

Code and Tell:

An Exploration of Peer Interviews and

Computational Thinking With

ScratchJr in the Early Childhood Classroom

A thesis submitted by

Dylan J. Portelance

In partial fulfillment of the requirements of

Master of Arts

in

Child Study and Human Development

TUFTS UNIVERSITY

April 2015

© 2015, Dylan J. Portelance

ADVISER: Marina Umaschi Bers

CODE	 AND	 TELL	 ii	

Abstract

The ScratchJr programming language and iPad app were created in a collaboration by

Tufts University’s Developmental Technologies Research Group, MIT Media Lab’s Lifelong

Kindergarten Group and the Playful Invention Company in order to provide young children with

a developmentally appropriate way to learn foundational computer programming while creating

animated stories and games. In this thesis, I present a novel activity called “Code and Tell,”

designed specifically to supplement early childhood classrooms learning to code and create

projects with ScratchJr. Students in three second grade classes learned foundational

computational thinking concepts using ScratchJr and applied what they learned to the creation of

animated collages, stories, and games. They participated in the Code and Tell activity three

times, which involved conducting artifact-based video interviews with each other in pairs using

their iPad cameras. Through an exploration of the Code and Tell activity, this thesis seeks to

begin to understand the computational thinking learning opportunities that ScratchJr provides to

the early childhood classroom when combined with a peer interviewing activity.

CODE	 AND	 TELL	 iii	

Acknowledgments

To my adviser, Professor Marina Umaschi Bers, thank you for guiding me from the

playpen to the playground, a lesson I will always keep with me. To my thesis readers, Professor

Michelle Wilkerson-Jerde, and Professor Bruce Johnson, thank you for your time, energy,

patience, and brilliance. To the always dynamic and compassionate DevTech family, Amanda

Sullivan, Elizabeth Kazakoff, Claire Caine, Melissa Lee, and Mollie Elkin, thank you for a

never-ending two year stream of new ideas, sharp critique, and unwavering support. A special

thank you to two DevTechers—Louise Flannery, for leading me into my first early childhood

classroom (since my own childhood), and Amanda Strawhacker for always going above and

beyond to help me as I began to lead my own studies. Thank you to the ScratchJr product team

for letting me in on decades of learning technologies experience. Thank you to the incredibly

sharp and creative crew of undergraduates I was fortunate to enlist—Alex Pugnali, Andre

Newland, Elizabeth Dielentheis, Emily Naito, Megan Souza, Sarah Hogan, and Yesenia

Villanueva-Rodriguez, I was lucky to have your help and look forward to all of your bright

futures. Thank you to the Eliot-Pearson community for being an unlikely home to someone

looking for a more personally meaningful way to use computer science. Of course, this work

would not have been possible without the students, teachers, staff, families who graciously

provided me with their time and space to teach, facilitate, observe, and learn. Thank you. Finally,

to my friends and family here and at home who are undoubtedly tired of hearing me talk about

children using ScratchJr, thank you for your tireless love and support throughout this process.

CODE	 AND	 TELL	 iv	

Table of Contents

Abstract	 ..	 ii	

Acknowledgments	 ..	 iii	

1.	 Introduction	 ...	 1	

Motivation	 ..	 1	

Thesis	 Outline	 ...	 3	

2.	 Background	 ..	 4	

What	 is	 Computational	 Thinking?	 ..	 4	

Computational	 Thinking	 and	 Education	 ...	 6	

Methodology	 for	 Evaluating	 Learning	 of	 Computational	 Thinking	 ...	 7	

The	 Case	 of	 Young	 Children	 ..	 9	

Gap	 in	 the	 Literature	 ..	 11	

3.	 ScratchJr	 ..	 12	

App	 Features	 ...	 12	

Design	 ...	 14	

4.	 Research	 Design	 ...	 15	

Sandoval’s	 Conjecture	 Map	 ...	 15	

Setting	 ..	 17	

Materials	 ..	 18	

Participants	 ..	 19	

Curriculum	 ...	 20	

Animated	 Genre	 Projects	 ...	 21	

Animated	 Collage	 Project	 ...	 21	

CODE	 AND	 TELL	 v	

Animated	 Story	 Project	 ...	 22	

Animated	 Game	 Project	 ..	 23	

Code	 and	 Tell	 Activity	 ..	 24	

Data	 Collection	 ..	 25	

5.	 Results	 and	 Discussion	 ..	 25	

Categories	 of	 Analysis	 ...	 26	

Connections	 to	 Computational	 Thinking	 ..	 27	

Levels	 of	 Describing,	 Demonstrating,	 and	 Imagining	 Projects	 ..	 29	

Levels	 of	 Describing	 Projects	 ...	 29	

Levels	 of	 Demonstrating	 Projects	 ..	 33	

Levels	 of	 Imagining	 Projects	 ...	 40	

Patterns	 in	 Whole	 Group	 of	 Students	 ...	 46	

Patterns	 in	 Levels	 of	 Describing	 Projects	 ...	 46	

Patterns	 in	 Levels	 of	 Demonstrating	 Projects	 ..	 47	

Patterns	 in	 Levels	 of	 Imagining	 Projects	 ...	 48	

Discussion	 of	 Patterns	 in	 Whole	 Group	 of	 Students	 ...	 48	

Categories	 of	 Students	 ...	 50	

The	 Child	 Who	 Describes	 ...	 51	

The	 Child	 Who	 Demonstrates	 ..	 53	

The	 Child	 Who	 Imagines	 ..	 55	

Discussion	 of	 Categories	 of	 Students	 ..	 57	

6.	 Limitations	 ...	 58	

School	 Setting	 ..	 58	

CODE	 AND	 TELL	 vi	

First	 Code	 and	 Tell	 Study	 ...	 59	

Lost	 Projects	 ..	 59	

7.	 Future	 Directions	 ...	 60	

Dyads	 ..	 60	

Reviewing	 Videos	 ..	 61	

Interview	 Questions	 ...	 61	

Comparing	 Code	 and	 Tell	 to	 Other	 Assessments	 ...	 62	

References	 ...	 63	

CODE	 AND	 TELL	 vii	

List of Figures

Figure	 1	 –	 ScratchJr	 Programming	 Interface	 ...	 13	

Figure	 2	 –	 ScratchJr	 Paint	 Editor	 ...	 13	

Figure	 3	 –	 Example	 of	 a	 ScratchJr	 animated	 collage	 project	 ...	 22	

Figure	 4	 –	 Example	 of	 a	 ScratchJr	 animated	 story	 project	 ...	 23	

Figure	 5	 –	 Example	 of	 a	 ScratchJr	 animated	 game	 project	 ...	 24	

Figure	 6	 –	 Scene	 from	 interview	 containing	 Excerpt	 1	 ..	 30	

Figure	 7	 –	 Scene	 from	 interview	 containing	 Excerpt	 2	 ..	 31	

Figure	 8	 –	 Scene	 from	 interview	 containing	 Excerpt	 3	 ..	 33	

Figure	 9	 –	 Scene	 from	 interview	 containing	 Excerpt	 4	 ..	 35	

Figure	 10	 –	 Scene	 from	 interview	 containing	 Excerpt	 5	 ...	 37	

Figure	 11	 –	 Scene	 from	 interview	 containing	 Excerpt	 6	 ...	 39	

Figure	 12	 –	 Scene	 from	 interview	 containing	 Excerpt	 7	 ...	 41	

Figure	 13	 –	 Scene	 from	 interview	 containing	 Excerpt	 8	 ...	 43	

Figure	 14	 –	 Scene	 from	 interview	 containing	 Excerpt	 9	 ...	 45	

Figure	 15	 –	 Frequencies	 of	 Levels	 of	 Describing	 Projects	 Depicted	 in	 Videos	 	 46	

Figure	 16	 –	 Frequencies	 of	 Levels	 of	 Demonstrating	 Projects	 Depicted	 in	 Videos	 	 47	

Figure	 17	 –	 Frequencies	 of	 Levels	 of	 Imagining	 Projects	 Depicted	 in	 Videos	 	 48	

	

CODE	 AND	 TELL	 viii	

List of Tables

Table	 1	 –	 Conjecture	 Map	 Outlining	 the	 Structure	 of	 the	 Present	 Study	 	 16	

Table	 2	 –	 ScratchJr	 Animated	 Genres	 Curriculum	 Outline	 ...	 20	

Table	 3	 –	 Code	 and	 Tell	 Interview	 Questions	 ..	 25	

Table	 4	 –	 Code	 and	 Tell	 Video	 Categories	 of	 Analysis	 ..	 26	

Table	 5	 –	 Levels	 of	 complexity	 for	 describing,	 demonstrating,	 and	 imagining	 projeccts	 	 29	

CODE	 AND	 TELL	 1	

1. Introduction

Motivation

“Learn to code” is more than a suggestion from your principal. “Learn to code” is a

movement, an industry, a policy, a course, a promise, and even a value. Through its recent

entrance into the national political, educational, and technological spotlights, the phrase has

gained influence, garnered an enormous amount of attention, and taken on a life of its own. In

2014, United States President Barack Obama wrote his highly publicized first line of Javascript

and became one of over 100 million people worldwide to have participated in Code.org’s Hour

of Code event. In 2013, New York City Mayor Bill de Blasio launched the Tech Talent Pipeline,

aiming to give hundreds of after school programs access to free computer science learning

materials from Google. Demographically minded organizations like Black Girls Code, founded

in 2011, and Girls Who Code, established in 2012, have offered a programming education to

thousands of students from groups usually underrepresented in computer science classrooms and

technology businesses. Companies like Codecademy, created in 2011, and Wonder Workshop,

whose first investment came in 2013, have raised millions of dollars from venture capitalists

with promises to help the masses learn to code.

Why all this attention toward writing instructions for a computer to read and execute?

Learning to code ostensibly grants people access to job opportunities within rapidly growing

markets (Landivar, 2013) as well as a gateway to participation in digital artistic expression and

civic engagement (Jenkins et al., 2006). An argument for learning to code that is particularly

popular among computer science scholars and technology creators is the epistemological benefit.

Alan Perlis, recipient of the first Association for Computing Machinery A.M. Turing Award,

suggested that the skill be “part of every liberal education,” contending that the deep

CODE	 AND	 TELL	 2	

understanding of process could be transferrable to calculus, economics, and many other domains

(Perlis, 1962). Seymour Papert claimed more generally that computer programming propagates

the opportunity to think about one’s own thinking (1980). As programmers continually build

more complex systems, they in turn reflect on deeper complexities of their own personal thinking

processes.

The ubiquity of computing devices and software in our everyday lives makes learning to

code seem even more imperative. We engage with digital technology as we send messages on

phones, purchase goods with Amazon.com, gather knowledge from Wikipedia, sign petitions on

Change.org, and fulfill an endless variety of other personal and collective purposes. For those

coming of age in an increasingly technological world, developing an understanding of how these

technologies work under the hood may help them navigate this environment with greater ease or

even build technological solutions of their own. Media theorist Douglas Rushkoff went so far as

to dub coding “the new literacy,” with many others following suit, arguing that the ability to

program digital media has reached an equal level of importance to the ability to read and write

print media (2010).

This theme of new literacy closely accompanies ScratchJr, the technology used during

the classroom studies for this thesis. ScratchJr is an animation-making app designed to provide

young children with a developmentally appropriate way to learn to code. With the public release

of ScratchJr in August 2014 came the tagline, “Coding is the new literacy!” and an explanation

that with ScratchJr, “children aren’t just learning to code, they are coding to learn”

(ScratchJr.org). This position implies that the practice of coding, like reading and writing, can

facilitate the development of other skills like problem solving and design as well as build

knowledge in other domains such as mathematics and language. As a product made to create

CODE	 AND	 TELL	 3	

these kinds of learning opportunities for young children and given the potential affordances of

these learning opportunities, children’s use of ScratchJr brings about many questions. What

exactly are young children learning as they create projects with ScratchJr? Are they just learning

to code, or are they engaging with other powerful ideas from computer science? How can we

know what they have learned? What kind of literacy are they developing?

To begin answering these questions, this thesis focuses on learning of the general skill set

known as computational thinking, to which coding belongs. Computational thinking, first coined

by Papert, describes not only the processes and concepts used to solve problems and design

systems with computers but also the application of ideas inspired by computers that humans can

use to aid in expressing and understanding the nature of phenomena (1996). The term was most

exhaustively defined by Jeannette Wing, who explains it as a rich set of analytical methods used

to effectively combine human and machine toward solving problems (2006). These methods

include more concrete tasks like programming, testing, and debugging as well as abstract ideas

like decomposition and representation of data.

Thesis Outline

In this thesis, I explore the use of a curricular activity that I call “Code and Tell.” The

activity consists of pairs of students conducting video interviews with each other about ScratchJr

projects that they created during class. The research question that this thesis seeks to answer is:

How can the Code and Tell activity be used to provide students with opportunities to learn

computational thinking in the early childhood classroom? First, I review the literature on

technological tools for learning computational thinking as well as learning and assessing

computational thinking. Second, I discuss the primary technology used during the research, the

ScratchJr iPad app. Third, I describe the research design, including a curriculum enactment and

CODE	 AND	 TELL	 4	

data collection methods. Fourth, I analyze the data to address the aforementioned research

question. Fifth, I address some of the limitations of the present study. Sixth, I offer implications

of this thesis research as well as future directions.

2. Background

Computing is more common than ever in education, industry, and life in general, and the

impetus for society to have a better understanding of how computing works has never been

stronger. Recently, a great plurality of the computer science education community has converged

to meet this need by pushing for students to learn a skill set called computational thinking. For

scholars and practitioners in computer science, education, and computer science education, the

scope of this push has involved theoretical contributions about the ontology of computational

thinking, views on how to implement computational thinking activities for educational purposes,

and studies on how computational thinking is actually learned. For the purposes of this thesis, I

will summarize our current understanding of computational thinking and then focus on literature

that provides a foundation for my own work regarding methodology for assessing the learning of

computational thinking as well as specific applications of these assessments for use with young

children.

What is Computational Thinking?

Defining computational thinking is a hot topic for computer science education scholars

and multiple explorations of the construct have been put forth. To recapitulate the definitions

offered in the Introduction, Papert is credited as the first to employ the term but he did not

rigorously define it (1996). As he uses the term in his writing, he signals a mode of thought that

could be harnessed toward problem solving and system design with computers in concurrence

with using ideas drawn from how computers operate to help see and interpret processes, ideas,

CODE	 AND	 TELL	 5	

and rules. In her short paper entitled, “Computational Thinking,” Jeannette Wing illustrates the

term’s breadth in detail, citing a vast array of computer science related skills and concepts such

as abstraction, decomposition, and gauging time and space costs (2006). Like Papert, she

emphasizes the term’s simultaneous reference to techniques enacted by machines and by

humans.

 Brennan and Resnick break down computational thinking more specifically into a three-

dimensional framework that comprises concepts, practices, and perspectives (2012).

Computational thinking concepts are the most concrete of the bunch, individual operations of

computation that can be interpreted and executed by a machine and are oftentimes built into a

programming environment as a feature. Examples of computational thinking concepts include

sequence—a set of instructions meant to be executed in a given order—and data—information

that can be stored, outputted, mutated and interpreted to determine some computation. At a

higher level, computational thinking practices refer to techniques applied by humans to design

and construct computations. Some of these computational thinking practices are debugging,

procedures and strategies for hunting down, understanding, and fixing computation so that it

does not cause unwanted behavior, and abstraction, the hiding of unnecessarily complex details

of a system to facilitate simpler interaction with it. Existing at the highest level of the three

dimensions are computational thinking perspectives. While concepts are embedded in the tool

and process of computation, and practices reside in the work of creating computation,

computational thinking perspectives encompass overarching purposes for computing.

Connecting to other people and expressing ideas or identity are some examples of these

perspectives.

CODE	 AND	 TELL	 6	

Computational Thinking and Education

Despite some disagreement about the meaning of the construct, a strong consensus exists

that computational thinking ought to be treated as a crucial learning objective for K-12 students.

After Wing published her seminal description of computational thinking, many people in the

computer science education community turned their attention to creating definitions and

frameworks that could be useful in educational settings. In 2010, the International Society for

Technology in Education (ISTE) and the Computer Science Teachers Association (CSTA) led a

National Science Foundation project entitled, “Leveraging Thought Leadership for

Computational Thinking in PK-12.” One of the sponsored activities of this project was a meeting

of education minds who set out to construct a definition of computational thinking as it should be

interpreted and applied in school curriculum. In addition to summarizing many of the skills

introduced by Wing, this “operational definition” included a list of attitudes toward dealing with

computing problems such as confidence in the face of complexity and ambiguity and working

with others communicatively and collaboratively (International Society for Technology in

Education and Computer Science Teachers Association, 2011).

Building on the claims that computational thinking can be applied to multiple domains of

knowledge and practice for students, many have attempted to show examples of what this could

look like (Barr & Stephenson, 2011; Dierbach et al., 2011). For example, using abstraction in

language arts could be likened to employing figurative language such as simile or metaphor, and

parallelization has relevance in science because experiments are often run simultaneously with

different parameters. Others have investigated ways to integrate computational thinking into

interdisciplinary after-school activities (Lee et al., 2011). Research on specific computational

learning environments has also shown the existence of different types of learners (Turkle &

CODE	 AND	 TELL	 7	

Papert, 1990) and probed the motivational potential of different computing interfaces for

engaged student participation (Repenning et al., 2010).

Methodology for Evaluating Learning of Computational Thinking

The computational thinking literature is rife with theoretical contributions and

justifications for the creation of technologies and pedagogy that build computational thinking

skills. Very recently, research that also investigates the efficacy of existing programs and

practices for learning computational thinking has grown more common. Only a few years ago,

the Association for Computing Machinery (ACM) and CSTA released a report claiming that

computer science assessments are, “virtually non-existent” (Wilson et al., 2010). Since then,

however, computer science education researchers have frequently constructed and experimented

with more concrete ways to evaluate student learning.

One approach to understanding student learning of computational thinking is by

analyzing students’ projects within some programming environment. Han Koh et al. (2010)

extracted “computational thinking patterns” from thousands of middle school students’ game

projects based on their use of different programming language constructs and then analyzed how

often patterns used in these projects were transferred to use in science simulation projects. Stolee

and Fristoe (2011) ran a similar analysis on Kodu projects created by students to see the

frequency with which different components of the Kodu language were applied to their projects,

including Boolean logic, control flow, objects, and variables. Also in this vain, Denner, et al.

(2012) looked at content of games created by middle school girls in Stagecast Creator to assess

their understanding of programming and usability. To construct a programming project analysis

specifically for primary grades, Seiter and Foreman (2013) proposed the Progression of Early

Computational Thinking (PECT) Model, which takes into account students’ use of more concrete

CODE	 AND	 TELL	 8	

evidence variables like loops and conditionals, design patterns like user interaction and

animation, and more high level computational thinking concepts like decomposition and

abstraction.	 These studies acknowledge that although mapping the learning of computational

thinking concepts directly from the use of different language constructs is convenient for

analyzing large data sets automatically, what is gained in efficiency may be lost in validity.

Students’ use of computer science concepts does not guarantee that they have learned them.	

Triangulating student artifacts like programming projects with other data about student

learning can more thoroughly evaluate learning trajectories and outcomes. To assess middle

school students’ learning of computational thinking concepts throughout a computer science

summer camp that used Scratch for lessons and projects, Franklin et al. (2013) combined

assessment of smooth execution and robust implementation in students’ programming projects

with fields notes documenting the levels of help that were provided to those students by the camp

staff. Basawapatna et al. (2011) supplemented student project data with scores on a quiz meant to

measure whether students could transfer use of computational thinking patterns in a

programming context to recognition of those patterns in non-programming contexts.

In a few studies that focused on active student performance within an assessment

environment, students were evaluated on their abilities to construct programs to solve new

problems, debug solutions to these kinds of problems, and demonstrate their aptitude for

recognizing and comprehending elements of a programming language. In 2012, Werner et al.

developed a computational thinking assessment, using the Alice programming software, that

asked students to solve problems by writing code related to characters in a narrative on the

screen. To fulfill a similar purpose in a tangible programming domain, Fields et al. (2012)

presented students with non-functional circuits in order to assess their ability to debug them by

CODE	 AND	 TELL	 9	

constructing new functional versions and using computational thinking skills related to circuit

design in the process.

Interviews between teachers and students have been used to elicit computational thinking

concepts in speech. Dwyer et al. (2014) analyzed discussions with themes of computer

knowledge, complex decisions, and sequential procedures to understand fourth graders’

development of sequence and algorithm implementation abilities in a CS Unplugged curriculum.

Brennan and Resnick (2012) established a framework for assessing computational thinking that

is threefold, including elements of some of the previously described techniques. This framework

involves analysis of a portfolio of students’ projects, interviews with students’ projects as a

central focus, and “design scenarios,” activities that allow students to show what they know in

the context of a specific problem situated in the programming environment they have been

learning and creating projects with.

The Case of Young Children

It is less common to see computational thinking learning environments and pedagogy

designed specifically for young children and assessments that are developmentally appropriate

for this demographic are even more rare. Studies have shown that even children as young as four

years old can use simple programming interfaces to create robotics projects (Bers et al., 2002;

Cejka et al., 2006; Kazakoff et al., 2012; Perlman, 1976; Wyeth, 2008) and animation projects

(Strawhacker & Bers, 2014; Portelance et al., 2014). These endeavors help young learners

engage with powerful ideas from technology, including many computational thinking concepts,

that can serve them in educational and personal pursuits throughout their lives (Bers, 2008).

With particular regards to early childhood computational thinking assessments, Bers et al.

(2014) evaluated kindergarten students on their sequencing and instruction recognition

CODE	 AND	 TELL	 10	

capabilities by scoring their programs written in a tangible wooden block programming language

for the purpose of designing a robot dance with specific steps. Strawhacker and Bers (2014)

applied assessments to young children’s learning of ScratchJr by evaluating their ability to

recognize and place programming blocks in a sequence corresponding to the implementations of

animations created by researchers.

Jean Piaget’s seminal theory of cognitive development, which includes several qualitative

stages of development that outline how children conceptualize the world, may be useful to

consider while designing computational thinking assessments for young children. According to

Piaget, children enter the preoperational stage of development at around two years of age and

enter the concrete operational stage at approximately their seventh year of age. During the

preoperational stage, children show an ability to understand, manipulate, and play with symbols

as stand-ins for real things (1929). The preoperational stage is also characterized by egocentrism,

or difficulty with understanding the perspectives of other people, and the development of a

curiosity and frequent question-asking behavior (1929). As children transition from the

preoperational stage to the concrete operational stage, they begin to develop logical and

conservational thought and their egocentrism diminishes qualitatively (1929).

Lev Vygotsky’s zone of proximal development may also be useful to consider while

designing computational thinking assessments for young children. Vygotsky suggested that

every child has a developmental level in a given domain (e.g. computational thinking) that they

reach through their own thinking as well as the capacity to develop within that domain to another

level with the guidance of others (1978). He emphasized that the way in which children could

develop mental processes with the help of others involves the more developmentally mature

members of a cultural group interacting with the less mature members through language and that

CODE	 AND	 TELL	 11	

these linguistic interactions could help children create shared meanings in a given cultural

context (1978). With specific regards to peer collaboration and the zone of proximal

development, Tudge (1992) notes that interactions between two peers do not necessarily involve

a more competent peer guiding a less competent peer within his or her zone of proximal

development. He proposes that mutual student interest and verifiable results of development are

just some of the factors involved in making these collaborations more effective (1992).

To provide a framework for how technologies can support young people’s positive

development, Bers (2006; 2012) offers the Positive Technological Development (PTD)

framework. Drawing from Lerner et al.’s (2005) Six C’s of Positive Youth Development, PTD

suggests that young people engaging with technology can do so in a way that promotes positive

developmental outcomes when technology substantiates activities revolving around

communication, collaboration, community-building, content creation, creativity, and positive

choices of conduct. This framework has been applied to the creation of developmentally

appropriate robotics kits and programming environments for young children as well as playful

and technology-rich activities for young children (Bers, 2010).

Gap in the Literature

 If ScratchJr is to be used as a tool for learning computational thinking in the early

childhood classroom then there exists a need for a developmentally appropriate computational

thinking assessment that can be used with students learning in this environment. Ideally, this

assessment can simultaneously serve as an activity that supports positive technological

development as well as assessing. The present study seeks to address this gap in the literature by

investigating how the Code and Tell activity can be used to provide students with opportunities

to learn computational thinking in the early childhood classroom.

CODE	 AND	 TELL	 12	

3. ScratchJr

 ScratchJr was created to provide young children with developmentally appropriate means

to learn to use computer programming skills as well as to make personally meaningful projects

with technology (Flannery et al., 2013). The three major components of the ScratchJr project are:

1) the app, which comprises a programming language and interactive animation-making interface

designed specifically for use by young children, 2) curricular resources and content within the

app that allow for integration with early childhood mathematics and literacy learning, and 3)

online resources for early childhood educators to learn about ScratchJr content, activities, and

teaching practices. Throughout the app’s design and development, researchers conducted

curriculum enactments in K-2 classrooms focusing on powerful ideas related to computer science

and technology (2013). These curricula served simultaneously as ways to test the app itself and

to iterate on its design as well as to assess activities and best practices for teaching with ScratchJr

in an early childhood classroom setting.

App Features

 At the crux of the ScratchJr iPad app is a graphical programming language consisting of

28 programming blocks. Users connect these blocks together in sequences for the purpose of

programming characters on the screen to move, change their appearances, produce sounds, and

utilize a variety of other functions towards the creation of animated stories and games on the

iPad. Other features supplement the results made possible by ScratchJr’s programming blocks.

With the ScratchJr interface, users can further adapt their project by adding multiple pages,

adding characters and backgrounds from the libraries, creating their own characters or

backgrounds using the paint editor, adding text to the page, or utilizing other parts of the

technology.

CODE	 AND	 TELL	 13	

Figure 1 – ScratchJr Programming Interface

Figure 2 – ScratchJr Paint Editor

CODE	 AND	 TELL	 14	

Design

 ScratchJr was based on the online programming language and environment, Scratch,

created for children ages 8 and older, but unlike Scratch, ScratchJr was designed to be

developmentally appropriate for young children, specifically ages 5-7. To center developmental

appropriateness for young children during ScratchJr’s development, several features and design

decisions construct a “low floor” for users (2013). It is easy for users to begin programming

within seconds because when the app is opened to the project interface, there is already a Cat

character on the stage and the blue motion blocks are immediately visible and available to

program with. Users can simply drag and drop any of the eight motion blocks into the scripting

area below the blocks palette and tap them with their finger to see the result of a simple one-

block motion program. To encourage users to create programs with more than one block, the

blocks are shaped like jigsaw puzzle pieces that obviously snap together. Syntax errors are

impossible in the ScratchJr programming language because blocks that can only be placed at the

beginning of a program are rounded on the left side and blocks that belong at the end of a

program are rounded on the right side. Additionally, users can drag characters around on the

stage in order to position them without having to write programs.

The design of the ScratchJr programming language, app, activities, and resources builds

upon a large body of research on technological tools for children to learn computer programming

with. This work spans studies that examine designing programming technology for children,

teaching children how to code, and assessments of children’s programming knowledge and

skills.

CODE	 AND	 TELL	 15	

4. Research Design

 A study was designed and conducted to address the research question: How can the Code

and Tell activity be used to provide students with opportunities to learn computational thinking

in the early childhood classroom? The study’s design drew from a methodology known as

design-based research, which involves testing theories about how learning can take place by

enacting iteratively designed interventions in a natural environment (Brown, 1992; Collins, 1992,

Cobb et al., 2003). A developmentally appropriate curriculum for learning computational

thinking with ScratchJr was designed and taught to a selection of second grade students. As part

of the curriculum intervention, each of the students participated in the Code and Tell artifact-

based video interviewing activity multiple times. Data was then collected in the form of videos

recorded during the Code and Tell activity and field notes taken by researchers in the classroom.

Sandoval’s Conjecture Map

Sandoval’s (2014) conjecture mapping approach, a technique created for the purpose of

“conceptualizing design-based research” and structuring it with an “argumentative grammar,”

was used to guide the method and analysis. Conjecture maps begin with a high-level conjecture

about how learning is supported without specifics about the designed learning environment.

They also include an embodiment, or learning environment design made up of tools, participant

structures, task structures, and settings. Next, conjecture maps involve mediating processes, or

links between the learning environment design and desired outcomes, verifiable through artifacts

created by learners or observations of interactions between learners. Finally, conjecture maps

include outcomes, or manifestations of successful learning. Table 1 shows a conjecture map that

outlines the high-level conjecture, embodiment, mediating processes, and outcomes that

comprise the focus of the present study.

CODE	 AND	 TELL	 16	

Table 1 – Conjecture Map Outlining the Structure of the Present Study

Conjecture Embodiment Mediating Process Outcome

The Code and Tell
activity can support
the learning of
computational
thinking with
ScratchJr in the early
childhood classroom

Tools
• ScratchJr iPad

app
• Camera iPad app

Use of computational
thinking beyond
concepts represented
as features in
ScratchJr iPad app

Development of
computational
thinking ability

Activity Structure
• Designing and

constructing
personally
meaningful
ScratchJr
Animated Genre
projects

• Presenting
ScratchJr projects
to peers and iPad
camera during
Code and Tell
activity

• Interviewing
peers about
ScratchJr projects
using iPad
camera during
Code and Tell
activity

Participant Structure
• Participation in

ScratchJr
Animated Genres
curriculum taught
by ScratchJr
tutors with
assistance from
regular classroom
teachers

CODE	 AND	 TELL	 17	

 The present study seeks to address how the Code and Tell activity provides students

opportunities to learn computational thinking. While the ultimate goal of effective use of the

Code and Tell activity in early childhood classrooms learning ScratchJr is the outcome stated

above, development of computational thinking ability, evaluating whether the learning design

achieves this outcome is beyond the scope of this study. This study will focus on a mediating

process that is hypothesized to potentially lead students situated in the described embodiment to

the desired outcome. This mediating process is the use of computational thinking beyond

concepts represented as features in the ScratchJr iPad app. Without loss of generality, examples

of concepts represented as features in the ScratchJr iPad app are loops (tangibly represented as

the Repeat block) and sequencing (represented as the ability to connect programming blocks

together), whereas examples of computational thinking practices that are not represented as

physical features in ScratchJr are debugging and iterative design. Specifically, analysis of the

videos that students record during their Code and Tell activity participation will be used to

inform a description of the nature of this mediating process, if it emerges from the learning

design in the first place.

Setting

 The study was conducted in three second grade classrooms at a suburban public

elementary school in the Greater Boston area. This school was selected for three reasons. First,

there was a professional connection between its principal and Tufts University’s Eliot-Pearson

Department of Child Study and Human Development. Second, the school had recently acquired

about thirty iPads through a generous grant. This number of iPads made it possible for each

classroom to distribute them in such a way that each student would have their own for the

duration of any given lesson period. Finally, the school was located in close enough proximity to

CODE	 AND	 TELL	 18	

Tufts University to make it possible for researchers to travel to and from the research site without

conflicting with other commitments on campus.

Materials

 While all three classrooms were set up differently due to the preferences of the regular

classroom teachers, there were several features of the classrooms that were consistent. The

following features particularly characterized the setting and affected the way activities would be

conducted throughout the curriculum.

• iPad cart

The three classrooms shared one set of iPads, meaning each student shared their iPad

with two other students, each in a different classroom. These iPads would arrive in the

appropriate classroom just before the ScratchJr tutors arrived to facilitate the day’s

activities. On most days, there would be a few minutes at the beginning and end of the

lesson period dedicated to distributing iPads to their respective users and putting the

iPads back in the cart.

• Whiteboards

Each classroom had several whiteboards on the walls. These whiteboards would be used

to display an enumeration of the day’s activities or to provide a reference for the

interview questions used during the Code and Tell activity.

• Student tables

Students in all three classes had assigned seats at tables distributed throughout their

classrooms. These tables usually seated about four to five students. Generally, while

students were using the ScratchJr iPad app, they were seated in their assigned seats at

these tables but this was loosely enforced.

CODE	 AND	 TELL	 19	

• Rug area

A rug with enough space to seat an entire class of students served as a place for

gathering everyone closely in the classrooms. When introducing new concepts in

ScratchJr, tutors would have students be seated at the rug area without their iPads.

Students would also be gathered at the rug area while waiting for their turn to participate

in the Code and Tell activity.

• Overhead projector

All of the classrooms had overhead projectors, which ordinarily could be used to display

handouts, manipulatives, and other classroom materials at a large scale. This technology

was used sparingly by ScratchJr tutors after the first few lessons due to the perceived

lack of student engagement when using the device.

Participants

 Sixty-six students in the second grade participated in the curriculum enactment. During

lesson periods, regular classroom teachers were present at all times. With few exceptions, two

ScratchJr tutors, including the thesis author, were present in the classroom leading the activities.

Although these tutors facilitated, regular classroom teachers were encouraged to “take the

wheel” whenever they felt comfortable. The ScratchJr tutors also let these teachers know that

because of their knowledge of their classroom’s culture and best practices for classroom

management that they could make modifications to the plan for a lesson period in order to make

it as appropriate as possible for their students. Other adults were sometimes present in the

enactment classrooms. These included paraeducators, who would sometimes visit to provide

special assistance to individual students and student teachers from another university shadowing

the regular classroom teachers.

CODE	 AND	 TELL	 20	

Curriculum

The curriculum taught during the study comprised a 13-day one-hour-per-lesson program

with lessons occurring twice a week. The ScratchJr “Animated Genres” curriculum allows

students to familiarize themselves with and use all of the different computational and creative

aspects of the ScratchJr iPad app. Simultaneously, it seeks to help students engage with

“powerful ideas” from computational thinking, like debugging and iterative design, that can be

applied to projects and thinking in other domains such as writing or science (Papert, 1980).

Split into three modules focusing on three animated genres of communication, students

repeatedly engaged with two lessons on utilizing features in ScratchJr, a lesson period dedicated

to working on personal projects within an animated genre, and a lesson period for participating in

the Code and Tell activity. After the third time through the Code and Tell activity, families were

invited into the classroom for a “Family Day.” Students showcased their projects for family and

friends to present what they had learned and created during the curriculum enactment. Table 2

provides an outline of the curriculum.

Table 2 – ScratchJr Animated Genres Curriculum Outline

Day Module Activity

1

Create a ScratchJr Collage

Learn about Motion blocks

2
Learn about Looks blocks, “Start on Green Flag”
block, Characters, and Backgrounds

3 Make ScratchJr Collage

4 Code and Tell with Collage projects

5

Create a ScratchJr Story

Learn about Control blocks

6
Learn about Text, Pages, Sound blocks, End
blocks

7 Make ScratchJr Story

CODE	 AND	 TELL	 21	

8 Code and Tell with Story projects

9

Create a ScratchJr Game

Learn about “Send Message” block and “Start on
Message” block

10
Learn about “Start on Tap” block and “Start on
Bump” block

11 Make ScratchJr Game

12 Code and Tell with Game projects

13 Family Day
Show family and friends ScratchJr collages,
stories, and games

Animated Genre Projects

 The lesson periods on days three, seven, and eleven gave students the entire allotted time

to focus on designing and constructing their own personal ScratchJr projects. Projects would be

composed to fit the animated genre that the current module focused on. ScratchJr tutors

introduced each animated genre project by reflecting on what students had learned earlier in the

module and discussing the elements of that genre (e.g. a story has characters, setting, beginning,

middle, and end).

Animated Collage Project

On the third day of the curriculum enactment, students were given a full lesson period of

one hour to work on a ScratchJr collage project. The collage project was introduced with a brief

discussion about collages made without iPads. ScratchJr tutors emphasized how regular collages

on paper combined many different elements on one page and how students could make collages

in ScratchJr but with the added benefit of animation. They were encouraged to use the features

they had learned in ScratchJr so far, including the motion and looks blocks, the “Start on Green

CODE	 AND	 TELL	 22	

Flag” trigger block, the character library, the background library, and the paint editor. Figure 3

shows an example of a ScratchJr animated collage project.

Figure 3 – Example of a ScratchJr animated collage project

Animated Story Project

On the seventh day of the curriculum, students were given a full lesson period of one

hour to work on a ScratchJr story project. The story project was introduced with a brief

discussion about stories without iPads. ScratchJr tutors emphasized how regular stories on paper

used different pages with writing and pictures about characters in a setting to combine a

beginning, middle, and end into a plot. They were encouraged to use the features they had

learned in ScratchJr so far with a special emphasis on the features they learned between the

Collage Project day and the Story Project day, the control blocks, text editor, sound blocks, and

end blocks. Figure 4 shows an example of a ScratchJr animated story project.

CODE	 AND	 TELL	 23	

Figure 4 – Example of a ScratchJr animated story project

Animated Game Project

On the eleventh day of the curriculum, students were given a full lesson period of one

hour to work on ScratchJr game projects. The game project was introduced with a brief

discussion about games without iPads. ScratchJr tutors emphasized in the discussion that games

have rules and objectives. They also emphasized students building ScratchJr game projects

would need to design a way for players to interact with them. They were encouraged to use

programming blocks and features that they learned between the Story project day and the Game

project day, especially the “Start on Tap” block, which is required for building an interactive

ScratchJr project. Figure 5 shows an example of a ScratchJr animated game project.

CODE	 AND	 TELL	 24	

Figure 5 – Example of a ScratchJr animated game project

Code and Tell Activity

 Each project lesson period was followed immediately by a lesson period dedicating to

participation in the Code and Tell activity (days four, eight, and twelve). Regular classroom

teachers partnered students based on their previous success working together as reading, writing,

or mathematics partners. Students remained with the same partners throughout the entire study

with only a few rare but necessary exceptions due to absences and other unexpected

circumstances.

 In the classroom, the interviews were announced as a way for students to present their

ScratchJr projects to classmates using their own words. The ScratchJr tutors also reiterated this

purpose prior to the second and third comings of the activity on days eight and twelve. The

interview questions were written on a whiteboard at the beginning of a lesson period dedicated to

interviews and were read aloud by the ScratchJr tutors to the participants a moment before they

CODE	 AND	 TELL	 25	

began recording. Table 3 delineates the Code and Tell interview questions, with the last question

being a question of the interviewer’s choice.

Table 3 – Code and Tell Interview Questions

1 Tell me about your project.

2 How did you make your project?

3 What would you do if you had more time?

4 Your choice.

Data Collection

 For those students with consent, forty-two total students, videos recorded during the Code

and Tell activity were collected and analyzed to address the research question: How does the

Code and Tell activity provide students’ opportunities to learn computational thinking in the

early childhood classroom? Due to absences, six students only completed two interviews,

meaning the total number of students whose full set of three video interviews were analyzed was

thirty-six. Results of the analysis and a discussion of the findings are provided in the following

chapter.

5. Results and Discussion

 The purpose of the present study is to address the following research question: How does

the Code and Tell activity provide students’ opportunities to learn computational thinking in the

early childhood classroom? In order to address this question, sixty-six students in three second

grade classrooms participated in a ScratchJr Animated Genres curriculum enactment where they

each took part in the Code and Tell activity up to three times. The videos that students filmed of

each other during their participation in the Code and Tell activities were collected for analysis if

CODE	 AND	 TELL	 26	

the student appearing in the video had consent. Videos from a total of forty-two students were

analyzed and, due to absences, full sets of three videos from thirty-six students were analyzed.

The other six students with consent only completed the activity twice had two videos. A

qualitative data analysis (Miles et al., 2014) was conducted on these videos with the aim of

providing descriptions of the development of computational thinking in an early childhood

classroom using the Code and Tell activity. A qualitative analytical approach was chosen

because the research question is an exploratory one attempting to understand the behavior of

students in a new activity setting. Since the activity is new, a conceptual framework that does not

take into account findings within the qualitative data itself would be based on a limited range of

theory and knowledge.

Categories of Analysis

In order to build a conceptual framework allowing one to analyze the Code and Tell

video data set, holistic coding (Jones, 1985; Dey, 1993) was conducted on the videos to extract

major categories of what students talk about and do during the Code and Tell activity. These

categories were gleaned based on “general comprehension of the data” (Dey, 1993) with the

intention to break them down into subcategories based on complexity levels of computational

thinking. There were three categories that emerged that encompass students’ behavior while

sharing their ScratchJr projects: describing projects, demonstrating projects, imagining projects.

These themes are defined in Table 4.

Table 4 – Code and Tell Video Categories of Analysis

Category of Analysis Definition

Describing Projects Providing an account of what the project is.

CODE	 AND	 TELL	 27	

Demonstrating Projects
Displaying the project in a way that provides
observable information that can used to better
understand it.

Imagining Projects
Conceiving what the project could be and
strategizing about what will constitute it.

Connections to Computational Thinking

Each of the categories that emerged from initial analysis—describing, demonstrating, and

imagining projects—has a strong connection to computational thinking. These connections make

each category a fruitful area for more in depth exploration. The following explanations illustrate

their connections to computational thinking.

Describing Projects

Being able to think about what something is without enumerating all of its components

and details is necessary for thinking computationally. This practice allows computer scientists to

represent information, processes, and interfaces in ways that render them manageable and

understandable to themselves and others. When students engage in the act of describing a

ScratchJr project, they talk about an idea or multiple ideas of what that project is. Whether

consciously or not, they select a level of abstraction at which to represent their project and build

a description at that level. In the context of a student talking about a ScratchJr project of their

own design, these descriptions could manifest itself in several ways. Students may list the

characters in a project, share its title, dive into the plot of a story, or speak on behalf of the intent

behind its creation. These descriptions may reflect how students conceptually represent the

project.

CODE	 AND	 TELL	 28	

Demonstrating Projects

Problems in computer science often require a solution in the form of a demonstrable

product. For example, if you need to know the measures of central tendency on a large data set,

an equation is not enough. What would be more useful would be a program, because a program

can be executed to produce understandable output that can then be usefully leveraged. The

practice of demonstrating a computational entity involves ensuring its readiness, familiarizing

oneself with its functionality, and taking into account a viewer’s prior understanding of that

entity. When students demonstrate their ScratchJr project during Code and Tell, they engage in

the practice of sharing information with their audience in order to effectively evoke an

understanding of that project’s function or essence. Many behaviors caught on video comprise

the array of demonstration related actions, including explaining what is happening on the screen,

repeating an animation, and manually maneuvering characters into new locations with a finger.

Demonstrations reflect the student’s capacity to understand and share their project.

Imagining Projects

When effective computer scientists build creative solutions to problems, they propose a

hypothetical lack of constraints, think across a set of possibilities, and paint pictures of the ideal

solution. These imaginative processes sometimes lead to more thoughtful designs and

implementations that suit the problem. Students who imagine projects illustrate their intentions

when they set out to make a project. They speak about the possibilities of what could be included

in their project or what could be happening beyond what the project explicitly shows. A student

is imagining his or her project as he or she mentions a full range of things a character could be

doing despite the fact that an audience may only see a cat moving forward. Another student

imagining their project might have many elements added but has plenty of ideas for how it can

CODE	 AND	 TELL	 29	

be expanded, even if these additions or not necessarily feasible. Students who imagine present

their projects at the intersection of what their creative minds see and the projects themselves

show.

Levels of Describing, Demonstrating, and Imagining Projects

Although examples of students describing, demonstrating, and imagining projects were

common across the selection of interview videos, there were different ways that students went

about doing so. Within each of these three categories, three sub-categories emerged that could

classify the level of complexity with which students described, demonstrated, or imagined their

projects. Table 5 displays an overview of simple, intermediate, and complex ways of describing,

demonstrating, and imagining projects.

Table 5 – Levels of complexity for describing, demonstrating, and imagining projects

 Simple Intermediate Complex

Describing
Projects

Explain project elements
are

Explain things project
elements do

Explain what project
elements are for

Demonstrating
Projects

Showing individual
project elements

Showing project
elements as a system

Showing project
elements as an
interactive system

Imagining
Projects

Focus on physical project
elements

Focus on conceptual
project elements

Focus on
audience/user
experience

Levels of Describing Projects

Simple Describing

 Students describing projects in a simple way talk about what different elements of their

projects are. The following excerpt from a Code and Tell interview video provides an example of

a student describing a project in a simple way.

CODE	 AND	 TELL	 30	

Excerpt 1 – Describing a project in a simple way

[0:00] Interviewer: Tell me about your project.

[0:01] Presenter: Well my project is there’s a little polar

bear and…it’s…neon or something…and…um, and

it’s in Af- I mean Antarctica.

Figure 6 – Scene from interview containing Excerpt 1

In Excerpt 1, the presenter describes her project by listing two elements that she added to

it—a polar bear character and an arctic background. She also mentions the new coat of paint she

gave her polar bear as well as its size, which she programmed using a “Shrink” programming

block. As she describes her project to the interviewer and camera, she homes in on observable

characteristics of the elements she added to her project rather than how they act or what they

mean.

CODE	 AND	 TELL	 31	

Intermediate Describing

 Students who describing projects in an intermediate way talk about what different

elements of their projects do. The following excerpt from a Code and Tell interview video

provides an example of a student doing intermediate describing.

Excerpt 2 – Describing a project in an intermediate way

[0:01] Interviewer: Tell me about your project.

[0:03] Presenter: Uh, my project, is like, this crazy

 cowboy, and this teenager, playing soccer…

Figure 7 – Scene from interview containing Excerpt 2

 In Excerpt 2, the presenter describes his project by first describing the two characters he

chose and customized for his project, and then by describing the activity that he programmed

them to take part in. To program this activity he used a series of motion blocks to move the

teenage character to look like he is kicking the soccer ball character, another series of motion

blocks to move the soccer ball into a goal character, and a “Say” block to program the “crazy

CODE	 AND	 TELL	 32	

cowboy” to yell, “Ggggggggggaaaaaaaa!!!!!” The presenter’s description includes what his

project elements physically do rather than just what they are, but it does not delve into their

individual functions.

Complex Describing Projects

Students describing projects in a complex way talk about the functions of the different

elements of their projects. The following excerpt from a Code and Tell interview video provides

an example of a student describing a project in a complex way.

Excerpt 3 – Describing a project in a complex way

[0:00] Interviewer: Tell me about your project.

[0:03] Presenter: Um…well, basically what you do in this game,

er project, you would press buttons and it

would tell you if you won because there

would be, it would take you to this

background that says you won. Another thing

is, if you press the other buttons, it’s

kind of cool because you press one of these

buttons and it will make a new button.

CODE	 AND	 TELL	 33	

Figure 8 – Scene from interview containing Excerpt 3

In Excerpt 3, the presenter describes a project that comprises several customized

“Button” characters. These buttons have been programmed by her to carry out a variety of

different functions. At least one button transitions the game player to a new page in the project,

yielding a win state in the game. Other buttons ostensibly create new buttons, which lead to more

possible options for the game player. In her description, the presenter accounts for the role that

her different project elements play in her project rather than just how they act on the screen or

what they are.

Levels of Demonstrating Projects

Simple Demonstrating Projects

Students demonstrating projects in a simple way show their peers project elements

individually. The following excerpt from a Code and Tell interview video provides an example

of a student demonstrating a sequence of steps he took to utilize a feature in ScratchJr towards

CODE	 AND	 TELL	 34	

the creation of a single element of his project, exemplifying project demonstration in a simple

way.

Excerpt 4 – Demonstrating a project in a simple way

[1:52] Interviewer: How about because you’re having trouble with

this, [name redacted], why don’t you, um,

show us something you could make your

character say? Why don’t you make your

character say something?

[2:01] Presenter: Sure! I just did! *turning iPad around to

face camera* I just made him say, “Hi [name

redacted].” Look! *taps programmed script*

“Hi [name redacted].”

[2:09] Interviewer: That’s great.

[2:10] Presenter: Now, now I’m gonna make my dragon say, “Hi

Bob.”

[2:11] Interviewer: I like it.

[2:17] Interviewer: Okay.

[2:17] Presenter: Would you like to see how I do it?

[2:19] Interviewer: Sure!

[2:21] Presenter: Here, so, I just press the “Hi” button.

*taps Say block on the text to open a

keyboard window* “Hi.” And now I click the,

click the, *taps the B* “B,” and now, *taps

the O* “O,” and then, *taps the B* “B.” B-O-

CODE	 AND	 TELL	 35	

B, *taps the Go button* do that..., *taps

the Dragon’s script* “Hi Bob.”

[2:39] Interviewer: And then, what do you press now? Do you

 press, “Go”?

[2:40] Presenter: *taps the Dragon’s script* “Hi Bob.”

[2:42] Presenter: Yeah, you just press, “Go.” Here, see?

 Watch, *taps the Dragon’s script* “Hi Bob!”

 Figure 9 – Scene from interview containing Excerpt 4

CODE	 AND	 TELL	 36	

In Excerpt 4, the presenter demonstrates knowledge of how to enter his own parameter

into the “Say” block in order to program his character to say something in the form of a speech

bubble. Although the interviewer clearly prompts the presenter to demonstrate something, the

presenter seems to have already been creating something with the iPad facing away from the

camera with the intention of showing it to the interviewer and the camera after he finished. After

he does so, he elaborates on how to effectively use a “Say” block by showing another example of

what can be programmed to appear in a speech bubble. In his demonstration, the presenter shows

how the ScratchJr speech bubble feature works by using the “Say” block and does so within the

context of his own project creation. During the excerpt, the presenter demonstrates a single

project element in a few ways, typifying simple demonstrating.

Intermediate Demonstrating Projects

Students demonstrating their ScratchJr projects in an intermediate way talk about the

different elements of their project as part of an overarching system. The following excerpt from a

student’s Code and Tell interview video provides an example of a student demonstrating their

project in an intermediate way.

Excerpt 5 – Demonstrating a project in an intermediate way

 [0:00] Interviewer: Tell me about your project.

[0:02] Presenter: Well my stor-, my project’s about a

wizard defeating a ranger…on this page, *moves Wizard

character around with finger the wizard* the wizard is

fighting the ranger. The wizard says, *taps Wizard’s

script* “Don’t you get away,” and then *taps the Fairy

character button* the fairy doesn’t say anything, *taps the

Horse character button* and then the horse doesn’t-, *taps

CODE	 AND	 TELL	 37	

the Ranger character button* and then the, and then, he

said, and then he said, “Yes I will.” And then, *taps the

second page thumbnail* on this page…um…on this page…um…on

this page the wizard doesn’t say anything either, and then,

um, and then the ranger said, and then…oops *laughs* and

then this person says, *taps Ranger character’s script*

“I’m the best in the world!” *laughs* And then, *taps

fourth page thumbanil* at the end, the wizard defeats

everybody.

Figure 10 – Scene from interview containing Excerpt 5

In Excerpt 5, the presenter shows her interviewer and the camera what she put on

different pages of her ScratchJr project and how she programmed her characters. The contents of

her project form a cohesive narrative about a conflict between different characters. The choice of

character types (i.e. wizard, horse, ranger), who appear on which pages out of the four total

CODE	 AND	 TELL	 38	

pages, their positioning, and their programmed dialogue all combine to tell the story of a wizard

“defeating” a ranger. In her demonstration, the presenter begins by talking about the overall

theme of the project, the wizard defeating the ranger, and then leaps into what specific

components do, each pushing her narrative forward. The presenter demonstrates how project

elements that she added, strategically placed, customized, and programmed work together as a

system, representing intermediate demonstrating

Complex Demonstrating Projects

Students demonstrating their ScratchJr projects in a complex way talk about the different

elements of their project as part of an overarching dynamic system where different things can

happen depending on circumstances. The following excerpt from a student’s Code and Tell

interview video provides an example of a student demonstrating their project in a complex way.

Excerpt 6 – Demonstrating a project in a complex way

[0:00] Interviewer: Tell me about your project.

[0:02] Presenter: So it’s…you technically *taps the “robber

cat” character* touch the robber cat and he

disappears and there’s also some moves. And

then you have to try to put this *drags the

red circle character around* on him. But

then it would be cheating if you just

pressed that *taps Grid button*, ‘cause then

you know he’s right there. *drags the red

circle character around quickly and

randomly* Hey, where is he? Where is he?

CODE	 AND	 TELL	 39	

taps the invisible robber cat’s Show block

Wake up.

Figure 11 – Scene from interview containing Excerpt 6

In Excerpt 6, the presenter shows the interviewer a game where you need to move a

character customized to look like a red circle around an invisible “robber cat.” The presenter

demonstrates that in order to start the game, you need to touch the robber cat. At this point, it

becomes invisible and then moves to some unknown location. He also demonstrates that if you

had touched the grid button, you would know where the invisible cat is because a blue square

would be highlighted to show its location. According to the presenter, playing his game with the

grid mode on would be cheating for this reason. The presenter then goes on to show an example

of how one would play the game if he or she did not know where the cat was (even though it is

clear to the presenter, interviewer, and camera where the cat is at this time). Through his

demonstrations, the presenter shows elements in his project as part of an interactive system with

behavior designed to depend on the user.

CODE	 AND	 TELL	 40	

Levels of Imagining Projects

Simple Imagining Projects

 Students imagining projects in a simple way talk about designing the physical elements

of their projects as opposed to the conceptual ones. They also do not focus on the audience or

user of their project as they talk about their design. The following excerpt illustrates a student

presenting a ScratchJr project and imagining possibilities in a simple way.

Excerpt 7 – Designing a project in a simple way

[0:00] Interviewer: How did you make your project?

[0:04] Presenter: Um, well, it’s, it’s like the ice scene, and

there’s, like, a polar bear and a cat, and

the cat’s supposed to be riding the polar

bear.

[0:25] Interviewer: How did you make your project?

[0:27] Presenter: Well, first I started with the cat and I

colored him…and then I thought that a

penguin would be good for matching, and I

colored him black, blue, and yellow. Then I

thought maybe the crab would match so then I

made my crab dark blue. And then I made my

cat—I thought there should be a polar

bear…riding the cat, the cat riding the

polar bear, so that’s how I did it.

[1:08] Interviewer: Um, what do you do if you had more time?

[1:13] Presenter: I would probably add lots of things that fly

CODE	 AND	 TELL	 41	

over here *drags finger along top of screen*

and add a fish popping his head *points to

the water portion of the arctic background*

Figure 12 – Scene from interview containing Excerpt 7

 In Excerpt 7, the presenter touches on a few design decisions she has already made and

some that she might make in the future. These design decisions depend on what the project

physically looks like. When the interviewer prompts her to talk about her project and asks her

how she made it, she focuses primarily on the visible elements she added. She mentions that she

has made an ice scene, explaining the arctic background she chose, and then lists the characters

that she added, occasionally mentioning details like color. When asked about what she would do

with more time to work on her project, she keeps with her theme of animals, saying she would

CODE	 AND	 TELL	 42	

add things that fly in the background and a fish to the foreground. The presenter exemplifies the

simple imagining because of a fixation with physical elements in her project. She asks what other

characters could be present that would fit the theme and imagines them alongside to the

characters she has already placed on the screen.

Intermediate Imagining Projects

 Students imagining projects in an intermediate way focus on conceptual project elements

in addition to the physical ones. They may talk about characters, backgrounds, and actions but

their focus is on the concept represented by these elements. The following excerpt showcases a

student talking about the design of her project in an intermediate way.

Excerpt 8 – Designing a project in an intermediate way

[0:00] Interviewer: Tell me about your story.

[0:01] Presenter: Well, about my project is that they’re doing

magic tricks on each other and they’re

performing but no one’s there because it’s

just like practice.

[0:11] Interviewer: Yeah yeah yeah, I get it. *accidentally

 covers camera lens with hand* whoa.

[0:14] Presenter: So he *points to Cat character on the left

side of the screen* says, “Whokey pokey,”

then he goes small and he disappears, then

he *points to Cat character on the right

side of the screen* says, “Hilly silly,” and

he does the same thing. *the script ends and

the page is changed automatically, two cats

CODE	 AND	 TELL	 43	

appear to be moving from left to right

across the screen at different speeds* And

then, on my next one…

[0:25] Interviewer: Tell me about, how did you make your

 project, from that page, the one with the

race? How did you use, how did you use the

blocks?

[0:34] Presenter: Well, I wanted them to race in different,

like, moves, so I used this one *points to

Set Speed block* tell which one I wanted to

go fast or slow or medium.

Figure 13 – Scene from interview containing Excerpt 8

CODE	 AND	 TELL	 44	

 In Excerpt 8, the presenter offers two different scene concepts that she used ScratchJr to

realize. The first scene she talks about is a magic show rehearsal. Her description begins with a

conceptual idea of what is happening—the characters are performing magic tricks on each other

but since there is no audience present, it is only a practice run. She shows how the different

elements of her project that she created fit under this theme. The two cat characters say silly

things that resemble magic words and they display the after effects of magic tricks like

disappearance. Later, she provides another example of a concept in her ScratchJr project—a race

between two cats. She communicates to her partner that in order to design characters’ motion to

fit this concept, she used the “Set Speed” block and set the two cats to different speeds to make

the race more meaningful. The presenter exemplifies imagining in an intermediate way because

of her ability to support intangible concepts like a magic show and race to what she physically

adds to the screen.

Complex Imagining Projects

 Students imagining projects in a complex way focus on the experience of the user, player,

or audience of their project. They do not just talk about what is happening on the screen or what

concepts those physical components of their project fall under. They talk about reaction, mood,

and difficulty. They imagine their project under the gaze of a peer, taking into consideration how

a viewer might observe, respond to, or use the project. The following excerpt presents a student

imagining their project in a complex way.

Excerpt 9 – Designing a project in a complex way

[1:45] Interviewer: Tell me about your project.

[1:48] Presenter: Okay, so, like, for example, um, before I

 let somebody play it I shuffle it and I did

 a lot of pigs because that would make the

CODE	 AND	 TELL	 45	

 person confused because they’re all the same

 and there’s so much pigs.

Figure 14 – Scene from interview containing Excerpt 9

 In Excerpt 9, the presenter shows a game project she has made where the player must tap

one of the characters on the screen. If the player taps the character that spells her teacher’s name

correctly in their speech bubble, that player wins the game. When prompted by the interviewer to

talk about the project, she talks about how she designed her game based on how she thinks a

player would perceive it. She proposes that they would be confused because of the manual

shuffling she does each time a player plays and because of the sheer number of characters on the

screen. This presenter exemplifies imagining projects in a complex way because she thinks about

the potential perspective of the game player she is designing to outsmart with her game’s

complexity.

CODE	 AND	 TELL	 46	

Patterns in Whole Group of Students

 After categories and sub-categories were discovered during the initial holistic analysis of

the collection of Code and Tell interview videos, the videos were coded for these categories and

sub-categories. The purpose of this phase of coding was to see if there were any patterns in the

ways that the selection of students as a whole moved through these levels of complexity as they

participated in the Code and Tell activity at different times during the curriculum enactment.

Results from this phase of coding are presented along with a discussion.

Patterns in Levels of Describing Projects

Figure 15 – Frequencies of Levels of Describing Projects Depicted in Videos

 Each of the Code and Tell interview videos was placed in a category based on what level

of describing projects it exemplified during that video. Figure 15 shows the overall patterns of

frequencies of each level of describing projects as they relate to the interview videos depicting

student presenters talking about specific animated genre projects. A look at the chart reveals that

students describe projects in a simple manner the most during collage project interviews and this

decreases over time. Students describe projects in an intermediate manner the most during the

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

Collage	 Story	 Game	

Complex	 Describing	

Intermediate	 Describing	

Simple	 Describing	

CODE	 AND	 TELL	 47	

story project interviews and students describe projects in a complex manner the most during

game interviews.

Patterns in Levels of Demonstrating Projects

Figure 16 – Frequencies of Levels of Demonstrating Projects Depicted in Videos

Each of the Code and Tell interview videos was placed in a category based on what level

of demonstrating projects it exemplified during that video. Figure 16 shows the overall patterns

of frequencies of each level of demonstrating projects as they relate to the interview videos

depicting student presenters talking about specific animated genre projects. A look at the chart

shows that students demonstrated projects in a simple manner the most during collage project

interviews and this decreased throughout the rest of the curriculum. The chart also shows that

intermediate demonstrating occurred most frequently during the story project interviews. Finally,

complex demonstrating occurred the most during game project interviews.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

Collage	 Story	 Game	

Complex	 Demonstrating	

Intermediate	
Demonstrating	

Simple	 Demonstrating	

CODE	 AND	 TELL	 48	

Patterns in Levels of Imagining Projects

Figure 17 – Frequencies of Levels of Imagining Projects Depicted in Videos

Each of the Code and Tell interview videos was placed in a category based on what level

of imagining projects it exemplified during that video. Figure 17 shows the overall patterns of

frequencies of each level of imagining projects as they relate to the interview videos depicting

student presenters talking about specific animated genre projects. As depicted in the chart,

roughly half of the participants imagined projects in a simple manner throughout the curriculum.

Imagining in an intermediate manner was most frequent during the collage project interviews

and then declined. Imagining in a complex manner increased from barely seen to between half

and a third of the participants after the collage project interviews.

Discussion of Patterns in Whole Group of Students

 Videos from the Code and Tell interview were categorized based on level of describing,

demonstrating, and imagining projects in order to better understand the mediating process of

using computational thinking. This mediating process could potentially lead to the desired

outcome of the learning design, development of students’ computational thinking abilities, which

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

Collage	 Story	 Game	

Complex	 Imagining	

Intermediate	 Imagining	

Simple	 Imagining	

CODE	 AND	 TELL	 49	

would address this thesis’s overarching research question, how does the Code and Tell activity

provide opportunities to learn computational thinking in the early childhood classroom?

The patterns in levels of describing projects are unsurprising. Collage projects only

require putting characters on a screen, story projects require characters to carry out plot points of

some kind, and game projects require characters to have some sort of function. For this reason

one would expect simple describing, which is exemplified by students explaining what project

elements are, as being most commonly displayed during collage project interviews. The

characteristics of the story project could explain why intermediate describing, pointed to by

students explaining what their project elements do, is the most commonly displayed during the

story project interviews. Finally, the traits of the game project may explain why complex

describing, defined by students explaining the purpose or use of project elements, is most

commonly seen in the game projects.

The patterns in levels of demonstrating projects are unsurprising as well. Students

showing individual project elements separately defines simple demonstrating. Since the collage

project is introduced as an activity where students combine different things on a page, without

necessarily drawing from a theme, this level of demonstrating would make sense as the most

commonly seen during collage project interviews. Once students reach the story project, they

must tie events together to create a cohesive narrative. Demonstrating their project elements in a

way that shows they are related in a system would make sense for demonstrations of story

projects. Finally, making a ScratchJr game requires building in some sort of user interaction so it

makes sense that more students displayed complex demonstrating during game project

interviews, which was defined earlier as showing project elements as an interactive system.

CODE	 AND	 TELL	 50	

The patterns in levels of imagining projects are more interesting. Throughout the whole

curriculum, about half of the participants exhibited imagining during their interviews in a way

that reflects the simple level. This means that as they talked about possibilities and next steps,

they focused on physical project elements rather than conceptual ones or how the audience or

user perceived the project. About half of the collage project interviews showed students

imagined in an intermediate way, meaning they focused on conceptual elements of their projects.

For the story projects and game project, both interview sets saw students imagining in a complex

manner, focusing on audience or users.

Categories of Students

 In addition to looking at the distribution of different levels of describing, demonstrating,

and imagining in the samples of collage, story, and game project interview videos for the

selection of students as a whole, individual student categorizations by level over the course of

their three interviews were explored. A holistic qualitative analysis combined with field notes

taken during the curriculum enactment by ScratchJr tutors brought to bear that the categories

used earlier to describe behavior in interviews could also be used to describe the way some

students tend to most naturally communicate about their projects. The following case studies

present illustrations of the child who describes, the child who demonstrates, and the child who

imagines. The quotations and scenes draw from the interview videos as well as field notes. These

three categories do not necessarily apply to all of the students who participated in the Code and

Tell study but each of these categories represents a plurality of students within the sample.

Following the case studies, this conceptual framework as a whole is discussed.

CODE	 AND	 TELL	 51	

The Child Who Describes

Vignette – Denise

When Denise’s collage project interviewer hits record, she is ready to talk about

anything and everything involving a collage project with a big family of characters and their

home. She begins by talking about how she acquired all of her characters. “I went to, like, the

plus sign, which was in the box. I got all the people I wanted. For example, mother, baby…” She

trails off, seemingly losing her train of thought, but then after poking a couple of her characters

on the screen, starts back up again talking about the process of coloring characters with the

ScratchJr paint editor. “For example, if you go here, you can choose different colors. So I chose

all these colors and pressed check.” Transitioning to the next phase of her design process,

positioning her different characters, she continues, “Then I wanted to put my baby, I think I

should put it here.” She moves the baby about half an inch upwards. “Then I got this house.”

For a few minutes, Denise explains all the intricate details, and eventually the interviewer cuts

her off.

Some time later, Denise is back to interviewing. This time, she presents a story project.

“This is a project about a cat. So, in the beginning, he was telling all about his owner.” She taps

the green flag to show a cat and owner speaking to each other next to a house in a field. The cat

says, “Hi. I am Mr. Cat. I like to jump around and I have an owner,” and the owner says, “Hi.

I’m [name redacted].” Denise beams and adds, “I didn’t name it yet but I know what I’m going

to name it. I’m going to name it, ‘The Adventures of [name redacted] and Mr. Cat.’” Her

interviewer asks her how she made her project and Denise launches into the details, “I just, like,

used all these arrows and all these movements, and also a lot of type of things...” She pauses and

turns her attention to her main character. “The cat was supposed to say mostly everything

CODE	 AND	 TELL	 52	

because he wanted to tell about his owner.” At this point, nearly five minutes have gone by and

the interviewer decides to wrap up.

Denise returns once more to the interviewing activity with a game project. She shows the

camera her guessing game, where the player has to tap characters on the screen decorated like

fairies until he or she discovers the one that dances. She explains, “So the way you play this is

you gotta find the dancing teen. You need to press one, so let’s say I press this one.” After

quickly demonstrating the gist of the game, she shuffles the characters around. “Try to guess

which one it is. I don’t know which one it is. And I got it so this one is the winner.” She points

out, “Only this one can fly,” noting that she is trying to trick the player into tapping the

character with wings because it stands out, when in reality a different character is the one that

dances.

 The child who describes is ready to talk about anything and everything when it comes to

their ScratchJr project. Although he or she realizes the importance of showing how a project

works, he or she relies on words to set up an audience’s perception of the project in a more

personally meaningful way. Early on during the Code and Tell interviews, the child who

describes may be seen holding up his or her iPad and talking all about how he or she made

different elements of their project look a certain way or how ideas led to each other. After the

polar bear came the fish, and after the fish came the bird, for example. As this student becomes

more accustomed to presenting ScratchJr projects in interviews and develops his or her

computational thinking abilities, he or she spends more time explaining how things work or how

to use the project effectively. The demonstrations may occur more often but communication

about a project’s essence tends to lead with verbal illustrations.

CODE	 AND	 TELL	 53	

The Child Who Demonstrates

Vignette – Jason

 During Jason’s collage interview, his partner asks him to start telling him about his

project. He hastily responds, “Well, it’s really crazy…” clearly fixated on making a few last

changes to his project rather than engaging with the interview right away. His partner responds,

“Please can you look at me so I can see you?” Jason stares at his iPad and his fingers fly. He

gives another cursory preview with his words, claiming, “I made two bars of weird settings,”

referring to two very long scripts he wrote for one of his characters. Finally, after much

deliberation, he reveals the project to the camera. In it, we see one of the busiest projects out of

the entire class. A car flies across a space background while rotating, and resizing. Behind it, an

astronaut, a rocket ship, a rainbow cat, and some other miscellaneous additions populate the

screen. Jason does not have much to say but three seconds viewing the action on the screen says

it all.

 Later on, during Jason’s story interview, he engages the interviewer much sooner than he

did during his collage interview. But in the typical fashion of the child who demonstrates, he gets

distracted halfway through his descriptions by the action on the screen and ensuring that what

he has programmed is shown adequately. The interviewer says, “Tell me about your project,”

and Jason responds, “Well, some parts that are kind of weird, like the part where the tuna fish

bowl grows so big…” He pauses his speech to show the entirety of an animation where a

customized tuna fish bowl, indeed, grows to its maximum size. In the background the text reads,

“Pat eats his food,” referring to the cat character in the middle of the screen. About a dozen

personally colored black and white cats on the left side of the screen ask if they can eat some as

Pat comments on the delicious tuna fish. As these things happen Jason homes in on the exciting

CODE	 AND	 TELL	 54	

focal point of the massive growth. He then skips over a page of his story without action and

exclaims, “My favorite part is when the cat really does sword fighting with the doggy.” He

pauses, turning the screen to face the camera perfectly to show a new page where a cat and dog

with swords battle all over the stage to a symphony of cartoon pop sounds. During each of the

following questions, Jason takes more opportunities to reshow his demonstrations.

 For the game project, Jason created a game where a cat character can, in a series of

pages that represent levels, be controlled to battle a custom made human character, avoid

bombs, and take part in two other somewhat unclear adventures. His answer to the first

interview question is more specific this time, “You’re trying to not get hit,” referring to the

challenge of the first level. He demonstrates each section of his game for several seconds and the

interviewer transitions into the last two questions. “What would you do if you had more time?”

the interviewer asks. He quickly shares his answer, to put more bombs on the page and make the

game more difficult, and then gets back to the demonstrations. As he taps through his last

demonstration, he mutters about things that do not work and need to be fixed. “It’s laggy. It’s

pretty slow.” For the third time, it is clear that Jason could iterate on his design and create

wowing demonstrations for a long time but the interviewer calls it a day.

 The child who demonstrates works meticulously on projects to completion and prefers to

show things happening on the screen rather than talking about them. He or she may be

comfortable talking about how a project works or what concepts drove its creation but the project

itself, in all its animistic glory, usually takes precedent if it can be physically presented. Rather

than talking about twenty pigs falling from the sky, he or she will show you what it looks like

and giggle alongside you. As the child who demonstrates begins participating in the Code and

Tell activity, he or she describes projects as an afterthought or answers questions to keep his or

CODE	 AND	 TELL	 55	

her interviewer at bay while making sure the demonstrations can operate smoothly. Later, as the

child grows more adept at computational thinking, he or she develops a way to speak in tandem

with the demonstrations, offering little bits of insight as the screen captures the interviewer’s

attention and taking on the role of the user or audience to present an authentic experience of the

project. When the child who demonstrates needs to communicate the essence of their project,

they focus on action and execution.

The Child Who Imagines

Vignette – Lisa

Lisa opens her collage interview excitedly talking about the scene she programmed with

a few custom colored cat characters and a soccer ball in a forest. She reports, words spilling out

of her mouth rapidly “So, my project takes place in the woods. There are four cats—a mom, a

dad, a baby and a kid. They’re playing soccer and they’re trying to get the kid into the soccer

game.” In response to the interviewer asking her what she would do with more time, she replies

before he even finishes asking, “I would add more cats to make them into soccer teams.”

Although there appear to be few programming blocks, Lisa asserts what is happening with her

words.

 Back for more interviewing with her story project, Lisa explains, “My project is about a

cat saying, ‘Snow,’ and on the next page on my picture there’s, like, a cat and he’s, like,

predicting the future, and then the next scene he’s asking if somebody will play with him, and

then it’s basically the end.” She gusts through her demonstration, allowing the audience to see

that by “predicting the future” she means the background has changed from autumn to winter

between two pages. Two cats appear on the screen in scarves of different colors and they engage

in dialogue that suggests they are about to play together in the snow. The interviewer pauses for

CODE	 AND	 TELL	 56	

a moment and inquires about future design decisions. Lisa adds, “Um, I think I would have

added a lot more stuff to the page where he’s asking if somebody would play with him.”

 In her game project, Lisa presents three different games, each on their own page. “So,

um, I had different levels in my project. In this level, you have to find six animals and put them

inside this thing.” She points to a blue spiral at the corner of her screen and drags several

miniature animals into it, watching them disappear one by one. She turns the page and

continues, “And then this project, um, there are things that keep on going up and down. You try

to get your cat to the end and every time he hits the fire he’ll have to go back to the beginning

where he started from.” She moves the cat to its goal destination and the page turns again. “In

this level, there are these cats that keep on getting bigger and smaller. Your job is to get your cat

to get to one of these things. If you bump anything, you start from the beginning.” Each

individual game appears to be incomplete but the ideas are all perfectly intact as Lisa describes

them.

 The child who imagines bubbles over with ideas and concepts, not necessarily caring

whether they are executed on the screen or not. The important thing is that the ideas are

conveyed to the audience and some semblances of them are portrayed in ScratchJr. In early

ScratchJr interviews, this kind of student fills in blank programs with possibilities for action,

dialogue, and relationships between characters. He or she offers future directions or imposes

concepts to guide the physical happenings on the screen. Later, as his or her computational

thinking abilities grow, interviews portray the child who imagines dreaming up possibilities and

programming just enough to make them believable. The child who imagines conveys the essence

of their ScratchJr project by combining what is seen with what could be seen.

CODE	 AND	 TELL	 57	

Discussion of Categories of Students

 The child who describes, the child who demonstrates, and the child who imagines

represent three pluralities of students in the early childhood classroom using ScratchJr and

presenting projects in Code and Tell interviews. While each student can grow to be adept in

many different styles of conveying their ScratchJr projects to an audience, the child who

describes tends to favor verbalizing, the child who demonstrates tends to favor executing, and the

child who imagines tends to favor theorizing. These illustrations, drawn from a handful of

interviews and field notes, do not account for all students nor do they necessarily represent the

absolute image of a child in each category. What they do show, however, is a distinct pluralism

in the trajectories of young children learning about computational thinking and how signs of

development of computational thinking abilities can manifest themselves in a myriad of ways.

Perhaps more importantly, these manifestations are all somewhat identifiable from artifact-based

peer video interviews, as exemplified by the vignettes provided above. A high-level takeaway

from this finding is that early childhood educators can watch for a variety of different learning

paths in their classrooms that all have ties to the development of computational thinking. They

can support and encourage growth along these different lines as well as help students understand

that these differences stem from personal styles rather than deviations from proper learning of

computational thinking.

The purpose of this thesis was to explore how the Code and Tell activity could support

opportunities for students to learn computational thinking in the early childhood classroom.

Specifically, in terms of Sandoval’s (2014) conjecture map, using computational thinking during

the Code and Tell activity was hypothesized as a mediating process for the development of

computational thinking and this study was meant to elicit the nature of this potential process. The

CODE	 AND	 TELL	 58	

Code and Tell activity helps make the pluralism of learning computational thinking visible and

may provide educators with a way to begin seeing and understanding the nature of children who

describe, demonstrate, and imagine during interviews (and perhaps beyond them). In doing so, it

may mediate the development of computational thinking with ScratchJr in the early childhood

classroom.

6. Limitations

School Setting

 There were several limitations to this study due to the nature of conducting research in a

school setting. First of all, the participants did not all receive the same treatment during the

study. Several students were absent on at least one of the days during which the curriculum was

taught. While the ScratchJr tutors did their best to make sure these students received enough

individual attention in order to catch them up when they returned to class, this personalized

teaching cannot be equivalent to experiencing the curriculum alongside peers as originally

planned. Second, the study was conducted in three different classrooms and the behavior of the

regular classroom teachers varied between these settings. Since regular classroom teachers were

encouraged to help facilitate classroom management and take part in teaching ScratchJr at their

individual comfort levels, students in different classrooms experienced the curriculum enactment

differently with regards to what extent their individual teachers were involved. Finally, due to

scheduling limitations and a limited number of ScratchJr tutors, different classes would

participate in the same lessons at different times and usually on different days. Intervals between

lessons were not always consistent across the three classes and circumstances specific to certain

days sometimes affected one class but not another (e.g. one class participated in a lesson on the

same day that most of the students were in costume for a Halloween celebration).

CODE	 AND	 TELL	 59	

First Code and Tell Study

 This study marks the first time that the Code and Tell activity was used in an early

childhood classroom and there are many ways that students could have been better prepared for

the activity to make it as effective as possible. First, there were many videos from the interviews

where the camera did not effectively capture what was happening on the presenter’s screen.

Doing a practice interview activity where students learn about how to film their partners in a way

that allows them to successfully record their presenter’s projects, descriptions, and

demonstrations could drastically improve the quality of the videos. Second, while some students

provided rich descriptions and demonstrations for their interview videos, others provided very

little. Besides the possibilities that these students were less articulate or interested in the activity,

these students may have been confused about what the activity was for. Weaving the videos into

a meaningful and repeated classroom activity throughout the curriculum, such as a “viewing

day,” could help some of the more unforthcoming students find a reason to participate at a higher

level of engagement in the Code and Tell activity.

Lost Projects

 Occasionally, due to unknown circumstances, students’ ScratchJr projects would be lost

from their iPads between the day that they created them and the day that they needed to present

them in Code and Tell interviews. This was an uncommon occurrence but did happen a few

times to students unbeknownst to them until they opened their iPad to the ScratchJr app at the

beginning of an interview lesson. When this mishap occurred, in order to keep the method as

consistent as possible, these students were instructed to create a new project and to do their

interview toward the end of the lesson period so they would have as much time as possible to

CODE	 AND	 TELL	 60	

create a meaningful ScratchJr project. Despite best efforts, these lost projects may have affected

the results.

7. Future Directions

This study was only an exploratory one and there are plentiful directions for further

research on the learning opportunities that the Code and Tell activity in the early childhood

classroom using ScratchJr.

Dyads

 This study did not investigate the effect of partnerships on how students behaved during

their interviews or how they learned computational thinking. Certainly, there are many ways that

dyads could be explored in order to reach a more comprehensive understanding of the nature of

the Code and Tell activity and its potential for learning. The following questions can serve as

jumping off points for these types of studies:

• How does the presenter’s relationship with the interviewer affect his or her behavior

during the Code and Tell activity?

• How would changing partners during each interview affect the outcomes of the activity?

• What if students pick their partners instead of their regular classroom teachers assigning

them?

• Do the two partners within a dyad have similar trajectories of learning throughout a

curriculum?

• How does an interviewer’s behavior of interrupting the presenter affect the presenter’s

behavior and learning?

CODE	 AND	 TELL	 61	

Reviewing Videos

 Although students had the opportunity to participate in the Code and Tell activity three

different times throughout the curriculum enactment, they never had a formal opportunity to

review their videos and learn from them nor the opportunity to see their classmates’ videos.

Understanding the affordances of different ways students could engage with interview videos

after the interviews themselves could be useful for classroom practice. The following activities

could give students more opportunities to learn from the Code and Tell activity:

• The regular classroom teacher could select a few videos each week to show the class and

lead a discussion about how to effectively describe and demonstrate projects for the video

audience.

• Students could be given multiple “takes” to film their interview, compare them together,

and then select the ones they want to keep.

Interview Questions

 There are several ways that the interviews could be changed in order to evoke student

learning most effectively in the Code and Tell interviews. In particular, one surprising finding

from the study was that students rarely talked about ScratchJr programming blocks during their

Code and Tell interviews. If researchers are interested in capturing students understanding of

computational thinking in a way that is more situated in the programming language itself, new

questions may need to be added to the interview process. The following questions could be tested

to see how students talk about the ScratchJr programming language during their Code and Tell

interviews:

• What blocks did you use to program your characters?

• Why did you choose those programming blocks?

CODE	 AND	 TELL	 62	

• Are there other ways to program your characters?

• Did your programs change as you worked on your project?

• How difficult was it for you to program your characters?

Comparing Code and Tell to Other Assessments

 Previous ScratchJr research has investigated the use of project portfolios and Solve It

programming challenges as artifacts for assessing students’ learning of computational thinking.

Evaluating the Code and Tell activity as a computational thinking assessment was beyond the

scope of this study but there is some promise that it could be used as a way to supplement these

other two forms of assessment. Further research could compare the affordances of assessing

student learning with these three different modes.

CODE	 AND	 TELL	 63	

References

Barr, V. & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved

 and What is the Role of the Computer Science Education Community? ACM Inroads,

 2(1), 48-54.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S. (2011).

 Recognizing Computational Thinking Patterns. Paper presented at the Special Interest

Group on Computer Science Education (SIGCSE) Conference, Dallas, TX.

Bers, M. (2006). The role of new technologies to foster positive youth development. Applied

 Developmental Science, 10(4), 200-219.

Bers, M. (2008). Blocks to Robots: Learning with technology in the early childhood classroom.

 New York: Teachers College Press.

Bers, M. (2010) Beyond computer literacy: Supporting youth’s positive development through

 technology. New Directions for Youth Development, 128, 13-23.

Bers, M. (2012). Designing Digital Experiences for Positive Youth Development: From playpen

 to playground. New York, NY: Oxford University Press.

Bers, M., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002) Teachers as Designers:

 Integrating Robotics into Early Childhood Education. Information Technology in

 Childhood Education, 123-145.

Bers, M.U., Flannery, L.P., Kazakoff, E.R., & Sullivan, A. (2014). Computational thinking and

 tinkering: Exploration of an early childhood robotics curriculum. Computers and

 Education, 72, 145-157.

Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing the

 Development of Computational Thinking. Proceedings of the 2012 annual meeting of the

CODE	 AND	 TELL	 64	

 American Educational Research Association, Vancouver, Canada.

Brown, A.L. (1992). Design experiments: Theoretical and methodological challenges in creating

 complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2),

 141-178.

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: using robotics to motivate

 math, science, and engineering literacy in elementary school. International Journal of

 Engineering Education, 22(4), 711-722.

Cobb, P., diSessa, A., Lehrer, R., Schauble, L. (2003). Design experiments in educational

 research. Educational Researcher, 32(1), 9-13.

Collins, A. (1992). Towards a design science of education. In E. Scanlon & T. O’Shea (Eds.),

 New directions in educational technology (pp. 15-22). Berlin: Springer.

Denner, J., Wener, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can

 they be used to measure understanding of computer science concepts? Computers and

 Education, 58(1), 240-249.

Dey, I. (1993). Qualitative Data Analysis : A User-Friendly Guide for Social Scientists. London:

 Routledge.

Dierbach, C., Hochheiser, H., Collins, S., Jerome, G., Ariza, C., Kelleher, T., Kleinsasser, W.,

 Dehlinger, J. & Kaza, S. (2011). A model for piloting pathways for computational

 thinking in a general education curriculum. In the Proceedings of the 42nd ACM technical

 symposium on Computer Science education, Dallas, TX, 257-262.

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., Franklin, D. (2014). Identifying elementary

 students’ pre-instructional ability to develop algorithms and step-by-step instructions. In

 the Proceedings of the 25th ACM technical symposium on Computer Science education,

CODE	 AND	 TELL	 65	

 Atlanta, GA, 511-516.

Fields, D.A., Searle, K.A., Kafai, Y.B., & Min, H.S. (2012). Debuggems to assess student

 learning in e-textiles. In Proceedings of the 43rd SIGCSE Technical Symposium on

 Computer Science Education, Raleigh, NC.

Flannery, L.P., Kazakoff, E.R., Bontá, P., Silverman, B., Bers, M.U., & Resnick, M. (2013).

 Designing ScratchJr: Support for early childhood learning through computer

 programming. In Proceedings of the 12th International Conference on Interaction Design

 and Children (IDC '13). ACM, New York, NY, USA, 1-10.

Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., Dreschler, G., Aldana, G.,

 Almeida-Tanaka, P., Kiefer, B., Laird, C., Lopez, F., Pham, C., Suarez, J., Waite, R.

 Assessment of computer science learning in a scratch-based outreach program. In

 Proceedings of the 44th SIGCSE Technical Symposium on Computer Science Education,

 Denver, CO, 371-376.

Han Koh, K., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Toward the automatic

 recognition of computational thinking for adaptive visual language learning. In

 Proceedings of the 2010 Conference on Visual Languages and Human Centric

 Computing (VL/HCC 2010). (pp. 59-66). Madrid, Spain: IEEE Computer.

ISTE & Computer Science Teachers Association (2011). Operational definition of

 computational thinking for K–12 education.

Jones, S. (1985). The Analysis of Depth Interviews. Applied Qualitative Research, London:

 Gower.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten

 classroom: The impact on sequencing skills. Journal of Educational Multimedia and

CODE	 AND	 TELL	 66	

 Hypermedia, 21(4), 371-391.

Landivar, L. C. (2013). Disparities in STEM Employment by Sex, Race, and Hispanic Origin.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., et al. (2011). Computational

 thinking for youth in practice. ACM Inroads, 2(1), 32–37.

Lerner, R.M., Dowling, E.M., & Anderson, P.M. (2005). Positive youth development, a

 developmental systems view. In C.B. Fisher & R.M. Lerner (Eds.). Encyclopedia of

 applied developmental science (pp. 859-862). Thousand Oaks, CA: Sage Publications.

Miles, M.B., Huberman, A.M., & Saldaña, J. (2013). Qualitative Data Analysis: A Methods

 Sourcebook. Thousand Oaks, CA: Sage Publications.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, Basic

 Books.

Papert, S. An Exploration in the Space of Mathematics Educations. International Journal of

 Computers for Mathematical Learning, 1(1), 95-123.

Perlis, A. (1962). The computer in the university. In M. Greenberger (Ed.), Computers and the

 World of the Future, (180–219). Cambridge, MA: MIT Press.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of

 a checklist for getting computational thinking into public schools. In Proceedings of the

 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10), 265-269.

 New York, NY: ACM Press.

Rushkoff, Douglas. (2010). Program or be Programmed: Ten Commands for a Digital Age.

 Cambridge, MA: MIT Press.

“About ScratchJr.” Retrieved September 18, 2014, from http://www.scratchjr.org/about.html.

Seiter, L., & Foreman, B. Modeling the learning progressions of computational thinking of

 primary grade students. In Proceedings of the 9th annual international ACM conference

CODE	 AND	 TELL	 67	

 on International computing education research (ICER). ACM, New York, NY, USA, 59-

 66.

Stolee, K. T., & Fristoe, T. (2011). Expressing computer science concepts through Kodu game

 lab. In Proceedings of the 42nd ACM Technical Symposium on Computer Science

 Education (SIGCSE). ACM, New York, NY, USA, 99-104.

Strawhacker, A. L., & Bers, M. U. (2014). ScratchJr: Computer Programming in Early

 Childhood Education as a Pathway to Academic Readiness and Success. Poster presented

 at DR K-12 PI Meeting, 5 August 2014, Washington D.C.

Piaget, J. (1929). The child’s conception of the world. London, Routledge & Kegan Paul.

Portelance, D. J., Strawhacker, A. L., Bers, M. U. (2014) Constructing the ScratchJr

 programming language in the early childhood classroom. Manuscript in preparation.

Tudge, Jonathan. (1992). Vygotsky, the zone of proximal development and peer collaboration:

 Implications for classroom practice. In L. C. Moll (Ed.), Vygotsky and Education:

 Instructional Implications and Applications of Sociohistorical Psychology. Cambridge,

 UK: Cambridge University Press.

Turkle, S. & Papert, S. (1990). Epistemological Pluralism and the Revaluation of the Concrete.

 SIGNS: Journal of Women in Culture and Society, 16(1), 128-157.

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes.

 Cambridge, MA: Harvard University Press.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The Fairy performance

assessment: Measuring computational thinking in middle school. In Proceedings of the

43rd ACM Technical Symposium on Computer Science Education (SIGCSE ’12),

215-220. New York, NY: ACM.

CODE	 AND	 TELL	 68	

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on Empty: The Failure

to Teach K-12 Computer Science in the Digital Age, Association for Computing

Machinery and Computer Science Teachers Association.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks.

 Journal of the Learning Sciences, 17(4), 517-550.

