
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

The Coding Stages Assessment: development
and validation of an instrument for assessing
young children’s proficiency in the ScratchJr
programming language

Laura E. de Ruiter & Marina U. Bers

To cite this article: Laura E. de Ruiter & Marina U. Bers (2021): The Coding Stages
Assessment: development and validation of an instrument for assessing young children’s
proficiency in the ScratchJr programming language, Computer Science Education, DOI:
10.1080/08993408.2021.1956216

To link to this article:  https://doi.org/10.1080/08993408.2021.1956216

Published online: 28 Jul 2021.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2021.1956216
https://doi.org/10.1080/08993408.2021.1956216
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2021.1956216
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2021.1956216
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1956216&domain=pdf&date_stamp=2021-07-28
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1956216&domain=pdf&date_stamp=2021-07-28


The Coding Stages Assessment: development and validation 
of an instrument for assessing young children’s proficiency in 
the ScratchJr programming language
Laura E. de Ruiter and Marina U. Bers

DevTech Research Group, Eliot-Pearson Department for Child Study and Human Development, Tufts 
University, Medford, USA

ABSTRACT
Background and Context: Despite the increasing implementation 
of coding in early curricula, there are few valid and reliable assess
ments of coding abilities for young children. This impedes studying 
learning outcomes and the development and evaluation of 
curricula.
Objective: Developing and validating a new instrument for asses
sing young children’s proficiency in the programming language 
ScratchJr, based on the Coding Stages framework.
Method: We used an iterative, design-based research approach to 
develop the Coding Stages Assessment (CSA), a one-on-one assess
ment capturing children’s technical skills and expressivity. We 
tested 118 five-to-eight-year-olds and used Classical Test Theory 
and Item Response Theory to evaluate the assessment’s psycho
metric properties.
Findings: The CSA has good to very good reliability. CSA scores 
were correlated with computational thinking ability, demonstrating 
construct validity. The items have good discrimination levels, and a 
variety of difficulty levels to capture different proficiency levels. 
Younger children tended to have lower scores, but even first gra
ders can achieve the highest coding stage. There was no evidence 
of gender or age bias.
Implications: The CSA allows testing learning theories and curri
cula, which supports the implementation of Computer Science as a 
school subject. The successful remote administration demonstrates 
that it can be used without geographical restrictions.

ARTICLE HISTORY 
Received 4 December 2020  
Accepted 8 July 2021 

KEYWORDS 
computational thinking; 
assessment; ScratchJr; 
design-based research

1. Introduction

Computer Science (CS) is now becoming popular in early education, in the US and 
worldwide. Educators and policy makers are introducing CS education starting in kinder
garten, as evidenced by the release of learning standards and best practices for integrat
ing technology into early childhood education (International Society for Technology in 
Education, 2007; NAEYC & Fred Rogers Center for Early Learning and Children’s Media, 
2012; Paciga & Donohue, 2017; Smith, 2016; U.S. Department of Education, 2010; U.S. 

CONTACT Laura E. de Ruiter laura.herbst@gmail.com DevTech Research Group, Eliot-Pearson Department for 
Child Study and Human Development, Tufts University, 105 College Ave, Medford, MA 02155, USA

COMPUTER SCIENCE EDUCATION                      
https://doi.org/10.1080/08993408.2021.1956216

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-6590-4073
http://orcid.org/0000-0003-0206-1846
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1956216&domain=pdf&date_stamp=2021-07-28


Department of Education & U.S. Department of Health and Human Services, 2016). To 
support these initiatives, a plethora of free resources have been developed that allow 
students to begin coding at a young age, for example, code.org, Scratch, ScratchJr, and 
Kodu (Yu & Roque, 2018).

However, at this point, there are few ways to evaluate whether initiatives and inter
ventions for young children to learn CS are effective, and to gauge where children are in 
their developmental progression. In contrast, numerous validated assessments are avail
able for evaluating children’s progression in literacy development, for example. In order to 
develop effective early CS curricula and make evidence-based policy decisions, validated 
and reliable assessments are needed in the CS domain as well. To address this need, we 
have developed a new assessment, the Coding Stages Assessment (CSA), for the visual 
programming language ScratchJr, which is one of the most popular free programming 
languages targeted at children five to seven years old.

Existing coding assessments differ from the one presented here in two ways: 1) they 
are based on programming languages geared towards older children or teenagers; 2) they 
typically provide formative feedback rather than being standardized assessments that 
enable comparisons across different contexts and age groups. For example, Quizly 
(Maiorana et al., 2015) is based on the programming language AppInventor (Magnuson, 
2010), and geared towards middle and high school students. Quizly has been developed 
as a tool to help teachers design problems for students and automatically compare 
student answers with model answers. As such, questions have to be developed by the 
teachers, and are not standardized. Another tool, Dr. Scratch (Moreno-León & Robles, 
2015) automatically evaluates projects created in the programming language Scratch 
(Resnick et al., 2009). Scratch is aimed at children of at least eight years of age. Dr. Scratch 
can only evaluate what is provided by the user. This is different from an assessment that 
explicitly and purposefully tests different aspects of coding, in the same way that for 
example, reading assessments probe different aspects of reading ability (e.g. phonemic 
awareness, fluency, vocabulary) in an age-appropriate way. In addition to these tools, 
there are instruments that evaluate computational thinking (CT) rather than coding 
knowledge with a particular programming language. CT comprises the cognitive pro
cesses associated with breaking a complex task into simple components, creating reusa
ble modules and working with abstraction (Wing, 2008; Wing, 2011). As we discuss in 
more detail below (Purpose and use of the CSA), coding involves computational thinking, 
but not vice versa. A coding assessment tests skills that are specific to particular program
ming languages, which each have their own grammar.

What is unique about the CSA is both the approach in which it is couched and its 
development and validation process: We combined design-based research with psy
chometric methods in order to create an instrument that builds on the pedagogical 
and design traditions of decades of work focused on children’s learning to code (Bers, 
2019, 2020) and that has good measurement properties. This paper presents the 
development and validation process of the CSA for the visual programming language 
ScratchJr.

In the remainder of the introduction, we first provide a summary of the Coding Stages 
theoretical framework and an overview of the programming language ScratchJr and its 
design features. Following that, we define the purpose of the CSA, describe the develop
ment of the instrument and its current content and format. We illustrate how we used an 

2 L. E. DE RUITER AND M. U. BERS



iterative, design-based research approach to develop an engaging testing format for 
young children. In the following section, we then report the results of the first field test 
of the CSA with 118 children, using both Classical Test Theoretical (CTT) and Item 
Response Theory (IRT) methods. We conclude the paper with a discussion of the findings 
and future directions.

1.1 The coding stages framework

The Coding Stages framework is couched within the pedagogical approach of Coding as 
Another Language (CAL) (Bers, 2020). Most approaches view coding as a part of or an 
extension of STEM (Science, Technology, Engineering and Math) disciplines. Thus, coding 
is seen primarily as a problem-solving activity that engages children with abstraction and 
logic while developing computational thinking (Wing, 2006, 2011). In contrast, the CAL 
approach understands coding as an expressive activity and therefore links it to literacy 
(Bers, 2018a; Resnick, 2013). This perspective highlights coding as a means of expression 
for children, rather than as solely a problem-solving activity. Just as with a new language, 
the ultimate learning goal may not necessarily be simple technical proficiency, but rather 
fluency with a symbolic and grammar system to convey and interpret ideas through the 
making of projects (Hudson et al., 2011).

The Coding Stages framework, developed by Bers (Bers, 2018a, 2019, 2020), serves to 
describe a learning path in coding for young children, akin to the learning progressions 
and stages that have been defined in other areas of early childhood research and 
education such as mathematics (Clements & Sarama, 2004) and early literacy (Chall, 
1983; Lonigan et al., 2008). This developmental progression starts with simple skills and 
progresses to more complex ones. Bers describes how just as children who are learning to 
speak do not start by uttering complete sentences, and children that are learning to read 
do not start by reading novels, children who are learning to code do not start by 
programming complex algorithms (Bers, 2019). In learning computer programming, 
children’s journey might begin with understanding that computers and robots are 
human-engineered, and that there is an interface that uses symbols (without knowing 
what these are). Later on, they might learn that programming languages also use symbols 
and that they need to understand the vocabulary and grammar of the programming 
language to create projects. Through a combination of exploration and instruction, 
children learn how to use those symbols meaningfully in efficient and purposeful ways. 
As children master the programming language, they also develop (more) ways to think in 
computational terms.

The Coding Stages framework originally described by Bers comprises six stages 
capturing this developmental trajectory: Emergent, Coding and Decoding, Fluency, 
New Knowledge, Multiple Perspectives, and purposefulness (Bers, 2019). Later on, 
after empirical work was conducted with children, Bers’ first formulation of the frame
work was revised: the last two stages were combined into just one stage 
(Purposefulness). Thus, the current version of the Coding Stages framework posits five 
stages (see Table 1 below) (Bers, 2021). The framework draws parallels with stages of 
literacy development. However, language and literacy development span an individual’s 
lifetime, from early childhood (scribbling) to late adulthood (expanding vocabulary). In 
contrast, the coding stages focus only on early childhood, describing the typical 

COMPUTER SCIENCE EDUCATION 3



development between four and seven years of age. Progression from one coding stage 
to another is independent of age, although a child’s developmental level will influence 
how quickly they progress, as well as the kind of programming instruction the child 
receives. For example, while learning to code is possible by just tinkering and exploring 
with developmentally appropriate programming languages, in order to master complex 
skills there is a need of explicit teaching.

Bers (2019) describes how her choice of the term “stages” was influenced by Piaget’s 
work on cognitive development stages (Piaget, 1963), but departs from it in an important 
way. While Piaget set out to explain a universal, naturally occurring phenomenon, Bers 
focuses on a taught skill. Coding stages describe a learning path that young children can 

Table 1. Coding stages and the corresponding concepts children at that stage have mastered.
Coding Stage Description

1. Emergent ● The child recognizes that technologies are human-engineered and are designed with a variety 
of purposes.

● The child understands the concept of symbolization and representation (i.e. a command is not 
the behavior, but represents the behavior).

● The child understands what a programming language and the purpose of its use is (knows 
that a basic sequence and control structure exists).

● The child is familiar with the basics of the interface (turn the tool on and off and correctly 
interact).
This is a beginner’s stage.

2. Coding and 
Decoding

● The child understands that sequencing matters and that the order in which commands are 
put together generates different behaviors.

● The child has learned a limited set of symbols and grammar rules to create a simple project.
● The child can correctly create simple programs with simple cause and effect commands.
● The child can identify and fix grammatical errors in the code.
● The child performs simple debugging through trial and error.
● The child engages in goal-oriented command exploration.

The most growth can be seen at this stage. Children learn the basics of the programming 
language and understand it can serve to create projects of their choice.

3. Fluency ● The child has mastered the syntax of the programming language and can correctly create 
programs.

● The child is personally motivated to create complex programs.
● The child understands how to distinguish and fix logical errors in the code.
● The child is beginning to be strategic in debugging.

This stage is characterized by the child moving from a “learning to code” to a “coding to learn” 
creative stance.

4. New Knowledge ● The child understands how to combine multiple control structures and create nested 
programs that achieve complex sequencing.

● The child engages in more goal oriented logical exploration with their programs.
● The child is personally motivated to create complex programs.
● The child is strategic in debugging and has developed strategies.
● The child learns how to learn new commands or novel uses of the interface.

This stage is characterized by the child’s ability to use their knowledge to create a personally 
meaningful project and if needed, acquire new knowledge on her own to meet the demands 
of the project.

5. Purposefulness ● The child can skillfully create complex programs for their needs and purposes.
● The child understands how to analyze, synthesize, and translate abstract concepts into code 

and vice versa.
● The child is able to identify multiple ways to translate abstract concepts into code.
● The child understands how to create programs that involve user’s input.
● The child can create multiple programs that interact with one another.
● The child can debug multiple control structures.

This stage is characterized by the child being able to code in a rapid and efficient manner at 
high levels of abstraction requiring skill and flexibility and applying those skills to create 
a personally meaningful project. A child who reaches this stage has mastered all of the 
commands, grammar and syntax, of the programming language and has the ability to express 
herself through the project they create.

4 L. E. DE RUITER AND M. U. BERS



follow while learning to code with a developmentally appropriate programming lan
guage. The coding stages are levels or benchmarks of growth that represent distinct 
ways of mastering creative, expressive coding.

The developmental progression between coding stages is not always sequential, 
orderly, and cumulative. Coding stages are interconnected and not fixed or fully 
linear. Depending on the level of instruction received, and the degree of curiosity 
of a child to explore on her own, a child can jump stages quickly or never reach 
a particular stage. For example, using the ScratchJr programming language, children 
in the earlier stages might be able to put select motion blocks, but might not 
understand how to create an animation out connecting those blocks. Although the 
coding stages are not universal, they can be observed across different programming 
languages. The coding stages have some hierarchy based on syntax and grammar – 
mastery of simpler structures/commands (e.g. start/end) occurs before mastery of 
more complex structures (e.g. if statement or repeat loops). They thus capture 
computational thinking concepts such as representation, algorithms and modulariza
tion. Earlier stages are characterized by an understanding of representation and 
simple sequences (algorithms), later stages by an understanding of modules, more 
complex algorithms and the systematic use of debugging strategies. However, in line 
with the Coding as Another Language (CAL) approach, the Coding Stages framework 
also includes meaningfulness and expression at every stage, as well as in the final 
stage Purposefulness. Thus is, at each stage it is observed if and how children are able 
to use coding in expressive ways. Table 1 presents the definitions for each of the 
stages.

While the Coding Stages theoretical framework applies to the ability of children to 
master computational ways of thinking and ways of expressing themselves with any 
programming language that is developmentally appropriate for young children, the 
CSA assessment is not universal, but specific to each programming language.

This paper presents the validation of the CSA instrument for the ScratchJr program
ming language, currently the most popular free introductory coding environment world
wide (Bers, 2018b; Bers & Resnick, 2015).

1.2 ScratchJr

ScratchJr is an introductory programming language for young children between five and 
seven, and currently the most popular free programming language world-wide (Bers, 
2018b; Portelance et al., 2016; Sullivan & Bers, 2019) both in school settings and at home. 
At the time of the writing of this paper, ScratchJr was downloaded over 32 million times. It 
is available on different platforms and in different languages, and currently used in almost 
every country of the world.

In ScratchJr, children can create interactive stories and games by using graphical 
programming blocks representing different commands. They put together the blocks to 
make characters move, jump, dance, and sing. ScratchJr has a friendly graphical user 
interface with a main project editor, and tools for selecting and drawing characters, 
backgrounds and sounds.

Importantly, ScratchJr does not require children to be literate. All instructions and 
menu options are identifiable through symbols and colors. As shown in (Figure 1), at the 

COMPUTER SCIENCE EDUCATION 5



center of the editor is the blue palette of programming instructions. One instruction 
category is selected at a time by clicking one of the selectors on the left. Instruction blocks 
are activated by dragging them from the palette into the scripting area below. The blocks 
snap together like jigsaw puzzles to create programs that are read and played from left to 
right. The “Green Flag” (“Play”) starts programmed animation, the red “Stop” interrupts it. 
The blocks are organized into six categories, which are represented by different colours: 
yellow Trigger blocks, blue Motion blocks, purple Looks blocks, green Sound blocks, 
orange Control flow blocks, and red End blocks. Through these programming blocks, 
young children learn the basic concepts and powerful ideas of coding while creating 
personally meaningful projects.

The design of ScratchJr was informed by the popular Scratch programming language 
for older children, eight years of age and up (Resnick et al., 2009). However, because 
ScratchJr is aimed at younger children, it differs from Scratch in important ways. It is 
designed to be a “coding playground” (Bers, 2018a) that reduces unnecessary low-level 
burdens, so programming can become another language of expression.

The approach of Coding as Another Language, which was described earlier, positions 
the learning of coding as a new literacy (Bers, 2019). As a new literacy, coding invites new 
ways of thinking and problem solving and enables the creation of computational inter
active artifacts. ScratchJr’s design supports both the development of computational 
thinking and the ability for children to express themselves in creative ways by creating 
projects, without getting bogged down by frustrating syntax errors. One example of this 
design are the visual properties of the jigsaw puzzle pieces, which correspond to their 

Figure 1. The ScratchJr interface.

6 L. E. DE RUITER AND M. U. BERS



syntactic properties: The “Repeat Forever” block can only appear at the end of a program. 
Since nothing can follow a “Repeat Forever” command, the right side of this block is 
rounded so that no other block can be attached to that side, comparable to edge pieces in 
jigsaw puzzles. Design decisions like these keep the challenge at an appropriate level and 
help young children devote their cognitive resources to the many high-level thinking 
processes involved in imagining and creating a program.

Since the goal of ScratchJr is both expression (as in literacy) and computational 
thinking, an instrument able to assess children’s coding ability with ScratchJr needs to 
capture all of these dimensions.

2. Materials and methods

2.1 The coding stages assessment

2.1.1. Purpose and use
The main purpose of the new assessment presented in this paper was to develop 
a validated instrument that allows assessing children’s mastery of a particular program
ming language (in this case ScratchJr) in a reliable way. As such, it is distinct from already 
existing assessments that focus on the evaluation of Computational Thinking (CT) such as 
the Computational Thinking Test for Beginners (Zapata-Caceres et al., 2020) or TechCheck 
(Relkin et al., 2020). CT involves a range of analytical skills that are inherent to the field of 
CS, but applicable to many domains of life, such as thinking recursively, applying abstrac
tion when figuring out a complex task, and using heuristic reasoning to discover 
a solution (Wing, 2006, 2011). CT is a cognitive ability, coding is the mastery of 
a particular programming language for problem-solving and creative expression, for 
which computational thinking is necessary. CT and mastery of a programming language 
are related, but they are not the same thing. CT can be measured in an “unplugged” way 
(Relkin & Bers, 2019), that is, without requiring coding knowledge, so that a lack of coding 
knowledge does not function as a barrier for a child to show their general ability to think 
computationally (see Relkin et al., 2020, for a discussion). In contrast, an assessment of the 
mastery of a programming language will always require a certain level of computational 
thinking, as the elements of the language reflect computational thinking concepts. For 
example, using the repeat block in ScratchJr necessitates some understanding of 
modularity.

In keeping with the CAL approach, the purpose of the CSA assessment is to capture not 
only children’s understanding of the “vocabulary” (i.e. the meaning of the various sym
bols) and the grammar of the language (i.e. in which way elements have to be combined 
to result in readable programs), but also their ability to use these skills to produce 
complex and meaningful projects. Using the analogy from natural language learning, 
children should not only be able to translate given sentences or spot grammatical errors 
but should also be able to use the language to communicate purposefully. In addition, 
studies on young children’s learning through “purposeful, goal-directed programming” 
and debugging exercises has shown that giving children a meaningful goal to work 
towards, rather than simply assigning a task, helps them engage more deeply with subject 
matter and learn cross-domain skills (Lee & Ko, 2012; Lee et al., 2013; Wyeth, 2008). Thus, 
CSA offers children game-based tasks to solve.

COMPUTER SCIENCE EDUCATION 7



2.1.2 Development process
The CSA is intended to be used both in educational and research settings. Thus, we used 
a development process that involved both working in a lab setting as well as school 
settings. The development process of CSA was first guided by design-based research 
(DBR), a dynamic and iterative methodology that employs cycles of intervention, analysis, 
and refinement of the intervention and the working theory of learning. Collins (1992) and 
Brown (1992) pioneered the notion of “design experiments” or “design-based research” 
with the aim of bridging the disconnect between education research and classroom 
practices. The paradigm was proposed in contrast to randomized control studies and in 
recognition that educational research must be rigorous and also be directly and imme
diately applicable to classrooms, teachers, and school systems (Barab, 2006; Barab & 
Squire, 2004; Van den Akker et al., 2006).

Over the past decade, the use of DBR as a research method has increased as it enables 
the linking of theory with practice (Anderson & Shattuck, 2012; Barab, 2006; Cobb et al., 
2003). To a less extent, DBR has also been used to study the development of research 
instruments (Van Aalst & Chan, 2007). However, because of its dynamic nature, it is 
difficult to document the process of DBR using traditional measures of validity and 
reliability. However, as we show later, it is possible to assess the final product of DBR 
with respect to its validity and reliability, thus combining the strength of two approaches.

The DBR approach was adopted for the Coding Stages Assessment because it allowed 
us to refine both the Coding Stages theoretical framework as well as the early versions of 
the instrument as data was collected in classrooms. At a later phase of development, once 
the assessment was sufficiently piloted in classroom, we took it back to the lab setting.

The first iteration of the CSA was called ScratchJr Solve-Its (Strawhacker & Bers, 2015, 
2018; Strawhacker et al., 2018) and was developed in two different versions. Version 1 
involved the administration of Solve-Its at the end of the completion of a ScratchJr 
curriculum. Version 2 was integrated in the curriculum as formative measures of coding 
ability.

Solve-Its were designed to capture student learning in key areas of developing pro
gramming comprehension and were informed by qualitative results showing learning 
patterns from previous pilot studies of young children using ScratchJr (Flannery et al., 
2013). Children were shown a short animation of one or more ScratchJr characters while 
the corresponding commands used to construct that animation remain hidden. Then, 
using a print-out of the ScratchJr programming blocks, they were asked to circle the 
blocks they believe were used to create the program they observed. Through this task, 
a child’s ability to observe the results of complete programs and reverse-engineer them 
from a larger set of isolated parts was required.

Solve-Its measured children’s programming ability using the following two metrics: 
block recognition and sequencing ability. However, they were not able to capture 
children’s ability to express themselves through programming. A total N = 57 
Kindergarten through second grade children (27 male, 30 female) were tested with 
version 1 of ScratchJr Solve Its. Scoring rubrics and grading methods were based on 
prior research with robotics (Strawhacker et al., 2013). In summary, students generally 
performed well and consistently on Solve It tasks (Flannery et al., 2013). As expected, 
kindergarteners had difficulties with meta-level control flow blocks and with coordinating 

8 L. E. DE RUITER AND M. U. BERS



multiple characters. First and second grade students found these concepts more acces
sible, and explored complex instructions and multi-step strategies.

There were issues observed in the administration format of Solve Its which might have 
impacted assessment. For example, researchers observed that some children were unable 
to maintain attention while the assessment was being administered which led to off-task 
play with the assessment materials as a diversion. Based on this experience, a new version 
of ScratchJr Solve Its was developed.

Version 2 involved students viewing a series of videos showing ScratchJr projects (e.g. 
characters performing actions) and asking them to respond to questions in multiple 
choice or fill-in format. These assessments could be administered to a large number of 
individuals at once, providing a flexible tool that could be integrated into the curriculum. 
Thus, the choice was made to divide the long assessment into chunks to be completed at 
different weekly intervals as the curriculum progressed. While this version was more 
engaging for children and ScratchJr Solve-Its captured children’s ability to learn the syntax 
and grammar of the programming language, Version 2 not capture the children’s ability 
to express themselves through programming. In addition, its integration with the curri
culum, made it difficult to use in a variety of educational or research context.

While versions 1 and 2 were designed to be administered to an entire classroom at 
once to save time, in practice, teachers reported having a difficult time pacing them. They 
took longer than expected, as items could not be read aloud as a group until the 
preceding question had been completed by each student. Likewise, the group setting 
and read-aloud format inadvertently inhibited teachers’ ability to prevent students from 
copying each other’s work.

On top of that, the multiple-choice format presented its own problems. Coding is 
a complex construct that can yield multiple solutions to the same problem, yet the 
traditional forced choice format used in ScratchJr Solve-Its provided only one right 
answer. This design decision was due to the need to limit the number of choices offered 
to young children to avoid cognitive load. This format restricts students’ capacity to 
express their thoughts and abilities to a finite list of options and does not shed light on 
students’ design processes. In addition, seeing multiple, visually rich programs on the 
screen (or on paper) and having to compare them can be overwhelming especially 
younger children.

Based on this first iteration of version 1 and 2 of Solve-Its, we decided to move from 
group administration of multiple choice to one-on-one format involving interactive 
questions, as well as including opportunities to observe children purposefully creating 
their own programs. We also decided to change the name of the assessment as to not 
confuse teachers who still wanted to use the Solve-Its as a formative tool integrated into 
their curriculum.

The departure from a simple forced-choice format also presents an assessment style 
more fitting to the coding stages framework and the emphasis on coding as an expressive 
medium. The shift to a one-on-one setting allows for students’ results to more closely 
reflect their individual progress.

2.1.3 Content and format
The CSA is an open question assessment. Questions are of two types. The first type of 
questions is verbal only. The administrator shows the child screenshots of the ScratchJr 

COMPUTER SCIENCE EDUCATION 9



interface and asks for example, why the shown program wouldn’t work (i.e. asking them 
to identify a bug) – see (Figure 2) for an example. The second type of question is task- 
based. The child is asked to complete a coding task in ScratchJr themselves, for example, 
making an object disappear (i.e. using control structures) – see (Figure 3) for an example. 
Each response is scored as either satisfactory or unsatisfactory. The questions are 
designed to be mapped onto each of the five coding stages (see above). That means 
that the questions are becoming increasingly complex with respect to the syntax used. In 
the case of the Purposefulness stage, they require creativity to solve them satisfactorily. 
More examples for questions from each stage can be found in the Appendix A.

During testing with children, it became apparent that three questions out of the 30 
were confusing to children, and they were removed from the assessment. As a result, 
there were 27 questions altogether: The first three stages (Emergent, Coding and 
Decoding, Fluency) had six questions each, New Knowledge had five questions, and 
Purposefulness four questions.

For the first four stages (Emergent, Coding and Decoding, Fluency and New 
Knowledge), the child needs to give at least four satisfactory responses out of six (three 
out of five in the case of New Knowledge) in order to move on to the next stage. We 
decided to use these criteria because we wanted children to be able to answer at least 
two thirds of the questions in a stage satisfactorily to be able to say that they have 
reached this coding stage.

If they give fewer than four satisfactory responses, the administrator will move directly 
to Purposefulness. An exception is the Emergent block. If a child does not receive at least 
three points in the first block, the assessment is stopped. In all other cases moving to 

Figure 2. A verbal question from the Emergent block. The child is shown this program and asked: 
“Look at this program. What is wrong with this program?”. Satisfactory responses include ‘it is 
backwards’, ‘the start needs to come first’, ‘the green flag needs to be at the beginning’.

Figure 3. A task-based question from the Fluency block. The child is first instructed to recreate the 
program on their device. The they are asked: I want the Cat to go to the next page after moving. How 
can you change this program to make the Cat go to the next page at the end of this program?”. The 
response is scored satisfactory if the child correctly adds a page and changes the end block to go the 
next page.

10 L. E. DE RUITER AND M. U. BERS



Purposefulness allows the child to demonstrate their ability to create meaningful projects, 
even if their programming skills are still limited. Questions in the last block in particular 
give children more degrees of freedom in how to solve the problem. For example, in one 
question, children are instructed to program a “dance party”. This means they can choose 
the characters, the setting, but also how to implement “dancing” using the ScratchJr 
blocks they know. These questions test the children’s ability to translate an abstract idea 
(here the prompt) into concrete code.

A child receives a point for each satisfactory response. To calculate the overall score, points 
in each stage are weighted such that points received in higher stages receive more weight. 
That decision was made because the higher stages required more sophisticated knowledge. 
In addition, the weights for the last two stages (New Knowledge and Purposefulness) were 
adjusted to account for the fact that these stages had fewer questions than the others (five 
and four questions, respectively). Specifically, points in the first stage (Emergent) were 
multiplied by 1.1, points in the second stage (Coding and Decoding) by 1.2 and the scores 
in the third stage (Fluency) by 1.3 The scores in New Knowledge were multiplied with 1.68 
and the scores in Purposefulness by 2.25. The weighted scores are summed to give the final 
score. The maximally achievable score is 39 points. The coding stage at which a child is in 
their development is then calculated using evenly spaced cut-off scores.

The CSA was designed to be administered one on one, either remotely or in person.

2.2 Field test

2.2.1. Participants
We tested the CSA with 118 children between five and eight years (mean age: 6.4 years; 24 
Kindergarteners, 41 First Graders, 27 Second Graders, 26 Third Graders) recruited through 
the ScratchJr mailing list as well as schools who were working with ScratchJr or had plans 
to work with it. Of these, 67 were girls, 50 were boys, and one child preferred not to 
disclose their gender. The children had varying levels of familiarity and expertise with 
ScratchJr. Some had never worked with ScratchJr, others had participated in summer 
camps. However, none of the children had yet been exposed to a multi-week coding 
curriculum. Prior to testing, parental consent was obtained via an online consent form.

2.2.2. Materials
All children were tested on the Coding Stages Assessment version 1.0. Children either 
used their own iPad with ScratchJr installed or were given one by their teacher. In 
addition to the CSA, 23 children also completed the validated Computational Thinking 
assessment TechCheck (Relkin et al., 2020).1 TechCheck is a platform-independent, 
“unplugged” CT assessment designed for children five to nine years of age. The term 
“unplugged” describes activities that can be used to teach programming principles 
without requiring the use of computers or actual coding (e.g. analyzing the ordered 
steps involved in brushing one’s teeth to illustrate the idea of an algorithm). In the 
context of CT assessment, an “unplugged” format allows administration to students who 
lack prior coding experience. TechCheck consists of 15 multiple choice questions that 
are designed to probe the “Seven Powerful Ideas” of computer science that are devel
opmentally appropriate for young children (Bers, 2019) and it takes an average of 12– 
16 minutes to complete. We used TechCheck rather than another instrument for 

COMPUTER SCIENCE EDUCATION 11



measuring CT in children, the Computational Thinking Test for Beginners, BCTt (Zapata- 
Caceres et al., 2020), because TechCheck was available in English at the time of data 
collection, is targeting a narrower age range than the BCTt, and because it has a shorter 
administration time (an average of 15 minutes vs. 40 minutes for the BCTt). As discussed 
above, computational thinking ability is a necessary, but not sufficient condition for 
learning how to code. We therefore would expect there to be a positive relationship 
between children’s ability to code, as measured by the CSA, and their computational 
thinking skills.

2.2.3 Procedure
The children were all tested remotely via Zoom, either from their homes or from their 
classrooms. The administrator and the child met in a Zoom conference room. The 
administrator shared their screen to show screenshots of ScratchJr programs for the 
verbal questions and the task-based questions in which the children had to recreate 
a program on their device. The administrator greeted the child and informed them that 
they were going to do some activities in ScratchJr, and asked to verify that their sound 
was working, and to alert the administrator if at any given point they were not able to see 
or hear them. To show their programs, children were asked to hold their iPad up to the 
webcam and run it. The administrator used a custom-made Qualtrics survey to enter 
children’s scores. Administration took on average about 50 minutes (range = 1–125 min
utes; standard deviation = ~21 minutes).

The children who completed TechCheck in addition to the CSA did this on a separate 
occasion. TechCheck administration lasted about eight minutes.

To assess interrater reliability, a subset of the CSA administration sessions (N = 23) was 
scored independently by a different research assistant from the one who had tested the 
children originally. The research assistant viewed video recordings of the Zoom sessions 
and scored the children’s responses.

All materials and procedures, including obtaining parental consent, were approved by 
the Social, Behavioral, and Educational Research Institutional Review Board (IRB) of Tufts 
University under the protocols MOD-01-1,810,044 and MOD-03-1,105,019.

3 Results

As noted above, three questions were removed after about half of the children had 
been tested, as it became clear that the questions were taking very long and were 
also confusing to children. The results reported are the findings without those 
questions.

In this section, we first report descriptive statistics concerning the distribution of 
stages, average scores and distributions of stages and scores by grade and gender. 
After that, we report the psychometric analyses of the instrument. All analyses were 
conducted using R, version 3.6.2 (R Core Team, 2019) and R Studio Version 1.2.1335.

3.1 Descriptive statistics

The mean score was 12.25 points (standard deviation, SD = 6.6) out of a possible 39 points. 
The median was 12 points. Points achieved ranged from 0 to 39 points, thus spanning the 

12 L. E. DE RUITER AND M. U. BERS



entire possible range. (Figure 4) shows the distribution in form of a density plot. The 
distribution is right-skewed, with more children achieving lower scores than children 
achieving higher scores.

This skew is also reflected in the distribution of Coding Stages (Figure 5). While 28 
children were in the Emergent stage, only 11 children reached the Purposefulness stage. 

Figure 4. Density plot showing the distribution of final CSA scores. N = 118. Plot created using the 
“ggplot2” package in R (Wickham, 2016).

Figure 5. Bar plot showing the number of children in each Coding Stage. N = 118. Plot created using 
the “ggplot2” package in R (Wickham, 2016).

COMPUTER SCIENCE EDUCATION 13



This is not surprising, given that many children had little to no experience with ScratchJr 
at the time of testing.

We also looked at the distribution of scores by school grade. As can be seen from Table 
2 and (Figure 6), both the minimum score and the mean score were higher for children in 
higher grades, and none of the Kindergarteners achieved the maximum score.

Notably, one third grader had a low score as well (3.3 points), and none of the third 
graders achieved the maximum score. The highest score among third graders was 37.3 
points. ScratchJr is designed to have a low floor and a high ceiling, meaning that it is 
supposed to be easily accessible and understandable even for beginners and young 
children.

While boys’ average score was one point higher than that of girls (see Table 3), the 
difference was not significant (t = −0.49, df = 107.84, p = 0.624). A non-significant result 
does not necessarily indicate that there is no difference, as non-significant results can also 
be due to small sample sizes. In contrast, Bayesian methods allow quantifying the 
evidence for or against the null hypothesis (i.e. no difference). We used a Bayesian t-test 
from the “BayesFactor” package (Morey et al., 2015) in R to do this. The results showed 

Table 2. Range of scores, mean scores, standard deviations, and highest achieved coding stage by 
grade.

Grade N Range Mean SD Highest coding Stage

Kindergarten 24 0–19.2 7.8 5.6 Coding and Decoding
First Grade 41 2.2–37.7 14.3 9.1 Purposefulness
Second Grade 27 5.5–39 20.3 8.8 Purposefulness
Third Grade 26 3.3–37.3 24.3 7.4 Purposefulness

Figure 6. Box and whisker plot showing the distribution of CSA scores by grade. The box covers the 
interquartile range, the horizontal line in the box indicates the median, and the endpoints the highest/ 
lowest values that are not outliers. N = 118. Plot created using the “ggplot2” package in R (Wickham, 
2016).

14 L. E. DE RUITER AND M. U. BERS



that there was so-called anecdotal evidence for no difference between boys and girls 
(Bayes Factor = 0.23).

3.2 Psychometric analyses

We used both Classical Test Theory (CTT) and Item Response Theory (IRT) to analyze the 
CSA’s psychometric characteristics.

3.2.1 Validity
We tested the CSA’s concurrent criterion validity by correlating their CSA scores with their 
scores in the computational thinking assessment, TechCheck (Relkin et al., 2020). The CSA 
is a measure of children’s coding ability with a specific programming language, ScratchJr. 
As described in the introduction, familiarity with programming languages is not 
a necessary prerequisite for thinking computationally, but we would expect children’s 
coding ability to correlate with their computational thinking ability. This is because only if 
children have a good grasp of concepts such as representation, algorithms and modular
ity will they be able to make full and efficient use of a programming language. In other 
words, children with low computational thinking skills are unlikely to be good program
mers. However, the correlation would not be expected to be perfect, as the CSA is 
assessing also children’s knowledge of the ScratchJr vocabulary and grammar as well as 
expressivity.

The results show that there is a moderate positive correlation between children’s CSA 
scores and their TechCheck scores (r = .55, p < .01; see Figure 7), indicating that both 
measures are tapping partially into the same construct (computational thinking).

3.2.2. Unidimensionality and reliability
The CSA is intended to measure one construct (latent trait), which is children’s ability to 
program in ScratchJr. One index researchers have used to measure the dimensionality of 
an assessment is the inter-item correlation, which has been used in the development of 
a unidimensional assessment of coding ability before (Mühling et al., 2015). A range of 
other methods, such as principal component analysis or factor analysis have been put 
forward and discussed as well (Hattie, 1985). The mean inter-item correlation of the CSA 
was .24 (range: .07-.39). This puts the mean correlation in the ideal range between .20 and 
.40, which suggests “that while the items are reasonably homogenous, they do contain 
sufficiently unique variance so as to not be isomorphic with each other” (Piedmont, 2014, 
p. 3304). In addition to the inter-item correlation, we performed a confirmatory factor 
analysis on the different stages, which is described in the Appendix B. The factor analysis 
showed that for three stages (Coding and Decoding, New Knowledge, and 
Purposefulness) one factor was sufficient. For two stages (Emergent and Fluency), the 

Table 3. Mean CSA scores and standard deviations by 
gender. N = 118.

Gender N Mean SD

Female 67 16.8 10.7
Male 50 16.98 9.69
Prefer not to say 1 28 N/A

COMPUTER SCIENCE EDUCATION 15



factor analysis suggested that two factors were better. We return to this issue in the 
discussion.

The CSA’s internal consistency, measured using Guttman’s Lambda 6 (split-half relia
bility), was excellent with λ6 = .94. Unlike Cronbach’s alpha, which increases as a function 
of the number of items in an assessment, Guttman’s Lambda 6 gives a more precise 
estimate as the number of items increases.

We measured inter-rater reliability for 23 children (559 individual questions, scored 
either “satisfactory” or “unsatisfactory” by two independent raters) using Cohen’s kappa. 
The agreement between the raters was substantial (λ = .777).

3.2.3 Item analysis
Recall that whether or not a child gets to respond to one of the items in the stages Coding 
and Decoding, Fluency, and New Knowledge depends on whether they answered 
a sufficient number of questions in the preceding stage(s) satisfactorily. This precludes 
the use of IRT analyses, which assume items to be independent from each other, for the 
assessment as a whole.2

In order to be able to give some impression of the items’ characteristics, we therefore 
conducted four different IRT analyses: one for the Emergent and Purposefulness items 
combined (explained next), and one each for the Coding and Decoding, Fluency and New 
Knowledge items. We combined Emergent and Purposefulness questions because of the 
large overlap between the samples: Of 118 participants, 102 were presented with both 
the Emergent item set and the Purposefulness item set. We then removed those 16 
participants that had not been presented with the Purposefulness questions for the 

Figure 7. Scatterplot showing the relationship between children’s TechCheck scores and their CSA 
scores. The blue line is the regression line, the grey-shaded area indicates the 95% confidence level 
interval. N = 23. Plot created using the “ggplot2” package in R (Wickham, 2016).

16 L. E. DE RUITER AND M. U. BERS



combined Emergent/Purposefulness item set, which allowed us to compare the charac
teristics of the items in these two stages.

For all analyses, we used the “ltm “package (Rizopoulos, 2006) in R (R Core Team, 2019). 
For each set of items, we first fitted both a Rasch model (one-parameter model) and a 2PL 
model (two-parameter model) and then compared the model fit using a likelihood ratio 
test. Rasch models estimate the difficulty of individual items, 2PL models estimate both an 
item’s difficulty and its discrimination. For Coding and Decoding and New Knowledge 
item sets, the Rasch models were the better fit, for Emergent/Purposefulness and Fluency 
item sets, the 2PL models were the better fit. The results of these analyses can be 
illustrated using Item Characteristic Curves (ICC). These are S-shaped curves that show 
the probability of selecting the correct response for participants with a given level of 
ScratchJr coding ability. The x-axis represents the latent ability measured by the instru
ment (in our case ScratchJr coding ability); the y-axis represents the probability of 
selecting the correct response. Each item is represented by an ICC. The index of an 
item’s location is the point on the x-axis at which the curve crosses the 0.5 probability 
value on the y-axis. The more difficult an item is, the further this point is towards the 
higher end of the x-axis. In 2PL models, which also estimate item discrimination, the 
steepness of the curve indicates the question’s discrimination – the steeper the curve, the 
better the item is at discriminating participants with high ability from those with lower 
ability. It is desirable to have items of varying difficulty levels to accommodate partici
pants with differing ability levels. Discrimination, on the other hand, should always be 
high. This is because items with low discrimination just make an assessment longer 
without providing any useful information about whether a participant has high or low 
ability. (Figure 8) shows the ICCs for the four different item sets. Note that it is not possible 
to compare difficulty across item sets, because the item sets were seen by different (sub-) 
samples of the participants. Still, the ICCs show that for the one combined item set, the 
Purposefulness questions have consistently higher difficulty indices than the Emergent 
questions, as intended by the design. Of the 12 items in that set, three (Q1.2, Q1.4 and 
Q1.5, i.e. items 2, 4 and 5) have shallow curves, indicating low discrimination, because 
almost all children who have minimal experience with ScratchJr were able to answer the 
initial questions correctly. These questions consequently also have lower difficulty indices.

In Coding and Decoding, the relative proximity of the ICC indicates that the items are of 
comparable difficulty levels. In Fluency, two questions (Q3.1 and Q3.6) have lower 
difficulty indices and have shallower slopes, indicating less good discrimination than 
the other questions. Both questions ask children to work with parameters (specifically 
with repeat blocks).

In the New Knowledge item set, one question (Q4.6) appeared to be relatively easy. 
Here children were asked to pretend that two characters are in different locations and 
create a telephone interaction between the two. This task required them to use the 
messaging blocks. We will return to these observations in the discussion.

We also conducted a Differential Item Function (DIF) analysis for gender and for age 
(younger children six years and younger, and older children) using ShinyItemAnalysis 
version 1.3.4 (Martinkova & Drabinova, 2018). Note that the child who preferred to not 
disclose their gender is not included in the gender analysis. A DIF analysis looks at 
whether there are any items that measure different abilities for different subgroups (e.g. 
gender, race, age group). If coding ability is assumed to be equally distributed among all 

COMPUTER SCIENCE EDUCATION 17



children, irrespective of membership in a subgroup, then a child’s gender or age should 
not affect their probability of responding correctly to an item in the CSA. One popular 
method to identify potentially biased items is the delta plot method (Angoff & Ford, 1973). 
The method is using a scatterplot to visually compare item difficulty across different 
groups. (Figure 9) shows a delta plot of the CSA items for gender, and (Figure 10) shows 
the delta plot for age group. An item is “under suspicion of DIF” if its delta point departs 
considerably from the main axis. As can be seen from (Figure 9), item 5 (a question from 
the Emergent stage) appears to be more difficult girls compared to boys.

In (Figure 10), it appears that four items (2, 4, 5 and 27) are under suspicion of DIF for 
age group.

However, the delta plot method is suggested as a preliminary check before con
ducting further, more sophisticated DIF analyses. We followed up on the delta plots 
using the Mantel-Haenszel test (Mantel & Haenszel, 1959). For gender, no item was 
detected as functioning differentially. The DIF analysis thus shows that not only do 
boys and girls not score differently in the CSA overall, as shown above, in addition no 

Figure 8. Item Characteristic Curves (ICC) for all 27 items (questions) in the CSA, grouped by sets of 
items that were presented to the same (sub-)sample of children. Note that the Emergent and 
Purposefulness and the Fluency ICCs are based on 2PL models, whereas the other ICCs are based 
on Rasch models. Plots created using the “ltm” package (Rizopoulos, 2006).

18 L. E. DE RUITER AND M. U. BERS



individual item is biased against either gender. For age group, one item was flagged 
under the Mantel-Haenszel test as being biased against younger children: item 5 (Q1.4, 
Emergent stage). This question asks children to identify the one block in a given 
program that makes the character grow (see Figure 11). It’s not immediately clear 
why this item may disadvantage younger children. A possible explanation may be that 
among children who do not know the answer, older children are able to guess it from 
looking at the symbols. They understand that the faded figures represent previous 
phases of a development, and that the development indicates a change in size. 
Younger children, on the other hand, may not be able to understand this and may 
be making random selections.

Figure 9. Plot showing the delta scores for each item for boys (reference group) and girls (focal group). 
N = 117. Plot created with ShinyItemAnalysis (Martinkova & Drabinova, 2018).

Figure 10. Plot showing delta scores for older children (reference group) and younger children (focal 
group). N = 118. Plot created with ShinyItemAnalysis (Martinkova & Drabinova, 2018).

COMPUTER SCIENCE EDUCATION 19



4 Discussion

As coding becomes increasingly popular in early education, there is a need for reliable and 
valid assessments to gauge children’s learning. We have developed a new instrument that 
allows assessing young children’s coding ability in the visual programming language 
ScratchJr, the Coding Stages Assessment (CSA). The CSA is an interactive, developmen
tally appropriate assessment for children from Kindergarten (age five) through third grade 
(age eight). In line with the Coding as Another Language approach, the CSA captures not 
only the mastery of the ScratchJr syntax and grammar, but also the child’s ability to use 
this tool purposefully. The CSA assigns children to one of the five coding stages as laid out 
in the Coding Stages framework, which draws parallels with literacy development: 
Emergent, Coding and Decoding, Fluency, New Knowledge, or Purposefulness. In addi
tion, the CSA provides a numeric score that allows for a more fine-grained quantification 
of skills.

We evaluated the CSA’s measurement properties in field test with 118 children. The 
results show that the CSA has good to very good psychometric properties. The analyses 
showed that the assessment has no gender or age bias, and that the level of difficulty is 
overall appropriate for the intended age group. In the Emergent stage, there were three 
items that had lower difficulty indices than the other items. This is intended by the 
design – we wanted to have some very easy questions in this block to avoid frustration 
for children with lower ability. Thus, while these items are easy and do not discriminate as 
well as the others, they have a function. Furthermore, the Emergent set of items still 
allows discriminating between children with very low ability and others, as 16 participants 
did not answer more than three questions correctly, which meant that the assessment 
was stopped after the first stage. In the Fluency stage, two items were easier and less 
good at discriminating than the others. As mentioned before, both questions involve the 
repeat block. This is an indication that in future developments of the CSA, it may be better 
to include different types of parameters (e.g. grow, shrink, wait). As for the easier item in 
the New Knowledge stage, we note that only 17 children progressed this far in the 
assessment and this question. More data is needed to make the estimate more accurate. 
Overall, the items in the stages are homogenous and the stages appear to be largely 
unidimensional, with the caveat that an additional factor was indicated for the Emergent 
and Fluency stage. As just mentioned, more data is needed to get more accurate 
estimates of the Fluency stage’s characteristics. For the Emergent stage, one possible 
explanation for the need for two factors may be that the Emergent stage captures some 

Figure 11. Item 5 (Q1.4) from the Emergent block. The child is shown this program and asked: “ Let’s 
look at this program! These blocks all help the Kitten move and get bigger. Can you show me the ONE 
block that tells Kitten to get bigger?”. Satisfactory responses include ‘the pink block’, ‘the grow block’, 
or pointing to the grow block.

20 L. E. DE RUITER AND M. U. BERS



very basic concepts which may be slightly removed from the core ability of programming, 
such as understanding the that technologies are human-engineered or knowing where to 
find the program on a device.

Older children had higher scores on average, and a somewhat higher floor (i.e. the 
lowest scores in their group tended to be slightly higher than the lowest scores of the 
younger groups, although this did not hold for third grade). This is expected, as certain, 
more complex aspects of ScratchJr will be less accessible for younger coders. For example, 
even though ScratchJr is a visual programming language, there are textual elements such 
as parameters (e.g. number of repetitions of an action). Older children are more likely to 
have the literacy skills to fully understand that. That said, our results show that even first 
graders can reach the Purposefulness stage, and, conversely, that third graders without 
any experience with ScratchJr will be in the Emergent stage. In other words, the primary 
determining factor in children’s outcomes is the ScratchJr proficiency, not their age.

The format and the administration are engaging, and children enjoyed the playful 
nature of the CSA, in particular the parts that allow them to realize their own ideas when 
they’re asked to translate an abstract prompt into concrete code. These opportunities are 
essential for two reasons. First, we conceptualize coding as a means of expression, and as 
such children need to be able to demonstrate that in a comprehensive assessment of their 
coding ability. Second, preschool and young elementary school children have limited 
attention spans, so that it is imperative to have them enjoy the tasks such that they don’t 
want to discontinue the assessment. Because of this open-ended nature of the CSA, both 
the administration and the scoring require some training. With respect to scoring, our 
analysis of a subset of sessions that were scored by independent raters shows that it can 
be scored reliably.

With an average administration duration of 50 minutes, the CSA is not a short assess
ment. It is an individual, in-depth assessment of children’s coding ability. Large variation is 
to be expected, given that children vary in far into the assessment they get. Children who 
have never seen ScratchJr will finish in less than five minutes. Children with lots of 
programming experience and creativity may put a lot of effort into making their projects 
more complex, leading to sometimes long administration times. For example, children 
may want to add many different movements in their “dance” project or add a lot of detail 
to their backgrounds. While letting children go above and beyond what is required for 
a satisfactory response won’t affect their score on that particular question, it adds to the 
overall duration and may lead to fatigue and potentially lower performance in the later 
questions. Administrators thus need to strike a balance between not dampening chil
dren’s enthusiasm and keeping the assessment at a reasonable length. Learning to do this 
is one of the aspects that requires training, in addition to learning how to score children’s 
responses. In its current format, the CSA should therefore not be administered without 
proper training. For use in educational settings, teachers and assessors would have to 
complete this training as well.

One challenge we noticed during virtual administration was that younger children 
need some practice of how to hold up the iPad and run the program so it can be seen by 
the administrator. However, this was not a major issue, and overall, the field test showed 
that virtual administration is possible. This is a positive finding, as we now know that there 
are no geographical restrictions on administering the CSA (provided that there is a stable 
internet connection).

COMPUTER SCIENCE EDUCATION 21



Future versions of the CSA may include a mixture of closed, restricted option and open- 
ended questions to optimize administration time, while ensuring to maintain expressive 
aspects. Here, the design-based research approach will again help finding the appropriate 
formats. In addition, questions aimed at gauging expressivity are currently concentrated 
at the end of the assessment (in the “Purposefulness” block). In future versions, these may 
be distributed more equally throughout the assessment. Future work will use the CSA in 
studies that involve the teaching of the CAL curriculum to understand the rate of change 
before and after exposure to the learning condition. In addition, as with many other 
existing assessments, more work is needed to test the CSA with diverse populations 
(culturally, ethnically and socio-economically) to confirm that it is a suitable instrument 
across many different contexts. Finally, work is on the way to adapt CSA to other 
developmentally appropriate programming languages.

5 Conclusion

In this paper, we presented the development of a new instrument for assessing young 
children’s coding ability in the visual programming language ScratchJr, the Coding Stages 
Assessment (CSA). By using a combination two different research traditions, design-based 
research and psychometric methods, were able to develop a reliable and valid instrument 
for determining children’s stage in their coding development, as described in the Coding 
Stages framework. In this framework, coding is not seen as merely a problem-solving 
activity, but also as an expressive activity that allows children to create meaningful 
projects. We described how the assessment captures both technical skills in ScratchJr 
and expressivity though a combination of 25 open-ended verbal and task-based ques
tions. We tested the instrument in a field test with 118 children between five and eight 
years of age. The test showed that the CSA is reliable and without age or gender bias, and 
that it can be administered remotely using video-conferencing software. Moderate posi
tive correlations with a computational thinking test indicate that the CSA taps into 
computational thinking ability, which is a prerequisite for coding. We argue that the 
CSA fills a gap because it is the only summative assessment targeted at preliterate 
children. As such, it is suitable to be used in the evaluation of early computer science 
curricula, which are becoming increasingly more common world-wide. That said, assess
ment development is an ongoing process, and we expect the CSA to evolve further to 
ensure that it is a useful tool for the CS community.

Notes

1. Our goal had been to have at least half of all participants complete TechCheck. However, due 
to logistical challenges caused by the COVID-19 pandemic in 2020, only 23 children were able 
to take the test.

2. We thank an anonymous reviewer for pointing this out.

Acknowledgments

We would like to thank Riva Dhamala and Jessica Blake-West for their support in developing the 
CSA, Amanda Strawhacker and Madhumita Govindarajan for their work and feedback on previous 

22 L. E. DE RUITER AND M. U. BERS



iterations of the instrument, and Jessica Blake-West for coordinating the data collection. Thanks also 
to all children, teachers and parents who made it possible to conduct this research in the middle of 
the COVID-19 pandemic.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the U.S. Department of Education under Grant number U411C190006.

Notes on contributors

Laura de Ruiter is a research assistant professor at the DevTech Research Group at the Eliot-Pearson 
Department of Child Study and Human Development at Tufts University. She studies language 
acquisition and cognitive development in young children. Her current research in developmental 
computer science focuses on the design and evaluation of interventions.

Marina Umaschi Bers is professor and chair at the Eliot-Pearson Department of Child Study and 
Human Development with a secondary appointment in the Department of Computer Science at 
Tufts University. She heads the interdisciplinary DevTech Research Group. Her research involves the 
design and study of innovative learning technologies to promote children’s positive development.

ORCID

Laura E. de Ruiter http://orcid.org/0000-0002-6590-4073
Marina U. Bers http://orcid.org/0000-0003-0206-1846

References

Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education 
research? Educational Researcher, 41(1), 16–25. https://doi.org/10.3102/0013189X11428813 

Angoff, W. H., & Ford, S. F. (1973). Item-race interaction on a test of scholastic aptitude 1. Journal of 
Educational Measurement, 10(2), 95–105.

Barab, S. (2006). Design-based research. In The cambridge handbook of the learning sciences (pp. 
153–169).

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the 
Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1 

Bers, M. U. (2018a). Coding as a playground: Programming and computational thinking in the early 
childhood classroom. Routledge.

Bers, M. U. (2018b). Coding and computational thinking in early childhood: The impact of ScratchJr 
in Europe. European Journal of STEM Education, 3(3), 3. https://doi.org/10.20897/ejsteme/3868 

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer 
science in early childhood. Journal of Computers in Education, 1–30.

Bers, M. U. (2020). Playgrounds and microworlds: Learning to code in early childhood. In Designing 
constructionist futures: The art, theory and practice of learning designs.  MIT Press.

Bers, M. U. (2021). Beyond coding: How children learn human values through programming. MIT Press.
Bers, M. U., & Resnick, M. (2015). The official ScratchJr book: Help your kids learn to code. No Starch 

Press.

COMPUTER SCIENCE EDUCATION 23

https://doi.org/10.3102/0013189X11428813
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.20897/ejsteme/3868


Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating 
complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178. 
https://doi.org/10.1207/s15327809jls0202_2 

Chall, J. S. (1983). Stages of reading development. New York: McGraw-Hill.
Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical 

Thinking and Learning, 6(2), 81–89. https://doi.org/10.1207/s15327833mtl0602_1 
Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational 

research. Educational Researcher, 32(1), 9–13. https://doi.org/10.3102/0013189X032001009 
Collins, A. (1992). Toward a Design Science of Education. In: Scanlon E., O’Shea T. (eds) New 

Directions in Educational Technology (pp. 15–22). Springer: Berlin, Heidelberg. https://doi.org/10. 
1007/978-3-642-77750-9_2 

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Designing 
ScratchJr: Support for early childhood learning through computer programming. Proceedings of 
the 12th International Conference on Interaction Design and Children - IDC ’13, New York, USA, 
1–10. https://doi.org/10.1145/2485760.2485785 

Hattie, J. (1985). Methodology review: Assessing unidimensionality of tests and ltenls. Applied 
Psychological Measurement, 9(2), 139–164. https://doi.org/10.1177/014662168500900204 

Hudson, R. F., Isakson, C., Richman, T., Lane, H. B., & Arriaza-Allen, S. (2011). An examination of a 
small-group decoding intervention for struggling readers: Comparing accuracy and automaticity 
criteria. Learning Disabilities Research & Practice, 26(1), 15–27. https://doi.org/10.1111/j.1540-5826. 
2010.00321.x 

International Society for Technology in Education. (2007). Standards for technological literacy. 
https://www.iteea.org/File.aspx?id=67767&v=b26b7852 

Lee, M. J., & Ko, A. J. (2012). Investigating the role of purposeful goals on novices’ engagement in 
a programming game. 2012 IEEE Symposium on Visual Languages and Human-Centric Computing 
(VL/HCC), Innsbruck, 163–166.

Lee, M. J., Ko, A. J., & Kwan, I. (2013). In-game assessments increase novice programmers’ engage
ment and level completion speed. Proceedings of the Ninth Annual International ACM Conference 
on International Computing Education Research, San Diego, 153–160.

Lonigan, C. J., Schatschneider, C., & Westberg, L., & others. (2008). Identification of children’s skills and 
abilities linked to later outcomes in reading, writing, and spelling. Developing Early Literacy: Report 
of the National Early Literacy Panel, 55–106.

Magnuson, B. (2010). Building blocks for mobile games: A multiplayer framework for App inventor for 
Android [PhD Thesis]. Massachusetts Institute of Technology.

Maiorana, F., Giordano, D., & Morelli, R. (2015). Quizly: A live coding assessment platform for App 
Inventor. 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond), Atlanta, 25–30. https://doi. 
org/10.1109/BLOCKS.2015.7368995 

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies 
of disease. Journal of the National Cancer Institute, 22(4), 719–748.

Martinkova, P., & Drabinova, A. (2018). ShinyItemAnalysis for teaching psychometrics and to enforce 
routine analysis of educational tests. The R Journal, 10(2), 503–515. https://doi.org/10.32614/RJ- 
2018-074 

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch 
projects. Proceedings of the Workshop in Primary and Secondary Computing Education, London, 
132–133.

Morey, R. D., Rouder, J. N., & Jamil, T. (2015). BayesFactor: computation of Bayes factors for common 
designs. https://cran.r-project.org/package=BayesFactor 

Mühling, A., Ruf, A., & Hubwieser, P. (2015). Design and first results of a psychometric test for 
measuring basic programming abilities. Proceedings of the Workshop in Primary and Secondary 
Computing Education, London, 2–10. https://doi.org/10.1145/2818314.2818320 

NAEYC, & Fred Rogers Center for Early Learning and Children’s Media. (2012). Technology and 
interactive media as tools in early childhood programs serving children from birth through age 
8. Joint position statement. www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2. 
pdf 

24 L. E. DE RUITER AND M. U. BERS

https://doi.org/10.1207/s15327809jls0202_2
https://doi.org/10.1207/s15327833mtl0602_1
https://doi.org/10.3102/0013189X032001009
https://doi.org/10.1007/978-3-642-77750-9_2
https://doi.org/10.1007/978-3-642-77750-9_2
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1177/014662168500900204
https://doi.org/10.1111/j.1540-5826.2010.00321.x
https://doi.org/10.1111/j.1540-5826.2010.00321.x
https://www.iteea.org/File.aspx?id=67767%26v=b26b7852
https://doi.org/10.1109/BLOCKS.2015.7368995
https://doi.org/10.1109/BLOCKS.2015.7368995
https://doi.org/10.32614/RJ-2018-074
https://doi.org/10.32614/RJ-2018-074
https://cran.r-project.org/package=BayesFactor
https://doi.org/10.1145/2818314.2818320
http://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf
http://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf


Paciga, K., & Donohue, C. (2017). Technology and interactive media for young children: A whole 
child approach connecting the vision of Fred Rogers with research and practice. In Latrobe, PA: 
Fred Rogers center for early learning and children’s media at Saint Vincent College.

Piaget, J. (1963). La naissance de l’intelligence chez l’enfant (Vol. 968). Delachaux et Niestlé Neuchatel- 
Paris.

Piedmont, R. L. (2014). Inter-item Correlations. In A. C. Michalos (Ed.), Encyclopedia of quality of life 
and well-being research (pp. 3303–3304). Springer Netherlands. https://doi.org/10.1007/978-94- 
007-0753-5_1493 

Portelance, D. J., Strawhacker, A. L., & Bers, M. U. (2016). Constructing the ScratchJr programming 
language in the early childhood classroom. International Journal of Technology and Design 
Education, 26(4), 489–504. https://doi.org/10.1007/s10798-015-9325-0 

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing. https://www.R-project.org/ 

Relkin, E., & Bers, M. U. (2019). Designing an Assessment of Computational Thinking Abilities for 
Young Children. In Cohen, L. A.,  Waite-Stupiansky, S. (eds) STEM for early childhood learners: how 
science, technology, engineering and mathematics strengthen learning (pp. 85–89). Routledge.

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and validation of an 
unplugged assessment of computational thinking in early childhood education. Journal of 
Science Education and Technology, 29(4), 482–498. https://doi.org/10.1007/s10956-020-09831- 
x 

Resnick, M. (2013). Learn to code, code to learn. EdSurge. https://www.edsurge.com/news/2013-05- 
08-learn-to-code-code-to-learn 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., 
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y., & others. (2009). Scratch: Programming for 
all. Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779 

Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory 
analyses. Journal of Statistical Software, 17(5), 1–25. https://doi.org/10.18637/jss.v017.i05 

Smith, M. (2016, January 30). Computer science for all [Https://obamawhitehouse.archives.gov/blog/ 
2016/01/30/computer-science-all]. Obama White House.

Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing Kindergartner’s 
programming comprehension using tangible, graphic, and hybrid user interfaces. International 
Journal of Technology and Design Education, 25(3), 293–319. https://doi.org/10.1007/s10798-014- 
9287-7 

Strawhacker, A., & Bers, M. U. (2018). What they learn when they learn coding: Investigating 
cognitive Domains and computer programming knowledge in young children. Educational 
Technology Research and Development, 67(3),  541-575. https://doi.org/10.1007/s11423-018- 
9622-x 

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: Exploring the impact of 
teaching styles on young children’s programming knowledge in ScratchJr. International Journal of 
Technology and Design Education, 28(2), 347–376. https://doi.org/10.1007/s10798-017-9400-9 

Strawhacker, A., Sullivan, A., & Bers, M. U. (2013). TUI, GUI, HUI: Is a bimodal interface truly worth the 
sum of its parts? Proceedings of the 12th International Conference on Interaction Design and 
Children - IDC ’13New York, 309–312. https://doi.org/10.1145/2485760.2485825 

Sullivan, A., & Bers, M. (2019). Computer science education in early childhood: The case of ScratchJr. 
Journal of Information Technology Education: Innovations in Practice, 18(1), 113–138. https://doi. 
org/10.28945/4437 

U.S. Department of Education. (2010). Transforming American education: Learning powered by 
technology. National Educational Technology Plan 2010. https://www.ed.gov/sites/default/files/ 
netp2010.pdf .

U.S. Department of Education, & U.S. Department of Health and Human Services. (2016). Early 
learning and educational technology policy brief. https://tech.ed.gov/earlylearning 

van Aalst, J., & Chan, C. K. K. (2007). Student-directed assessment of knowledge building using 
electronic portfolios. Journal of the Learning Sciences, 16(2), 175–220. https://doi.org/10.1080/ 
10508400701193697 

COMPUTER SCIENCE EDUCATION 25

https://doi.org/10.1007/978-94-007-0753-5_1493
https://doi.org/10.1007/978-94-007-0753-5_1493
https://doi.org/10.1007/s10798-015-9325-0
https://www.R-project.org/
https://doi.org/10.1007/s10956-020-09831-x
https://doi.org/10.1007/s10956-020-09831-x
https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn
https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.18637/jss.v017.i05
Https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
Https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s11423-018-9622-x
https://doi.org/10.1007/s11423-018-9622-x
https://doi.org/10.1007/s10798-017-9400-9
https://doi.org/10.1145/2485760.2485825
https://doi.org/10.28945/4437
https://doi.org/10.28945/4437
https://www.ed.gov/sites/default/files/netp2010.pdf
https://www.ed.gov/sites/default/files/netp2010.pdf
https://tech.ed.gov/earlylearning
https://doi.org/10.1080/10508400701193697
https://doi.org/10.1080/10508400701193697


Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Educational design research. 
Routledge.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https:// 
ggplot2.tidyverse.org 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi. 
org/10.1145/1118178.1118215 

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 
(1881), 3717–3725

Wing, J. M. (2011). Research notebook: Computational thinking—What and why. The Link Magazine, 
20–23. Carnegie Mellon University's School of Computer Science.

Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks. The 
Journal of the Learning Sciences, 17(4), 517–550. https://doi.org/10.1080/10508400802395069 

Yu, J., & Roque, R. (2018). A survey of computational kits for young children. Proceedings of the 17th 
ACM Conference on Interaction Design and Children, Trondheim, Norway, 289–299.

Zapata-Caceres, M., Martin-Barroso, E., & Roman-Gonzalez, M. (2020). Computational thinking test 
for beginners: design and content validation. 2020 IEEE Global Engineering Education Conference 
(EDUCON), [online], 1905–1914. https://doi.org/10.1109/EDUCON45650.2020.9125368

Appendix A

Below we provide additional examples of questions from each stage in the CSA. Interested 
researchers who would like to use the CSA can request access using this online form: http://bit.ly/ 
CSAScratchJr

Emergent
Coding and Decoding
Fluency
New Knowledge
Purposefulness

Appendix B

As described in section 3.2.3, there is a lot of missing data, because not all children saw all questions. 
It was therefore not possible to conduct a single factor analysis on the entire data set. Instead, we 
conducted confirmatory factor analyses for each of the stages. For this, we used the “factanal” 
function in R. For each stage, we tested the hypothesis that one factor is sufficient to capture the 
dimensionality of the data, using varimax rotation. When the analysis reported a p-value smaller 
than .01, this meant that the null hypothesis (“one factor is sufficient”) should be rejected. We then 
increased the number of factors to two and tested again. According to the analyses, the stages 

Figure A12. The first question of the CSA, a task-based question. The prompt is: “Using these blocks, 
make a program with all THREE blocks that will make Cat move”. For the response to be scored as 
satisfactory, the child needs to arrange arranges the blocks correctly in this order: start on green, move 
right, end.

26 L. E. DE RUITER AND M. U. BERS

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1080/10508400802395069
https://doi.org/10.1109/EDUCON45650.2020.9125368
http://bit.ly/CSAScratchJr
http://bit.ly/CSAScratchJr


Coding and Decoding, New Knowledge, and Purposefulness were captured by one factor (dimen
sion). The Emergent stage and the Fluency stage needed two factors. Figures A17 and A18 show the 
factor loadings of the items on the two factors.

Figure A13. The third question in the Coding and Decoding stage, a task-based question. The scripting 
area is empty, the Cat is the only character on an empty stage. The prompt is: “Now, I want you to 
make a friend for the Cat so they can play together. Can you add a friend and then program the Cat 
move to its friend?”. For the response to be scored as satisfactory, the child needs to first use the 
Characters menu to select and add a different character from the library, and then create a program 
for this character that moves it to the Cat. This will usually just involve the start on green, move right, 
end commands, but other commands are also accepted, as long as the two characters end up close to 
each other.

COMPUTER SCIENCE EDUCATION 27



Figure A14. The third question from the Fluency stage, a verbal question. The child is shown a slide 
with the two different start blocks. The prompt is: “Let’s look at these blocks. What is the difference 
between these blocks?”. For a satisfactory response, the child needs to explain that start on bump 
makes the character’s program start after getting in contact (“bumping”) into another character and 
that start on message makes the character’s program start only if another character sent that same- 
colored message.

Figure A15. The fifth question from the New Knowledge stage, a task-based question. The child is 
shown a video of Cat moving to the right across the screen and jumping when tapped. The prompt is: 
““Program the Cat to forever move to the side. At the same time, when you tap on the Cat, program it 
to jump. After jumping, it continues to forever move right”.

28 L. E. DE RUITER AND M. U. BERS



Figure A16. The third question from the Purposefulness stage, a task-based question. The child is 
shown this slide. The first prompt is: “Looking at this picture, add the background with the bedroom 
and move the Cat to the bed and a friend by the door. It doesn’t have to be this character, it can be any 
character!” After the child has recreated the scene, the second prompt is: “Program the friend to send 
a message to Cat that helps Cat get out of bed using motion blocks”.

Figure A17. Scatter plot showing the factor loadings of each item in the Emergent stage.

COMPUTER SCIENCE EDUCATION 29



Figure A18. Scatter plot showing the factor loadings of each item in the Fluency stage.

30 L. E. DE RUITER AND M. U. BERS


	Abstract
	1. Introduction
	1.1 The coding stages framework
	1.2 ScratchJr

	2. Materials and methods
	2.1 The coding stages assessment
	2.1.1. Purpose and use
	2.1.2 Development process
	2.1.3 Content and format

	2.2 Field test
	2.2.1. Participants
	2.2.2. Materials
	2.2.3 Procedure


	3 Results
	3.1 Descriptive statistics
	3.2 Psychometric analyses
	3.2.1 Validity
	3.2.2. Unidimensionality and reliability
	3.2.3 Item analysis


	4 Discussion
	5 Conclusion
	Notes
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	References



