
Vol.:(0123456789)

Education and Information Technologies
https://doi.org/10.1007/s10639-021-10873-w

1 3

Evaluating young children’s creative coding: rubric
development and testing for ScratchJr projects

Apittha Unahalekhaka1 · Marina Umaschi Bers1

Received: 26 August 2021 / Accepted: 16 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Project-based assessment has been used to evaluate coding projects created by stu-
dents for a long time. Nevertheless, there is a lack of rigorously tested project-based
coding rubrics that are developmentally appropriate for early childhood. This study
presented the development and testing of a coding rubric to evaluate children’s crea-
tions with the popular ScratchJr app for early childhood, as well as results from field
testing of the rubric. This paper first presents the ScratchJr Project Rubric develop-
ment phases, and then a field test on 228 ScratchJr projects from 1st and 2nd grade
students (n = 87, aged 6–7 years old) across three time points. The results showed
that the rubric demonstrates validity and reliability, and can measure changes in the
project quality across time points. While the rubric was designed for researchers
and teachers to evaluate ScratchJr projects, the design and conceptual framework is
applicable to other programming languages for children that invite creative coding.

Keywords Early Childhood Education · Elementary Education · ScratchJr ·
Computer Science · Project Assessments

1 Introduction

In the last decade, an expanding number of coding tools and applications make
it possible for young children to learn programming in creative ways by making
their own projects (Sullivan & Bers, 2019). For example, the free ScratchJr app
is one of the most popular developmentally appropriate programming languages
for young children. As of October 2020, almost 60 million ScratchJr projects have

 * Apittha Unahalekhaka
 apittha.u@tufts.edu

 Marina Umaschi Bers
 marina.bers@tufts.edu

1 Eliot-Pearson Department of Child Study and Human Development at Tufts University,
Medford, MA, USA

http://orcid.org/0000-0001-7475-4997
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-021-10873-w&domain=pdf

 Education and Information Technologies

1 3

been created (ScratchJr – DevTech Research Group, 2020). The animated projects
that children create display both expressive design and coding skills (Refer Fig. 1),
and thus it is important to have a reliable and valid tool to assess those projects.

The use of rubrics as tools for project-based assessments in computer science
education is not new; however, there are shortcomings in the design that should
be addressed. First, there needs to be more focus in testing rubrics for early child-
hood creations, as the focus has mostly been on middle school level and above
(Basu, 2019; Denner et al., 2012; Grover, 2020a, b; Moreno-León & Robles,
2015; Wilson et al., 2013). Second, many rubrics do not capture enough aspects
of the project that truly reflect children’s learning. For example, some rubrics
only assess the coding and not the design or mostly evaluate the quantity and
not the quality of the codes (Basu, 2019). Third, rubrics that were used to assess
coding projects at only one time point were not able to reflect children’s coding
capabilities (Brennan & Resnick, 2012; Salac & Franklin, 2020).

This study addressed the aforementioned gaps in project-based assessments lit-
erature for computer science education. Moving towards the younger grade lev-
els, this study focused on the early childhood and early elementary students by
designing and testing the ScratchJr Project Rubric. The ScratchJr Project Rubric
is a project-based assessment that can be used to evaluate ScratchJr projects
meaningfully and holistically. Particularly, this rubric assesses both the quan-
tity and quality of the coding commands, as well as the project design compo-
nents. Additionally, the rubric also looks for purposefulness, or the intentionality
in adding different components to the projects. For example, the voice recording
added to the project should have a clear relationship to the overall project theme
to receive the highest score. Lastly, the rubric was tested across three time points
in this study to make sure that it is capable of capturing subtle changes in project
quality.

The paper describes the ScratchJr Project Rubric development phases and field
testing. The project development phase involved the rubric’s design, iteration, and
finalizing. Moreover, the field test phase involved the use of the ScratchJr Pro-
ject Rubric to assess 228 projects created by first and second grade students. The
study presents in this paper examined some of the basic psychometric properties

Fig. 1 Left: Painting Tool. Right: Coding Palette

1 3

Education and Information Technologies

of the ScratchJr Project Rubric including validity and reliability, as well as the
rubric’s subcategory score distribution. In particular, this study addressed the fol-
lowing research questions in the rubric development phases and field testing:

• RQ1: How can a coding education model that includes the acquisition of coding
concepts, purposefulness, and design concepts be operationalized into a rubric
for scoring young children’s coding projects?

• RQ2: Does the coding project rubric described in RQ1 have acceptable psycho-
metric properties, reasonable score distribution, and sensitivity across time?

2 Background

2.1 Early Childhood Coding with ScratchJr

Research shows that computational and digital competency skills can be acquired
through coding and are crucial skills for the twenty-first century (Nouri et al., 2020).
In addition, coding can support young children to acquire Computational Thinking
(CT), which is a highly transferable skill for everyday life involving critical thinking,
problem solving, and planning (Relkin et al., 2021).

With the advancement in technology, various tools have been developed to allow
young children to code on tablet apps and with robots (Angeli & Valanides, 2020;
Clarke-Midura et al., 2019; Sullivan & Bers, 2019). As illustrated in Fig. 1, ScratchJr
engages children through its visual and audio features. It is designed so children can
use their fingers to drag coding blocks, paint characters and background, record their
voice, and take photos. Most importantly, ScratchJr teaches fundamental programming
concepts such as Sequencing, Repeat, Conditionals, Parallelism, Coordination, and
Number Parameters (Flannery et al., 2013; Rose et al., 2017; Strawhacker & Bers, 2019).

The ScratchJr programming language is block-based (Refer Fig. 2), which makes
it developmentally appropriate for young children to understand the commands
through symbols instead of words (Flannery et al., 2013). Compared to text-based
programming languages, block-based languages are easier for children to grasp.
Block-based languages remove the syntax, or a set of rules and structures in writ-
ing coding commands such as commas, apostrophes, or brackets at fixed positions
(Grover, 2020a, b). ScratchJr has six coding block categories consisting of “Trigger-
ing”, “Motion”, “Looks”, “Sounds”, “Control”, and “End”, shown in Fig. 2. Each
category has a different function and can be differentiated by color. From ScratchJr’s
functions, children can apply their creativity and expressivity to combine program-
ming blocks and design backgrounds and characters for their animated stories.

2.2 Early Childhood Coding Assessments with ScratchJr

With an increasing demand for early childhood computer science education, dif-
ferent types of assessments have been used for young children’s coding compe-
tency such as game-based (Pila et al., 2019), interview-based (Wang et al., 2014),

 Education and Information Technologies

1 3

task-based (de Ruiter & Bers, 2021), observational (Fessakis et al., 2013). Two
specific examples of ScratchJr programming language assessments are Solve-It
and Coding Stages Assessment (CSA). Solve-Its are a set of open-ended tasks
for children to recall ScratchJr coding blocks and create programming sequences
according to the ScratchJr projects that were shown to them (Strawhacker & Bers,
2019). The objective of Solve-Its is to assess ScratchJr coding knowledge by ask-
ing children to circle correct coding blocks on the paper or order cut-out paper
coding blocks into sequences.

Similarly, CSA also assesses children’s ScratchJr programming language pro-
ficiency with additional focus on children’s expressivity and purposefulness (de
Ruiter & Bers, 2021). Expressivity is how well the children can turn their abstract
ideas into creating coding sequences, while purposefulness is whether they can cre-
ate according to their intentions. With the CSA, testers will ask children to explain
their answers or create coding sequences on the ScratchJr app according to the given
task. Then children’s coding competencies will be categorized into one of five cod-
ing stages: “Emergent”, “Coding and Decoding”, “Fluency”, “New Knowledge”,
and “Purposefulness”.

Solve-Its and CSA are examples of assessments on ScratchJr programming lan-
guage proficiency (de Ruiter & Bers, 2021; Strawhacker & Bers, 2019). However,
unlike project-based assessments, they do not capture young children’s natural-
istic ability to apply their coding proficiency into creating their own open-ended
and expressive coding projects. The next sections of this paper will introduce

Fig. 2 28 ScratchJr Coding Blocks by Categories

1 3

Education and Information Technologies

project-based assessments and describe the process through which the ScratchJr
Project Rubric was developed, and field tested.

2.3 Project‑based Assessment: Coding Project Rubrics

Project-based assessments have been used by researchers and educators to study
how students demonstrate their skills in making authentic products (Cateté et al.,
2016). There are different names for these types of assessments such as artifact,
performance, or portfolio-based assessments. Project-based assessments serve to
evaluate how children apply their knowledge and integrate interdisciplinary skills
using rubrics (Chen & Martin, 2000). Particularly, they allow assessors to differ-
entiate children’s programming proficiency by evaluating their open-ended coding
artifacts (Basu, 2019; Seiter & Foreman, 2013; Sherman & Martin, 2015). Further-
more, assessing a collection of projects over time can be beneficial to illustrate chil-
dren’s coding mastery progression and identify concepts that need additional sup-
port (Basu, 2019; Brennan & Resnick, 2012). It has been recognized that traditional
coding assessments are sometimes too lengthy for the short attention span of young
children (Relkin & Bers, 2019). Project-based assessments are naturalistic and can
be done outside of class time. In another word, it provides an ease of administration
under time constraints where children will not be taken away from their learning
time.

Two studies presented how coding rubrics can give us insights on children’s com-
puter science learning. The first study tested a rubric with 160 middle schoolers’
coding projects created in Scratch and App Inventor, which are coding apps with
block-based programming languages (Basu, 2019). This study reported that students
created projects with a wide range of complexity levels. Although most students
only used simple coding concepts in projects, their project scores were moderately
correlated with their Computer Science class grades. The second study showed that
most of the coding projects created by first to sixth grade students used the basic
“motion” and “appearance” coding blocks. However, only students in higher grades
utilized the more advanced concepts of variable referencing and assigning (Seiter &
Foreman, 2013).

However, there are studies that pointed out limitations of the project rubrics on
assessing children’s computational capabilities. A study found a very weak cor-
relation between children’s (ages 7–12) coding projects analysis (number of block
usage) and coding concept assessments (Salac & Franklin, 2020). Using more loop
blocks in projects does not mean that children understand how loops work. The
researchers concluded that assessors should be cautious with what they can learn
from the artifact analysis alone, as “Artifact analysis shows that a student built some-
thing—not that they understood something” (Salac & Franklin, 2020, p. 478). One
approach that might help address this limitation is to assess not only one project but
also a collection of projects over time to provide a richer view on how children can
create differently (Brennan & Resnick, 2012). Furthermore, project rubrics should
focus on the complexity of coding concepts rather than assessing just the quantity of
blocks used in each concept (Basu, 2019).

 Education and Information Technologies

1 3

The main advantages in using coding rubrics over the other forms of assessment
are the rubric’s naturalistic nature and its practicality for teachers to evaluate their
students’ work in their available time. However, most of the research using coding
project assessments was conducted on late elementary and middle school students
(Basu, 2019; Denner et al., 2012, 2012; Wilson et al., 2013). Thus, there is a lack
of coding project rubrics to understand how young children create their coding pro-
jects. This study aimed to develop a ScratchJr Project Rubric for researchers and
teachers that can assess the ScratchJr project creation with two main domains: Cod-
ing Concepts and Project Design.

3 Methodology: ScratchJr Project Rubric Development Phases

Table 1 shows three phases in the ScratchJr Project Rubric development, con-
sisting of Rubric Design, Iteration, and Finalizing. This study used 287 testing
ScratchJr projects provided by the DevTech Research Group, which were created
at an unknown date by young children or teachers that joined the research group’s
activities.

3.1 Rubric Design

The design of the ScratchJr Project Rubric’s framework was inspired from previ-
ous studies with middle school students’ coding projects (Brennan & Resnick, 2012;
Denner et al., 2012; Wilson et al., 2013). For example, Denner et al. (2012) designed
a rubric that has three main components including programming, code organization,
and usability design. As ScratchJr was designed for younger ages, the ScratchJr Pro-
ject Rubric has two main domains: Coding Concepts and Project Design as shown in
Fig. 3. Both domains are evaluated in terms of the purpose they capture. That is, if
a project has a random sequence of blocks and no coherent design, the creator sense
of purposefulness will be indicated as low, resulting in a lower project score. While
code organization and efficiency are often emphasized among older students (Den-
ner et al., 2012), we think that they are not as important in early childhood as code
correctness and purposefulness.

Table 1 Timeline of the ScratchJr Project Rubric Development

Phases Process Details

Phase 1: Rubric Design Literature Review
Subject-Matter Expert Feedback on the Rubric
Scoring of Testing ScratchJr Projects

Phase 2: Iteration Test and modify rubric with 245 projects
• Inter-rater Reliability Testing (4 raters)

Phase 3: Finalizing Test finalized rubric with 42 projects
• Inter-rater Reliability Testing (3 raters)

1 3

Education and Information Technologies

3.1.1 Literature Review: Coding Concepts

The ScratchJr Project Rubric’s Coding Concepts subcategories were primar-
ily guided by the programming concepts gained from various studies that uti-
lized ScratchJr (Flannery et al., 2013; Rose et al., 2017; Strawhacker & Bers,
2019; Strawhacker et al., 2018). In addition, when relevant, we adapted the cod-
ing concepts from coding rubrics for older children’s coding projects using Scratch
(Basu, 2019; Denner et al., 2012; Wangenheim et al., 2018; Wilson et al., 2013).
Consequently, the ScratchJr Project Rubric has six Coding Concepts subcatego-
ries consisting of “Sequencing”, “Repeats”, “Events”, “Parallelism”, and “Number
Parameter” shown in Table 2. A project will receive a higher score in each subcate-
gory if the coding sequence is syntactically correct and more conceptually advanced.

Fig. 3 ScratchJr Project Rubric’s two main criteria, Coding Concepts and Project Design, and their sub-
categories, which incorporated purposefulness

Table 2 Coding Concept Subcategories Definition

Coding Concepts Subcategories Definition

Sequencing Able to form unique and functional coding blocks for the command to
be executed as expected (number of coding blocks used)

Repeats Using a command to make an action repeat multiple times
Events Sending a command for an action to happen
Parallelism Two or more coding sequences playing simultaneously to command

multiple actions
Coordination Controlling different characters to coordinate in an action
Number Parameter Inserting the number of times that a command should be executed

 Education and Information Technologies

1 3

3.1.2 Literature Review: Project Design

O’Quinn and Besemer (1989) defined three necessary elements for a crea-
tive product: originality, elaboration, and purposefulness. These informed the
ScratchJr Project Rubric’s Project Design criterion shown in Table 3. For origi-
nality, the rubric evaluates “Character Customization”, “Background Customi-
zation”, “Animated Look”, and “Sound”. For elaboration, there are “Number of
Characters”, “Number of Settings”, and “Speech Bubble”. The purposefulness
component is incorporated across the Project Design criterion; for example,
sound recording that aligns with the project would receive a higher score than an
accidental sound recording that only plays a classroom background noise.

3.1.3 Subject‑Matter Expert

After literature review was conducted on the existing coding rubrics for older
children, the first draft of the rubric was created then reviewed by four experts in
the field of early childhood technology and one ScratchJr developer. The experts
gave suggestions on how to make the rubric scoring more developmentally appro-
priate for young children. For example, a nested loop should earn a higher score
than a repeat loop. Further, to ensure that the rubric will capture a broad range of
capabilities, the rubric scoring was altered from the score of 1–3 to 1–4.

3.1.4 Scoring

The score of each subcategory can range from 1–4 points according to the con-
cept mastery level. The project must demonstrate the most challenging concept
to obtain the highest score in each subcategory (Refer to Appendix 1). There are
six categories for Coding Concepts, so a maximum score for this criterion is 24
points. Additionally, there are seven categories for project design, but the maxi-
mum score is limited to only 16 points. The goal was to give a higher weight

Table 3 Project Design Subcategories Definition

Project Design Subcategories Definition

Character Customization Changing the aesthetic of the character, which is defined as a char-
acter with more than one coding block

Background Customization Changing the aesthetic of the background
Animated Look Changing the animated appearance of the character with look blocks
Sound Using pop block or voice recording tool
Number of Settings Adding project pages with settings up to 4 pages
Number of Characters Adding a number of characters with functional coding sequences
Speech Bubble Entering words, phrases, or sentences with the speech block

1 3

Education and Information Technologies

(60%) to coding concepts than to aesthetical design (40%) elements. Therefore,
40 points is the maximum score that each ScratchJr project can reach. The 60–40
weighted ratio in the ScratchJr Project Rubric was used according to scoring of
the KIBO Project Rubric. The KIBO Project Rubric was developed and tested for
evaluating early childhood robotic projects. The rubric also demonstrates validity
and reliability (Govind & Bers, 2021).

3.2 Iteration Phase: Summary of Rubric Modifications

There were multiple rounds of rubric revisions due the diversity of ScratchJr pro-
jects and several raters were involved in the process. One of the most challenging
aspects in the revision process was the design of the rubric to be broad enough to
cover a wide variety of projects, but specific enough to have reliability across dif-
ferent raters. For example, a character can possibly have no code, non-functional
codes, one functional code, or multiple functional codes. ScratchJr projects can be
highly abstract especially when there is no word or narration to tell what the chil-
dren intended to create. This observation aligned with the findings from Wright’s
study (2010) that young children’s storytelling can be open-ended and ambiguous to
outside viewers.

After seeing that the blocks’ functionalities were frequently misused by children,
we revised the scoring criteria of many subcategories to capture purposeful creation.
An example of two sequences that have the same command, move right then move
up, is shown in Fig. 4. However, the top sequence has four blocks that did not make
any changes to the program, and we identify these blocks as being misused. Specifi-
cally, the second block on the top sequence is an appear block, which will not make
changes to the character, as this character has always been visible. Furthermore, the
third block and fifth block are regular speed and regular size blocks.

To capture purposeful creations, raters only assessed blocks that make actions
that can be seen or heard. Therefore, under the “Sequencing” concept, raters would
count both sequences in Fig. 4 to have the same number of blocks (excluding unused
blocks) and rate the same score. Furthermore, the rubric defines a character as hav-
ing at least one coding block, while characters with no coding block are consid-
ered as parts of the background as we often saw that they were used as background

Fig. 4 Comparison between two different sequences with the same actions

 Education and Information Technologies

1 3

decoration. For example, a table in the bedroom, a sun and stars in the sky, and static
friends in the classroom.

3.3 Iteration and Finalizing Phases: Inter‑Rater Reliability

In the Iteration phase, the first author of this paper and three raters each assessed 245
projects, 176 practice scoring projects and 69 final scoring projects (with a finalized
rubric). All criteria of the final scoring projects had a sufficient inter-rater reliability
score (Krippendorf’s α > 0.80), the averaged inter-rater reliability score was 0.89,
ranging from 0.82–1.00.

In the Finalizing phase, two new raters did an inter-rater reliability testing
with the first author of this paper. Although the main ideas of the finalized rubric
remained intact, the wording of the rubric got revised for clarity. Then the new raters
spent approximately 30 hours, each grading 100 practice projects as part of their
training. Raters took up to two minutes to score each project depending on its com-
plexity and length. On the final 42 new projects that have not been graded in the
Iteration phase, the overall Krippendorf’s alpha was 0.86, ranging from 0.71- 0.96.
The graders met and resolved the misaligned ratings mainly due to human error in
missing the small details on the rubric grading guidelines.

4 Methodology: Field Test

4.1 Participants

To field test the rubric, we worked with projects created by first graders (3 classes,
n = 48) and second graders (2 classes, n = 39) from a public school in Minnesota,
USA. This school was one of the 40 schools that we reached out to across the US
from our research group e-list. Five classroom teachers were interested and par-
ticipated with their students in this study. Consequently, students (aged 6–7) with
consent from all five classrooms participated. While the racial breakdown of the
students was unreported, 47% of the students were girls and 53% were boys. Partici-
pants were enrolled in a ScratchJr Coding as Another Language curriculum (Bers,
2019) implementation, which spanned from February 2021-April 2021. Due to stu-
dents’ absence from the COVID-19 pandemic and other personal issues, there were
a total of 73 projects at Time 1, 79 projects at Time 2, and 76 projects at Time 3.

4.2 Procedure

This study was part of the Coding as Another Language (CAL) project, which imple-
ments a coding curriculum for K-2 students that integrates literacy with ScratchJr in
public schools. A research-based CAL curriculum focuses on the role of artificial and
natural languages for young children to express their ideas by combining program-
ming language and literacy. Some activities in the CAL curriculum are unplugged,
while most of the activities use the ScratchJr app as a programming platform (Coding

1 3

Education and Information Technologies

as Another Language, 2021). The CAL project in this study was implemented for
approximately three months during a regular 45-min academic lesson that met twice a
week. The school provided each student with a tablet (1:1 ratio) to code on ScratchJr
during these class periods, which normally would have been scheduled for math or
literacy.

From the 24 lessons included in the CAL curriculum, the research team asked
the teachers to collect and send individual student’s ScratchJr projects at three-time-
points aligning with Brennan and Resnick’s (2012) report that project assessments
can be more effective when evaluated across times. At Time 1, students were taught
with basic motion blocks to make characters move such as move forward and jump.
At Time 2, students were taught all the project design features such as voice record-
ing and creating multiple pages. At Time 3, students were taught all the advanced
coding concepts in ScratchJr such as “Coordination”, “Events”, and “Parallelism”.
The CAL curriculum provided teachers with a short open-ended prompt for each
student to create a ScratchJr project at each time point. For example, first graders
were asked to create projects for their characters to do a “hokey-pokey” dance at
Time 1, act in their classroom story at Time 2, and tell a story from “Where the
Wild Things Are” book at Time 3 (Refer Fig. 6). “Where The Wild Things Are” is a
children’s story book written by Maurice Sendak, about a boy named Max that had a
dream that he sailed to a monster land and had a dance party with them.

4.3 Data Analysis

The objective of the field test phase for the second research question of this study
was to test the newly developed ScratchJr Project Rubric for some of its basic psy-
chometric properties, score distribution and sensitivity across time. The first author
of the paper used the ScratchJr Project Rubric to rate 228 projects across three dif-
ferent time points in the curriculum on all 13 subcategories (Refer Fig. 3). The pro-
jects that display more advanced coding concepts will receive higher scores under
this criterion (Refer Appendix 1). Moreover, the projects that display more details
and variety in their customization will receive higher scores in the project design
criterion. As the activity prompt did not enforce children to use all types of coding
blocks or design features on their projects, they may or may not end up having all
the subcategories of the rubric. For this study, teachers were not involved with the
project rating process; however, their involvement will be important to learn about
the practicality of using the rubric in classrooms.

4.3.1 Validity and Reliability Testing

To test for the rubric’s criterion validity, a partial correlation analysis was conducted
between the ScratchJr Project Rubric and the Coding Stages Assessment (CSA), con-
trolling for students’ grade level and gender. The CSA is an assessment to measure
children’s expressivity and technical level on the ScratchJr programming language (de
Ruiter & Bers, 2021). The CSA demonstrated criterion validity in measuring Compu-
tational Thinking, and an excellent level of internal consistency, Guttman’s λ6 = 0.94.

 Education and Information Technologies

1 3

In this study, all participants took the CSA test before and after the curriculum, but
only the post-CSA weighted scores were compared to the final project scores at Time 3
(n = 76). The CSA covers all Coding Concepts and most Project Design elements in the
ScratchJr Project Rubric. Although the rubric and the CSA do not measure the exact
same learning areas (ability to create ScratchJr projects versus ScratchJr programming
language competency), we expected both assessments to at least be mildly correlated.
We did not expect a high correlation due to the open-ended nature of the ScratchJr Pro-
ject Rubric, unlike the CSA that is task-based.

However, there should be some correlation, as children’s measured expressivity and
technical levels by the CSA are likely to be reflected in their ScratchJr projects.

Furthermore, we used Krippendorff’s alpha for the inter-rater reliability calculation
since the rubric development phase due to its ability to measure scores with more than
two raters and capture missing values (Krippendorf, 2011). For field testing, the first
author of the paper assessed all projects with an additional rater to assess 35% of the
randomly chosen projects from each classroom at each timepoint.

4.3.2 Subcategories Frequencies and Means

This study calculated frequency and mean score of each subcategory only at Time 3
(n = 76), which was when students learned all the ScratchJr concepts. The purpose
for this analysis was to determine whether children use a certain concept often, and
whether this finding aligns with prior literature on early childhood coding. Moreover,
it is important to note that children may not use all subcategories in their projects, and
this study treated the unused category scores as missing values.

4.3.3 Sensitivity To Change

Evaluating children’s coding projects over time may give meaningful insights on chil-
dren’s learning (Brennan & Resnick, 2012). Therefore, the rubric’s sensitivity was
examined by a longitudinal regression across three timepoints. Particularly, this analy-
sis investigated whether time was a significant predictor of the total project scores (out-
come) accounting for grade level and gender. Cases with no project scores at a particu-
lar time point were assumed to be missing at random due to students’ absence mainly
from the COVID-19 pandemic. Consequently, 33 scores were treated as missing and
got omitted from the model, resulted in 228 project scores across three timepoints.
This study’s final longitudinal model includes time as the level-1 predictor; grade level
(0 = Grade 1, 1 = Grade 2) and gender (0 = Female, 1 = Male) as the level-2 predictors.
Furthermore, this model only allows the intercept (project score at Time 1) to vary,
while the slope of time is fixed across students as shown in Eq. 1.

The final model equation with the total project score as the outcome; time as the
level-1 predictor; and grade level and gender as the level-2 predictors.

(1)
Y
ti
= �

0i
+ �

1i
Time

ti
+ e

ti

�
0i
= �

00
+ �

01

(

Grade
i

)

+ �
02

(

Gender
i

)

+ r
0i
Intercept

�
1i
= �

10
+ �

11

(

Grade
i

)

+ �
12
(Gender

i
) Slope ∶ Time

1 3

Education and Information Technologies

5 Results

5.1 Descriptive Statistics

Figure 5 illustrates the total project score density plots across three-time points. They were
approximately normally distributed with skewness and kurtosis values within absolute
2, ranging from -0.29 to 0.62 and -0.80 to 1.27, respectively. There were no outliers at
Time 1 and Time 3. However, there was one outlier at the lower end of Time 2, which
was far below the expectation from a 95% confidence interval for a sample size of n = 79.
Furthermore, only 57 students (65.51%) had all three projects, while 27 students (31.03%)
had two projects, and three students had one project (3.45%). Out of 40 points, the average
total project score from Time 1 to 3 was 14.23 (SD = 4.63), 20.82 (SD = 4.26), and 25.11
(SD = 4.97), respectively. The post-CSA weighted scores were also normally distributed
with skewness and kurtosis values of 0.44 and -0.30, respectively.

5.2 Reliability and Validity of Projects from Field Test

For the reliability testing, the first author of this paper assessed all 228 projects
while a research assistant assessed 80 projects (35%). There was a substantial agree-
ment across all ScratchJr Project Rubric’s subcategories; the average Krippendorf’s
alpha was 0.95, ranging from 0.81–1.00 for each subcategory (Krippendorff, 2018).
The Background Customization category had the lowest agreement (α = 0.81) due to
the children’s artwork that can be highly abstract, and therefore raters had difficul-
ties noticing the intricate details. For example, a dark color background that is fully
painted with also dark color small drawings and inserted shapes.

The ScratchJr Project Rubric intends to measure purposeful coding projects
through its constructs. The rubric shows construct validity as the rubric’s subcat-
egories were derived from existing literature on coding rubrics and creativity.
The rubric’s criterion validity was shown by the significant positive correlation
between the total project scores at Time 3 and the post-implementation CSA scores
(r = 0.35, p < 0.01), despite children’s grade level and gender.

Fig. 5 The total project score
distributions from Time 1 to
Time 3

 Education and Information Technologies

1 3

Examples of projects with high and low scores in Fig. 6 demonstrated that this
rubric can differentiate projects with varying complexities. Both projects in Fig. 6
were created by two first graders with the “Where the Wild Things Are” story
theme. The project on the left contains highly complex coding concepts such as
“Events” (sending messages) and “Parallelism” (not visible in the figure), while the
project on the right is composed of simple motion blocks. Figure 6 (left) project
has a scene where the main character, Max, gets off the boat, says “By” (bye) to
the mouse then arrives home on the final page. Additionally, the project design in
Fig. 6 (left) is highly elaborated with drawn characters and a picture of the “Where
the Wild Things Are” graphic in the second-page background. Contrastingly, Fig. 6
(right) uses a less complex sequence, where Max moves forward and then backward
before the project goes on to the next page. There is also minimal customization in
Fig. 6 (right) such as changing the characters’ shirt colors.

5.3 Distribution by Subcategories

The frequency and mean score of each subcategory at Time 3 are shown in Table 4.
Coding Concepts that appeared most frequently were “Sequencing”, “Number Param-
eter”, “Events”, and “Parallelism”. Out of a maximum score of 4, “Sequencing”
and “Number Parameter” had the highest mean scores of 3.32 (SD = 0.64) and 3.42
(SD = 0.91), respectively. Although “Parallelism” appeared in most projects, it had

Fig. 6 Left: Project with a high total project score. Right: Project with a low total project score

Table 4 The Frequency and Mean Score of each Subcategory

Subcategories Frequency (n = 76) Mean Subcategories Frequency
(n = 76)

Mean

Sequencing 100.00% 3.32 Number of Settings 100.00% 3.64
Number Parameter 97.37% 3.42 Number of Characters 100.00% 3.62
Events 92.11% 2.20 Background Customization 96.05% 3.23
Parallelism 92.11% 1.27 Character Customization 81.58% 2.08
Repeats 27.63% 2.62 Sound 38.16% 3.31
Coordination 22.37% 3.18 Animated Look 36.84% 2.54

Speech Bubble 15.79% 2.17

1 3

Education and Information Technologies

the lowest mean score of 1.27 (SD = 0.68). This finding suggests that children used
“Parallelism” often but at the basic level: to have different characters run commands
simultaneously. Furthermore, although “Coordination” only appeared in 22.37% of
the projects, its mean score of 3.18 (SD = 0.95) was higher than many other concepts.

Projects on average scored higher on the Project Design than the Coding Con-
cepts. Results demonstrated that all projects had at least a character with one func-
tional code and a setting. Additionally, the projects’ backgrounds were more highly
customized (µ = 3.23, SD = 0.70) than the characters (µ = 2.08, SD = 0.75). Children
regularly customized their projects’ background with texts, drawings, and static
ScratchJr characters without coding blocks (e.g., bed, chair, flower, and cloud).

5.4 Sensitivity across Time

The final longitudinal model in Appendix 2 showed that the ScratchJr Project Rubric is
sensitive to the changing total project scores. At Time 1, the model estimated that first
graders would get 12.27 (p < 0.001) on their total project scores, while second graders
would get 5.56 scores more (p < 0.001) than first graders. With one passing time point,
the total project scores were estimated to be 7.04 points higher for first graders and 3.63
points higher for second graders. Furthermore, grade level but not gender was a significant
predictor (p < 0.001) of the changing project scores over three timepoints. Lastly, the post-
screening analysis on the final model showed that the residuals were normally distributed,
homoscedastic, and independent. The final model included all necessary random effects,
any additional random effects to the model resulted in a convergence error.

6 Discussion & Conclusion

With the growing popularity of coding applications for young children to create their
own open-ended animated projects, a valid assessment tool to evaluate the project’s
quality in terms of coding skills and design elements is critically needed. The first
research question (RQ1) of the study is how to design a coding rubric for young
children that assess the coding, design, and purposefulness aspects. The second question
(RQ2) is asking whether the newly designed rubric in RQ1 would have acceptable
psychometric properties. For RQ1, this paper describes the rationale and process
in developing the ScratchJr Project Rubric and the rubric’s field testing on first and
second graders’ projects. For RQ2, results from evaluating 228 projects demonstrated
the rubric’s reliability and validity for assessing young children’s coding projects.
Particularly, the rubric demonstrated reliability through the sufficient agreement
between raters across three rounds of testing. The rubric showed criterion validity
through the significant positive relationship between the rubric and the CSA. Construct
validity was established as its domains were derived from prior literature on coding
assessments. Additionally, the rubric’s subcategories score distributions reflected what
previous studies have observed on young children’s programming competencies.

The ScratchJr projects analyzed in this study demonstrated that it was common
for children in early elementary grades to create functional sequences with four to six

 Education and Information Technologies

1 3

unique motion blocks. However, it was less common for them to utilize more advanced
coding concepts such as “Events”, “Repeats”, “Coordination”, and “Parallelism”. For
instance, some of the infrequently used blocks under Events were “Start on Tap,”
“Start on Bump,” and multiple color message blocks. These findings aligned with a
prior study, which found that many first graders were not able to construct sequences
with the “Send Message” and “Open Message” blocks (Strawhacker & Bers, 2019).
Message blocks are challenging for young children, as they require an understanding
of “Control Flow”, which is similar to “Repeat” (Loop) and “Speed” (Coordination)
blocks. Children may find the Control Flow concept less apparent as this command
acts as a trigger or a modifier to be used with the other block categories, including
Motion, Look, or Sound (Strawhacker & Bers, 2019). Aligning to the current study,
prior research has also identified Parallelism as an advanced concept for children
across ages. For example, a study with middle school students reported that only a
third of the coding projects analyzed used Parallelism (Denner et al., 2012).

Children may develop valuable skill sets such as creativity and expressivity when
integrating both coding concepts and project design in their projects (Ge et al., 2015;
Liao, 2016). Thus, the rubric presented in this paper involves both, since coding scores
alone could not account for the nuances of a ScratchJr project’s quality. Most children
invested effort in expressing ideas and personalizing their projects. For example, most of
the ScratchJr projects evaluated had extra customizations such as drawings, self-portraits,
narrated voices, or spelled out project names. On average, each project got almost a
perfect score under the Number of Characters subcategory (using six or more characters
with functional sequences). The prevalence of aesthetic customization in young children’s
projects from these findings supports pedagogical claims encouraging educators to
provide sufficient classroom time for project design (Strawhacker et al., 2018).

Lastly, this study indicated that the ScratchJr Project Rubric is sensitive to change.
Notably, the increasing project scores in the study aligned with the fact that children
in both grades became more knowledgeable coders as they participated in the Coding
as Another Language curriculum. The total project scores at Time 3 for both grades
were approximately 65% of the maximum score; the highest score that a child reached
was 85%. This percentage was not surprising as children must use the most challenging
concept in ScratchJr to achieve each criterion’s top score. Ultimately, these outcomes
suggest that the ScratchJr Project Rubric can provide a high ceiling for children’s mas-
tery levels to grow, aligning with a report that an ideal assessment tool should be able to
capture children’s wide range of capabilities (Relkin & Bers, 2019).

In conclusion, the ScratchJr Project Rubric is an assessment tool for children’s coding
projects that demonstrates reliability and validity. Although the rubric has only been
tested by researchers and not teachers, it is both practical to implement and sufficiently
brief to be suitable for classroom use. The rubric’s subcategories can provide meaningful
insights into how children create open-ended coding projects and can illuminate areas of
the curriculum that need to be strengthened. For instance, teachers may consider providing
extra support or encouraging children to test out concepts with low scores in the rubric
such as “Parallelism” and “Repeats”. Finally, while this study specifically utilized the
ScratchJr app, the rubric’s constructs still apply to other coding applications that use block-
based programing with similar programming and design features to ScratchJr. Examples of
these features include movement blocks, conditional blocks, and decorating tools.

1 3

Education and Information Technologies

7 Limitation and Future Directions

A single evaluation instrument cannot capture children’s learning. Thus, one of the
limitations of the present study is that the ScratchJr rubric alone cannot inform the
process of how children create expressive coding projects. For example, Brennan
and Resnick (2012) suggested that project rubrics do not capture the project creation
process; therefore, cannot inform the assessors whether the child understands the
coding concepts. Children may have received help from their teachers or friends to
create advanced coding sequences; thus, the rubric might fail to capture children’s
actual ability. Furthermore, the curriculum may highly influence children’s choice
of coding blocks in their own open-ended projects. For example, the “Go to Page”
block appeared in most projects evaluated in this study, which might be due to the
curriculum’s prompt to create a story with multiple pages. Alternatively, children
rarely used “Start on Tap” and “Start on Bump,” although these two blocks are on
the same score level as the “Go to Page” block. Consequently, it is challenging to
determine whether the “Start on Tap” and the “Start on Bump” are conceptually
more complex for children than the “Go to Page” block.

Another study limitation is that it is not possible to determine whether what chil-
dren created was intentional, without interviewing them. For example, children may
be joining random coding blocks to create long functional sequences without under-
standing all the commands. These random blocks make it difficult for assessors
to detect anything other than obvious errors with the ScratchJr Project Rubric—a
sequence that has a repeat loop that does not repeat, or an example shown in Fig. 4.
Contrastingly, children may also intentionally create coding sequences that do not
make logical sense. For example, putting a “Hide” block at the beginning of a long
sequence, meaning that all the following actions will be invisible.

Thus, in future studies the rubric might need to be used in conjunction with
other forms of assessments to triangulate children’s learning and allow differ-
entiation between an educated guess and actual knowledge of the concepts. An
essential next step is to observe ScratchJr lessons and interview children on what
they created. Feedback on how and why children construct sequences can enhance
our understanding of their actual competencies. Input from children will be ben-
eficial for the next round of the ScratchJr Project Rubric revision. Additionally,
instead of having researchers test the rubric on children’s projects, it is necessary
for teachers to do so. To improve the rubric’s design for classroom use, it will
be helpful to measure the time required for teachers to implement the rubric and
obtain feedback. Like the automated project rubric for Scratch, called Dr. Scratch
(Moreno-León & Robles, 2015), it is possible to automate most of the ScratchJr
Project Rubric’s concepts. However, some concepts that heavily emphasize young
children’s intentionality such as “Coordination” and “Sound”, are less straightfor-
ward for machines as it is required to understand the themes of the projects. Lastly,
future studies should explore the extent to which the difficulty of the open-ended
project prompts influence students’ performances. Nevertheless, the current rubric
version is robust and sufficient to provide meaningful insights about children’s
ability to express and transform their coding and design skills into coding projects.

 Education and Information Technologies

1 3

A
pp

en
di

x
1

Ta
bl

es
 5

 a
nd

 6

Ta
bl

e
5

 E
xa

m
pl

es
 o

f S
eq

ue
nc

in
g

an
d

Re
pe

at
s C

od
in

g
C

on
ce

pt
s G

ra
di

ng
 C

rit
er

ia

1
po

in
t

2
po

in
ts

3
po

in
ts

4
po

in
ts

Se
qu

en
ci

ng
1

bl
oc

k
w

as
 u

se
d

or
 n

on
e

of
 th

e
co

de
 ru

ns
2–

3
di

ffe
re

nt
 b

lo
ck

s w
er

e
us

ed

ap
pr

op
ria

te
ly

(E
xc

lu
di

ng
 e

nd
 b

lo
ck

, i
de

nt
ic

al

bl
oc

ks
 n

ex
t t

o
ea

ch
 o

th
er

, a
nd

un

in
te

nt
io

na
l b

lo
ck

s)

4–
6

di
ffe

re
nt

 b
lo

ck
s w

er
e

us
ed

ap

pr
op

ria
te

ly
(E

xc
lu

di
ng

 e
nd

 b
lo

ck
, i

de
nt

ic
al

bl

oc
ks

 n
ex

t t
o

ea
ch

 o
th

er
, a

nd

un
in

te
nt

io
na

l b
lo

ck
s)

7
or

 m
or

e
di

ffe
re

nt
 b

lo
ck

s w
er

e
us

ed
 a

pp
ro

pr
ia

te
ly

(E
xc

lu
di

ng
 e

nd
 b

lo
ck

, i
de

nt
ic

al

bl
oc

ks
 n

ex
t t

o
ea

ch
 o

th
er

,
an

d
un

in
te

nt
io

na
l b

lo
ck

s)
Re

pe
at

s
A

tte
m

pt
ed

 b
ut

 n
o

co
rr

ec
t u

sa
ge

 o
f r

ep
ea

t b
lo

ck

or
 fo

re
ve

r b
lo

ck
U

se
d

re
pe

at
 b

lo
ck

 w
ith

 o
ne

 o
th

er

bl
oc

k
in

si
de

 o
r u

se
d

fo
re

ve
r

bl
oc

k
ap

pr
op

ria
te

ly

U
se

d
re

pe
at

 b
lo

ck
 w

ith
 m

or
e

th
an

 o
ne

 o
th

er
 b

lo
ck

 in
si

de

ap
pr

op
ria

te
ly

U
se

d
ne

ste
d

lo
op

 a
pp

ro
pr

ia
te

ly

(tw
o

or
 m

or
e

re
pe

at
 b

lo
ck

s
or

 re
pe

at
 b

lo
ck

 w
ith

 fo
re

ve
r

bl
oc

k)

1 3

Education and Information Technologies

Table 6 Results for the Final
Model with Time Variant and
Invariant Predictors of the Total
Project Scores

Bolded values have p < 0.001

Parameters Model

N = 228 Est SE P

Models for the Means
�
00

Intercept 12.27 0.76 < 0.001
�
10

Time 7.04 0.56 < 0.001
�
01

Grade Level 5.56 0.97 < 0.001
�
02

Gender 0.54 0.94 0.57
�
11

Time X Grade Level -3.41 0.72 < 0.001
�
12

Time X Gender -0.68 0.70 0.34
Model for the Variances
�2
U0

Random intercept variance 1.27

�2

e
Residual variance 17.67

Appendix 2

Acknowledgements We would like to sincerely express our gratitude to the project grading team includ-
ing Alan Bers, Anika Kawsar, Kianie Ramirez, Melanie Becker, and Patrick Nero. Special thanks to Sara
Johnson, Emily Relkin, and Madhu Govind for reviewing and being extremely thoughtful on this manu-
script. We would also like to give an appreciation to the teachers involved in this project and the DevTech
Research Group.

Funding This work was generously supported by the Department of Education (DoEd), Grant
U411C190006

Data Availability Not applicable.

Code availability Not applicable.

Declarations

Disclosure of potential conflicts of interest The authors declare that they have no potential conflict of
interest.

Ethical Approval All procedures performed in studies involving human participants were in accordance
with the ethical standards of the Tufts University Social, Behavioral & Educational IRB protocol no.
1810044.

Consent to participate Informed consent was obtained from the educators and parents/guardians of par-
ticipating students.

Consent for publication Informed consent was obtained from the educators and parents/guardians for pub-
lishing the findings from this study.

 Education and Information Technologies

1 3

References

Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with edu-
cational robotics: An interaction effect between gender and scaffolding strategy. Computers in
Human Behavior, 105, 105954. https:// doi. org/ 10. 1016/j. chb. 2019. 03. 018

Basu, S. (2019). Using Rubrics Integrating Design and Coding to Assess Middle School Students’
Open-ended Block-based Programming Projects. Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education.

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer sci-
ence in early childhood. Journal of Computers in Education, 6(4), 499–528. https:// doi. org/ 10.
1007/ s40692- 019- 00147-3

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, Vancouver, Canada (Vol. 1, p. 25).

Cateté, V., Snider, E., & Barnes, T. (2016). Developing a Rubric for a Creative CS Principles Lab.
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education, 290–295. https:// doi. org/ 10. 1145/ 28994 15. 28994 49

Chen, Y. F., & Martin, M. A. (2000). Using Performance Assessment and Portfolio Assessment
Together in the Elementary Classroom. Reading Improvement, 37(1), 32–38.

Clarke-Midura, J., Lee, V. R., Shumway, J. F., & Hamilton, M. M. (2019). The building blocks of cod-
ing: A comparison of early childhood coding toys. Information and Learning Sciences, 120(7/8),
505–518. https:// doi. org/ 10. 1108/ ILS- 06- 2019- 0059

Coding as Another Language. (2021). Retrieved January 12, 2022, from https:// www. sites. tufts. edu/
codin gasan other langu age/ curri cula/ scrat chjr/

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can
they be used to measure understanding of computer science concepts? Computers & Education,
58(1), 240–249. https:// doi. org/ 10. 1016/j. compe du. 2011. 08. 006

de Ruiter, L. E., & Bers, M. U. (2021). The Coding Stages Assessment: Development and valida-
tion of an instrument for assessing young children’s proficiency in the ScratchJr programming
language. Computer Science Education, 1–30. https:// doi. org/ 10. 1080/ 08993 408. 2021. 19562 16

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten
children in a computer programming environment: A case study. Computers & Education, 63,
87–97. https:// doi. org/ 10. 1016/j. compe du. 2012. 11. 016

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Design-
ing ScratchJr: Support for early childhood learning through computer programming. Proceed-
ings of the 12th International Conference on Interaction Design and Children - IDC ’13, 1–10.
https:// doi. org/ 10. 1145/ 24857 60. 24857 85

Ge, X., Ifenthaler, D., & Spector, J. M. (Eds.). (2015). Emerging Technologies for STEAM Education.
Springer International Publishing. https:// doi. org/ 10. 1007/ 978-3- 319- 02573-5

Govind, M., & Bers, M. (2021). Assessing Robotics Skills in Early Childhood: Development and Testing
of a Tool for Evaluating Children’s Projects. Journal of Research in STEM Education, 7(1), 47–68.
https:// doi. org/ 10. 51355/ jstem. 2021. 102

Grover, S. (2020). Computer Science in K-12: An A-To-Z Handbook on Teaching Programming. Edfinity.
Grover, S. (2020). Designing an Assessment for Introductory Programming Concepts in Middle School

Computer Science. Proceedings of the 51st ACM Technical Symposium on Computer Science Edu-
cation, 678–684. https:// doi. org/ 10. 1145/ 33287 78. 33668 96

Krippendorff, K. (2011). Computing Krippendorff’s Alpha-Reliability. Retrieved from http:// repos itory.
upenn. edu/ asc_ papers/ 43

Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
Liao, C. (2016). From Interdisciplinary to Transdisciplinary: An Arts-Integrated Approach to STEAM

Education. Art Education, 69(6), 44–49. https:// doi. org/ 10. 1080/ 00043 125. 2016. 12248 73
Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch projects.

In Proceedings of the workshop in primary and secondary computing education (pp. 132–133).
Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital

competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1),
1–17. https:// doi. org/ 10. 1080/ 20004 508. 2019. 16278 44

https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1145/2899415.2899449
https://doi.org/10.1108/ILS-06-2019-0059
https://www.sites.tufts.edu/codingasanotherlanguage/curricula/scratchjr/
https://www.sites.tufts.edu/codingasanotherlanguage/curricula/scratchjr/
https://doi.org/10.1016/j.compedu.2011.08.006
https://doi.org/10.1080/08993408.2021.1956216
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1007/978-3-319-02573-5
https://doi.org/10.51355/jstem.2021.102
https://doi.org/10.1145/3328778.3366896
http://repository.upenn.edu/asc_papers/43
http://repository.upenn.edu/asc_papers/43
https://doi.org/10.1080/00043125.2016.1224873
https://doi.org/10.1080/20004508.2019.1627844

1 3

Education and Information Technologies

O’Quin, K., & Besemer, S. P. (1989). The development, reliability, and validity of the revised creative
product semantic scale. Creativity Research Journal, 2(4), 267–278. https:// doi. org/ 10. 1080/ 10400
41890 95343 23

Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code via tablet
applications: An evaluation of Daisy the Dinosaur and Kodable as learning tools for young children.
Computers & Education, 128, 52–62. https:// doi. org/ 10. 1016/j. compe du. 2018. 09. 006

Relkin, E., & Bers, M. U. (2019). Designing an assessment of computational thinking abilities for young
children. In L. E. Cohen & S. Waite-Stupiansky (Eds.), STEM for early childhood learners: how sci-
ence, technology, engineering and mathematics strengthen learning. New York: Routledge. https://
doi. org/ 10. 4324/ 97804 29453 755-5

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and Validation of an Unplugged
Assessment of Computational Thinking in Early Childhood Education. Journal of Science Educa-
tion and Technology, 29(4), 482–498. https:// doi. org/ 10. 1007/ s10956- 020- 09831-x

Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of computational
thinking by young children. Computers & Education, 169, 104222. https:// doi. org/ 10. 1016/j. compe
du. 2021. 104222

Rose, S. P., Habgood, M. P. J., & Jay, T. (2017). An Exploration of the Role of Visual Programming Tools
in the Development of Young Children’s Computational Thinking., 15(4), 13.

Salac, J., & Franklin, D. (2020). If They Build It, Will They Understand It? Exploring the Relationship
between Student Code and Performance. Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education, 473–479. https:// doi. org/ 10. 1145/ 33415 25. 33873
79

ScratchJr – DevTech Research Group. (2020). Retrieved January 12, 2022, from https:// sites. tufts. edu/
devte ch/ resea rch/ scrat chjr/

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of pri-
mary grade students. Proceedings of the Ninth Annual International ACM Conference on Interna-
tional Computing Education Research - ICER ’13, 59. https:// doi. org/ 10. 1145/ 24933 94. 24934 03

Sherman, M., & Martin, F. (2015). The assessment of mobile computational thinking. Journal of Com-
puting Sciences in Colleges, 30(6), 53–59.

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: Exploring the impact
of teaching styles on young children’s programming knowledge in ScratchJr. International Journal
of Technology and Design Education, 28(2), 347–376. https:// doi. org/ 10. 1007/ s10798- 017- 9400-9

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: Exploring the impact
of teaching styles on young children’s programming knowledge in ScratchJr. International Journal
of Technology and Design Education, 28(2), 347–376. https:// doi. org/ 10. 1007/ s10798- 017- 9400-9

Strawhacker, A., & Bers, M. U. (2019). What they learn when they learn coding: Investigating cogni-
tive domains and computer programming knowledge in young children. Educational Technology
Research and Development, 67(3), 541–575. https:// doi. org/ 10. 1007/ s11423- 018- 9622-x

Sullivan, A. & Bers, M. U. (2019). Computer Science Education in Early Childhood: The Case of
ScratchJr. Journal of Information Technology Education: Innovations in Practice, 18(1), 113–138.
Informing Science Institute. Retrieved May 24, 2021 from https:// www. learn techl ib. org/p/ 216646

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for children to cultivate computa-
tional thinking [research article]. https:// doi. org/ 10. 1155/ 2014/ 428080.

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz Alves, N., Barbosa, H.,
& Azevedo, L. F. (2018). CodeMaster—Automatic Assessment and Grading of App Inventor and
Snap! Programs. Informatics in Education, 17(1), 117–150. https:// doi. org/ 10. 15388/ infedu. 2018. 08

Wilson, A., Hainey, T., & Connolly, T. M. (2013). Using Scratch with Primary School Children: An
Evaluation of Games Constructed to Gauge Understanding of Programming Concepts. International
Journal of Game-Based Learning, 3(1), 93–109. https:// doi. org/ 10. 4018/ ijgbl. 20130 10107

Wright, S. (2010). Understanding Creativity in Early Childhood: Meaning-Making and Children’s Draw-
ings. SAGE Publications Ltd. https:// doi. org/ 10. 4135/ 97814 46251 447

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1080/10400418909534323
https://doi.org/10.1080/10400418909534323
https://doi.org/10.1016/j.compedu.2018.09.006
https://doi.org/10.4324/9780429453755-5
https://doi.org/10.4324/9780429453755-5
https://doi.org/10.1007/s10956-020-09831-x
https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1145/3341525.3387379
https://doi.org/10.1145/3341525.3387379
https://sites.tufts.edu/devtech/research/scratchjr/
https://sites.tufts.edu/devtech/research/scratchjr/
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1007/s10798-017-9400-9
https://doi.org/10.1007/s10798-017-9400-9
https://doi.org/10.1007/s11423-018-9622-x
https://www.learntechlib.org/p/216646
https://doi.org/10.1155/2014/428080
https://doi.org/10.15388/infedu.2018.08
https://doi.org/10.4018/ijgbl.2013010107
https://doi.org/10.4135/9781446251447

	Evaluating young children’s creative coding: rubric development and testing for ScratchJr projects
	Abstract
	1 Introduction
	2 Background
	2.1 Early Childhood Coding with ScratchJr
	2.2 Early Childhood Coding Assessments with ScratchJr
	2.3 Project-based Assessment: Coding Project Rubrics

	3 Methodology: ScratchJr Project Rubric Development Phases
	3.1 Rubric Design
	3.1.1 Literature Review: Coding Concepts
	3.1.2 Literature Review: Project Design
	3.1.3 Subject-Matter Expert
	3.1.4 Scoring

	3.2 Iteration Phase: Summary of Rubric Modifications
	3.3 Iteration and Finalizing Phases: Inter-Rater Reliability

	4 Methodology: Field Test
	4.1 Participants
	4.2 Procedure
	4.3 Data Analysis
	4.3.1 Validity and Reliability Testing
	4.3.2 Subcategories Frequencies and Means
	4.3.3 Sensitivity To Change

	5 Results
	5.1 Descriptive Statistics
	5.2 Reliability and Validity of Projects from Field Test
	5.3 Distribution by Subcategories
	5.4 Sensitivity across Time

	6 Discussion & Conclusion
	7 Limitation and Future Directions
	Acknowledgements
	References

