector. Visitors press a

button to compile their programs, which are converted into digital instructions using

a reliable, low-cost computer vision system called TopCodes (Chapter 3). Visitors’

programs are then transmitted wirelessly to the robot through a Bluetooth connec-
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tion. The robot, in turn, immediately begins to act out its instructions. This entire

process takes around two seconds to complete. A computer monitor displays a pic-

ture of the visitor’s program, and an arrow on the screen highlights the instruction

that the robot is currently executing. The exhibit also features a Block Tester, which

is a block-shaped indentation on the upper-right side of the programming console.

When a visitor places a block in the indentation, the robot immediately performs

that action, and the system displays a help message about the block on the computer

monitor.

To help engage visitors, the exhibit includes a built-in challenge activity. By pro-

gramming the robot to drive to a special target at the back of the robot platform,

visitors can cause the Robot Park sign (Figure 5.2) to light up and move. I also

Figure 5.3: Visitors’ programs are sent to an iRobot Create robot through a wireless
Bluetooth connection. The large red horseshoe magnet on the robot activates the
Robot Park sign shown in Figure 5.2

created a booklet with a set of challenge activities that visitors can try. The booklet

consists of a set of two sided cards (see Figure 5.4 for an example); on one side is the

challenge, and on the reverse side is a possible solution.
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Figure 5.4: I created a set of challenge cards for the exhibit with a challenge on the
front side of the card (top) and a solution on the reverse side (bottom).

5.0.2 Guiding Theme and Learning Objectives

In informal science learning settings such as museums, educational priorities are often

different from those of classrooms. Without a teacher or curriculum requirements to

guide activities, there is less of a concern for standards or students’ performance on

tests and quizzes. In a sense, helping to shift children’s attitudes and preconceptions

is at least as important as conveying high-level science and technology concepts.

At the Boston Museum of Science, exhibits are designed with the belief that “it
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may be more important for visitors to acquire experience, observation, perception,

experimentation, imagination, discovery, thinking like a scientist than to learn any

specific facts in any specific fields of science” (Boston Museum of Science, 2001). Thus,

we are less concerned with teaching complicated robotics and computer programming

concepts than with giving visitors a positive, hands-on experience that might inspire

them to learn more about computer programming and robotics on their own. The

goal is for visitors to walk away thinking: I programmed a robot today, and it was

easy and fun! Secondary learning objectives include conveying basic vocabulary ideas

for concepts such as robots, sensors, actuators, and computer programs.

5.0.3 Audience

We designed the exhibit with elementary and middle school children in mind, although

we hope to engage older children and adults as well. Our goal is to engage girls as well

as boys and be inviting to visitors of diverse backgrounds. The programming blocks

themselves are labeled in both English and Spanish, and the exhibit will eventually

be completely bilingual.

5.0.4 Setting

The exhibit is on display in Cahners ComputerPlace, one of the Museum’s three Dis-

covery Spaces. Unlike other areas of the Museum, the Discovery Spaces are staffed

full-time by volunteers who guide visitors through activities and interpret exhibits.

One advantage of this setting is that it allows for incremental, live prototyping of ex-

hibits with visitors. For example, our earliest prototype exhibits consisted of nothing
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more than a table top, a computer monitor, and a robot on the floor (see Figure 5.5).

Furthermore, staff members provide us with invaluable feedback, identifying both

positive and negative aspects of visitor interactions. Although installed in a staffed

area, we designed the exhibit to be successful in unstaffed environments, and, in

practice, visitors regularly interact with the exhibit without any assistance from staff

members.

Figure 5.5: Our earliest exhibit prototypes consisted of nothing more than a table
top, a computer monitor, and a robot on the floor.

5.0.5 Installation

Following the Museum’s guidelines for universal access, the installation was designed

according to the Americans with Disabilities Act standards for accessibility. We con-

sidered the height and reach of children in designing the programming console and we

provided enough room for two or three active participants. The exhibit is wheelchair

accessible, and we provided ample surrounding space for passive observers. We were
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also careful to design the installation so that both the robot and the programming

console are easy to observe. Thus, the programming console is angled outward to-

wards the room to increase visibility.

The robot is prevented from falling off the edge of the platform by a short plexiglass

barrier that runs the length of the front edge of the exhibit. We designed this barrier

to give the impression that the robot is on display, yet also to give visitors the freedom

to touch both the robot and other interactive elements on the platform—currently the

exhibit features a set of large cardboard building blocks on the platform to encourage

visitors to create obstacle courses for the robot. Our goal was to produce an effect

similar to that of a tide pool exhibit at an aquarium, where visitors are encouraged

to respectfully touch the organisms on display.

After brainstorming and debating several different themes for the exhibit (including

a high-tech cityscape, and a mechanical flower garden), we settled on the Robot Park

concept. Here we made a conscious effort to create an exhibit that would be appealing

to girls as well as boys.

5.0.6 Implementation

We started work on the exhibit in May 2007 beginning with a prototype of the Tern

programming system. To the language I added parameters, sensors, structured loops,

and other flow control blocks. I then developed a custom runtime interpreter and

an assembly language for controlling robots in real time over a wireless Bluetooth

connection. I also made substantial changes to the computer vision system, improving

both speed and accuracy, while at the same time switching from a point-and-shoot

digital camera with a shutter and optical zoom to a two megapixel web camera.
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Figure 5.6: Schematic diagram (top left) and plywood prototype (top right) of the
Tangible Programming exhibit at the Boston Museum of Science. Initial prototype
installations were created out of corrugated cardboard (bottom).

The camera is mounted three feet above the programming surface and captures still

images of visitor programs. Each of the programming blocks is imprinted with a

TopCode symbol that allows the system to determine the position, orientation, and

type of each programming block. I deployed an initial prototype on the museum

floor in September 2007 and have gone through many iterative revisions since, fixing

technical problems and making improvements based on feedback from the museum

staff and visitors.
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Figure 5.7: A concept sketch for the robot park exhibit theme.

5.0.7 Programming Language

I designed the programming language itself to be as simple as possible while still

allowing for interesting interactions. The goal is for a child with no prior programming

experience to be able to learn how to use the exhibit in a minute or two. The language

syntax is conveyed entirely through a physical jigsaw puzzle metaphor, and, following

the lead of systems like PicoBlocks and Scratch (Resnick, 2007), it is impossible to

produce a syntax error (see Chapter 2).

5.0.8 Exhibit Computer Logs

I set up the exhibit computer to log anonymous data on visitors’ use of the exhibit.

These logs captured a digital photograph of the programming surface every time a

visitor pressed the compile button. Somewhat accidentally, these photographs also
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Total sessions count: 761
Total participant count: 1,263
Total compile count: 4,396
Avg sessions per day: 28.19
Avg participants per day: 46.78
Avg compiles per session: 5.78
Avg participants per session: 1.66
Avg session length: 0:04:20

Table 5.1: This table summarizes the results of a by-hand inspection of the exhibit
computer logs for the month of November, 2007.

often captured parts of participants hands and arms as well (see Figure 5.15). By

inspecting the photographs by hand, I was able to use this data to make estimates

for both the number of visitor sessions and number of individual visitors per session.

I analyzed these logs in detail for the entire month of November, 2007. There was

much uncertainty involved in this data collection method; however, I believe that

the results provide a reliable rough estimate of visitors use of the exhibit. Table 5.1

summarizes these results. In addition, Figures 5.8 and 5.9 show the frequency of

session length and participant count across these sessions.

5.1 Design Considerations for TUIs in Museums

Recent literature on science museums includes many practical design considerations

for exhibit developers (Allen, 2004; Humphrey & Gutwill, 2005; Serrell, 1996). Some

of these design considerations seem especially applicable to educational tangible in-

terfaces. The unrestricted nature of science museums is at once an appealing as-

pects for visitors and one of the biggest challenges facing exhibit developers (Allen,

2004). Because visitors are free to choose when and where to spend their time (unlike

classroom settings), effective exhibits must be both inviting and easy to understand.
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Figure 5.8: Frequency of session length (in minutes) based on an analysis of the
exhibit computer logs for the month of November, 2007. Session length is measured
as the amount of time a social group spends interacting with the exhibit.

.
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Figure 5.9: Frequency of number of programs compiled per session based on an
analysis of the exhibit computer logs for the month of November, 2007.

.
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Furthermore, they must hold the visitors’ attention and motivation throughout the

interaction process. All of these issues must be addressed while keeping development

and maintenance costs reasonable. Thus, I highlight five design considerations for

tangible user interfaces for children in a museum setting.

• Inviting — Exhibits need to catch the attention of visitors and invite them to

interact.

• Apprehendable — Visitors with no prior experience should be able to easily

learn how to use an exhibit. Allen, building on Norman’s notion of affor-

dances (Norman, 1988), suggests the term immediate apprehendability as the

quality that “people introduced to [an exhibit] for the first time will understand

its purpose, scope, and properties almost immediately and without conscious

effort” (Allen, 2004).

• Engaging — An interactive exhibit strives to hold the attention of diverse visi-

tors throughout the exploration process.

• Supportive of Group Interaction — Science museums are usually visited by

families and school groups (Allen, 2004; Serrell, 1996) rather than by individuals.

As such, exhibits should support social learning and group interaction with both

active participants and passive observers (Serrell, 1996).

• Inexpensive and Reliable — Museums are non-profit institutions that rely heav-

ily on support from individuals, corporations, foundations, and government

agencies. Thus, keeping development and maintenance costs low is a priority.
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5.2 Pilot Study

In January 2008, we conducted a two-phase pilot evaluation of the exhibit, in which

we attempted to measure the effectiveness of the exhibit with respect to four of the

attributes listed above: inviting, active collaboration, apprehendability, and engage-

ment. This section briefly summarizes the results of this evaluation.

5.2.1 Participants

In our first pilot session, we observed 55 museum visitors, 35 male and 20 female. Of

these, 23 were children (seven girls and sixteen boys). Seven visitors used the exhibit

alone. The remainder of visitors interacted with the exhibit in groups from two to

six people. In all we observed 19 interaction sessions.

In our second round of evaluation, we observed 100 museum visitors, 56 male and 44

female. Of these, 43 were children (14 girls and 29 boys). Fourteen visitors used the

exhibit alone. The remainder of visitors interacted with the exhibit in groups from

two to seven people. In all we observed 35 interaction sessions.

5.2.2 Exhibit Revisions

During the first pilot session, we noticed some usability problems. First, the RFID

Block Tester was not functional at the time of our observations, leaving visitors with

no way to quickly test the functionality of a block. Second, there was a device

on the programming console that is used to activate the robot’s infrared sensor.
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Visitors commonly confused the infrared device for some sort of robot remote control.

Finally, when the robot moved towards the edge of the platform a safety system would

terminate the visitors program to prevent the robot from falling over the edge. At this

point visitors had to physically pick up the robot and place it back on the platform,

although not all visitors realized that their program had been stopped. Also, not all

visitors realized they were allowed to touch the robot.

In our next pilot session, we made changes that we thought would improve these

factors. First, the Block Tester was implemented, allowing visitors to learn about

the blocks with immediate feedback. Second, the infrared device was moved to the

side of the workstation, so that it did not distract visitors from learning the basics

before moving to the advanced functionality of the infrared sensor. To prevent the

confusion with the robot moving near the edge of the platform, we simply placed the

robot in the center of the platform between sessions so that users would be less likely

to confront this problem before having a chance to learn how the exhibit worked. The

goal was to measure improvements in the user experience after making these changes.

5.3 Pilot Study Results

5.3.1 Inviting

78.2% of visitors in the first session (S1) and 79% of visitors in the second session

(S2) who noticed the exhibit stopped to interact with it. Among children, 85.7%

(S1) and 92.9% (S2) of girls and 87.5% (S1) and 93.1% (S2) of boys who noticed

the exhibit stopped to try it. Given that museum visitors have complete freedom to
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decide whether or not to stop at an exhibit, these results seemed surprisingly high.

Unlike in the comparative study, we included both active and passive participants in

our tally. If we consider only active participants, then 60% (S1) of visitors who saw

the exhibit actively interacted with it. For children the numbers were 71.4% (S1) of

girls and 75% (S1) of boys 1.

5.3.2 Active Collaboration

The average group size was 2.47 people in the first session and 2.35 people in the

second session. Groups were as large as six people in S1 and seven people in S2.

Figure 5.10 shows the frequency of group size for both sessions. Overall, 76.7%

(33 out of 43) of participants in the first session were active rather than passive.

Qualitatively, groups tended to include both passive and active participants, and

group members often transitioned between active and passive roles. Passive group

members seemed to be able to easily watch active participants working and frequently

contributed suggestions.

5.3.3 Apprehendable

Of the nineteen groups who used the exhibit in S1 only ten (52.6%) successfully

learned how to use the exhibit. Of those ten groups almost all figured out the exhibit

in a minute or less. Of the remaining nine groups, four gave up in the first minute.

The other five groups spent between two and five minutes trying to figure out how the

exhibit worked before giving up. These results were discouraging, but we also noticed

1We only recorded active vs. passive information in our first session observations.
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Figure 5.10: Frequency of group size observed in session 1 and session 2 combined.

three specific reasons why visitors were struggling (absence of block tester, confusion

by infrared beam, and robot getting stuck near the platform edge) as described above.

In the second session, we made the changes described above. Of the 35 groups who

used the exhibit, 24 (68.6%) successfully learned how to use the exhibit. The 24

groups that understood the exhibit took between nine seconds and four minutes to

figure out the exhibit, with most figuring it out in about a minute. Of the remaining

seven groups, three left the exhibit within the first minute. The rest spent between

1.2 and 4 minutes trying to figure out how the exhibit worked before giving up. Note

that in our comparative study this figure was higher in the tangible condition; 29

out of the 39 (74%) groups were able to develop an understanding of the exhibit.

This might be because of improvements made to documentation and signage at the

exhibit and optimizations made to the computer vision system resulting in faster

compile times.
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5.3.4 Engagement

We measured engagement in terms of overall session length for each group. Of the ten

groups from S1 and 34 groups from S2 that successfully learned how to use the exhibit,

engagement was high. The average session length for these groups was 5.3 and 5.0

minutes (S1 and S2, respectively) and the maximum session length was 16 (S1) and

26 minutes (S2). However, for the remaining groups (nine in S1 and twelve in S2),

the average session length was 1.9 and 1.3 minutes. This brought the overall average

session length down to 3.7 minutes (S1) and 3.8 minutes (S2). These results led us

Figure 5.11: Frequency of session duration (rounded to the nearest minute) for S1
and S2 combined. The last column groups all sessions equal to or greater than 10
minutes. The actual session lengths were 10, 14, 16, and 26 minutes.

to believe that if we could further improve the apprehendability of the exhibit overall

engagement would improve as well. Indeed, in the comparative study, average session

lengths in the tangible condition were more than a minute longer (5.03 minutes).

Figure 5.11 shows the frequency of session lengths (rounded to the nearest minute)
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for the first and second sessions combined. The broad distribution indicates that the

exhibit has the ability to draw visitors in to prolonged engagements.

5.4 Interaction Style Comparison Study

Based on our findings from the pilot study, we conducted a between subject study

to compare the effectiveness of a tangible and a graphical programming interface

for the Robot Park exhibit at the Boston Museum of Science. The study consisted

of observations of museum visitors and an analysis of logs generated by the exhibit

computer. In order to provide context for our quantitative data, we also interviewed

13 family groups who had used the exhibit. Based on the prior evaluation, we were

interested in the following six questions.

5.4.1 Research Questions

Inviting: Does the type of interface affect how likely visitors are to interact with the

exhibit?

Apprehendable: Does the type of interface affect whether or not visitors are able

to develop an understanding of how the exhibit works? That is, are they able

to figure out how to create programs and send them to the robot?

Active Collaborative: Does the type of interface affect how well visitors are able

to interact with the exhibit in groups? Does the exhibit support simultaneous

active participants?

Engaging: Does the type of interface affect how long visitors interact with the ex-
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hibit?

Programs: Does the type of interface affect either the number or the complexity of

programs that visitors create to control the robot?

Child-Focused: Does the type of interface affect how children interact with the

exhibit and with other members of their social group?

5.4.2 Method

During the evaluation, visitors used the exhibit without interacting with researchers

and without help from the museum staff. Quantitative data involving visitor behav-

ior were logged automatically by the exhibit computer as well as manually by the

researchers. During periods of observation, researchers sat ten feet away from the

exhibit and watched visitors’ interactions with the exhibit. A sign was posted next

to the exhibit, notifying visitors that the exhibit was being observed, which might

have affected visitors’ decisions to use the exhibit. For this study, we were interested

in observing family groups, which we define as groups of individuals consisting of at

least one child and one adult who visit the museum together. To increase our chances

of observing family groups, we conducted all of our observations over a period of

three weeks on weekend days. Visitors were not recruited to participate in the study;

rather, participants were people who happened to visit Cahners ComputerPlace at

the Museum on one of our observation days. Since visitors were not recruited from

the museum population as a whole, we must assume some bias in the sample popula-

tion. Visitors likely had an existing interest in computers and robotics that motivated

them to visit ComputerPlace in the first place. Two researchers collected data for

this study. To reduce intra-researcher bias, the two researchers spent roughly equal

amounts of time observing the two interface conditions.
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5.4.3 Conditions

We observed museum visitors in two independent conditions, tangible and graphi-

cal. In the tangible condition (TUI), visitors interacted with the exhibit using the

Tern wooden block interface described above. In the graphical condition (GUI), we

replaced the wooden blocks with a single standard, two-button computer mouse. To

allow for mouse-based programming in the GUI condition, we created a comparable

visual programming language (Figure 5.12). We were careful to make the visual and

the tangible languages as similar as possible, and we included an identical set of blocks

in the two interfaces. In addition, to help ensure an intuitive graphical language, we

modeled the mouse-based interaction conventions on the popular Scratch program-

ming language (Resnick, 2007)2 One important difference between the graphical and

tangible languages is that there is no restriction on the number of blocks that can

be dragged onto the screen in the graphical interface, whereas, there are a limited

number of tangible blocks available to visitors. All other aspects of the physical ex-

hibit installation remained the same. We set up only one interface for visitors to use

on a given observation day, and we alternated conditions on subsequent days. Fur-

thermore, the two researchers who collected data for the study spent roughly equal

amounts of time observing each condition. We chose to compare the tangible lan-

guage to a system with a single mouse because this still seems to be the predominant

form of interaction in schools, after school programs, and museums. In the future, I

would like to broaden the comparison to include multi-touch or multi-mice systems.

For now, I will note areas where I think that alternate screen-based systems might

be advantageous in my discussion of the results.

2This interaction style uses a click-and-drag operation to move programming blocks on the com-
puter screen with the mouse. It is important to note that this type of operation is sometimes difficult
for young children, and it has since been pointed out that a click-and-carry operation might have
been more appropriate in this situation.
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Figure 5.12: We created a graphical programming language equivalent to Tern using
the same jigsaw puzzle metaphor and an identical set of blocks.

5.4.4 Participants

We observed a total of 260 individuals at the Museum of Science (108 for the GUI

condition and 152 for the TUI condition). Of these, 104 of the participants were

children (47 for the TUI condition and 57 for the GUI condition). We defined a

child as an individual 16 years old or younger. However, for these observations we

did not interview the visitors, so our participant ages are estimates. Based on these

estimates, observed children were between 2 and 16 years old (46 were approximately

8 years old or younger; 34 were between the ages of 9 and 12; and 24 were between

the ages of 13 and 16). As we mention above, we were interested in observing family

groups. In the GUI condition there were 25 total groups, 16 of which contained at

least on parent and one child. In the TUI condition, there were 39 total groups, 18 of

which contained at least one parent and one child. For the family group interviews,

we recruited thirteen child-parent pairs. Of the children, six were girls and seven were

boys. The ages ranged from 5-16 years of age, with an average age of 9.
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5.4.5 Quantitative Data

To evaluate the exhibit and answer the six questions described earlier, we had to

convert each desirable quality to a measurable metric that we could use for comparison

of the two interfaces.

To measure the inviting quality of the exhibit, we kept a tally of the number of

people who noticed (looked or glanced at) the exhibit while within a five foot radius

of the installation. Of the people who noticed the exhibit, we recorded the number

of people who touched the exhibit with their hands. The time that a visitor first

touched the exhibit was recorded as the start of a session. Session data were recorded

on a per-group basis.

To measure apprehendability, we noted whether or not a social group was able to

develop an understanding of how the exhibit worked. In other words, did visitors

understand that pressing the run button caused the robot to execute a program?

For our purposes, programming the robot one time was not sufficient evidence of

understanding. Instead, we required evidence that visitors were purposefully putting

pieces together to create more than one program. We recognized that it might be

possible for a visitor to understand how the exhibit works without compiling more

than one program; however, for the purposes of comparison, we felt that it was more

important to avoid false positives than false negatives.

To determine the extent to which the exhibit supports collaboration, we compared

the number of active participants to the number of passive participants for each

interaction session. An active participant is someone who touches or interacts with

the exhibit in some way, while a passive participant is a visitor who simply observes
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other members of his or her social group using the exhibit. Visitors often switch

between active and passive roles during an interaction session; however, for this study,

any hands-on interaction during a session classified a participant as active, regardless

of the nature of the interaction. We recognize that collaboration is a complicated

concept with many shades of meaning. Our measure is not comprehensive, but we

feel the results are still worth noting.

To measure engagement, we recorded the duration of each interaction session. This

was recorded as the time the first group member started interacting with the exhibit

to the time that the last group member left the exhibit. This method is based on prior

studies of engagement with interactive elements in museums (Humphrey & Gutwill,

2005). Like collaboration, we recognize that session length is a narrow definition

of engagement, a phenomenon that has intellectual, physical, emotional, and social

aspects; however, museum research has shown that session length correlates well with

physical, intellectual, and social aspects of engagement (Humphrey & Gutwill, 2005).

To analyze visitor computer programs we set up the exhibit computer to log every

program compiled by participants. This was in the form of a screen shot for the

GUI condition and an image captured by the digital camera for the TUI condition

(Figure 5.15). In analyzing these logs we were interested in three questions: does the

type of interface affect (1) the number of programs created by visitors per session;

(2) the length of programs created; and (3) the complexity of programs created?

To determine the extent to which the exhibit is child-focused, we noted which member

of each family group initiated an interaction session and whether that person was

a parent, a child, or a parent and child together. We also analyzed the data for

differences between children and adults for each of the other measures described

above.
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5.4.6 Qualitative Data

After collecting the quantitative data, we returned to the museum on several addi-

tional weekend days to conduct interviews with family groups. In all we interviewed

thirteen parent/child pairs who had used the exhibit for more than five minutes on

their own before being approached by a researcher. In some cases there was more

than one child in a family group that we interviewed. In these cases, we interviewed

the child who seemed most involved with the activity. After initially agreeing to

participate, each family group was given time to read and sign a consent form. The

interviews took about fifteen minutes to complete. Of the children who participated

in the interviews, twelve had never programmed before, and one had programmed

with LEGO Mindstorms at a camp. All reported that they used a computer at least

once a week at school or at home. Four of the groups had used the GUI condition

and nine had used the TUI condition prior to participating in the interview.

In the interviews, we gathered background information and impressions from the

visitors, and we asked them to work together to complete a few simple programming

tasks. We also introduced the visitors to the interface (either GUI or TUI) that they

had not been using before the interview. After trying out the second interface, we

asked the children to fill out a short questionnaire about the two interfaces. Eleven out

of the thirteen children answered these questions, while the two remaining children

left before finishing the questionnaire. For children who could not read, we read the

questions out loud. Two researchers conducted the interviews. One researcher was

responsible for asking the questions and verbally interacting with the participants;

the other researcher, meanwhile, recorded transcribed the conversations on a laptop

computer. No audio or video recording devices were used. Appendix A provides the

questions that we used to conduct the interviews at the Museum.
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5.5 Results

This section presents the results of our study organized around our research questions.

Namely, the extent to which each interface was inviting, apprehendable, collaborative,

engaging, and child-focused. We also analyze the programs created by visitors.

5.5.1 Inviting

Based on our prior formative evaluation of the exhibit, we expected the tangible

interface to be highly inviting. We hoped that the use of familiar objects (such as

wooden blocks) would transform an unfamiliar and potentially intimidating activity

like computer programming into an inviting and playful experience. Our results,

Figure 5.13: Percentage of visitors who interacted with the exhibit after noticing it.
(* p < .05, ** p < .01)
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shown in Figure 5.13, indicate that the choice of interface matters a great deal.

Overall, visitors were significantly more likely to try the exhibit with tangible blocks

than with a mouse (based on a two-tailed z-test). This was especially true for children

and for girls in particular. For the graphical system, 33.3% of girls who noticed

the exhibit also tried it. This number rose to 85.7% when the tangible system was

presented, an increase of over 50%.

To gain some insight into this effect, during the family group interviews, we asked

the children which interface they thought was more fun. Seven of the visitors who

were interviewed reported that the blocks were more fun than the mouse; one said

that the mouse was more fun; and two reported that they were the same (1 subject

had no response).

5.5.2 Apprehendable

Before conducting this study, our hypothesis was that the graphical condition would

be easier for visitors to understand than the tangible condition. This was because

we felt that, in general, visitors would be very familiar with graphical user interfaces.

On the other hand, with passive tangible interfaces such as the tangible programming

exhibit, there is a non-continuous link between physical actions and digital responses.

As such there is a danger that users will have a difficult time understanding how a

system is supposed to work. For the tangible programming exhibit, visitors must

discover that they have to press a button to trigger the camera to take a picture of

their program to send to the robot. One of our primary concerns was that visitors

would give up and walk away before figuring out how the exhibit worked.

Despite our expectations, the results of our study showed that there was no signif-
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icant difference between the two conditions. Of the 25 groups that we observed in

the graphical condition, 18 (72%) successfully developed an understanding of how

the exhibit worked. In the tangible condition, 29 out of the 39 (74%) groups were

successful. Typically, visitors would give up if they were not able to figure out the

exhibit within the first two minutes of interaction (only two groups overall spent more

than two minutes before giving up).

Correspondingly, out of the family groups we interviewed, four reported that the

blocks were easier to use and five reported that the mouse was easier to use (with

one reporting that they were the same, and three not responding to this question).

Children’s age did not appear to play a factor in interface preference.

5.5.3 Active Collaboration

Tangible interfaces are often claimed to improve support for collaborative interaction.

We expected that this would be true for our tangible system as well, both because the

interface is made up of many physical manipulatives for active participants to share,

and because passive participants can easily observe the actions of active participants.

Hornecker and Buur refer to these properties as multiple access points and non-

fragmented visibility (Hornecker & Buur, 2006). In addition, we were careful to

design the exhibit installation so that it would be easy for people standing around

the platform to observe both the robot and the programming console.

For the purposes of this study, we define active collaboration as simultaneous active

participation, and we measure it by comparing the number of active and passive

participants in each group. The average number of active participants per group

in the graphical condition was 1.32 (SD = 0.48), while the average in the tangible
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condition was 2.0 (SD = 1.05). This difference is statistically significant (one-tailed

t-test, p < 0.01). Similarly, the ratio of active to passive participation in the GUI

condition was 1.18, while the ratio in the TUI condition was 3.55. Figure 5.14 shows

the average number of active participants in each condition by age and gender. The

difference between conditions was especially large for children (based on a one-tailed

z-test). This result was reflected in our interviews with family groups. More children

Figure 5.14: Percentage of participants who were active (out of active and passive
participants combined) in each condition (* p < .05, ** p < .01).

said that they would prefer to use the blocks for working with friends or family (7

blocks, 3 mouse, 1 no response). However, the responses were evenly split when asked

which interface would be preferable for working alone (4 answered the blocks, 4 the

mouse, 1 the same, 1 had no opinion, 1 didn’t answer).
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GUI (N = 25) TUI (N = 39)
Single Active Participant 2.55 (SD = 2.09) 1.77 (SD = 1.82)

Multiple Active Participants 7.13 (SD = 7.42) 6.65 (SD = 6.47)

Table 5.2: Average session lengths for groups with a single active participant and
groups with multiple active participants for both conditions. The differences within
both conditions are statistically significant (p < 0.05).

5.5.4 Engaging

We measured engagement in terms of the overall session length for each group. The

average session length was 4.02 minutes for the graphical condition (SD = 4.87) and

5.03 minutes for the tangible condition (SD = 5.84). The variance for session length

was high in both conditions, and a two-tailed t-test showed no significant difference

between the two means. To put these results into perspective, recent research on

engagement in science museums has found average session lengths of 3.3 minutes

for successful, engaging exhibits (Humphrey & Gutwill, 2005). We did, however,

observe a significant difference in average session length between groups with only a

single active participant compared to groups with multiple active participants (see

Table 5.2). This suggests that for engagement, the type of interface might be less

important than actively involving multiple participants. Thus, multiple mice (see

Scott et al., 2000; Stewart et al., 1998), large touch-enabled displays, and tangible

blocks might all be equally effective in engaging visitors because they all provide good

support for multiple active participants.

5.5.5 Child-Focused

We examine the roles of children and adults under both conditions and provide ev-

idence that the tangible system seems to encourage more active participation on
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the part of children. For our measure of inviting, we note that children were much

more likely to try the tangible interface, whereas for adult men, there was no signif-

icant difference between the conditions (Figure 5.13). We also noticed an increase

in the percentage of active participation (compared to passive participation) that

was especially large for children (Figure 5.14). This data combined with qualitative

observations suggests that parents tended to take on more of a supporting role (of-

fering advice and suggestions from the sidelines) rather than an instructional role.

For example, during one of the interviews in the GUI condition, a seven-year old girl

worked with her father to complete the programming tasks. The father had control

of the mouse during this session. When we introduced to the tangible interface, the

girl immediately took over the job of creating programs, while her father looked on

and offered advice.

Considering data from family group sessions (omitting adult-only or child-only groups),

17 out of 18 sessions in the TUI condition were either initiated by a child or initiated

by a parent and child simultaneously. In the GUI condition, on the other hand, 11

out of 16 sessions were initiated by a child or parent and child simultaneously. The re-

maining sessions were initiated by an adult. This difference is statistically significant

using a two-tailed z-test (p < 0.05).

5.5.6 Computer Programs

Finally, using the exhibit computer logs, we analyzed the actual computer programs

that visitors created during the first two days of observations (one day for each con-

dition). This included 13 groups in the GUI condition and 20 groups in the TUI

condition. Prior to conducting the study we hypothesized that visitors would create
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longer and more complex programs with the tangible interface because we felt that

it was easier to manipulate and rearrange physical blocks than to manipulate icons

on a computer screen with a mouse. However, despite this hypothesis, we found no

significant differences between the conditions.

Number of Programs

The average number of programs created per group in the GUI condition was 4.85

(SD = 7.09). The average in the TUI condition was 7.19 (SD = 5.72). This difference

was not significant. These results include groups that compiled no programs. If we

omit the groups with zero programs the averages were closer together (7.88 for GUI

vs. 8.39 for TUI).

Figure 5.15: An example screen shot from a program created in the tangible condition.
The digital photograph has been cropped for clarity. The field of view of the digital
camera includes the entire programming surface.
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5.5.7 Program Length

We measured program length in terms of the number of blocks (or statements)

included. The average program length in the GUI condition was 8.06 statements

(SD = 3.04), while the average program length in the TUI condition was 9.13 state-

ments (SD = 5.71). Again, this difference was not statistically significant.

5.5.8 Program Complexity

To measure complexity, we assigned a complexity score from 1-4 to each program

compiled. Programs with a score of 1 contained only action blocks (no flow of control

statements). Programs with a score of 2 contained at least one control block but no

parameter values, while programs with a score of 3 contained a single control flow

block with a parameter value. Finally, programs with a score of 4 contained multiple

control flow blocks with parameters. We found no significant differences in complexity

levels between conditions.

5.6 Discussion

Overall, on the six measures, the tangible interface was more inviting, more supportive

of active collaboration, and more child-focused than the mouse-based interface. We

also found that the tangible and graphical interfaces were equivalently apprehendable

and engaging, and the resulting visitor programs were not significantly different. For

the measure of engagement, we noted that regardless of the condition session times

were longer when there was more than one active participant involved. This suggests
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that other types of interfaces designed to support collaboration (such as multi-touch

or multi-mouse systems) might be equally effective in encouraging engagement.

5.6.1 Girls And Programming

In this study, we observed that girls were significantly more likely to use the exhibit in

the tangible condition than in the graphical, mouse-based condition. It has been noted

that as technology becomes more pervasive in our society, it is important that it sup-

ports all members of society (AAUW, 2000; Kelleher et al., 2007). Although women

and girls currently are under-represented in the field of computer science (AAUW,

2000; Vegso, 2006), Kelleher et al. (2007) point out that performance and interest in

programming has been shown to depend on previous experience programming and

time spent programming, rather than on gender. Thus, researchers and educators

have been developing methods and tools to motivate girls to learn about computers

and to provide them with positive learning experiences with programming. For ex-

ample, see Storytelling Alice (Kelleher et al., 2007) and Lillypad Arduino (Buechley

et al., 2008)). We feel that our results provide strong evidence that tangible program-

ming languages might be another approach to create more gender-neutral computer

programming activities for both formal and informal education.

5.6.2 Active Collaboration and Sharability

The tangible condition proved to be more supportive of active collaboration than the

graphical, mouse-based condition. Hornecker, Marshall, and Rogers outline rudimen-

tary components of sharable interfaces (Hornecker et al., 2007) that identify many
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of the key features that we felt contributed to the success of the tangible interface

for our exhibit. A sharable interface, in this case, refers to the support for multiple,

co-present collaborators around a common task, and it includes components of en-

try points and access points. Entry points entice people to interact with a system.

In our case, the wooden blocks seemed much more effective for this purpose than a

computer mouse. This is perhaps because the blocks are familiar and playful objects.

But we suspect that this is only part of the story. It could also be that the blocks

are non-threatening objects presented in a novel and curious context. The tangible

interface was much better at luring people into socially-motivated interaction. With

the graphical interface, on the other hand, an observer might feel equally motivated

to the activity but also may feel unable to do so without taking the mouse away from

the active user. Hornecker et al. (2007) describe the honey-pot effect as a social en-

try point, whereby passive observers are drawn into active participation by watching

their family and friends interact with the exhibit. The honey-pot effect, however, is

most effective when coupled with easy access to the system for multiple participants

as is the case with a tangible interface.

Sharable interfaces also provide access points, which can refer to both perceptual

access and manipulative access (Hornecker et al., 2007). The tangible interface is

clearly superior in terms of manipulative access because it offers many objects that

can be independently manipulated in a meaningful way by multiple participants. We

also suspect that the tangible interface provides better perceptual access as well. This

is simply because the display space that bounds the interaction is larger and more

visible. The tangible interface is manipulated on a large horizontal table top that

can be viewed at any angle, while the graphical interface is displayed on a vertical

computer screen that can only be viewed from limited angles. Thus, it is both easier

for one collaborating active participant to understand the actions of another, and for
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passive participants to understand the actions of active participants.
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Chapter 6

Tangible Kindergarten Project

In her 2008 book, Blocks to Robots: Learning with Technology in the Early Childhood

Classroom, Marina Bers writes that:

For decades early childhood curriculum has focused on literacy and nu-

meracy, with some attention paid to science, in particular to the natural

world-insects, volcanoes, plants, and the Arctic. And, while understand-

ing the natural world is important, developing children’s knowledge of

the surrounding man-made world is also important. This is the realm of

technology and engineering, which focus on the development and appli-

cation of tools, machines, materials, and processes to help solve human

problems [...] We live in a world in which bits and atoms are increasingly

integrated. However, we do not teach our young children about this. In

the early schooling experiences, we teach children about polar bears and

cacti, which are probably farther from their everyday experience than

smart faucets and cellular phones (Bers, 2008).
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There are several reasons that might explain the lack of focus on technology in early

childhood, but two of the most common claims are that young children are not de-

velopmentally ready to understand complex and abstract concepts such as computer

programming, and that there is a lack of technology with age-appropriate interfaces

to engage very young children in the role of designers and programmers of their own

technologically-rich projects. Tangible Kindergarten is a three year research project

funded by the National Science Foundation that seeks to address these issues, in part

through the use of tangible programming languages kindergarten classrooms. Tangi-

ble Kindergarten is a collaboration between the Tufts University Human-Computer

Interaction Laboratory in the Computer Science Department and the Tufts University

Developmental Technologies Research Group in the Child Development Department.

The project has three complementary goals: 1) to develop in-depth, age-appropriate

curriculum on computer programming and robotics; 2) to develop age-appropriate

technology ready for use in classrooms; and 3) to document young children’s ability

to learn powerful ideas from computer programming and robotics when given access

to appropriate curriculum and technology. In this chapter I will describe work com-

pleted in the first six months of this project, including a pilot study in kindergarten

classrooms. This work shows how Tern can also be used in formal learning settings.

6.0.3 Developmentally Appropriate Practice

Our work is rooted in notions of developmentally appropriate practice (DAP), a

perspective within early childhood education concerned with creating learning en-

vironments sensitive to children’s social, emotional, physical, and cognitive devel-

opment. Developmentally appropriate practice (DAP) is a framework produced by

the National Association for the Education of Young Children (NAEYC) that “out-
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lines practice that promotes young children’s optimal learning and development” (for

the Education of Young Children, 2009). Developmentally appropriate practice is

based on theories of child development, the strengths and weaknesses of individual

children uncovered through authentic assessment, and individual children’s cultural

background as defined by community and family (Bredekamp & Copple, 1997).

In part, DAP is built upon the theory of developmental stages introduced by Jean

Piaget. This theory suggests that children enter the concrete operational stage at age

six or seven. According to Piaget, at this age, a child gains the ability to perform

mental operations in her head and also to reverse those operations. As a result, a

concrete operational child has a more sophisticated understanding of number, can

imagine the world from perspectives other than her own, can systematically compare,

sort, and classify objects, and can understand notions of time and causality (Richard-

son, 1998). Based on this developmental model, one might make the argument that

a child’s ability to program might be predicted by his or her general developmental

level, and, that by extension, a pre-operational kindergartener, typically five years

old, may be too young to benefit from or understand computer programming. How-

ever, since its introduction, various inconsistencies have been identified with Piaget’s

stage model. For example, studies have shown that when a task and its context are

made clear to children, they exhibit logical thought and understanding well before

the ages that Piaget had suggested as a lower limit (Richardson, 1998).

In the early days of personal computing, there was lively debate over the develop-

mental appropriateness of computer technology use in early elementary classrooms.

Today, however, the pressing question in no longer whether but how we should intro-

duce computer technology in early elementary school (Clements & Sarama, 2002). For

example, a 1992 study found that elementary school children exposed to exploratory
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software showed gains in self-esteem, non-verbal skills, long-term memory, manual

dexterity, and structural knowledge. When combined with other non-computer activ-

ities, these students also showed improvements in verbal skills, abstraction, problem

solving, and conceptual skills (Haugland, 1992). Other studies have demonstrated

that computer use can serve as a catalyst for positive social interaction and collab-

oration (Clements & Sarama, 2002; Wang & Ching, 2003). Of course, the devel-

opmental appropriateness of the technology used by young children depends on the

context—what software is being used, and how is it integrated with and supported

by the broader classroom curriculum. Many examples of unproductive or even coun-

terproductive computer use in classrooms have been documented (see Oppenheimer,

2003).

6.1 Tangible Programming Curriculum for Kinder-

garten

Research has shown that mere exposure to computer programming in an unstruc-

tured way has little demonstrable effect on student learning (Clements, 1999b). For

example, a 1997 study involving the visual programming language, KidSim, found

that elementary school students failed to grasp many aspects of the language, lead-

ing the authors to suggest that more explicit instruction might have improved the

situation (Rader et al., 1999). Therefore, an important aspect of our work is to de-

velop curriculum that utilizes tangible programming to introduce a series of powerful

ideas from computer science in a structured, age-appropriate way. The term powerful

idea refers to a concept that is at once personally useful, interconnected with other

disciplines, and has roots in intuitive knowledge that a child has internalized over a
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long period of time (Papert, 1991). Our goal is to introduce these powerful ideas in a

context in which their use allows very young children to solve compelling problems.

This goal relates to our hypothesis that children will not only be able to understand

these ideas, but that they will also be powerful in the sense that they are personally

useful and interconnected with other disciplines.

Table 6.1 shows example powerful ideas from computer programming that we have

selected to emphasize in our curriculum through tangible programming.

Powerful Idea Description

Computer Program-

ming

This is the fundamental idea that robots are not living

things that act of their own accord. Instead, robots act

out computer programs written by human beings. Not

only that, children can participate in this process and cre-

ate their own programs to control real robots. Levy and

Mioduser point out that there is power in being able to

think of a robot both as a “living” autonomous agent ca-

pable of acting independently and as a technical construc-

tion composed of human-designed components (Levy &

Mioduser, 2008).

Command Sequences

and Control Flow

The idea that simple commands can be combined into

sequences of actions that will be acted out by a robot in

order.

Loops The idea that sequences of instructions can be modified

to repeat indefinitely or in a controlled way.
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Sensors The idea that a robot can sense its surrounding environ-

ment through a variety of modalities, and that a robot

can be programmed to respond to changes in the envi-

ronment.

Parameters The idea that some instructions can be qualified with

additional information that changes their behavior.

Branches The idea that one can ask a question in a program, and,

depending on the answer, instruct a robot do one thing

or another.

Subroutines The idea that a set of instructions can be treated as a

single unit that can be invoked from other parts of a

program.

Linking and Li-

braries

The idea that programs are built upon libraries of other

programs and commands that can be created by other

people.

Table 6.1: Powerful ideas from computer program-

ming and robotics that we emphasize in our curriculum

through the use of tangible programming.

Based on these powerful ideas we developed a preliminary, 8-hour curriculum unit for

use in kindergarten classrooms (children ages 5–6) that introduces a subset of these

concepts through a combination of whole-class instruction, structured small-group

challenge activities, and open-ended student projects. We piloted this curriculum in

five kindergarten classrooms in the Boston area, using the Tern programming language

in conjunction with educational robotic construction kits. In our most recent rounds
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of testing (conducted in the fall of 2008), we provided students with pre-assembled

robot cars to teach preliminary computer programming concepts. These cars were

built using LEGO Mindstorms RCX construction kits. As the unit progressed, stu-

dents disassembled these cars to build diverse robotic creations that incorporated arts

and craft materials, recycled goods such as cardboard tubes and boxes, and a limited

number of LEGO parts. Here I provide a brief overview of the activities that we

included in the curriculum:

1. Robot Dance: In this introductory activity, we introduce students to the

concept of robots and programming. Children participate in a whole-class ac-

tivity in which they use the tangible blocks to “teach” a robot to dance the

Hokey-Pokey.

2. Experimenting with Programming: Students work in small groups to cre-

ate and test several programs of their own design. At this point they combine

simple command blocks (no sensors or control flow blocks yet) into sequences

of actions that are acted out by the group’s robot. Robots can perform sim-

ple movements, make sounds, blink a light, and perform dance moves (such as

shake or spin around).

3. Simon Says: In this whole class activity, students pretend that they are robots

and act out commands presented by the teacher. For example, the teacher holds

up a card that says SHAKE, and the students all shake their bodies. The point

of this activity is to help students, who may or may not be able to read, learn

the various programming commands that are available to use. As this activity

progresses, the teacher will begin to display two or more cards at the same time

that the students will act out in order. This activity is repeated on several

occasions throughout the unit.
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4. Hungry, Hungry Robot: In this challenge activity, we introduce the idea of

loops as students work in small groups to program their robot to move from

a starting line (a strip of tape on the floor of the classroom) to a finish line

(marked with a picture of cookies). Children are prompted with the challenge:

Your robot is very hungry. Can you program it to move from the start line to

the cookies? As this activity progresses, students quickly realize that the robot

needs to move forward several times in succession to reach its goal. Because

they are only provided with a small number of blocks to move the robot forward,

they learn to create programs that incorporate a simple counting loop.

5. If you’re happy and you know it: The teacher reads a story in which

different animals show that they are happy in different ways. Students are then

asked to work in small groups to program a robot to act like one of the animals

in the story.

6. Bird in a Cage: In this whole class activity, the teacher tells a story about a

bird that sings when it is released from a cage. The “bird” is a robot with a

light sensor light sensor attached. When the bird is removed from a cardboard

box (the cage), the increase in light intensity triggers it to sing. The teacher

then introduces the concept of sensors and shows the class how to write the

program that causes the bird to sing. This activity is repeated on two separate

occasions, once as a whole-group activity, and once as a small group challenge

activity.

7. Final Projects: Students work in teams of two to design and build a robot

animal that includes one motor and one sensor. Students are encouraged to

create a story that involves their robot animal. This activity is open-ended and

student projects are completed over a period of several days.
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Figure 6.1: This photograph shows a group of children using the tangible Tern lan-
guage to program a LEGO Mindstorms robot during the Tangible Kindergarten pilot
study

6.2 Research Questions

The research presented in this chapter is guided by the following questions: given

access to appropriate technologies, are young children capable of programming their

own robotics projects without direct adult assistance? At the same time, can young

children understand the underlying powerful ideas behind computer programming?

Finally, should we revisit assumptions about what is developmentally appropriate for

young children when designing curriculum—can we leverage new interactive technolo-

gies to introduce more complex concepts?

These ideas are not new. Researchers at MIT’s Lifelong Kindergarten Group have

suggested that with new digital manipulatives children are capable of exploring con-

cepts that were previously considered too advanced, in part because of the ability of

technology to bring abstract concepts to a concrete level (Resnick et al., 1998). How-

ever, for the most part, this claim has not been empirically validated with children

as young as five years old. And, as noted above, it can be difficult in this research
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Figure 6.2: This photograph shows one of the student group’s final project, a robot
consisting of LEGO parts, arts and crafts materials, and recycled goods.

to distinguish what young children truly understand and can do on their own, versus

what was done by the supporting adults (Cejka et al., 2006). In the end, the func-

tioning robotic projects tend to hide the challenges faced by children in the process

of making them.

6.3 Pilot Study

We have conducted a two-year design-based research study exploring the use of tan-

gible programming technology in kindergarten classrooms. Both our curriculum and

the underlying technology have evolved as a result iterative prototyping and testing.

This research was conducted at two public schools in the greater-Boston area, one ur-

ban K-8 school and one suburban K-5 school. In all, we have worked with 93 children

(ages 5–7) and ten teachers in five classrooms. Data were collected through observa-

tion notes, photographs, and video tape. We also collected student work (both the
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programming code as well as the robotic artifacts) and conducted one-on-one inter-

views with children and teachers in the classroom. Three researchers were involved in

this study: two collected observation notes, photographs, and video recordings, while

the third acted in the role of lead teacher. In the future, we hope to conduct research

in classrooms with actual teachers leading the activities.

6.4 Participants

I conducted the first intervention in the spring of 2007 in a kindergarten / 1st grade

classroom with 20 children (ages 5–7) at the urban school in Boston. This intervention

consisted of two whole-class activities in which I introduced concepts of robotics and

programming with blocks, and then three follow-up sessions with small groups of

children. These activities took place over the course of five weeks. Afterward, I

made substantial revisions to the technology, moving from the jigsaw puzzle design

used at the Museum of Science to the interlocking cube design described above.

The Tangible Kindergarten team also revamped and expanded the curriculum. Our

second intervention consisted of a 8-hour curriculum module in four classrooms at the

suburban school with 73 children (ages 5–6) and eight teachers. In order to understand

better the implications of tangible versus graphical programming in kindergarten,

we divided these four classrooms into two groups. Two of the classrooms used the

tangible programming blocks (TUI) described above, and two of the classrooms used

a comparable graphical programming language (GUI) similar to what was used in the

Museum of Science study (see Figure 6.3). Table 6.2 summarizes the five classrooms

involved in this study. All classes at the suburban school were taught in the school’s

science activity room. In this room there were four desktop computers in the back

corner of the classroom for students to use. In addition, there was an LCD projector
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Figure 6.3: Two classrooms in our pilot intervention used a graphical programming
language, comparable to the tangible programming blocks. The graphical and tangi-
ble languages offer identical statement sets. However, unlike the interlocking cubes of
the tangible language, the graphical language uses a visual jigsaw puzzle metaphor.

in the front of the classroom. For whole-class activities in the graphical condition, we

projected the graphical programming language interface onto a wall of the classroom.

In the tangible condition, no projector was used.

School Condition Semester Hours Time of Day Girls Boys Robots
Urban TUI Spring’07 4 hours Afternoon – – iRobot Create
Suburban TUI Fall’08 8 hours Morning 11 7 LEGO RCX
Suburban GUI Fall’08 8 hours Morning 11 9 LEGO RCX
Suburban TUI Fall’08 8 hours Afternoon 11 7 LEGO RCX
Suburban GUI Fall’08 8 hours Afternoon 8 10 LEGO RCX

Table 6.2: Classroom details for the Tangible Kindergarten pilot study. Note: I do
not have a gender data for the twenty children from the urban school.
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6.5 Results

In this study, we had two primary hypotheses. First, given access to appropriate

technology, young children are capable of programming their own robotics projects

without direct adult assistance. Second, children are able to understand the underly-

ing powerful ideas from the domains of computer programming and robotics through

the curriculum.

Based on observation notes and an analysis of video tape, we found that children

were able to easily manipulate the tangible blocks to form their own programs. For

children in the GUI condition, however, we observed a range of capabilities in terms

of being able to manipulate the computer mouse. For many children the process of

building graphical programs was tedious. One girl, for example, used the mouse to

construct a program consisting of 11 statements in three minutes and eleven seconds

(a rate of 17.4 seconds per statement)1. As she worked, it often took her two or

more tries to successfully connect a new statement to the program. That said, she

did not exhibit any recognizable signs of frustration or boredom, and she worked

diligently until she had finished her program. A boy in the other GUI class started

out almost completely incapable of dragging icons from the statement menu to the

main screen. However, after practicing for several minutes, he discovered that by

holding the mouse sideways he could use his thumb to press and hold the left mouse

button for click+drag operations (see Figure 6.4). This technique greatly improved

his ability to create programs. Other children had little to no problem using the

mouse to create graphical programs.

On major limitation of the mouse-based interface is that it requires the use of click

1To put this in perspective, a girl working in the TUI condition on the same day constructed a
program consisting of 11 blocks in one minute and five seconds (a rate of 5.9 seconds per statement)
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and drag operations to place icons on the computer screen with the mouse. Changing

the interface to allow for click and carry operations would likely make it much easier

for young children to participate with the mouse-based interface.

Figure 6.4: One boy in the graphical condition struggled to use the mouse at first,
until he discovered that if he held the mouse sideways he could use his thumb to click
and hold the left mouse button. This greatly improved his ability to create programs.

In terms of being able to understand the syntax of the programming language, we

found that students, for the most part, were able to differentiate the blocks and

discern their meanings in both the GUI and TUI conditions. While not all of the

children could read the text labels on the blocks, we saw evidence that children who

could not read the blocks were able to use the icons as a way to interpret meaning. For

example, in the initial sessions, we asked children to look at the blocks and describe

what they saw. Some children were simply able to read the text labels on the blocks.

Other children said things like: “mine says arrow” or “mine says music.” In reality

the text on the blocks reads “Forward” and “Sing.” We used the Simon Says activity

to reinforce the meaning of each block in terms of the robot’s actions.

The children also seemed to understand that the blocks were to be connected in a

sequence and interpreted from left to right. For example, one student in an intro-
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ductory TUI session pointed out, “they connect; some have these [pegs] and some

have these [holes].” Another student added, “the End block doesn’t have one [peg],”

with another classmate adding, “the Start block doesn’t have a hole.” Likewise, in

the GUI classes, we saw no evidence that children were confused by the visual jigsaw

puzzle metaphor (see Figure 6.3). The children also seemed to understand that the

icons should be connected from left-to-right on the computer screen.

During the second session, researchers asked individual children to describe their pro-

grams. One girl explained, “my program is: Begin then Beep then Forward then

Sing then End.” Here she was reading the text labels on the blocks in her program

from left to right, resting her finger on each block in turn. The use of the word then

suggests that she might have understood not only the implied left-to-right ordering

of the blocks but also the temporal step-by-step sequence in which the blocks would

be executed. Understanding the idea of sequencing is powerful, not only in the do-

main of computer programming but for most analytical activities that children would

encounter in schooling as well as life.

In the second intervention round, we moved beyond programs consisting of simple

sequences of actions and introduced more advanced constructs such as loops, sensors,

and numeric parameter values. Through these activities we found evidence that

children could engage these concepts, reasoning about possible outcomes of different

blocks and forming and testing solutions to challenge activities. For example, in

our Hungry, hungry robot activity, we prompted teams of four students with this

challenge: Your robot is hungry. Can you program it to drive to the cookies? We had

placed the robot on a starting line, represented by a strip of tape on the floor. The

cookies were represented by a picture taped on the wall approximately four feet from

the starting line. Groups were provided with a small collection of blocks, including
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two Forwards, a Repeat, an End Repeat, and a number parameter block. The number

parameter block was labeled with the numbers 2 through 5, with one number on each

face of the cube. This number block could be included in a program after a Repeat

block to specify how many times a robot should repeat a sequence of actions. Each

Forward block would cause the robot to drive forward approximately one foot. So,

for example, one solution to the challenge would be the following program:

Begin → Repeat (4) → Forward → End Repeat → End

Many other possible solutions exist, and students could add creative elements to their

programs. For example, one group included a Sing block to indicate that the robot

was eating its cookies after it arrived at the wall.

Many groups started this challenge by creating programs that consisted of many

blocks arranged in a seemingly random order. However, after testing these programs,

most groups quickly decided that the Forward block was necessary to drive the robot

towards its goal. In the graphical conditions, some groups experimented by including

different numbers of Forward blocks in their programs. The lead teacher (one of

the researchers from the Tangible Kindergarten project) then introduced the concept

of a Repeat loop. After the challenge activity, the lead teacher discussed students’

solutions with the entire class. In her journal, she described this experience:

After giving the students some time to work in their groups, I brought

them back to the rug to share what they found. One group had determined

that they needed 8 forward blocks. After learning the repeat syntax, they

realized that the numbers only went up to 5, so they needed 3 more

forward blocks. The program they made was:
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Repeat (5) → Forward → Forward → Forward → End Repeat

When we tested to see if that program would work, the students saw that

the robot actually went forward 15 times. One student noticed that 15

was a “5 number,” and another said it was the 3rd “5 number.” This was

very exciting for me, since I saw the beginnings of multiplication.

In the TUI condition2, on the other hand, groups had only two Forward blocks to

work with, so we introduced the Repeat concept earlier. As with the GUI condition,

groups were able to successfully use the Repeat block in conjunction with the Forward

block to achieve the desired outcomes. However, as this was their first encounter with

the Repeat block, groups required prompting and instruction from adults.

Later in the unit, we introduced students to the idea of sensors through the Bird in

the cage activity. Here the cage was a cardboard box and the bird was a robot with a

light sensor attached. The lead teacher told a story of a bird who liked to sing when

released from her cage. We used this program to have the robot act out the story.

Begin → Repeat(forever) → Wait for Light → Sing → End Repeat → End

The students were curious how the robot was able to sing when it was removed from

the cage. The teacher used this curiosity to prompt students to explore the idea of

sensors and to develop hypotheses about how the robot is able to sing when it emerges

from the box. Finally, the teacher demonstrated how she had created the program

that controls the robot. The following transcript is from one of the TUI condition

classrooms:

2Only one of the classes in the tangible condition participated in this activity.
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Teacher: Do you recognize all of the blocks?

Student 1: No. The moon one. [Wait for Dark]

Student 2: The sun and moon [Wait for Light]

Teacher: Can one of you read this?

Student 2: Wait for light

Student 1: It means you’re going to wait for the dark to come.

Teacher: What are these?

Students together: Repeat

Teacher: What do they do?

Student 3: Start all over again.

Teacher: The bird is outside.

Student 2: The witch catches the bird

Student 1: If we turn this block over we could make him sing when

it’s dark outside. It might be shy so he sings in the dark.

Here the child was pointing out that it would be possible to use a Wait for Dark

block instead of a Wait for Light to achieve the opposite effect, a bird that sings only

when it is inside the cage3

For the remainder of the curriculum unit, the children worked in pairs to create

robotic creatures that ideally incorporated one moving part and one sensor. The

children struggled with many aspects of this activity and required substantial help

from teachers. The lead teacher described her interactions with one group:

I worked with M. and N. for the majority of the time. They struggled with

understanding that the RCX [LEGO computer] was what would power the

3Alternating sides of the same cube had Wait for Light and Wait for Dark labels.
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robot. M. spent most of the time searching for materials, and I sat with

N. trying to understand her plan for their robot (a parrot that snaps it’s

beak). She had an egg carton, and was decorating it with stickers. When I

asked her where the beak was, she pointed to the egg carton. When I asked

her how it would move, she picked up two large pompoms and said that

the motors (the pompoms) would make it move. N. had little interest in

the RCX and how it worked. When pressed, she said that the buttons and

the wires would make the beak move...

Here the students seemed oblivious to basic robotics concepts such as motors and

power supplies. In retrospect, we should have expected this type of misunderstanding

because, until this point in the intervention, the children had been working with pre-

assembled cars. Our curriculum did not include time for children to explore the RCX

brick and understand its role in robotic constructions.

As part of the final project presentations we asked students not only to demonstrate

their robots, but also to show the class the blocks they used to program it. In many

cases, students selected blocks that had little to do with their actual programs. I

believe that in the current version of the curriculum, students were not given enough

time to experiment with programming on their own, either individually or in small

groups. In many cases, the programs were loaded quickly by the teacher in order to

finish projects in time for the final presentations. This might explain some of the dif-

ficulty students had recreating their programs during the final project presentations.

In other cases, however, students were able to recreate programs more accurately. For

example, in this transcription, two girls described their toucan robot:

Teacher: So what does it do?
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Student 1: We have to make the program first

Student 1: [Starts connecting blocks] Begin. Wait for Dark...

Teacher: Can you tell us what we’re doing while you’re doing it?

Student 2: Yes. I think we should use a repeat block

Student 1: Great idea

Teacher: E., why don’t you show us your robot while S. builds the

program.

Student 2: This is our robot... [she starts to demonstrate how it

works]

Student 1: The program isn’t done yet!

Student 2: [Looking at the blocks] It’s supposed to repeat the shake

Student 1: Yes. It’s going to repeat the shake over and over again.

[The program student 1 has created is:]

Begin → Wait for Dark → Beep → Turn Left → Repeat → Shake → End]

Student 2: [Runs the program on the robot for the class to see. The

actual program waits for dark, turns, beeps, and then

shakes once.]

Student 1: These are the three blocks we used [She puts these blocks

in the middle of the rug: Begin, Wait For Dark, Beep]

Here it is clear that there is some confusion on the part of the students about the

concept of a program being stored on the RCX robot. However, the blocks the

students chose to explain their robot are consistent with the program that they had

actually loaded on the robot earlier in the day. Moreover, they seemed to understand

the notion of repeating an action. And, although there was no verbal evidence, the

first student seemed to understand the notion of waiting for dark given her correct

inclusion of that block in her program.
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6.6 Discussion

The purpose of these pilot activities was to test the technical feasibility of the project

and to develop an intuitive sense for young children’s conceptual capabilities with

respect computer programming. These results are preliminary and should be inter-

preted with caution; however, we saw some evidence to support our two hypotheses.

Namely, children were able to program their own robots without direct adult help,

and children were able to understand some of the powerful ideas from computer pro-

gramming and robotics introduced through the curriculum.

In terms of the first hypothesis, our work with both a tangible and a graphical condi-

tion suggests that while many children do struggle with the mouse-based interfaces,

graphical languages can nonetheless serve a useful role in the classroom. That said,

for certain activities and for certain children, the tangible version of Tern was clearly

advantageous. On the other hand, some of the most independent student work that we

observed was done with the graphical interface. Thus, one immediate outcome of this

pilot study is that we have begun work on a hybrid tangible / graphical programming

system, designed to allow teachers greater flexibility to incorporate programming ac-

tivities in the classroom. The goal is to provide a single application that supports

either tangible or graphical programming and allows for a fluid transition from one

form to another.

In terms of the second hypothesis, what will be more interesting is to document a

range of student abilities and determine whether our intervention results in an in-

crease in understanding. Thus, in an effort to develop a more nuanced understanding

of children’s capabilities, we have begun to develop a model of the progression of chil-

dren’s understanding of computer programming. In our observations, children seemed
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to exhibit two levels of understanding: syntactic and semantic. And, although we saw

only preliminary evidence of this, we hypothesize that young children could advance

beyond semantic understanding to a system-level understanding.

Syntactic Level: In the first whole-class session, we introduced the activity by

teaching a robot how to dance the hokey-pokey using the tangible programming

blocks. The children sang along as the robot dance. We then asked the children to

program a robot to tell a story through a sequence of actions. What we observed is

that children tended to construct long chains of action statements without pausing to

think. When we asked children to explain their stories, they would respond by simply

reading the blocks in order: “My story is: FORWARD, SHAKE, BEEP...” This is an

example of purely syntactic understanding. The children could read the blocks, and

they knew that a sequence was implied.

Semantic Level: Later, we began to introduce higher-level concepts such as loops

and sensors. As children used these blocks to solve specific problems such as the Hun-

gry, hungry robot challenge, we posit that the children were acting with a semantic-

level understanding. That is, they began to understand the meaning of individual

blocks in the context of a program, although not necessarily in the context of a robot

acting out the program in the world.

System Level: Near the end of the intervention at the urban school in 2007, one

seven-year-old boy was able to correctly use his finger to trace a program containing

a loop, a conditional branch, and two subroutines. Unfortunately, I did not record

this program, but it was similar to the one shown below. Such a sophisticated level

of understanding was surprising to me, and the child responded correctly to several

follow-up questions that I asked him about the program.

142



This child had a very advanced semantic-level understanding of the programming

language, and I believe that he was on the cusp of a system-level understanding.

That is, he had developed a level of fluency with the language that would allow him

to focus on understanding the purpose of a program in the context of the system as

a whole. With a system-level understanding, a child uses programming as a tool to

accomplish strategic goals with the robot. For example, a semantic understanding of

loops could be expressed with language such as:

This will do the forward block three times.

A system-level understanding, on the other hand, would be expressed with language

like this:

I need to make the robot move all the way through the door, so I’m going

to make it go forward three times. That should be enough.

Our goal is to introduce programming concepts in a structured way to help children

advance to a system-level understanding. We hypothesize that only at this level will

children begin to feel a sense of intellectual ownership and empowerment, supported
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by the confidence that they can use programming as a tool to accomplish goals with

a robot. Furthermore, Mayer (Mayer, 1981) defines understanding of computer pro-

gramming concepts as the ability to transfer concepts to novel situations (i.e. new

forms of computer programming or different types of tasks). We propose that this

understanding, as Mayer defines it, only occurs after the child has reached the system-

level.
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Chapter 7

Conclusion

In this dissertation I have described the design and implementation of a tangible

computer programming language for education called Tern. I also described research

studies investigating the use of Tern in both formal and informal educational settings:

as part of a computer programming and robotics exhibit at the Boston Museum

of Science, and as part of a curriculum unit piloted in several local kindergarten

classrooms with 93 children ages 5 to 7. The research study at the Boston Museum

of Science provides evidence that tangible and graphical programming languages are

equally easy for museum visitors to understand. However, the tangible interface

is more inviting and better at encouraging active participation among members of

family groups. These results were particularly strong for children, who seemed more

actively engaged with the tangible exhibit than with the graphical exhibit. The

design, implementation, and evaluation of this exhibit is the primary contribution of

this dissertation.

I also described a Tangible Kindergarten pilot study, in which I provided preliminary
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evidence that if children are given access to age-appropriate technology integrated

within a broader curriculum, they are capable both of programming on their own

without direct adult help and of understanding certain powerful ideas from the do-

mains of computer programming and robotics. However, much work must still be

done to document the range of children’s understanding and their ability to learn

new concepts and build on existing knowledge. Furthermore, while the results from

this pilot study are preliminary, they shed light on process of transitioning this tech-

nology from informal to formal learning settings. In so doing, they reveal limitations

of the current design and highlight directions for future work.

7.1 Implications

Taken together, my work with tangible programming in both formal and informal

learning settings has a number of implications for future work in this area. In this

section, I review some of these implications as well as lessons learned through the

process of iterative design and testing of Tern over a period of three years.

7.1.1 Interaction style and gender

Results from our research in the Museum suggest ways in which emerging interaction

techniques such as tangible user interfaces might help create more inviting, engaging,

and intrinsically motivating computer-based learning activities. In particular, our

results revealed that the choice of interaction technique can have a dramatic effect

on an exhibit’s appeal to girls as well as boys. When combined with other recent

research on involving girls in computer programming activities (Kelleher & Pausch,
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2005; Buechley et al., 2008), our results have implications for future work seeking

to ameliorate gender inequities in fields related to computer science. Furthermore,

it might be worthwhile to explore the effect of interaction style or more intangible

aspects of children’s learning, such as emotional predispositions towards computer

programming or positive experiences working in groups.

7.1.2 Interaction style matters, but other things matter more...

While our research in the Museum has shown that the choice of interaction technique

matters, our results also suggest that this choice has little effect on the quantity or

complexity visitor-created programs. Furthermore, other factors can be equally, if

not more, important for engaging children. For example, my informal observations

over two years in the museum suggest that things like the visual design of the ex-

hibit installation (e.g. bare plywood versus paint or the inclusion of the interactive

Robot Park sign) have a large impact on overall use and engagement. And, it is

not surprising that in classroom settings factors such as time of day, teaching style,

curriculum, and student group dynamics play a large role in the overall success of

our interventions. Even the fact that the programming language (whether graphical

or tangible) produces a tangible output—a robot that physically moves around the

classroom—likely has a significant impact on student engagement.

7.1.3 There are many avenues to collaboration...

In the museum study, we found that tangible blocks were better at encouraging active

participation among members of family groups. Furthermore, having multiple group
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members involved in the activity led to significantly longer engagement times. These

results, while perhaps encouraging for tangible interface designers, are not surprising.

Indeed, previous research has done an excellent job documenting the advantages of

simply providing children with multiple input devices to improve educational out-

comes (see Inkpen et al., 1995b,a; Scott et al., 2000, 2003). Thus, approaches such as

Single Display Groupware (Stewart et al., 1998) and multi-touch displays may provide

more practical means of supporting collaboration among children.

7.1.4 Focus on Simplicity

In designing tangible programming systems there is a temptation to start with a

specification for a full-fledged computer language. In my experience, however, this

Turing complete mentality can be detrimental, especially when designing for young

children and first time programmers. Before spending time on features like condi-

tionals, variables, subroutine, and parameters, the fundamentals of interaction must

be sound, and the learning goals of the supported activity should be well understood.

In particular, the physical (or industrial) design of the basic components is essential.

As an example, in my earliest designs, I spent substantial effort creating a complete

language specification before beginning the physical design work. This turned out

to be a mistake—the result was a full-fledged programming language that was al-

most completely unusable. Even if the implementation of more advanced language

features is less than perfect, users (even young children) will be resourceful and for-

giving if the fundamental aspects of the user experience are sound. Furthermore, the

desired learning objectives may well be satisfied with a less complete set of language

constructs.
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7.1.5 Functionality and Practicality

Wizard of Oz prototyping is difficult to conduct with programming language proto-

types, and it is even more difficult outside of laboratory settings. Thus, to test designs,

in my experience it is important to have functional prototypes. The computer vision

techniques that I developed to support compiled tangible languages have proved to

be useful for creating reasonably rapid and functional prototypes. This passive tan-

gible approach has also resulted in durable, cost-effective, and reliable systems that

are practical for use in classrooms and museums. These properties are also useful in

conducting long-term research with technology-based interventions. One drawback

of the computer vision approach is that it effectively limits the design space to two

dimensions, in many ways simply replicating screen-based interaction techniques in

the physical world.

7.1.6 Allow for multiple representations and interaction styles

A common strategy in kindergarten classrooms is to provide a variety of ways for

students to participate in learning, often through the use of multiple representations

for a concept to be learned. The Tangible Kindergarten pilot study revealed that

many young children can successfully and independently engage in mouse-based pro-

gramming activities in the classroom. And, had we used more child-friendly mouse

operations (such as click-to-carry instead of click-and-drag), children would likely

have been even more successful. The takeaway message for me is not that the tan-

gible approach should be abandoned. On the contrary, there were many situations

for which it was advantageous to use physical blocks. Rather, I now believe it is

important to develop a programming system that supports the seamless integration
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of tangible and graphical (and perhaps even text-based) programming in the class-

room. Providing multiple representations affords students and teachers the flexibility

to choose the most appropriate tool for a given situation. It also opens exciting new

possibility for programming language design—imaging, for example, being able to

create a subroutine in a graphical system that is then embodied in a physical block.

7.1.7 Technology in the classroom? Keep it informal.

In science museums, the context is one of informal science education—there are no

teachers or curriculum to guide children through complex concepts. If a museum

visitors can’t figure out an exhibit in the first minute or two, they will give up and

move on to another activity. Furthermore, museums face constraints of durability,

reliability, and cost of maintenance and development. As non-profit, public institu-

tions, museums are often cash-strapped, so exhibits must work reliably and well. If

maintenance is too much of a burden, then an exhibit simply won’t be used. As

Serrell puts it, the most common text label for computer-based exhibits is, “Sorry,

out of order” (Serrell, 1996).

Not surprisingly, many of the constraints faced by museums are equally relevant in

classrooms—technology that doesn’t work will sit in the corners of the room gather-

ing dust. However, in classrooms, the context is one of formal education. Teachers

face large numbers of children, a regimented school day, and stiff educational stan-

dards mandated by local, state, and federal governments. Thus, I now believe that

apprehendability is an essential design goal for classrooms as well as museums, and

the reason has as much to do with teachers as it does with students. Here, the issue

comes back to Cuban’s notion of contextually constrained choice. Just like museum
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visitors, if teachers can’t immediately understand how a new type of technology works

and how it will fit into the routine of the school day, they will be unlikely to try it

with students.

7.1.8 Allow for easy customization

In the Museum we attempted to design layered programming activities that could

be experienced by visitors on different levels depending on their backgrounds. In

addition, we provided opportunities for the museum staff to enhance the activity by

interpreting the exhibit for visitors. For example, the staff could bring out extra

programming blocks for visitors to experiment with more sophisticated programming

constructs. These blocks are ordinarily stored out of sight because they can be confus-

ing for visitors who encounter the exhibit for the first time. Here the use of tangible

blocks is advantageous because it allows the museum staff to easily customize the

interface on an ad hoc basis to match the interest of a particular visitor. This tan-

gible advantage transfers to the classroom as well. Teachers may decide to include

only simple blocks for introductory activities. Then, over the course of a curriculum

unit, teachers can gradually include other blocks as the students advance. To do the

same with a graphical programming system would require teachers to customize the

software in some way. Either that, or it would mean providing several versions or

levels of the same programming environment, as is the case with ROBOLAB.
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7.2 Future Work

My work with tangible programming languages is ongoing. In the case of science mu-

seums, I am interested in comparing tangible interfaces to a broader spectrum of input

devices for use in informal science learning such as multi-touch surfaces and multi-

mice systems. Our results on engagement suggest that these alternative multi-user

devices might produce similar benefits to tangible interaction. I am also interested

in exploring the ways in which visitors engage the exhibit and what they learn. One

possible way to do this is to record visitor conversations as they interact with the

exhibit. These recordings could then be analyzed for evidence of learning talk—for

example, see the work of Sue Allen at the San Francisco Exploratorium (Allen, 2002).

Through such a study I would expect to discover that visitors interact with the ex-

hibit in unexpected ways. As an example, one boy who visited the exhibit spent

over a half an hour trying to draw the TopCode symbols by hand so that they would

be recognized by the computer vision system (Figure 7.1). Discovering other unex-

pected forms of interaction might help broaden my approach and open new avenues

for research.

Figure 7.1: One boy who visited the museum spend over 30 minutes trying to draw the
TopCode symbols by hand so that they would be recognized by the computer vision
system. This photograph shows two of his attempts. He was eventually successful.

In the case of classrooms, Tangible Kindergarten is a three-year research project

funded by the National Science Foundation. In the next two years we will continue
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to improve both our curriculum and technology. And, in the third year, we plan

to conduct a formal study with the goal of documenting the capability of young

children to engage with powerful ideas from computer programming and robotics

and to develop their own technologically-rich projects. Part of this effort will be the

development of a hybrid tangible / graphical programming system. The goal is to

provide a single application that supports either tangible or graphical programming

and allows for a fluid transition from one form to another.

7.3 Conclusion

In the first chapter of this document, I stated that the goal of this project is not

to suggest that tangible programming should replace existing graphical systems as

general-purpose tools. Rather, I argued that tangible languages begin to make sense

when one considers the specific contexts and constraints of learning environments

where programming activities might be used. One of my primary goals in the devel-

opment of Tern was to create a tangible interface for computer programming that was

practical for use in real world educational environments. Over 18 months and 20,000

visitors later, Robot Park is still on the museum floor, seven days a week, requiring

little maintenance. In this goal, I think that I have succeeded. Beyond practicality,

I worked hard to make Tern an inspiring and fun learning tool that museum visitors

would want to try and that teachers and students would look forward to using in the

classroom. Again, in the science museum context, I think that I have succeeded. At

least, evidence from our study suggests an improvement over the standard graphical

interface. Children, in particular, were much more likely to try programming with

the tangible blocks.
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In classrooms, however, the answer is less clear. In many ways, the system is still too

unreliable to hope that it will be adopted by many teachers. In addition, our pilot

study suggests that while many children do struggle with the mouse-based interfaces,

graphical languages can nonetheless serve a useful role in the classroom. Thus, one

of the next goals for the Tangible Kindergarten project is to create a hybrid tangible

/ graphical programming system, designed to allow teachers greater flexibility to

incorporate programming activities in the classroom. In summary, the ultimate goal

of this project is to support the inclusion of computer programming activities in real

life educational environments where they might otherwise be omitted. To do this I

am exploring the use of novel interactive technology to overcome the limitations of

existing graphical systems.
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Appendix A

Robot Park Interview Questions

Date:

Time:

Condition: (GUI / TUI) circle one

1. How old are you?

2. What grade are you in?

3. Male / Female

4. About how long have you been at the museum today?

5. How would you describe this exhibit to a friend? What would you say you

did?

6. Why did you decide to try this exhibit today?

7. Can you tell me more about how you use computers at home or at school?

How often? Do you enjoy using computers?

8. Have you ever programmed a computer before? Is this programming?

9. OK. Here’s a path that I want the robot to follow. Can you work together

to build a program that will follow this path?
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10. Great. Let’s see what the robot does. Was that what you expected? Why

or why not? How would you fix it?

11. OK. Now I’m going to write a program. What do you think it will make the

robot do?

12. Great. Let’s try it. Did it do what you thought it would?

13. OK. Here’s the path that I actually want the robot to follow. Can you fix

the program so that it will follow this path?

14. As part of this study, we’re comparing two user interfaces. We’d be interested

in your opinions on them. Can I show you the other interface? Could you

use this interface to have the robot follow the pattern (below)?

15. Great. I’m curious what you think of these two options?

17. Do you have any suggestions for how we could make this exhibit better?

Would you be willing to answer a few last questions on this sheet of paper?

18. It was more fun to use (please circle one option):

The wooden blocks The mouse They were about the same No opinion

19. It was easier for me to use:
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The wooden blocks The mouse They were about the same No opinion

20. If I were working alone, I would want to use:

The wooden blocks The mouse They were about the same No opinion

21. If I were working with my friends or family, I would want to use:

The wooden blocks The mouse They were about the same No opinion

22. If I had to do a programming project at school, I would want to use:

The wooden blocks The mouse They were about the same No opinion

23. If I had to do a programming project at home, I would want to use:

The wooden blocks The mouse They were about the same No opinion

Table A.1: Survey instrument used to collect qualitative data

at the exhibit

.
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Appendix B

Robot Park Observation Data

Date: Saturday, March 1
Researcher: Erin
Condition: TUI

Visitor Looking Interacting Ah-ha Leave Notes
W40 11:43:42 AM — — 11:43:54 AM
G8 11:52:30 AM 11:52:44 AM — 11:53:21 AM started by picking up

robot
G8 11:52:42 AM 11:52:44 AM — 11:53:18 AM started by sitting down

B16 12:17:06 PM 12:17:11 PM 12:18:37 PM 12:21:09 PM “See these are the
things I like doing.
Nice and simple”

M45 12:17:09 PM 12:20:26 PM 12:19:19 PM 12:21:09 PM “It just picks up by the
camera”

M35 12:23:31 PM 12:23:54 PM 12:24:49 PM 12:33:53 PM This is cool! – That’s
what you got to do,
wait for bump, so you
can have it wait until
it bumps into wall
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B8 12:23:50 PM 12:23:56 PM 12:24:51 PM 12:35:55 PM boy and mom came
back and took a pic in
front of it. Others are
using. He says: they
won! (they got it to
work)

F35 12:34:15 PM 12:34:18 PM 12:34:42 PM 12:35:55 PM mom arrives, and boy
shows mom

F26 12:29:16 PM — — 12:29:23 PM

G10 12:35:55 PM 12:36:31 PM 12:38:32 PM 12:42:46 PM both girls using com-
pletely together. Wait
don’t press play while
I’m still working.
“Let’s do this! Look
at booklet”

G7 12:35:58 PM 12:36:34 PM 12:38:36 PM 12:43:02 PM
M35 12:37:16 PM — 12:38:38 PM 12:42:27 PM father not really pay-

ing attention, except
when robot moves,
make noise

W40 12:45:07 PM 12:45:10 PM — 12:45:16 PM

W35 12:45:37 PM — — 12:46:02 PM

B9 12:46:25 PM — — 12:46:28 PM

B15 12:48:26 PM — — 12:48:29 PM

F17 12:51:35 PM 12:51:41 PM 12:52:34 PM 12:53:12 PM pressed play first, and
robot started going
from prev program

F17 12:52:45 PM — — — Robot coming near
her: Get away from
me!!!

B14 12:53:07 PM 12:53:29 PM — 12:55:21 PM
B14 12:53:25 PM 12:53:51 PM — 12:55:22 PM left a really long pro-

gram without running
it

M27 12:55:26 PM 12:55:39 PM 1:00:41 PM 1:02:13 PM pressed play and ran
program that was left
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F27 12:55:28 PM — 1:00:42 PM 1:02:15 PM looked quickly at
graphic at top that
you can try. Didn’t
actually interact, just
watched

G6 12:58:45 PM — — 12:58:51 PM dad is using computer
beside exhibit

B4 12:59:00 PM — — 12:59:28 PM watching others use

G6 1:02:19 PM 1:02:27 PM 1:03:16 PM 1:04:08 PM same girl as above.
When people left, she
came over

B4 1:06:35 PM — — 1:06:41 PM

M60 1:09:03 PM — — 1:09:13 PM examinging robot

B8 1:09:32 PM 1:09:48 PM 1:10:04 PM 1:10:53 PM looking at camera.
OMG

B8 1:10:00 PM 1:09:48 PM 1:10:04 PM 1:15:11 PM you program it!

F25 1:10:42 PM — — 1:11:06 PM
F25 1:10:44 PM — — 1:11:08 PM

F18 1:19:13 PM 1:19:27 PM 1:19:51 PM 1:23:07 PM
F18 1:19:16 PM — 1:22:20 PM 1:23:09 PM sorta looks at book

(turns page, but
doesn’t seem to read)

G3 1:23:24 PM 1:23:26 PM — 1:23:54 PM

F30 1:23:39 PM 1:23:49 PM 1:24:55 PM 1:32:52 PM
B9 1:25:11 PM 1:24:55 PM 1:29:49 PM 1:32:07 PM it does exactly what it

says. Explains to girl
F35 1:25:32 PM 1:27:42 PM 1:29:46 PM 1:32:08 PM
G9 1:28:21 PM 1:28:31 PM 1:28:31 PM 1:32:56 PM let’s make up a new

dance

F30 1:36:53 PM 1:36:55 PM — 1:36:58 PM
M30 1:36:53 PM — — 1:36:58 PM

F17 1:39:10 PM 1:39:20 PM 1:39:35 PM 1:47:06 PM omg that’s creepy. It
takes a picture of your
hand

F17 1:39:18 PM 1:39:45 PM 1:39:37 PM 1:47:08 PM
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B8 1:43:04 PM — 1:43:10 PM 1:43:24 PM Oh! Laughing.
Watching others use it

M50 1:45:10 PM — — 1:45:23 PM observing others

M50 1:47:18 PM 1:47:18 PM 1:47:43 PM 2:18:40 PM when you put these
pieces together, it tells
it what to do

B4 1:47:20 PM 1:47:20 PM 1:49:28 PM 2:18:39 PM

M18 1:47:52 PM — — 1:49:58 PM observing others
F18 1:49:23 PM — — 1:49:56 PM

M60 1:51:52 PM — — 1:54:27 PM
M60 1:51:52 PM — — 1:54:27 PM

B5 1:59:19 PM — — 2:00:03 PM observing others.
Playing with robot.
Putting self under
camera

B8 1:59:50 PM — — 2:00:03 PM climbing and going un-
der camera

B16 2:22:06 PM — — 2:22:16 PM

G9 2:22:26 PM 2:22:54 PM 2:22:48 PM 2:28:46 PM
F20 2:22:28 PM 2:22:55 PM 2:22:51 PM 2:28:46 PM
M20 2:23:48 PM — — 2:28:46 PM

B8 2:29:08 PM 2:29:48 PM — 2:30:36 PM
B13 2:29:44 PM 2:29:48 PM — 2:30:13 PM

F35 2:31:20 PM — — 2:31:36 PM
M35 2:31:24 PM 2:32:00 AM — 2:33:56 PM

M50 4:04:35 PM 12:08:03 PM 12:08:03 PM 12:14:00 PM
G11 4:04:35 PM 12:08:05 PM 12:08:05 PM 12:14:00 PM
B5 4:04:35 PM 12:08:07 PM 12:08:07 PM 4:04:35 PM
W40 4:04:35 PM 12:08:09 PM 12:08:09 PM 4:04:35 PM
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Date: Sunday, March 2
Researcher: Mike
Condition: GUI

Visitor Looking Interacting Ah-ha Leave Notes
B5 4:04:35 PM 4:04:35 PM — 4:04:35 PM
M38 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM Dad doing mouse.

Boy asking questions.
Can’t hear questions

M50 4:04:35 PM 12:08:03 PM 12:08:03 PM 12:14:00 PM Pulled out tangible
blocks had used this
before :)

G11 4:04:35 PM 12:08:05 PM 12:08:05 PM 12:14:00 PM
B5 4:04:35 PM 12:08:07 PM 12:08:07 PM 4:04:35 PM Really likes exploring.

Is trying all sorts of
different programs.
Second time using this
today, and he’s still
here. Boy is doing
all the work. Mom is
being patient.

W40 4:04:35 PM 12:08:09 PM 12:08:09 PM 4:04:35 PM

G11 4:04:35 PM — — — just glanced

W40 4:04:35 PM — — — just glanced

M22 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM touching robot, turn-
ing it on off. Not
connecting blocks to-
gether on screen. Just
arranging them. Now
he gets it.

W22 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM She’s using the IR
beam while he pro-
grams

G12 4:04:35 PM — — — glancing off to AIBO

W20 4:04:35 PM — — —

M45 4:04:35 PM — — —
W45 4:04:35 PM — — —

G16 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM playing with IR beam.
Trying the maze.
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M33 4:04:35 PM — — —

M40 4:04:35 PM — — —

M21 4:04:35 PM — — —

M35 4:04:35 PM — — —

G13 4:04:35 PM 4:04:35 PM — 4:04:35 PM Looked but was being
used

W30 4:04:35 PM — — —
B8 4:04:35 PM — — —
M30 4:04:35 PM — — — Looking but waiting

for turn
B4 4:04:35 PM 4:04:35 PM — 4:04:35 PM

B15 4:04:35 PM — — — just glanced
B12 4:04:35 PM — — —

M38 4:04:35 PM 4:04:35 PM — 4:04:35 PM Damn. Using IR
beam. Confused
by beam. Finally
picked up mouse. Also
confused by inter-
face. How blocks fit
together and come
apart. Robot is also
stuck agains the wall,
so that’s confusing for
him too.

M33 4:04:35 PM — — —

M38 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM Pretty quickly figured
it out. Same person as
row 28??

W45 4:04:35 PM — — — just glanced

B13 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM
B15 4:04:35 PM — — —
G6 4:04:35 PM — — —

M30 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM
W30 4:04:35 PM — — 4:04:35 PM watched a while and

then left.
G10 4:04:35 PM 1:28:23 AM — 4:04:35 PM Just watching dad.
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M30 4:04:35 PM — — 4:04:35 PM Spoke to other group
about Roomba for a
while.

W30 4:04:35 PM — — —
G6 4:04:35 PM — — —

M38 4:04:35 PM — — — just glanced

B11 4:04:35 PM 4:04:35 PM — 4:04:35 PM Much more interested
in Aibo. Gets connec-
tion of blocks sort of,
but don’t know what
to do...

W30 4:04:35 PM — — 4:04:35 PM

M45 4:04:35 PM — — — Son more interested in
playing mancala.

B10 4:04:35 PM — — —

M42 4:04:35 PM 4:04:35 PM — 4:04:35 PM
G10 4:04:35 PM — — 4:04:35 PM

M50 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM Boy just watching fa-
ther.

B5 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM Lots of talk / questions
with brother and fa-
ther.

B8 4:04:35 PM — — 4:04:35 PM Keeps coming back to
look. Lightning show
also going on.

M35 4:04:35 PM — — —
G9 4:04:35 PM — — — Other group is still us-

ing

M50 4:04:35 PM — — — Other group still using
G12 4:04:35 PM 4:04:35 PM — — Touches IR box

W20 4:04:35 PM — — — Boy is still using.
M21 4:04:35 PM — — —

W40 4:04:35 PM — — — just glancing. Daugh-
ter at AIBO

M23 4:04:35 PM 4:04:35 PM 4:04:35 PM 4:04:35 PM Confused because off
edge.

G8 4:04:35 PM — — —
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M30 4:04:35 PM — — — Someone else using.

W32 4:04:35 PM — — — Someone else using.
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Date: Saturday, March 15
Researcher: Mike
Condition: TUI
Notes: Plexiglass barrier added and monitor back 3 inches

Visitor Looking Interacting Ah-ha Leave Notes
W37 12:14:21 PM 12:14:25 PM 12:16:03 PM 12:18:32 PM Funny, the little boy

likes playing with the
robot. She’s confused
because she blocked
the camera.

B1 12:14:42 PM 12:14:43 PM — 12:18:34 PM Boy comes back... very
funny... likes press-
ing the stop button to
make noise.

B14 12:21:02 PM — — —

B16 12:26:45 PM 12:26:54 PM 12:27:35 PM 12:27:39 PM
B16 12:26:47 PM 12:26:50 PM — 12:27:43 PM

B8 12:28:05 PM 12:28:15 PM — 12:28:42 PM
W20 12:28:25 PM 12:28:31 PM — 12:28:45 PM

B10 12:29:45 PM 12:29:39 PM — 12:34:42 PM Starts with block
tester, but REVERSE
isn’t tagged.

M30 12:29:42 PM 12:30:38 PM 12:31:06 PM 12:34:25 PM Man moves robot out
to start area. Con-
fused by front of robot.

W30 12:32:21 PM — — 12:33:15 PM

W60 12:34:09 PM — — —
W65 12:34:11 PM — — —

B12 12:34:47 PM 12:34:50 PM 12:36:59 PM 12:42:38 PM Boy didn’t want to see
AIBO. Comes back.
Really trying a lot of
programs.

W30 12:35:21 PM 12:50:52 PM 12:51:26 PM 12:53:02 PM
M30 12:35:23 PM 12:50:54 PM 12:51:28 PM 12:53:00 PM
B8 12:35:10 PM 12:35:13 PM 12:36:52 PM — Cool. Awww! Re-

ally interested in see-
ing robot go.

B9 12:35:32 PM 12:35:34 PM 12:36:54 PM 12:40:11 PM Block tester interferes
with programs.
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M40 12:42:54 PM 12:43:02 PM 12:44:50 PM 12:49:31 PM Reading documenta-
tion. Flipping through
challenges.

B15 12:46:07 PM 12:47:30 PM 12:45:00 PM 12:50:12 PM

B11 12:43:16 PM — — —

W25 12:46:30 PM — — —
M25 12:46:36 PM — — — Other people using.

M20 12:47:36 PM — — — Other people using

M22 12:47:48 PM — — — Other people using

** Really busy all of a
sudden **

B13 12:49:01 PM — — — Other people using

M38 12:51:42 PM — — — Other people using

B5 12:52:40 PM 12:52:47 PM — 1:00:58 PM
W30 12:52:42 PM 12:54:23 PM 12:54:20 PM 12:54:27 PM Session overlapping

with other boys.
G9 12:53:15 PM 12:53:18 PM — 12:53:46 PM
M22 12:53:35 PM — — 12:54:15 PM

M18 3/15/2008 13:09 — — —

M53 12:56:09 PM — — —
W25 12:56:17 PM — — —

M35 12:54:51 PM — — 12:58:14 PM
B12 12:54:52 PM 12:55:13 PM — 12:58:12 PM Too many boys all at

once
B8 12:55:06 PM 12:55:23 PM 12:56:32 PM 12:56:28 PM
W30 12:55:07 PM — — 12:58:18 PM

M35 12:59:41 PM — — —

M28 1:00:26 PM 1:03:43 PM 1:03:45 PM 1:05:50 PM Two groups overlap-
ping now. Happens a
lot todayy.

W28 1:03:03 PM — — 1:05:51 PM

B12 12:59:04 PM 1:00:06 PM 1:01:16 PM 1:03:14 PM
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B7 1:00:18 PM 1:00:19 PM 1:01:18 PM 1:03:16 PM

M25 1:01:00 AM — — —

B12 1:02:41 PM 1:03:08 PM 1:03:35 PM 1:04:47 PM This group is with
M28, W28 above.

W52 1:02:45 PM 1:03:09 PM 1:03:36 PM 1:05:57 PM Boy leaves first.
Funny. Mom doesn’t
want to go.

M28 1:06:29 PM 1:10:11 PM 1:10:12 PM 1:10:55 PM
W28 1:06:31 PM 1:06:55 PM 1:10:19 PM 1:10:56 PM
W25 1:06:34 PM 1:06:50 PM 1:08:35 PM 1:10:58 PM

M22 1:11:07 PM 1:11:09 PM 1:12:33 PM 1:12:59 PM Only gets block tester.
Doesn’t see button.

M38 1:13:46 PM 1:13:57 PM 1:14:28 PM 1:25:00 PM Confused because
block is too compli-
cated. Keeps pressing
and saying START¿
It’s not working...
hmm... Let’s move
all these others off.
Thinks he has to clear
screen. “OUCH”
when robot runs into
the wall. Maybe this
[Lblock] is a way to
make the prorgram
longer.

B12 1:14:20 PM 1:14:22 PM 1:14:24 PM — is there an END? Let’s
get rid of this while.
See. It’s going to RE-
PEAT it 4 times! “Oh
it can zoom in if it
wants.” Confused by
IR beam set up.

M28 1:17:26 PM — — —
B12 1:17:26 PM — — — Others using

W26 1:21:50 PM — — — Others using

M25 1:22:24 PM — — — Others using
W25 1:22:24 PM — — —
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M50 1:24:14 PM — — — Others using
M45 1:24:16 PM — — —

M24 1:26:36 PM — — 1:29:05 PM Others using
M50 1:26:38 PM — — 1:29:07 PM
B10 1:28:23 PM 1:28:33 PM — 1:29:02 PM
B13 1:28:29 PM — — 1:29:09 PM

W22 1:30:29 PM — — 1:30:50 PM
W30 1:30:25 PM — — 1:30:50 PM
M35 1:30:22 PM — — 1:30:00 PM
G15 1:30:19 PM 1:30:32 PM — 1:31:42 PM

W17 1:32:18 PM 1:32:22 PM 1:33:33 PM 1:33:30 PM

M70 1:33:03 PM — —
W70 1:33:12 PM — —
W75 1:33:16 PM — —

B8 1:33:39 PM 1:33:40 PM 1:34:48 PM 1:36:50 PM
M33 1:33:46 PM 1:33:49 PM 1:34:50 PM 1:36:44 PM

B9 1:34:41 PM — — — Others using
B12 1:34:38 PM — — —

G16 1:35:55 PM — — — Others using
W17 1:36:40 PM — — —

W18 1:37:29 PM 1:37:31 PM — 1:44:33 PM
W17 1:37:38 PM — — 1:44:35 PM Just using block tester

so far.
W17 1:37:45 PM 1:37:57 PM 1:38:31 PM 1:45:03 PM
W17 1:37:50 PM 1:38:21 PM 1:38:32 PM 1:45:04 PM
W17 1:40:55 PM 1:43:42 PM — 1:45:06 PM
W40 39522.57 — — 1:44:05 PM
W16 1:41:17 PM 1:43:45 PM — 1:44:05 PM Others using
M40 1:41:40 PM — — 1:42:00 PM
M35 1:41:58 PM — — 1:42:00 PM

M22 1:42:30 PM — —
W22 1:42:31 PM — —

W22 1:44:17 PM — — 1:44:58 PM
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Date: Sunday, March 16
Researcher: Erin
Condition: GUI

Visitor Looking Interacting Ah-ha Leave Notes
M30 12:25:27 PM — — 12:25:36 PM

B6 12:27:02 PM — — 12:27:05 PM

G10 12:36:28 PM — — 12:36:41 PM

M28 12:36:52 PM 12:36:58 PM 12:37:59 PM 12:38:39 PM
M28 12:36:55 PM — 12:38:01 PM 12:38:40 PM passive observer was

helping. “No, it’s not
connected”

B10 12:39:06 PM 12:39:06 PM 12:41:56 PM 12:46:52 PM looks at manual. Tries
program from before.
Left with fam for a
minute and came back.
Mom also came back

G12 12:41:42 PM — — 12:43:09 PM
F40 12:41:45 PM 12:42:10 PM 12:41:56 PM 12:43:13 PM
M40 12:41:51 PM — — 12:46:49 PM
G7 12:42:31 PM — — 12:43:17 PM

G13 12:44:24 PM — — 12:44:40 PM
G13 12:44:26 PM — — 12:44:42 PM

B8 12:45:06 PM — — 12:45:29 PM

M28 12:45:43 PM — — 12:46:04 PM

B5 12:46:26 PM — — 12:46:41 PM
M27 12:46:27 PM — — 12:46:43 PM
M27 12:46:29 PM — — 12:46:43 PM

B8 12:47:34 PM 12:47:46 PM 12:48:30 PM 12:54:59 PM he had looked before
when someone else was
using. Now he came
back
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M35 12:47:39 PM 12:48:55 PM 12:48:25 PM 12:55:01 PM “It’s doing whatever
the program says” .
Wait. I’m gonna put
it right here on start.
Tries to get son to
do maze. He’s defi-
nitely instructing: put
forward. Okay, an-
other forward. How
about left. Son is using
mouse and doing what-
ever dad says. Dad
corrects him. tells son
to move whole thing
here. see if you can
move start all the way
over there. Most of the
time son was interact-
ing and dad instruct-
ing. but dad did move
robot and eventually
did use the mouse a bit

F35 12:48:09 PM — — 12:48:18 PM
B2 12:48:11 PM — — 12:48:20 PM

M35 12:50:54 PM — — 12:51:59 PM
B9 12:50:55 PM — — 12:52:06 PM
B8 12:51:03 PM — — 12:52:07 PM

B8 12:54:19 PM — — 12:54:26 PM

B8 12:54:51 PM 12:55:05 PM 12:55:30 PM 12:58:54 PM boy interacting, dad
instructing, mom
watching

M35 12:55:18 PM — 12:55:32 PM 12:58:56 PM trying to get robot
back to start without
picking up

F35 12:55:43 PM — — 12:58:57 PM

B8 12:56:29 PM — — 12:57:29 PM same as earlier
B9 12:56:34 PM — — 12:57:29 PM
M35 12:56:36 PM — — 12:57:29 PM

M35 12:59:43 PM 12:59:45 PM 1:00:43 PM 1:02:38 PM
F35 1:01:52 PM — — 1:02:28 PM
B8 1:01:53 PM — — 1:02:30 PM
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M30 1:09:32 PM 1:09:42 PM 1:10:47 PM 1:11:04 PM
F30 1:09:33 PM — 1:10:50 PM 1:11:05 PM

F27 1:13:37 PM 1:13:48 PM — 1:14:53 PM speaking spanish
M30 1:13:39 PM — — 1:14:46 PM
G9 1:14:14 PM 1:14:14 PM — 1:15:10 PM

F30 1:14:16 PM — — 1:14:39 PM
M30 1:14:25 PM — — 1:14:40 PM
B8 1:14:36 PM — — 1:14:42 PM

M60 1:15:54 PM 1:16:04 PM 1:18:08 PM 1:23:06 PM

F19 1:28:05 PM 1:28:05 PM 1:28:46 PM 1:29:21 PM
M19 1:28:06 PM — 1:28:47 PM 1:29:23 PM giving passive instruc-

tion.

B16 1:30:40 PM 1:30:55 PM 1:30:55 PM 1:34:50 PM

B16 1:49:58 PM — — 1:50:04 PM

F19 2:15:15 PM — — 2:15:18 PM

G16 2:26:28 PM 2:26:30 PM 2:27:40 PM 2:32:01 PM
M40 2:26:36 PM — 2:30:33 PM 2:37:13 PM dad left when girl was

using, but when boy
was using came back
and used it with him

B8 2:29:19 PM 2:31:45 PM 2:30:35 PM 2:37:15 PM can I try. Keeps ask-
ing this. Let me do
it. Finally she lets
him. Got to use it
for a while: “Isn’t that
cool”. I’m going to
do one of everything.
Can you move it to the
start. I think he looked
at book and was trying
something

B7 2:37:20 PM 2:37:22 PM — 2:37:44 PM
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Appendix C

PCODE Assembly Language
Specification

Command Opcode Args Description

noop 0x00 0 This instruction is ignored.
frame 0x01 0 Sets up a new stack frame for a function call. This

includes the following actions: (1) pushes the current
frame pointer; (2) sets the frame pointer to the top
of the stack; and (3) pushes a zero, which acts as a
placeholder for the return address.

yield 0x02 0 Suspends the current process or behavior.
stop 0x03 0 Terminates the current process or behavior. After

stopping, behaviors may be restarted at a later time
by the interpreter. Processes, on the other hand will
not be restarted.

exit 0x04 0 Terminates the interpreter, stopping all processes and
behaviors.

checkpoint 0x05 1 Checkpoints are used to implement the start-when
clauses of behaviors:

• Pops the stack

• Sets the checkpoint property to the popped
stack value

• Yields the process

• If the value of the checkpoint property is true,
then the behavior has requested to run.
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goto 0x06 1 Pops the stack and sets the instruction pointer to the
popped stack value.

call 0x07 1 Invokes a subroutine.

• Pushes the instruction-pointer to (fp + 1)

• Pops the stack for subroutine address

• Sets the instruction-pointer to the popped stack
value

return 0x08 1 Returns from a function call:

• Pops and saves the return value

• Pops all arguments and local variables off the
stack

• Pops and restores the instruction pointer

• Pops and restores the frame pointer

• Pushes the return value back onto the stack

pop 0x09 0 Pops the stack and discards the value
store-global 0x0A 2 Pops the stack twice and stores the value at the given

address location. The first argument is the assign-
ment value and the second argument is the global
variable’s address.

load-literal 0x0B 0 Pushes a two-byte immediate value onto the stack.
This value is included in the assembly code immedi-
ately following the instruction.

load-global 0x0C 1 Pops the stack and loads the global variable value
stored at that address onto the stack.

and 0x0D 2 Pops the stack twice and then pushes the logical AND
of the popped values.

or 0x0E 2 Pops the stack twice and then pushes the logical OR
of the popped values.

not 0x0F 1 Pops the stack once and then pushes the logical NOT
of the popped value.

if-true 0x10 2 Pops the stack twice. If the second popped value is
not zero, jump to the destination address given by
the first popped value.

if-false 0x11 2 Pops the stack twice. If the second popped value is
zero, jump to the destination address given by the
first popped value.

if-timer 0x12 1 Pops the stack once. Then, if the timer property is
zero, jump to the destination address given by the
popped stack value.
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timer 0x13 1 Pops the stack once. Sets the timer property to the
number of milliseconds given by the popped stack
value. The interpreter will eventually decrement this
value to zero as time passes.

random 0x14 2 Pops the stack twice for the low and high range argu-
ments. Generates a random number from [low - high]
and pushes it onto the stack.

store-frame 0x16 2 Replaces the given stack entry with a new value. The
stack entry is specified by its position relative to the
frame pointer—that is, position 0 is the bottom ele-
ment of the current frame; position 1 is the second
element of the frame; and so on. The first argument
popped of the stack is the new value and the second
argument popped is the frame offset.

load-frame 0x17 1 Copies the given stack entry to the top of the stack.
The stack entry is specified by its position relative to
the frame pointer.

= 0x18 2 Pops the stack twice. Pushes 1 if the two stack values
are equal; pushes 0 otherwise.

> 0x19 2 Pops the stack twice. Pushes 1 if the first stack value
is greater than the second; pushes 0 otherwise.

< 0x1A 2 Pops the stack twice. Pushes 1 if the first stack value
is less than the second; pushes 0 otherwise

≥ 0x1B 2 Pops the stack twice. Pushes 1 if the first stack value
is greater than or equal to the second; pushes 0 oth-
erwise.

≤ 0x1C 2 Pops the stack twice. Pushes 1 if the first stack value
is less than or equal to the second; pushes 0 otherwise.

<> 0x1D 2 Pops the stack twice. Pushes 1 if the two stack values
are not equal; pushes 0 otherwise.

sensor 0x1E 1 Pops the stack to get a sensor ID number and then
pushes current value of that sensor onto the stack.

led-on-off 0x1F 2 Pops the stack twice to get the LED ID number and
the on/off value. Then turns the binary LED on or
off.

led-color 0x20 3 Pops the stack three times to get the LED ID number,
brightness, and color (brightness and color values may
be between 0 and 255). Then sets the intensity and
color of the given RGB LED.

song 0x21 1 Pops the stack once. Plays a predefined song given
by the popped ID number.

beep 0x22 2 Pops the stack twice to get the pitch and duration.
Plays a note with the given pitch and duration. Du-
ration is specified in units of 1/64 seconds. The pitch
is defined by MIDI note numbering scheme.
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throttle 0x23 1 Pops the stack once. Sets the forward velocity (in
mm/s) of the robot to the popped value. Negative
values drive the robot backwards.

radius 0x24 1 Pops the stack once. Sets the robot’s turn radius (in
mm) to the popped stack value. 1 and -1 are turn in
place; 0x8000 is drive straight.

rudder 0x25 1 Pops the stack once. Sets the robot’s turn rudder to
the popped stack value. The arguments specifies a
rudder angle from −180 to 180 degrees. The equiva-
lent radius is given by the formula R = k/ sin(a/2).

+ 0x26 2 Pops the stack twice and pushes the sum of the two
stack values.

- 0x27 2 Pops the stack twice and pushes the difference of the
two stack values.

* 0x28 2 Pops the stack twice and pushes the product of the
two stack values.

/ 0x29 2 Pops the stack twice and pushes the integer division
result of the two stack values.

function 0x2A 0 Marks the start address of a helper function.
behavior 0x2B 0 Marks the start address of a behavior with the given

priority level. The 8-bit priority level is specified in
the assembly code immediately following the instruc-
tion.

process 0x2C 0 Marks the start address of a process.
data 0x2D 0 Marks the location of a global variable address and

initializes the value. The initial 16-bit value is spec-
ified in the assembly code immediately following the
instruction.

print-decimal 0x2E 0 Prints the top element of the stack through debug
serial output. Leaves the stack unchanged.

actuator 0x31 2 Pops the stack twice. Applies the value of the first
argument to the actuator specified by the ID number
given by the second argument.

dup 0x32 0 Pushes a duplicate copy the top element of the stack.
Table C.1: Description of PCODE assembly instructions.
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Appendix D

RobotPark Sinage and
Documentation
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