
Running Head: COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING

ACHIEVEMENT

Dancing the “Robot Hokey-Pokey”:

Cognitive Developmental Level as a Predictor of Programming Achievement

A thesis submitted by

Louise P. Flannery

In partial fulfillment of the requirements

for the degree of

Master of Arts in

Child Development

Tufts University

November, 2011

Advisor: Marina Bers

Committee: Marina Bers, Ph.D.; David Henry Feldman, Ph.D.; Bakhtiar Mikhak, Ph.D.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT ii

Acknowledgements

I would like to begin by expressing my gratitude to my thesis committee members, Professors

Marina Bers, David Henry Feldman, and Bakhtiar Mikhak, for supporting and challenging me

over the past two years and throughout the process of putting together this thesis. Their insights

and honest critiques have been invaluable. I also want to acknowledge the foundational work

without which this thesis would not exist: the dedicated and creative research done through the

TangibleK Robotics Project over the past three years by Marina, fellow students Elizabeth

Kazakoff, Jordan Crouser, and David Kiger, and my predecessors Michael Horn, and Rachel

Fein. Finally, I extend my appreciation to Matt, who continually challenges me to expand my

ideas and goals.

The TangibleK Robotics Project was supported by National Science Foundation Grant #DRL-

0735657. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the views of the National Science

Foundation.

© 2011 Louise Flannery

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT iii

Table of Contents

Acknowledgements ... ii

List of Tables .. viii

List of Figures .. ix

Abstract ... x

Chapter 1: Introduction ... 1

Chapter 2: The TangibleK Robotics Project ... 5

Overview of the Technologies .. 6

Overview of the TangibleK One-on-One Study.. 8

Chapter 3: Children‟s Computer Programming .. 10

Theory and Research on the Benefits of Programming for Children 10

Skills for a creative 21
st
 century society. ...11

Constructionist learning. ... 14

Computational thinking. ... 15

High-level cognition. .. 16

The importance of context. ... 18

Novice Programming .. 21

Examples of Children's Programming Technologies .. 25

Chapter 4: The Cognitive Development of Four- to Six-Year-Olds ... 29

Contemporary Perspectives on Piaget .. 29

Feldman-Revised Piagetian Stages ... 33

Pre-operational thought and symbol systems. .. 34

The transition towards concrete operations. ... 35

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT iv

Concrete operations. ... 36

Cognitive Styles .. 37

Contextual Factors .. 39

Chapter 5: Research Design .. 41

Research Questions ... 41

Hypotheses .. 42

Variables .. 42

Cognitive developmental level. .. 43

Programming approach. .. 45

Programming achievement. .. 45

Individual and contextual factors. ... 47

Sequencing. ... 48

Demographics. .. 48

Child experience. .. 48

Parental education and experience. ... 49

Sample... 49

Inclusion criteria. .. 49

Sample demographics. .. 50

Data Collection ... 51

Analysis Methods.. 54

Chapter 6: Results ... 54

Developmental Patterns .. 55

Comparison of developmental levels. ... 55

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT v

Pre-operations, phase 2. .. 58

Case study 1. ... 58

Transitional. .. 61

Case study 2: transitional phase. ... 63

Concrete operations, phase 1. ... 65

Case study 3: concrete operations, phase 1. .. 66

Developmental Level and Achievement ... 68

Individual Differences .. 73

Children‟s demographics. ... 73

Children‟s computer, programming, and robotics experience. ... 73

Parental education and STEM background. .. 74

Novice Difficulties .. 75

Chapter 7: Discussion ... 78

Implications for Programming in Early Childhood .. 81

Learning expectations and curricula. .. 81

Programming and robotics tools. .. 84

Limitations of the Study .. 86

Future Directions .. 89

Chapter 8: Conclusions ... 90

References ... 95

Appendix A – Resources for Learning to Use CHERP with RCX™ Robots 103

Parts of a Lego™ RCX Robot .. 104

Building a Program with CHERP ... 105

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT vi

Downloading a Program to a Robot.. 106

Appendix B – Variables and Instruments .. 107

Overview of Conceptual Variables ... 108

Primary Analysis Variables, Measures, and their Derivations .. 109

Map of Cognitive Developmental Characteristics to Programming Behaviors110

Cognitive Stage Markers in Programming Rubric ... 111

Correspondence Achievement Rubric ..112

Hokey-Pokey Program Completeness Assessment Rubric ..113

Secondary Analysis Variables, Measures, and their Derivations ...114

Statistical Methods Employed ...115

Appendix C – Results ..116

Mean age of each cognitive developmental level. ...117

Frequency of correspondence scores within the entire sample. ...118

Frequency of program completeness scores within the entire sample.119

Programming Achievement by Cognitive Developmental Level ... 120

Mean correspondence score by cognitive developmental level. ... 121

Mean program completeness by cognitive developmental level. ... 122

Programming Achievement by Goal Orientation ... 123

Mean correspondence score by cognitive developmental level of goal orientation. 124

Mean program completeness by cognitive developmental level of goal orientation. 125

Programming Achievement by Initial Program Approach .. 126

Mean correspondence score by cognitive developmental level of initial strategy. 127

Mean program completeness by cognitive developmental level of initial strategy. 128

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT vii

Programming Achievement by Debugging Approach .. 129

Mean correspondence score by cognitive developmental level of debugging strategy. 130

Mean program completeness by cognitive developmental level of debugging strategy. 131

Sequencing Scores by Developmental Level .. 132

Programming Achievement by Sequencing Scores .. 133

Child and Parent Background and Correspondence Achievement ... 134

Child and Parent Background and Program Completeness Achievement 135

Appendix D – Robotics and Programming Figures .. 136

The robotic car components and a complete RCX™ robotic vehicle..................................... 137

CHERP‟s tangible interface .. 138

On-screen features of the CHERP interface. .. 139

CHERP‟s communication technology .. 140

CHERP programming instructions available during the Hokey-Pokey challenge. 141

The expected solution program for the Hokey-Pokey challenge. ... 142

A Hokey-Pokey program made in the Scratch programming language 143

A Hokey-Pokey program made in the WeDo™ programming language 144

Hypothesized relationships among the predictor and outcome variables and the areas impacted

by implications of the results .. 145

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT viii

List of Tables

Table B1: Overview of Conceptual Variables…………………………………………………..117

Table B2: Primary Analysis Variables, Measures, and their Derivations………………………118

Table B3: Map of Cognitive Developmental Characteristics to Programming Behaviors …….119

Table B4: Cognitive Stage Markers in Programming Rubric…………………………………..120

Table B5: Secondary Analysis Variables, Measures, and their Derivations……………………123

Table B6: Statistical Methods Employed……………………………………………………….124

Table C1: Programming Achievement by Cognitive Developmental Level…………………...129

Table C2: Programming Achievement by Goal Orientation……………………………………132

Table C3: Programming Achievement by Initial Program Approach………………………….135

Table C4: Programming Achievement by Debugging Approach………………………………138

Table C5: Sequencing Scores by Developmental Level………………………………………..141

Table C6: Programming Achievement by Sequencing Scores…………………………………142

Table C7: Child and Parent Background and Correspondence Achievement………………….143

Table C8: Child and Parent Background and Program Completeness Achievement ………….144

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT ix

List of Figures

Figure C1: Mean Age of each Cognitive Developmental Level………………………………..126

Figure C2: Frequency of Correspondence Scores within the Sample………………………….127

Figure C3: Frequency of Program Completeness Scores within the Sample…...……………...128

Figure C4: Correspondence Scores by Cognitive Developmental Level………………………130

Figure C5: Program Completeness by Cognitive Developmental Level………………….........131

Figure C6: Correspondence Scores by Goal Orientation……………………………………….133

Figure C7: Program Completeness by Goal Orientation……………………………………….134

Figure C8: Correspondence scores by Initial Strategy…………………………………………136

Figure C9: Program Completeness by Initial Strategy………………………………………....137

Figure C10: Correspondence Scores by Debugging Strategy……………………………….....139

Figure C11: Program Completeness by Debugging Strategy.………………………………….140

Figure D1: RCX™ Robotic Parts and a Completed Robot……………………………………146

Figure D2: CHERP Tangible User Interface……….…………………………………………..147

Figure D3: CHERP Graphical User Interface……….………………………………………….148

Figure D4: Downloading Programs from CHERP to a Robot………………………………….149

Figure D5: CHERP Instructions Available During the “Hokey-Pokey” Activity………………150

Figure D6: “Hokey-Pokey” Program made in CHERP………………………………………...151

Figure D7: “Hokey-Pokey” Program Made with Scratch………………………………………152

Figure D8: “Hokey-Pokey” Program Made with WeDo™…………………………………….153

Figure D9. Hypothesized relationships among the predictor and outcome variables and the areas

impacted by implications of the results………………………………………………………...154

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT x

Abstract

Distinctive within the extensive ecosystem of children‟s technologies available today are those

for constructing and exploring digital objects – for instance by building robots and programming

their behaviors. Such technologies have gained popularity as they can be both entertaining and

enriching, especially when designed and used according to cognitive developmental and

constructionist learning principles. The TangibleK Robotics Project has conducted three years of

developmentally driven research on technology designs and learning expectations for CHERP, a

robotics programming tool for kindergarteners. This thesis examines preschoolers‟ and

kindergarteners‟ problem-solving and reasoning during a programming task as a function of their

cognitive developmental level. Results show that while children in late pre-operations engage in

meaningful programming explorations, their work differs qualitatively from that of older

children transitioning into or already in early concrete operations. The findings inform discussion

of developmentally differentiated learning expectations and issues to consider in future

technology revisions.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 1

Chapter 1: Introduction

“Technology is anything that wasn‟t around before you were born,” Alan Kay noted in the

late 1980‟s to point out the difference between how adults and youth perceive the same new tools

(boyd, 2008). Many young children today interact with computers or “technologies” in myriad

forms: electronic learning toys, robotic toys, handheld devices and video games, apps on

smartphones and tablets, social networking sites, 3D virtual worlds, online media, and interactive

or non-linear computer games (Bergen, 2001; Gutnick, Robb, Takeuchi & Kotler, 2011;

NAEYC, 2011; Shuler, 2007). Within the dense ecosystem of technologies children can access,

products that encourage children to construct and explore their own digital content, similarly to

how they build and experiment with physical materials, stand out to parents and educators as

both engaging and enriching (Ito, 2009; Shuler, 2007). As computer technologies become

increasingly inexpensive and ubiquitous, young children are more likely to use them, whether in

formal educational settings or simply because they are available at home. It is crucial that a

developmental perspective inform parents, educators, and technology designers in their work so

that educationally and developmentally productive genres and uses of technology are promoted

across home, school, and industry contexts as well as throughout childhood.

The purpose of this thesis is to systematically incorporate a cognitive developmental

perspective into research at the intersection of early childhood learning and new technologies.

Developmentally-based understandings of young children‟s cognition are crucial to effectively

shape learning expectations, curricula, and the design of appropriate learning materials. The

analysis presented here makes use of cognitive developmental and other data based on a

programming activity completed by each of 36 children as part of the TangibleK Robotics

Project. A new procedure was constructed for assessing three Piaget-based sub-stages of

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 2

cognitive development based on the programming activities. Findings from this analysis can

inform further work on the role of cognitive development and technology use, the adoption of

differentiated learning expectations and curricula for programming (of robots) throughout the

early childhood years, and the design of new technologies for this complex and engaging

activity.

The novel technological tools seen today are many and diverse, but the debates they

inspire reflect continuities in the social and cultural context over the past several decades. Each

new form of media since the radio broadcast has raised strong concerns by some as well as

fervent optimism by others over its impact on children‟s cognitive, social, physical, and moral

development (Ito, 2009; Wartella & Jennings, 2000). Product developers, educators, parents, and

policy-makers justifiably continue to debate whether and how new technologies can

meaningfully impact learning and development as well as provide entertainment, just as they did

two and three decades ago when children‟s software was just entering the market (Ito, 2009). At

the core of these discussions is the worry that new and imperfect technologies inherently

determine how children will use them, a perspective that ignores the fact that societies,

individuals, and technologies mutually shape the roles novel technologies end up filling (Ito,

2009; NAEYC, 2011). Despite decades of theory and research on effective uses of computers for

learning (e.g. Papert, 1993), too often, adults design and use new technologies in limited ways

compared to their potential uses for supporting learning (Bergen, 2001). With the wealth of

technology at their fingertips, youth are often today‟s leaders in using computers to their full

advantage during childhood (New Media Consortium, 2005).

It is not enough, however, to trust that children will construct digital objects and

knowledge on their own (Jenkins, Purushotma, Weigel, Clinton & Robison, 2009). This is where

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 3

education plays a key role. In fact, some of the most pertinent skills for later success that

children can get from their education may be supported by the use of technology and have more

to do with adaptability, creativity, and self-driven learning than any particular domain of factual

knowledge (Resnick, 2007). Technologies which encourage and enable children to design and

create complex and dynamic objects both on- and off-screen fulfill a need in today‟s evolving

educational and work requirements and fill a niche in entertainment as well.

Unfortunately, television dominates the hours most children spend engaged with media

technologies (Gutnick et al., 2011). As children get older and more technologies are available to

them, however (Gutnick et al., 2011), children‟s relationship to technology and media

increasingly draws on the active, creative, and personal (Resnick, 2006) connotations of an

artist‟s „media‟ rather than the passive connotations of television and video „media.‟ Youth today

not only view but also generate, share, and remix digital content, explore interactive simulations,

and participate in rich virtual worlds (Ito, 2009; Shuler, 2007). Children have always explored

and created with the materials around them through activities like drawing, dramatization, and

making models. The kinds of materials available and their affordances, though, have

dramatically changed with the introduction and evolution of computers.

Advancements in both computer technology and in human-computer interactions (Horn,

Solovey & Jacob, 2008) are beginning to provide technological toys and learning tools that

engage children as early as preschool with the genre of creative and cognitively engaging

technological activities that older children currently have available. Technologies for creating

models, dynamic simulations, games, and interactive art by programming them translate

traditional forms of hands-on exploration into the realm of modern materials (Bers, 2008;

Resnick et al., 2009). The iterative process of imagining, programming, exploring, sharing, and

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 4

reflecting on digital creations allows children to assert ownership over the pervasive digital

components of their world (Resnick, 2006).

Programming tools for creating interactive art, games, and robots exist for children,

typically over the age of 7, although some work has been done with even younger children (Bers,

2010). This work tends to be grounded in an iterative design methodology including substantial

laboratory and classroom experience with the relevant age groups (Barab & Squire, 2004;

Brown, 1992), but developmental theory stands to play a more significant role in informing this

work. The more human-computer interaction research merges with developmentally appropriate

practice and is informed by child development research, the more new technologies and effective

curricula can lower the barrier for children‟s rich exploration of the digital world in ways that

respect children‟s unique developmental characteristics and at the same time foster positive

learning and personal outcomes (Cooper, 2005).

Discovering what young children are capable of learning and doing with new

programming technologies is the work of the TangibleK Robotics Project, carried out by the

DevTech Research Group at Tufts University‟s Eliot-Pearson Department of Child Development

(Bers, 2010). The work presented in this thesis examines cognitive developmental differences in

programming seen during one-on-one work with 36 preschool and kindergarten children in a

laboratory-based TangibleK study. The study was designed to capture an in-depth picture of each

child‟s thought processes as they reasoned through a given programming challenge. Wide

variation existed in children‟s programming outcomes and was unaccounted for by measures

assessed during the study. This analysis develops and applies a metric of revised Piagetian stages

of cognitive development as well as a more detailed measure of programming achievement. The

framework for assessing development is presented along with examination of how children‟s

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 5

cognitive approaches to programming varied qualitatively by level of cognitive development.

Correlations between developmental level and programming approaches and achievement are

explored. Other possible cognitive, demographic, parental, and experiential factors outcomes are

examined for comparison. Case studies detail patterns and findings. Results of the analysis are

intended to inform future endeavors to design programming tools and curricula which

purposefully and effectively scaffold children's learning of programming and robotics in

cognitive developmentally appropriate ways.

Chapter 2: The TangibleK Robotics Project

The DevTech Research Group, which has carried out the TangibleK Robotics Project,

explores the intersection of applied developmental theory, learning, and new computer

technologies (Bers, 2010). Its work addresses the fields of technology and engineering, which

have a warranted yet underrepresented place in K-12 education. The TangibleK Robotics Project

in particular introduces kindergarteners to powerful yet age-appropriate technological tools for

building and programming robots (Bers, 2010). Through these materials, young children explore

basic concepts of computer science and computational thinking. They also gain access to a

modern expressive media, which, much like pens or watercolor paints, can be used for a wide

range of personally and academically meaningful endeavors.

More specifically, the TangibleK Robotics Project 1) explores what and how

kindergarteners can learn about programming and robotics through building robotic vehicles and

composing behaviors for them, 2) iteratively tests and refines a curriculum to introduce the core

concepts of programming and robotics, and 3) examines how design features of the programming

and robotics materials best support learning of these domains (Bers, 2010). The project builds on

prior research showing that children can meaningfully explore technological domains given

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 6

materials and pedagogies designed especially for their developmental characteristics (Bers,

2010).

Overview of the Technologies

To understand the research and findings of the TangibleK Robotics Project, it is useful to

keep in mind the technological materials the study participants worked with. In each of the

Project‟s studies, children constructed a robotic vehicle with pre-selected parts from the LEGO®

Mindstorms® robotics construction kit: the RCX™ brick (which contains the „brain‟ of the robot

and has attachment points for other parts), motors, sensors, wires, and wheels (Figure D1).

Traditional LEGO® bricks were available for building non-robotic parts of the vehicle, adding

sturdiness, and personalizing the robot. (An example of a completed vehicle can also be seen in

Figure D1. See Appendix A for a more detailed description of how each robotic part works.)

A defining feature of robots is that they can be given behaviors to carry out automatically.

Programming, or computer programming, is the selection and sequencing of instructions that a

computer will carry out. Programming „languages,‟ „interfaces,‟ „tools,‟ and „environments‟ all

describe overlapping aspects of the hardware and software used to program. In this paper, every

effort is made to use „language‟ to refer to the instruction set, „interface‟ to the means by which a

person constructs a program, and „tools‟ and „environments‟ to the total package of programming

hardware and software.

To give the RCX™ robots behaviors, children used CHERP (the Creative Hybrid

Environment for Robotics Programming). CHERP was developed in a joint effort between the

Tufts University Computer Science and Child Development Departments (DevTech Research

Group, 2010). It is designed for programming vehicle-like robots and expands earlier work on

developmentally appropriate programming tools for children by combining graphical (on-screen)

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 7

and tangible (physical, off-screen) interfaces into a hybrid interface (Bers & Horn; 2010). With

CHERP, a program is made simply by connecting wooden blocks labeled with icons and text

(Figure D2), or by clicking and snapping together the corresponding on-screen blocks (Figure

D3) (Horn, Crouser & Bers, 2011).

When the child clicks one of the on-screen „upload‟ buttons, CHERP translates the

physical or graphical program into robot-interpretable code and communicates it to the robot via

an infrared transmitter (Figures D3 and D4). A distinguishing feature of CHERP is that it creates

an on-screen version of each uploaded tangible program (Horn et al., 2011). The child can then

edit either the tangible or graphical program since both interfaces provide the same functions.

This hybrid interface allows children to fluidly choose whichever programming interface is best

suited to their skills, knowledge, interest, and current goal. In turn, this flexibility may improve

children‟s learning and enjoyment of programming (Horn et al., 2011).

CHERP‟s high-level instruction set maps directly to actions by a robotic vehicle as a

whole, rather than actions of an individual part, as is the case with many other programming

languages. A high-level language reduces the significant cognitive burden inherent in more

complex programming languages of decomposing and mapping multiple levels of representation

of the goal (Repenning, Webb & Ioannidou, 2010). This simplification makes CHERP more

appropriate for young children. CHERP‟s language includes three different types of instructions,

which are introduced lesson by lesson in the TangibleK curriculum: actions, control flow

structures, and parameters. (CHERP also has „Begin‟ and „End‟ instructions which demarcate the

intended program for image-processing.) Action instructions for movements, sounds, and lights

correspond directly to a single behavior by the whole robot (Figure D5). Control flow structures

are meta-instructions, which specify how or when to carry out actions, for instance, by looping a

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 8

series of actions. Parameters provide information about how the robot should carry out the

control flow instruction, for instance, how many times to loop. Each CHERP programming

instruction is represented with both an icon and a word, to support understanding by early

readers. Categories of actions are distinctly colored to further facilitate differentiation of the

instructions; for instance, sounds are orange, lighting actions are green, and the „Begin‟ and

„End‟ blocks follow a stop-light color-scheme analogy.

CHERP also has embedded supports for learning its syntax (Bers, 2010). The physical

form of the blocks prevents many kinds of syntax errors, like attaching parameters to an action

instead of a control flow structure. The graphical blocks behave similarly; they only snap

together if the construction is syntactically logical. Furthermore, before CHERP uploads a

program to a robot, it automatically detects any lingering syntax errors. In such a case, as in

omitting the „End‟ block, the software displays a concise icon-and-text message that supports

children as they learn how CHERP works as a language and as software.

CHERP‟s set of programming instructions, their representations, and the hybrid interface

for manipulating them are cognitively and physically accessible to kindergarteners. Young

children can playfully problem-solve and bring imaginative creations to life with CHERP and a

robotics construction kit, all the while learning powerful ideas from technology-based domains

generally – though unnecessarily – reserved for older children or even adults (Bers, 2008; Bers &

Horn, 2010).

Overview of the TangibleK One-on-One Study

 From January to May, 2010, the author worked individually with 36 pre-school and

kindergarten children, teaching them how to program with CHERP and documenting the process

of their learning and their use of the technologies. The goal of this lab-based study within the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 9

TangibleK Robotics Project was to provide a highly detailed account of kindergartners' learning

processes, an area that had been difficult to document in classroom settings earlier in the

TangibleK Robotics Project. Children received instruction and completed three challenges with

the CHERP programming tool and LEGO®'s RCX™ robotics systems. Substantial amounts of

data were collected on children's thought processes and levels of understanding and

accomplishment, as well as background information and experience.

Each child participated in four study sessions. During a small-group introductory session,

children completed baseline assessments on key physical and cognitive abilities such as fine-

motor skill, eye-hand-coordination, sequencing, making correspondences, and segmenting tasks

into core components. The group of around three children was introduced to CHERP and a pre-

built RCX™ robot, taught how these technologies work, and given time to program the robot as

they wished. Each child then participated in three individual sessions on later dates. Each session

included a review of familiar material, introduction of new concepts, building a robotic vehicle,

completion of a programming challenge based on the new concepts, and reflection by children

on core elements of robotics and programming. The first of the programming challenges was to

program the robot to dance the last verse of the “Hokey-Pokey” (“You put your whole self

in…”), an activity which used only action instructions, other than the requisite „Begin‟ and „End‟

instructions (Figure D5). The “Hokey-Pokey” activity is the subject of analysis in this thesis.

The second programming activity was to making the robot drive along an L-shaped „road‟

using actions and a looping instruction. The third challenge was to use actions, a decision-

making instruction, and a touch sensor to program the robot to drive along different routes

depending on the state of the sensor. Post-intervention assessments were administered to measure

the impact of the three programming and robotics activities on the physical and cognitive skills

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 10

tested during the introductory session.

The TangibleK Robotics Project draws on decades of work on children‟s development

and learning and the design and application of computational learning tools. The next two

sections overview the theoretical and research background first on children‟s programming and

construction-based learning environments and then the cognitive development of young children.

Chapter 3: Children’s Computer Programming

 Today, many creative and exploratory activities that first took form in the physical world

have migrated into digital territory. The flexibility and power of computers to do many kinds of

tasks quickly and automatically extend what people are capable of producing and exploring.

Even children now widely achieve sophisticated levels of composition, expression, and

communication with computers by creating two- and three-dimensional graphics and animations,

making and playing with interactive art and games, integrating images, text, audio, and video to

express information and ideas, and constructing programmable robotic objects. Programming

environments are unique among tools for construction or creation in that children must specify a

series of instructions to accomplish a given outcome. In this process, children can discover and

apply a wide range of powerful cognitive strategies that may benefit them across domains.

Programming also poses particular challenges to novices, including children, although many

languages have been design specifically to alleviate these barriers.

Theory and Research on the Benefits of Programming for Children

 Technologies for children‟s programming have existed since the 1970s, when Logo

became widely available along with the first personal computers (Logo Foundation, 2000b), and

have gained popularity as a form of media production as computers have become more

commonplace and user-friendly. Throughout the past four decades, numerous theories and

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 11

studies have supported the potential benefits of children‟s learning to program. These benefits

depend heavily on the pedagogical frameworks and learning contexts within which they are used.

Skills for a creative 21
st
 century society.

The introduction of the printing press increased the average person‟s access both to texts

and to cheap publishing. This consequently shifted the predominant modes of documenting and

communicating ideas and information from memory and speech to reading and writing.

Similarly, the computer has transformed prevalent modes of gathering and presenting

information from text-based to multi-modal and multi-media platforms by providing flexible

tools for representing and disseminating ideas and information (New Media Consortium, 2005).

Today, society relies heavily on an evolving set of technological tools, which has made

adaptability and problem-solving at least as important for success in the work-force as particular

domains of knowledge (Resnick, 2007). In fact, Laura Richardson describes 46 such

“SuperPowers for the 21
st
 century” which covering many forms of creative and proactive

learning, many of which masquerade as play with rich materials such as computer-based media

(SuperPowers of Play, 2011).

Many people have called for K-12 education to incorporate the diverse technologically-

based modes of expression and exploration that computers have enabled, by broadening

definitions of literacy and media education (e.g. Buckingham, 2007; New Media Consortium,

2005; Peppler & Kafai, 2007). Several frameworks advocate for calling the abilities to learn and

use a range of technologies for expression „literacies‟ in themselves – media literacies or

technological literacies (International Technology Education Association (ITEA), 2007; Jenkins

et al., 2009). These frameworks shed light on how children can use a changing palette of

technologies to gather, critically examine, compose, and express ideas and content. In this

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 12

context, programming graphics or robots can be seen not only as a mode of expression but also

as a means of understanding and developing confidence in using technological media fluently.

Developmentally appropriate tools for building and programming robots offer ways to actively

engage with and understand the digital components of today's world (Bers, 2008). They provide

a context for child-driven, expressive, generative, and exploratory experiences that increase

technological fluency (Bers, 2008; Resnick, 2006).

While some frameworks for technological literacies focus on procedural or „how-to‟

knowledge of using computers for word processing, internet research, etc. (e.g. Massachusetts

Department of Education (MA DOE), 2006, 2008), many emphasize the importance of children‟s

taking an active role in generating, sharing, remixing, and responding to content (Jenkins et al.,

2009). Procedural literacies are certainly relevant, but stopping there would dismiss the rich,

varied, and highly user-driven modes of computer use available. The crucial skill for children to

develop is technological fluency, or expressivity with a variety of computational tools (Papert,

1993) – just as the goal of traditional literacy education aims beyond decoding letters, words, and

sentences toward oral and written fluency.

Whether connected to or separate from an academic context, computational tools for

construction can provide a motivating context in which to learn the iterative creative thinking

process (akin to the design process) and to “come up with creative solutions to solve unexpected

problems,” (Resnick, 2007, p. 18) a fundamental skills for today‟s dynamic world. The word

creative in this line of thought is overloaded with three distinct connotations: the use of artistic

media for expression, communication, and interaction; the development of a divergent thinking

style characterized by the generation of multiple solutions or novel ideas; and the construction or

creation of objects that exist outside the mind in three-dimensional or on-screen form.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 13

Sophisticated yet accessible new technologies for programming animations and robots can

support all three types of creativity given well-designed technologies and effective goals for their

use (Resnick, 2007). The creative thinking process, applied to technological tools for

construction, empowers children to have ownership over complex and fascinating aspects of

their world – computers, in their many forms.

More detailed frameworks for technology-based literacies also focus on children‟s

proactive and creative consumption, construction, and sharing of ideas. Among eleven media

literacies Jenkins et al. (2009) see as key in today‟s increasingly participatory media culture are

three which outline a hands-on approach to technology: play (experimentation with one‟s

surroundings), simulation (creation and/or use of dynamic representations of real systems), and

distributed cognition – the use of tools that divide the cognitive load of a task among people

and/or computers. (Other skills in Jenkins‟ framework of media literacies address the social

aspects of using participatory and interconnected media as well as how youth interact with large

and varied online resources.)

Another framework, “Standards for Technological Literacy: Content for the Study of

Technology,” proposes foundational knowledge that students should have about the technological

world they engage with so much (International Technology Education Association (ITEA),

2007). ITEA proposes a definition of technological literacy that addresses the history and nature

of many genres of technology to better inform our widespread use of them (ITEA, 2007). The

group‟s frameworks, designed to support the integration of technology as a core content domain

in K-12 education, define technological literacy as “the ability to use, manage, assess, and

understand technology” (p. 7) as well as the ability to understand the role of technology in

society. Among categories of standards regarding the nature of technology, how technologies and

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 14

societies impact each other, and a wide range of technological fields and human-designed aspects

of the world, three standards address general abilities that all people should have regarding the

use of technology: application of the design process, comfort in learning how to use and maintain

technological systems effectively and safely, and assessment of the impacts of a technology.

These skills reflect the active role children – and adults – should have with regards to technology

and the reflective mindset necessary for taking full advantage of what new technologies have to

offer.

At their core, new literacies for the creative, digital, and web-connected world all

promote a common vision: the proactive, reflective, and flexible learner who can draw from and

contribute to diverse perspectives and modes of thinking. Programming tools are powerful within

the ecology of digital media platforms in that they can be used for content production and

expression and as a context for understanding something about how our ubiquitous computer

technologies work.

Constructionist learning.

Digital literacies and technological knowledge and fluency can also transform learning

and education. By creatively designing and personalizing computational objects and their

behaviors, children work within a multi-disciplinary context for content-domain learning that has

the potential to help children see learning and academic knowledge as personally meaningful

(Martin, Mikhak, Resnick, Silverman & Berg, 2000; Papert, 1993). The constructionist

perspective – learning through making and reflecting on the process and its results – aims to

provide a model for learning that mirrors the active yet innate construction of knowledge during

development (Papert, 1999; Papert & Harel, 1991). In the process of programmatically building

and experimenting with digital objects, children may naturally and simultaneously need to learn

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 15

powerful ideas from various domains, such as mathematics or science (Martin et al., 2000;

Papert, 1993). The term „powerful ideas‟ has been defined multiple ways, generally

encompassing core concepts and skills of particular domains which are embedded in a personally

meaningful context or problem, and which can be applied to solve or understand a wide range of

authentic problems (Bers, 2008; Papert, 2000). Ideas, from the concept of proportion to the

application of computers to solve problems, are powerful in their “contribution […] to the

growth of knowledge” (Papert, 2000, p. 725).

In Papert‟s vision, school learning should align with the constructivist development

model of knowledge structure formation and base learning on contexts and entry points that each

child finds especially engaging. This could happen through interdisciplinary robotics and

programming curricula and by structuring pedagogies around careful and curious reflection on

the powerful content-domain ideas that are illustrated through programming. Such personally

and academically relevant learning could, theoretically reverse societal trends of anxiety

towards, for instance, math, and instead effectively promote a love of ideas and learning (Papert,

1993). At the very least, the constructionist framework for learning has provided a model of

education that supports deep and motivating learning when properly implemented.

Computational thinking.

There are many ways of creating and exploring rich and engaging media with a computer,

but programming tools specifically have the potential to engage users in computational thinking

(CT). CT encompasses a broad and somewhat debated range of analytic and problem-solving

skills, dispositions, habits, and approaches used in computer science (International Society for

Technology Education & the Computer Science Teachers Association, 2011; Lee et al., 2011;

Barr & Stephenson, 2011) to generate novel solutions to problems as algorithms for computers to

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 16

carry out automatically (Papert, 1993; Wing, 2008). An “exploration of process” in general terms

(Guzdial, 2008, p. 25), CT also shares characteristics with several kinds of analytical thinking –

logico-mathematical reasoning, the engineering design process, and the scientific method (Lee,

et al., 2011; Wing, 2008). However, CT uniquely focuses on problem representations which can

be solved by information-processing agents (Cuny, Snyder, Wing, as cited in Center for

Computational Thinking: Carnegie Mellon, 2011), whether human or machine (Wing, 2008).

Children‟s programming of animations, graphical models, games, and robots with age-

appropriate materials engages them with core elements of CT such as abstraction, automation,

analysis, decomposition, modularization, and iterative design (e.g. Lee, et al., 2011; Mioduser,

Levy & Talis, 2009; Mioduser & Levy 2010; Resnick, 2006; Resnick et al., 2009). Studies have

shown that, with explicit instruction, programming can be a rich environment for acquiring

transferable skills in problem representation and trouble-shooting (Klahr & Carver, 1988;

Salomon & Perkins, 1987).

Programming tools let children imagine and build up complex actions from simpler units

and grapple with sophisticated ideas. Given the rich variety of real-world problems solved

through computer algorithms and computational models (Guzdial, 2008; Wing, 2008) and the

generalizable nature of many core CT concepts, children may benefit from having computational

thinking added to their repertoire of analytic perspectives. This is accomplished by providing

age-appropriate computers and information-processing models as tools for children to creatively

solve problems and accomplish goals through activities such as programming.

High-level cognition.

 Programming can also engage children in high-level cognitive processes that do not fall

directly under the category of computational thinking. Papert‟s belief that programming could

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 17

drastically change learning (Papert, 1993; 1999) rests on the richness of learning through the

construction of real-world objects and the nature of programming to foster problem-solving and

meta-cognition (Liao & Bright, 1991; Papert & Harel, 1991). Because creating instructions for

computers requires much more exact and sequential steps than instructing a person,

programming invites reflection on one‟s own thought processes as well as precise decomposition

of complex processes (Papert, 1993). The learning context is vital to children‟s consistent use of

particular cognitive strategies – projects must be complex enough to afford deep exploration, and

the learning community must be open to acknowledging and analyzing instances in which

something works in an unexpected way. For this reason, Papert simultaneously promoted Logo, a

powerful tool for programming and learning, as well as the “Logo spirit,” (Papert, 1999, p. vi),

the kind of classroom values which support the rich thinking and learning he envisioned.

 Papert himself took a holistic approach to analyzing and synthesizing the outcomes of

classroom experiences with Logo to support and refine his ideas (Papert, 1987). His work

inspired dozens of studies looking for data-based evidence of Logo programming‟s impacts on

cognition as well as many theoretical arguments for and against the basic tenets of his work. The

wave of research on Logo from the mid 1980s to early 1990s showed mixed results (Clements &

Meredith, 1992; Liao & Bright, 1991). One highly cited study found positive outcomes in

reflectivity, divergent thinking, meta-cognition, and direction giving for Logo groups compared

to control groups (Clements & Gullo, 1984). A meta-analysis of research on Logo and cognition

showed that 89% of such studies had found positive correlations between Logo experience and

cognitive outcomes in comparison to a control group (Liao & Bright, 1991). This pattern was

upheld in the current TangibleK work, which showed that, on average, children‟s ability to

sequence picture stories is higher after even a brief but focused exposure to programming robots

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 18

than beforehand (Kazakoff & Bers, 2011).

Another comprehensive meta-analysis which covered domains from basic math to social

cognition and language showed that Logo had positive impacts on children‟s acquisition of

certain concepts in particular contexts. Concepts that Logo addressed most directly – like

distance units or angles – were more likely to be impacted than concepts that it indirectly

addressed – such as variables, which have different connotations in algebra and programming

(Clements & Meredith, 1992). This finding makes sense in light of the well-established difficulty

of transferring knowledge or skills across domains without explicit instruction. Overall, though,

the research has shown that factors influencing students‟ programming outcomes are complexly

linked and difficult to fully model, but that with intentional and structured use, Logo can be used

as a context for exploring and teaching a wide range of concepts.

Since the research of the 1980s on cognitive outcomes of Logo programming, huge

advances in computer power and human-computer interfaces have allowed the development of

programming and robotics tools that are much more tailored to children's unique abilities at

different stages of development than the tools available during the 1980's and 1990's were. These

advances may allow research to return to the issue of developing a comprehensive theoretical

model of what benefits can come of programming throughout childhood and how such benefits

are attained.

The importance of context.

 Learning goals, activity structure, and the design of the technology all contribute to the

impact programming or other constructionist activities have on cognition and learning. By itself,

the availability of certain programming instructions or possibility of using particular cognitive

strategies with a given programming tools does not lead to all users independently discovering,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 19

fully exploring, and appropriating them without specific guidance to do so, as Pea and colleagues

argued in their controversial warnings against Logo-as-educational-cure-all attitudes (Pea &

Kurland, 1984; Pea, Kurland, & Hawkins, 1985). While some criticized the research as having

taken too wide a definition of „programming‟ and too narrow a definition of „cognitive impacts‟

(Papert, 1987), the point raised is an important one. The debate over guaranteed impacts has

always figured substantially in discussion of children‟s technologies. Computer technologies are

just tools, no more and no less; ideas about how they can be used and the manner in which

people learn to use them determine whether and how they will prove beneficial in particular

ways.

Explicit instruction is a crucial factor in student‟s acquisition not only of Logo knowledge

but also of meta-cognitive, self-monitoring, and debugging or trouble-shooting skills (Clements

& Meredith, 1992; Lee & Thompson, 1997). In fact, explicit and ongoing teacher mediation

during Logo activities seems to be necessary for acquisition of concepts from the details of

geometry to the steps of successful problem-solving (Clements & Meredith, 1992). This has also

been found to apply to computer activities more generally (Nir-Gal & Klein, 2004).

The design of powerful, engaging, and user-friendly technologies is the start to seeing

diverse educational benefits from programming. However, the keys to successfully and

meaningfully incorporating programming in childhood contexts are not inherent to technology

but are instead socially constructed. These include: instruction and activities that introduce tools

and concepts in an explicit and structured way, pedagogies that focus on project-based learning

and that foster reflection, iterative design, and problem-solving, the attitude that success comes

after many „failed‟ and revised attempts, and that unexpected results and the intermediate steps of

an iterative problem-solving process are not cause for judgment on the learner but integral and

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 20

informative parts of the learning process.

 Positive Technological Development (PTD) theory highlights the importance of the

personal, social, and cultural context of learning with technology (Bers, 2010). The PTD model

provides a framework for intentionally structuring technology-focused programs and curricula so

as to promote advantageous cognitive, social, and moral developmental outcomes in addition to

content-domain learning and technological literacy. Educational experiences can be structured to

encourage content generation, creative design and problem-solving, collaboration,

communication, choices of conduct, and community-building in ways that may in turn foster the

development of beneficial core cognitive and social traits: a sense of competence and confidence,

the ability to connect with and care about others, contribution to entities outside the self, and

moral character (Bers, 2010). While many situations and learning tools may make these gains

possible, it is the responsibility of educators to carefully structure learning programs to purposely

and systematically foster positive outcomes.

 Computers and devices with embedded computational power are everywhere, and

learning to program them has many benefits in addition to being highly relevant in today‟s world.

Playing with a re-programmable rather than pre-programmed or minimally interactive toy

(Bergen, 2001) engages a child in imagining, creating, and playfully exploring the outcomes of

his or her efforts (Resnick, 2007). The computational thinking, observation, analysis, refinement,

and iteration involved in creating a successful program can foster skills and attitudes in problem-

solving and persistence that are helpful in all domains. Continued exploration into child-

appropriate programming tools and curricula can support the successful use of these materials in

classrooms and give more children developmentally appropriate experiences in creating and

learning through computational materials.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 21

Novice Programming

Programming can have many benefits, but it is also a complex activity which can pose

challenges for novices, and it is important to understand these challenges to design better

programming environments and curricula. Programming can be broken down into different sets

of conceptually distinct components, strategies, and skills to understand how different people

attain different levels of programming achievement. Bishop-Clark (1995) decomposes

programming into steps resembling the engineering design process, each of which requires

distinct skill sets: representation of the program, design of the solution, coding, and debugging.

Other frameworks examine programming through genres of knowledge and skills that cut

across the steps of designing and revising a program. The specific categories vary by author, but

most draw from: declarative knowledge (the instructions and syntax used to write programming

code), procedural knowledge (how each instruction works), conditional knowledge (how

instructions interact in an algorithm and knowledge of general solution patterns or outlines), and

strategic knowledge (decomposition of the goal and construction and revision of a program that

addresses it) (Lau & Yuen, 2009; McGill & Volet, 1997; Robins et al., 2003). Mental models or

analogies also play a role with regards to understanding the meaning of programming

instructions and what the computer does to carry them out (Robins et al., 2003).

There is a steep learning curve in mapping high-level goals to successively lower-level

abstractions and finally to specific instructions to create a solution (Repenning et al., 2010).

Novice programmers can have trouble with any of the above components and skills of

programming compared to more experienced or expert programmers (Robins et al., 2003). Many

novice-expert differences in programming parallel those seen in many other fields (Winslow,

1996) and are seen in programmers of all ages (Pea, 1986). The literature on designing and

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 22

assessing programming languages for novices notes the complexity and rigidity of many

languages‟ instruction sets and syntaxes as major sources of frustration and difficulty in the

learning process (Horn et al., 2011; Kelleher & Pausch, 2005). On the other hand, literature on

types of novice difficulties with programming finds that challenges with learning languages‟

basic components are overshadowed by higher-level skills, like planning a solution structure; this

body of work suggests that it is the application of strategy and problem-solving skills to specific

programming languages and goals that pose the most substantial barriers to programming

success (Robins et al., 2003; Winslow, 1996).

There is consensus that strategically combining and structuring programming statements

to solve a particular problem are skills that novices but not experts find difficult (Robins et al.,

2003; Winslow, 1996). Although novices can usually solve a given problem with familiar

materials or in their own words, they have difficulty translating the solution into code (Winslow,

1996). Novices are also less likely to strategically plan out a program, to draw on diverse

problem models to do so, to test their work in progress, to trace through their code successfully

and find errors, and to apply all the relevant knowledge they have towards creating a

programmatic solution (Robins, et al., 2003). They have trouble with the fact that computers

carry out programs entirely sequentially (Pea, 1986), which is a very different structure from the

parallel nature of human thinking and many other complex systems. One major shortcoming of

programming education may lie in the tendency for courses to focus on language syntax rather

than on specific strategies for analyzing problems‟ structures or creating advantageous program

plans with both general and specific problem solving strategies (Robins et al., 2003; Winslow,

1996).

In terms of specific programming structures, novices find it particularly challenging to

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 23

trace through the logic of control flow structures like loops and conditional statements and keep

track of how variable values change accordingly (Robins et al., 2003). Examination of non-

programmers‟ natural patterns of describing rules and their success in applying different

conditional statement forms has suggested that novices would have fewer control flow

difficulties if the programming instructions and syntax more closely reflected natural human

language and ways of describing conditional rules (Guzdial, 2008). To make sense of

programming instructions and the computer‟s unseen actions, novices often do rely on natural

language connections and anthropomorphism, but many such analogies are incorrect or

misleading (Pea, 1986; Robins et al., 2003). Natural language and technical programming terms

often have related but distinct meanings, which must be distinguished for the programming

context. Thinking of the computer with the analogy of a sentient being also leads to erroneous

assumptions that the computer will interpret code the way the programmer intends rather than by

the strict syntactical rules of the language (Pea, 1986).

 Surprising individual variation in adults‟ abilities to learn programming has been

consistently observed (Mancy & Reid, 2004; Robins et al., 2003). Despite many studies

examining differences between genders and among learning styles, cognitive styles, general

aptitudes, and conceptual frameworks underlying specific languages, no overarching theory of

novice achievement in programming has emerged (Lau & Yuen, 2009; Mancy & Reid, 2004).

Nonetheless, research has provided insights into the impact of a number of factors.

Perkins, Hancock, Hobb, Martin & Simmons (as cited in Robins et al., 2003) found that

novice programmers tend to have one of three patterns of behavior when uncertain as to the

cause of an unexpectedly functioning program. „Stoppers‟ simply gave up; „tinkerers‟ modified

their code unsystematically and were unlikely to reach a solution; „movers‟ looked for sources of

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 24

error systematically, reflected on the expected results of their actions, and were able to resolve

impasses. This pattern illustrates the importance for computer science education to take into

account the attitudes and emotions that accompany programming as well as the content of the

domain.

Several studies (e.g. Engle, Tuholski, Laughlin & Conway, 1999; Heinz-Martin,

Oberauer, Wittman, Wilhelm & Schulze, 2002) have shown that working memory capacity

predicts intelligence, particularly reasoning. This finding may have implications for

understanding differences among novices, particularly between younger and older children, as

well as different levels of success according to the cognitive demands of a language. Shute

(1991) found that working memory, problem identification, sequencing of elements, asking for

hints from a knowledgeable source, and testing programs regularly by running them all

contribute to success in learning to program. The field dependent/independent cognitive style,

the ability to recognize an object or idea distinctly from its perceptual or superficial context, and

spatial ability, which is linked, may also play significant roles in learning to program (Jones &

Burnett, 2007; Mancy & Reid, 2004).

 A number of programming languages have been created to address the difficulties

experienced by adult novice programmers as well as to foster the recreational interest many

people have in learning programming. Such languages include Alice (Carnegie Mellon

University, 2011), ROBOLab (Rogers & Portsmore, 2004), Arduino (Arduino, 2011), and

Processing (Fry & Reas, n.d.). Languages such as these reduce declarative and procedural

knowledge requirements since they have smaller instruction vocabularies and less syntactically

complicated coding. Some also use graphical interfaces for choosing and sequencing

instructions, the advantages of which are discussed in the following section. These languages

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 25

also facilitate learning to create and debug algorithms because the output is directly observable:

graphics, animations, or robotics actions.

Other languages address many known challenges that young novice programmers in

particular encounter: reading and typing, fine motor and eye-hand control for using a mouse,

large volumes of programming instructions, and understanding and visualizing the effects of

control flow structures (Bers, 2010; Horn et al., 2011). The language used in the TangibleK

studies, CHERP, was designed to meet the cognitive and physical developmental needs of

kindergarteners. Details can be found in the Chapter 2 overview of technologies used in this

study. The next section provides other examples of programming languages for children.

Examples of Children's Programming Technologies

 Programming environments for children have evolved along with advances in computer

technology. Early programming languages for children, like Logo, were text-based, largely

because of the state of computer technology at the time. Children used Logo‟s simplified

vocabulary and syntax to control the motion of either a robotic or on-screen „turtle‟ and to

explore mathematical relationships in the process (Logo Foundation, 2000b). Due to the bold

claims by Seymour Papert regarding programming‟s potential to revolutionize learning and

schools, Logo became the subject of two decades of extensive research on the cognitive and

social impacts of programming throughout childhood, discussed earlier. Since then descendants

of the original Logo have incorporated rich new instructions for parallelism, a hybrid

text/graphical interface for usability, and connections to LEGO® robotics parts to bring

programs off the screen. These changes have resulted in tools with which children can construct

diverse multimedia objects, simulations, and robots (Ito, 2009; Logo Foundation, 2000; Martin et

al., 2000).

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 26

A growing variety of other programming environments for children is currently available

freely online or commercially and can be used by children of varying ages to create animations

and control robots. These languages have moved away from a text-based format, instead favoring

graphical or physical blocks labeled with words and/or icons to represent instructions. Graphical

and tangible interfaces address physical and cognitive challenges that text-based programming

languages pose for novices, particularly young children: the need to type, the need to map

actions to words rather than a more concrete representation, and the need to remember a complex

grammar (Bers, 2010; Perlman, 1976; Repenning et al., 2010).

Graphical programs are constructed on-screen with a mouse or touch-screen by dragging

and dropping instructions into a series; instructions „snap together‟ to form the program. Such

languages reduce or eliminate the need to learn the programming language‟s grammar, which is

inherently suggested or maintained through the shapes, sizes, colors, and behaviors of different

types of on-screen instruction blocks. For example, Scratch, a piece of software for programming

graphics and animations, uses differently colored and shaped blocks with text labels as

instructions (Resnick et al., 2009). Similarly, ROBOLAB (Rogers & Portsmore, 2004; Vernier,

n.d.) and LEGO® Education‟s WeDo™ Robotics Software use blocks with icon and text labels

to create instructions for robots. Figures D7 and D8 show “Hokey-Pokey” programs made with

Scratch and WeDo™ and illustrate how complex these programs can become, even in an

introductory, graphical language. These languages tend to work for older children, as they

require precise eye-hand coordination and fine motor movements with a mouse and offer a large

set of low-level instructions, making them less suitable for most kindergarteners.

Tangible interfaces bridge the physical and digital world and have been explored for their

potential to make interacting with a computer more intuitive and less demanding of fine-motor

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 27

and eye-hand control. They are concrete systems of objects that a user physically moves to

manipulate digital data, images, etc. (Ishii, 2008; Patten et al., 2000). Examples tend to come

from the realm of research rather than commercial products and include the Slot Machine

(Perlman, 1976), AlgoBlock (Suzuki & Kato, 1995), GameBlocks (Smith, 2007), TurTan

(Gallardo, Julià & Jordà, 2008) and the physical blocks of CHERP (Horn et al., 2011). Tangible

interfaces reduce the physical requirements of programming by eliminating the need to type or

use a mouse to click on small objects and drag them to equally small targets. Like graphical

interfaces, they can provide a more direct mapping between the digital information and its

manipulation to the representations of these in the programming environment. Because tangible

languages tend to have small instruction sets to avoid being cumbersome, ease of use is gained at

the cost of the complexity of programming possible. Therefore, tangible interfaces work well for

introductory or specific-purpose programming languages which do not need as many instructions

as more general languages (Perlman, 1976; Sharf, Winkler & Herczeg, 2008).

It is widely assumed – although without quantitative evidence – that tangible interfaces

appeal to young children‟s concrete ways of thinking and reduce the cognitive load of

programming, allowing for more effective or efficient learning than with graphical or text-based

interfaces (Marshall, 2007; Horn et al., 2011). In fact, when a tangible interface differs only in its

three-dimensionality from its corresponding graphical interface, studies show learning to be

equal with either interface (Horn et al, 2011); more substantial differences may exist, but current

research methodologies have not yet provided a thorough understanding of them. Nonetheless,

tangibles do offer an appealing and engaging interface, especially for preschoolers and

kindergarteners, (Horn, et al., 2008), as well as a tool that is easier to use in terms of fine motor

skills and eye-hand coordination.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 28

CHERP takes advantage of the benefits of both graphical and tangible interfaces by

combining them in a hybrid interface. Its graphical and tangible programming blocks, labeled

with icons and text, can be used interchangeably (Horn, et al., 2011). See the Chapter 2 section

on TangibleK technologies for more details on the CHERP interface.

Another genre of programming tools embeds programming instructions in the objects to

be programmed. Examples include Topobo, a construction kit of connectible plastic pieces and

specialized parts that memorize and repeat movements (Raffle, Parkes & Ishii, 2004), Electronic

Blocks, a small toy car that behaves differently when physical logic and sensor programming

blocks are attached to them (Wyeth & Wyeth, 2001; Wyeth 2008), and the BeeBot, Pixie, and

Roamer floor robots, which are all programmed to move around by pushing a simple set of

buttons on its back. The input style of Topobo is also similar to „programming by demonstration,‟

whereby the programmer uses familiar ways of interacting with a computer to give it

instructions, which the computer then generalizes and can apply in other, specified settings

(Smith, Cypher & Tesler, 2000). ToonTalk, a graphical programming language, is similar to these

physical languages; it introduces programming through a 3D world in which each type of object

behaves according to a modifiable instruction or rule (Kahn, 1996).

Whether based on text, graphics, or physical objects, each type of interface has benefits

and drawbacks. Each of the different types of programming tools described here require different

levels of sophistication in a child‟s computational thinking and are therefore suited to children at

different levels of cognitive development and programming experience as well as to different

goals for the programming activity. While removing abstraction generally is a simpler way of

interacting with a computational device, interfaces that rely on completely embedded interactions

(i.e. that not at all abstracted) are not true programming languages. They reduce or eliminate

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 29

many of the core elements of computational thinking and programming, such as a persisting

representation of an algorithm and abstraction between programming instructions and the action

or outcome they represent. Programming languages for young children should retain the core

cognitive aspects of programming that are accessible to each age group while striving to do so in

as straightforward a manner as possible.

Research on children's programming languages and interfaces has addressed a wide range

of topics including effective interfaces (Horn et al., in 2011; Marshall, 2007), collaborative

programming tools (e.g. Farr, Yuill & Raffle, 2010; Fernaeus & Tholander, 2006), and

integration of programming activities with other content domains in schools (Bers, 2008).

Advancements in human-computer interface (HCI) designs have lowered the barriers for

children‟s entry into sophisticated computer programming with increasingly developmentally

appropriate interfaces (Horn et al., 2011). While HCI research seems to be shifting towards

collaborative interfaces made possible by new developments in computer hardware (e.g.

Fernaeus & Tholander, 2006), essential questions about effective programming interfaces,

languages, and interaction styles remain to be thoroughly answered.

In addition to features of programming languages, interfaces, and interaction styles, both

developmental and individual characteristics impact how a person, especially a young child,

approaches programming and succeeds with different programming tools. The following chapter

reviews pertinent cognitive factors from developmental and other perspectives.

Chapter 4: The Cognitive Development of Four- to Six-Year-Olds

Contemporary Perspectives on Piaget

Decades of work by Jean Piaget on the nature and development of children's thinking

fundamentally transformed developmental psychology. The current field of cognitive

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 30

development continues to draw on core tenets of his theory, for instance, the active and internally

motivated construction of knowledge and the presence of coherent cognitive patterns at different

ages (Flavell, 1996). His work has also been extensively re-evaluated and extended to

incorporate new ideas about cognitive developmental processes (Flavell, 1996). The focus of

much of this work has been to specify the mechanisms by which stage transitions occur or how

new cognitive structures arise, and to address empirical evidence of individual differences in

these transitions that conflict with the original theoretical model.

Piaget theorized that changes in thinking, including cognitive stage transitions, occur due

to a process he called equilibration (Feldman, 2004; Lewis, 2000; van Geert, 1998). As children

try to fit their experiences into the model of the world they currently hold with the rules of

reasoning characteristic of their development (assimilation), they realize that some things about

the world do not make sense within their current framework, and that this framework must

change (accommodation) (van Geert, 1998). This dissonance drives efforts to make better sense

of experience through more logical and sophisticated variations on existing thought processes.

Eventually, according to this theory, children reach a break-through point, a complete and

qualitatively different set of cognitive structures. This explanation has left many unsatisfied in

that it does not account in a compelling way for why ongoing conflict between perceptions and

internal models of the world should suddenly result in the massive changes that are seen as

children move from one stage to the next (Feldman, 2004; Lewis, 2000). Also warranting further

explanation is the reality that individual differences exist along the cognitive developmental

trajectory more than Piaget‟s theory addresses (Feldman, 2004). Several lines of theory and

methodology have been applied to address this question.

Neo-Piagetian theories represent attempts to rework and build on Piaget‟s original theory,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 31

often describing and explaining the mechanisms of stage transitions by integrating roles for

maturation and learning. Two pre-eminent neo-Piagetian theorists are Robbie Case and Kurt

Fischer. Case‟s work (1984) maintains the four-stage structure of Piaget‟s model but draws on

information processing rather than symbolic systems to describe each stage‟s cognitive

structures. Each stage in his theory consists of a cycle of four sub-stages (Feldman, 2004).

Transitions between the large stages themselves, he claims, arise from hierarchical integration of

multiple, previously existing problem solving or executive control structures, with the support of

relevant experience and increasing working memory (Case, 1984). As children mature and as

they streamline well-practiced strategies, they have more cognitive „space‟ available to carry out

mental operations or store information in working memory. Because of this, children become

able to execute multi-faceted lines of reasoning or problem solutions.

Fischer‟s skill theory (1980) includes three levels, or stages, of cognitive development,

rather than Piaget‟s typical four. These levels are distinguished by children‟s mental models

being sensorimotor, representational, or abstract in nature. Within each level, children‟s cognition

relies on a set of skills that progress through four hierarchical structures of relationships. Fischer

defines five types of transformations in these relationships to describe development within and

between the broader levels (Fischer, 1980). By specifying in great detail how cognitive

transitions from relatively simpler to more complex structures and abilities occur, and by

postulating a cycle of cognitive structures that is repeated within each stage, neo-Piagetian

theories like these attempt to clarify and broaden the empirical validity of Piaget‟s theory.

The microdevelopment perspective also stems from the question raised in Piaget‟s theory

about the nature of transitions. It specifically delves into the mechanisms driving developmental

transitions through a methodology of intense observation over short timeframes (Granott &

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 32

Parziale, 2002; Kuhn, 1995). Since extensive practice facilitates the generation of new strategies,

and the accumulation of these new strategies ultimately build up to developmental shifts over

time (Case, 1984; Kuhn, 1995), frequent observation of a cognitive activity increases the

likelihood of researchers observing the process of change (Kuhn, 1995; Siegler & Crowley,

1991). Possibly, a fully explicated theory of macrodevelopment – across childhood and into

adulthood – could be obtained by integrating sufficient quantities of microdevelopmental data.

Developing an empirically tested theory of the relationship between microdevelopment and

macrodevelopment is a prominent trend in microdevelopment research (Granott & Parziale,

2002).

Another relatively recent approach to understanding developmental shifts in cognitive

structures is the dynamic systems perspective, which does not derive from Piagetian theory but is

borrowed from the physical sciences. It explains the growth of novel and complex structures –

whether molecules or cognitive structures – out of existing, simpler ones through the principle of

emergent phenomena (Lewis, 2000), which a number of recent cognitive development theories

have incorporated. Dynamic systems theories do not cast the cognitive system as containing

specialized structures which inherently pre-determine developmental outcomes, or as limited in

potential growth based on learning opportunities (Lewis, 2000). Rather, emergence-based

theories view cognitive structures as self-organizing systems: systems which develop through the

selective use of advantageous new structures that random interactions among existing structures

have produced (Lewis, 2000). This model provides a scientific – and sometimes highly

mathematical – explanation for the appearance of completely new structures within stages as

well as the building up of complexity to the point of stage transitions (Lewis, 2000; van Geert,

1998). It also explains how cognitive development across individuals can at once follow broad

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 33

patterns and yet be influenced by unique circumstances (Lewis, 2000). As neo-Piagetian,

microdevelopmental, and dynamics systems models delve into the inner workings of

developmental transitions, another model attempts to improve upon Piaget‟s original theory

without deviating from its essential tenets.

Feldman-Revised Piagetian Stages

 Feldman (2004) offers a revision of Piaget's stages and transitions that adds coherence to

the theoretical description of stage transitions while retaining as much of the core theory as

possible. The theory maintains Piaget‟s basic assumption that the human mind naturally strives

towards more accurate and versatile mental structures. It also incorporates the principle of

emergence common among other neo-Piagetian theories and systematically takes into account

the uneven and gradual progress that a child makes in moving from one stage to another

(Feldman, 2004). About halfway into each stage, children move from a phase of actively

constructing new systems of thought to a phase of energetic application of those systems that

begins to bridge the gap between the current and upcoming cognitive structures (Feldman, 2004).

The pre-operational, or intuitive, stage of cognition covers ages two to six as a whole, so a four-

year-old child is beginning to actively extend the symbol systems s/he has developed from the

age of two, applying them to interactions in the physical and social world and through them

constructing theories about how the world works (Feldman, 2004). This process is grounded in

intuitive reasoning and forms a precursor to the increasingly adult-like logic of the next stage,

concrete operations, which is characterized by empirical observation, organization of objects and

their qualities, and mental modeling of actions and perspectives not taken in physical reality

(Feldman, 2004; Gardner et al., 1996).

 Children in the TangibleK study ranged from about four-and-a-half to six-and-a-half

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 34

years old, a timespan during which children experience “major” cognitive growth (Case, 1984, p.

25). Characteristics of both Feldman-revised Piagetian stage phases that cover this period are

presented in the following section. Their descriptions highlight how salient many key thought

processes are to reasoning and problem solving and therefore to computer programming and

understanding how digital objects work.

Pre-operational thought and symbol systems.

 The defining characteristics of the pre-operational stage of cognitive development, which

roughly covers ages two to six, are the acquisition and application of culturally-learned symbol

systems as well as patterns of reasoning which are immensely compelling to the child and yet

which seem illogical compared to formal, adult-like logic (Feldman, 2004; Gardner et al., 1996).

During these years, a child learns an impressive amount of language, as well as other systems for

representing objects and concepts like quantity symbolically (counting, time-keeping, etc).

Piaget used the term figurative for such interactions: the child internalizes some aspect of the

world as it is (Feldman, 2004). The child‟s relationship to symbol systems shifts halfway through

pre-operations, when s/he begins to emphasize more operative thought processes: the

appropriation and application of the developing symbol systems to the child‟s explorations and

analysis of the world (Feldman, 2004). The point of change, sometimes called a „seizing of

consciousness,‟ represents a relatively sudden shift in the child‟s mind as s/he has already built

up sufficient cognitive structures and knowledge of symbol systems, and s/he now sees how to

put these tools to use for a great number of purposes (Feldman, 2004).

 Children in the second phase of pre-operations devote considerable energy to asking

about and formulating theories on how different parts of the world work and interact, although

these theories tend to defy adult logic (Feldman, 2004). The child at this point of cognitive

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 35

development is most notably unable to conserve quantities of different types – s/he would say

that a tall, slim glass of water contains more water than a short wide glass that is filled with the

liquid from the first glass (Gardner et al., 1996). This phenomenon results from several other

characteristics of the stage: centration, or narrow focus, on a single feature of an object or event,

reliance on perception rather than logic, and irreversibility, the inability to mentally undo an

action (Gardner et al., 1996). Children in this stage also tend to believe that all people see things

from the child's own physical and mental perspective (Feldman, 2004) and confound

psychological and physical events (McDevitt & Ormrod, 2002). The result is often transductive

reasoning, reasoning based on unrelated observations brought together in syncretistic ways

(McDevitt & Ormrod, 2002). While the four- or five-year old child is certainly hard at work

theorizing about how the world works, the cognitive tools s/he employs to construct those

theories are quite different from the tools available to older children and adults, and thus their

conclusions differ drastically as well.

The transition towards concrete operations.

 Feldman‟s (2004) revisions to Piaget‟s stages systematically account for the facts that

different mental processes from the concrete operations stage appear before others across

children and that each child begins using these processes only inconsistently at first. The major

characteristics of the period of transition between pre-operations and concrete operations are that

the child becomes interested in exploring concepts and cognitive processes that previously

seemed irrelevant, and that some of the concrete operational abilities appear, albeit

inconsistently. In general, the child gradually uses symbol systems to begin constructing

categories, hierarchies, and other relationships between objects, ideas, and events in his/her own

experience, although the child‟s grasp of these concepts will not solidify until later on (Feldman,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 36

2004; Gardner et al., 1996). During this period, children may switch back and forth between

patterns of thought characteristic of the developmental level they are leaving and the level they

are entering (Feldman, 2004).

Concrete operations.

 At around six years, a child is likely to be making the switch from pre-operational to

concrete operational patterns of thinking (Lightfoot, Cole, & Cole, 2009). S/he is now familiar

with representing the world with both mental and physical symbols. The work of the second

phase of pre-operations, actively elaborating on and applying symbol systems and using intuitive

reasoning to build understandings, has prepared the child‟s cognitive structures for

transformation towards those required for more logical reasoning (Feldman, 2004). At first, the

child shows interest in perspectives and cognitive challenges not previously attended to, and over

the next two or three years, the child consolidates the cognitive structures necessary to

successfully apply this range of new skills (Feldman, 2004).

Children this age begin to consider multiple aspects of situations or objects

simultaneously, which allows them to work with conservation of quantities and the concepts of

categories and hierarchies (Feldman, 2004). A six-year-old increasingly understands physical and

psychological points of view other than his/her own, for instance in conversations with peers,

which become more bidirectional and less like “collective monologues” (Lightfoot et al., 2009,

p. 263). Around this time, a child also relies increasingly on logical reasoning about causal

relationships and the distinction between appearances and reality (Lightfoot et al., 2009) by

letting logical conclusions take precedence over perceptions (McDevitt & Ormrod, 2002). The

six-year-old becomes more able to plan a series of actions to fulfill a goal and to think flexibly in

doing so (Lightfoot et al., 2009). While a child this age typically uses concrete materials to build

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 37

mental models or representations (Feldman, 2004), s/he does not rely on the physical object‟s

immediate presence to mentally consider and manipulate it (Lightfoot et al., 2009). Children‟s

cognition in this stage is also aided by increasing memory capacity and meta-cognition

(Lightfoot et al., 2009).

Cognitive Styles

Beyond the broad impact of cognitive development, cognitive styles also influence the

ways a person tends to approach a wide range of cognitive activities. Varying definitions of

cognitive styles, which can overlap with personality traits and learning styles, are found within

the literature, but cognitive styles are generally considered to be reasonably stable individual

differences in modes of perceiving, recalling, and thinking about information and experience

(Kozhevnikov, 2007; Messick, 1984, as cited in Bishop-Clark, 1995; Shipman & Shipman,

1985). Each cognitive style is conceived of as a continuum or dipole with opposite modes of

cognition on either end. For example, on the analytic/holistic spectrum, a person who is more

analytic tends to be structured and logical in their problem-solving and looks to distill a problem

into core factors and their relationships; a holistic person is more likely to use common sense as

a problem-solving approach and rely on guess-and-check strategies (Bishop-Clark, 1995).

Research on cognitive styles has shown correlations to performance in academic, vocational, and

social domains (Bishop-Clark, 1995; Kozhevnikov, 2007; Sternberg & Grigorenko, 1997).

However, a coherent theory integrating existing research on cognitive styles and achievement has

yet to emerge (Kozhevnikov, 2007; Sternberg & Grigorenko, 1997).

People tend toward one mode or the other of each cognitive style continuum, although

variation within individuals across contexts exists as people attempt on some level to apply the

best strategies for a given situation, even in the face of natural preferences (Gilbert & Swanier,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 38

2008; Kogan & Saarni, 1990; Kozhevnikov, 2007; Krechevsky, 1998; Sternberg & Grigorenko,

1997). The expression of some cognitive styles also depends in part on a person‟s level of

cognitive development and is therefore expected to change over childhood and into early

adulthood. For instance, one cognitive style which has been shown to evolve with development

is conceptualizing style, also called categorizing style, which measures the breadth and type of

categories people define to sort objects or concepts (Shipman & Shipman, 1985). Despite

evidence of variability within individuals, many studies of cognitive styles assume their stability

over time and contexts, at least within the timeframe and content of the study.

Cognitive styles may have important implications for learning to program because of

their relationship to reasoning and problem-solving. Styles of particular interest include the

analytic/holistic style (described above), the reflective/impulsive style, and internal/external

locus of control (Bishop-Clark, 1995). When faced with a difficult problem, reflective people

usually consider the implications of various possible solutions before trying one; impulsive

thinkers – who are distinct from those with impulsive personalities – tend to act quickly and have

little worry about making errors or achieving the best outcomes (Sternberg & Grigorenko, 1997).

Locus of control refers to whether a person feels that s/he has the power to influence aspects of

the surrounding world or that s/he is a product of the environment (Bishop-Clark, 1995).

These cognitive styles may impact distinct stages of computer programming

differentially, as opposed to relating to programming as a whole. Bishop-Clark (1995) proposed

that four sets of correlations might exist: a) introversion/extroversion and field

dependence/independence with problem representation, b) reflectivity/impulsivity and field

dependence/independence with solution design, c) the Myers-Briggs thinking/feeling dimension

with coding, and d) locus of control and reflectivity/impulsivity with debugging (Bishop-Clark,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 39

1995). No follow-up research to this proposed framework was found in the literature.

Research has also supported field-independence, the ability to distinguish an object or

form from its background context, as influencing achievement by novices in programming

(Mancy & Reid, 2004). However, the construct may actually be conflated with aspects of

intelligence including spatial ability and the ability to think flexibly in a novel situation

(Sternberg & Grigorenko, 1997). Other cognitive or personality traits that may prove relevant

include locus of control, persistence, and attitudes about computers – such as anxiety and

anthropomorphism (Ackermann, 1991; Bishop-Clark, 1995; Levy & Mioduser, 2008; Perkins et

al., as cited in Robins et al., 2004). Cognitive factors which vary developmentally as well as

individually can also be expected to differentially impact programming ability. For instance, the

cognitive gains from children‟s working memory capacity significantly increasing over the

course of early childhood and beyond may support reasoning abilities needed to learn a

programming language (Lightfoot et al., 2009; Reisberg, 2010).

Contextual Factors

Many factors external to the child‟s mind also impact learning outcomes. Parental

involvement in primary school education shapes children‟s self-perception as learners and

expectations for achievement, indirectly but significantly influencing educational outcomes

(Desforges & Abouchaar, 2003). The nature and intensity of parents‟ involvement in education

varies over a number of factors, including: socio-economic status, mother‟s highest level of

education and mental health, number of parents in the household, age of the child,

encouragement by the child for parents to become involved, and the child‟s current level of

academic achievement (Desforges & Abouchaar, 2003).

Only a small portion of the literature on parents‟ role in education addresses children‟s

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 40

outcomes in early elementary school science, technology, engineering, or math (STEM).

However, research has shown that parent‟s positive views of science lead them to engage in

science-related activities with their older children. These shared activities show children that

their parents perceive science as a worth-while and interesting subject and foster children‟s self-

image as capable of learning science, in turn leading to increased achievement in school science

(George & Kaplan, 1997). On the other hand, elementary school children and their parents seem

to also share limiting notions of gender stereotypes regarding math and science achievement and

careers (Andre, Whigham, Hendrickson & Chambers, 1997). Achievement is tied to many

factors, and important among them are parental attitudes and involvement in education at home.

As the inclusion of STEM fields in elementary school expands, new research may further

describe how early at-home exposure to positive attitudes and experiences with these domains

impacts school achievement.

Cognitive and contextual factors, particularly the Feldman/Piaget portrait of the four- to

six-year-old's cognition, provide a developmentally-based starting point for examining how

children engage in problem-solving through programming robots. Having a sense of whether a

child tends toward pre-operational or concrete operational reasoning patterns, along with

knowledge of the cognitive processes required by a programming environment or activity, can

inform the specification of appropriate learning expectations, curricula, and support activities for

different children. These understandings can also lead to programming technologies which are

(re)designed to meet the needs of children at specific points in their cognitive development. The

following section presents the methodology for examining the relationships between children‟s

cognitive development and their approaches to and achievement in programming. Other

cognitive, demographic, experiential, and parental factors are also considered as elements of the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 41

larger picture that development and specific activities fit into.

Chapter 5: Research Design

The analysis presented in this thesis draws on the TangibleK laboratory-based study,

which was designed to describe in detail what kindergarteners can understand about

programming and robotics, their learning trajectory through the relevant concepts, and how

different interfaces might impact their learning. The experience of conducting the study sessions

raised questions about why children exhibited such a range in their uses of the programming

language and in their success in programming a robot to dance the “Hokey-Pokey.” Some

children were simply uninterested in the challenge – although they had plenty of other ideas for

using CHERP; other children were interested but thoroughly stumped by the task; and yet others

enjoyed and solved it quickly. Cognitive developmental level was hypothesized to be a crucial

element in understanding the variability of children‟s focus and acquisition of programming

skills.

Research Questions

This analysis sought primarily to answer the question: What patterns may be found in

children’s approaches to and achievement in programming based on their level of cognitive

development? Secondary follow-up questions included:

 How do individual differences in sequencing ability, certain cognitive styles and

personality traits, prior related experience, and socio-cultural background predict

deviations from developmentally expected trends, as defined in response to the primary

research question?

 How do the difficulties experienced by the preschool and kindergarten participants of this

study compare to the common difficulties older novice programmers have?

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 42

Hypotheses

 The general hypothesis regarding developmentally-based differences in programming

was that children would differ according to their level of cognitive development on their

approaches to programming and that this would lead to differentiated achievement. More

specifically, children in Piaget‟s pre-operational stage were expected to be less likely to go

beyond making correct correspondences between individual robot actions and individual

programming instructions in their programming. Conversely, children near or in concrete

operations were hypothesized to be more likely to systematically work towards a correct

sequence of programming instructions to accomplish a specific goal. Furthermore, it was

hypothesized that factors which are either relatively stable over time, such as cognitive styles, or

which are experience-based, such as prior computer experience and family-related factors, would

interact with level of cognitive development, with certain conditions enhancing or mitigating

developmental impacts on programming approaches and achievements.

Variables

The conceptual variables used to answer the primary and secondary research questions

ranged from children‟s level of cognitive development, approach to programming, programming

achievement at two levels, sequencing ability, demographics, and prior experience with

computers, robotics, and programming, to parents‟ level of education and prior experience with

programming and robotics (see Table B1 for an overview of variable definitions). Some of these

variables were measured at the time of the study, but several required measures to be created and

assessed from video footage of the study sessions. This section discusses each variable and how

it was measured. See Tables B2 and B5 for summaries of the primary and secondary analysis

measures and their derivations.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 43

Cognitive developmental level.

A large part of the work in this analysis involved creating a framework for measuring

children‟s stage of cognitive development, the primary independent variable, because no metric

exists to assess it from a task like programming. However, programming is a rich context for

assessing logico-mathematical and deductive reasoning, the types of thinking that most informed

Piaget‟s theories (Case, 1984) and which form much of the description of cognitive stages in the

literature. The framework was designed to categorize each child into one of three developmental

categories based on Feldman‟s revised Piagetian model and the age range of the sample

(Feldman, 2004). These categories were: pre-operations, phase 2; transitional; and concrete

operations, phase 1. Characteristics of the late pre-operational and early concrete operational

stages were compiled from a review of the literature and mapped to programming behaviors

which were logically expected to result from the cognitive characteristics and which could be

observed from video footage of the study sessions. For instance, if children only begin to

empirically test their ideas late in pre-operations, then a developmentally younger child in the

study‟s age range will be unlikely to test and revise any programs, whereas a developmentally

older child will be more likely to watch his/her robot run a program as a means to find out how

close it is to the solution.

To arrive at an overall stage measure, developmental level sub-scores were give to three

core elements of children‟s approach to the programming challenge: the child‟s goal in

programming, the strategy used in the initial solution, and the strategies used in debugging

(iteratively testing and revising) the program. An overall developmental level was determined for

each child based on the trend of these three component scores and by taking into consideration

other operations relating to physical versus psychological agency and perspectives, and multiple

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 44

classifications as needed. Table B3 provides all development-to-programming mappings and the

rubric used for assessment can be found in Table B4.

 The mappings of developmental characteristics to programming behaviors and strategies

are based on the overall intuitive versus logical nature of the child‟s thought processes and on the

child‟s ability to work flexibly towards a given goal. These cognitive characteristics were chosen

because they evolve over the age range of the sample, for their relevance to programming, and

because they are observable in the existing video data. Two general patterns of programming

approaches are derived from the literature on cognitive development traits during different stages

and were also observed in the study: 1) a shift from interest in self-defined, exploratory goals in

pre-operations towards interest in a given, structured goal in concrete operations, and 2) a growth

from intuitive to increasingly logical strategies for problem solving. (When this pattern did not

hold true, it seemed that interest preceded ability. Some children who ultimately were scored as

pre-operational were intrigued by the “Hokey-Pokey” task, but they were at a loss to find a

successful strategy.)

Children in phase 2 of pre-operations have recently developed the cognitive structures

necessary to elaborate and apply on familiar symbol systems (Feldman, 2004). However, they

would not be expected to have already developed the abilities needed to plan flexibly towards a

given goal. Therefore, we expected to see children in this phase use CHERP prolifically and

enthusiastically but without pursuing the assigned goal (or at least not too far). Children nearing

the end of pre-operations and transitioning toward concrete operations should have more interest

in pursuing the given goal, and might be able to make some attempts at it, but their new

structures of logical thought would not be sufficiently consolidated to see the “Hokey-Pokey”

goal through to completion. We expected children in concrete operations to be interested in a

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 45

problem of this nature and to have developed enough of the logical reasoning needed to

systematically and successfully solve a problem of this level of difficulty.

Programming approach.

Approach to programming was intended to be a distinct dependent variable in the primary

analysis. However, it overlaps to a great extent with expected characteristics of programming at

different stages of cognitive development as defined above. Children‟s developmental level of

goal orientation, initial strategy, and debugging strategy each are measures of programming

approach – but here they are used as a proxy for cognitive developmental level (see Table B4).

One of these measures examines children‟s level of interest in using CHERP for the given goal

as opposed to a self-assigned, open-ended exploration. The other two examine whether children

relied on intuitive versus logical strategies, or something in between. Children‟s scores on these

measures are not necessarily identical to their overall developmental level score, so each sub-

score can potentially correlate differently to programming achievement than developmental level

does, and analysis of achievement by sub-scores can be presented. However, it would be

necessary in future iterations of this study to employ separate measures of cognitive development

and programming approach to validate the presently assumed – and theoretically based –

relationship between cognitive development and various elements of approach to programming.

Programming achievement.

Programming achievement, a second dependent variable in the primary analysis, was

divided into two levels of understanding: correspondence and overall completeness of the child‟s

final program. Correspondence was defined as the ability to purposefully match programming

instructions to planned robotic actions. This measure was based on whether instructions the child

chose matched the “Hokey-Pokey,” but did not measure whether the child chose all the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 46

necessary instructions. It was assessed on a Likert scale from 0 (cannot achieve) through 5

(achieves without assistance), with the intermediary values represent increasing levels of support

needed by the child to successfully apply this cognitive skill (see Appendix B5 for the full

rubric). By the time it was evident that some children were not going to be able to solve the

challenge independently, they were also too tired to focus on solving it with support. If

reasonable, correspondence scores in these cases were estimated based on the level of difficulty

and reasoning exhibited by the child during the independent work period.

Program completeness is a composite skill requiring not only making action-instruction

correspondences but also sequencing the instructions correctly according to the last verse of the

“Hokey-Pokey” song. This measure was assessed based on how many changes would need to be

made to a child‟s program for it to match a defined set of possible solutions. The scale for

program completeness ranged from 0 (unrecognizable as an attempt at the “Hokey-Pokey”) to 4

(all the required instructions, in exact order). Only the actions corresponding to the first five lines

of the “Hokey-Pokey” verse were scored. Whether a child correctly used the „Begin‟ and „End‟

instructions or included sounds at the start or end of the program were disregarded. Children

received full credit for reasonable replacements for actions, such as a series of „Turns‟ instead of

„Spin,‟ and received lower scores for instructions that were out of order, missing, or extraneous

(see Appendix B6).

As with programming approach, these two measures of programming achievement are

inherently tied to the measures used to assess cognitive development in this analysis. For

instance, a characteristic of pre-operational thinking, the use of a guess-and-check problem-

solving strategy, inherently correlates to less effective use of correspondence, one of the key

programming skills measured in the TangibleK study. Although the two sets of measures,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 47

programming achievement and cognitive development, are not completely overlapping, the

theoretical model predicts conflation between the measures. As with programming approach,

future versions of this study should use independent sources of programming achievement and

cognitive development data to resolve the lingering question here of what portion of the results

stem from the overlap in measures and what portion demonstrates developmental patterns in

programming.

Individual and contextual factors.

Secondary independent variables were also measured where possible to examine other

factors which might interact with cognitive development and correlate with programming

achievement. These additional variables include: pre-intervention sequencing ability and the

change in sequencing scores following the intervention; demographic information; children‟s

prior experience with computers, robotics, and programming; parental education attainment; and

parental background in STEM degrees or careers (see Table B5).

Cognitive styles and other personality factors would have been of great interest to this

analysis, particularly the analytic/holistic style, the reflective/impulsive style, and locus of

control. However, these constructs posed methodological problems in their assessment from the

existing data set. Impulsivity/reflectivity and holistic/analytic cognitive styles parallel key

changes in thought patterns during the growth from pre-operational to concrete operational

thinking, making it difficult to disentangle the relative influence of each factor from a single data

source. (Adults with an impulsive cognitive style tend to act without as much planning or focus

on best outcomes compared to those with reflective styles, which mirrors some of the

developmental changes from pre-operations to concrete operations. Similarly, holistic thinkers

rely on intuition, as do pre-operational children, whereas analytic thinkers rely on reason, as do

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 48

concrete operational children, overall.) There were not enough data to guarantee an indication of

locus of control for every child from a set of activities which were not specifically designed to

measure this construct. Therefore, for the purpose of the analysis at hand, observed cognitive

patterns are assumed to be primarily developmental, with some apparent exceptions explored in

Chapter 7 (Discussion), and analysis of potential impacts by cognitive styles and personality

traits on cognitive development and programming are delegated to future follow-up studies.

Sequencing.

Children‟s sequencing ability, a cognitive baseline assessment, was measured prior to and

following the three programming sessions. Baron-Cohen‟s Picture Sequencing assessment, a

validated and standardized metric, was used (Baron-Cohen, Leslie & Frith, 1986). Five stories

were used as a pre-assessment and another five were used as a post-assessment. The original

ratio of story types was maintained in each session. This analysis uses two measures based on the

picture sequencing assessments: children‟s pre-intervention picture sequencing score, and the

difference between their pre- and post-intervention scores.

Demographics.

 This category of variables included the child‟s age (based on birthday and first study

session date), gender, grade in school, and whether they lived in a suburban or urban

neighborhood. Parents supplied this information on a questionnaire prior to their child‟s second

study session.

Child experience.

Information on the child‟s prior experiences with computers, robots, and programming

was documented in the parent questionnaire as well as in an oral survey children responded to

during their first session. Measures of prior experience included: whether the child used a

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 49

computer at home (yes/no); the child‟s level of computer expertise compared to age-mates, as

perceived by the parent (beginner/average/expert); whether the child had programming

experience (yes/no) and the type of robots the child had previously encountered (none; movies,

books, and pre-programmed toys, or programmable robots). The categories of robotics

experience were inferred from broader categories parents checked off or listed on the survey.

Parental education and experience.

Parental level of education, involvement in STEM-related fields, and experience with

programming and robotics were documented in the written survey parents filled out prior to their

child‟s second session. Parental education was measured for this analysis as the highest level of

education attained by either parent: high school, some college, bachelor‟s degree, master‟s

degree, or doctoral degree. Involvement in a STEM field was measured two ways, based on

parents‟ descriptions of their job and degree fields: 1) whether the latest degree of either parent

was in a STEM-related field, and 2) whether either parent in the family had a STEM-related job.

Parents‟ experience with programming and robotics was captured in two yes/no measures

documenting whether at least one parent had experience with each field.

Sample

 The original TangibleK laboratory-based study included a total of 36 children: 34 who

completed all four sessions and another two who only completed the first two. Recruitment

occurred via the TangibleK website, emails to relevant DevTech Research Group contacts, and

the snowball effect. All participants came from several local towns and cities.

Inclusion criteria.

 The requirements for inclusion in the data analysis of this thesis are as follows:

 attendance of at least the introductory group session and the first individual session,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 50

 existence of adequate video or written data to assess and validate the necessary measures,

 no evidence that the child was insufficiently comfortable in the study setting or unable to

focus on the activity, either of which violates the assumption that assessments are based

on each child‟s best efforts under standard conditions, and

 sufficient communication by the child, either verbally or behaviorally, of his/her goals,

ideas, and thought process during programming and debugging to assess the measures.

Of the initial 36 children, 29 children met all the criteria for inclusion in data analysis.

Seven children were excluded from the present analysis due to at least one of the following

factors:

 high levels of distraction or shyness during the activity,

 having shows significant difficulty in solving the problem and then, after support was

given in structuring the problem solution, surprisingly high levels of independent and

systematic strategizing, and/or

 choosing to undertake a specific but different challenge than the one assigned, which

made it hard to compare success in programming to that of children who took on the

given challenge.

Sample demographics.

Of the 29 children included in analysis, 11 children, or 38% of the sample, were girls, and

18 children, or 62% of the sample, were boys. Kindergarteners (20 children) made up 69% of the

sample and preschoolers (9 children) made up the remaining 31% of the sample. Ages, collected

for 28 of the 29 children, ranged from 4.4 years to 6.6 years at the time of each child's first

session, with the mean age at that session being 5.6 years old. The group was split about evenly

between urban and suburban neighborhoods. Eleven children (38%) attended public schools and

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 51

18 (62%) attended private schools. (Note that public preschools are less available than public

kindergartens, which, along with the pool of initially recruited families, probably accounts for a

large part of the skew.)

Almost half the families (43%) had at least one parent with a master‟s degree, and almost

another half of families (46%) had a parent with a doctoral degree. Only two parents had attained

less than a bachelor‟s degree, and in no families was the highest degree lower than a bachelor‟s

degree. The sample included children from several ethnic and cultural backgrounds including

several bilingual children, although data was not collected specifically on these points. Three-

quarters of the children used a computer at home, about a third had played with programmable

robots, and none had programmed, according to their parents. (There appear to be some

discrepancies between researchers and parents on this last point regarding what activities

constitute „programming.‟)

Data Collection

The data were collected during one-on-one work with preschoolers and kindergarteners

during a TangibleK Robotics Project study as well as afterward, from video footage and notes of

the sessions. The study collected detailed information on what and how four- to six-year olds

learn about programming and robotics, given developmentally appropriate tools and lessons

(Bers, 2010). Over the course of the study, each participant attended four sessions. The first was

a group session (usually three to four children) for pre-assessments and an introduction to the

robotics and programming technologies. Participants also attended three individual sessions in

which children learned a new programming concept and attempted a specific challenge. At the

end of the third individual session, post-assessments were also completed.

During the individual sessions, each child reviewed previously taught programming

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 52

instructions and concepts, built a robot, and tested that it worked. Once s/he had a sturdy and

functional robot, the researcher provided instruction on new programming and robotics concepts.

The child was presented with a related programming challenge and given time to try to solve it

without conceptual assistance from the researcher. After a set amount of time, the researcher

assisted the child in completing any unfinished aspects of the challenge. Finally, the child was

asked about his/her understandings of core concepts from the activity. Each child who completed

all sessions spent about five hours in the study.

The analysis presented here focuses on one activity in particular: the programming

challenge during the first individual session. During this session, the child learned and reviewed

all the programming instructions and how to build a program out of physical or on-screen blocks,

send a program to the robot, and run the program. Other than the „Begin‟ and „End‟ blocks,

which all CHERP programs must have, this activity used only „action blocks,‟ instructions which

directly correspond to a single robotic action (see Figure D5). The programming challenge in this

session was to create a program with CHERP that would make the robot dance the last verse of

the well-known children's song the “Hokey-Pokey,” which the child and researcher had sung and

danced to ensure the child‟s familiarity with the song and its sequence of actions before

programming. The following outline shows how it was expected that children would map the last

verse of the “Hokey-Pokey” to CHERP instructions (also see Figure D6 for the CHERP

graphical program). Some variations were counted as correct, particularly the exclusion of the

less directly mapped musical instructions.

You put your whole self (robot) in,  Forward

You put your whole self (robot) out,  Backward

You put your whole self (robot) in,  Forward

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 53

And you shake it all about!  Shake

You do the Hokey-Pokey,  Spin

And you turn yourself (robot) around,

And that‟s what it‟s all about!  Sing

(Clap, clap!)  Beep, Beep

Over the first two-thirds of the time allotted to programming, the researcher reflected

back any questions the child had regarding how to solve the challenge. This ensured that the

child was engaged with the researcher and felt supported. At the same time this procedure

allowed assessment of the child‟s independent ability to solve the challenge. Following the

independent work period, the researcher provided whatever support was necessary for the child

to accomplish the programming goal and understand the key concepts. This provided a feeling of

success for all children and ensured that each child had an adequate minimum level of

understanding of one set of concepts before moving on to the next. The child‟s final program

completeness was scored based on the independent work period. The amount of assistance the

child required to achieve 10-15 skills and conceptual understandings, including the

correspondence measure used in this analysis, was assessed at the end of the activity.

 Pre- and post-intervention data collected on children's abilities to sequence picture stories

also helped paint a picture of children's cognitive strategies. Standardized procedures for

administering the Baron-Cohen Picture Sequencing cards were used (Baron-Cohen et al., 1986).

The researcher presented the child with the first picture of a four-part picture-story and randomly

placed the other three pictures near it. The researcher then asked the child to arrange the pictures

to make a story, keeping the designated card first. Once the child put together the story, s/he was

asked to narrate the story s/he had made. Children were scored on each story for whether they

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 54

put the story in correct order, a defined partially correct order, or the wrong order, and a

composite score was created by summing the scores on each item.

 All background information on parents and children was gathered in a survey that one

parent from each family filled out online or in paper form prior to the child‟s second study

session. This included children‟s demographic information and prior experiences with

computers, robotics, and programming as well as parental background in education, career, and

robotics and programming experience.

Analysis Methods

Several statistical tests were used to determine the significance of the relationships

between variables. The first stage of analysis tested relationships between a single predictor

variable and one outcome variable. Chi-squares, t-tests, ANOVAs, and regressions were run

depending on the categorical or continuous nature of the variables in question. To follow up on

statistically significant initial findings, analysis of covariate tests (ANCOVAs) were used to

examine the relationship of each of two predictors to a single outcome variable. Table B6

specifies the test used for each analysis.

Some of the statistical analyses include less than the intended sample of 29 children, for

the two following reasons. The range of scores observed on measures of sequencing included

several outlier scores, which were excluded. The only other cases in which children were

excluded from a given analysis resulted from the parent having omitted a response on the

background survey. Measures of development, programming approach, and programming

achievement scores were complete for the 29 children.

Chapter 6: Results

The following results illustrate differences in programming approaches and achievement

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 55

among children at each of three levels of cognitive development. For comparison, differences in

programming are also explored based on children‟s sequencing ability, another cognitive – but

not explicitly developmental – measure. Demographic, experiential, and parental factors are also

explored for their potential impact on programming beyond that of cognitive development. Case

studies are presented to exemplify cognitive patterns typical of the framework, and comparisons

are made between the children in this study and older novice programmers in terms of the

aspects of programming that proved difficult for them.

Developmental Patterns

Comparison of developmental levels.

 Using the cognitive development framework described in Chapter 5, children were

categorized as late pre-operational (phase 2), transitional, or early concrete operational (phase 1).

Of the 29 children included in analysis, 8 children, or 28% of the sample, fell into the late pre-

operational category; 7 children, or 24% of the sample fell into the transitional category; and the

remaining 14 children, or 48% of the sample, fell into the early concrete operational category.

Due to time and personnel constraints, interscorer reliability was not assessed for this measure,

which ideally would have been carried out to verify the distribution of children among

developmental levels and the characteristics of each group presented here. The skew towards

concrete operational reflects the preferential recruitment and selection of kindergarteners over

preschoolers to meet the original goals of the study. Each developmental level was comprised of

generally the same proportions of each demographic, experiential, and parental characteristic as

the overall study, although a few theoretically interesting differences among the groups existed.

The average age of children in each successive developmental category was higher than

that of children in the preceding categories (F(2,27) = 5.6, p < .05). Pre-operational children

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 56

(except one for whom this data could not be collected) were, on average, 5.1 years old (SD =

0.52) at the start of the study. Children in the transitional category were half a year older on

average, 5.6 years old (SD = 0.69), and those in concrete operations were the oldest on average:

5.9 years old (SD = 0.40). However, only the difference between the mean age in lowest and

highest developmental categories was statistically significant (p < .05). This finding makes sense

in light of the wide range of ages within the transitional developmental level which overlapped

with the age ranges of the other levels (Figure C1).

 In each of the following comparisons, the overall sample (N = 29) was broken into six or

nine groups along two dimensions: developmental level and a demographic or prior experience

variable. These analyses show differences between the developmental groups in this study but do

not imply conclusions about larger populations of 4- to 6-year olds.

There were no overall demographic differences between the children in each

developmental level. Preschoolers were slightly but not statistically significantly overrepresented

in the pre-operational category and underrepresented in the others; conversely, kindergarteners

were somewhat overrepresented in the concrete operational category and underrepresented

otherwise (χ2(2, N = 29) = 3.64; p = 0.16). Each developmental level had nearly the same ratio

of boys to girls as the overall study – roughly 60% male and 40% female (χ2(2, N = 29) = 0.10; p

= 0.96). The pre-operational group had slightly more suburban children and slightly fewer urban

children than expected, but overall, the children were proportionally distributed by suburban /

urban home area in each developmental level (χ2(2, N = 29) = 4.49; p = 0.11). Children attending

private school were statistically significantly over-represented in the pre-operational category

(χ2(2, N = 29) = 7.16; p < 0.05), but this can be attributed to the relatively lower availability of

public preschools compared to public kindergartens.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 57

Of the three measures of children‟s experience with computers and robotics, only one

showed a statistically significant difference between the three developmental levels. Fewer of the

children in the concrete operational level used a computer at home than expected by proportional

representation, while in the lower developmental levels, more of the children used a computer at

home than expected (χ2(2, N = 28) = 9.33, p < .01). Although the differences were not

statistically significant, children perceived by a parent as having „beginner‟ computer skills for

their age group were over-represented in concrete operations while those perceived as „average‟

were over-represented in the pre-operational and transitional levels (χ2(2, N = 28) = 7.34, p =

.12). (This was tied to the fact that many of children in concrete operations did not use a

computer at home.) Each developmental category had the same proportion of children at each

level of prior robotics knowledge as the overall study (χ2(2, N = 28) = 1.73, p = .79). No children

were reported by their parents as having programming experience, so there were no differences

between the groups in that regard.

Children with parents who had programming experience were slightly over-represented in

the pre-operational category (χ2(2, N = 29) = 6.71, p < .05). There were no differences between

each developmental category in terms of parents‟ level of education (χ2(4, N = 28) = 1.06, p =

.90), a parent having a STEM-related job (χ2(2, N = 28) = 2.73, p = .26) or degree (χ2(2, N = 28)

= 1.33, p = .52), or parental exposure to robotics (χ2(2, N = 28) = 3.11, p = .21).

 No statistically significant differences were observed among developmental levels in

terms of average pre-assessment sequencing scores or change in sequencing score in the post-

assessment. However, this relationship may be complex. Analysis with a larger data set is

underway to further examine the relationship between developmental levels and children‟s

improvement in sequencing after participation in robotics and programming activities.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 58

The following sections describe the programming trends seen within each developmental

category, with case studies presented in developmental order to exemplify the characteristics of

cognitive strategies, programming approaches, and achievement representative of each cognitive

developmental level.

Pre-operations, phase 2.

 Eight children (28% of the sample) were scored as exhibiting the cognitive patters of later

pre-operational reasoning, based on their responses to the “Hokey-Pokey” challenge. Half of

these children disregarded the “Hokey-Pokey” challenge and instead focused exclusively on

open-ended explorations of what they could make the robot do with CHERP. Two children

claimed that their exploratory programs matched the “Hokey-Pokey,” perhaps out of a desire for

the researcher to perceive them as compliant. The other half of the children scored as pre-

operational did try to solve the “Hokey-Pokey” challenge, at least temporarily. They were unable

to think of more than one or two actions of the solution and relied heavily on trial and error. It

seemed easier for several of these children to start over than to revise their programs. Having

exhausted their intuitive strategies, children waited for researcher assistance, expressed interest

in doing a more familiar activity like building with LEGOs®, or moved to open explorations.

Some of these children were concerned that they could not make satisfying progress toward the

“Hokey-Pokey” goal, while others were excited by their general explorations and seemed not to

be bothered by the unaddressed or unfinished challenge. Case Study 1 details the work of a child

in the pre-operational category (described in Chapter 4 and Table B4) as he tried to solve the

“Hokey-Pokey.”

Case study 1.

 Caleb (name changed) was a four-and-a-half year-old at the time of the study, living in a

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 59

suburban area, and attending a private preschool. He used a computer at home and was

considered by a parent to have average computer skills for his age, but the TangibleK study was

his first exposure to robotics. His parents‟ jobs and most recent degrees, a bachelor‟s and a

master‟s, were in liberal arts fields. Neither parent had had any programming or robotics

experience.

 Caleb began the programming activity by exploring CHERP with the tangible

programming blocks. He was particularly concerned about making sure that the robot really

could carry out the action instructions he chose, „Turn Left,‟ „Forward,‟ and „Shake.‟ “I‟m going

to see if it can do all of this,” he said, and ran the program. He noticed with confusion that his

program had five blocks (including the „Begin‟ and „End‟ blocks necessary in every program) but

that the robot only did three actions. He had trouble understanding that programming blocks

could have multiple categories of meaning. Once he was reminded that the „Begin‟ and „End‟

instructions work differently than action instructions, he still had trouble matching the robot‟s

actions to the program he had made, but eventually did so with support. After a reminder to try

the “Hokey-Pokey” challenge, he switched his focus to it. He tried hard to come up with a

solution, but his strategies, which were characteristically pre-operational, left him stumped.

 Caleb was excited about the idea of making a program that matched the “Hokey-Pokey”

song. It would need “All the instructions! The moves!” he decided. He looked in the bin of

tangible instruction blocks for „Spin.‟ “That‟s one of the „Hokey-Pokey!‟ ... We need the music,”

he added, humming. He was unsure what other instructions to choose, so the researcher sang the

“Hokey-Pokey” verse as a reminder of its lines. Caleb enthusiastically pointed out the „Spin‟ and

„Sing‟ blocks he had selected again. “But we still don‟t have „put yourself in‟…Maybe we

can…I don‟t know what we can do to make it. Maybe we can find one on this computer and put

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 60

it on.” He used the graphical programming blocks to build „Begin‟ „Backward‟ „Turn Left‟

„Beep‟ „End‟ „Shake‟ „Spin‟ „Sing.‟ “Let‟s see if that‟s the „Hokey-Pokey.‟” He uploaded this

program to his robot, not noticing the actions after the „End‟ instruction, which would not be

carried out. He did notice when the robot only enacted three of his six instructions, but he was

unsure how to fix this. Caleb moved back to the tangible blocks, deciding, “Maybe I should put

them right here (the spot for tangible blocks to be uploaded). I‟m going to make a new one.” He

quickly assembled „Begin‟ „Shake‟ „Backward‟ „Turn Left‟ „Forward‟ „Spin‟ „Sing‟ „End‟ without

noticing which blocks he chose. This program was no longer made as an effort to solve the

“Hokey-Pokey” challenge, but rather a general exploration of what he can make a robot do with

CHERP. After watching the robot run this program, he was finished.

 Caleb‟s work on the “Hokey-Pokey” activity relied on intuitive rather than systematic

strategies in both his recollection of the song‟s components to create an initial solution and in his

ideas about improving that first plan. His first effort, the selection of „Spin‟ and „Sing,‟ was based

on memorable actions from the song rather than a systematic revisiting of it line by line. While

he wanted to make his program more complete, he was at a loss to systematically go about it.

Instead, he twice hoped that switching to a different interface would yield more successful results

and later became distracted from the “Hokey-Pokey” goal. The efforts he made at debugging

were clearly a struggle and were also unrelated to the overarching goal. (He wanted his robot to

carry out all six of the instructions he had chosen without realizing that even the three

instructions it did carry out did not match the song.) Finally, he contented himself in simply

moving on to an exploratory program. The challenges Caleb had in focusing on and

accomplishing the goal of building a complete “Hokey-Pokey” program illustrate characteristic

patterns of pre-operational thought late in the stage.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 61

Transitional.

 There were 7 children (24% of the sample) who exhibited a mix of characteristics of pre-

operations and concrete operations, placing them in this intermediate category. All of the

children were interested in the given activity and made some systematic progress towards a

“Hokey-Pokey” program. However, they encountered difficulties in fully applying systematic

and empirical strategies. The abilities and general approaches seen within this group varied much

more than in the other groups. It is likely that this category comprises children who were just

beginning to use some concrete operational structures as well as some children who were further

along in the transition.

Four of the children started with an intuitive guess and were able to make some

systematic revisions before getting stuck. These four all ended up with either a program that

nearly matched the “Hokey-Pokey” or a program which matched the song in length and in a few

specific actions. One of these four children knew what actions she wanted to add to her program

– and in the correct order – but she was unable to interpret CHERP‟s „Forward‟ and „Backward‟

instructions as representations of the “in” and “out” movements in the song‟s first three lines.

Two other children began with an immediately systematic approach. One decided his program

was close enough right away and declined to try improving it; the other systematically improved

his program – with encouragement – before resorting to a guess-and-check strategy and ending

up with an almost complete solution.

Children in the transitional group each had difficulty with at least one of the following

aspects of debugging: recognizing a problem with the current solution, generating a hypothesis

as to the cause, and attempting to solve the problem. In response to these challenges, children in

the transitional category variously insisted that they were stuck, reverted to unsuccessful intuitive

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 62

strategies, or decided that an incomplete solution was satisfactory. Sometimes children applied

systematic debugging towards interesting problem variations. One child worked hard to match

his program to the song‟s length even though the specific actions did not match, and another tried

to direct the order and timing of lines of the song as the researcher sang them so that the song

would match his program rather than the other way around.

There seemed to be two categories of final program completeness within the transitional

group. Half of the children ended up with programs that resembled prototypes of the “Hokey-

Pokey” using only two of the five actions, and the children were quite aware that their programs

were incomplete. The other half ended up with programs which were only one instruction off,

but they seemed to have no interest or awareness of this difference. Although these nearly

complete final programs are almost on par with the final programs of children in the concrete

operational group, there are some clear-cut differences in how these children arrived at their final

programs. In the concrete operational group, the children with incomplete programs (three of the

fourteen) had gone through two iterations of improvements and testing, while 2 of the 3 such

transitional children arrived at this solution immediately and felt no need to debug. The child

who did debug used a developmental mix of changes based at different points on observation and

guess-and-check. Another child made an exploratory program first, then made a short and

intuitive “Hokey-Pokey” attempt, and finally systematically made a “Hokey-Pokey” program,

which she did not recognize as slightly incomplete. She seemed to start over with a more

effective strategy from a higher developmental level each time she wanted to improve her

program, rather than debugging or tweaking the first one, as was expected most children would

do.

Differences also existed in how children in each group employed musical instructions,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 63

which do not map directly to any line in the song but which can be reasonably interpreted to fill

in the last line and the two claps that follow it. Two of the three transitional children who used a

musical instruction did so to represent that the “Hokey-Pokey” is a song, and one did so

specifically to match the clapping after the last sung line. In contrast, of the five concrete

operational children who used musical instructions, four did so after the dance instructions to fill

in the last line of the verse and/or the claps, and one put alternating sounds after each action so

that his robot would (almost) simultaneously sing and dance the “Hokey-Pokey” by itself. The

uses of sounds by the concrete operational children show a higher level of systematic mapping

than those in the transitional group.

There were interesting differences among children within the transitional category in

terms of the unique mixes of systematic and intuitive strategies used. Overall, the children in this

category all exhibited a key characteristic of transitioning between stages: switching between

developmentally-based strategies even though one is more effective than another. The following

case study shows the work of a transitional child, who used strategies characteristic of both pre-

operations and concrete operations.

Case study 2: transitional phase.

 Parker (name changed), a kindergartener almost five-and-a-half years old at the time of

the study, was excited about the opportunity to play with robots. He was attending a public

school and living in an urban neighborhood. According to a parent, he had average computer

skills for his age, used a computer at home, and had exposure to robots through movies and

books. Both parents held bachelor‟s degrees. One parent held a degree in a STEM field as well as

a related job, and had experience with programming and robotics.

 Parker dove right into the “Hokey-Pokey” challenge. “So that („Forward‟) could be the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 64

“in” and that („Backward‟) could be the “out!” he quickly noted. He paused as he assembled the

blocks on-screen. “And you shake … And I think I‟m just going to do that.” He programmed his

robot, and, watching it, described the actions it carried out: “It went in and out, and then it

shook.” When asked if there was anything about his program to change, he decided, “Maybe I‟ll

just make a really long program.” After that exploration and several suggestions to try the

“Hokey-Pokey” again, he picked up the tangible blocks and rebuilt his initial program, humming

as he did so. “It says, „Put your robot in, put your robot out, and shake it all about!‟” He had his

robot do this program, and was asked again if there was anything he wanted to change. This time

he noticed something: “Oh! Turn it around! Spin it!” He sang the “Hokey-Pokey” verse to

himself as he rebuilt his program on-screen and added a „Spin‟ as the last action.

After he watched his robot do this program, the researcher asked whether he thought his

robot had done the “Hokey-Pokey,” or if the program was different from the song. He replied, “It

was a little different, ‟cause it didn‟t do the „Hokey-Pokey.‟ I don‟t know [what to change].

„Shake?‟ Maybe a double „Shake,‟ ‟cause we shake our bodies when we do the „Hokey-Pokey.‟

So I think I‟ll do two „Shakes.‟” He had noticed something was off (about the timing of his

program) but was not sure how to find out exactly what, so he made the best guess he could. He

added the second „Shake‟ after the first, uploaded the program to his robot, and watched it run.

“Hey! It did it!” he exclaimed. Now he was certain that his program matched the song (even

though the third action did not match the content of the line at that point) and was proud of his

accomplishment.

 Parker exhibited several instances of the systematic and empirical strategies typical of

concrete operations. He also had moments in which he temporarily abandoned the given

challenge for open explorations, relied on trial-and-error, or accepted a not-quite-complete

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 65

program as successful, all behaviors more typical of children in pre-operations. Parker‟s mixed

work exemplifies transitional patterns of thought in programming: interest in the given challenge

and in open explorations, some systematic program creation and/or debugging, and some

reliance on intuitive, guess-and-check strategies or sometimes being at a loss to extend a

systematic strategy through further debugging iterations. Different children showed varying

proportions of concrete operational versus pre-operational strategies, indicating that these

children were at different points in the transitional period.

Concrete operations, phase 1.

Fourteen children (48% of the sample) were scored as using cognitive strategies typical

of concrete operations, phase 1. Their work during the “Hokey-Pokey” programming activity is

markedly different from that of the pre-operational children and, to a somewhat lesser extent,

from that of the transitional children. The children scored as concrete operational tended to stay

on task once they started the “Hokey-Pokey,” focusing on the challenge until they arrived at a

complete or nearly complete solution. The children in this developmental category used

systematic approaches to create and tweak their programs and were quick to notice errors and try

to fix them. To create their first programs, children in concrete operations relied more on

thinking through the song step by step than an intuitive recollection of the song. Then they used

the empirical results of watching their robot carry out the program while the researcher sang the

“Hokey-Pokey” verse to determine whether the solution was correct. Some also “read through”

their programs block by block while saying the song to themselves to make sure the program and

song matched.

Children in concrete operations recognized whether an instruction was missing,

unnecessary, or out of order, something children in the pre-operational category had great

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 66

difficulty doing. Children in this category were rarely satisfied with a program that was not

entirely complete, as opposed to children in the transitional and pre-operational categories who

were more likely to call a partially complete or even completely unrelated program successful.

This evolution of self-imposed standards seems to parallel the increasing orientation towards

exactness in “bring[ing] a productive situation to completion” during the elementary school years

(Erikson, 1998, p. 72).

Three of the fourteen concrete operational children put together a correct solution on their

first try. The others revised and tested (debugged) their programs between one and five times. Of

the 11 children who used such an iterative trouble-shooting process, about half (6 children)

began with a long program of 4 to 7 instructions, which they then corrected by re-ordering,

adding, or removing instructions as needed. The other half (5 children) began with a smaller

portion of the final solution – 2 or 3 instructions – and built up to the final solution with each

debugging iteration.

The following case study presents the programming work of a child who exemplified the

cognitive strategies of the early concrete operational stage described in Chapter 4 and Table B4.

Case study 3: concrete operations, phase 1.

 Will (name changed) was a six-and-a-half year old kindergartener at the time of the study.

His programming demonstrated the typical patterns seen among the group of children in the first

phase of concrete operations. He attended a public school and lived in a suburban neighborhood.

His parents said that he did not use a computer at home and had no prior experience with

programming or robotics. Both his parents had master‟s degrees in fields outside of STEM, and

both work in fields related to their degrees. Neither one had prior experience with programming

or robotics.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 67

 Will decided to use the tangible programming blocks because they were “easier.”

Showing his ability to plan ahead, he chose „Begin‟ and „End‟ blocks from the bin and explained

that “The „End‟ will be for later.‟” Then he named actions as he selected their corresponding

blocks: a „Forward,‟ “Then „Backward.‟ – I‟m making the robot do the „Hokey-Pokey!‟ – And

turn yourself around?” He was not quite sure. “That‟s the „Hokey-Pokey‟ for the robot, right?”

He uploaded his program („Begin‟ „Forward‟ „Backward‟ „Spin‟ „End‟) to his robot and watched

it run twice. “This time I should do a „Shake,‟ he noticed, and added one before the „Spin.‟ He

reprogrammed the robot and watched it run. “This is funny, this robot,” he decided, and then,

getting an idea, exclaimed “Oh! This will be even funnier!” He added an instruction for the robot

to „Sing‟ at the end of the four movements. After watching this program, he reconsidered: “I

want to make it honk instead of music.” He exchanged the „Sing‟ for a „Beep‟ instruction,

uploaded the new program and watched his robot carry it out.

Since he seemed happy with the actions he had in the program, the researcher asked him

if his program did the whole “Hokey-Pokey.” At first he thought it did, but after watching it once

more, he wanted to make two changes. “First let‟s get rid of the „Beep,‟ and I need another

„Forward‟ – Oh! That was a „Backward!‟” He found the correct „Forward‟ block, added it

between the „Backward‟ and the „Shake‟ in his program, and removed the „Beep‟ from the end.

“Ok, let‟s program it to do this now.” He was then satisfied that his program accomplished the

“Hokey-Pokey” goal.

The strategies Will used in creating and revising a “Hokey-Pokey” program match the

phase 1 concrete operational characteristics: focusing on and planning flexibly toward a goal;

relying on empirical evidence; and use of logical rather than intuitive reasoning. Only his initial

attempt was scored lower, transitional, because it was unclear how systematically he was

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 68

thinking through the song, particularly in light of his uncertainty about what comes after the

second instruction. However, once he realized that he did not remember any more of the song,

Will turned to testing his program by watching the robot carry it out to find out how to complete

it. He focused on the “Hokey-Pokey” goal without much redirection from the researcher, and,

step by step, made his program closer and closer to the “Hokey-Pokey” song until he felt it was

complete. In fact, he expressed delight throughout the activity not just at the experience of

playing with a robotic toy but also at the process of getting closer and closer to a program which

accomplished the given goal.

 Children at each level of cognitive development varied qualitatively in their approaches

to programming in terms of their goal focus and the nature of their strategizing. The following

section discusses correlations between cognitive developmental level and two measures of

programming achievement.

Developmental Level and Achievement

Achievement of two programming concepts, correspondence and final program

completeness, was high on average but the distribution of scores across the sample warrants

further investigation. On the measure of making correspondences between programming

instructions and robotic actions, the overall mean was 3.86 out of 5, (SD = 1.66). Interscorer

reliability was found to be very high (2 items; α = .99). A histogram of correspondence scores

shows that 62% of the children achieved the highest score while the remaining 38% were

distributed among the lower scores (see Figure C2).

On the measure of program completeness, or how close the child came to creating a

program with all the correct instructions in the correct order, the overall sample average was 2.31

out of 4 (SD = 1.69). Interscorer reliability was again nearly perfect on this measure (2 items; α =

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 69

.99). The frequency of program completeness scores followed a bimodal distribution (see Figure

C3). Forty-one percent of children‟s final programs were either very rough attempts at the

“Hokey-Pokey” or even unrecognizable as an attempt at the “Hokey-Pokey.” The other 59% of

children‟s programs had the five basic actions solution in order, or needed to fix a single

instruction. Interestingly, no children scored in between (having a final program that needed two

changes to be correct).

Developmental level, as measured in this analysis, correlates remarkably strongly to both

measures of achievement and explains the unusual distribution of scores seen on both measures.

Although the measure for cognitive development is grounded in theory, it was coded from the

children‟s programming activity, so a portion of the criteria of each developmental level maps

onto important aspects of achievement in programming. The following results, which are

unusually high for the behavioral sciences, should be considered with that limitation in mind.

On the correspondence measure, developmental level predicts 64% of the variation in

correspondence scores (F(2,26) = 23.3, p < .001) (see Table C1 and Figure C4). Pre-operational

children scored the lowest, needing significant to step-by-step intervention to select instructions

based on their actions (M = 1.87 out of 5, SD = 1.46). Those in the transitional category scored

statistically significantly higher (M = 3.86, SD = 1.46, p < .05); these children needed only

periodic to little support, on average, with correspondence. Those in the concrete operational

category (M = 5.00, SD = 0.00) also scored statistically significantly higher than the pre-

operational group (p < .001) and needed no help in applying this skill.

On the measure of program completeness, developmental level predicts 87% of the

variation in scores F(2,26) = 90.3, p < .001). Children in the pre-operational group again scored

the lowest, with an average near zero out of 4 possible points (M = 0.13, SD = 0.35), meaning

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 70

that their programs were generally unrecognizable as attempts at the “Hokey-Pokey.” Children in

the transitional category scored statistically significantly higher (M = 1.86, SD = 1.07, p < .001).

While this average score indicates that their programs required 2 to 3 fixes to be complete, the

data show that these children actually either made a nearly complete program or a nearly

unrecognizable program with no children scoring in the middle (needing 2 fixes). Children in the

concrete operational group scored the highest, with at most one change needed to make their

program complete (M = 3.79, SD = 0.43, p < .001 compared to both other groups). Table C1 and

Figure C5 summarize these results.

While it was not possible to compare approaches to programming by developmental level

because of the conceptual overlap in the relevant measures, it is possible to examine the

programming achievement of children grouped by developmental level of each cognitive

development sub-score. Indeed, differences in achievement are seen in each component of the

cognitive developmental metric: goal orientation, characteristics of the initial solution, and

characteristics of debugging. The differences in achievement based on overall developmental

level versus component scores exist because each child might have component scores in multiple

developmental categories which combined to a single overall category. These comparisons are as

close a measurement of programming approach, separate from cognitive development, as was

feasible.

Children‟s level of focus on the assigned goal impacted achievement differently from

overall developmental level (F(2,26) = 35.2, p < .001 for correspondence and F(2,26) = 168.1, p

< .001 for program completeness). (See Table C2 and Figures C6 and C7.) Children whose focus

(or lack thereof) on the “Hokey-Pokey” was assessed as pre-operational or transitional scored

statistically significantly lower on both measures of programming achievement than those

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 71

assessed as concrete operational on goal orientation (p < .001 for both comparisons). In other

words, children who did not attempt the “Hokey-Pokey” challenge, who were easily distracted

from it, or who moved on to other goals after becoming stuck needed help matching instructions

to “Hokey-Pokey” actions – anywhere from minimal support to step-by-step instructions. They

also ended up with programs that did not resemble the “Hokey-Pokey.” On the other hand,

children who remained interested in the “Hokey-Pokey” despite the need to debug their

programs needed no help matching instructions to actions in the song and ended up with

complete or nearly complete programs.

Differences in achievement were also seen based on the type of strategies children used in

their initial solution to the “Hokey-Pokey” challenge (F(2,26) = 13.4, p < .001 for

correspondence and F(2,26) = 58.5, p < .001 for program completeness; see Table C3 and

Figures C8 and C9). Children whose initial solution strategy was characteristically pre-

operational differed in both achievement scores compared to those with transitional or concrete

operational strategies (p < .01 for correspondence and p < .001 for program completeness).

Scores for program completeness also differed statistically significantly between children with

transitional first solutions compared to children with concrete operational initial strategies (p <

.05). Children whose first attempt at the “Hokey-Pokey” was based on intuitive strategies (if they

made an attempt at all) needed, on average, significant help with selecting instructions that

matched the song and their final programs were extremely rough prototypes at best – including

perhaps a relevant instruction or two. In contrast, children whose initial attempt relied at least

partially on systematic strategies were able to select instructions that matched the song with little

to no help and most of these children ended up with four or five of the five necessary actions for

a complete program. Of note, children in the transitional category for initial strategy either

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 72

needed no help or significant help with correspondence, as opposed to children in the lower

category whose scores covered the full range of help needed but tended towards significant help,

or the children in the highest category, who needed no help at all.

Finally, statistically significant differences in mean scores on both programming

achievement measures were found based on children‟s strategies used in debugging (F(2,26) =

15.9, p < .001 for correspondence F(2,26) = 52.5, p < .001 for program completeness; see Table

C4 and Figures C10 and C11). For correspondence, this result was driven by differences between

children whose debugging was scored as pre-operational versus concrete operational (p < .001).

For program completeness, there were statistically significant differences among all groups (p <

.001 comparing pre-operational and transitional to concrete-operational and p < .05 for pre-

operational to transitional).

Although it was not an original goal of this analysis to examine, there is the interesting

question of whether developmental differences also exist in children‟s baseline sequencing scores

or changes in sequencing scores from before to after the robotics sessions. A definite relationship

in the larger population has not yet been established from the present data and basic analysis,

perhaps due to the small sample size, (see Table C5); however, some patterns are observed

(Kazakoff & Bers, 2011). Children in late pre-operations scored lower on average than children

in early concrete operations on both pre- and post-intervention assessments and made the

smallest improvements, on average, between the assessments. Children in the transitional phase

scored lowest and had the widest variation in scores on the pre-assessment; they made the largest

gains at the post-assessment. This may have been due to a developmental readiness to acquire

new cognitive skills. Children in concrete operations began with the highest scores and made

middling gains. Presumably, they would have made larger gains if many of them were not

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 73

already achieving the highest possible score. Additional studies a larger sample and more

complex analysis are needed to establish what relationship might exist between cognitive

development and sequencing ability.

Individual Differences

Children’s demographics.

 Data was collected on children‟s age at the start of the study, gender, grade in school, and

whether the child lived an in urban or suburban area. As a second cognitive variable that might

influence programming, children‟s baseline and delta sequencing scores were also analyzed to

see if either predicted programming achievement. Age was statistically significantly and

positively correlated with scores on the completeness of children‟s final programs when tested as

a single factor. However, age makes no contribution to predicting program completeness after

cognitive developmental level has been accounted for. No other demographic or cognitive

baseline factors correlated with either measure of programming achievement. (See Table C6 for

relationships with cognitive baseline measures and Tables C6 and C7 for relationships with

children and parent background measures).

Children’s computer, programming, and robotics experience.

 Information on children‟s prior experience with computers in general and robots and

programming in particular was also collected. Of the 28 children whose parents completed the

background information survey, 75% played games on the computer at home, and a few children

also used a computer to make art or music, for communication, to look up information, for word

processing, or to use educational software. Seven children (25%) did not use a computer at

home. Half the children were perceived as computer “beginners” for their age group by their

parent. Nearly another half were perceived as “average” for their age group and one child was

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 74

perceived as an expert for the age group. Over half of the children had no prior experience with

robots as reported by parents. Ten percent of children had experience with non-programmable

robots, such as watching a movie with a robot in it or playing with a pre-programmed toy. About

a third of the children had experience with robotics classes, workshops, museum activities, and

robotics kits, which are assumed to involve programmable robots. Interestingly, no parents

believed their children had any programming experience.

Home computer use negatively correlated with scores on measures of programming

achievement (t(20) = 3.68, p = .001 for correspondence and t(26) = 4.28, p < .001 for program

completeness); however this result is accounted for by the fact that all of the children who did

not use computers at home are in the concrete operational cognitive developmental category.

Home computer use lost its statistically significant correlation to achievement after controlling

for cognitive developmental level. While children perceived as having “average” computer skills

for their age did slightly better than those perceived as “beginners” on programming

achievement scores, the difference was not statistically significant, and is also accounted for by

the disproportionate number of beginner concrete operational children. Only one child was

perceived as having “expert” computer skills so comparisons with that category were not useful.

No other categories of children‟s prior computer, programming, or robotics experience correlated

with programming achievement measures.

Parental education and STEM background.

 Nearly half of the families had at least one parent with a doctoral degree; nearly another

half of families had a master‟s degree as the highest level of education by either parent. Over

half, 59%, of children had at least one parent whose latest degree was STEM-related, and 53% of

families had at least one parent currently working in a STEM-related field. Almost a third of

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 75

children had at least one parent with prior exposure to robotics, and over two-thirds of the

children had at least one parent with prior experience programming.

No significant relationships were found between either measure of children‟s

programming achievement and parental educational, occupational, or experiential factors. The

lack of statistically significant relationships may be due to the study‟s low N or to the specific

measures used rather than an absence of relationship between the factors. Children with at least

one parent whose most recent degree was STEM-related or at least one parent who had prior

experience with robotics did modestly better (less than half a point) on both programming

achievement measures than children whose parents did not. Children with at least one parent

with programming experience scored about half a point higher on program completeness. Larger

studies with more precise measures would be needed to rule out this study‟s finding that these

patterns are seen by chance. No patterns were found based on the highest level of parental

education, a rough proxy for socio-economic status, but the sample included hardly any variation

on the metric: 90% of the families had at least one parent with at least a master‟s or doctoral

degree.

Novice Difficulties

 Children in the study exhibited different difficulties in completing the programming

challenge based on their assessed level of cognitive development. Children in the first phase of

concrete operations had few points of difficulty learning the components of the CHERP

programming environment, how to program a robot with an arbitrary CHERP program, and how

to use CHERP to solve the “Hokey-Pokey” challenge. Only 3 of these 14 children ended the

activity with an error in their programs: an extra action, a missing action, and confusion between

„Forwards‟ and „Backwards.‟ Children in this stage tested and systematically revised their

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 76

programs with relative ease. By contrast, children in the late pre-operations and transitional

phases regularly exhibited several types of errors or difficulties. Those who attempted the

“Hokey-Pokey” frequently:

 (By the definition of the developmental categories used in this analysis), relied exclusively or

partially on unsystematic strategies: guess-and-check or thinking of as many necessary

instructions as possible without checking the song line by line;

 Noticed errors but declined to try to improve that aspect of the program;

 Claimed that programs matched the “Hokey-Pokey” song when this was not the case;

 Felt that a program successfully matched the song if the robot‟s movements and the song had

the same duration;

 Knew what action they wanted the robot to do, but were not sure which CHERP instruction

corresponded or even whether CHERP had such an instruction;

 Moved on to open-ended explorations rather than improving their program; or

 Needed encouragement to keep working on the “Hokey-Pokey” challenge.

 It seems that children in late pre-operations and the transition period towards concrete

operations experienced some similar difficulties as compared to older novice programmers (as

discussed in Chapter 3), but that the difficulties were alleviated for children in early concrete

operations, perhaps due to a good match between children‟s cognitive abilities and the design of

the programming language. Older novices experience frustrations in learning exactly how a

language‟s instructions and syntax work, have difficulties flexibly combining instructions to

solve a given problem, often fail to test their programs or trace through code to locate errors,

have difficulty doing so if they try, and may make haphazard changes rather than systematic

changes whose implications have been thoroughly considered. These match some of the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 77

challenges faced by children in pre-operations and the transitional period, with the notable

exception of the children‟s tendency to claim success for actually ineffective solutions.

There are several implications of the patterns of difficulties in the TangibleK lab study

compared with typical older novice challenges. First, as the younger two developmental

categories seemed to have similar issues as older novices, these issues may pertain to common

characteristics of human cognition and problem-solving styles that people use without specific

instruction to do otherwise. Such challenges may be tempered or altered by unique

developmental characteristics across ages. Secondly, since concrete operational children did not

share these challenges during the “Hokey-Pokey” activity, difficulties novices experience may be

a function not only of the strategies the novice relies on but also of the match or fit between the

person and the programming language. This concept underlies research on more intuitive and

simplified introductory programming languages as well as the development of languages which

fill gaps between introductory languages and full languages intended for professional use.

It should be noted, however, that while most studies with older programming students

involve a semester or more of programming, the analysis of preschoolers and kindergarteners in

this study is only of a single activity following less than an hour of work with CHERP. Further

research and analysis is needed to discover whether children in early concrete operations

experience the pattern of challenges seen in the other groups with the introduction of control

flow structures, and how children‟s main points of difficulty evolve over a few months or a year

of experience.

The quantitative, qualitative, and case study results presented above paint a picture of

many of the factors that contribute to various degrees to preschool and kindergarten children‟s

success in a programming task.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 78

Chapter 7: Discussion

 The findings of this study range from the relationship between level of cognitive

development and programming for four- to six-year-olds, the impact of individual and

background factors on this relationship, and a comparison of the challenges faced by children in

this study with those experienced by older novice programmers. Clear patterns were seen in

children‟s programming strategies and achievement based on their cognitive developmental

levels, but not on most other variables.

It was found that children in the latter half of pre-operations tended to explore the

possibilities and boundaries of CHERP rather than engaging in the specific given challenge. The

intuitive problem-solving strategies characteristic of this group made the “Hokey-Pokey” goal

unattainable. They were more at ease ignoring that goal and following self-directed explorations

of CHERP.

Children in the first phase of concrete operations responded quite differently to the

programming task: they were enthusiastic about generating an iteratively more precise solution.

Unlike their pre-operational peers, they relied on empirical feedback and systematic logic to

reach the goal. When they took on self-defined challenges, their goals were contextualized; they

wanted to use CHERP to accomplish an imagined scenario rather than simply understand more

about how CHERP works, as the pre-operational children did.

This study also included children who fell in the transitional phase between late pre-

operations and early concrete operations. Although the results looked different from child to

child, the transitional group was in general interested in solving the challenge, like the concrete

operational group, and made some similar if inconsistent systematic or empirically-based

progress, but, like the pre-operational group, they became stuck, and often moved on to open-

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 79

ended explorations.

While further studies are needed to confirm a relationship between programming

outcomes and an independent measure of cognitive development, the framework sheds light on

the wide range of programming abilities seen during the study. By contrast, other measures of

cognitive ability (sequencing), demographics, parental background, and prior experience by the

child did not correlate statistically significantly with measures of programming achievement, at

least not after taking into account developmental level or skewed subsamples.

Examination of the programming activities of children not included in the main analysis

uncovered some interesting phenomena not systematically captured by the defined variables.

These children had been excluded due to distraction or shyness, having taken on a structured

challenge other than the “Hokey-Pokey,” or for having shown unexpected increases in

achievement following minimal support. For instance, three children displayed reasoning

characteristic of two different stages before and after the systematic line-by-line strategy was

introduced. During their initial attempts, these children had similar difficulties as children in the

pre-operational category: distractibility from the activity, difficulty matching CHERP action

instructions to “Hokey-Pokey” lines, and no overall, systematic strategy for creating and

debugging a solution. However, once the researcher began to help them complete the activity by

modeling how to find the matching instruction line by line, these children enthusiastically took

the initiative to finish the rest of the program almost entirely on their own. Although the data for

these children did not meet the requirements for inclusion in the study, their initial struggles and

surprisingly rapid appropriation of the line-by-line strategy might suggest that these children

were at just the right transitional point in their cognitive development to learn such a strategy.

An alternative interpretation of these children‟s varied use of strategies stems from the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 80

children‟s personalities. Two of these three children were quite shy – much more so than any

other children in the study. By the time the researcher began supporting the children‟s

programming, (or perhaps, because the researcher did so) they started to feel more comfortable

in the study setting and with problem-solving under observation. This might have led them to

think more freely, take more chances, and willingly test out potentially incomplete or inaccurate

programs. The third child was socially at ease, but his distractibility seemed to increase

proportionally with the level of challenge a given task presented. For instance, although he

barely focused on the third programming challenge, he concentrated immediately, energetically,

and without redirection on the more concrete post-intervention assessments that immediately

followed.

Whether the patterns exhibited by these three children can be attributed to the interaction

of the activity with core personality traits or to developmental readiness, either in terms of

Vygotsky‟s zone of proximal development for learning or the neo-Piagetian concept of micro-

development, the observations raise questions about whether and how to expand the analysis

presented in this thesis to more fully capture the cognitive processes and other factors involved

in programming. Other personality factors which appeared to have a possible role include:

impulsivity, compliance, perfectionism, and self-consciousness. It also would have been

interesting and pertinent to examine the impact of cognitive styles and personality traits on

children‟s achievement and the interaction between these individual differences and

developmental factors.

The most compelling result of this analysis is the categorization by cognitive

developmental level of the cognitive strategies children use when programming robots, the skills

they are able to succeed on, and the extent of their achievement on each skill. Due to various

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 81

limitations of the study, including the analysis of a single programming activity per child, follow-

up studies would likely provide insights into how to revise the framework. The degree of

variation within the transitional group shows one area where refinement is needed. The

transitional group appears to be made up of two possible sub-groups, with one group

developmentally ahead of the other but both groups clearly between the pre-operational and

concrete operational levels. The evidence for this stems from the fact that part of the transitional

group scored just slightly higher than the pre-operational group on programming achievement

and the other part scored just under the concrete-operational group. While follow-up studies

should confirm or disprove and expand on the initial findings presented here, the cognitive

developmental framework for programming can nonetheless provide specific points of departure

for future design or re-design of young children‟s programming tools and the curricula and

learning goals accompanying them.

Implications for Programming in Early Childhood

Based on the evidence that children program strikingly differently depending on their

level of cognitive development, what supports for learning computer programming can be given

to young children while respecting their developmental and other individual characteristics? This

section discusses differentiated learning expectations, curricula, and programming and robotics

tools for young children.

Learning expectations and curricula.

 The most significant implications of the observed differences in cognition and

programming outcomes are those regarding learning expectations, curricula, and pedagogy.

Educational goals and methods must be framed according to the recognition that the motivation

and abilities of children using pre-operational cognitive structures are quite distinct from those of

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 82

children using concrete operational structures. At the very least, children in pre-operations may

need more time to learn the basic functionality of a programming environment than older

children. More significantly, the typical goals of their programming are quite different from those

of concrete operational children, and the aspects of programming that challenge them differ

dramatically as well.

Children in pre-operations pursue goals that allow them to learn the boundaries and

capabilities of the programming and robotics materials: What is the longest program I can make?

What happens if I use all the purple instructions? Can I make a pattern of repeating instructions?

Will the robot do the same thing if I make the program on the screen instead of with the wooden

blocks? What is the difference between „Forward‟ and „Backward?‟ Curricula for programming

and robotics in preschool and early kindergarten should foster such explorations. Activities and

teacher support should provide pathways toward explorations beyond those which children

generate on their own and allow opportunities for students to articulate and discuss what they

observed.

Noticing results and using them to generate ideas for follow-up explorations is a key skill

for teachers of this age group to model and for children to try out themselves. While it must be

understood that children in this group are unlikely to create or revise programs systematically or

with adult-like logic, if teachers model and support such strategies regularly – but without

superseding children‟s own explorations – then children will not only have confidence in their

own ideas but will also have these strategies at their disposal when they reach the transition to

concrete operations. Especially as children are just beginning to develop logical and systematic

strategies, exposure to a variety of ideas can help them fully explore their growing abilities. In

sum, the curriculum for a group of late-stage pre-operational children should value and support

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 83

children‟s explorations of the programming environment. The cognitive goals for this group

should be to build observation and articulation of programming outcomes and to use those

observations, with support, to refine the program or generate a new goal.

While the children in pre-operations tend to focus on explorations, children in concrete

operations are more likely to have a contextualized goal which can be achieved by designing a

program for their robot: „Can I make my robot push this pile of bricks off the table?‟ „Can I make

my robot dance all the „Hokey-Pokey‟ verses?‟ „How close can I get my robot to the wall without

crashing?‟ While these children still benefit from open-ended explorations, they are also capable

of and enjoy taking on more structured, problem-solving intensive challenges. Whether their

goals are self-selected or given by a teacher, it is important for children in early concrete

operations to articulate and hear from one another about the logic and strategies used in creating

and debugging their programs. A curriculum for this group would include many opportunities to

solve challenges of varying difficulty within each category of instructions (actions; actions and

control flow structures with numeric parameters; and control flow structures with sensor

parameters). Introduction of each new control flow structure and parameter type should be

accompanied by thorough exploration of how these instructions work, similar to the exploration

of action-only programs by pre-operational children. Curricula for this developmental group

should push them to use their budding skills in systematic logic to solve increasingly complex

challenges.

The specific types of challenges, activities, or explorations appropriate for children in the

later portion of pre-operations differ from those for children in the early part of concrete

operations, but the pedagogy remains the same. Curricula and learning goals for either age group

should sustain the initial excitement children feel when they first program robots, encourage

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 84

children to follow up on their ideas, and support children in honing and extending their thinking

within that child-focused context.

Programming and robotics tools.

 Developmentally appropriate programming interfaces for late pre-operational versus early

concrete operational children may not need to be as differentiated as learning expectations and

curricula for the two groups, at least within the age range of the TangibleK study. Both late pre-

operational and early concrete operational thinkers benefit from a programming interface that

does not require extremely fine motor skills or eye-hand coordination. Although some children

(across developmental categories) had difficulty using a mouse or connecting on-screen blocks,

future iterations of the software using touch-screens and improving the „snap-together‟ behavior

of graphical blocks may address these challenges.

On the other hand, one could reasonably revisit the question of whether the hybrid

interface benefits all children in the developmental range covered by the study. Some children

persevered in using the on-screen interface, in spite of great difficulty in manipulating the mouse,

because computer time was seen as a rare and precious opportunity. This caused them to spend

more time physically building programs than thinking about what instructions to include or how

to debug a program in progress. Other TangibleK work has highlighted that certain classroom

management decisions cause all children to use one interface or the other, either purposefully or

unintentionally, with positive outcomes for management of materials and adult support. Are there

circumstances when individual children (rather than the class as a whole) would benefit from

having access to only one interface or the other? Is it worth the time necessary to help children

independently evaluate each interface and choose the one that best matches their goals and

abilities? Do children settle on an interface that they can use reasonably efficiently if access to

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 85

CHERP is a common rather than rare experience? Future studies, including longitudinal research

are needed to address these questions.

In the TangibleK study, the relatively small, high-level set of instructions seemed

compelling to the full developmental range of children. By some age or by some level of

experience, children will be ready for more customizable robotic actions, but this particular study

cannot address that point. Studies following children over longer periods of experience with

CHERP could demonstrate at what point children feel limited by the instruction set and are

cognitively ready – both from development and experience – to construct their own relatively

lower-level instructions, such as those in LEGO®‟s WeDo™ programming language.

 Another interesting question deals with children who do not debug with CHERP, or who

have trouble doing so: how would their programming approaches and outcomes be different if

the programming interface included a specific tool to support debugging, perhaps by tracking

through the program as the robot ran it? It is possible that this would support children who are

interested in improving their programs but who do not have the cognitive requisites to

simultaneously monitor the robot‟s actions and compare them to the program. On the other hand,

such a mechanism might prevent or de-motivate children from taking on this cognitive task as

they are able. Research is needed to shed light on what children do with such a feature and

determine the potential benefits or drawbacks.

Finally, it is important that the programming and robotics materials function consistently.

This was not always the case with early versions of CHERP and with the LEGO® sensors, which

led to unnecessary confusion in understanding, for instance, how control flow structures and

sensor parameters influenced what the robot did. While this may seem like a problem with a

clear solution, the functionality of robotic components raises an interesting dilemma.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 86

Programming robots rather than animations necessarily involves more factors than just the

program: real-world, physical factors like gravity, friction, sturdiness, and battery power. To

completely obscure this reality deprives the child of investigating authentic problems in the

robotics domain. The ideal characteristics of the robotics materials may depend on how heavily

weighted the learning goals are towards robotics versus programming. However, it is too much

of a cognitive load for preschoolers or kindergarteners to simultaneously debug a finicky robotics

system as well as a program for its behaviors. Whether they are focused on one aspect of the

relationship between their program and the robot‟s behavior or are limited in working memory

capacity for systematically accounting for multiple factors, this age group benefits from a fairly

cleanly working set of introductory robotics materials so that they can explore the logic and

affordances of the programming instructions.

 Overall, the CHERP programming language and hybrid interface worked well as an

introduction to programming for most of the children in the one-on-one study. Recommendations

for future research on programming interfaces, already touched on throughout this section,

include exploring how children‟s use of CHERP changes with prolonged use and age to

determine at what point children are ready for a more complex instruction set, examining how

that readiness is driven by development and experience, and exploring what the next level of

complexity might look like in terms of the instruction set and possibly the interface as well.

Limitations of the Study

 Every piece of research or analysis has its limitations; the TangibleK one-on-one study

and the analysis contained in this thesis are no exception. Following are the major points which

could or should be revised in future research.

To begin with, this study had a relatively small sample. Although the correlation between

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 87

developmental level and achievement was significant and strong, statistical significance was all

but unreasonable to expect in the more detailed analyses, which took into account multiple

predictor variables and thus compared groups of less than 12 children. Analysis of a larger

sample is necessary to paint a thorough picture of the primary cognitive developmental and other

factors contributing to early childhood programming experiences and outcomes.

A pervasive limitation stemmed from this thesis relying on data that the TangibleK one-

on-one study was not specifically set up to measure and which thus had to be coded from

existing video. It was not possible to go back in time and take independent measures of cognitive

developmental level, key cognitive styles, or ask children follow-up questions that would have

been relevant. Development was measured from existing video data because it was possible to

map cognitive developmental traits of Feldman‟s revised Piagetian stages (Feldman, 2004) to the

highly reasoning-oriented activity of programming. The consequence was that the measures of

cognitive development, approach to programming, and programming achievement were not fully

independent, and the high correlations found among these variables must be validated with future

studies using completely separate measures. Furthermore, using a single, unvalidated activity to

measure a trait assumed to be consistent over time or contexts leaves open the possibility that the

child actually exhibited the observed characteristics only during that activity. While the analysis

in this thesis assumes, based on developmental theory, that this is not the case, it would be better

to use a measure that does not require such an assumption.

Perhaps most significant after the lack of an independent cognitive development measure,

the original study piloted a large number of measures created by the research team, and some

need revision to better address the concepts that they were intended to document. Parents‟ and

children‟s background information that was collected did not provide detailed enough

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 88

information to realistically connect these factors with children‟s achievement during the study.

Perhaps the variables regarding parents‟ having STEM-related degrees or occupations could have

been replaced or supplemented with a measure of systematic problem-solving in everyday home

life or with measures of technological literacy and fluency – knowledge and comfort with using a

variety of computer-based technologies. Some of the measures, such as the child‟s prior

experience with robots, could have asked more directly for the information of interest so as to

avoid ambiguous answers. The measures of children‟s prior experience could also have covered

more contexts (classroom and after-school settings) and a wider genre of computational devices

(including smartphones, video games, electronic toys, etc.). Furthermore, when data on the same

measure was collected from both parents and children, family members sometimes gave

conflicting information, and a few individual parents even gave self-conflicting information. This

unfortunate finding might have been due to inadequately defined terms such as „robotics kit,‟

„programming,‟ or „average,‟ which could be interpreted in many different ways. More narrowly

focused studies with revised variables and measures should follow up on this pilot research.

For this thesis, the same person conducted the study sessions, coded the data, and

analyzed it. Interscorer reliability testing was completed with a second scorer (also

knowledgeable of the study and the goals of this analysis) only for measures of programming

achievement. Future work would ideally include blind scoring and interscorer reliability tests of

the developmental measures as well.

 Finally, the original study provided data for three separate programming activities, but

due to time constraints, only one was analyzed in the present work. It would have been very

interesting to compare children‟s approach and success in the “Hokey-Pokey” activity to the later

activities, when the use of control flow structures disrupted the linear flow of programs and the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 89

one-to-one relationship between instructions and actions performed by the robot. Further

developmental differences, such as multiple classifications, could have been analyzed through

these activities, since the control flow instructions represent a qualitatively different category of

instruction than the action instructions. (A hint of developmental differences in understanding

different types of programming instructions is highlighted by the fact that one concrete

operational child remarked with pleasure at his own understanding that the program „Begin‟

„Forward‟ „End‟ “does one thing even though it has three blocks,” while the child figuring in the

pre-operational case study was confused why the „Begin‟ and „End‟ instructions did not result in

visible robotic actions.) Alternatively, it would have been interesting to observe children‟s

approaches and achievement over a series of activities similar in cognitive requirements to the

“Hokey-Pokey.” This would extend the current picture of children‟s early learning of CHERP

and of programming strategies. It would also ensure that children were assessed once they were

more familiar with CHERP and with the format of problem-solving under one-on-one

observation.

Future Directions

 The analysis of cognitive and individual factors in children‟s programming during the

TangibleK one-on-one study led to many interesting observations and results. Nonetheless, the

research was a pilot in many respects. Furthermore, the analysis presented in this thesis relied on

variables that the original study was not specifically designed to measure. Were a study carried

out to address precisely the research questions presented in this thesis, the shortcomings

discussed above would certainly need to be revised. To summarize, independent and validated

(or at least more targeted) measures for each variable must be included. If possible, a larger

sample should be drawn from a more socio-economically diverse pool. Analysis should also be

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 90

conducted on a larger set of programming activities than was possible in the scope of this thesis

by including several programming tasks per child, preferably after a thorough introduction to

CHERP. Finally, future studies should be implemented with a polished version of CHERP whose

graphical interface is as physically easy to manipulate as the tangible blocks. This would

eliminate the question of how much the finicky interface detracted from children‟s potential

reasoning and programming outcomes.

Should such a revised study uphold the basic findings presented in this thesis, follow-up

research could test the suggested implications of the current findings on learning expectations,

curricula, and robotics and programming materials in the section above. Classroom-based work

is needed to validate or refine the proposed differentiated learning expectations and curricula for

children at each level of cognitive development and provide a deeper understanding of how

curricula shift to match and support children‟s new thinking as they transition between stages.

Longitudinal studies can shed light on how children‟s programming evolves over the course of

long-term use of CHERP. Studies of slightly older children and of children who are experienced

CHERP programmers could subsequently inform the design of a follow-up version of CHERP,

specifically for children with more sophisticated cognitive developmental structures at their

disposal. Future work can also continue examining issues relating to children‟s use of the hybrid

interface and explore the impact of alternative features for CHERP and the robotics materials.

Chapter 8: Conclusions

 Children‟s use of new technologies from smartphone apps to electronic learning toys is

prevalent as never before, and this trend is unlikely to change course. What will evolve is how

parents, educators, and society distinguish the enriching designs and uses of technology from the

detrimental. Within the context of constructivist development and constructionist learning,

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 91

powerful yet age-appropriate new computational materials for building and programming robots

make the digital world children‟s own. This thesis has addressed some of the major cognitive

developmental issues surrounding how children between the ages of four and six use CHERP, a

graphical-tangible hybrid programming language for programming robotic vehicles.

To illustrate and make sense of the striking differences seen among children‟s

programming goals, approaches, and outcomes in the one-on-one TangibleK study, a descriptive

framework of children‟s cognitive developmental stages was created by extrapolating

programming behaviors from characteristics of phase 2 of pre-operations, phase 1 of concrete

operations, and the transitional period in between, as found in the literature on Piaget‟s theory

and Feldman‟s revisions of it (Feldman, 2004). The framework appears to be a successful first

attempt at measuring cognitive development from a non-Piagetian yet reasoning-rich task.

Children within each level of the cognitive development framework were consistent, overall, in

their focus on the task, the nature of their reasoning, and in their correspondence and sequencing

achievement. Furthermore, their work was increasingly systematic and effective from one

developmental group to the next.

It was found, in support of the developmental framework‟s validity, that while age and

developmental level correlate statistically significantly, developmental level does a far better job

of predicting achievement scores than age does. Furthermore, no other cognitive, demographic,

experiential, or parental background factors statistically significantly predicted differences in

achievement beyond the contribution made by developmental level, suggesting that this variable

plays the predominant role in the early childhood programming activities explored in this study.

It was expected that parental background in STEM fields and children‟s prior experience with

computers, robotics, and/or programming would have had some impact on achievement.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 92

However, such impacts may have been overshadowed by the correlation with developmental

level. Alternatively, the measures for these variables may not have fully captured the intended

concepts.

Based on this analysis, comparisons were made between novice programmers of different

ages. It appears that novices in early childhood through adulthood face many of the same high-

level problem-solving challenges but that these may be alleviated if the complexity of the

programming language matches the cognitive characteristics, developmental or otherwise, of the

programmer. Recommendations were then made regarding appropriate learning goals, curricula,

and programming tools, each differentiated for different stages of early cognitive development.

These recommendations focused on explorations of CHERP itself in late pre-operations and

contextualized goals in early concrete operations. It was noted that CHERP seemed compelling

to children across the developmental range of the study, but that at some later point, whether

after a long enough exposure to CHERP or following a particular developmental milestone,

children would be ready to use lower-level programming instructions and create their own units

of robotic actions. It is hoped that, through effective teaching and learning contexts, technologies

like CHERP can better support children‟s exploration of the digital realm.

 Programming robots‟ behaviors is an engaging and cognitively rich activity. It also has

relevance for modern education in children‟s comprehending and exerting ownership over the

now ubiquitous computer and acquiring digital literacies and fluencies for the 21
st
 century.

Programming and robotics materials do more than introduce technological content domains; they

provide versatile digital tools for construction, modern extensions of traditional materials for

children-driven exploration and expression. However, children today frequently experience their

most empowering and creative uses of technology in the time and spaces outside of the

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 93

classroom (New Media Consortium, 2005). This leads to inequity in access to technology, erratic

acquisition of the knowledge and skills that are attainable through technology, and an absence of

adult guidance on ethical issues that arise (Jenkins et al., 2009). There is debate, though, as to

how technology should figure into state and federal curriculum frameworks when there is

growing pressure to focus on standardized testing and traditional basics like math and literacy.

Work like the TangibleK Robotics Project shows how schools may be able to incorporate rich

technologies into existing curricula.

Many children in the US today have access to technology from a surprisingly young age

whether or not the adults in their lives intentionally plan it. The National Association for the

Education of Young Children emphasizes that the use of technology must be balanced with other

activities and be grounded in knowledge of the children, the technology, clear educational and

developmental goals, and other known best practices, as is the case when non-technological

materials are used (NAEYC, 2011). Some parents have been hesitant for their child to engage in

programming and robotics, citing a preference to limit their child‟s „screen-time.‟ This well-

founded concern highlights the need for a differentiation of screen types in the contemporary

media vocabulary, as there is a vast and crucial difference in the cognitive activity fostered by

screen-time as consumers (i.e. video games and television) compared to screen time as producers

(i.e. programming and engineering design).

In using tools like CHERP, children spend their time only partly in front of a screen. They

also move physically and cognitively between building a robot, planning out its actions,

constructing programs (from wooden blocks or on the computer screen), and iteratively

observing, analyzing, and altering the robot and its program according to initial goals and

subsequent discoveries. Because the tangible programs and robots exist off-screen, children are

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 94

drawn socially to investigate the work of their peers, to collaborate, and to negotiate over

materials. The artifacts – the robot and the program – serve as points of discussion and reminders

of the activity content even after the computer has been shut down. In this rich process of

creation that bridges the physical and digital worlds, children actively engage in problem-

solving, discovery-based learning, and uncovering powerful ideas from computer science and

robotics. These skills, both general and domain-specific, are crucial in today‟s world, where the

creation and sharing of digital content are empowering means of expression and communication.

The International Technology Education Association has modeled a comprehensive

framework of key technology knowledge and skills (ITEA, 2007), and several technologically

rich media and literacy frameworks and theories for education now exist as well (e.g. Jenkins et

al., 2009). As the new uses of computers and the internet become more familiar and as ideas

about how to include them in education are clarified and tested, it can be hoped that teachers,

administrators, schools, and states will adopt such frameworks and incorporate technology

through investigation-based pedagogies. In the meanwhile, further research into cognitive and

other aspects of young children‟s interactions with technology can paint a more detailed picture

of what developmentally appropriate technologies can afford throughout childhood as well as

reasonable learning expectations and curricula to accompany them.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 95

References

Ackermann, E. (1991). The “agency” model of transactions: Toward an understanding of

children‟s theory of control. In I. Harel & S. Papert (Eds.) Constructionism: Part 4.

Cybernetics and construction (pp. 367-379). Norwood, NJ: Ablex.

Andre, T., Whigham, M., Hendrickson, A., & Chambers, S. (1997, March). Science and

mathematics versus other school subject areas: Pupil attitudes versus parent attitudes.

Paper presented at the Annual Meeting for the National Association for Research in

Science Teaching, Chicago, IL. Paper retrieved from

http://www.eric.ed.gov/PDFS/ED416092.pdf

Arduino (2011). Arduino. Retrieved from http://www.arduino.cc/

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of

the Learning Sciences, 13(1), 1-14. doi:10.1207/s15327809jls1301_1

Baron-Cohen, S., Leslie, A. M., & Frith, U. (1986). Mechanical, behavioral, and intentional

understanding of picture stories in autistic children. British Journal of Developmental

Psychology, 4, 113-125.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved

and what is the role of the computer science education community? ACM Inroads, 2(1),

48-54. doi:10.1145/1929887.1929905

Bergen, D. (2001). Learning in the robotic world: Active or reactive? Childhood Education.

77(4), 249-250.

Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom.

New York, NY: Teachers College.

Bers, M. (2010). The TangibleK Robotics Program: Applied computational thinking for young

children. Early Childhood Research & Practice, 12(2). Retrieved from

http://ecrp.uiuc.edu/v12n2/bers.html

Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: Revisiting

developmental assumptions through new technologies. In I. R. Berson & M. J. Berson

(Eds.) High-tech tots (pp. 49-70). Greenwich, CT: Information Age.

Bishop-Clark, C. (1995). Cognitive style, personality, and computer programming. Computers in

Human Behavior, 11(2), 241-260. doi:10.1016/0747-5632(94)00034-F

boyd, d. (2008, January 10). Technology and the world of consumption. [Web log post].

Retrieved from

http://www.zephoria.org/thoughts/archives/2008/01/10/technology_and.html

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating

complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-

178. doi:10.1207/s15327809jls0202_2

Buckingham, D. (2007). Digital media literacies: Rethinking media education in the age of the

Internet. Research in Comparative and International Education, 2(1), 43-55.

doi:10.2304/rcie.2007.2.1.43

Carnegie Mellon University (2011). What is Alice? Retrieved from:

http://www.eric.ed.gov/PDFS/ED416092.pdf
http://www.arduino.cc/
http://ecrp.uiuc.edu/v12n2/bers.html
http://www.zephoria.org/thoughts/archives/2008/01/10/technology_and.html

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 96

http://www.alice.org/index.php?page=what_is_alice/what_is_alice

Case, R. (1984). The process of stage transition: A neo-Piagetian view. In R. Sternberg (Ed.)

Mechanisms of cognitive development (pp. 19-44). San Francisco, CA: Freeman.

Center for Computational Thinking: Carnegie Mellon. (2011). What is computational thinking?

Retrieved from http://www.cs.cmu.edu/~CompThink/

Clements, D. H. (1986). Effects of Logo and CAI environments on cognition and creativity.

Journal of Educational Psychology, 78(4), 309-318. doi:10.1037/0022-0663.78.4.309

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children‟s

cognition. Journal of Educational Psychology, 76(6), 1051-1058. doi:10.1037/0022-

0663.76.6.1051

Clements, D. H., & Meredith, J. S. (1992). Research on Logo: Effects and efficacy. Retrieved

from http://el.media.mit.edu/logo-foundation/pubs/papers/research_logo.html

Cooper, L. Z. (2005). Developmentally appropriate digital environments for young children.

Library Trends, 54(2), 286-302. doi:10.1353/lib.2006.0014

Desforges, C., & Abouchaar, A. (2003). The impact of parental involvement, parental support,

and family education on pupil achievement and adjustment: A literature review (Research

Report RR433). Retrieved from UK Department of Education website

https://www.education.gov.uk/publications/standard/publicationdetail/Page1/RR433

DevTech Research Group (2010). C.H.E.R.P.. Retrieved from

http://ase.tufts.edu/DevTech/tangiblek/research/cherp.asp

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory,

short-term memory, and general fluid intelligence: A latent-variable approach. Journal of

Experimental Psychology, 128(3), 309-331. doi:10.1016/j.edurev.2006.08.005

Erikson, E. H. (1998). Eight stages of man. In C. L. Cooper & L. A. Pervin (Eds.) Personality:

Critical concepts in psychology (pp. 67-77). London, UK: Routledge.

Farr, W., Yuill, N., & Raffle, H. (2010). Social benefits of a tangible user interface for children

with autistic spectrum conditions. Autism, 14(3), 237-252.

doi:10.1177/1362361310363280

Feldman, D. H. (2004). Piaget's stages: The unfinished symphony of cognitive development.

New Ideas in Psychology, 22, 175-231. doi:10.1016/j.newideapsych.2004.11.005

Fernaeus, Y., & Tholander, J. (2006). Finding design qualities in a tangible programming space.

In R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries & G. Olsen (Eds.) Proceedings

from SIGCHI '06: Conference on Human Factors in Computing Systems (pp. 447-456).

New York, NY: ACM. doi:10.1145/1124772.1124839

Fischer, K. (1980). A theory of cognitive development: The control and construction of

hierarchies of skills. Psychological Review, 87(4), 477-531. doi:10.1037/0033-

295X.87.6.477

Flavell, J. H. (1996). Piaget's legacy. Psychological Science, 7(4), 200-203. doi:10.1111/j.1467-

9280.1996.tb00359.x

Fry, B., & Reas, C. (n.d.). Overview: A short introduction to the Processing software and projects

http://www.alice.org/index.php?page=what_is_alice/what_is_alice
http://www.cs.cmu.edu/~CompThink/
http://el.media.mit.edu/logo-foundation/pubs/papers/research_logo.html
https://www.education.gov.uk/publications/standard/publicationdetail/Page1/RR433
http://ase.tufts.edu/DevTech/tangiblek/research/cherp.asp

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 97

from the community. Retrieved from http://processing.org/about/

Gallardo, D., Julià, C. F., & Jordà, S. (2008). TurTan: A tangible programming language for

creative exploration. In Proceedings of the Third IEEE International Workshop on

Horizontal Interactive Human Computer Systems (pp. 89-92).

doi:10.1109/TABLETOP.2008.4660189

Gardner, H., Kornhaber, M. L., & Wake, W. K. (1996). Intelligence: Multiple perspectives. Fort

Worth, TX: Harcourt Brace College.

George, R., & Kaplan, D. (1997). A structural model of parent and teacher influences on science

attitudes of eighth graders: Evidence from NELS: 88. Science Education, 82(1), 93-109.

doi:10.1002/(SICI)1098-237X(199801)82:1<93::AID-SCE5>3.0.CO;2-W

Gilbert, J. E., & Swanier, C. A. (2008). Learning styles: How do they fluctuate? Institute for

Learning Styles Journal 1(Fall), 29-40.

Granott, N., & Parziale, J. (2002). Introduction. In N. Granott & J. Parziale (Eds.),

Microdevelopment: Transition processes in development and learning (pp. 1-28).

Cambridge, UK: Cambridge University.

Gutnick, A. L., Robb, M., Takeuchi, L., & Kotler, J. (2011). Always connected: The new digital

media habits of young children. New York, NY: The Joan Ganz Cooney Center at Sesame

Workshop.

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM,

51(8), 25-27. doi:10.1145/1378704.1378713

Heinz-Martin, S., Oberauer, K., Wittman, W. W., Wilhelm, O., & Schulze, R, (2002). Working-

memory capacity explains reasoning ability - and a little bit more. Intelligence, 30(3),

261-288. doi:10.1016/S0160-2896(01)00100-3

Horn, M. S., Crouser, R. J., & Bers, M. U. (2011). Tangible interaction and learning: The case a

hybrid approach. Personal and Ubiquitous Computing, Special Issue: Tangibles and

Children. doi:10.1007/s00779-011-0404-2

Horn, M. S., Solovey, E. T., & Jacob, R. J. (2008). Tangible programming and informal science

learning: Making TUIs work for museums. In Proceedings of the Seventh International

Conference on Interaction Design and Children (pp. 194-201). New York, NY: ACM.

doi:10.1145/1463689.1463756

International Technology Education Association (2007). Standards for technological literacy:

Content for the study of technology. Retrieved from

http://www.iteaconnect.org/TAA/PDFs/xstnd.pdf

International Society for Technology Education & The Computer Science Teachers Association

(2011). Operational definition of computational thinking for K-12 education. Retrieved

from

http://www.iste.org/Libraries/PDFs/Operational_Definition_of_Computational_Thinking.

sflb.ashx

Ishii, H. (2008). Tangible bits: Beyond pixels. In Proceedings of the Second International

Conference on Tangible and Embedded Interaction (xv-xxv). New York, NY: AMC.

doi:10.1145/1347390.1347392

http://processing.org/about/
http://www.iteaconnect.org/TAA/PDFs/xstnd.pdf
http://www.iste.org/Libraries/PDFs/Operational_Definition_of_Computational_Thinking.sflb.ashx
http://www.iste.org/Libraries/PDFs/Operational_Definition_of_Computational_Thinking.sflb.ashx

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 98

Ito, M. (2009). Engineering play. Cambridge, MA: MIT.

Jenkins, H., Purushotma, R., Weigel, M., Clinton, K., & Robison, A. J. (2009). Confronting the

challenges of participatory culture: Media education for the 21
st
 century. Cambridge,

MA: MIT.

Jones, S., & Burnett, G. (2008). Spatial ability and learning to program. Human Technology: An

Interdisciplinary Journal on Humans in ICT Environments, 4(1), 47-61.

Kahn, K. (1996). ToonTalk™ - An animated programming environment for children. Journal of

visual languages and computing, 7(2), 197-217. doi:10.1006/jvlc.1996.0011

Kazakoff, E. R., & Bers, M. U. (2011). The impact of programming robots on sequencing skills

in kindergarten. Manuscript submitted for publication.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys, 37(2), 83–137. doi:10.1145/1089733.1089734

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:

Instruction, learning, and transfer. Cognitive psychology, 20(3), 362-404.

doi:10.1016/0010-0285(88)90004-7

Kogan, N., & Saarni, C. (1990). Cognitive styles in children: Some evolving trends. In O. N.

Saracho (Ed.), Special aspects of education: Vol. 12. Cognitive style and early education

(pp. 3-31). Amsterdam, Netherlands: Gordon and Breach.

Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: Toward an

integrated framework of cognitive style. Psychological Bulletin, 133(3), 464-481.

doi:10.1037/0033-2909.133.3.464

Krechevsky, M. (1998). Project Spectrum: Preschool assessment handbook. New York, NY:

Teachers College.

Kuhn, D. (1995). Microgenetic study of change: What has it told us? Psychological Science,

6(3), 133-139. doi:10.1111/j.1467-9280.1995.tb00322.x

Lau, W. W. F., & Yuen, A. H. K. (2009). Exploring the effects of gender and learning styles on

computer programming performance: Implications for programming pedagogy. British

Journal of Educational Technology, 40(4), 696–712. doi:10.1111/j.1467-

8535.2008.00847.x

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., . . . Werner, L. (2011).

Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37.

doi:10.1145/1929887.1929902

Lee, M. C., & Thompson, A. (1997). Guided instruction in Logo programming and the

development of cognitive monitoring strategies among college students. Journal of

Educational Computing Research, 16(2), 125-144. doi:10.2190/PW3F-HLFD-1NNJ-

H77Q

Levy, S. T., & Mioduser, D. (2008). Does it “want” or “was it programmed to…”? Kindergarten

children‟s explanations of an autonomous robot‟s adaptive functioning. International

Journal of Technology and Design Education, 18(4), 337-359. doi:10.1007/s10798-007-

http://dx.doi.org.ezproxy.library.tufts.edu/10.1145/1089733.1089734

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 99

9032-6

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of computer programming on cognitive outcomes:

A meta-analysis. Journal of Educational Computing Research, 7(3), 251-268.

doi:10.2190/E53G-HH8K-AJRR-K69M

Lewis, M. D. (2000). The promise of dynamic systems approaches for an integrated account of

human development. Child Development, 71(1), 36-43.

Lightfoot, C., Cole, M., & Cole, S. (Eds.) (2009). The development of children (6
th

 ed.). New

York, NY: Worth.

Logo Foundation (2000a). Logo Software. Retrieved from http://el.media.mit.edu/logo-

foundation/products/software.html

Logo Foundation (2000b). What Is Logo? Retrieved from http://el.media.mit.edu/logo-

foundation/logo/index.html

Mancy, R., & Reid, N. (2004). Aspects of cognitive style and programming. In E. Dunican & T.

R. G. Green (Eds.) Proceedings of the Sixteenth Workshop of the Psychology of

Programming Interest Group (pp. 1-9).

Marshall, P. (2007). Do tangibles enhance learning? Proceedings of the First International

Conference on Tangible and Embedded Interaction (pp. 163-170). New York, NY: ACM.

doi:10.1145/1226969.1227004

Martin, F., Mikhak, B., Resnick, M., Silverman, B., & Berg, R. (2000). To mindstorms and

beyond: Evolution of a construction kit for magical machines. In A. Druin & J. A.

Hendler (Eds.) Robots for kids: Exploring new technologies for learning (pp. 9-33). San

Francisco, CA: Morgan Kaufman.

Massachusetts Department of Education (2006). Massachusetts science and

technology/engineering curriculum framework. Retrieved from

http://www.doe.mass.edu/frameworks/scitech/1006.pdf

Massachusetts Department of Education (2008). Massachusetts technology literacy standards

and expectations. Retrieved from http://www.doe.mass.edu/edtech/standards/itstand.pdf

McDevitt, T. M., & Ormrod, J. E. (2002). Child development and education. Upper Saddle River,

NJ: Merrill/Prentice Hall.

McGill, T. J., & Volet, S. E. (1997). A conceptual framework for analyzing students‟ knowledge

of programming. Journal of Research on Computing in Education, 29(3), 276-297.

Mioduser, D., Levy, S., & Talis, V. (2009). Episodes to scripts to rules: Concrete-abstractions in

kindergarten children‟s explanations of a robot‟s behaviors. International Journal of

Technology and Design Education, 19(1), 15-36. doi:10.1007/s10798-007-9040-6

Mioduser, D., & Levy, S. (2010). Making sense by building sense: Kindergarten children‟s

construction and understanding of adaptive robot behaviors. International Journal of

Computers for Mathematical Learning, 15(2), 99-127. doi:10.1007/s10758-010-9163-9

NAEYC (2011). Technology in early childhood programs serving children from birth through

age 8 (Draft). Retrieved from

http://www.naeyc.org/files/naeyc/file/positions/PSTECH98.PDF

http://el.media.mit.edu/logo-foundation/products/software.html
http://el.media.mit.edu/logo-foundation/products/software.html
http://el.media.mit.edu/logo-foundation/logo/index.html
http://el.media.mit.edu/logo-foundation/logo/index.html
http://www.doe.mass.edu/frameworks/scitech/1006.pdf
http://www.doe.mass.edu/edtech/standards/itstand.pdf
http://www.naeyc.org/files/naeyc/file/positions/PSTECH98.PDF

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 100

New Media Consortium (2005). A global imperative: The report of the 21
st
 century literacy

summit. Retrieved from http://www.nmc.org/pdf/Global_Imperative.pdf

Nir-Gal, O., & Klein, P. S. (2004). Computers for cognitive development in early childhood: The

teacher‟s role in the computer learning environment. Information Technology in

Childhood Education Annual, 2004(1), 97-119.

Papert, S. (1987). Computer criticism vs. technocentric thinking. Educational Researcher, 16(1),

22-30. doi:10.3102/0013189X016001022

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic

Books.

Papert, S. (1999). Logo: What is Logo? Who needs it? In Logo philosophy and implementation.

Retrieved from www.microworlds.com/company/philosophy.pdf

Papert, S. (2000). What‟s the big idea? Toward a pedagogy of idea power. IBM Systems Journal,

39(3 & 4), 720-729. doi:10.1147/sj.393.0720

Papert S., & Harel, I. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.)

Constructionism (pp. 1-11). Norwood, NJ: Ablex.

Patten, J., Griffith, L., & Ishii, H. (2000). A tangible interface for controlling robotic toys. In CHI

’00 Proceedings Extended Abstracts on Human Factors in Computing Systems (pp. 278-

279). New York, NY: ACM. doi:10.1145/633292.633454

Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of

Educational Computing Research, 2(1), 25-36. doi:10.2190/689T-1R2A-X4W4-29J2

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

programming. New Ideas in Psychology, 2(2), 137-168. doi:10.1016/0732-

118X(84)90018-7

Pea, R. D., Kurland, D. M., & Hawkins, J. (1985). Logo and the development of thinking skills.

In M. Chen & W. Paisley (Eds.) Children and microcomputers: Research on the newest

medium. Beverly Hills, CA: Sage.

Peppler, K. A., & Kafai, Y. B. (2007). From SuperGoo to Scratch: Exploring creative media

production in informal learning. Learning, Media and Technology, Special Issue: Media

Education Goes Digital, 32(2), 149-166. doi:10.1080/17439880701343337

Perlman, R. (1976). Using computer technology to provide a creative learning environment for

preschool children (AI Memo 360: Logo Memo No. 24). Cambridge, MA: MIT Artificial

Intelligence Laboratory.

Raffle, H. S., Parkes, A. J., & Ishii, H. (2004). Topobo: A constructive assembly system with

kinetic memory. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (pp. 647-654). New York, NY: ACM. doi:10.1145/985692.985774

Reisberg, D. (2010). Cognition: Exploring the science of the mind. New York, NY: W. W.

Norton.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of

a checklist for getting computational thinking into public schools. In Proceedings of the

Forty-First ACM Technical Symposium on Computer Science Education (pp. 265-269).

http://www.nmc.org/pdf/Global_Imperative.pdf
www.microworlds.com/company/philosophy.pdf

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 101

New York, NY: ACM. doi:10.1145/1734263.1734357

Resnick, M. (2006). Computer as paintbrush: Technology, play, and the creative society. In D.

Singer, R. Golikoff, & K. Hirsh-Pasek (Eds.) Play = learning: How play motivates and

enhances children's cognitive and social-emotional growth. Oxford, UK: Oxford

University.

Resnick, M., (2007). Sowing the seeds of a more creative society. Learning and Leading with

Technology, 35(4), 18-22. doi:10.1108/14777280710828549

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . .

Kafai, Y. (2006). Scratch: Programming for all. Communications of the ACM, 52(11), 60-

67. doi:10.1145/1592761.1592779

Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of

STEM Education, 5(3 & 4), 17-28.

Robins, A., Rountree, J., & Rountree, N. (2003). Teaching and learning programming: A review

and discussion. Computer Science Education, 13(2), 137-172.

doi:10.1076/csed.13.2.137.14200

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and

how? Journal of Educational Computing Research, 3(2), 149-169. doi:10.2190/6F4Q-

7861-QWA5-8PL1

Sharf, F., Winkler, T., & Herczeg, M. (2008). Tangicons: Algorithmic reasoning in a

collaborative game for children in kindergarten and first class. In Proceedings of the

Seventh International Conferences on Interaction Design and Children (pp. 242-249).

New York, NY: ACM. doi:10.1145/1463689.1463762

Shipman S., & Shipman, V. C. (1985). Cognitive styles: Some conceptual, methodological, and

applied issues. Review of Research in Education, 12, 229-291.

doi:10.3102/0091732X012001229

Shuler, C. (2007). D is for digital: An analysis of the children's interactive media environment

with a focus on mass marketed products that promote learning. New York, NY: Joan

Ganz Cooney Center at Sesame Workshop.

Shute, V. J. (1991). Who is likely to acquire programming skills? Journal of Educational

Computing Research, 7(1), 1-24. doi:10.2190/VQJD-T1YD-5WVB-RYPJ

Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying

cognitive development. American Psychologist, 46(6), 606-620.

Smith, A. C. (2007). Using magnets in physical blocks that behave as programming objects. In

Proceedings of the First International Conference on Tangible and Embedded Interaction

(pp. 147-150). New York, NY: ACM. doi:10.1145/1226969.1226999

Smith, D. C., Cypher, A., & Tesler, L. (2000). Novice programming comes of age.

Communications of the ACM, 43(3), 75-81. doi:10.1145/330534.330544

Sternberg, R. J., & Grigorenko, E. L. (1997). Are cognitive styles still in style? American

Psychologist, 52(7), 700-712. doi:10.1037/0003-066X.52.7.700

SuperPowers of Play. The SuperPowers. Retrieved from

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 102

http://www.superpowersofplay.com/?page_id=47

Suzuki, H., & Kato, H. (1995). Interaction-level support for collaborative learning: AlgoBlock –

an open programming language. In Proceedings of the First International Conference on

Computer Support for Collaborative Learning (pp. 349-355). Hillsdale, NJ: Erlbaum.

van Geert, P. (1998). A dynamic systems model of basic developmental mechanisms: Piaget,

Vygotsky, and beyond. Psychological Review, 105(4), 634-677. doi:10.1037//0033-

295X.105.4.634-677

Vernier (n.d.). ROBOLAB and NXT. Retrieved from http://www.vernier.com/nxt/robolab.html

Wartella, E. A., & Jennings N. (2000). Children and computers: New technology – old concerns.

The Future of Children, 10(2), 31-43.

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society – Series A, 366, 3717-3725. doi:10.1098/rsta.2008.0118

Winslow, L. E. (1996). Programming pedagogy: A psychological view. ACM SIGSCE Bulletin

28(3), 17-25. doi:10.1145/234867.234872

Wyeth, P., & Wyeth, G. (2001). Electronic blocks: Tangible programming elements for

preschoolers. In M. Hirose (Ed.) Proceedings of IFIP INTERACT01: Conference on

Human-Computer Interaction (pp. 496-503). Tokyo, Japan: IOC.

Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks.

Journal of the Learning Sciences, 17(4), 517-550. doi:10.1080/10508400802395069

http://www.superpowersofplay.com/?page_id=47
http://www.vernier.com/nxt/robolab.html

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 103

Appendix A – Resources for Learning to Use CHERP with RCX™ Robots

1. Parts of a Lego™ RCX™ Robot

2. Building a Program with CHERP

3. Downloading a Program to a Robot

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 104

Parts of a Lego™ RCX Robot

RCX / “Brain”

 The red button turns the RCX on and off. The

green button starts and stops programs. The

grey button switches between 5 programs,

indicated as 1-5 on right side the RCX‟s

screen.

 Tip: Make sure you know which number

your program is!

 A: The black „ports‟ A-C power motors and

lights from batteries inside the RCX

according to your program.

 B: The grey „ports‟ 1-3 provide data from

sensors to the RCX. CHERP only uses Port 1.

 C: The infra-red port “listens” for instructions from the computer and sends them to the “brain” inside

the RCX.

Motors

 Connect to Ports A and C with wires that go from

Port A/C to the black port seen on the motor.

 Tip: The orientation of the wire ends on each

port affects the direction the motors turn. See tip

below.

Wires

 Provide electrical connections from ports

on the RCX to components like motors

and lights.

 Tip: Make sure the wires do not rub the

robot’s wheels – this can slow them

down!

Wire

Orientations

 Tip: This orientation of wire ends and motors

will result in your robot moving as expected.

Lights

 Connects to Port B directly or via a wire.

 Tip: See programming tips on light

blocks.

A

A

B

C

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 105

Building a Program with CHERP

You can make the same programs with the on-screen (graphical) blocks and the wooden (tangible) blocks.

 Typing Control+1 (or 2 or 3) reveals the corresponding number of rows of programming instructions in the on-

screen interface. This does not work in full-screen mode. Hit Enter / Escape to enter and exit full-screen mode.

 Every program must start with a BEGIN block and end with and END block:

 Graphical blocks will ONLY connect to a BEGIN block or to a sequence of connected blocks. Unconnected

graphical blocks will appear pale and will not be downloaded to the robot.

 REPEATs and Ifs must be paired with their corresponding END block. The relevant action(s) go in between,

like this:

 REPEAT and IF blocks have a light or dark grey space, respectively, for a parameter – additional information

that says how many times the instructions will be repeated. The REPEAT parameter is optional since the default

is to REPEAT FOREVER.

 With the tangible interface, any parameters‟ circular barcodes must align with those of the other blocks and

must be visible to the camera to download the program to a robot.

Keep in mind:

 Attach new graphical blocks to a program by dragging and dropping the new block wherever you want it. Click

on any graphical block in the program to move that block and all blocks connected to its right.

 To get rid of graphical blocks from the workspace, drag them to anywhere in the rows of available blocks at the

bottom of the screen. To clear all attached graphical blocks at once, click the BEGIN block and drag down.

 Blocks will be interpreted by the robot sequentially starting with the BEGIN block. For instance, in the IF

example above, the robot will go backwards once and then, if the light sensor detects bright light, it will shake.

 Once you download any program (graphical/tangible) to a robot, an editable on-screen version of it appears.

 The motion and sound blocks instruct the robot to do an action for half a second, then stop. The light blocks

work differently. LIGHT ON turns the light on until LIGHT OFF is used. If there is

no LIGHT OFF before the end of the program, the light will already be on at the

start of the next program. The light blocks also make the robot do the next

instruction immediately, not after half a second. It helps to think through the state of

the light throughout your program. Challenge: How might you make the light blink?

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 106

Downloading a Program to a Robot

If you are using the graphical blocks, skip to #2.

1. Place the tangible blocks directly facing the webcam about 18-24 inches away from it so the computer vision

can detect your program properly. You may be prompted to include a BEGIN block in your program. If you do

have a BEGIN block and it appeared within the image shown on-screen during the attempted download, change

the distance or angle between the webcam and your program and re-download the program. Tip: You can put

the blocks across the table from the webcam or on the floor under the downward-pointing webcam.

2. Position the IR port (the smooth black rectangle) of your RCX-based robot near the front of the LEGO™ USB

Tower and make sure that the RCX is turned on and has firmware loaded (you will see numbers counting up on

the RXC‟s screen).

3. Press the appropriate on-screen download button (the mouse for graphical, left; the

blocks for tangible, right). The RCX will play a rising series of beeps when the

download is complete.

4. Place your robot where it can safely move around (usually an open space on the

floor) and press the green “Run” button on the RCX to run the program.

IMPORTANT: If your robot does not turn on, or if it turns on but has no numbers counting up on the screen, or if

your program has all the right parts but CHERP gives you this error message: “Your program is missing something,”

it needs new firmware.

ALWAYS turn off your robot while you are not downloading a program to it or running a program. It will use up

its batteries very quickly if it is left on!

Also Note: To download a graphical program it is NOT necessary to remove tangible blocks from in front of the

webcam; likewise, to download a tangible program, it is NOT necessary to remove any graphical blocks from the

screen. However, it IS a good idea to remove extraneous tangible blocks from the webcam‟s view when

downloading a tangible program.

18-24 inches

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 107

Appendix B – Variables and Instruments

1. Overview of Conceptual Variables

2. Primary Analysis Variables, Measures, and their Derivations

3. Map of Cognitive Developmental Characteristics to Programming Behaviors

4. Cognitive Stage Markers in Programming (CSMP) Framework Rubric

5. Correspondence Achievement Rubric

6. Program Completeness Achievement Rubric

7. Secondary Analysis Variables, Measures, and their Derivations

8. Statistical Methods Used

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 108

Table B1

Overview of Conceptual Variables

Variables Definitions Nature

Primary Analysis

Stage of cognitive

development
1

Pre-operations, Phase 2; Transitional; or

Concrete Operations, Phase 1

Independent

Approach to programming
2
 Characteristics of goals and cognitive

strategies used in programming

Dependent

Programming achievement:

correspondence

Ability to match programming instructions to

planned robot actions

Dependent

Programming achievement:

final program completeness

Ability to make correct action-instruction

correspondences and to sequencing the

instructions to achieve the given goal

Dependent

Secondary Analysis (includes the same dependent variables as above)

Sequencing Ability to sequence four-part picture stories. Independent

Demographics Child‟s age, grade, gender, and home area type Independent

Child‟s prior experience Prior experience with computers, robotics,

and/or programming

Independent

Parents‟ level of education Highest degree attained by either parent Independent

Parents‟ STEM involvement Whether a parent has a STEM degree or job Independent

Notes:
1
See Table B4 for further definitions of cognitive developmental levels.

2
Confounded with stage of cognitive development.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 109

Table B2

Primary Analysis Variables, Measures, and their Derivations

Variables Measure Derivation Type

Stage of cognitive

development

Framework of Cognitive

Developmental Traits

Mapped to Programming

Composite of sub-scores.
1
 Ordinal

Programming

approach

Framework of Cognitive

Developmental Traits

Mapped to Programming

Each of the sub-scores on:

goal focus, initial attempt,

and debugging.
 1, 2

Ordinal

Programming

achievement

Correspondence of

instructions to actions

Likert scale: 0 (cannot

achieve) to 5 (achieves

with little or no help)

Ordinal

Final program

completeness (correct

instructions, in order)

Likert scale: 0 (did not

attempt) to 4 (correct

instructions and order). See

Appendix B6for rubric.

Ordinal

Notes:
1
See Appendices B3 and B4 for derivation and definition.

2
Note that programming approach is confounded with the definition of cognitive developmental

stage.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 110

Table B3

Map of Cognitive Developmental Characteristics to Programming Behaviors

Ability or Activity Stage and Phase Expected Programming

Observations

Symbol-system elaboration Seen during phase 2 of pre-

operations

Has a lot of ideas and

enthusiasm for exploring with

CHERP

Determines causal

relationships empirically

Appears in late pre-operations,

solidifies in concrete

operations

Systematic rather than random

or intuitive debugging

Relies on logic over

perception

Appears in late pre-operations,

solidifies in concrete

operations

Changes debugging

hypotheses based on evidence

Differentiates physical &

psychological events

Appears in late pre-operations,

solidifies in concrete

operations

Attribution of robot's

unexpected behaviors to the

program vs. intentionality on

the part of the robot

Decentration from own

physical perspective

Appears in late pre-operations,

solidifies in concrete

operations

Constrained by orientation of

self vs. computer vs. blocks

vs. robot while building the

program vs. robot on map

Decentration from a single

(superficial) aspect

Appears in late pre-operations,

solidifies in concrete

operations

Debugs single vs. multiple

aspects of the robot and

software system

Classification of single objects

into multiple categories and of

multiple objects into

hierarchies

Develops over concrete

operations

Differentiates blocks with

qualitatively different

functions; pursuit of the “best”

answer

Reasons deductively Develops over concrete

operations

Logical reasoning in how to

debug

Plans towards a goal & thinks

flexibly in strategizing

towards its successful

completion

Develops over concrete

operations

Works towards adult-given

goal; tries a Plan B if Plan A

fails

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 111

Table B4

Cognitive Stage Markers in Programming Rubric

Pre-Operational Transitional Concrete Operational

Goal Orientation

Focuses primarily or exclusively

on open-ended exploration.

May try the Hokey-Pokey (HP)

nominally or cursorily.
 1

Tries HP (with interest and

effort) but leaves it due to

interest in other explorations or

being unable to debug further

(may claim an incomplete

program is successful).

Focuses primarily on HP with

little or no redirection through to

a nearly or fully complete

solution. May explore openly

before/during HP.

Initial Solution

Nominal, cursory, or no attempt.

OR Intuitive approach (considers

actions but not order).

Intuitive approach with limited

systematic logic (order).

Logical approach (step-by-step

sequencing).

Debugging Attitudes and Strategies

Indifferent to the need to debug

or to the results of any

unsuccessful efforts.

Interested in improving the

program but cannot figure out

how.

Driven to find best answer.

OR Gets answer right away and

knows it.

Nominal, cursory, or no attempt.

OR Intuitive approach (e.g.

guess-and-check).

Mixed approach intuitive /

logical & empirical.

Limited / inflexible ideas on how

to systematically debug.

Logical / empirical approach.

Flexible if one idea does not

work.

Perspective and Classification

Attributes agency inappropriately

to self versus the robot.

 Attributes agency appropriately

to self versus the robot.

Confused by different

orientations of the computer,

blocks, robot, map, and self.

 Unconstrained by different

orientations of the computer,

blocks, robot, map, and self.

Single classification for

“blocks.”

 Multiple classifications for

“blocks.”

 Notes: “HP” stands for “the Hokey-Pokey.”

1This includes situations in which the child verbally claims to be working on the Hokey-Pokey,

perhaps in an effort to avoid conflict with a perceived authority figure, but actually makes a

completely unrelated program and shows through other behavior or speech that the Hokey-Pokey

is not the actual goal.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 112

Correspondence Achievement Rubric

Instructions: Choose the level of assistance the child requires to successfully apply the concept

of selecting the correct block for the program based on its corresponding action. If necessary and

possible, score may be based on the gap between the child‟s independent work and a complete

understanding.

Level Definition

5 Achieves without assistance

4 Achieves with minimal assistance

3 Achieves with periodic assistance

2 Achieves with significant assistance

1 Achieves with step-by-step assistance

0 Cannot achieve

NA Cannot be assessed

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 113

Hokey-Pokey Program Completeness Assessment Rubric

Instructions

Acceptable programs must represent Forward | Backward | Forward | Shake | Spin.

Do not score Begin/End. The program may have Turns instead of Spin, sounds at the beginning

or end, or a second, consecutive Shake or Spin.

Definitions of Fixes – Use the fewest possible fixes to reach an accepted solution.

Addition: One of the 5 basic solution instructions is missing and needs to be added.

Swap: 2 consecutive instructions need to be switched.

Deletion: An instruction needs to be removed.

Distinguish: The child consistently confused 2 similar instructions (e.g. Backward and

Forward), so these instructions need to be exchanged.

Scale and Examples

4 – No fixes needed

3 – One fix

 1 addition Forward | Backward |Shake | Spin

 1 swap Forward | Forward | Backward |Shake | Spin

 1 deletion Forward | Backward | Forward | Shake | Backward | Spin

2 – Two fixes

 2 additions Forward | Backward | Shake

 2 swaps Forward | Forward | Backward | Spin | Shake

 2 deletions Forward | Backward | Shake | Forward | Shake | Spin | Right

 1 addition and 1 swap Backward | Forward | Spin | Shake

 1 addition and 1 deletion Forward | Sing | Backward | Forward | Shake

 1 swap and 1 deletion Backward | Forward | Forward | Shake | Left | Spin

1 – Three+ fixes

The program is a Hokey-Pokey skeleton (only 2 correct actions) but clearly was an attempted

solution, based on why the child chose the actions or on their correct relative order or proximity.

 2 instructions, no reduplications Forward |Shake | Sing

 2 instructions, with reduplications Backward | Backward | Sing | Sing |Spin |Spin

 A copy of CHERP‟s GUI palette, given the child‟s recognition that parts of it match the song.

0 – Avoidance of task or unrecognizable attempt.

 The child did not attempt to make a Hokey-Pokey program. OR

 The program is so incomplete as to be unrecognizable as a clear attempt at the Hokey-Pokey.

(The child may or may not have claimed it to be a Hokey-Pokey attempt.)

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 114

Table B5

Secondary Analysis Variables, Measures, and their Derivations

Variables Measure Derivation Type

Child‟s age Child‟s birthday Time between child‟s first

study session and birthday

Scale

Child‟s school year Child‟s grade in school Preschool / Kindergarten Dichotomous

Child‟s gender Child‟s gender Male / Female Dichotomous

Home area Home neighborhood type Suburban / Urban Dichotomous

Sequencing, pre-

intervention

Baron-Cohen Picture

Sequencing

Total score on 5 stories

(0-10 points possible)

Interval

Sequencing change Baron-Cohen Picture

Sequencing

Difference in pre- and

post- assessment scores

Scale

Child‟s computer

use at home

Child uses a computer at

home?

Yes / No Dichotomous

Child‟s computer

skill level

Child‟s skill at using a

computer, for his/her age

Beginner / Average /

Expert

Ordinal

Child‟s experience

with programming

Child has prior experience

with programming?

Yes / No Dichotomous

Child‟s experience

with robotics

Type of robots with which

the child has experience

None / Media or pre-

programmed toys /

Programmable robots

Ordinal

Parents‟ level of

education

Highest education level by

either parent

Scale: 0 (high school) to 4

(doctoral)

Ordinal

Parents‟ STEM

degrees

Is the latest degree of 1+

parent in a STEM field?

Yes / No Dichotomous

Parents‟ STEM jobs Is the current job of 1+

parent in a STEM field?

Yes / No Dichotomous

Parents‟ experience

with programming

Does 1+ parent have

programming experience?

Yes / No Dichotomous

Parents‟ experience

with robotics

Does 1+ parent have

experience with robotics?

Yes / No Dichotomous

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 115

Table B6

Statistical Methods Employed

 Developmental Level Correspondence Completeness

Cognitive Factors

Developmental Level n/a ANOVA ANOVA

Goal Focus n/a ANOVA ANOVA

Initial Attempt n/a ANOVA ANOVA

Debugging n/a ANOVA ANOVA

Cognitive Baselines

Sequencing (Pre) ANOVA Regression Regression

Sequencing (Delta) ANOVA Regression Regression

Child Demographics

Age ANOVA Regression Regression

Grade Chi-squares 2 sample t-test 2 sample t-test

Gender Chi-squares 2 sample t-test 2 sample t-test

Home Area Chi-squares 2 sample t-test 2 sample t-test

Child Experience

Home computer use Chi-squares 2 sample t-test 2 sample t-test

Computer skill level Chi-squares ANOVA ANOVA

Robotics experience Chi-squares ANOVA ANOVA

Parent Experience

Education Level Chi-squares ANOVA ANOVA

STEM Education Chi-squares 2 sample t-test 2 sample t-test

STEM Job Chi-squares 2 sample t-test 2 sample t-test

Programming experience Chi-squares 2 sample t-test 2 sample t-test

Robotics experience Chi-squares 2 sample t-test 2 sample t-test

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 116

Appendix C – Results

1. Mean age of each cognitive developmental level (graph)

2. Frequency of correspondence scores within the entire sample (graph)

3. Frequency of program completeness scores within the entire sample (graph)

4. Programming Achievement by Cognitive Developmental Level Statistics

5. Mean correspondence score by cognitive developmental level (graph)

6. Mean program completeness by cognitive developmental level (graph)

7. Programming Achievement by Goal Orientation Statistics

8. Mean correspondence score by goal orientation (graph)

9. Mean program completeness by goal orientation (graph)

10. Programming Achievement by Initial Program Approach Statistics

11. Mean correspondence score by initial strategy (graph)

12. Mean program completeness by initial strategy (graph)

13. Programming Achievement by Debugging Approach Statistics

14. Mean correspondence score by debugging strategy (graph)

15. Mean program completeness by debugging strategy (graph)

16. Sequencing Scores by Developmental Level Statistics

17. Programming Achievement by Sequencing Scores Statistics

18. Child and Parent Background and Correspondence Achievement Statistics

19. Child and Parent Background and Program Completeness Achievement Statistics

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 117

Figure C1. Mean age of each cognitive developmental level.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 118

Figure C2. Frequency of correspondence scores within the entire sample.

Mean = 3.86

SD = 1.66

N = 29

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 119

Figure C3. Frequency of program completeness scores within the entire sample.

Mean = 2.31

SD = 1.69

N = 29

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 120

Table C1

Programming Achievement by Cognitive Developmental Level

Outcome Variable Level n M SD

Correspondence Pre-Operational 8 1.87 1.46

 Transitional 7 3.86 1.46

 Concrete Operational 14 5.00 0.00

Program completeness Pre-Operational 8 0.13 0.35

 Transitional 7 1.86 1.07

 Concrete Operational 14 3.79 0.43

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 121

Figure C4. Mean correspondence score by cognitive developmental level.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 122

Figure C5. Mean program completeness by cognitive developmental level.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 123

Table C2

Programming Achievement by Goal Orientation

Outcome Variable Level n M SD

Correspondence Pre-Operational 4 1.50 1.29

 Transitional 8 2.62 1.51

 Concrete Operational 17 5.00 0.00

Program completeness Pre-Operational 4 0.00 0.00

 Transitional 8 0.63 0.52

 Concrete Operational 17 3.65 0.49

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 124

Figure C6. Mean correspondence score by cognitive developmental level of goal orientation.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 125

Figure C7. Mean program completeness by cognitive developmental level of goal orientation.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 126

Table C3

Programming Achievement by Initial Program Approach

Outcome Variable Level n M SD

Correspondence Pre-Operational 10 2.30 1.64

 Transitional 9 4.33 1.32

 Concrete Operational 10 5.00 0.00

Program completeness Pre-Operational 10 0.30 0.48

 Transitional 9 2.89 1.17

 Concrete Operational 10 3.80 0.42

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 127

Figure C8. Mean correspondence score by cognitive developmental level of initial strategy.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 128

Figure C9. Mean program completeness by cognitive developmental level of initial strategy.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 129

Table C4

Programming Achievement by Debugging Approach

Outcome Variable Level n M SD

Correspondence Pre-Operational 9 2.22 1.72

 Transitional 6 3.67 1.51

 Concrete Operational 14 5.00 0.00

Program completeness Pre-Operational 9 0.44 1.01

 Transitional 6 1.67 1.03

 Concrete Operational 14 3.79 0.43

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 130

Figure C10. Mean correspondence score by cognitive developmental level of debugging strategy.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 131

Figure C11. Mean program completeness by cognitive developmental level of debugging

strategy.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 132

Table C5

Sequencing Scores by Developmental Level

Developmental Level n M SD

Sequencing Pre-Assessment Scores

Pre-Operational 7 7.14 1.07

Transitional 6 6.67 2.73

Concrete Operational 14 7.86 1.35

Total (F(2,24) = 1.17, p = .328) 27 7.41 1.69

Sequencing Pre/Post Score Delta

Pre-Operational 6 0.00 2.60

Transitional 5 2.60 2.51

Concrete Operational 13 1.15 1.77

Total (F(2,21) = 2.28, p = .127) 24 1.17 2.12

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 133

Table C6

Programming Achievement by Sequencing Scores

Programming Measure Sequencing Measure F p

Correspondence Pre-assessment F(1,25) = 0.04 .839

 Post-assessment F(1,23) = 2.10 .161

 Delta F(1,23) = 1.45 .241

Program completeness Pre-assessment F(1,26) = 0.66 .425

 Post-assessment F(1,25) = 0.30 .589

 Delta F(1,23) = 0.06 .812

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 134

Table C7

Child and Parent Background and Correspondence Achievement

 R
2
 F p Beta t p

Demographic Factors

Age .12 (1,26)=3.54 .07 0.35 (27)=1.88 .07

Grade - - - - (27)=0.66 .52

Gender - - - - (27)=0.34 .73

Urban/suburban home - - - (25)=0.80 .43

Child Experience Factors

Computer use at home - - - - (20)=3.68 .001*

Computer skill level - (2,25)=1.88 - - .17

Robotics exposure - (2,26)=1.69 - - - .20

Parent Experience Factors

Highest level of education .00 (1,26)=0.05 .83 -0.04 (27)=-0.22 .83

STEM degree - - - - (25)=-0.64 .53

STEM job - - - - (26)= 0.21 .84

Programming experience - - - - (26)=0.02 .99

Robotics experience - - - - (26)=-0.40 .70

Notes: *Denotes statistical significance at the p <= .001 level. The finding is an artifact of all the

children in the highest developmental category being non-computer-users at home.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 135

Table C8

Child and Parent Background and Program Completeness Achievement

 R
2
 F p Beta t p

Demographic Factors

Age .16 (1,26)=4.91 .04 0.40 (27)=2.22 .04*
1

Grade - - - - (27)=1.40 .17

Gender - - - - (27)=0.31 .76

Urban/suburban home - - - (25)=1.74 .09

Child Experience Factors

Computer use at home - - - - (26)=4.28 <.001*
2

Computer skill level - (2,25)=2.63 - - - .09

Robotics exposure - (2,26)=1.48 - - - .25

Parent Experience Factors

Highest level of education .02 (1,26)=0.44 .51 -0.13 (27)=-0.66 .51

STEM degree - - - - (25)=-0.62 .54

STEM job - - - - (26)=-0.47 .64

Programming experience - - - - (26)=-0.88 .39

Robotics experience - - - - (26)=-0.60 .56

Notes: *Denotes statistical significance at the p <= .001 level.

1
Age does not predict achievement after taking developmental level into account.

2
The finding is an artifact of all the children in the highest developmental category being non-

computer-users at home.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 136

Appendix D – Robotics and Programming Figures

1. Parts of an RCX™ robot and an assembled RCX™ vehicle

2. CHERP‟s tangible interface consists of interconnecting wooden blocks

3. On-screen features of the CHERP interface

4. Translating a tangible program to code on the robot

5. CHERP programming instructions available during the Hokey-Pokey challenge

6. The expected solution program for the Hokey-Pokey challenge

7. A Scratch program to make the Scratch cat dance the Hokey-Pokey

8. A WeDo™ program to make a robotic car dance the Hokey-Pokey

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 137

Figure D1. The robotic car components and a complete RCX™ robotic vehicle. Children built a

robot from: (clockwise from top left) wheels, sensors (used in the third activity), a complete

RCX™ robotic vehicle, a motor, a wire, and a light bulb. Additional LEGO® bricks and a

rounded slider made the front „leg;‟ gears were used for the wheels.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 138

Figure D2. CHERP‟s tangible interface. It consists of interconnecting wooden blocks.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 139

Figure D3. On-screen features of the CHERP interface.

Programming
Instruction Palette

Click to download a graphical (left) or
tangible (right) program to a robot Save or open programs or print a screenshot

Graphical program Webcam view

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 140

Figure D4. CHERP‟s communication technology. CHERP uses a webcam to image tangible

programs and a LEGO infrared transmitter ("tower") to communicate programs from the blocks

to the robots through a laptop.

18-24 inches

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 141

Figure D5. CHERP programming instructions available during the Hokey-Pokey challenge.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 142

Figure D6. The expected solution program for the Hokey-Pokey challenge.

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 143

Figure D7. A Hokey-Pokey program made in the Scratch programming language. This program

makes the Scratch cat dance the Hokey-Pokey. The CHERP instruction for each line of the song

is marked where it begins for comparison. The "next costume" instruction makes the cat look

like it has taken a step. Highlighted challenges, besides building up actions from smaller

components include: using the Cartesian coordinate system, including possible negative values,

control flow structures, decimals, and degrees.

Forward

Backward

Forward

Shake

Spin

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 144

Figure D8. A Hokey-Pokey program made in the WeDo™ programming language. This program

makes a robotic car dance the Hokey-Pokey. The CHERP instruction for each line of the song is

marked where it begins for comparison. Highlighted challenges, besides building up actions from

smaller components include: coordinating multiple motors, counting in decimals (15 represents

15 tenths of a second here), and using control flow structures.

Forward Backward Forward Shake Spin

COGNITIVE DEVELOPMENTAL LEVEL AND PROGRAMMING ACHIEVEMENT 145

Figure D9. Hypothesized relationships among the predictor and outcome variables (left and

center) and the areas impacted by implications of the results (right).

