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Abstract Computer programming is an essential skill in the 21st century and new 
policies and frameworks aim at preparing students for computer science-related 
professions. Today, the development of new interfaces and block-programming 
languages facilitates the teaching of coding and computational thinking starting 
in kindergarten. However, as new programming languages that are developmen-
tally appropriate emerge, there is a need to explicitly conceptualize pedagogical 
approaches for teaching computer science in the early years that embrace the matu-
rational stages of children by inviting play and discovery, socialization, and crea-
tivity. Thus, it is not enough to copy models developed for older children, which 
mostly grew out of traditional Science, Technology, Engineering and Math (STEM) 
disciplines and instructional practices. This paper describes a pedagogical approach 
for early childhood computer science called “Coding as Another Language” (CAL), 
as well as six coding stages, or learning trajectories, that young children go through 
when exposed to CAL curriculum. CAL is grounded on the principle that learning 
to program involves learning how to use a new language (a symbolic system of rep-
resentation) for communicative and expressive functions. This paper proposes that, 
due to the critical foundational role of language and literacy in the early years, the 
teaching of computer science can be augmented by models of literacy instruction. 
CAL supports young children in transitioning through different six coding stages. 
Case studies of young children using either the KIBO robot or the ScratchJr app will 
be used to characterize each coding stage and to illustrate the instructional practices 
of CAL curriculum.
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Introduction: new ways of thinking through computer science

Computer programming is becoming an essential skill in the 21st century. Each 
month, there are an estimated 500,000 openings for computing jobs nationwide, and 
a lack of adequately trained people to fill them (Code.org 2018; Fayer et al. 2017). 
In order to meet the growing needs, new educational policies and frameworks aim at 
preparing students in kindergarten to high school for computer science-related pro-
fessions (National Research Council 2012; Hubwieser et al. 2014).

This paper addresses this need but claims that the rationale for supporting the 
introduction of computer science starting in kindergarten shouldn’t be the creation 
of the future workforce, but the future citizenry. If we do not understand what an 
algorithm is, we might not understand why and how certain information is or is not 
presented to us. We become illiterate in the information age. Coding is a new lit-
eracy, and as such, those who learn how to code from a young age will not only be 
able to participate in the automated economy, but will also have a civic voice. Read-
ing and writing, as well as computer programming, are tools of power because they 
support new ways of thinking and the making of new processes and artifacts. From 
smart watches to cell phones to automated cars, most of our objects have been pro-
grammed. Furthermore, algorithms dictate the news displayed in our social media, 
the people we might enjoy meeting, and the merchandise we might want to purchase.

Researchers have coined the term “computational thinking” to refer to the ana-
lytical process rooted in the discipline of computer science and the activity of 
programming. It involves thinking recursively, applying abstraction, breaking up 
a complex problem in smaller tasks, and using heuristic reasoning to discover a 
solution (Wing 2006a, b; 2011). There is debate among researchers and educators 
regarding whether computational thinking can be classified as a unique category 
of thought (Gadanidis 2017; Pei et al. 2018). However, the term has grown popu-
lar at a time when schools are starting to incorporate computer science in more 
massive ways (K–12 Computer Science Framework Steering Committee 2016).

While back in the 1960s it was argued that all college students needed to learn 
programming and the “theory of computation” (Guzdial 2008; Grover and Pea 
2013; Perlis 1962), most of its early application was primarily found in mathemat-
ics, science and engineering. As new programming languages were developed, such 
as Basic and Pascal, computer programming started to slowly make its way into 
high schools and middle schools (Wilson et al. 2010). In the 1980s with the wide-
spread use of LOGO and the turtle that could draw geometrical shapes with simple 
commands, programming also received a major push in elementary schools (Pap-
ert 1980; Abelson and DiSessa 1981). Today, with the development of new com-
puter interfaces and block-programming languages, coding is also arriving to early 
childhood education. For example, the ScratchJr programming app and the KIBO 
robotics kit (for a depth discussion of the theoretically rooted design of these tools, 
see Bers 2018a). Each of these tools engages children to create their own projects 
and express their ideas through programming. However, research shows that the best 
uses happen when the tools are integrated into an intentional learning experience 
and curriculum (Bers 2012; Pea and Kurland 1984) that must be age-appropriate.
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Coding in early childhood

Research shows the economic and developmental impact of educational interven-
tions that begin in early childhood. These are associated with lower costs and 
more durable effects than interventions that begin later on (e.g., Cunha and Heck-
man 2007; Heckman and Masterov 2007; National Research Council Commit-
tee on Early Childhood Pedagogy 2001; Shonkoff et  al. 2000). Although there 
are no comprehensive longitudinal studies yet on the impact of teaching com-
puter science in the early years, it is expected that results will be similar to other 
areas, given the plasticity of young children. Thus, most states and non-profits, 
when conceiving standards and programs, start in kindergarten, and sometimes 
pre-kindergarten.

Widespread organizations such as Code.org, free programming apps such as 
ScratchJr (Bers and Resnick 2015), and robotic kits such as KIBO (Bers 2018a) 
provide developmentally appropriate platforms for young children. However, 
technology and pedagogy are not the same thing. What are the best pedagogical 
approaches for teaching computer science in the early years? This paper proposes 
that, due to the critical foundational role of language and literacy in the early 
years, traditional approaches can be augmented by models of literacy instruction. 
It is not enough to copy models designed for older children, which mostly grew 
out of traditional STEM disciplines and instructional practices. In early child-
hood, approaches must be consistent with developmentally appropriate practice 
(Bredekamp 1987) and must embrace the maturational stages of children by invit-
ing play and discovery, socialization, and creativity (Bers 2018a).

This paper describes a pedagogical approach for early childhood computer 
science called “Coding as Another Language” (CAL), as well as six coding 
stages that children go through as they engage with the CAL curriculum. CAL is 
grounded on the central principle that learning to program involves learning how 
to use a new language (a symbolic system of representation) for communicative 
and expressive functions. First, the paper will present the traditional “Coding as 
STEM” model. Then, the novel “Coding as Another Language” (CAL) approach 
will be introduced. Following, six different coding stages that young children 
move through when learning to code with a CAL approach will be introduced. 
When presenting these stages, similarities to and differences from the stages of 
literacy instruction as described by researchers such as Chall (1983) and others 
(Ryan 2011; Clarke et al. 2015) will be discussed. Case studies of young children 
using either the KIBO robot or the ScratchJr app will be used to characterize each 
learning stage and to illustrate the instructional practices of CAL curriculum. 
Finally, the conclusion will identify guiding principles for CAL.
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The traditional perspective: coding as STEM

The STEM acronym came into the American consciousness in the 1950s as a 
response to the need for a technically oriented workforce, and to maintain national 
security. In 1958, during the height of the space race, the United States passed the 
National Defense Education Act (NDEA), which provided funding and incentives 
for schools to improve their math, science, and engineering curricula to prepare 
the future workforce. The act also had provisions for research and experimenta-
tion in the use of television, radio, and motion pictures for educational purposes 
and included the teaching of modern foreign languages due to their importance 
for national security.

As the cold war ended, the emphasis on national security diminished and the per-
ceived urgency to teach a foreign language dropped, but the need for economic com-
petitiveness remained. With a rapidly growing technological society, learning com-
puter programming provided increased career opportunities. However, computer 
programming was seen as a skillset for mathematicians, scientists, and engineers. 
Thus, the teaching of computer science drew from methodologies already used in 
STEM disciplines such as solving pre-set challenges and engaging in competitions. 
At the time, the broader benefits for everyone to learn how to code could not yet be 
perceived, as computers did not play a major role in everyday life.

As technological advances rapidly grew and a gender and racial gap started to 
emerge among STEM-related fields, it became clear that computer programming 
needed to be taught before college, to prevent and address negative STEM stereo-
types (Markert 1996; Madill et al. 2007). By 2011, the inclusion of computer sci-
ence education in the K-12 curriculum was seen as key for “succeeding in a tech-
nological society, increasing interest in the information technology professions, 
maintaining and enhancing U.S. economic competitiveness, supporting inquiry in 
other disciplines, and enabling personal empowerment” (National Research Council 
2011).

As computer science education entered federal agencies and the school system, 
well-funded non-profits such as Code.org championed awareness and access by 
launching curricular initiatives, educational frameworks, professional development, 
and policy changes. In 2009, the first Computer Science Education Week was held, 
which became the Hour of Code in 2013. Today, more than 100 million people have 
participated in this endeavor (Code.org 2019).

In 2015, the STEM Education Act was passed (H.R.1020 2015) representing the 
first time that federal funding for STEM was explicitly extended to cover computer 
science programs. The National Science Foundation launched the STEM + C (Com-
puter Partnerships) program with the goal of “helping all students—but particularly 
students in science, technology, engineering and mathematics disciplines—need to 
understand the role of computation and computational thinking within disciplinary 
problem solving” and “to build the evidence base for effective pedagogy and peda-
gogical environments that will make the integration of computing within STEM dis-
ciplines more age-appropriate and contemporaneously relevant to pre-K-12 STEM 
education” (de Strulle and Shen n.d.).
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The history of the consolidation of STEM as a disciplinary cluster strongly linked 
to computer science originated in the need to maintain US international primacy by 
having a strong economy and national security. However, it also restricted the power 
of computer science education to a limited group of disciplines, to a limited group 
of students and teachers, and to the particular demands of the workforce.

Pioneers, such as Seymour Papert, the developer of LOGO, and others within the 
Constructionist movement, could foresee this limitation and claimed that the true 
power of computer science education was to provide new ways of thinking (Papert 
1980; Kafai and Resnick 1996; Resnick 2017; Bers 2018a, b; Resnick et al. 2009). 
The field of computer science education borrowed pedagogical approaches from 
STEM disciplines and its instructional methodologies were based on solving chal-
lenges designed to learn concepts and skills in a sequenced order of increased com-
plexity. In early childhood, this approach translated into activities such as the ones 
promoted by the popular Code.org website. These are carefully designed to engage 
children in solving structured puzzle-like challenges, such as navigating mazes using 
instructional commands. Lessons in the K-2 sequence feature a series of increas-
ingly more complex mazes that vary in theme, but essentially rely on direction cues 
to move an object around the screen. Children need to solve the maze and then can 
move up to the next level.

Although popular, based on the ease of classroom implementation, approaches 
such as this one reduce the potential of learning how to code to a problem-solving 
activity, ignoring the expressiveness and communicative functions of programming. 
Coding is about making meaning by creating a personally meaningful project that 
can be shared with others. Puzzle-type approaches miss the opportunity to explore 
the richness of a programming language as a symbol system with a grammar and 
syntax that can be used to express thoughts and ideas. Furthermore, a few decades 
ago, Papert suggested that the process of learning to program may be akin to learn-
ing a new language (Papert 1987). However, empirical research did not explore this 
path, neither instructional programs nor curriculum were developed based on this 
observation. The CAL approach, described next, addresses this.

An alternative perspective: coding as another language

The CAL approach, presented in this paper, is in sharp contrast with the STEM tra-
dition described earlier. CAL’s influence can be traced back to two lines of work: 
First, Constructionism, developed by Seymour Papert (Papert 1980; Bers 2008; 
Resnick 2017; Kafai and Resnick 1996), which shows that, when children have 
opportunities to learn a programming language to create computational projects to 
express themselves, they are likely to encounter powerful ideas from different dis-
ciplines, and to think about their own thinking. Second, the long-standing work on 
literacy instruction, based on research on how young children learn to read and write 
and the cognitive changes associated with that progression, which provides tools for 
adapting the processes of learning how to read and write a natural language to an 
artificial language.
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CAL’s premise is that coding is a literacy for the 21st century and, as such, it 
can borrow strategies for teaching other literacies (Bers 2019). Alphabetical literacy 
enables people to represent and interpret ideas through texts that can travel away 
from immediate contexts and still be understood by people (Vee 2013). Similarly, 
algorithms allow people to represent ideas through computer programs that are 
interpreted by a computer or a robot. Both activities, coding and reading and writ-
ing, involve a problem-solving dimension as well as the use and manipulation of 
a language, a symbolic representational system, to create a sharable, interpretable 
product. For alphabetical literacy, a natural language. For coding literacy, an artifi-
cial language.

Research has explored the similarities and differences between natural and arti-
ficial languages and interdisciplinary endeavors such as natural language process-
ing and computational linguistics have emerged (Allamanis et al. 2018). While that 
work is beyond the scope of this paper, it is important to establish that both natural 
and artificial languages meet three common criteria: they are meaningful, produc-
tive, and allow displacement (Norman 2017). That is to say, languages are symbolic 
representational systems, with a grammar and syntax, that can be used to convey 
meaning, to produce something that has never happened before, and to communicate 
about things that are displaced in time or space. Thus, the end goal of the activity 
of coding and decoding is to ultimately comprehend, generate, communicate, and 
express ideas or thoughts by making a sharable product that others can interpret 
(Bers 2018a). Within this perspective, CAL puts problem solving at the service of 
personal expression.

CAL’s approach and curriculum explores the parallels between programming 
and natural languages and their communicative and expressive functions. Research 
shows that children learn to think with and through language (Vygotsky 1978). 
Thus, by learning to use a programming language that involves logical sequencing, 
abstraction, and problem solving, children can learn how to think in analytical ways. 
Wittgenstein (1997) argued that the language we speak determines the thoughts we 
are able to have. In other words, learning a new language can make new patterns of 
thought, new conceptual frameworks, and new ways of using language (Wittgen-
stein 1997). Wittgenstein’s philosophy echoes Vygotsky’s developmental perspec-
tive in terms of the relationship between language and thinking at the individual 
level. Furthermore, researchers such as Walter Ong, while studying societies that are 
transitioning from orality to literacy, also found a fundamental shift in their form of 
thought (Ong 1982).

Just like literacy, coding can change not only the way we think, but also the way 
we see ourselves in society. Mitchel Resnick and David Siegel, when discussing the 
creation of the Scratch Foundation to promote an expressive approach to coding, 
wrote (Resnick and Siegel 2015): “For us, coding is not a set of technical skills but 
a new type of literacy and personal expression, valuable for everyone, much like 
learning to write. We see coding as a new way for people to organize, express, and 
share their ideas … In many introductory coding activities, students are asked to 
program the movements of a virtual character navigating through a set of obstacles 
toward a goal. This approach can help students learn some basic coding concepts, 
but it doesn’t allow them to express themselves creatively — or develop a long-term 
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engagement with coding. It’s like offering a writing class that teaches only gram-
mar and punctuation without providing students a chance to write their own stories” 
(Resnick and Siegel 2015, pp. 1–3).

Papert reminded us that, using this approach, children are not only likely to learn 
how to program but also to encounter knowledge from other disciplines. For exam-
ple, in his own work with LOGO, Papert described the encounter with mathematics 
(Papert 1980). The CAL curriculum puts computer science in direct conversation 
with powerful ideas from literacy identified by Chall (1983) and other literacy schol-
ars (e.g., Shanahan et al. 2010; Duke and Pearson 2002; Carnine et al. 2006). The 
process of learning how to program expressively takes time and requires instruction. 
While children can discover things on their own, a curriculum shows a pathway to 
expose them to a comprehensive scope and sequence. However, curriculum must 
be grounded on maturational stages or learning trajectories, developmental models 
of how children think and operate within a domain (Clements 2007; Clements and 
Sarama 2004).

I coined the term “coding stages” to describe the learning trajectories in the 
domain of computer science that young children go through, with increasingly 
nuanced levels of sophistication, when engaged with an intentional curriculum, such 
as CAL curriculum. The next section introduces six coding stages and draws paral-
lels to stages of literacy development: emergent, coding and decoding, fluency, new 
knowledge, multiple perspectives, and purposefulness.

Coding stages

Describing the activity of coding as a learning progression assumes a developmental 
approach supported by instruction that takes into account both cognitive as well as 
socioemotional factors. Efforts to describe learning as a progression of stages are 
influenced by Piaget’s work (1952); however, the coding stages presented in this 
paper depart in an important way. This is not a universal attempt at explaining a 
naturally occurring phenomenon, as was Piaget’s cognitive development stages. It 
is an effort to create a blueprint to describe a learning path for young children that 
can be supported through instruction that includes both a curriculum (e.g., CAL), a 
programming language (e.g., KIBO robotics and/or ScratchJr), and a pedagogical 
approach [e.g., The Positive Technological Development framework (Bers 2012)].

The instructional elements in the curriculum are designed with a scope and 
sequence that corresponds to a developmental progression that starts by exploring 
what is the concept of programming and technology, and culminates with the ability 
to purposefully create a program to express themselves in a meaningful way. Stages 
are not fixed and linear, and children can move up and down stages and encounter 
one or more stages at the same time. The CAL curriculum is explicitly designed 
to help children move through six coding stages: emergent, coding and decoding, 
fluency, new knowledge, multiple perspective, and purposefulness. Each and every 
one of these stages involves the creation of a personally meaningful computational 
project.
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While in early childhood mathematics (Clements and Sarama 2004) and early 
childhood literacy (Lonigan et al. 2008) there has been extensive research on defin-
ing learning progressions and stages, very little work has been done with early child-
hood computer science. Pilot research explored a developmental model of program-
ming based on observations of children 4–7  years old using KIBO robotics, and 
categorized children into four stages: proto-programmer, early programmer, pro-
grammer, and fluent programmer (Vizner 2017). These exploratory trajectories start 
with learning that order matters and ends with learning more complex patterns of 
sequencing such as conditionals and loops. Data from this work show that children’s 
stages did not correspond to age.

This finding is consistent with previous work. While some studies found that chil-
dren ages 5–6 may have a limited ability to grasp the programming of conditionals 
(e.g., if–then) (Barrouillet and Lecas 1999; Janveau-Brennan and Markovits 1999), 
other studies found that age did not correlate with performance on conditional and 
repeat programs (Elkin et al. 2016; Strawhacker and Bers 2015). While useful, these 
efforts at creating learning trajectories did not take into consideration the expres-
sive dimension of programming. They mostly focused on the sequencing and prob-
lem-solving aspects of programming. The work presented in this paper extends this 
research by focusing on coding as a literacy; thus, the expressive and communicative 
dimensions are central in defining coding stages or learning trajectories. Further-
more, research on emergent literacy stages informed the description of the coding 
stages.

Scholars on emergent literacy have found that children enter school with a great 
deal of skill and knowledge about reading and writing, although perhaps not in a for-
mal or conventional way (e.g., Ferreiro and Teberosky 1982; Sulzby 1989; Sulzby 
and Teale 1991; Whitehurst and Lonigan 2001). This early knowledge lays the foun-
dation for later literacy success. This insight is applicable when thinking about cod-
ing, even though there is no “orality” period, children are immersed in an interactive 
technologically rich world, before they are even aware of what programming is and 
frequently encounter powerful ideas, such as sequencing, cause and effect, corre-
spondence, that are foundational for coding.

Just as children do not begin to talk by speaking in complex utterances, or decode 
by reading a novel (Chall 1983), children do not begin writing in complete sentences 
but start by scribbling (Puranik and Lonigan 2011; Ferreiro and Teberosky 1982). 
Reading and writing are intimately related. Although research on writing has been 
scarce compared to that on reading, literacy researchers have identified a learning 
progression or stages that can happen through instruction. The same applies to cod-
ing. Children do not start by programming complex algorithms and using nested 
control structures. They begin with simple sequencing (Lockwood and Mooney 
2018; Jenkins 2002; Guzdial and Morrison 2016) and a well-developed curriculum 
can help them move through more sophisticated stages.

While there is a rich tradition of cognitive scientists, experimental psycholo-
gists, and psycholinguists doing basic research on how the brain learns to read 
(Wolf and Stoodley 2007; Dehaene 2010) and write (Puranik and Lonigan 2011; 
Bialystok 1991) and there are well-known controversies and theoretical bat-
tles based on that research, such as the Reading Wars (Pearson, 2004) and the 
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Linearity and Unified Hypothesis in writing (Tolchinsky 2003; Fox and Saracho 
1990), there is a lack of research on the cognitive mechanisms involved when 
young children learn to code (Fedorenko et  al. 2019). Some research explores 
the differences between expert and novice programmers (Dalbey and Linn 1985) 
and other employs tools such as fMRI (Siegmund et al. 2014; Floyd et al. 2017) 
to characterize mechanisms and propose a theoretical foundation to ground this 
novel work. However, there is not enough empirical work to be able to categori-
cally identify different stages in the coding learning progression.

The six coding stages presented here are based on behavioral observations and 
data collection from over two decades of work conducted with young children 
(4 to 7) learning to code in different settings using a variety of integrated CAL-
based curriculum. CAL positions the process of coding as a semiotic act, a mean-
ing making activity, and not only a problem-solving challenge, even during its 
earliest, most basic levels of instruction. Thus, throughout all six coding stages, 
the instruction involves children using the programming language to create and 
share a personally meaningful project. This approach is informed by Construc-
tionism (Papert 1980). This research was done with block-based programming 
languages, ScratchJr and KIBO, which engage children in sequential thinking and 
present interfaces that are developmentally appropriate and explicitly designed to 
promote literacy and expressiveness (Bers 2018b).

The following table (see Table  1) describes the six coding stages and draws 
parallels with stages of literacy development. However, it is important to note 
that Chall’s stages (Chall 1983) begin with babies and extend beyond college, 
tapping into the life span. In contrast, the characterization of coding stages pro-
posed here focuses only on early childhood, spanning the 4 to 7 years old range. 
Although the progression from one coding stage to the next is independent of 
age, the developmental level of the child informs how quickly the child can pro-
gress through the stages.

The CAL approach assumes that teaching to code involves the use of a devel-
opmentally appropriate programming language such as KIBO or ScratchJr, 
designed to both introduce concepts such as loops and conditionals, and also 
support personal expression and creativity. Given that these are introductory pro-
gramming languages, it is possible to reach the more complex stages (multiple 
perspectives and purposefulness) with sufficient instruction and learning time, as 
well as to begin exploring powerful ideas from the discipline of computer science 
such as algorithms, modularization, representation, control structures, the design 
process, debugging, software, and hardware (Bers 2008).

Through the lens of CAL, coding is not only an instrumental tool for problem 
solving, but a communicative tool for expression. Thus, the pedagogy and the 
curriculum must scaffold opportunities for the creation of meaningful projects. 
The following stories present children learning with either KIBO or ScratchJr 
and exhibiting behaviors that characterize each of the six different stages of cod-
ing. These vignettes occurred in the context of a variety of learning settings that 
utilized different versions of integrated CAL curricula with diverse disciplinary 
content.
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Emergent stage

Jenny is 4 years old, and at preschool she receives an iPad with ScratchJr. Jenny 
is very comfortable with her mom’s cell phone, and although she has seen tablets 
before, she was never allowed to use them on her own. Jenny’s teacher told her class 
that for the next 3 weeks they were going to be using tablets with ScratchJr, a pro-
gramming language to make animations. Jenny is not exactly sure what a program-
ming language is, but she loves animations. She watches them on TV, as well as on 
her mom’s phone. The invitation of making her own animation is intriguing. During 
the first lesson, Jenny is told how to turn on and off the tablet, how to position it cor-
rectly and how to launch ScratchJr by clicking on the icon that shows a picture of a 
kitten. She is also told to ask for help if text that she can’t read appears on the screen. 
Jenny’s teacher shows the class how to take care of the tablet, which is expensive, 
and how to put it away in its charging station, so the next class can also use it.

Once finished with the basics, Jenny’s teacher connects her own tablet to the 
projector and shows children an animation she made with ScratchJr. There is an 
elephant walking in the jungle. The elephant stops when it gets to a puddle and 
then makes a silly noise (see Fig.  1). Jenny loves it. She finds it very funny. The 
teacher shows children the different elements she used for making the animation: 
the backgrounds, the characters, the programming blocks, the paint editor, etc. She 
then shows them how to add another elephant to her animation and how to program 
it. She drags two programming blocks with different colors: the green flag, so the 

Fig. 1  ScratchJr project of an elephant stopping when it gets to a puddle and then making a silly noise. 
(Color figure online)
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program starts, and a blue “move forward” block. Finally, she presses the green flag 
on the interface, and the animation starts.

She invites a few children to come to the front and add their own blue motion 
blocks to her sequence to see what happens. Children find this very intriguing and 
program the elephants to jump, turn right and left. Finally, the time has come for 
children to create their own projects with ScratchJr. She explains that first, they will 
create a simple animation with only two blocks. The class becomes chaotic, but the 
teacher has anticipated that this would happen. Some children are not able to find the 
ScratchJr app on their tablet, and others need help to drag the blocks. The few who 
can follow the teacher’s instructions are asked to walk around the room to help those 
in need. After 10 min, the teacher invites children to save their projects, regardless 
of their state, and return their iPads. She promises them that during the next few 
classes they will continue their explorations with ScratchJr.

This vignette shows how Jenny was offered the opportunity to encounter pow-
erful ideas of computer science at the simplest level. She explored the tablet, as 
hardware, and the ScratchJr app, the software. As the curriculum progressed, Jenny 
participated in different activities to develop an understanding of the complex inter-
actions between a hardware/software system. This exploration would prove helpful 
for Jenny to understand her interactions with most of the technologies that surround 
her in the world. Jenny was also exposed to the concept of representation when the 
teacher showed her the different elements of the Scratchjr interface and played a 
game for children to identify the different icons and programming blocks and their 
meanings. As children created the short program for the elephant, they encountered 
the foundational concept of algorithms: order matters. The sequence in which we 
put the blocks dictates the behaviors of the character on the screen. Although this 
vignette describes a first introductory class to ScratchJr, it is possible to see how 
Jenny’s teacher gave children the opportunity to also engage in the design process. 
Although this was a beginners’ class, children were invited to create a very sim-
ple project. They did not know the syntax or the grammar of ScratchJr, but by set-
ting an environment in which those children who were more advanced could play a 
helper role, Jenny’s teacher was able to establish in the classroom an early culture of 
debugging and problem solving.

In the emergent literacy period, children are exposed to language by seeing writ-
ten words and participating in word games. They are being read to and asked to 
look at books and “pretend-read” to become familiar with the “book interface,” even 
though they cannot read on their own yet. Similarly, in the emergent coding stage, 
children are exposed to the programming language. They are shown programming 
commands as well as programs written by someone else, and they are given the pos-
sibility to learn how to use the interface of the tool to create very simple things. 
They are immersed in a culture that can program, a culture that can problem solve 
and debug, in the same way that in the emergent literacy stage children are exposed 
to a classroom culture that “can” read.
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Coding and decoding stage

Liana is 5 years old, and she is sitting with an iPad in her kindergarten class. She is 
focused. Every so often, she wiggles. She suddenly shouts, to no one in particular, 
“Look at my cat! Look at my cat!” Liana is excited to show her animation. She has 
programmed the ScratchJr kitten to appear and disappear. She has put together a long 
sequence of purple programming blocks. Liana cannot read yet, but she knows that 
these programming blocks can make her ScratchJr kitten show and hide.

When Liana’s kindergarten teacher hears her excitement, she walks over to see 
Liana’s project. Liana is proud to show “my movie,” as she calls it. “I made it. Look 
at my cat. It appears and disappears, it appears and disappears, it appears and disap-
pears. Many times. Look!” She clicks on the green flag on ScratchJr and the animation 
starts. At that point, Liana’s teacher asks her, “How many times does the kitten show 
and hide?” “Ten times,” replies Liana. “I ran out of room. I wanted more times.” The 
teacher shows her an orange programming block, called “Repeat.” This block allows 
for other blocks to be inserted inside its “loop.” It then runs the blocks inside the loop 
as many times as the programmer decides.

After some trial and error, in which Liana plays with inserting different combina-
tions, she figures it out. She chooses the number 99 and clicks the green flag to see the 
animation. The kitten starts appearing and disappearing. After a few seconds, Liana 
gets bored of watching. She goes back to her code and changes the number of repeti-
tions to 20.

During this experience, Liana engaged with some of the most powerful ideas of 
computer sciences that are accessible for a young child. She learned that a program-
ing language has a syntax in which symbols represent actions. She understood that her 
choices had an impact on what was happening on the screen. She was able to create a 
sequence of programming blocks to represent a complex behavior (e.g., appearing and 
disappearing). She used logic in a systematic way to correctly order the blocks in a 
sequence. She practiced and applied the concept of patterns, which she had learned ear-
lier during math class, which is a precursor for modularity. She discovered the concept 
of loops and parameters. At the same time, she engaged in problem solving and debug-
ging, and also exercised her tenacity at tackling something she cared about (i.e., having 
a long kitten movie).

Liana was able to create a project from her own original idea and turn it into a final 
product. She was personally attached to her movie and proud to share it. Although 
Liana is in the coding and decoding stage and still learning the syntax of ScratchJr, 
developing computational thinking for her involved more than problem solving; it 
meant gaining the concepts, skills, and habits of mind to express herself through “her 
movie.” Within a CAL approach, the curriculum is set up to promote these kinds of 
opportunities for children to learn the language of programming while expressing 
themselves and creating personally meaningful project. Similarly, when children are 
learning to read and write and discover the alphabet and its possible combinations, they 
are given the opportunity to read “interesting” books and start working on their own 
books (for example, during writer’s workshop) to share with others.
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Fluency stage

Maya and Natan are in kindergarten and they are working on a joint KIBO robotics 
project: to program KIBO to dance the Hokey Pokey. KIBO doesn’t use a screen; 
instead it is programmed by putting together a sequence of wooden blocks with pegs 
and holes, each representing a command for the robot. Maya starts with the green 
“begin” block and concludes with the red “end” block. But she has no blocks in 
between. She can’t choose the actions for KIBO because she forgot the KIBO Hokey 
Pokey song the teacher taught them. Natan, her teammate, reminds her of the song:

You put your robot in
You put your robot out
You put your robot in
And you shake it all about
You do the Hokey Pokey
and you turn yourself around
That’s what it’s all about!

Maya sings along and, as the song progresses, she chooses the blocks and starts put-
ting them together in a sequence. Begin, “You put your robot in;” forward, “You put 
your robot out;” backward, “You put your robot in;” forward, “And you shake it all 
about,” shake. She suddenly stops and says, “Natan, I can’t find the ‘do the hokey 
pokey’ block!” “There is no block for that, silly,” responds Natan. “We need to make 
it up. Let’s have KIBO turn on the blue and red light instead. That will be our Hokey 

Fig. 2  KIBO and the program to dance the Hockey Pockey. (Color figure online)
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Pokey block.” Maya agrees, adds those two blocks to the sequence and also adds 
“shake,” “spin,” and “beep” to represent the “what it’s all about” part of the song. 
Maya and Natan look at their program while singing the song to make sure they 
have all the needed blocks. Then they turn on KIBO to test things out. The red light 
of KIBO’s scanner (the “mouth,” as Maya calls it) is flashing, meaning that the robot 
is ready to scan each of the barcodes printed on the wooden programming blocks 
(see Fig. 2).

Natan takes his turn and scans the blocks one by one. He goes too fast and skips 
the “red light” block. Maya points that out and he restarts scanning. The children 
are excited to see their robot dance the Hokey Pokey. “When I count to three, you 
start singing,” says Maya to Natan. They know the drill. They have practiced it dur-
ing technology circle time in class. Natan sings and both KIBO and Maya dance the 
Hokey Pokey. KIBO dances too fast. “Can you sing faster?” asks Maya. Natan tries 
one more time, but it still doesn’t work. “We have a problem.” he says. “I can’t sing 
fast enough to keep up with KIBO.” Maya has an idea. For each action in the song 
she puts two blocks, so KIBO’s motions will last longer. For example, for the line 
“you put your robot in,” she uses two “forward” blocks instead of just one, and so on 
for each of the commands. Natan tries singing again and this time KIBO dances at 
the right pace.

Both children start clapping, shaking their bodies and jumping up and down. 
This vignette, described previously in other work (Bers 2018a) shows how, without 
knowing it, children who were in the fluent coding stage could engage with many 
powerful ideas of computer science, such as sequencing, algorithmic thinking, and 
problem solving. They could focus their attention on the big picture, not just on indi-
vidual commands, and use their imagination and fluency to decide how they wanted 
their robot to dance the Hokey Pokey. In addition, because they were able to inte-
grate their coding knowledge into a project that required some calculation, children 
also explored math concepts they were learning in kindergarten, such as estimation, 
prediction, and counting. In literacy terms, this is equivalent to going from “learning 
to read,” to “reading to learn.” That means, they were “learning to code” and were 
able to transition to “coding to learn”—in this case, learning mathematical ideas of 
pacing and duration. Their fluency level was expressed by the unique way they cre-
ated their Hokey Pokey dance.

New knowledge stage

Madison is a 7-year-old girl who has been programming with ScratchJr for 1 year 
both at school and at home. As Madison begins a new project, she plans it aloud, 
adding new characters and actions as she needs them. She declares she is going 
to program a basketball game with multiple players. As she explores the ScratchJr 
library for backgrounds, she narrates her design process: “I’m going to have many 
teammates, and a crowd cheering, and a dragon. And the game will happen in a 
gym.” Madison chooses the gym background and opens the paint editor. She draws a 
rectangle in the corner of the gym, and paints it brown. That will be her snack stand.
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Next, Madison adds ten players to her basketball game. Some she chooses from 
the character library; some she draws herself with the paint editor. There are girls 
and boys and animals and fantasy characters. As she formulates her design she 
expresses an understanding of the tool: “I want the kitten to pass the ball to the girl. 
So, I’ll have to program the ball to move forward, when I tap on the girl.” Clearly, 
Madison understands that ScratchJr is not magic—the characters have potential to 
do many things, but will only actually do what she programs them to do. There are 
multiple ways for her to program this, but she chooses to program the girl to send 
a blue message to the ball when someone taps on her. When the ball receives the 
blue message, it will move forward. Madison is in control. She understands she must 
choose the programming blocks in the correct sequence to get the characters to carry 
out the desired actions. She also knows there is not only one way to do the program-
ming. She can choose the way she likes best.

Later, Madison wants the dragon, which she has colored purple, to dribble the 
ball, jump, and shoot. This requires knowledge of sequencing, cause and effect, and 
an awareness of the debugging process if the characters do something different than 
she intended. Madison programs the dragon to move right five times to the basket-
ball hoop, then hop. The basketball’s program proves trickier. At first, she programs 
it to move right then hop in a repeat loop. This results in a rigid motion that does not 
look like dribbling. “No! I want it to move forward and bounce at the same time!” 
Madison exclaims. After engaging in a trial and error process involving several 
combinations, she has a breakthrough: “I can make two programs at once! Cool!” 
She writes two separate programs for the ball, one that tells it to move right, and one 
that tells it to hop. They both start when she taps the green flag. Madison discovered 
the fundamental computer science concept of parallelism.

As Madison keeps working on her project, she draws and programs a crowd of 
animal fans to cheer by recording three sound blocks. Now, her project has images 
and sounds, as well as movement. Madison explored sequencing, debugging, modu-
larization, and the design process, some of the core ideas of computational thinking. 
But she also gained new knowledge, such a discovering the possibility of having 
two programs working in parallel. Madison solved problems to make her basketball 
game and learned new knowledge, but what kept her engaged was her desire to tell a 
story about her favorite sport: basketball. The new knowledge stage is characterized 
by the ability of children to learn new concepts and skills because they are com-
mitted to make a project they truly care about. This has similarities with literacy. 
Children will read books with increasing difficult words and sentence constructions, 
because they are passionate about the stories they tell. It is this emotional connec-
tion with the material that engages children in new learning.

Multiple perspectives stage

Alma and Ben are 7 years old and they are participating in a ScratchJr summer 
camp. During the first few days of camp, they have learned to program interactive 
stories, but today, the project is different. The camp counselor, Matt, invites them 
to make a ScratchJr game for everyone to play with. There are twelve kids in their 
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group, so it is hard to imagine all of them with a single iPad. Alma and Ben are con-
fused. Matt reminds them of the “Lights Around the World” project they saw a few 
days ago to celebrate the Chinese New Year. The dragon and the firecrackers moved 
across multiple iPad screens that were put next to each other on a long table. Matt 
told them that they could use multiple tablets for their game, but they had to make a 
game for everyone to play—not an animation for people to watch.

Alma and Ben brainstorm for a long time how they could create a game with 
multiple tablets. Suddenly, Ben has an idea. He remembers a memory matching 
game with colorful cards he has at home. Each card displays a different fruit on one 
side, and the name of the game on the other side. All the cards are first set upside 
down. They all look alike, displaying the name of the game. Players need to guess 
which cards, when turned up, will be matched and display the same two fruits. If 
they guess correctly, they keep those cards. However, if the cards do not match, they 
need to be put back on the table upside down for the next player to guess. The win-
ner is the player who can take the most pairs of matching fruits. Players who remem-
ber the location of the different fruits are more likely to win because they know how 
to choose the right cards more efficiently.

Ben describes the game to Alma and together they discuss how they can program 
a ScratchJr memory matching game. Alma proposes to make a game with animals, 
not fruits. They take multiple tablets with ScratchJr and use the paint editor to draw 
an animal in each of them. They keep track of their drawings to make sure they have 
an even number of tablets, with two animals that are the same on pairs of tablets. 
Alma spends a long time trying to replicate the beautiful lion she drew on a sec-
ond tablet. Ben shows her how she can use the same lion for a second tablet using 
the “airdrop” function. Once Alma discovers this, she is fast at making all of the 
other animals. She now has to draw each of them only once. That saves her time and 
effort.

After half an hour, Ben and Alma have twelve tablets with six animals. They 
call Matt, who asks them: “What do you think the player can do with these iPads 
with animals? What will be fun?” Ben proposes that the tablets would be turned 
upside down, so the animals are not visible, and the players would turn them up 
and discover the matching animals. Alma doesn’t like the idea. “That is not a new 
game. That is exactly like the game you have but with iPads instead of cards.” Alma 
doesn’t articulate it clearly, but she realizes that there is no programming involved in 
this game. That is what makes ScratchJr unique.

After a long debate, in which Matt, the counselor, intervenes by asking questions, 
the children morph their memory game into a Whack-A-Mole game. That is, they 
program each animal to make a noise once it is tapped on. If the animals tapped are 
the same, the noise will also be the same. Both children work very hard at making 
the game and arrange all twelve tablets on the floor. They invite their classmates to 
come and play with the newly created “Whack-An-Animal-Noise” game. On Alma’s 
mark, every child presses the green flag on the tablet in front of her, and observes 
the screen displaying different animals one by one. When two animals are displayed 
at once in two different tablets, they have to quickly reach across the table and tap 
those animals. If they are successful, they win. It takes another day for the game to 
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work well, but children in the summer camp do not mind trying different versions 
and suggesting improvement.

Alma and Ben designed a game by drawing on their experience with other games. 
They had advanced ScratchJr knowledge and they were able to put that knowledge 
to use to create something new. Furthermore, in order to make a fun, interactive 
game, they had to use the ScratchJr programming blocks to invite user’s interac-
tion. In this case, the “Start-on-Tap” block proved extremely useful. The process of 
understanding how to design a project for someone else to interact with involves not 
only sophisticated programming skills, but also the ability to engage in perspective 
taking. This is similar to the decentering process and the ability of writers and read-
ers to switch voices in their texts.

Purposefulness stage

This vignette shows how, once children become experts with programming and 
have mastered all the stages of coding: emergent, coding and decoding, fluent, new 
knowledge and multiple perspectives, they can create projects to meet set purposes 
and goals, while also expressing themselves. Mark and Sarah are in first grade. In 
social studies, they have been learning about the Iditarod dog sled race, held annu-
ally in Alaska to reenact the 1925 transportation of a medical serum across the state 
to combat a large-scale diphtheria epidemic.

On their classroom wall, there is a huge map of Alaska marked with the different 
checkpoints across the state, from Willow to Nome. Mark and Sarah learned about 
geography by studying the Iditarod race and its different routes. They also learned 
that back in 1925, a safe route was organized, and the 20-pound cylinder of serum 
was sent first by train, and then relayed by twenty mushers and more than 100 dogs 
that ran in relays.

Mark and Sarah studied Alaska’s towns and geography, as well as the history of 
the epidemic and the designated safe routes. They have been doing research on the 
subject for over 2 weeks. But today it is their time to put all of that knowledge to 
use: not by passing an exam or completing a worksheet, but by re-creating the Idi-
tarod race with KIBO robots.

Mrs. Dolan gives them the challenge to build and program their robots to travel 
from one checkpoint to another, starting in Willow and ending in Nome, carrying 
all the things mushers must carry, as well as the “pretend” serum for sick children. 
Each team receives a piece of thick cardboard with two checkpoints marked at the 
ends and a KIBO robot. They first need to draw the route from checkpoint to check-
point and decorate the cardboard with the geography of that region. Second, they 
need to build their robots with a platform that can carry everything needed, includ-
ing a safe way to transport the serum until reaching the next checkpoint and passing 
it on to the next team.

Mrs. Dolan puts the cardboard pieces together on the floor in the school library, 
making a huge floor map of Alaska. Mark starts to decorate the cardboards with 
snow, trees, mountains, and a family of foxes. Sarah builds a robot with two motors 
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and wheels at the sides and a moving platform on top. She adds a light bulb, and two 
sensors: an “ear” to detect sound and an “eye” to detect light. The robot is ready to 
go, but it must be programmed, otherwise it will not move. Mark wants the robot 
to follow the path he drew on the cardboard. He is hoping the eye sensor will be 
able to pick up the dark marker trace. They try a few times, but it doesn’t work. The 
children decide to try the sound sensor. They program KIBO to go forward and turn 
right every time it detects a sound. Children start clapping to direct the KIBO robot 
but quickly realize that sometimes they need to turn left, not right, and they have 
programmed it to always turn right when there is a clap.

A few exchanges follow, in which children are busy trying out different strategies. 
After some trial and error, they make it work. Now they are ready to make the jour-
ney a little bit fancier. They decide that the robot will turn its blue lightbulb before 
moving, signaling that the serum is on board. They also decide that before arriving 
to the last checkpoint it will shake and turn its red light on to alert the next team to 
get ready.

Mark and Sarah are expert KIBO programmers and were able to experiment with 
different sophisticated approaches for their robot to travel following a path. While 
children with less knowledge would have used the “counting method,” counting how 
many forwards blocks are needed from one check point to the next, and the “back-
wards methods” drawing the path for the robot on the board, after figuring out the 
program, Mark and Sarah choose to use sensors. They were already fluent at pro-
gramming with them, so they did not have to worry about the technical aspects of 
how to do it, and they could focus on best approaches. Furthermore, they were not 
only able to solve the problem ahead of them—to safely carry the serum from one 
checkpoint to the next—but they were also able to express their creativity by incor-
porating the use of the lightbulb.

Just like with literacy, when a child reaches the purposefulness stage, she has the 
intellectual tools to decide how and when to apply the learned skills to fulfill not 
only someone else’s purpose (e.g., the author’s goal when writing the text; or the 
teacher’s challenge), but their own purpose (e.g., to interpret the text and to add per-
sonalize the challenge).

In summary, a child’s pathway from the emerging to the purposefulness cod-
ing stage is not linear. Some children might go back and forth between stages as 
they learn new concepts and skills, and some might be fluent with certain powerful 
ideas and programming concepts, but not others. But throughout all stages, the CAL 
curriculum invites the child to use her developing coding knowledge to create an 
expressive project and to share it with others.

The CAL curriculum

The CAL curriculum is designed for children 4 to 7 years old to be used in both for-
mal and informal learning settings. It supports the transition through the six coding 
stages described earlier, by exposing children to developmentally appropriate pow-
erful ideas of computer science as well as to principles of literacy. Guided by the 
Positive Technological Development framework, the curriculum targets the whole 
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child, by proposing activities that involve cognitive as well as socioemotional and 
moral engagement.

From a pedagogical perspective, CAL is informed by three different approaches. 
First is Constructionism (Papert 1980), which conceives of computer programming 
as an opportunity for children to learn new things by making personally meaning-
ful projects. Second is Positive Technological Development (Bers 2012), which pro-
poses that learning experiences using computer programming must engage children 
in six positive behaviors (six C’s): content creation, creativity, communication, col-
laboration, community building, and choices of conduct. Third is Dialogic instruc-
tion (Clarke et al. 2015; Alexander 2008; Littleton and Howe 2010; Resnick et al. 
2010), which proposes that instruction happens best when there are opportunities 
for students to engage in authentic explanation and argumentation and open-ended 
interpretation about the subject matter, in this case computer science.

The CAL curriculum is organized into four units, all centered around a children’s 
book, and are designed to engage emergent readers or early readers in expressive 
programming using the KIBO robotics kit or the tablet-based ScratchJr. The curricu-
lum units, regardless of the technology used, follow similar structure and include 
time spent working with coding and literacy as well as an emphasis on off-screen 
activities involving social interactions, creativity, and movement. Individual and 
group activities in this curriculum include warm up games to playfully introduce 
or reinforce concepts, design challenges to solidify skills, free explorations to allow 
students to tinker and expand their skills, expressive explorations to promote crea-
tivity, writing activities and technology circles to share and reflect on activities. The 
culmination of each unit is an open-ended project to share with family and friends.

Each unit contains twelve 1-h lessons that allow children to explore storybooks 
such as Where the Wild Things Are by Maurice Sendak and There Was an Old Lady 
Who Swallowed a Fly by Simms Taback. For example, children might program a 
robot to do a wild rumpus dance, recalling special moments from the books they 
have read, or they might write and animate their own alternative story endings in 
ScratchJr. The lessons identify powerful ideas from both computer science and 
literacy and are aligned to academic frameworks of Common Core literacy stand-
ards (National Governors Association for Best Practices 2010), as well as K-12 CS 
frameworks (K-12 Computer Science Framework Steering Committee 2016).

The term powerful idea refers to a central concept or skills within a discipline 
that is simultaneously personally useful, inherently interconnected with other disci-
plines, and has roots in intuitive knowledge that a child has internalized over a long 
period of time (Papert 1980). The powerful ideas from computer science addressed 
in this curriculum include algorithms, design process, representation, debugging, 
control structures, modularity, and hardware/software. See Table 2 for a comparison 
of each curriculum in terms of the teaching of coding.

The powerful ideas from literacy that are placed in conversation with these pow-
erful ideas from computer science are the writing process, recalling, summarizing 
and sequencing, using illustrative and descriptive language, recognizing literary 
devices such as repetition and foreshadowing, and using reading strategies such as 
predicting, summarizing, and evaluating. Teachers are encouraged to use the CAL 
curriculum as a guiding resource and to adapt lessons and activities to their needs 
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of their students, as well as choose their own favorite books. The CAL curriculum 
can also be downloaded as PDF documents and is explicitly designed to help chil-
dren move through six coding stages: emergent, coding and decoding, fluency, new 
knowledge, multiple perspective, and purposefulness.

The free curriculum can be accessed through a  website (URL:  https ://sites .tufts 
.edu/codin gasli terac y/), see Fig.  3,  that catalogues the units based on  reading level 
and the programming language that is being used (the KIBO robotics kit or the tablet-
based ScratchJr). In addition to a summary of each lesson in the units, the website also 
includes videos and tutorials to assist teachers by providing model lessons, as they 

Fig. 3  Screen capture of the website hosting the CAL Curriculum

https://sites.tufts.edu/codingasliteracy/
https://sites.tufts.edu/codingasliteracy/
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navigate through the curriculum, curricular resources, and teaching materials such tem-
plates for design journals, as well as assessment tools.

Conclusion

Computer science education is growing and expanding to the early years. How-
ever, it is not enough to copy models used in later schooling—which mostly grew 
out of the STEM disciplines. Programming languages and pedagogies need to be 
developmentally appropriate for young children. Language plays an important 
role in early childhood, a time in which children are learning to read and write. 
The CAL approach described here leverages the teaching of literacy by broad-
ening the range of languages children are exposed to, including programming 
languages. Just like with natural languages, learning how to program involves 
learning how to use a symbolic system, its syntax and grammar, to express and 
communicate ideas.

The field of literacy education has developed instructional strategies based on 
research-based evidence that shows learning trajectories in the development of 
reading and writing to become a literate person. The field of early computer sci-
ence education is just starting to emerge and therefore coding stages are not yet 
clearly defined or thoroughly investigated. It might be, for example, that the six 
coding stages presented here for early childhood could also apply to program-
ming novices of any age.

The goal of this paper is to present a different approach for computer science 
education in early childhood, CAL, which supports the teaching of programming 
as a literacy by providing a scope and sequence of curricular activities that help 
children move through six different coding stages or learning progressions. The 
vignettes in this paper are not intended to fully characterize each of these stages, 
but to demonstrate the basic principles that root the CAL approach, likening pro-
gramming fluency to literacy development. In summary, CAL is based on the fol-
lowing principles:

a. Strategies used in literacy education can be helpful for teaching children how to 
code.

b. Coding projects can provide opportunities for children’s sense-making and expres-
sion.

c. Problem solving can serve as a means toward self-expression and communication.
d. Coding activities can engage children in thinking about powerful ideas from 

computer science, as well as other domains.

A conceptualization of programming that is not solely STEM-based may help 
combat the stigma associated with STEM disciplines and attract a wider range of 
children to computer science. Thus, decades of scholarly work and teaching prac-
tices on language development and reading and writing instruction can provide 
new pathways that inform the early teaching of computer science.
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If education aims at helping people think creatively to solve the problems of 
our world, only a subset of those problems can be solved by STEM disciplines. 
As more people learn to code and computer programming leaves the exclusive 
domain of computer science to become integral to other professions, it is more 
important than ever that we develop computer science pedagogies that promote 
deep and thorough engagement for everyone starting in early childhood.
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