
Vol.:(0123456789)

J. Comput. Educ. (2019) 6(4):499–528
https://doi.org/10.1007/s40692-019-00147-3

1 3

Coding as another language: a pedagogical approach
for teaching computer science in early childhood

Marina Umaschi Bers1

Received: 28 February 2019 / Revised: 18 June 2019 / Accepted: 9 September 2019 /
Published online: 25 September 2019
© Beijing Normal University 2019

Abstract Computer programming is an essential skill in the 21st century and new
policies and frameworks aim at preparing students for computer science-related
professions. Today, the development of new interfaces and block-programming
languages facilitates the teaching of coding and computational thinking starting
in kindergarten. However, as new programming languages that are developmen-
tally appropriate emerge, there is a need to explicitly conceptualize pedagogical
approaches for teaching computer science in the early years that embrace the matu-
rational stages of children by inviting play and discovery, socialization, and crea-
tivity. Thus, it is not enough to copy models developed for older children, which
mostly grew out of traditional Science, Technology, Engineering and Math (STEM)
disciplines and instructional practices. This paper describes a pedagogical approach
for early childhood computer science called “Coding as Another Language” (CAL),
as well as six coding stages, or learning trajectories, that young children go through
when exposed to CAL curriculum. CAL is grounded on the principle that learning
to program involves learning how to use a new language (a symbolic system of rep-
resentation) for communicative and expressive functions. This paper proposes that,
due to the critical foundational role of language and literacy in the early years, the
teaching of computer science can be augmented by models of literacy instruction.
CAL supports young children in transitioning through different six coding stages.
Case studies of young children using either the KIBO robot or the ScratchJr app will
be used to characterize each coding stage and to illustrate the instructional practices
of CAL curriculum.

Keywords Coding · Young children · Early childhood · Literacy

 * Marina Umaschi Bers
 Marina.bers@tufts.edu

1 Tufts University, 105 College Ave, Medford, MA 02155, USA

http://orcid.org/0000-0003-0206-1846
http://crossmark.crossref.org/dialog/?doi=10.1007/s40692-019-00147-3&domain=pdf

500 J. Comput. Educ. (2019) 6(4):499–528

1 3

Introduction: new ways of thinking through computer science

Computer programming is becoming an essential skill in the 21st century. Each
month, there are an estimated 500,000 openings for computing jobs nationwide, and
a lack of adequately trained people to fill them (Code.org 2018; Fayer et al. 2017).
In order to meet the growing needs, new educational policies and frameworks aim at
preparing students in kindergarten to high school for computer science-related pro-
fessions (National Research Council 2012; Hubwieser et al. 2014).

This paper addresses this need but claims that the rationale for supporting the
introduction of computer science starting in kindergarten shouldn’t be the creation
of the future workforce, but the future citizenry. If we do not understand what an
algorithm is, we might not understand why and how certain information is or is not
presented to us. We become illiterate in the information age. Coding is a new lit-
eracy, and as such, those who learn how to code from a young age will not only be
able to participate in the automated economy, but will also have a civic voice. Read-
ing and writing, as well as computer programming, are tools of power because they
support new ways of thinking and the making of new processes and artifacts. From
smart watches to cell phones to automated cars, most of our objects have been pro-
grammed. Furthermore, algorithms dictate the news displayed in our social media,
the people we might enjoy meeting, and the merchandise we might want to purchase.

Researchers have coined the term “computational thinking” to refer to the ana-
lytical process rooted in the discipline of computer science and the activity of
programming. It involves thinking recursively, applying abstraction, breaking up
a complex problem in smaller tasks, and using heuristic reasoning to discover a
solution (Wing 2006a, b; 2011). There is debate among researchers and educators
regarding whether computational thinking can be classified as a unique category
of thought (Gadanidis 2017; Pei et al. 2018). However, the term has grown popu-
lar at a time when schools are starting to incorporate computer science in more
massive ways (K–12 Computer Science Framework Steering Committee 2016).

While back in the 1960s it was argued that all college students needed to learn
programming and the “theory of computation” (Guzdial 2008; Grover and Pea
2013; Perlis 1962), most of its early application was primarily found in mathemat-
ics, science and engineering. As new programming languages were developed, such
as Basic and Pascal, computer programming started to slowly make its way into
high schools and middle schools (Wilson et al. 2010). In the 1980s with the wide-
spread use of LOGO and the turtle that could draw geometrical shapes with simple
commands, programming also received a major push in elementary schools (Pap-
ert 1980; Abelson and DiSessa 1981). Today, with the development of new com-
puter interfaces and block-programming languages, coding is also arriving to early
childhood education. For example, the ScratchJr programming app and the KIBO
robotics kit (for a depth discussion of the theoretically rooted design of these tools,
see Bers 2018a). Each of these tools engages children to create their own projects
and express their ideas through programming. However, research shows that the best
uses happen when the tools are integrated into an intentional learning experience
and curriculum (Bers 2012; Pea and Kurland 1984) that must be age-appropriate.

501

1 3

J. Comput. Educ. (2019) 6(4):499–528

Coding in early childhood

Research shows the economic and developmental impact of educational interven-
tions that begin in early childhood. These are associated with lower costs and
more durable effects than interventions that begin later on (e.g., Cunha and Heck-
man 2007; Heckman and Masterov 2007; National Research Council Commit-
tee on Early Childhood Pedagogy 2001; Shonkoff et al. 2000). Although there
are no comprehensive longitudinal studies yet on the impact of teaching com-
puter science in the early years, it is expected that results will be similar to other
areas, given the plasticity of young children. Thus, most states and non-profits,
when conceiving standards and programs, start in kindergarten, and sometimes
pre-kindergarten.

Widespread organizations such as Code.org, free programming apps such as
ScratchJr (Bers and Resnick 2015), and robotic kits such as KIBO (Bers 2018a)
provide developmentally appropriate platforms for young children. However,
technology and pedagogy are not the same thing. What are the best pedagogical
approaches for teaching computer science in the early years? This paper proposes
that, due to the critical foundational role of language and literacy in the early
years, traditional approaches can be augmented by models of literacy instruction.
It is not enough to copy models designed for older children, which mostly grew
out of traditional STEM disciplines and instructional practices. In early child-
hood, approaches must be consistent with developmentally appropriate practice
(Bredekamp 1987) and must embrace the maturational stages of children by invit-
ing play and discovery, socialization, and creativity (Bers 2018a).

This paper describes a pedagogical approach for early childhood computer
science called “Coding as Another Language” (CAL), as well as six coding
stages that children go through as they engage with the CAL curriculum. CAL is
grounded on the central principle that learning to program involves learning how
to use a new language (a symbolic system of representation) for communicative
and expressive functions. First, the paper will present the traditional “Coding as
STEM” model. Then, the novel “Coding as Another Language” (CAL) approach
will be introduced. Following, six different coding stages that young children
move through when learning to code with a CAL approach will be introduced.
When presenting these stages, similarities to and differences from the stages of
literacy instruction as described by researchers such as Chall (1983) and others
(Ryan 2011; Clarke et al. 2015) will be discussed. Case studies of young children
using either the KIBO robot or the ScratchJr app will be used to characterize each
learning stage and to illustrate the instructional practices of CAL curriculum.
Finally, the conclusion will identify guiding principles for CAL.

502 J. Comput. Educ. (2019) 6(4):499–528

1 3

The traditional perspective: coding as STEM

The STEM acronym came into the American consciousness in the 1950s as a
response to the need for a technically oriented workforce, and to maintain national
security. In 1958, during the height of the space race, the United States passed the
National Defense Education Act (NDEA), which provided funding and incentives
for schools to improve their math, science, and engineering curricula to prepare
the future workforce. The act also had provisions for research and experimenta-
tion in the use of television, radio, and motion pictures for educational purposes
and included the teaching of modern foreign languages due to their importance
for national security.

As the cold war ended, the emphasis on national security diminished and the per-
ceived urgency to teach a foreign language dropped, but the need for economic com-
petitiveness remained. With a rapidly growing technological society, learning com-
puter programming provided increased career opportunities. However, computer
programming was seen as a skillset for mathematicians, scientists, and engineers.
Thus, the teaching of computer science drew from methodologies already used in
STEM disciplines such as solving pre-set challenges and engaging in competitions.
At the time, the broader benefits for everyone to learn how to code could not yet be
perceived, as computers did not play a major role in everyday life.

As technological advances rapidly grew and a gender and racial gap started to
emerge among STEM-related fields, it became clear that computer programming
needed to be taught before college, to prevent and address negative STEM stereo-
types (Markert 1996; Madill et al. 2007). By 2011, the inclusion of computer sci-
ence education in the K-12 curriculum was seen as key for “succeeding in a tech-
nological society, increasing interest in the information technology professions,
maintaining and enhancing U.S. economic competitiveness, supporting inquiry in
other disciplines, and enabling personal empowerment” (National Research Council
2011).

As computer science education entered federal agencies and the school system,
well-funded non-profits such as Code.org championed awareness and access by
launching curricular initiatives, educational frameworks, professional development,
and policy changes. In 2009, the first Computer Science Education Week was held,
which became the Hour of Code in 2013. Today, more than 100 million people have
participated in this endeavor (Code.org 2019).

In 2015, the STEM Education Act was passed (H.R.1020 2015) representing the
first time that federal funding for STEM was explicitly extended to cover computer
science programs. The National Science Foundation launched the STEM + C (Com-
puter Partnerships) program with the goal of “helping all students—but particularly
students in science, technology, engineering and mathematics disciplines—need to
understand the role of computation and computational thinking within disciplinary
problem solving” and “to build the evidence base for effective pedagogy and peda-
gogical environments that will make the integration of computing within STEM dis-
ciplines more age-appropriate and contemporaneously relevant to pre-K-12 STEM
education” (de Strulle and Shen n.d.).

503

1 3

J. Comput. Educ. (2019) 6(4):499–528

The history of the consolidation of STEM as a disciplinary cluster strongly linked
to computer science originated in the need to maintain US international primacy by
having a strong economy and national security. However, it also restricted the power
of computer science education to a limited group of disciplines, to a limited group
of students and teachers, and to the particular demands of the workforce.

Pioneers, such as Seymour Papert, the developer of LOGO, and others within the
Constructionist movement, could foresee this limitation and claimed that the true
power of computer science education was to provide new ways of thinking (Papert
1980; Kafai and Resnick 1996; Resnick 2017; Bers 2018a, b; Resnick et al. 2009).
The field of computer science education borrowed pedagogical approaches from
STEM disciplines and its instructional methodologies were based on solving chal-
lenges designed to learn concepts and skills in a sequenced order of increased com-
plexity. In early childhood, this approach translated into activities such as the ones
promoted by the popular Code.org website. These are carefully designed to engage
children in solving structured puzzle-like challenges, such as navigating mazes using
instructional commands. Lessons in the K-2 sequence feature a series of increas-
ingly more complex mazes that vary in theme, but essentially rely on direction cues
to move an object around the screen. Children need to solve the maze and then can
move up to the next level.

Although popular, based on the ease of classroom implementation, approaches
such as this one reduce the potential of learning how to code to a problem-solving
activity, ignoring the expressiveness and communicative functions of programming.
Coding is about making meaning by creating a personally meaningful project that
can be shared with others. Puzzle-type approaches miss the opportunity to explore
the richness of a programming language as a symbol system with a grammar and
syntax that can be used to express thoughts and ideas. Furthermore, a few decades
ago, Papert suggested that the process of learning to program may be akin to learn-
ing a new language (Papert 1987). However, empirical research did not explore this
path, neither instructional programs nor curriculum were developed based on this
observation. The CAL approach, described next, addresses this.

An alternative perspective: coding as another language

The CAL approach, presented in this paper, is in sharp contrast with the STEM tra-
dition described earlier. CAL’s influence can be traced back to two lines of work:
First, Constructionism, developed by Seymour Papert (Papert 1980; Bers 2008;
Resnick 2017; Kafai and Resnick 1996), which shows that, when children have
opportunities to learn a programming language to create computational projects to
express themselves, they are likely to encounter powerful ideas from different dis-
ciplines, and to think about their own thinking. Second, the long-standing work on
literacy instruction, based on research on how young children learn to read and write
and the cognitive changes associated with that progression, which provides tools for
adapting the processes of learning how to read and write a natural language to an
artificial language.

504 J. Comput. Educ. (2019) 6(4):499–528

1 3

CAL’s premise is that coding is a literacy for the 21st century and, as such, it
can borrow strategies for teaching other literacies (Bers 2019). Alphabetical literacy
enables people to represent and interpret ideas through texts that can travel away
from immediate contexts and still be understood by people (Vee 2013). Similarly,
algorithms allow people to represent ideas through computer programs that are
interpreted by a computer or a robot. Both activities, coding and reading and writ-
ing, involve a problem-solving dimension as well as the use and manipulation of
a language, a symbolic representational system, to create a sharable, interpretable
product. For alphabetical literacy, a natural language. For coding literacy, an artifi-
cial language.

Research has explored the similarities and differences between natural and arti-
ficial languages and interdisciplinary endeavors such as natural language process-
ing and computational linguistics have emerged (Allamanis et al. 2018). While that
work is beyond the scope of this paper, it is important to establish that both natural
and artificial languages meet three common criteria: they are meaningful, produc-
tive, and allow displacement (Norman 2017). That is to say, languages are symbolic
representational systems, with a grammar and syntax, that can be used to convey
meaning, to produce something that has never happened before, and to communicate
about things that are displaced in time or space. Thus, the end goal of the activity
of coding and decoding is to ultimately comprehend, generate, communicate, and
express ideas or thoughts by making a sharable product that others can interpret
(Bers 2018a). Within this perspective, CAL puts problem solving at the service of
personal expression.

CAL’s approach and curriculum explores the parallels between programming
and natural languages and their communicative and expressive functions. Research
shows that children learn to think with and through language (Vygotsky 1978).
Thus, by learning to use a programming language that involves logical sequencing,
abstraction, and problem solving, children can learn how to think in analytical ways.
Wittgenstein (1997) argued that the language we speak determines the thoughts we
are able to have. In other words, learning a new language can make new patterns of
thought, new conceptual frameworks, and new ways of using language (Wittgen-
stein 1997). Wittgenstein’s philosophy echoes Vygotsky’s developmental perspec-
tive in terms of the relationship between language and thinking at the individual
level. Furthermore, researchers such as Walter Ong, while studying societies that are
transitioning from orality to literacy, also found a fundamental shift in their form of
thought (Ong 1982).

Just like literacy, coding can change not only the way we think, but also the way
we see ourselves in society. Mitchel Resnick and David Siegel, when discussing the
creation of the Scratch Foundation to promote an expressive approach to coding,
wrote (Resnick and Siegel 2015): “For us, coding is not a set of technical skills but
a new type of literacy and personal expression, valuable for everyone, much like
learning to write. We see coding as a new way for people to organize, express, and
share their ideas … In many introductory coding activities, students are asked to
program the movements of a virtual character navigating through a set of obstacles
toward a goal. This approach can help students learn some basic coding concepts,
but it doesn’t allow them to express themselves creatively — or develop a long-term

505

1 3

J. Comput. Educ. (2019) 6(4):499–528

engagement with coding. It’s like offering a writing class that teaches only gram-
mar and punctuation without providing students a chance to write their own stories”
(Resnick and Siegel 2015, pp. 1–3).

Papert reminded us that, using this approach, children are not only likely to learn
how to program but also to encounter knowledge from other disciplines. For exam-
ple, in his own work with LOGO, Papert described the encounter with mathematics
(Papert 1980). The CAL curriculum puts computer science in direct conversation
with powerful ideas from literacy identified by Chall (1983) and other literacy schol-
ars (e.g., Shanahan et al. 2010; Duke and Pearson 2002; Carnine et al. 2006). The
process of learning how to program expressively takes time and requires instruction.
While children can discover things on their own, a curriculum shows a pathway to
expose them to a comprehensive scope and sequence. However, curriculum must
be grounded on maturational stages or learning trajectories, developmental models
of how children think and operate within a domain (Clements 2007; Clements and
Sarama 2004).

I coined the term “coding stages” to describe the learning trajectories in the
domain of computer science that young children go through, with increasingly
nuanced levels of sophistication, when engaged with an intentional curriculum, such
as CAL curriculum. The next section introduces six coding stages and draws paral-
lels to stages of literacy development: emergent, coding and decoding, fluency, new
knowledge, multiple perspectives, and purposefulness.

Coding stages

Describing the activity of coding as a learning progression assumes a developmental
approach supported by instruction that takes into account both cognitive as well as
socioemotional factors. Efforts to describe learning as a progression of stages are
influenced by Piaget’s work (1952); however, the coding stages presented in this
paper depart in an important way. This is not a universal attempt at explaining a
naturally occurring phenomenon, as was Piaget’s cognitive development stages. It
is an effort to create a blueprint to describe a learning path for young children that
can be supported through instruction that includes both a curriculum (e.g., CAL), a
programming language (e.g., KIBO robotics and/or ScratchJr), and a pedagogical
approach [e.g., The Positive Technological Development framework (Bers 2012)].

The instructional elements in the curriculum are designed with a scope and
sequence that corresponds to a developmental progression that starts by exploring
what is the concept of programming and technology, and culminates with the ability
to purposefully create a program to express themselves in a meaningful way. Stages
are not fixed and linear, and children can move up and down stages and encounter
one or more stages at the same time. The CAL curriculum is explicitly designed
to help children move through six coding stages: emergent, coding and decoding,
fluency, new knowledge, multiple perspective, and purposefulness. Each and every
one of these stages involves the creation of a personally meaningful computational
project.

506 J. Comput. Educ. (2019) 6(4):499–528

1 3

While in early childhood mathematics (Clements and Sarama 2004) and early
childhood literacy (Lonigan et al. 2008) there has been extensive research on defin-
ing learning progressions and stages, very little work has been done with early child-
hood computer science. Pilot research explored a developmental model of program-
ming based on observations of children 4–7 years old using KIBO robotics, and
categorized children into four stages: proto-programmer, early programmer, pro-
grammer, and fluent programmer (Vizner 2017). These exploratory trajectories start
with learning that order matters and ends with learning more complex patterns of
sequencing such as conditionals and loops. Data from this work show that children’s
stages did not correspond to age.

This finding is consistent with previous work. While some studies found that chil-
dren ages 5–6 may have a limited ability to grasp the programming of conditionals
(e.g., if–then) (Barrouillet and Lecas 1999; Janveau-Brennan and Markovits 1999),
other studies found that age did not correlate with performance on conditional and
repeat programs (Elkin et al. 2016; Strawhacker and Bers 2015). While useful, these
efforts at creating learning trajectories did not take into consideration the expres-
sive dimension of programming. They mostly focused on the sequencing and prob-
lem-solving aspects of programming. The work presented in this paper extends this
research by focusing on coding as a literacy; thus, the expressive and communicative
dimensions are central in defining coding stages or learning trajectories. Further-
more, research on emergent literacy stages informed the description of the coding
stages.

Scholars on emergent literacy have found that children enter school with a great
deal of skill and knowledge about reading and writing, although perhaps not in a for-
mal or conventional way (e.g., Ferreiro and Teberosky 1982; Sulzby 1989; Sulzby
and Teale 1991; Whitehurst and Lonigan 2001). This early knowledge lays the foun-
dation for later literacy success. This insight is applicable when thinking about cod-
ing, even though there is no “orality” period, children are immersed in an interactive
technologically rich world, before they are even aware of what programming is and
frequently encounter powerful ideas, such as sequencing, cause and effect, corre-
spondence, that are foundational for coding.

Just as children do not begin to talk by speaking in complex utterances, or decode
by reading a novel (Chall 1983), children do not begin writing in complete sentences
but start by scribbling (Puranik and Lonigan 2011; Ferreiro and Teberosky 1982).
Reading and writing are intimately related. Although research on writing has been
scarce compared to that on reading, literacy researchers have identified a learning
progression or stages that can happen through instruction. The same applies to cod-
ing. Children do not start by programming complex algorithms and using nested
control structures. They begin with simple sequencing (Lockwood and Mooney
2018; Jenkins 2002; Guzdial and Morrison 2016) and a well-developed curriculum
can help them move through more sophisticated stages.

While there is a rich tradition of cognitive scientists, experimental psycholo-
gists, and psycholinguists doing basic research on how the brain learns to read
(Wolf and Stoodley 2007; Dehaene 2010) and write (Puranik and Lonigan 2011;
Bialystok 1991) and there are well-known controversies and theoretical bat-
tles based on that research, such as the Reading Wars (Pearson, 2004) and the

507

1 3

J. Comput. Educ. (2019) 6(4):499–528

Linearity and Unified Hypothesis in writing (Tolchinsky 2003; Fox and Saracho
1990), there is a lack of research on the cognitive mechanisms involved when
young children learn to code (Fedorenko et al. 2019). Some research explores
the differences between expert and novice programmers (Dalbey and Linn 1985)
and other employs tools such as fMRI (Siegmund et al. 2014; Floyd et al. 2017)
to characterize mechanisms and propose a theoretical foundation to ground this
novel work. However, there is not enough empirical work to be able to categori-
cally identify different stages in the coding learning progression.

The six coding stages presented here are based on behavioral observations and
data collection from over two decades of work conducted with young children
(4 to 7) learning to code in different settings using a variety of integrated CAL-
based curriculum. CAL positions the process of coding as a semiotic act, a mean-
ing making activity, and not only a problem-solving challenge, even during its
earliest, most basic levels of instruction. Thus, throughout all six coding stages,
the instruction involves children using the programming language to create and
share a personally meaningful project. This approach is informed by Construc-
tionism (Papert 1980). This research was done with block-based programming
languages, ScratchJr and KIBO, which engage children in sequential thinking and
present interfaces that are developmentally appropriate and explicitly designed to
promote literacy and expressiveness (Bers 2018b).

The following table (see Table 1) describes the six coding stages and draws
parallels with stages of literacy development. However, it is important to note
that Chall’s stages (Chall 1983) begin with babies and extend beyond college,
tapping into the life span. In contrast, the characterization of coding stages pro-
posed here focuses only on early childhood, spanning the 4 to 7 years old range.
Although the progression from one coding stage to the next is independent of
age, the developmental level of the child informs how quickly the child can pro-
gress through the stages.

The CAL approach assumes that teaching to code involves the use of a devel-
opmentally appropriate programming language such as KIBO or ScratchJr,
designed to both introduce concepts such as loops and conditionals, and also
support personal expression and creativity. Given that these are introductory pro-
gramming languages, it is possible to reach the more complex stages (multiple
perspectives and purposefulness) with sufficient instruction and learning time, as
well as to begin exploring powerful ideas from the discipline of computer science
such as algorithms, modularization, representation, control structures, the design
process, debugging, software, and hardware (Bers 2008).

Through the lens of CAL, coding is not only an instrumental tool for problem
solving, but a communicative tool for expression. Thus, the pedagogy and the
curriculum must scaffold opportunities for the creation of meaningful projects.
The following stories present children learning with either KIBO or ScratchJr
and exhibiting behaviors that characterize each of the six different stages of cod-
ing. These vignettes occurred in the context of a variety of learning settings that
utilized different versions of integrated CAL curricula with diverse disciplinary
content.

508 J. Comput. Educ. (2019) 6(4):499–528

1 3

Ta
bl

e
1

 T
he

 si
x

di
ffe

re
nt

 c
od

in
g

st
ag

es
 th

at
 y

ou
ng

 c
hi

ld
re

n
m

ov
e

th
ro

ug
h

w
he

n
le

ar
ni

ng
 to

 c
od

e
w

ith
 C

A
L,

 a
nd

 th
ei

r c
or

re
sp

on
di

ng
 li

te
ra

cy
 st

ag
es

St
ag

es
C

od
in

g
Li

te
ra

cy

1.
 E

m
er

ge
nt

Le
ar

n
th

e
va

rie
ty

 o
f p

ur
po

se
s o

f t
ec

hn
ol

og
y

(h
ar

dw
ar

e/
so

ftw
ar

e)
.

Re
co

gn
iz

e
th

at
 te

ch
no

lo
gi

es
 a

re
 h

um
an

 e
ng

in
ee

re
d

Ex
pl

or
e

w
ha

t a
 p

ro
gr

am
m

in
g

la
ng

ua
ge

 is
 a

nd
 w

he
n

it
is

 u
se

d
Le

ar
n

co
nc

ep
ts

 o
f i

nt
er

fa
ce

 (e
.g

.,
tu

rn
in

g
on

 a
nd

 o
ff,

 d
iff

er
en

t e
le

m
en

ts

of
 in

te
rfa

ce
s,

sc
re

en
s,

in
pu

ts
 a

nd
 o

ut
pu

ts
)

U
nd

er
st

an
d

th
e

co
nc

ep
t o

f s
ym

bo
liz

at
io

n
an

d
re

pr
es

en
ta

tio
n

(i.
e.

, a

co
m

m
an

d
is

 n
ot

 th
e

be
ha

vi
or

, b
ut

 re
pr

es
en

ts
 th

e
be

ha
vi

or
)

Ex
pl

or
e

ba
si

c
co

nt
ro

l s
tru

ct
ur

es
, s

uc
h

as
 c

au
se

 a
nd

 e
ffe

ct
Id

en
tif

y
w

he
n

te
ch

no
lo

gi
es

 d
o

no
t w

or
k

an
d

th
e

ne
ed

 to
 p

ro
bl

em
 so

lv
e

Le
ar

n
th

e
va

rie
ty

 o
f p

ur
po

se
s o

f l
an

gu
ag

e
Ex

pl
or

e
th

e
str

uc
tu

re
 o

f t
he

 la
ng

ua
ge

 a
nd

 re
co

gn
iz

e
so

m
e

si
gn

s
Le

ar
n

co
nc

ep
ts

 o
f p

rin
t (

e.
g.

, r
ec

og
ni

ze
 in

 a
 st

or
y

bo
ok

 w
he

re
 th

e
w

or
ds

ar

e
on

 th
e

pa
ge

, k
no

w
 h

ow
 to

 h
ol

d
a

bo
ok

 a
nd

 a
 p

en
)

U
nd

er
st

an
d

th
e

co
nc

ep
t o

f s
ym

bo
liz

at
io

n
an

d
re

pr
es

en
ta

tio
n

(i.
e.

, a
 n

ou
n

is
 n

ot
 th

e
ob

je
ct

 it
se

lf,
 b

ut
 re

pr
es

en
ts

 a
n

ob
je

ct
)

Re
co

gn
iz

e
th

e
di

ffe
re

nc
e

be
tw

ee
n

w
rit

in
g

dr
aw

in
g

an
d

sc
rib

bl
in

g

2.
 C

od
in

g
an

d
de

co
di

ng
Le

ar
n

a
lim

ite
d

se
t o

f s
ym

bo
ls

 (s
yn

ta
x)

 a
nd

 g
ra

m
m

ar
 ru

le
s w

ith
in

 a

pr
og

ra
m

m
in

g
la

ng
ua

ge
U

nd
er

st
an

d
th

at
 se

qu
en

ci
ng

 m
at

te
rs

 a
nd

 th
at

 th
e

or
de

r i
n

w
hi

ch
 c

om
-

m
an

ds
 (s

ym
bo

ls
) a

re
 p

ut
 to

ge
th

er
 g

en
er

at
es

 d
iff

er
en

t b
eh

av
io

rs
C

re
at

e
si

m
pl

e
pr

og
ra

m
s w

ith
 si

m
pl

e
ca

us
e

an
d

eff
ec

t c
om

m
an

ds
Le

ar
n

to
 e

ng
ag

e
in

 si
m

pl
e

de
bu

gg
in

g
by

 tr
ia

l a
nd

 e
rr

or
Id

en
tif

y
an

d
fix

 g
ra

m
m

at
ic

al
 e

rr
or

s i
n

th
e

co
de

 (i
.e

.,
m

ak
e

it
w

or
k)

In
str

uc
tio

n
is

 sp
ec

ifi
c

to
 th

e
de

ve
lo

pm
en

ta
lly

 a
pp

ro
pr

ia
te

 p
ro

gr
am

-
m

in
g

la
ng

ua
ge

 o
f c

ho
ic

e
(e

.g
.,

K
IB

O
 o

r S
cr

at
ch

Jr
)

Le
ar

n
th

e
ar

bi
tra

ry
 se

t o
f l

et
te

rs
 a

nd
 b

eg
in

 a
ss

oc
ia

tin
g

th
em

 w
ith

 c
or

-
re

sp
on

di
ng

 so
un

ds
 a

nd
 p

ar
ts

 o
f s

po
ke

n
w

or
ds

 a
nd

 b
et

w
ee

n
pr

in
te

d
an

d
sp

ok
en

 w
or

ds
Le

ar
n

th
e

‘a
lp

ha
be

tic
 p

rin
ci

pl
e’

 a
nd

 th
e

sp
el

lin
g

(o
rth

og
ra

ph
ic

) s
ys

te
m

A
cq

ui
re

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 sp
el

lin
g-

so
un

d
sy

ste
m

Re
ad

 a
nd

 w
rit

e
si

m
pl

e
te

xt
 w

ith
 h

ig
h-

fr
eq

ue
nc

y
w

or
ds

 a
nd

 p
ho

ni
ca

lly

re
gu

la
r w

or
ds

Le
ar

n
to

 e
di

t t
he

 w
rit

in
g

an
d

fix
 e

rr
or

s
In

str
uc

tio
n

is
 sp

ec
ifi

c
to

 th
e

pa
rti

cu
la

r n
at

ur
al

 la
ng

ua
ge

 u
se

d
3.

 F
lu

en
cy

C
on

so
lid

at
io

n
of

 a
ll

th
at

 w
as

 p
re

vi
ou

sly
 le

ar
ne

d
M

as
te

r t
he

 fu
ll

sy
nt

ax
 o

f t
he

 p
ro

gr
am

m
in

g
la

ng
ua

ge
 a

nd
 b

e
ab

le
 to

cr

ea
te

 c
om

pl
ex

 p
ro

gr
am

s u
si

ng
 c

on
tro

l s
tru

ct
ur

es
A

pp
ly

 k
no

w
le

dg
e

ga
in

ed
 to

 c
re

at
e

co
m

pl
ex

 p
ro

gr
am

s t
ha

t a
re

 p
er

so
n-

al
ly

 m
ea

ni
ng

fu
l

A
bi

lit
y

to
 a

pp
ly

 a
ll

ste
ps

 o
f t

he
 d

es
ig

n
pr

oc
es

s
D

ist
in

gu
is

h
an

d
fix

 lo
gi

ca
l e

rr
or

s i
n

th
e

co
de

 (i
.e

.,
a

pr
og

ra
m

 ru
ns

, b
ut

it

do
es

n’
t d

o
w

ha
t i

s e
xp

ec
te

d)
Tr

an
si

tio
n

fro
m

 ‘l
ea

rn
in

g
to

 c
od

e’
 to

 ‘c
od

in
g

to
 le

ar
n’

A
cc

om
pl

is
h

au
to

m
at

ic
 w

or
d-

re
co

gn
iti

on
an

d
in

cr
ea

si
ng

ly
 fl

ue
nt

 re
ad

in
g

an
d

w
rit

in
g.

C
on

so
lid

at
io

n
of

 a
ll

th
at

 w
as

 p
re

vi
ou

sly
 le

ar
ne

d.
A

pp
ly

 k
no

w
le

dg
e

ga
in

ed
 to

 re
ad

 a
nd

 w
rit

e
in

cr
ea

si
ng

ly
 c

om
pl

ex
 w

or
ds

an

d
sto

rie
s.

Tr
an

si
tio

n
fro

m
 ‘l

ea
rn

in
g

to
 re

ad
’ t

o
‘r

ea
di

ng
 to

 le
ar

n’
’

D
ist

in
gu

is
h

be
tw

ee
n

gr
am

m
at

ic
al

 a
nd

 se
m

an
tic

al
 e

rr
or

s i
n

a
se

nt
en

ce
B

ei
ng

 a
bl

e
to

 w
rit

e
co

m
pl

ex
 st

or
ie

s a
nd

 b
eg

in
 to

 e
xp

lo
re

 d
iff

er
en

t
ge

nr
es

4.
 N

ew
 k

no
w

le
dg

e
A

bi
lit

y
to

 c
om

bi
ne

 m
ul

tip
le

 c
on

tro
l

str
uc

tu
re

s a
nd

 c
re

at
e

ne
ste

d
pr

og
ra

m
s f

or
 m

ak
in

g
a

co
m

pl
ex

 p
ro

je
ct

C
on

so
lid

at
io

n
of

 d
eb

ug
gi

ng
 to

ol
s,

al
lo

w
in

g
fo

r m
or

e
str

at
eg

ic
 d

eb
ug

-
gi

ng
Le

ar
ni

ng
 h

ow
 to

 le
ar

n
ne

w
 c

om
m

an
ds

A
 q

ua
lit

at
iv

e
sh

ift
 in

 th
e

na
tu

re
 a

nd
 d

em
an

ds
 o

f r
ea

di
ng

 a
nd

 w
rit

in
g

Ex
po

su
re

 to
 n

ew
 re

ad
in

gs
 a

nd
 in

te
rp

re
ta

tio
ns

, a
nd

 a
bi

lit
y

to
 d

o
m

or
e

co
m

pl
ex

 w
rit

in
g

Em
ph

as
is

 is
 o

n
vo

ca
bu

la
ry

 a
nd

 b
ac

kg
ro

un
d

kn
ow

le
dg

e
gr

ow
th

509

1 3

J. Comput. Educ. (2019) 6(4):499–528

Ta
bl

e
1

 (c
on

tin
ue

d)

St
ag

es
C

od
in

g
Li

te
ra

cy

5.
 M

ul
tip

le
pe

rs
pe

ct
iv

es
U

nd
er

st
an

d
a

si
tu

at
io

n
fro

m
 th

e
po

in
t o

f v
ie

w
 o

f o
th

er
s a

nd
 b

e
ab

le
 to

cr

ea
te

 p
ro

gr
am

s t
ha

t r
efl

ec
t t

hi
s u

nd
er

st
an

di
ng

C
re

at
in

g
pr

og
ra

m
s t

ha
t i

nv
ol

ve
 u

se
r’s

in
pu

t a
nd

 th
at

 c
an

 sp
an

 d
iff

er
en

t e
xp

re
ss

iv
e

ge
nr

es
(i.

e.
 g

am
es

, s
to

rie
s)

Re
ad

in
g

w
id

el
y

fro
m

 a
 b

ro
ad

 ra
ng

e
of

 c
om

pl
ex

 m
at

er
ia

ls
, b

ot
h

ex
po

si
-

to
ry

 a
nd

 n
ar

ra
tiv

e,
 w

ith
 a

 v
ar

ie
ty

 o
f v

ie
w

po
in

ts
. A

bi
lit

y
to

 w
rit

e
fro

m

m
ul

tip
le

 p
er

sp
ec

tiv
es

, u
til

iz
e

di
ffe

re
nt

 v
oi

ce
s,

an
d

sw
itc

h
ge

nr
es

 e
as

ily

6.
 P

ur
po

se
fu

ln
es

s
C

od
in

g
is

 sk
ill

fu
lly

 u
se

d
fo

r o
ne

’s
 o

w
n

ne
ed

s a
nd

 p
ur

po
se

C
od

in
g

at
 h

ig
h

le
ve

ls
 o

f a
bs

tra
ct

io
n

re
qu

iri
ng

 h
ig

h
sk

ill
 a

nd
 fl

ex
ib

ili
ty

C
od

er
s a

na
ly

ze
, s

yn
th

es
iz

e,
 a

nd
 m

ak
e

ju
dg

m
en

ts
 b

as
ed

 o
n

w
ha

t t
he

y
re

ad
C

od
in

g
is

 ra
pi

d
an

d
effi

ci
en

t

Re
ad

in
g

an
d

w
rit

in
g

ar
e

sk
ill

fu
lly

 u
se

d
fo

r o
ne

’s
 o

w
n

ne
ed

s a
nd

 p
ur

po
se

Re
ad

in
g

an
d

w
rit

in
g

at
 h

ig
h

le
ve

ls
 o

f a
bs

tra
ct

io
n

re
qu

iri
ng

 h
ig

h
sk

ill

an
d

fle
xi

bi
lit

y.
 R

ea
de

rs
 a

nd
 w

rit
er

s a
na

ly
ze

, s
yn

th
es

iz
e,

 a
nd

 m
ak

e
ju

dg
m

en
ts

 b
as

ed
 o

n
w

ha
t t

he
y

re
ad

 a
nd

 w
ha

t t
he

y
w

an
t t

o
w

rit
e

Re
ad

in
g

an
d

w
rit

in
g

is
 ra

pi
d

an
d

effi
ci

en
t

510 J. Comput. Educ. (2019) 6(4):499–528

1 3

Emergent stage

Jenny is 4 years old, and at preschool she receives an iPad with ScratchJr. Jenny
is very comfortable with her mom’s cell phone, and although she has seen tablets
before, she was never allowed to use them on her own. Jenny’s teacher told her class
that for the next 3 weeks they were going to be using tablets with ScratchJr, a pro-
gramming language to make animations. Jenny is not exactly sure what a program-
ming language is, but she loves animations. She watches them on TV, as well as on
her mom’s phone. The invitation of making her own animation is intriguing. During
the first lesson, Jenny is told how to turn on and off the tablet, how to position it cor-
rectly and how to launch ScratchJr by clicking on the icon that shows a picture of a
kitten. She is also told to ask for help if text that she can’t read appears on the screen.
Jenny’s teacher shows the class how to take care of the tablet, which is expensive,
and how to put it away in its charging station, so the next class can also use it.

Once finished with the basics, Jenny’s teacher connects her own tablet to the
projector and shows children an animation she made with ScratchJr. There is an
elephant walking in the jungle. The elephant stops when it gets to a puddle and
then makes a silly noise (see Fig. 1). Jenny loves it. She finds it very funny. The
teacher shows children the different elements she used for making the animation:
the backgrounds, the characters, the programming blocks, the paint editor, etc. She
then shows them how to add another elephant to her animation and how to program
it. She drags two programming blocks with different colors: the green flag, so the

Fig. 1 ScratchJr project of an elephant stopping when it gets to a puddle and then making a silly noise.
(Color figure online)

511

1 3

J. Comput. Educ. (2019) 6(4):499–528

program starts, and a blue “move forward” block. Finally, she presses the green flag
on the interface, and the animation starts.

She invites a few children to come to the front and add their own blue motion
blocks to her sequence to see what happens. Children find this very intriguing and
program the elephants to jump, turn right and left. Finally, the time has come for
children to create their own projects with ScratchJr. She explains that first, they will
create a simple animation with only two blocks. The class becomes chaotic, but the
teacher has anticipated that this would happen. Some children are not able to find the
ScratchJr app on their tablet, and others need help to drag the blocks. The few who
can follow the teacher’s instructions are asked to walk around the room to help those
in need. After 10 min, the teacher invites children to save their projects, regardless
of their state, and return their iPads. She promises them that during the next few
classes they will continue their explorations with ScratchJr.

This vignette shows how Jenny was offered the opportunity to encounter pow-
erful ideas of computer science at the simplest level. She explored the tablet, as
hardware, and the ScratchJr app, the software. As the curriculum progressed, Jenny
participated in different activities to develop an understanding of the complex inter-
actions between a hardware/software system. This exploration would prove helpful
for Jenny to understand her interactions with most of the technologies that surround
her in the world. Jenny was also exposed to the concept of representation when the
teacher showed her the different elements of the Scratchjr interface and played a
game for children to identify the different icons and programming blocks and their
meanings. As children created the short program for the elephant, they encountered
the foundational concept of algorithms: order matters. The sequence in which we
put the blocks dictates the behaviors of the character on the screen. Although this
vignette describes a first introductory class to ScratchJr, it is possible to see how
Jenny’s teacher gave children the opportunity to also engage in the design process.
Although this was a beginners’ class, children were invited to create a very sim-
ple project. They did not know the syntax or the grammar of ScratchJr, but by set-
ting an environment in which those children who were more advanced could play a
helper role, Jenny’s teacher was able to establish in the classroom an early culture of
debugging and problem solving.

In the emergent literacy period, children are exposed to language by seeing writ-
ten words and participating in word games. They are being read to and asked to
look at books and “pretend-read” to become familiar with the “book interface,” even
though they cannot read on their own yet. Similarly, in the emergent coding stage,
children are exposed to the programming language. They are shown programming
commands as well as programs written by someone else, and they are given the pos-
sibility to learn how to use the interface of the tool to create very simple things.
They are immersed in a culture that can program, a culture that can problem solve
and debug, in the same way that in the emergent literacy stage children are exposed
to a classroom culture that “can” read.

512 J. Comput. Educ. (2019) 6(4):499–528

1 3

Coding and decoding stage

Liana is 5 years old, and she is sitting with an iPad in her kindergarten class. She is
focused. Every so often, she wiggles. She suddenly shouts, to no one in particular,
“Look at my cat! Look at my cat!” Liana is excited to show her animation. She has
programmed the ScratchJr kitten to appear and disappear. She has put together a long
sequence of purple programming blocks. Liana cannot read yet, but she knows that
these programming blocks can make her ScratchJr kitten show and hide.

When Liana’s kindergarten teacher hears her excitement, she walks over to see
Liana’s project. Liana is proud to show “my movie,” as she calls it. “I made it. Look
at my cat. It appears and disappears, it appears and disappears, it appears and disap-
pears. Many times. Look!” She clicks on the green flag on ScratchJr and the animation
starts. At that point, Liana’s teacher asks her, “How many times does the kitten show
and hide?” “Ten times,” replies Liana. “I ran out of room. I wanted more times.” The
teacher shows her an orange programming block, called “Repeat.” This block allows
for other blocks to be inserted inside its “loop.” It then runs the blocks inside the loop
as many times as the programmer decides.

After some trial and error, in which Liana plays with inserting different combina-
tions, she figures it out. She chooses the number 99 and clicks the green flag to see the
animation. The kitten starts appearing and disappearing. After a few seconds, Liana
gets bored of watching. She goes back to her code and changes the number of repeti-
tions to 20.

During this experience, Liana engaged with some of the most powerful ideas of
computer sciences that are accessible for a young child. She learned that a program-
ing language has a syntax in which symbols represent actions. She understood that her
choices had an impact on what was happening on the screen. She was able to create a
sequence of programming blocks to represent a complex behavior (e.g., appearing and
disappearing). She used logic in a systematic way to correctly order the blocks in a
sequence. She practiced and applied the concept of patterns, which she had learned ear-
lier during math class, which is a precursor for modularity. She discovered the concept
of loops and parameters. At the same time, she engaged in problem solving and debug-
ging, and also exercised her tenacity at tackling something she cared about (i.e., having
a long kitten movie).

Liana was able to create a project from her own original idea and turn it into a final
product. She was personally attached to her movie and proud to share it. Although
Liana is in the coding and decoding stage and still learning the syntax of ScratchJr,
developing computational thinking for her involved more than problem solving; it
meant gaining the concepts, skills, and habits of mind to express herself through “her
movie.” Within a CAL approach, the curriculum is set up to promote these kinds of
opportunities for children to learn the language of programming while expressing
themselves and creating personally meaningful project. Similarly, when children are
learning to read and write and discover the alphabet and its possible combinations, they
are given the opportunity to read “interesting” books and start working on their own
books (for example, during writer’s workshop) to share with others.

513

1 3

J. Comput. Educ. (2019) 6(4):499–528

Fluency stage

Maya and Natan are in kindergarten and they are working on a joint KIBO robotics
project: to program KIBO to dance the Hokey Pokey. KIBO doesn’t use a screen;
instead it is programmed by putting together a sequence of wooden blocks with pegs
and holes, each representing a command for the robot. Maya starts with the green
“begin” block and concludes with the red “end” block. But she has no blocks in
between. She can’t choose the actions for KIBO because she forgot the KIBO Hokey
Pokey song the teacher taught them. Natan, her teammate, reminds her of the song:

You put your robot in
You put your robot out
You put your robot in
And you shake it all about
You do the Hokey Pokey
and you turn yourself around
That’s what it’s all about!

Maya sings along and, as the song progresses, she chooses the blocks and starts put-
ting them together in a sequence. Begin, “You put your robot in;” forward, “You put
your robot out;” backward, “You put your robot in;” forward, “And you shake it all
about,” shake. She suddenly stops and says, “Natan, I can’t find the ‘do the hokey
pokey’ block!” “There is no block for that, silly,” responds Natan. “We need to make
it up. Let’s have KIBO turn on the blue and red light instead. That will be our Hokey

Fig. 2 KIBO and the program to dance the Hockey Pockey. (Color figure online)

514 J. Comput. Educ. (2019) 6(4):499–528

1 3

Pokey block.” Maya agrees, adds those two blocks to the sequence and also adds
“shake,” “spin,” and “beep” to represent the “what it’s all about” part of the song.
Maya and Natan look at their program while singing the song to make sure they
have all the needed blocks. Then they turn on KIBO to test things out. The red light
of KIBO’s scanner (the “mouth,” as Maya calls it) is flashing, meaning that the robot
is ready to scan each of the barcodes printed on the wooden programming blocks
(see Fig. 2).

Natan takes his turn and scans the blocks one by one. He goes too fast and skips
the “red light” block. Maya points that out and he restarts scanning. The children
are excited to see their robot dance the Hokey Pokey. “When I count to three, you
start singing,” says Maya to Natan. They know the drill. They have practiced it dur-
ing technology circle time in class. Natan sings and both KIBO and Maya dance the
Hokey Pokey. KIBO dances too fast. “Can you sing faster?” asks Maya. Natan tries
one more time, but it still doesn’t work. “We have a problem.” he says. “I can’t sing
fast enough to keep up with KIBO.” Maya has an idea. For each action in the song
she puts two blocks, so KIBO’s motions will last longer. For example, for the line
“you put your robot in,” she uses two “forward” blocks instead of just one, and so on
for each of the commands. Natan tries singing again and this time KIBO dances at
the right pace.

Both children start clapping, shaking their bodies and jumping up and down.
This vignette, described previously in other work (Bers 2018a) shows how, without
knowing it, children who were in the fluent coding stage could engage with many
powerful ideas of computer science, such as sequencing, algorithmic thinking, and
problem solving. They could focus their attention on the big picture, not just on indi-
vidual commands, and use their imagination and fluency to decide how they wanted
their robot to dance the Hokey Pokey. In addition, because they were able to inte-
grate their coding knowledge into a project that required some calculation, children
also explored math concepts they were learning in kindergarten, such as estimation,
prediction, and counting. In literacy terms, this is equivalent to going from “learning
to read,” to “reading to learn.” That means, they were “learning to code” and were
able to transition to “coding to learn”—in this case, learning mathematical ideas of
pacing and duration. Their fluency level was expressed by the unique way they cre-
ated their Hokey Pokey dance.

New knowledge stage

Madison is a 7-year-old girl who has been programming with ScratchJr for 1 year
both at school and at home. As Madison begins a new project, she plans it aloud,
adding new characters and actions as she needs them. She declares she is going
to program a basketball game with multiple players. As she explores the ScratchJr
library for backgrounds, she narrates her design process: “I’m going to have many
teammates, and a crowd cheering, and a dragon. And the game will happen in a
gym.” Madison chooses the gym background and opens the paint editor. She draws a
rectangle in the corner of the gym, and paints it brown. That will be her snack stand.

515

1 3

J. Comput. Educ. (2019) 6(4):499–528

Next, Madison adds ten players to her basketball game. Some she chooses from
the character library; some she draws herself with the paint editor. There are girls
and boys and animals and fantasy characters. As she formulates her design she
expresses an understanding of the tool: “I want the kitten to pass the ball to the girl.
So, I’ll have to program the ball to move forward, when I tap on the girl.” Clearly,
Madison understands that ScratchJr is not magic—the characters have potential to
do many things, but will only actually do what she programs them to do. There are
multiple ways for her to program this, but she chooses to program the girl to send
a blue message to the ball when someone taps on her. When the ball receives the
blue message, it will move forward. Madison is in control. She understands she must
choose the programming blocks in the correct sequence to get the characters to carry
out the desired actions. She also knows there is not only one way to do the program-
ming. She can choose the way she likes best.

Later, Madison wants the dragon, which she has colored purple, to dribble the
ball, jump, and shoot. This requires knowledge of sequencing, cause and effect, and
an awareness of the debugging process if the characters do something different than
she intended. Madison programs the dragon to move right five times to the basket-
ball hoop, then hop. The basketball’s program proves trickier. At first, she programs
it to move right then hop in a repeat loop. This results in a rigid motion that does not
look like dribbling. “No! I want it to move forward and bounce at the same time!”
Madison exclaims. After engaging in a trial and error process involving several
combinations, she has a breakthrough: “I can make two programs at once! Cool!”
She writes two separate programs for the ball, one that tells it to move right, and one
that tells it to hop. They both start when she taps the green flag. Madison discovered
the fundamental computer science concept of parallelism.

As Madison keeps working on her project, she draws and programs a crowd of
animal fans to cheer by recording three sound blocks. Now, her project has images
and sounds, as well as movement. Madison explored sequencing, debugging, modu-
larization, and the design process, some of the core ideas of computational thinking.
But she also gained new knowledge, such a discovering the possibility of having
two programs working in parallel. Madison solved problems to make her basketball
game and learned new knowledge, but what kept her engaged was her desire to tell a
story about her favorite sport: basketball. The new knowledge stage is characterized
by the ability of children to learn new concepts and skills because they are com-
mitted to make a project they truly care about. This has similarities with literacy.
Children will read books with increasing difficult words and sentence constructions,
because they are passionate about the stories they tell. It is this emotional connec-
tion with the material that engages children in new learning.

Multiple perspectives stage

Alma and Ben are 7 years old and they are participating in a ScratchJr summer
camp. During the first few days of camp, they have learned to program interactive
stories, but today, the project is different. The camp counselor, Matt, invites them
to make a ScratchJr game for everyone to play with. There are twelve kids in their

516 J. Comput. Educ. (2019) 6(4):499–528

1 3

group, so it is hard to imagine all of them with a single iPad. Alma and Ben are con-
fused. Matt reminds them of the “Lights Around the World” project they saw a few
days ago to celebrate the Chinese New Year. The dragon and the firecrackers moved
across multiple iPad screens that were put next to each other on a long table. Matt
told them that they could use multiple tablets for their game, but they had to make a
game for everyone to play—not an animation for people to watch.

Alma and Ben brainstorm for a long time how they could create a game with
multiple tablets. Suddenly, Ben has an idea. He remembers a memory matching
game with colorful cards he has at home. Each card displays a different fruit on one
side, and the name of the game on the other side. All the cards are first set upside
down. They all look alike, displaying the name of the game. Players need to guess
which cards, when turned up, will be matched and display the same two fruits. If
they guess correctly, they keep those cards. However, if the cards do not match, they
need to be put back on the table upside down for the next player to guess. The win-
ner is the player who can take the most pairs of matching fruits. Players who remem-
ber the location of the different fruits are more likely to win because they know how
to choose the right cards more efficiently.

Ben describes the game to Alma and together they discuss how they can program
a ScratchJr memory matching game. Alma proposes to make a game with animals,
not fruits. They take multiple tablets with ScratchJr and use the paint editor to draw
an animal in each of them. They keep track of their drawings to make sure they have
an even number of tablets, with two animals that are the same on pairs of tablets.
Alma spends a long time trying to replicate the beautiful lion she drew on a sec-
ond tablet. Ben shows her how she can use the same lion for a second tablet using
the “airdrop” function. Once Alma discovers this, she is fast at making all of the
other animals. She now has to draw each of them only once. That saves her time and
effort.

After half an hour, Ben and Alma have twelve tablets with six animals. They
call Matt, who asks them: “What do you think the player can do with these iPads
with animals? What will be fun?” Ben proposes that the tablets would be turned
upside down, so the animals are not visible, and the players would turn them up
and discover the matching animals. Alma doesn’t like the idea. “That is not a new
game. That is exactly like the game you have but with iPads instead of cards.” Alma
doesn’t articulate it clearly, but she realizes that there is no programming involved in
this game. That is what makes ScratchJr unique.

After a long debate, in which Matt, the counselor, intervenes by asking questions,
the children morph their memory game into a Whack-A-Mole game. That is, they
program each animal to make a noise once it is tapped on. If the animals tapped are
the same, the noise will also be the same. Both children work very hard at making
the game and arrange all twelve tablets on the floor. They invite their classmates to
come and play with the newly created “Whack-An-Animal-Noise” game. On Alma’s
mark, every child presses the green flag on the tablet in front of her, and observes
the screen displaying different animals one by one. When two animals are displayed
at once in two different tablets, they have to quickly reach across the table and tap
those animals. If they are successful, they win. It takes another day for the game to

517

1 3

J. Comput. Educ. (2019) 6(4):499–528

work well, but children in the summer camp do not mind trying different versions
and suggesting improvement.

Alma and Ben designed a game by drawing on their experience with other games.
They had advanced ScratchJr knowledge and they were able to put that knowledge
to use to create something new. Furthermore, in order to make a fun, interactive
game, they had to use the ScratchJr programming blocks to invite user’s interac-
tion. In this case, the “Start-on-Tap” block proved extremely useful. The process of
understanding how to design a project for someone else to interact with involves not
only sophisticated programming skills, but also the ability to engage in perspective
taking. This is similar to the decentering process and the ability of writers and read-
ers to switch voices in their texts.

Purposefulness stage

This vignette shows how, once children become experts with programming and
have mastered all the stages of coding: emergent, coding and decoding, fluent, new
knowledge and multiple perspectives, they can create projects to meet set purposes
and goals, while also expressing themselves. Mark and Sarah are in first grade. In
social studies, they have been learning about the Iditarod dog sled race, held annu-
ally in Alaska to reenact the 1925 transportation of a medical serum across the state
to combat a large-scale diphtheria epidemic.

On their classroom wall, there is a huge map of Alaska marked with the different
checkpoints across the state, from Willow to Nome. Mark and Sarah learned about
geography by studying the Iditarod race and its different routes. They also learned
that back in 1925, a safe route was organized, and the 20-pound cylinder of serum
was sent first by train, and then relayed by twenty mushers and more than 100 dogs
that ran in relays.

Mark and Sarah studied Alaska’s towns and geography, as well as the history of
the epidemic and the designated safe routes. They have been doing research on the
subject for over 2 weeks. But today it is their time to put all of that knowledge to
use: not by passing an exam or completing a worksheet, but by re-creating the Idi-
tarod race with KIBO robots.

Mrs. Dolan gives them the challenge to build and program their robots to travel
from one checkpoint to another, starting in Willow and ending in Nome, carrying
all the things mushers must carry, as well as the “pretend” serum for sick children.
Each team receives a piece of thick cardboard with two checkpoints marked at the
ends and a KIBO robot. They first need to draw the route from checkpoint to check-
point and decorate the cardboard with the geography of that region. Second, they
need to build their robots with a platform that can carry everything needed, includ-
ing a safe way to transport the serum until reaching the next checkpoint and passing
it on to the next team.

Mrs. Dolan puts the cardboard pieces together on the floor in the school library,
making a huge floor map of Alaska. Mark starts to decorate the cardboards with
snow, trees, mountains, and a family of foxes. Sarah builds a robot with two motors

518 J. Comput. Educ. (2019) 6(4):499–528

1 3

and wheels at the sides and a moving platform on top. She adds a light bulb, and two
sensors: an “ear” to detect sound and an “eye” to detect light. The robot is ready to
go, but it must be programmed, otherwise it will not move. Mark wants the robot
to follow the path he drew on the cardboard. He is hoping the eye sensor will be
able to pick up the dark marker trace. They try a few times, but it doesn’t work. The
children decide to try the sound sensor. They program KIBO to go forward and turn
right every time it detects a sound. Children start clapping to direct the KIBO robot
but quickly realize that sometimes they need to turn left, not right, and they have
programmed it to always turn right when there is a clap.

A few exchanges follow, in which children are busy trying out different strategies.
After some trial and error, they make it work. Now they are ready to make the jour-
ney a little bit fancier. They decide that the robot will turn its blue lightbulb before
moving, signaling that the serum is on board. They also decide that before arriving
to the last checkpoint it will shake and turn its red light on to alert the next team to
get ready.

Mark and Sarah are expert KIBO programmers and were able to experiment with
different sophisticated approaches for their robot to travel following a path. While
children with less knowledge would have used the “counting method,” counting how
many forwards blocks are needed from one check point to the next, and the “back-
wards methods” drawing the path for the robot on the board, after figuring out the
program, Mark and Sarah choose to use sensors. They were already fluent at pro-
gramming with them, so they did not have to worry about the technical aspects of
how to do it, and they could focus on best approaches. Furthermore, they were not
only able to solve the problem ahead of them—to safely carry the serum from one
checkpoint to the next—but they were also able to express their creativity by incor-
porating the use of the lightbulb.

Just like with literacy, when a child reaches the purposefulness stage, she has the
intellectual tools to decide how and when to apply the learned skills to fulfill not
only someone else’s purpose (e.g., the author’s goal when writing the text; or the
teacher’s challenge), but their own purpose (e.g., to interpret the text and to add per-
sonalize the challenge).

In summary, a child’s pathway from the emerging to the purposefulness cod-
ing stage is not linear. Some children might go back and forth between stages as
they learn new concepts and skills, and some might be fluent with certain powerful
ideas and programming concepts, but not others. But throughout all stages, the CAL
curriculum invites the child to use her developing coding knowledge to create an
expressive project and to share it with others.

The CAL curriculum

The CAL curriculum is designed for children 4 to 7 years old to be used in both for-
mal and informal learning settings. It supports the transition through the six coding
stages described earlier, by exposing children to developmentally appropriate pow-
erful ideas of computer science as well as to principles of literacy. Guided by the
Positive Technological Development framework, the curriculum targets the whole

519

1 3

J. Comput. Educ. (2019) 6(4):499–528

child, by proposing activities that involve cognitive as well as socioemotional and
moral engagement.

From a pedagogical perspective, CAL is informed by three different approaches.
First is Constructionism (Papert 1980), which conceives of computer programming
as an opportunity for children to learn new things by making personally meaning-
ful projects. Second is Positive Technological Development (Bers 2012), which pro-
poses that learning experiences using computer programming must engage children
in six positive behaviors (six C’s): content creation, creativity, communication, col-
laboration, community building, and choices of conduct. Third is Dialogic instruc-
tion (Clarke et al. 2015; Alexander 2008; Littleton and Howe 2010; Resnick et al.
2010), which proposes that instruction happens best when there are opportunities
for students to engage in authentic explanation and argumentation and open-ended
interpretation about the subject matter, in this case computer science.

The CAL curriculum is organized into four units, all centered around a children’s
book, and are designed to engage emergent readers or early readers in expressive
programming using the KIBO robotics kit or the tablet-based ScratchJr. The curricu-
lum units, regardless of the technology used, follow similar structure and include
time spent working with coding and literacy as well as an emphasis on off-screen
activities involving social interactions, creativity, and movement. Individual and
group activities in this curriculum include warm up games to playfully introduce
or reinforce concepts, design challenges to solidify skills, free explorations to allow
students to tinker and expand their skills, expressive explorations to promote crea-
tivity, writing activities and technology circles to share and reflect on activities. The
culmination of each unit is an open-ended project to share with family and friends.

Each unit contains twelve 1-h lessons that allow children to explore storybooks
such as Where the Wild Things Are by Maurice Sendak and There Was an Old Lady
Who Swallowed a Fly by Simms Taback. For example, children might program a
robot to do a wild rumpus dance, recalling special moments from the books they
have read, or they might write and animate their own alternative story endings in
ScratchJr. The lessons identify powerful ideas from both computer science and
literacy and are aligned to academic frameworks of Common Core literacy stand-
ards (National Governors Association for Best Practices 2010), as well as K-12 CS
frameworks (K-12 Computer Science Framework Steering Committee 2016).

The term powerful idea refers to a central concept or skills within a discipline
that is simultaneously personally useful, inherently interconnected with other disci-
plines, and has roots in intuitive knowledge that a child has internalized over a long
period of time (Papert 1980). The powerful ideas from computer science addressed
in this curriculum include algorithms, design process, representation, debugging,
control structures, modularity, and hardware/software. See Table 2 for a comparison
of each curriculum in terms of the teaching of coding.

The powerful ideas from literacy that are placed in conversation with these pow-
erful ideas from computer science are the writing process, recalling, summarizing
and sequencing, using illustrative and descriptive language, recognizing literary
devices such as repetition and foreshadowing, and using reading strategies such as
predicting, summarizing, and evaluating. Teachers are encouraged to use the CAL
curriculum as a guiding resource and to adapt lessons and activities to their needs

520 J. Comput. Educ. (2019) 6(4):499–528

1 3

Ta
bl

e
2

 E
m

er
ge

nt
 a

nd
 R

ea
de

r’s
 c

ur
ric

ul
um

 u
ni

ts
 fo

r b
ot

h
K

IB
O

 a
nd

 S
cr

at
ch

Jr

To
ol

s
Em

er
ge

nt
 re

ad
er

s
Pr

og
ra

m
m

in
g

bl
oc

ks
Re

ad
er

s
Pr

og
ra

m
m

in
g

bl
oc

ks

K
IB

O
B

oo
k:

 T
he

re
 W

as
 a

n
O

ld
 L

ad
y

W
ho

 S
wa

llo
we

d
a

Fl
y

by
 S

im
m

s T
ab

ac
k

B
oo

k:
 W

he
re

 th
e

W
ild

 T
hi

ng
s A

re
 b

y
M

au
ric

e
Se

nd
ak

Le
ss

on
 1

:
Fo

un
da

tio
ns

U
np

lu
gg

ed
Fo

un
da

tio
ns

U
np

lu
gg

ed
Le

ss
on

 2
:

Te
ch

no
lo

gi
es

 a
nd

 R
ob

ot
s

B
eg

in
, E

nd
, B

lu
e

M
ot

io
n

Te
ch

no
lo

gi
ca

l T
oo

ls
B

eg
in

, E
nd

, B
lu

e
M

ot
io

n
Le

ss
on

 3
:

Se
qu

en
ci

ng
B

ee
p,

 S
in

g +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n
Se

qu
en

ci
ng

B
ee

p,
 S

in
g +

 B
eg

in
, E

nd
, B

lu
e

M
ot

io
n

Le
ss

on
 4

:
Ta

ki
ng

 C
ar

e
of

 O
ur

 M
at

er
ia

ls
Ye

llo
w

 L
ig

ht
 +

 B
eg

in
, E

nd
, B

lu
e

M
ot

io
n,

 B
ee

p,
 S

in
g

Pr
og

ra
m

m
in

g
Ye

llo
w

 L
ig

ht
 +

 B
eg

in
, E

nd
, B

lu
e

M
ot

io
n,

 B
ee

p,
 S

in
g

Le
ss

on
 5

:
Pr

og
ra

m
m

er
 a

nd
 A

ut
ho

r
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,

Ye
llo

w
 L

ig
ht

D
eb

ug
gi

ng
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,

Ye
llo

w
 L

ig
ht

Le
ss

on
 6

:
Pr

og
ra

m
m

in
g

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 B
ee

p,
 S

in
g,

Ye

llo
w

 L
ig

ht
C

au
se

 a
nd

 E
ffe

ct
—

Le
ve

l 1
W

ai
t f

or
 C

la
p,

 S
ou

nd
 S

en
so

r,
O

ra
ng

e
So

un
d

Re
co

rd
er

 +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,
 Y

el
lo

w
 L

ig
ht

Le
ss

on
 7

:
D

eb
ug

gi
ng

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 B
ee

p,
 S

in
g,

Ye

llo
w

 L
ig

ht
C

au
se

 a
nd

 E
ffe

ct
—

Le
ve

l 2
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,

Ye
llo

w
 L

ig
ht

, W
ai

t f
or

 C
la

p,
 S

ou
nd

Se

ns
or

, O
ra

ng
e

So
un

d
Re

co
rd

er
Le

ss
on

 8
:

C
au

se
 a

nd
 E

ffe
ct

W
ai

t f
or

 C
la

p,
 S

ou
nd

 S
en

so
r +

 B
eg

in
,

En
d,

 B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,
 Y

el
-

lo
w

 L
ig

ht

Re
pe

at
 L

oo
ps

—
Le

ve
l 1

Re
pe

at
, E

nd
 R

ep
ea

t,
N

um
be

r p
ar

am
-

et
er

s +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,

Be
ep

, S
in

g,
 Y

el
lo

w
 L

ig
ht

, W
ai

t f
or

C

la
p,

 S
ou

nd
 S

en
so

r,
O

ra
ng

e
So

un
d

Re
co

rd
er

Le
ss

on
 9

:
Re

pe
at

 L
oo

ps
Re

pe
at

, E
nd

 R
ep

ea
t,

N
um

be
r p

ar
am

-
et

er
s +

 B
eg

in
, E

nd
, B

lu
e

M
ot

io
n,

Be

ep
, S

in
g,

 Y
el

lo
w

 L
ig

ht
, W

ai
t f

or

C
la

p,
 S

ou
nd

 S
en

so
r

Re
pe

at
 L

oo
ps

—
Le

ve
l 2

Li
gh

t a
nd

 D
ist

an
ce

 se
ns

or
, g

ra
y

se
ns

or

pa
ra

m
et

er
 +

 B
eg

in
, E

nd
, B

lu
e

M
ot

io
n,

Be

ep
, S

in
g,

 Y
el

lo
w

 L
ig

ht
, W

ai
t f

or

C
la

p,
 S

ou
nd

 S
en

so
r,

O
ra

ng
e

So
un

d
Re

co
rd

er
, R

ep
ea

t,
En

d
Re

pe
at

, N
um

-
be

r p
ar

am
et

er
s

521

1 3

J. Comput. Educ. (2019) 6(4):499–528

Ta
bl

e
2

 (c
on

tin
ue

d)

To
ol

s
Em

er
ge

nt
 re

ad
er

s
Pr

og
ra

m
m

in
g

bl
oc

ks
Re

ad
er

s
Pr

og
ra

m
m

in
g

bl
oc

ks

Le
ss

on
 1

0:
Fi

na
l P

ro
je

ct
—

C
ha

ra
ct

er
iz

at
io

n
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,

Ye
llo

w
 L

ig
ht

, W
ai

t f
or

 C
la

p,
 S

ou
nd

Se

ns
or

, R
ep

ea
t,

En
d

Re
pe

at
, N

um
-

be
r p

ar
am

et
er

s

If
 S

ta
te

m
en

ts
If

, E
nd

 If
, p

ur
pl

e
se

ns
or

 p
ar

am
-

et
er

s +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,

Be
ep

, S
in

g,
 Y

el
lo

w
 L

ig
ht

, W
ai

t f
or

C

la
p,

 S
ou

nd
 S

en
so

r,
O

ra
ng

e
So

un
d

Re
co

rd
er

, R
ep

ea
t,

En
d

Re
pe

at
,

N
um

be
r p

ar
am

et
er

s,
G

ra
y

se
ns

or

pa
ra

m
et

er
Le

ss
on

 1
1:

Fi
na

l P
ro

je
ct

—
Re

te
lli

ng
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,

Ye
llo

w
 L

ig
ht

, W
ai

t f
or

 C
la

p,
 S

ou
nd

Se

ns
or

, R
ep

ea
t,

En
d

Re
pe

at
, N

um
-

be
r p

ar
am

et
er

s

Fi
na

l P
ro

je
ct

—
W

rit
in

g
th

e
W

ild

Ru
m

pu
s C

om
po

si
tio

n
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 B

ee
p,

 S
in

g,

Ye
llo

w
 L

ig
ht

, W
ai

t f
or

 C
la

p,
 S

ou
nd

Se

ns
or

, O
ra

ng
e

So
un

d
Re

co
rd

er
,

Re
pe

at
, E

nd
 R

ep
ea

t,
N

um
be

r p
ar

am
-

et
er

s,
gr

ay
 se

ns
or

 p
ar

am
et

er
, I

f,
En

d
If,

 p
ur

pl
e

se
ns

or
 p

ar
am

et
er

s
Le

ss
on

 1
2:

Fi
na

l P
ro

je
ct

—
Ex

pa
ns

io
n

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 B
ee

p,
 S

in
g,

Ye

llo
w

 L
ig

ht
, W

ai
t f

or
 C

la
p,

 S
ou

nd

Se
ns

or
, R

ep
ea

t,
En

d
Re

pe
at

, N
um

-
be

r p
ar

am
et

er
s

Fi
na

l P
ro

je
ct

—
C

od
in

g
th

e
W

ild

Ru
m

pu
s

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 B
ee

p,
 S

in
g,

Ye

llo
w

 L
ig

ht
, W

ai
t f

or
 C

la
p,

 S
ou

nd

Se
ns

or
, O

ra
ng

e
So

un
d

Re
co

rd
er

,
Re

pe
at

, E
nd

 R
ep

ea
t,

N
um

be
r p

ar
am

-
et

er
s,

gr
ay

 se
ns

or
 p

ar
am

et
er

, I
f,

En
d

If,
 p

ur
pl

e
se

ns
or

 p
ar

am
et

er
s

Sc
ra

tc
hJ

r
B

oo
k:

 K
nu

ffl
e

Bu
nn

y
by

 M
o

W
ill

em
s

B
oo

k:
 G

ira
ffe

s C
an

’t
D

an
ce

 b
y

G
ile

s A
nd

re
ae

 a
nd

 G
uy

 P
ar

ke
r-R

ee
s

Le
ss

on
 1

:
Ta

ki
ng

 C
ar

e
of

 M
at

er
ia

ls
U

np
lu

gg
ed

Fo
un

da
tio

ns
Le

ss
on

 1
: U

np
lu

gg
ed

Le
ss

on
 2

:
W

ha
t I

s a
 P

ro
gr

am
?

B
eg

in
, E

nd
, B

lu
e

M
ot

io
n

W
ha

t I
s a

 P
ro

gr
am

?
B

eg
in

, E
nd

, B
lu

e
M

ot
io

n +
 G

o
to

 P
ag

e
En

d
Le

ss
on

 3
:

B
eg

in
ni

ng
, M

id
dl

e
&

 E
nd

B
eg

in
, E

nd
, B

lu
e

M
ot

io
n

Se
qu

en
ci

ng
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n
Le

ss
on

 4
:

Pr
og

ra
m

m
er

s a
nd

 A
ut

ho
rs

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n

C
ha

ra
ct

er
s

Pu
rp

le
 B

lo
ck

s +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n
Le

ss
on

 5
:

W
ha

t I
s a

 C
ha

ra
ct

er
?

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n

Pr
og

ra
m

m
in

g
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 P

ur
pl

e
Bl

oc
ks

522 J. Comput. Educ. (2019) 6(4):499–528

1 3

Ta
bl

e
2

 (c
on

tin
ue

d)

To
ol

s
Em

er
ge

nt
 re

ad
er

s
Pr

og
ra

m
m

in
g

bl
oc

ks
Re

ad
er

s
Pr

og
ra

m
m

in
g

bl
oc

ks

Le
ss

on
 6

:
C

ha
ra

ct
er

s C
an

 T
al

k!
Re

co
rd

 +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n
D

eb
ug

gi
ng

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 P
ur

pl
e

Bl
oc

ks
Le

ss
on

 7
:

W
ha

t I
s t

he
 S

et
tin

g?
G

o
To

 P
ag

e
En

d +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,
 R

ec
or

d
D

et
ai

ls
Sp

ee
d,

 W
ai

t T
im

e +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,
 P

ur
pl

e
B

lo
ck

s
Le

ss
on

 8
:

Se
qu

en
ci

ng
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 R

ec
or

d,
 G

o
to

 P
ag

e
En

d
C

au
se

 a
nd

 E
ffe

ct
—

Pa
rt

1
Re

pe
at

 +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,

Sp
ee

d,
 W

ai
t T

im
e,

 P
ur

pl
e

B
lo

ck
s

Le
ss

on
 9

:
H

ig
h

Fi
ve

 R
et

el
l

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 R
ec

or
d

C
au

se
 a

nd
 E

ffe
ct

—
Pa

rt
2

St
ar

t o
n

Ta
p,

 S
ou

nd
 R

ec
or

de
r +

 B
eg

in
,

En
d,

 B
lu

e
M

ot
io

n,
 S

pe
ed

, W
ai

t T
im

e,

Pu
rp

le
 B

lo
ck

s,
Re

pe
at

Le
ss

on
 1

0:
Se

lf
Po

rtr
ai

ts
—

I C
an

 b
e

a
C

ha
ra

ct
er

!
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 R

ec
or

d
C

au
se

 a
nd

 E
ffe

ct
—

Pa
rt

3
M

es
sa

ge
, S

ta
rt

on
 M

es
sa

ge
, S

ta
rt

on

B
um

p +
 B

eg
in

, E
nd

, B
lu

e
M

ot
io

n,

Sp
ee

d,
 W

ai
t T

im
e,

 P
ur

pl
e

Bl
oc

ks
,

Re
pe

at
, S

ta
rt

 o
n

Ta
p,

 S
ou

nd
 R

ec
or

de
r

Le
ss

on
 1

1:
St

or
y

Ti
m

e—
Pa

rt
1

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 R
ec

or
d

Fi
na

l P
ro

je
ct

—
Pa

rt
1

Be
gi

n,
 E

nd
, B

lu
e

M
ot

io
n,

 S
pe

ed
, W

ai
t

Ti
m

e,
 P

ur
pl

e
Bl

oc
ks

, R
ep

ea
t,

St
ar

t o
n

Ta
p,

 S
ou

nd
 R

ec
or

de
r,

M
es

sa
ge

, S
ta

rt

on
 M

es
sa

ge
, S

ta
rt

 o
n

Bu
m

p
Le

ss
on

 1
2:

St
or

y
Ti

m
e—

Pa
rt

2
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 R

ec
or

d
Fi

na
l P

ro
je

ct
—

Pa
rt

2
Be

gi
n,

 E
nd

, B
lu

e
M

ot
io

n,
 S

pe
ed

, W
ai

t
Ti

m
e,

 P
ur

pl
e

Bl
oc

ks
, R

ep
ea

t,
St

ar
t o

n
Ta

p,
 S

ou
nd

 R
ec

or
de

r,
M

es
sa

ge
, S

ta
rt

on

 M
es

sa
ge

, S
ta

rt
 o

n
Bu

m
p

Pr
og

ra
m

m
in

g
bl

oc
ks

 th
at

 h
ad

n’
t p

re
vi

ou
sly

 b
ee

n
in

tro
du

ce
d,

 a
re

 n
ot

 it
al

ic
iz

ed
 a

nd
 a

re
 a

t t
he

 b
eg

in
ni

ng
 o

f t
he

 p
ro

gr
am

m
in

g
bl

oc
ks

 li
st

523

1 3

J. Comput. Educ. (2019) 6(4):499–528

of their students, as well as choose their own favorite books. The CAL curriculum
can also be downloaded as PDF documents and is explicitly designed to help chil-
dren move through six coding stages: emergent, coding and decoding, fluency, new
knowledge, multiple perspective, and purposefulness.

The free curriculum can be accessed through a website (URL: https ://sites .tufts
.edu/codin gasli terac y/), see Fig. 3, that catalogues the units based on reading level
and the programming language that is being used (the KIBO robotics kit or the tablet-
based ScratchJr). In addition to a summary of each lesson in the units, the website also
includes videos and tutorials to assist teachers by providing model lessons, as they

Fig. 3 Screen capture of the website hosting the CAL Curriculum

https://sites.tufts.edu/codingasliteracy/
https://sites.tufts.edu/codingasliteracy/

524 J. Comput. Educ. (2019) 6(4):499–528

1 3

navigate through the curriculum, curricular resources, and teaching materials such tem-
plates for design journals, as well as assessment tools.

Conclusion

Computer science education is growing and expanding to the early years. How-
ever, it is not enough to copy models used in later schooling—which mostly grew
out of the STEM disciplines. Programming languages and pedagogies need to be
developmentally appropriate for young children. Language plays an important
role in early childhood, a time in which children are learning to read and write.
The CAL approach described here leverages the teaching of literacy by broad-
ening the range of languages children are exposed to, including programming
languages. Just like with natural languages, learning how to program involves
learning how to use a symbolic system, its syntax and grammar, to express and
communicate ideas.

The field of literacy education has developed instructional strategies based on
research-based evidence that shows learning trajectories in the development of
reading and writing to become a literate person. The field of early computer sci-
ence education is just starting to emerge and therefore coding stages are not yet
clearly defined or thoroughly investigated. It might be, for example, that the six
coding stages presented here for early childhood could also apply to program-
ming novices of any age.

The goal of this paper is to present a different approach for computer science
education in early childhood, CAL, which supports the teaching of programming
as a literacy by providing a scope and sequence of curricular activities that help
children move through six different coding stages or learning progressions. The
vignettes in this paper are not intended to fully characterize each of these stages,
but to demonstrate the basic principles that root the CAL approach, likening pro-
gramming fluency to literacy development. In summary, CAL is based on the fol-
lowing principles:

a. Strategies used in literacy education can be helpful for teaching children how to
code.

b. Coding projects can provide opportunities for children’s sense-making and expres-
sion.

c. Problem solving can serve as a means toward self-expression and communication.
d. Coding activities can engage children in thinking about powerful ideas from

computer science, as well as other domains.

A conceptualization of programming that is not solely STEM-based may help
combat the stigma associated with STEM disciplines and attract a wider range of
children to computer science. Thus, decades of scholarly work and teaching prac-
tices on language development and reading and writing instruction can provide
new pathways that inform the early teaching of computer science.

525

1 3

J. Comput. Educ. (2019) 6(4):499–528

If education aims at helping people think creatively to solve the problems of
our world, only a subset of those problems can be solved by STEM disciplines.
As more people learn to code and computer programming leaves the exclusive
domain of computer science to become integral to other professions, it is more
important than ever that we develop computer science pedagogies that promote
deep and thorough engagement for everyone starting in early childhood.

Acknowledgements The author is deeply thankful to members of the DevTech research group at Tufts
University, and to Ziva Hassenfeld for discussions of these materials, Amanda Strawhacker and Anne
Drescher for help with manuscript editing, and Riva Dhamala for help with table and formatting.

References

Abelson, H., & DiSessa, A. (1981). Turtle geometry: The computer as a medium for exploring mathemat-
ics (The mit press series in artificial intelligence). Cambridge, MA: MIT Press.

Alexander, R. J. (2008). Towards dialogic teaching: Rethinking classroom talk. Cambridge: Dialogos.
Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big code

and naturalness. ACM Computing Surveys (CSUR), 51(4), 81.
Barrouillet, P., & Lecas, J. (1999). Mental models in conditional reasoning and working memory. Think-

ing & Reasoning, 5(4), 289–302.
Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York,

NY: Teachers College Press.
Bers, M. (2012). Designing Digital experiences for positive youth development: from playpen to play-

ground. Oxford: Oxford University Press.
Bers, M. (2018a). Coding as a playground: Computational thinking and programming in early childhood.

London, UK: Routledge.
Bers, M. U. (2018b). Coding, playgrounds and literacy in early childhood education: The development

of KIBO Robotics and ScratchJr. In 2018 IEEE Global Engineering Education Conference (EDU-
CON), 2100.

Bers, M. (2019). Coding as another language: Why computer science in early childhood should not be
stem. In Key Issues in Technology and Early Childhood (Editor Chip Donohue). NY: Routledge.

Bers, M., & Resnick, M. (2015). The official ScratchJr Book: Help your kids learn to code. San Fran-
cisco, CA: No Starch Press.

Bialystok, E. (1991). Letters, sounds, and symbols: Changes in children’s understands of written lan-
guage. Applied Psycholinguistics., 12, 75–89.

Bredekamp, S. (1987). Developmentally appropriate practice in early childhood pro- grams serving chil-
dren from birth through age 8. Washington, DC: National Association for the Education of Young
Children.

Carnine, D. W., Silbert, J., Kame’enui, E., Tarver, S., & Jungjohann, K. (2006). Teaching struggling and
at-risk readers: A direct instruction approach. Upper Saddle River, NJ: Pearson.

Chall, J. S. (1983). Stages of reading development. New York: McGraw-Hill.
Clarke, S., Resnick, L. B., & Rosé, C. P. (2015). Dialogic instruction: A new frontier (3rd ed., pp. 378–

389). New York: Handbook of Educational Psychology.
Clements, D. H. (2007). Curriculum research: Toward a framework for research-basedCu rricula. Journal

for Research in Mathematics Education, 38(1), 35–70.
Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical

Thinking and Learning, 6, 81–89.
Code.org. (2018). 2018 annual report. Seattle, WA. Retrieved from https ://code.org/files /annua l-repor

t-2018.pdf.
Code.org. (2019). https ://code.org/.
Cunha, F., & Heckman, J. (2007). The technology of skill formation. American Economic Review, 97(2),

31–47.
Dalbey, J., & Linn, M. C. (1985). The demands and requirements of computer programming: A literature

review. Journal of Educational Computing Research, 1(3), 253–274.

https://code.org/files/annual-report-2018.pdf
https://code.org/files/annual-report-2018.pdf
https://code.org/

526 J. Comput. Educ. (2019) 6(4):499–528

1 3

Dehaene, S. (2010). Reading in the Brain: The new science of how we read. New York: Penguin Books.
de Strulle, A., & Shen, C. (n.d.). STEM + Computing K-12 Education (STEM + C). National Science

Foundation. Retrieved from https ://wwwns f.gov/fundi ng/pgm_summ.jsp?pims_id=50500 6.
Duke, N., & Pearson, P. D. (2002). Effective practices for developing reading comprehension. In A. Far-

strup & S. Samuels (Eds.), What research has to say about readinginstruction (3rd ed., pp. 205–
242). Newark, DE: International Reading Association.

Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO robotics kit in pre-
school classrooms. Computers in the Schools, 33(3), 169–186. https ://doi.org/10.1080/07380
569.2016.12162 51.

Fayer, S., Lacey, A., & Watson, A. (2017). BLS spotlight on statistics: STEM occupations-past, present,
and future. Washington, DC: U.S. Department of Labor, Bureau of Labor Statistics.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (In press). The language of programming: A
cognitive perspective. Trends in Cognitive Development.

Ferreiro, E., & Teberosky, A. (1982). Literacy before schooling. Exeter, NH: Heinemann.
Floyd, B., Santander, T., & Weimer, W. (2017). Decoding the representation of code in the brain: An

fMRI study of code review and expertise. In Proceedings of the 39th International Conference on
Software Engineering (pp. 175–186). IEEE Press.

Fox, B., & Saracho, O. (1990). Emergent writing: Young children solving the written language puzzle.
Early Child Development and Care., 56, 81–90.

Gadanidis, G. (2017). Five affordances of computational thinking to support elementary mathematics
education. Journal of Computers in Mathematics and Science Teaching, 36(2), 143–151.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educa-
tional Researcher, 42(1), 38–43. https ://doi.org/10.3102/00131 89X12 46305 1.

Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of the ACM,
51(8), 25–27. https ://doi.org/10.1145/13787 04.13787 13.

Guzdial, M., & Morrison, B. (2016). Seeking to making computing education as available as mathemat-
ics or science education. Communications of the ACM, 59(11), 31–33.

Heckman, J., & Masterov, D. (2007). The productivity argument for investing in young children. Review
of Agricultural Economics, 29(3), 446–493.

Hubwieser, P., Armoni, M., Giannakos, M. N., & Mittermeir, R. T. (2014). Perspectives and visions of
computer science education in primary and secondary (K-12) schools. ACM Transactions on Com-
puting Education, 14(2), 7.

Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with causal conditionals.
Developmental Psychology, 35(4), 904–911.

Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the 3rd Annual. Confer-
ence of the LTSN Centre for Information and Computer Sciences (pp. 53–58). Leeds, UK. Retrieved
from http://www.psy.gla.ac.uk/~steve /local ed/jenki ns.html.

K-12 Computer Science Framework Steering Committee. (2016). K–12 computer science framework.
Retrieved from https ://k12cs .org.

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a
digital world. Mahwah, NJ: Erlbaum.

Littleton, K., & Howe, C. (2010). Educational dialogues: understanding and promoting productive inter-
action. London: Routledge.

Lockwood, J., & Mooney, A. (2018). Computational thinking in education: Where does it fit? A system-
atic literary review. International Journal of Computer Science Education in Schools, 2(1), 41–60.
https ://doi.org/10.21585 /ijcse s.v2i1.26.

Lonigan, C. J., Schatschneider, C., & Westberg, L. (2008). Developing early literacy: Report of the
National Early Literacy Panel. Washington, DC: National Institute for Literacy. Identification of
children’s skills and abilities linked to later outcomes in reading, writing, and spelling (pp. 55–106).

Madill, H., Campbell, R. G., Cullen, D. M., Armour, M. A., Einsiedel, A. A., Ciccocioppo, A. L., et al.
(2007). Developing career commitment in STEM-related fields: Myth versus reality. In R. J. Burke,
M. C. Mattis, & E. Elgar (Eds.), Women and minorities in science, technology, engineering and
mathematics: Upping the numbers (pp. 210–244). Northhampton, MA: Edward Elgar Publishing.

Markert, L. R. (1996). Gender related to success in science and technology. The Journal of Technology
Studies, 22(2), 21–29.

National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010).
Common Core State Standards. National Governors Association Center for Best Practices, Council
of Chief State School Officers, Washington, DC.

https://wwwnsf.gov/funding/pgm_summ.jsp%3fpims_id%3d505006
https://doi.org/10.1080/07380569.2016.1216251
https://doi.org/10.1080/07380569.2016.1216251
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/1378704.1378713
http://www.psy.gla.ac.uk/%7esteve/localed/jenkins.html
https://k12cs.org
https://doi.org/10.21585/ijcses.v2i1.26

527

1 3

J. Comput. Educ. (2019) 6(4):499–528

National Research Council. (2011). Report of a workshop of pedagogical aspects of computational think-
ing. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. Committee on a Conceptual framework for new K-12 science education
standards. Board on Science Education, Division of Behavioral and Social Sciences and Education.
Washington, DC: The National Academies Press.

National Research Council Committee on Early Childhood Pedagogy, Bowman, B., Donovan, S., &
Burns, M. (2001). Eager to learn: Educating our preschoolers. Washington, DC: National Academy
Press.

Norman, K. L. (2017). Cyberpsychology: An introduction to human-computer interaction. Cambridge:
Cambridge University Press.

Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books Inc.
Papert S. (1987). Computer criticism vs. technocentric thinking Educational Researcher (Vol. 16, No. I)

January/February 1987.
Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New

Ideas in Psychology, 2, 137–168.
Pearson, P. D. (2004). The reading wars. Educational policy, 18(1), 216–252.
Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and math-

ematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75–89. https ://
doi.org/10.1080/10986 065.2018.14035 43.

Perlis, A. J. (1962). The computer in the university. In M. Greenberger (Ed.), Computers and the world of
the future (pp. 180–219). Cambridge, MA: MIT Press.

Piaget, J. (1952). The origins of intelligence in children (Vol. 8, p. 18). New York: International Universi-
ties Press.

Puranik, C., & Lonigan, C. (2011). From scribbles to scrabble: Preschool children’s developing knowl-
edge of written language. Reading and Writing, 24(5), 567–589.

Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects, passion, peers, and
play. Cambridge: MIT Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009).
Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

Resnick, L. B., Michaels, S., & O’Connor, C. (2010). How (well-structured) talk builds the mind. In
D. Preiss & R. Sternberg (Eds.), Innovations in educational psychology: Perspectives on learning,
teaching and human development (pp. 163–194). New York: Springer.

Resnick, M., & Siegel, D. (2015). A different approach to coding. International Journal of People-Ori-
ented Programming, 4(1), 1–4.

Ryan, M. (2011). The encyclopedia of literary and cultural theory. Hoboken, NJ: Wiley-Blackwell.
Shanahan, T., Callison, K., Carriere, C., Duke, N., Pearson, D., Schatschneider, C., & Torgesen, J.

(2010). Improving reading comprehension in kindergarten through 3rd grade: ies practice guide.
NCEE 2010-4038. What Works Clearinghouse.

Shonkoff, J., Phillips, D., & National Research Council (U.S.). Committee on Integrating the Science of
Early Childhood Development. (2000). From neurons to neighborhoods: The science of early child
development. Washington, DC: National Academy Press.

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., & Brechmann, A. (2014).
Understanding source code with functional magnetic resonance imaging. In Proceedings of the 36th
International Conference on Software Engineering (pp. 378–389). ACM.

STEM Education Act of 2015, House of Representatives 1020, 114th Congress. (2015). Retrieved from
https ://www.congr ess.gov/bill/114th -congr ess/house -bill/1020.

Strawhacker, A. L., & Bers, M. U. (2015). I want my robot to look for food: Comparing children’s pro-
gramming comprehension using tangible, graphical, and hybrid user interfaces. International Jour-
nal of Technology and Design Education, 25(3), 293–319.

Sulzby, E. (1989). Assessment of writing and of children’s language while writing. In L. Morrow & J.
Smith (Eds.), The role of assessment and measurement in early literacy instruction (pp. 83–109).
Prentice-Hal: Englewood Cliffs, NJ.

Sulzby, E., & Teale, W. (1991). Emergent literacy. In R. Barr, M. Kamil, P. Mosenthal, & P. D. Pearson
(Eds.), Handbook of reading research (Vol. 2, pp. 727–758). New York: Longman.

Tolchinsky, L. (2003). The cradle of culture and what children know about writing and numbers before
being taught. Mahwah, NJ: Lawrence Erlbaum Associates.

https://doi.org/10.1080/10986065.2018.1403543
https://doi.org/10.1080/10986065.2018.1403543
https://www.congress.gov/bill/114th-congress/house-bill/1020

528 J. Comput. Educ. (2019) 6(4):499–528

1 3

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition Studies,
1(2), 42–64. https ://doi.org/10.21623 /1.1.2.4.

Vizner, M. Z. (2017). Big robots for little kids: Investigating the role of sale in early childhood robot-
ics kits (Master’s thesis). Available from ProQuest Dissertations and Theses database. (UMI No.
10622097).

Vygotsky, L. S. (1978). Mind in society: The Development of higher psychological processes. Cambridge,
MA: Harvard University Press.

Whitehurst, G., & Lonigan, C. (2001). Emergent literacy: Development from prereaders to readers. In S.
B. Neuman & D. K. Dickensen (Eds.), Handbook of early literacy research (pp. 11–29). New York:
Guilford Press.

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to teach
K-12 computer science in the digital age. New York, NY: The Association for Computing Machin-
ery and the Computer Science Teachers Association.

Wing, J. (2006a). Computational thinking. Communications of Advancing Computing Machinery, 49(3),
33–36. https ://doi.org/10.1145/11181 78.11182 15.

Wing, J. M. (2006b). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wing, J. (2011). Research notebook: Computational thinking—What and why? The link magazine,

Spring. Carnegie Mellon University, Pittsburgh. Retrieved from https ://www.cs.cmu.edu/link/resea
rch-noteb ookco mputa tiona l-think ing-what-and-why.

Wittgenstein, Ludwig. (1997). Philosophical Investigations. Trans. G.E.M. Anscombe (2nd ed.). Cam-
bridge: Blackwell. Print.

Wolf, M., & Stoodley, C. J. (2007). Proust and the squid: The story and science of the reading brain (1st
ed.). New York, NY: HarperCollins.

Publisher’s Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Marina Umaschi Bers is a professor and chair at the Eliot-Pearson Department of Child Study and
Human Development and an adjunct professor in the Computer Science Department at Tufts University,
where she heads the interdisciplinary Developmental Technologies (DevTech) research group. She also
developed and serves as director of the graduate certificate program on Early Childhood Technology at
Tufts University. Her research involves the design and study of innovative learning technologies to pro-
mote children’s positive development, most specifically in early childhood. She co-designed the ScratchJr
programming language and she developed the KIBO robot kit for children 4 to 7 years old, which can be
programmed with wooden blocks without using keyboards or screens. She received a MEd from Boston
University and an MS and PhD from the MIT Media Laboratory working with Seymour Papert. Her
philosophy, pedagogical and theoretical approach can be found in her latest book “Coding as Playground:
Programming and Computational Thinking in the Early Childhood Classroom” (Routledge, 2018).

https://doi.org/10.21623/1.1.2.4
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebookcomputational-thinking-what-and-why

	Coding as another language: a pedagogical approach for teaching computer science in early childhood
	Abstract
	Introduction: new ways of thinking through computer science
	Coding in early childhood
	The traditional perspective: coding as STEM
	An alternative perspective: coding as another language
	Coding stages
	Emergent stage
	Coding and decoding stage
	Fluency stage
	New knowledge stage
	Multiple perspectives stage
	Purposefulness stage

	The CAL curriculum
	Conclusion
	Acknowledgements
	References

