

Volume 16, 2017

Accepted by Editor Keith Willoughby │Received: January 17, 2017│ Revised: May 8, 2017 │
Accepted: June 15, 2017.
Cite as: Pugnali, A., Sullivan, A., & Bers, M. U. (2017). The impact of user interface on young children’s compu-
tational thinking. Journal of Information Technology Education: Innovations in Practice, 16, 171-193. Retrieved from
http://www.informingscience.org/Publications/3768

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

THE IMPACT OF USER INTERFACE ON YOUNG
CHILDREN’S COMPUTATIONAL THINKING

Alex Pugnali* Tufts University, Medford, MA, USA Alex.Pugnali@tufts.edu
Amanda Sullivan Tufts University, Medford, MA, USA Amanda.Sullivan@tufts.edu
Marina Umaschi Bers Tufts University, Medford, MA, USA Marina.Bers@tufts.edu
* Corresponding author

ABSTRACT
Aim/Purpose Over the past few years, new approaches to introducing young children to

computational thinking have grown in popularity. This paper examines the role
that user interfaces have on children’s mastery of computational thinking con-
cepts and positive interpersonal behaviors.

Background There is a growing pressure to begin teaching computational thinking at a
young age. This study explores the affordances of two very different pro-
gramming interfaces for teaching computational thinking: a graphical coding
application on the iPad (ScratchJr) and tangible programmable robotics kit
(KIBO).

Methodology This study used a mixed-method approach to explore the learning experiences
that young children have with tangible and graphical coding interfaces. A sam-
ple of children ages four to seven (N = 28) participated.

Findings Results suggest that type of user interface does have an impact on children’s
learning, but is only one of many factors that affect positive academic and
socio-emotional experiences. Tangible and graphical interfaces each have quali-
ties that foster different types of learning

Keywords robotics, coding, early childhood, user interfaces, collaboration, computational
thinking

INTRODUCTION
New technologies for learning and playing are growing in prevalence amongst young children under
the age of eight. A recent study by Common Sense Media found that two-thirds of children under
the age of eight have access to a console video game player at home, and 35% have access to a

http://www.informingscience.org/Publications/3768
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:Alex.Pugnali@tufts.edu
mailto:Amanda.Sullivan@tufts.edu
mailto:Marina.Bers@tufts.edu

User Interface and Children’s Computational Thinking

172

handheld game player such as a Game Boy, PlayStation Portable (PSP), or Nintendo DS. Additionally,
there has been a five-fold increase in ownership of tablet devices such as iPads, from 8% of all fami-
lies in 2011 to 40% in 2013 (Common Sense Media, 2013). In addition to these screen-based tech-
nologies, new tangible technologies, such as robotics kits, have also been growing in popularity with
young children during the past few years. Prior research has shown that children as young as four
years old can build and program a simple robot (Bers, 2008; Bers, Ponte, Juelich, Viera, & Shenker,
2002; Cejka, Rogers, & Portsmore, 2006; Kazakoff, Sullivan, & Bers, 2013; Perlman, 1976; Sullivan &
Bers, 2015; Wyeth, 2008).

With this increase in popularity of technological tools and toys, federal education programs and pri-
vate initiatives in the United States have focused on improving technological literacy and making
computational thinking a priority in early childhood school settings (e.g. U.S. Department of Educa-
tion, 2010). Computational thinking involves a set of skills that include problem-solving, design, and
systematic analysis (Bers, 2010; Bers, 2017). Computational thinking represents a type of analytical
thinking that shares many similarities with mathematical thinking (e.g., problem solving), engineering
thinking (designing and evaluating processes), and scientific thinking (systematic analysis) (Bers, 2010;
Bers, 2017). While the act of engaging in computational thinking is rooted in computer science, some
have argued that it is a skill that is fundamental for everyone to master, just like reading, writing, and
arithmetic (Wing, 2006). In a pivotal article on the need to expand the reach of computational think-
ing, Jeanette Wing (2006) states that it represents a universally applicable attitude and skill set for eve-
ryone, not just for computer scientists.

There is a growing pressure to teach computational thinking beginning in early elementary school
and this has put teachers, administrators, and parents in a difficult position when investing in tech-
nology for early childhood education as they are faced with an ever-changing array of digital tools
now being marketed to this age group. They are faced with questions such as, “what computational
thinking skills are my children actually learning with this tool?” or “will my child find this tool fun
and engaging?” “How can I successfully integrate it with my curriculum?” When choosing tools for
school or home, parents and teachers must now also navigate the choice between screen-based and
non-screen-based technologies that are quickly spreading out.

The pilot study described here provides data to answer these questions by exploring affordances of
two very different programming interfaces: a graphical coding application on the iPad (ScratchJr) and
tangible programmable robotics kit (KIBO). Both programming languages claim to teach many of
the same introductory computational thinking skills to young children, but through very different
interfaces. The goal of this work is to understand if these two interfaces offer different learning ex-
periences for young children when it comes to computational thinking. In addition to examining
children’s learning, this study examines whether the type of technological interface (tangible versus
graphical) impacts children’s positive behaviors and interactions. This is crucial when thinking about
tools for the early childhood classroom. This is explored through the context of Bers’ (2012) Positive
Technological Development (PTD) framework. PTD is an extension of the computer literacy and
the technological fluency movements but adds psychosocial and ethical components to the cognitive
ones and focuses on using technology to promote student engagement and collaboration. Results
from this study are also analyzed through this PTD lens. Finally, this paper presents implications for
choosing developmentally appropriate technology to meet both the learning and socio-emotional
goals of students and teachers.

LITERATURE REVIEW

COMPUTATIONAL THINKING
The term “Computational Thinking” has been defined in many ways and encompasses a broad range
of analytic and problem-solving skills, dispositions, habits, and approaches used in computer science
(Barr & Stephenson, 2011; International Society for Technology Education and The Computer Sci-

 Pugnali, Sullivan, & Bers

173

ence Teachers Association, 2011; Lee et al., 2011). According to a framework by Brennan & Resnick
(2012), computational thinking involves the concepts designers engage with as they program, practices
designers develop as they engage with the concepts, and perspectives designers form about the world
around them and about themselves. These concepts may include very specific programming concepts
(such as, repeat loops or sequencing), the practices may include methods of problem-solving or col-
laboration, and perspectives may include questioning things beyond the interface that is being worked
with (such as, how are other things in the world automated?).

Approximately in 2010, the issue of computational thinking in K-12 education took center-stage fol-
lowing a stark report by Wilson, Sudol, Stephenson, and Stehlik (2010) that revealed very low num-
bers for women in computing and that more than two-thirds of the country had few computer sci-
ence standards at the secondary school level (Grover & Pea, 2013). Since then, public and private
organizations began to focus on programs, frameworks, and initiatives to foster computational think-
ing and address these issues. For example, that same year (in 2010), the International Society for
Technology in Education (ISTE) and the Computer Science Teachers Association (CSTA) led a Na-
tional Science Foundation project entitled, “Leveraging Thought Leadership for Computational
Thinking in PK-12”.

Fostering computational thinking through learning to code was brought to the national spotlight in
the United States in 2014 when President Barack Obama wrote his highly publicized first line of Ja-
vaScript and became one of over 100 million people worldwide to have participated in Code.org’s
Hour of Code event. Prior to that, in 2013, New York City Mayor Bill de Blasio launched the Tech
Talent Pipeline, aiming to give hundreds of after-school programs access to free computer science
learning materials from Google. Most recently, in 2016, a major collaboration between the Associa-
tion for Computing Machinery, Code.org, the Computer Science Teachers Association, the Cyber
Innovation Center and the National Math and Science Initiative have collaborated with states, dis-
tricts, and the computer science education community to develop conceptual guidelines for computer
science education (K12 Computer Science Framework, 2016).

It is important to note that the benefits of learning computational thinking skills are not limited to
the realm of technological literacy. It is a type of analytical thinking that shares many similarities with
mathematical thinking (e.g., problem solving), engineering thinking (designing and evaluating pro-
cesses), and scientific thinking (systematic analysis) (Bers, 2010). Children as young as four years old
can learn foundational computational thinking concepts (Bers, 2008; Bers, 2012) and this kind of
learning can support their literacy, mathematical, and socio-emotional development (Kazakoff &
Bers, 2012; Kazakoff et al., 2013). Teaching computational thinking also allows students to prac-
tice problem-solving skills such as trial and error (Barr & Stephenson, 2011). The issue presently fac-
ing the field of educational technology is not whether to teach computational thinking in early child-
hood, but how to best select developmentally appropriate tools and curricula to do so.

TANGIBLE VERSUS GRAPHICAL INTERFACES
In order to teach foundational computational thinking skills to young children, a new range of pro-
gramming and robotics applications have emerged over the past few years. Young children beginning
in pre-kindergarten can use simple programming interfaces to create interactive robotics projects
(Bers et al., 2002; Cejka et al., 2006; Elkin, Sullivan, & Bers, 2016; Perlman, 1976; Wyeth, 2008) and
graphical animation projects (Portelance, Strawhacker, Bers, 2015; Strawhacker & Bers, 2015). These
types of projects can help young learners engage with powerful ideas from technology, including
many computational thinking concepts that can serve them in educational and personal pursuits
throughout their lives (Bers, 2008).

Graphical user interfaces, in the form of programming applications on tablets and computers, have
gained popularity in recent years, in part due to new federal and private initiatives making technologi-
cal literacy a priority in schools (e.g. U.S. Department of Education, 2013). For example, the free
programming language Scratch (www.scratch.mit.edu), which was designed with users ages 8-16 in

User Interface and Children’s Computational Thinking

174

mind, has thrived in recent years with over 12,000,000 registered users (Resnick et al.,
2009; https://scratch.mit.edu/statistics/). The Scratch programming language allows users to en-
gage with foundational concepts such as sequencing, repeat loops, and variables to create games, sto-
ries, and videos through coding (Resnick et al., 2009).

While many graphical applications, like Scratch, focus on older children and adolescents, research
shows that children as young as four years old can master fundamental programming concepts of
sequencing, logical ordering, and cause-and-effect relationships (Bers, 2008; Fessakis, Gouldi &
Mavroudi, 2013; Kazakoff & Bers, 2011). Since then, newer languages, like ScratchJr (one of the
tools used in this study) and Daisy the Dinosaur, have been designed to introduce younger children
ages five to seven to fundamental concepts of computer programming and computational thinking
(Strawhacker, Lee, Caine, & Bers, 2015). These applications use colorful images and graphical pro-
gramming blocks to engage young children in foundational computer programming concepts as they
create on-screen animations.

Tangible technologies, like robotics such as KIBO (the other tool in this study), have grown in popu-
larity in recent years as well, especially with recommendations from the American Academy of Pedi-
atric for limited screen-time for young children (American Academy of Pediatrics, 2003). New robot-
ics kits have evolved to become a modern generation of learning manipulatives that help children
develop a stronger understanding of mathematical concepts such as number, size, and shape in much
the same way that traditional materials like pattern blocks, beads, and balls once did (Bers, 2008;
Brosterman 1997; Resnick et al. 1998). Tangible robotics kits may also open young children up to
different kinds of learning as well. For example, tangible robotic manipulatives allow children to de-
velop fine motor skills and hand-eye coordination while also engaging in collaboration and teamwork
(Bers, Seddighin, & Sullivan, 2013; Lee, Sullivan, & Bers, 2013).

With the growing mix of both graphical (i.e. onscreen), tangible (physical, hands-on), and hybrid
(combined graphical and tangible) interfaces becoming readily available to teach foundational compu-
tational thinking skills to young children, parents and educators must make careful choices about the
learning affordances of both types of interfaces. There has been a growing focus on investigating in
tangible interface learning, however there is still little empirical evidence that tangible interfaces offer
educational benefits compared to graphical or other digital methods (Horn, Crouser, & Bers, 2012;
Marshall, 2007). In research by Horn et al. (2012) on a museum exhibit using Tern, a tangible and
graphical robotic programming language, tangible interfaces were shown to be more appealing to
children (ages 16 and under) and more useful for fostering collaboration. These findings have been
echoed by similar studies (Cheng, Der, Sidhu, & Omar, 2011; Manches & Price, 2011).

However, a more recent study by Strawhacker and Bers (2015) studying tangible and graphical pro-
gramming interfaces with young children in a Kindergarten setting, the researchers found there was
little association between user interface and programming comprehension, although there may be an
order-effect when introducing user interfaces. This study by Strawhacker and Bers is one of the few
existing studies comparing the learning impact of tangible versus graphical programming interfaces
on young children. However, Strawhacker & Bers did not examine the impact of interface on student
engagement, collaboration, or other positive behaviors that are a major component of early child-
hood development. The present study follows up on this research in order to examine the impact of
interface on programming knowledge and computational thinking as well as student engagement. It
focuses on two programming languages that are currently widely available: the ScratchJr program-
ming language and the KIBO robotics kit.

METHOD

RESEARCH QUESTIONS
This pilot study described here used a mixed-method approach in order to explore the learning expe-
riences that young children have with tangible and graphical coding interfaces and to measure the

 Pugnali, Sullivan, & Bers

175

computational thinking skills that children using these tools gain. The aim of the study is to answer
the following questions:

• What impact do tangible vs graphical interfaces have on the children’s positive technologi-
cal development?

• What impact does the type of interface have on the computational thinking skills that
children gain?

Participating children completed a weeklong robotics and programming summer program hosted by
the Developmental Technologies (DevTech) Research Group at Tufts University. Upon completion
of the week, children’s mastery of computational thinking skills were measured.

SAMPLE
The sample in this study came from a group of children ages 4-7 admitted into a summer program at
DevTech. Students were recruited through advertisements sent to students who participated in pre-
vious summer programs, DevTech social media, schools previously worked with, and various net-
works at Tufts University. Children in the camp came from across the New England region. A re-
quirement of the camp was that all students were rising kindergarten-second grade students. There
was a total of 60 children across three sessions of the program.

Registration for the summer program was on a first-come, first-served basis, with an enrollment cap
of 14 children per technology/session. There was no application involved and children were guaran-
teed a spot once registration was filled out and the $200 registration fee was submitted. There were
no scholarships offered for those who were interested but could not afford the registration fee. Chil-
dren could attend two weeks using different technologies, but not more than one week of the same
technology (i.e. two weeks of ScratchJr). Two of the three weeks of KIBO sessions reached capacity
one month prior to their start date, so there were some families who were interested but unable to
register. No ScratchJr sessions reached capacity.

Of the 60 children in the camp, a total sample of N=28 participants were included in the research
study. Participants were included based on parental consent and whether or not they had previous
experience attending the summer program or previous experience using the technologies being
taught (only those with no prior experience are included in this research). Of the total sample n=14
were in the tangible KIBO robotics group (Kindergarten=5, First=6, Second=3; Male = 12, Female
= 2) and n=14 were in the graphical ScratchJr group (Kindergarten=6, First=4, Second=4; Male = 6,
Female = 8). Participants in both the tangible and graphical had an average age of 5.86 years old.

PROCEDURE
Children participated in an intensive week-long programming-based curricula using either the tangi-
ble KIBO robotics kit, or the graphical ScratchJr tablet application. Participating children signed up
for the program of their choice and were not randomly assigned to the groups. When registering,
parents had the option to enroll their children in either KIBO or ScratchJr. Due to the nature of
each technology and parents’ educational goals for their children, we decided to not randomly select
the technology that each participant used. The KIBO Robotics Kit used in the summer program
costs $350 while ScratchJr is a free tablet app. Some parents wanted their children exposed to a tech-
nology they could not otherwise afford, while others wanted us to give their child some skills in the
program that they could continue exploring at home.

Each program lasted five days, with approximately three hours of curricular instruction each day.
Each program had a head counselor that guided students through using the technology and guided
both large group and individual activities. Counselors were supported by three research assistants
whose roles included observing children during activities and conducting research assessments with
children.

User Interface and Children’s Computational Thinking

176

Counselors and research assistants received training on the technology they were implementing, the
pre-written curriculum they were teaching, and research methods being implemented. Training lasted
for three hours and was split into two parts. During the first half of the training session both coun-
selors and research assistants were given an overview of how to use both technologies, the curricula
being taught, and the research methods being implemented throughout the week-long session. For
the second half, counselors were given time to go through and practice each activity they would be
leading with their students and were given additional training on the technology they were using. Re-
search assistants were given a more in-depth briefing of the research protocol and were instructed on
how to administer the computational thinking assessments.

Children were a part of one of two conditions, based on the program they signed up for: tangible
learning using the KIBO Robotics kit; or graphical learning using the ScratchJr tablet app. The cur-
riculum for both technologies followed the same theme, “Going on a Safari” and explored the same
computational thinking concepts: sequencing, repeat loops, and conditionals. The activities them-
selves were slightly different due to the nature of the technology being used. The following sections
describe the KIBO and ScratchJr interfaces in more detail.

Tangible: KIBO Robotics Kit
This study uses the KIBO robotics kit to examine the impact of a tangible programming interface on
children’s mastery of computational thinking skills. KIBO is a programmable robotics kit specifically
designed for young children aged 4-7 years old developed by Marina Umaschi Bers and Mitch Ros-
enberg. Using KIBO, children assemble their own mobile robot with motors, wheels, and sensors and
program it to move the way they want with wooden programming blocks (see Figure 1).

KIBO was chosen to represent a tangible programming technology because it is programmed with-
out any screen time from tablets or computers. Children create a sequence of instructions (i.e., a
program) using interlocking wooden programming blocks that represent different actions for KIBO
to carry out. KIBO uses an embedded scanner to read the barcode on each programming block, and
the completed program can be run with the pressing of a button. Prior research has shown that chil-
dren in pre-kindergarten through second grade can learn engineering and programming concepts
with KIBO (Elkin et al., 2016; Sullivan, Elkin, & Bers, 2015).

Figure 1. The KIBO robot

 Pugnali, Sullivan, & Bers

177

KIBO’s programming language is composed of over 18 individual wooden programming blocks (see
Figure 2). Some of these blocks represent simple motions for the KIBO robot, such as move For-
ward, Backward, Spin, and Shake. Other blocks represent complex programming concepts such as
Repeat Loops and Conditional “If ” statements.

Figure 2. KIBO’s programming language

Graphical: ScratchJr
For the graphical interface, this study used the ScratchJr application. ScratchJr is an introductory
programming language for the iPad and Android tablet that enables young children (ages 5-7) to cre-
ate their own interactive stories, collages, and games (Strawhacker et al., 2015). Using ScratchJr, chil-
dren snap together graphical programming blocks to make characters move, jump, dance, and sing.
Children can modify characters in the paint editor, add their own voices and sounds, as well as insert
photos of themselves or other images taken using the tablet’s camera. Prior research has shown that
children in kindergarten through second grade can successfully learn foundational programming
concepts with ScratchJr (Portelance & Bers, 2015; Portelance et al., 2015).

ScratchJr’s programming language is organized into six categories of onscreen blocks. The categories
are represented by different colors: yellow Trigger blocks, blue Motion blocks, purple Looks blocks,
green Sound blocks, orange Control flow blocks, and red End blocks. The blue palette of program-
ming instructions lies along the center of the editor. Children display one instruction category at a
time by clicking selectors on the left. Dragging instruction blocks from the palette into the scripting
area below activates them. Snapping blocks together creates programs that are read and played from
left to right (see Figure 3).

Comparing KIBO and ScratchJr
Both KIBO and ScratchJr were uniquely developed to reach an audience of young children in Kin-
dergarten through second grade. Both were developed by educational technology experts at the
DevTech Research Group. In fact, the two programming languages share many similarities. For ex-
ample, in both cases categories of programming blocks are color coded. In many instances, there are
even overlaps in these categories (e.g., in both languages “blue” connotes motion blocks). Unlike
other programming languages developed for older children which ask users to write programs from
top to bottom, both KIBO and ScratchJr ask children to write code from left to right- just like they

User Interface and Children’s Computational Thinking

178

are learning to read. Finally, both languages introduce children to core computational concepts of
sequencing, repeat loops, and conditional statements.

Figure 3. ScratchJr interface

Despite the many similarities the languages share, they also differ in a few key ways. The biggest dif-
ference is also the most obvious one and the focus of this paper: one language is onscreen
(ScratchJr) and one is not (KIBO). Being that KIBO is a tangible interface, the kit allows children to
explore engineering concepts of building, designing, and constructing with motors and sensors while
they are programming their robot. While ScratchJr does not allow for physical building, the onscreen
interface makes it easier to create longer programs than with KIBO’s tangible block language. Addi-
tionally, it allows children to create multiple programs for the same character, which you cannot do
with KIBO. This paper explores whether these key differences between tangible and graphical pro-
gramming languages for children results in different mastery of core computational concepts.

Curriculum
The curricula used during the week-long summer programs was the same across both sections. Each
weeklong session included 15 hours of curricular instruction through a range of different activities,
some of which used technologies and others that focused on art, music, and dance.

This study not only looks to examine computational thinking, but also the overall learning experience
and engagement of students through the PTD framework (Bers, 2012). Research about children’s
engagement in learning settings describes both the psychological and behavioral characteristics of
what it means to be “engaged” (Brewster & Fager 2000; Finn & Rock 1997; Marks 2000). Psycholog-
ically speaking, engaged students are intrinsically motivated by curiosity, interest, and enjoyment, and
are likely to want to achieve their own intellectual or personal goals (Brewster & Fager 2000; Finn &
Rock 1997; Jablon & Wilkinson, 2006; Marks 2000). Children who are highly engaged also demon-
strate positive behaviors such as concentration, investment, enthusiasm, and effort (Brewster & Fager
2000; Finn & Rock 1997; Jablon & Wilkinson, 2006; Marks 2000).

Inspired by this work, the curriculum for the summer program was designed to promote positive
behaviors that are indicative of student engagement. The Positive Technological Development
(PTD) framework developed by Bers (2012) was used as a guiding framework in this study to define
student engagement with technology. This provides a model for how children’s personal and social

 Pugnali, Sullivan, & Bers

179

development can be fostered through the use of technology. PTD proposes six positive behaviors
(the “six Cs”) that should be supported by educational programs that use new educational technolo-
gies, such as KIBO and ScratchJr. These are: content creation, creativity, communication, collabora-
tion, community building and choices of conduct. Each of these “6 Cs” guided the curricular activi-
ties, and choice of materials used in the summer programs sessions. These six Cs also represent how
engagement was measured (see following section). For example, activities were made with goals in
mind to enable content creation with the technologies, but were also opened ended to encourage
creativity. At the end of each activity students participated in a Tech Circle where they could com-
municate and share their ideas and build a community around their projects. Children worked in an
open space where they could see other’s projects and could easily collaborate and communicate with
them, but also tested their ability to behave properly when interacting with other children and the
technology they were using.

The activities for the week followed a Safari theme, but due to the nature of each technology the
activities themselves differed from one camp to another. For example, while the ScratchJr group pro-
grammed animals to run a race onscreen using speed and motion blocks in Activity 1, the KIBO
group could not run race because KIBO’s language does not contain speed blocks. Instead, the KI-
BO group programmed their robots to move like the animal of their choice. Both camps focused on
teaching participants the same computational thinking concepts. Table 1 outlines the five major activ-
ities in each of the camps. The first four activities were each one hour to an hour and a half long and
the final project lasted for three hours.

Table 1. KIBO and ScratchJr curriculum

Activity KIBO ScratchJr

1 Animal Movement: Sequencing
Each child picks and animal and programs
their robot to move like that animal. They
can then decorate their robot to match the
animal they select.

Animal Race: Sequencing
Children pick 3 safari animals and program each
of them to run a race at different speeds. Chil-
dren have an opportunity to create animals and
backgrounds.

2 Baby Animals: Sequencing
Students will decorate and program a baby
animal that moves only when it hears the
parent animal’s voice.

Animal Story: Sequencing
Children will create a 1-4 page story relating to a
safari. They will program several characters to
perform different actions on each screen of the
story.

3 Lost Animal: Repeats
Students must use repeats to help their ani-
mals move across a series of paths to get
from their current location back to their
homes.

Lost Animal: Repeats
Students must use repeats to help their animals
move across a series of paths to get from their
current location back to their homes.

4 Survival Game: Conditionals
Children create programs that include sen-
sors to help their robotic animals to run
away from dangerous predators.

Baby Animals: Conditionals
Students will use message sending to help baby
animals return to their homes when they are
called by their parents.

5 Final Project: All skills
Students create a Safari Animal of their
choice and program it to move through a
habitat they make.

Final Project: All skills
Children create a multi-page story about the jour-
ney that an animal is taking through the Safari.

User Interface and Children’s Computational Thinking

180

In both the KIBO and ScratchJr group, the final project activity came at the end of the camp week
and asked children to draw on all the computational concepts they had learned up to that point. In
the KIBO group, children programmed their robotic safari animal to navigate through a habitat of
their own creation. Meanwhile, in the ScratchJr group, children created a multi-page story about an
animal’s journey through the safari. Both projects involved some non-programming research and
planning, such as choosing an animal, reading pictures books with facts about the animal, and learn-
ing about the safari environment.

Computational thinking
Both the KIBO and ScratchJr curriculum units focused on teaching children foundational computa-
tional thinking skills. Computational thinking skills are being defined based on aspects of Brennan
and Resnick’s (2012) Computational Thinking Framework that correspond with young children’s de-
velopmental ability. The concepts measured in this study include: sequencing, repeats, conditionals,
and debugging (Table 2). At the end of the weeklong session, students had to individually complete a
Solve-Its task that tests these skills (Appendix A). The “Solve-Its” were developed to examine young
children’s knowledge of foundational programming concepts (Strawhacker & Bers, 2015; Strawhack-
er, Sullivan, & Bers, 2013).

Table 2. Definition of computational thinking skills assessed

Skill Definition

Sequencing A series of steps that determine the order in which actions are performed.

Loops A mechanism for running the same sequence several times.

Conditionals Making decisions based on certain factors or events.

Debugging Fixing syntactical errors in a program.

During the assessment, participants completed two different types of tasks. First, children completed
a series of tasks called the “Solve-Its” which involved listening to three different stories or songs be-
ing read or sang aloud by a researcher. After listening to the story or song, and the Solve-Its prompt
children to arrange paper blocks into a sequential program that matched what they heard. The Solve-
It tasks were developed by to target areas of foundational programming ability and basic sequencing
skills (Strawhacker & Bers, 2015; Strawhacker, Sullivan, & Bers, 2014).

Figure 4. Sample child-completed wheels on the Bus Solve-It

Each Solve-It task tested one of the computational thinking skills, with the exception of debugging.
For example, one KIBO Solve-It task used the song The Wheels on the Bus (see Figure 4). The re-
searcher prompted the children by saying, “Do you know the song, the Wheels on the Bus? I know
when we sing that song, the wheels spin around on the bus so many times! Let’s sing the song to-
gether, and count how many times the wheels spin!” After singing one verse of the song with the
kids, the researcher asks, “how many times did we count the wheels spinning? [pause for answers]

 Pugnali, Sullivan, & Bers

181

That’s right, four times! I want to make a robot that is a bus, and I want the wheels to spin around
four times, just like in the song. Can you imagine the program my robot needs? Can you make the
program using the paper blocks we’re passing out now”? At this point children were given several
minutes to create their program on paper before moving on to the next task.

Once students completed the three programs there were given a fourth story, or Solve-It. This time
instead of being given blocks to create a program, they were given a program that was incorrect. The
task this time was to circle the blocks that were not in the correct location (Figure 5). Once the as-
sessment was complete, each category was graded and given a score between 0-100 percent.

Figure 5. Sample child-completed Debugging Solve-It

Positive technological development
Learning engagement was measured using a behavioral checklist developed to complement Bers
(2012) “6 C’s” for Positive Technological Development. At the end of each day, counselors and a
research assistant rated each child using as assessment called the “PTD Engagement Checklist” (Ap-
pendix B). The PTD Engagement Checklist prompted the counselor and researcher to look for 4-6
specific behaviors per category and mark the frequency of each behavior during the activity using a
1-5 scale (1=Never and 5=Always) (Table 3). The scores given by the counselor and the research as-
sistant were averaged together at the end of each day. If scores given by counselors and research as-
sistants differed by more than a point, they would discuss and come to a consensus. The scores given
across each of the five days were then averaged together so each child had one score per category for
the week. In addition to numerical data, they also provided written notes about general behaviors
observed during.

Table 3. PTD engagement categories

Category Definition Sample Behavior

Communication The process of using technology to ex-
change thoughts and opinions.

Student is exchanging ideas with others

Collaboration Working with others toward a shared goal
or task.

Students is giving help to others and help-
ing them understand materials

Community-
Building

Using technology to enhance the communi-
ty around you.

Students is volunteering to share work
with others during Circle Time

Content Creation Making ideas come to life using technology. Student knows how to use the technolo-
gy to make a project

Creativity Using technology in a new and unexpected
way.

Student is using technology in an unex-
pected way

Choices of Con-
duct

Making conscious choices about one's be-
havior when using technology.

Student is following the classroom rules

User Interface and Children’s Computational Thinking

182

RESULTS
For both the Solve-It tasks and the PTD Checklists, basic descriptive statistics were calculated as well
as statistical comparisons between the two groups (KIBO and ScratchJr). On average, the children in
this study were highly successful in mastering the basic computational skills taught to both groups.
Detailed analysis is presented in the following sections.

SOLVE-ITS
Overall, children demonstrated a fairly high mastery of the basic computational thinking concepts
assessed in the Solve-Its including: sequencing, repeat loops, and conditional statements (see Table
4). For each of these tasks, there was an overall mean score of 83 or higher (out of a possible 100).
However, when it came to debugging, the mean score was much lower than the other tasks (55.56),
indicating this may have been a more challenging skill for children to master.

When looking at these descriptive statistics, we can see that the KIBO group performed better on
average on every Solve-It task (see Figure 6). For both groups, Debugging was the most challenging
concept, although children in the KIBO group scored much higher than those in the ScratchJr group.

Table 4. Solve-Its mean scores

Solve-Its Descriptive Statistics

KIBO or ScratchJr N Minimum Maximum Mean Std. Deviation

KIBO Sequencing 13 50 100 96.15 13.868
Repeats 13 25 100 90.38 21.743
Conditional 13 50 100 90.38 16.261
Easy Debugging 13 0 100 76.92 43.853

ScratchJr Sequencing 14 25 100 71.43 35.161
Repeats 14 0 100 88.10 28.063
Conditional 14 0 100 84.29 30.562
Easy Debugging 14 0 100 35.71 49.725

 Note. One child was absent, so total sample of KIBO and ScratchJr groups is N=27

A 1-Way ANOVA was performed to examine whether interface (graphical or tangible) had a statisti-
cally significant effect on students’ performance on each of the following tasks: Sequencing, Repeat
Loops, Conditional Statements, and Debugging. These four tasks were selected for ANOVA analysis
because each one targets discrete computational thinking concepts.

Of the four Solve-Its there was no significant impact for interface type on students’ performance on
the Repeat Loops or Conditional Statements tasks (p>.05). There was a significant main effect for
interface on students’ performance on the Sequencing task (F(1,25) = 5.605, p = .026). On this task,
students in the tangible KIBO group (mean=96.15) scored significantly higher than children in the
graphical ScratchJr group (mean=71.43). There was also a significant main effect for interface on
children’s performance on the Debugging task (F(1,25) = 5.182, p = .032). Once again, children in
the tangible KIBO group (mean=76.92) scored significantly higher than children in the graphical
ScratchJr group (mean=35.71). These findings indicate that children in the tangible KIBO group
mastered the skills of Sequencing and Debugging significantly better than students in the ScratchJr
group.

 Pugnali, Sullivan, & Bers

183

.
Figure 6. Children’s performance on Solve-It by interface

PTD ENGAGEMENT
Overall, children had fairly high PTD scores across all six Cs in both the KIBO and ScratchJr groups
(Communication, Collaboration, Community Building, Content Creation, Creativity, and Choices of
Conduct). This might be due to the fact that the curriculum was designed inspired by the PTD
framework. The scores within each category ranged from 3.47-4.45 out of 5 (3.47-4.13 for KIBO
and 3.78-4.45 for ScratchJr). An Overall PTD score was calculated based on averaging the mean
scores across the six Cs. The KIBO and ScratchJr groups had very similar overall scores (3.83 for
KIBO and 3.99 for ScratchJr). An Independent Samples T-test was calculated to confirm there was
no significant difference between the two groups’ overall scores. Results show that there was no sig-
nificant difference (p>.05).

COLLABORATION
Children’s collaborations per hour were totaled into an average collaborations score at the end of the
week. Both groups demonstrated a high number of collaborations, with a mean score of 14.16 in the
KIBO group and 17.14 in the ScratchJr group. An independent samples T-test was used to deter-
mine whether there was a statistically significant difference in collaboration score between children in
the graphical ScratchJr group and children in the tangible KIBO group. Results show there was no
significant difference in children’s collaboration scores based on interface group (p>.05).

DISCUSSION

COMPUTATIONAL THINKING
Students in the tangible KIBO group scored higher across all four computational thinking categories
in comparison to the graphical ScratchJr group. When it came to the sequencing and debugging
tasks, the KIBO group performed statistically significantly better than the ScratchJr group. The dif-
ference in scores could stem from the more explicit nature of the tangible KIBO programming
blocks in comparison the graphical ScratchJr interface. With KIBO children are using their hands to
arrange the blocks and the motions are then translated to a robot moving in their physical space. The
programming blocks and character movement in ScratchJr all occur on an iPad screen. The screen

User Interface and Children’s Computational Thinking

184

may make it more difficult for children to discern whether or not the character they were program-
ming followed the actions they had in mind. This result can be understood in the context of other
literature that shows that young children has a developmental reliance upon physical interaction with
objects to understand and explain their ideas (Bers, 2012; Froebel, 1826; Montessori & Gutek, 2004;
Piaget, 1959; Vygotsky, 1978).

The sequencing score difference could also be a result of the interface through which the test was
administered. The Solve-Its were administered using paper cutouts that students arranged on a piece
of paper. The tangible nature of the assessment may have given students using the tangible technol-
ogy (KIBO) an advantage. Since sequencing was the first skill that was assessed, the lower perfor-
mance could be a result of children in the graphical group getting used to the new programming in-
terface. For the debugging task, it is important to note that children scored the lowest in this category
across both groups. This is likely a result of the curriculum itself. The other three categories were
explicitly taught and aligned well with the activities that children participated in. Debugging, on the
other hand, was mentioned throughout the curriculum, but never the sole focus of one of the activi-
ties.

When it came to the more advanced concepts, repeats and conditionals there were no significant dif-
ferences between the KIBO and ScratchJr groups on these tasks. Both of these concepts are more
advanced programming concepts than sequencing, and inherently require sequencing ability to exe-
cute (Sullivan & Bers, 2015). Children in both the KIBO and ScratchJr groups scored very highly in
these Solve-It categories.

The goal in working with these technologies is not only to teach the children these four specific pro-
gramming skills, but to allow them to translate what they have learning into the real world and future
technologies they will encounter. The abilities to complete these tasks rely math ability, problem solv-
ing, and working memory (Sullivan & Bers, 2016). These findings demonstrate the significance im-
plementing developmentally appropriate technologies to foster growth and development of skills
both within and outside of programming.

POSITIVE TECHNOLOGICAL DEVELOPMENT
Children using both KIBO and ScratchJr performed well on the PTD Engagement Checklist and no
significant differences were shown between their scores. This shows that, given a curriculum inspired
and designed by the PTD framework, both technologies used in this study are capable of fostering a
learning experience that promotes positive behaviors in a developmentally appropriate way. It also
suggests that both tangible and graphical technologies have the capability to promote a collaborative
environment, especially when taught with the Bers (2012) 6 Cs framework in mind.

While children performed well across the categories, there were noticeable differences in the types of
behaviors they experience with teach form of technology. In terms of content creation and creativity,
children in the tangible group focused on the goal at hand first and once, that was complete, they
moved onto exploring other ideas. They also explored the different functions within KIBO’s pro-
gramming language as their main creative outlet instead of focusing on the art materials around
them. Those in the graphical group often got distracted by the multitude of options within the appli-
cation, but eventually completed the challenge given to them. They spent time using the paint editor
features that ScratchJr offers to edit and create characters and backgrounds as their way of making
their projects stand out from the rest.

There was also a difference in the way that children communicated and collaborated with each other
between the two groups. In the tangible group, students were able to easily look around the room
and see other student’s robots. This allowed them to explore what everyone was doing and to prompt
them to ask one another questions and receive peer help and input on their own work. It also allowed
counselors and research assistants to easily see who was on or off task, and to see who needed help.
In contrast, in the graphical group, it was much more difficult for counselors to see what children

 Pugnali, Sullivan, & Bers

185

were working on and whether or not they were off task. It was difficult to see what was on each
child’s iPad screen at any given time, meaning that both children and counselors needed to go out of
their way to find out what everyone was working on and to ask questions. Finally, it put more respon-
sibility on the child to ask for help, since the adults could not always tell if there were any problems
with the kids’ programs.

The final difference was in the general ambiance of the room. In the tangible group, children were
often moving around with their robots or going over to other groups to explore their projects. The
children were also generally on the louder side, especially when sharing their projects in the tech cir-
cle. They seemed very engaged and eager to share their learning. With the graphical group, children
were generally very quiet and respectful in the traditional classroom sense. They were often either
hyper-focused on their own work, or on the people close to them. Students only occasionally walked
around to explore other people’s projects. It was clear from these observations that both groups
demonstrated positive conduct and community building, but it different ways.

LIMITATIONS
There are limitations to conducting a study during a summer program that parents have to voluntarily
register and pay for. The biggest limitation was the self-selected nature of the children and parents.
Most children did not need to be convinced that learning about programming was important and
they were instantly excited to jump into the activities. This makes the group of students analyzed
different than the average classroom. Another limitation was the gender demographics of students
who registered for the program. In the tangible KIBO sessions, there was a significantly higher num-
ber of boys (n = 10) than girls (n = 2) registered. In the graphical ScratchJr session, there was a high-
er number of girls (n = 8) than boys (n = 6) registered. In a study by Horn et al. (2012), it was report-
ed that the tangible interface seemed to appeal equally to girls and boys (in contrast to the graphical
one, which was more appealing to boys). This finding was contrasted by enrollment numbers in
summer camps where this study took place, which had more girls in the graphical programming
camp than the tangible programming camp. Research also shows that that gender may sometimes
impact young children’s mastery of advanced computational thinking skills (Sullivan & Bers, 2013;
Sullivan & Bers, 2016). Future research should continue to examine how gender may influence chil-
dren’s preference of different interfaces and their mastery of computational thinking concepts with
larger sample sizes.

Other limitations came from the specific technologies that were used during this study. While the
tangible KIBO robot and graphical ScratchJr iPad application both teach young children computa-
tional thinking skills, they have some differences outside of their user interfaces. For example, when a
child creates a syntactically incorrect program with KIBO the robot makes a noise indicating some-
thing went wrong, and the robot does not perform any actions given in the program. It provides
feedback. With ScratchJr, if the characters are given any programming blocks the character will exe-
cute them. It is up to the child to realize that what they wanted to happen in the program does not
match the actions of the character on the screen. Another limitation came from access to each of the
technologies. During the KIBO program, pairs of students each shared one robotics kit. For
ScratchJr each child has access to their own iPad where they could easily work individually.

FUTURE RESEARCH
While this study has its limitations, it provides pilot data to examine the differences in how children
interact with tangible and graphical technologies. The results show that students clearly gained skills
and had positive experiences using either technology, but that their experiences using each were dif-
ferent. Conducting similar research in a classroom setting with more diverse groups of students will
be a next steps. Furthermore, future studies will look at graphical and tangible technologies other
than ScratchJr and KIBO. This would give insight on whether the results found are specific to af-
fordances of tangible and graphical interfaces, or simply to the two technologies themselves.

User Interface and Children’s Computational Thinking

186

CONCLUSION
New technologies for introducing computational thinking to young children are growing in preva-
lence. This study shows that children ages 4-7 can learn basic computational thinking skills when giv-
en developmentally appropriate tools and proper curricular instruction. The tangible KIBO Robotics
kit and the graphical ScratchJr iPad application allow children to learn sequencing, repeating, condi-
tionals, and debugging, all of which are basic computational thinking skills. They also allow children
to learn in a way that engages them while encouraging positive behavior for socio-emotional devel-
opment. This study also provides preliminary evidence that a technology's user interface has an im-
pact on the experiences that children have. Tangible and graphical interfaces each have qualities that
foster different types of learning. It is up to teachers and parents to decide which work better for
their students and children.

REFERENCES
American Academy of Pediatrics. (2003). Prevention of pediatric overweight and obesity: Policy statement.

Pediatrics, 112, 424-430.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the
role of the computer science education community? ACM Inroads, 2(1), 48–54.

Bers, M. U. (2008). Blocks to Robots: Learning with technology in the early childhood classroom. New York: Teachers Col-
lege Press.

Bers, M. U. (2010). The TangibleK Robotics Program: Applied computational thinking for young children. Ear-
ly Childhood Research and Practice, 12(2).

Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen to playground. Cary, NC: Ox-
ford University Press.

Bers, M.U. (2017). Coding as a playground: Programming and computational thinking in the early childhood classroom. Lon-
don, Routledge Press.

Bers, M., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics in
early childhood education. Information technology in childhood education, 1, 123-145.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association,
Vancouver, Canada. Retrieved from
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Brewster, C., & Fager, J. (2000). Increasing student engagement and motivation: From time on task to homework. Portland,
OR: Northwest Regional Educational Laboratory.

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, sci-
ence, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711-
722.

Cheng, L. K., Der, C. S., Sidhu, M. S., & Omar, R. (2011). GUI versus TUI: Engagement for children with no
prior computing experience. Electronic Journal of Computer Science and Information Technology (eJCSIT), 3(1), 31–
39.

Common Sense Media. (2013). Zero to eight: Children’s media use in American 2013. San Francisco: Common Sense
Media.

Elkin, M., Sullivan, A., & Bers, M.U. (2016). Programming with the KIBO Robotics Kit in preschool class-
rooms. Computers in the Schools, 33(3), 169-186.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 year old kindergarten children in a
computer programming environment: A case study. Computers & Education, 63, 87-97.
DOI:10.1016/j.compedu.2012.11.016

http://ecrp.uiuc.edu/v12n2/bers.html
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://ase.tufts.edu/devtech/publications/Elkin_Sullivan_Programming%20with%20KIBO%20in%20Preschool.pdf
http://ase.tufts.edu/devtech/publications/Elkin_Sullivan_Programming%20with%20KIBO%20in%20Preschool.pdf

 Pugnali, Sullivan, & Bers

187

Finn, J. D., & Rock, D. A. (1997). Academic success among students at risk for school failure. Journal of Applied
Psychology 82(2): 221–34.

Froebel, F. (1826). On the education of man (Die Menschenerziehung), Keilhau/Leipzig: Wienbrach.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

 Horn, M. S., Crouser, J. R., & Bers, M. U. (2012). Tangible interaction and learning: The case for a hybrid ap-
proach. Personal and Ubiquitous Computing, 16(4), 379–389.

International Society for Technology in Education and The Computer Science Teachers Association. (2011).
Operational definition of computational thinking for K-12 thinking. International Society for Technology in Educa-
tion (ISTE) and the Computer Science Teachers Association (CSTA). Retrieved from
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

Jablon, J. R., & Wilkinson, M. (2006). Using engagement strategies to facilitate children’s learning and success.
Beyond the Journal, Young Children on the Web. https://www.naeyc.org/files/yc/file/200603/JablonBTJ.pdf

K12 Computer Science Framework (2016). Retrieved from http://www.k12cs.org

Kazakoff, E. R., & Bers, M. U. (2011, April). The impact of computer programming on sequencing ability in early child-
hood. Paper presented at the American Educational Research Association Conference (AERA), Louisiana,
New Orleans.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The impact
on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371-391.

Kazakoff, E., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and pro-
gramming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245

Lee, K., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using robotics to foster social interaction
in Kindergarten. Computers in the Schools, 30(3), 271-281.

Manches, A., & Price, S. (2011). Designing learning representations around physical manipulation: Hands and
objects. Proceedings of 10th International Conference on Interaction Design and Children (pp. 81-89). Ann Arbor, MI:
ACM Press. DOI:10.1145/1999030.1999040

Marks, H. M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle and high
school years. American Educational Research Journal 37(1): 153-84.

Marshall, P. (2007). Do tangible interfaces enhance learning? First International Conference on Tangible and Embodied
Interaction (pp. 163-170). New York: ACM.

Montessori, M., & Gutek, G. L. (2004). The Montessori method: The origins of an educational innovation: including an
abridged and annotated edition of Maria Montessori’s the Montessori method. Lanham, MD: Rowman & Littlefield
Publishers.

Perlman, R. (1976). Using computer technology to provide a creative learning environment for preschool chil-
dren. AI memo 360 (No. LOGO-24; pp. 1–31). Cambridge, MA: MIT.

Piaget, J. (1959). The language and thought of the child (3d ed.). New York: Humanities Press.

Portelance, D.J., & Bers, M. U. (2015). Code and tell: Assessing young children’s learning of computational
thinking using peer video interviews with ScratchJr. Proceedings of the 14th International Conference on Interaction
Design and Children (IDC '15). Boston, MA: ACM.

Portelance, D. J., Strawhacker, A., & Bers, M. U. (2015). Constructing the ScratchJr programming language in
the early childhood classroom. International Journal of Technology and Design Education, 1-16.
DOI:10.1007/s10798-015-9325-0

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosen-
baum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all. Communications of the
ACM, 52(11), 60-67. DOI:10.1145/1592761.1592779

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://www.naeyc.org/files/yc/file/200603/JablonBTJ.pdf
http://www.k12cs.org/
http://ase.tufts.edu/devtech/publications/portelance-code-and-tell.pdf
http://ase.tufts.edu/devtech/publications/portelance-code-and-tell.pdf
http://ase.tufts.edu/devtech/publications/Portelance-2015-Constructing-ScratchJr.pdf
http://ase.tufts.edu/devtech/publications/Portelance-2015-Constructing-ScratchJr.pdf

User Interface and Children’s Computational Thinking

188

Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., & Silverman, B. (1998). Digital manipula-
tives. Proceedings of the Computer Human Interaction Conference (CHI98), Los Angeles.

Strawhacker, A. L., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing children's program-
ming comprehension using tangible, graphical, and hybrid user interfaces. International Journal of Technology
and Design Education, 25(3), 293-319.

Strawhacker, A., Lee, M., Caine, C., & Bers, M. U. (2015). ScratchJr Demo: A coding language for kindergarten.
Proceedings of the 14th International Conference on Interaction Design and Children (IDC '15). Boston, MA: ACM.

Strawhacker, A., Sullivan, A., & Bers, M. U. (2013). TUI, GUI, HUI: Is a bimodal interface truly worth the sum
of its parts?. Proceedings of the 12th International Conference on Interaction Design and Children (IDC’13) (pp. 309-
312). New York, NY: ACM.

Sullivan, A., & Bers, M. U. (2013). Gender differences in kindergarteners' robotics and programming achieve-
ment. International Journal of Technology and Design Education, 23 (3), 691-702.

Sullivan, A., & Bers, M. U. (2015). Robotics in the early childhood classroom: Learning outcomes from an 8-
week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and
Design Education. DOI:10.1007/s10798-015-9304-5

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in young children’s performance on
robotics and programming tasks. Journal of Information Technology Education: Innovations in Practice, 15, 145-165.

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo: Engaging young children in programming
and engineering. Proceedings of the 14th International Conference on Interaction Design and Children (IDC '15). Bos-
ton, MA: ACM.

U.S. Department of Education, Office of Educational Technology. (2010). Transforming American Education:
Learning Powered by Technology. Washington, DC. Retrieved from http://www.ed.gov/technology/netp-2010

Vygotsky, L. (1978). Interaction between learning and development. In M. Gauvain & M. Cole (Eds.), Mind and
society (pp. 79–91). Cambridge, MA: Harvard University Press.

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to teach K-12 computer
science in the digital age. New York, NY: The Association for Computing Machinery and the Computer Sci-
ence Teachers Association.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks. International Journal
of the Learning Sciences, 17(4), 517-550.

https://ase.tufts.edu/DevTech/publications/TGH-robot-look-for-food-Strawhacker-Bers.pdf
https://ase.tufts.edu/DevTech/publications/TGH-robot-look-for-food-Strawhacker-Bers.pdf
http://ase.tufts.edu/DevTech/publications/sjr-demo-idc2015.pdf
http://ase.tufts.edu/DevTech/publications/p309-strawhacker.pdf
http://ase.tufts.edu/DevTech/publications/p309-strawhacker.pdf
http://link.springer.com/article/10.1007%2Fs10798-012-9210-z
http://link.springer.com/article/10.1007%2Fs10798-012-9210-z
http://ase.tufts.edu/devtech/publications/robotics%20paper.pdf
http://ase.tufts.edu/devtech/publications/robotics%20paper.pdf
http://ase.tufts.edu/devtech/publications/Sullivan_Gender%20Differences%20Robotics_2016.pdf
http://ase.tufts.edu/devtech/publications/Sullivan_Gender%20Differences%20Robotics_2016.pdf
http://ase.tufts.edu/DevTech/publications/IDC%20KIBO%20Demo%20Complete.pdf
http://ase.tufts.edu/DevTech/publications/IDC%20KIBO%20Demo%20Complete.pdf

 Pugnali, Sullivan, & Bers

189

APPENDIX A

SOLVE-IT ASSESSMENTS
For each assessment, you will read the story once before handing out blocks for kids to make a pro-
gram. After blocks are given out read the story one more time. Wait 15-30 seconds then read the sto-
ry again. Have kids raise their hands when they are done and you can tape down their blocks.

Solve-Its
Category KIBO Script ScratchJr Script

Sequencing

Puddle

In an animated voice: “This story is called Pud-
dle. Do you know what a puddle is? Some-
times a puddle is made of water, or mud. Do
robots like water? [Wait a moment] No, usually
water can break a robot, which is not good at
all! I want to make a program that lets my
robot dry itself off after it accidentally
moves into a puddle. First, my robot will turn
on, and then it will move straight ahead – but
OOPS! My robot is in a puddle! It’s going to
make a noise – Beep! – as if it is saying ‘Oh
no!’ Then, I want the robot to shake itself
dry – shake! – and finally, turn off !” “Can
you imagine the program my robot needs?
Are you ready to try to make the program for
my robot?” *

Solution: Begin, Forward, Beep, Shake,
End

Puddle

In an animated voice: “This story is about a Cat
who walking into a puddle. Do you know
what a puddle is? Sometimes a puddle is
made of water, or mud. Do cats like getting
wet? [Wait a moment] No, they like to drink
water but they don’t like getting wet. I want
to make a program that lets my cat jump out
after it accidentally moves into a puddle.
When I touch the cat, it will move straight
ahead – but OOPS! The cat is in a puddle!
It’s going to make a noise – Meow! – as if it
is saying ‘Oh no!’ Then, I want the cat to
finally, hop out of the puddle onto dry
ground. *Hand out blocks after story is read.
“Can you imagine the program my cat needs?
Are you ready to try to make the program for
my cat?”

Solution: Begin, Forward, Sound, Hop,
End

Repeat

Wheels on the Bus

In an animated voice: “Do you know the song,
the Wheels on the Bus? [Wait a moment] I
know when we sing that song, the wheels
spin around on the bus so many times! Let’s
sing the song, and count how many times the
wheels spin!” [With children, sing one verse of
song, while holding up one finger to count each time
“round and round” is sung] The wheels on the
bus spin round and round four times! I want
to make a robot that is a bus, and I want my
wheels to spin around four times, just like in
the song. How would I do that?” “Can you
imagine the program my robot needs? Are
you ready to try to make the program for my
robot?”

Wheels on the Bus

In an animated voice: “Do you know the song,
the Wheels on the Bus? [Wait a moment] I
know when we sing that song, the bus driver
tells people to move on back so many times!
Let’s sing that part of the song, and count
how many times the driver says “Move on
Back”!” [With children, sing one verse of song,
while holding up one finger to count each time “Move
on back” is sung] The driver on the bus says
“Move on Back” four times! I want my driver
to say “Move on Back” four times, just like
the song. How would I do that.” “Can you
imagine the program my driver needs? Are
you ready to try to make the program for the
driver?”

User Interface and Children’s Computational Thinking

190

Conditional

Surprise Happy Birthday

“Now our robot wants to surprise its sister
for her birthday! The robot is only going to
sing “happy birthday” if its sister is in the
room. So our robot is waiting, and if the
sister is nearby, the robot will sing.”

Surprise Happy Birthday

“My friend Bob wants to surprise Emma for
her Birthday. Emma sends Bob a message
that she is about to arrive at his house. When
bob receives the message he appears from
behind a table and sings Happy Birthday to
her.”

For the circle the block stories, the same rules follow. Read the story once, and then tell kids that
they can circle the block (or blocks) they feel are in the incorrect spot. Read the story again, wait 15-
30 seconds then read the story one last time. Have kids raise their hands when they are done.

Solve-Its
Category KIBO Script ScratchJr Script

Easy Debug-
ging

Car Horn

In an animated voice: “This game is about a
robot that is a car. Have you ever heard a car
honk its horn? Can you make the ‘BEEP
BEEP’ sound? [Wait a moment] I want my car
robot to turn on – start the engine, vroom!
Next, I want to honk the horn – Beep Beep!
– to warn people that I’m about to move.
Then I want my car to drive straight ahead,
and then stop! And turn off.” Repeat explana-
tion once more. “Can you imagine the program
my car needs? Are you ready to try to make
the program for my robot?”

Car Horn

In an animated voice: “This game is about a car.
Have you ever heard a car honk its horn?
Can you make the ‘BEEP BEEP’ sound?
[Wait a moment] I want my car turn on – start
the engine, vroom! Next, I want to honk the
horn – Beep Beep! – to warn people that I’m
about to move. Then I want my car to drive
straight ahead, and then stop! And turn off.”

Hard De-
bugging

Washing Machine

In this story, my robot is actually a washing
machine! Have you ever seen a washing ma-
chine shake the clothes to make them clean?
First, I want my washing machine robot to
turn on. Then I want it to shake and wash
the clothes, and keep doing it for three
minutes. Then, I want the robot to stop
shaking when the clothes are clean, and to
make a noise - Beep! - to let me know that it
is done! Last, I want the washing machine to
turn off.” So, my robot will turn on, repeat
shaking four times, stop shaking, beep once,
and then stop. Can you make a program that
matches this story? Remember, some of the
block pictures can go on top of other block
pictures if you want for this program.”

Merry-Go-Round

This story is about a Merry-Go-Round! Have
you ever seen a Merry-Go-Round? First, I
want my Merry-Go-Round to turn on. Turn
the kids on ride around and around three
times. Then, I want the ride to stop turning
and to make a noise - Pop! - to let all the kids
know that the ride is over! Last, I want Mer-
ry-Go-Round to turn off.” So, the ride will
turn on, repeat turning three times, stop
turning, beep once, and then stop. Can you
make a program that matches this story?
Remember that you need to write down how
many times you need to repeat.”

 Pugnali, Sullivan, & Bers

191

APPENDIX B

POSITIVE TECHNOLOGICAL DEVELOPMENT (PTD) CHECKLIST

On a scale from 1 to 5 (1 = Never, 2 = Almost never, 3 = Sometimes, 4 = Often, 5 =Always,
N/A = Not Applicable), how often do students do the following?

Communication

Students are exchanging ideas with others

Students feel comfortable seeking help and asking questions

Students ask and respond to questions relevant to the learning happening

Students are eager to share ideas with others

There is time allocated in the schedule for children to talk with each other

The arrangement of classroom allows for children to talk with one another (ex. desks are arranged so that stu-
dents are facing one another)

Collaboration

Students are giving help to others and helping them understand materials

Students are receiving help from others and appreciating it

Students are borrowing or lending materials

Students are working together towards a common goal

There is time in the schedule for students to work together

There are a variety of spaces in the classroom where two or more students can work together

Community Building

Time is allotted in the schedule for students to share their projects with peers (Circle Time)

Time is allotted in the schedule for students to share their projects with families, school administrators, etc.
(Open House)

Students are volunteering to share work with others during Circle Time

Students are volunteering to share their work with families, school administrators, etc. during Open House

Students are creating projects to solve a social problem (ex. Project to help the environment, save an animal,
teach younger kids, etc.)

Student are participating in community-related tasks (ex. helping with clean-up, set up, etc.)

Content Creation

Students know how to use the technology to make a project

Students can create a functional program for their robot/character

Students are interested and enthusiastic about their project

Student are persisting in spite of obstacle or setbacks

Students know how to debug their programs

User Interface and Children’s Computational Thinking

192

There is space in the classroom for students to test out their programs

There is time allocated in the schedule for students to learn about, practice and fix their projects

Creativity

Student are using a variety of materials (arts, crafts, etc.) or functions (ex. adding a background, editing/making
a character) for their project

Student are using technology in an unexpected way

Students’ projects shows unique characteristics, i.e. it is different from everyone else’s

Students exhibit confidence and can initiate and complete a task with limited coaching

There are a variety of materials available for students to choose from

There is allotted time in the curriculum for students to brainstorm ideas for their projects

The projects are introduced to students as open-ended; there is more than one way to create a project

Students are given basic guidelines for their project, but there is also opportunity for them to expand beyond
them

Children are having fun as they work on their projects

Choice of Conduct

Students are focused on the activity and choose to engage with it

Student are following classroom rules

Students are following rules about using technology, and they know how to use it responsively

Student are using materials responsibly

Student are showing respectful behaviors to peers and teachers

There is time in the schedule to discuss rules about using technology and how to behave in the classroom

 Pugnali, Sullivan, & Bers

193

BIOGRAPHIES
Alex Pugnali was a researcher at the DevTech Research Group in the
Eliot-Pearson Department of Child Study & Human Development at
Tufts University. He received a Bachelors in Human Factors Engineering
from Tufts University. Alex now works at the Center for Engineering Ed-
ucation and Outreach also at Tufts. Alex is particularly interested in
providing elementary school students from all backgrounds with access to
STEAM Education in fun and creative ways. He is also interested in ex-
ploring the relationship between how technology, materials and curricula
are designed and the implications they have on how students and teachers

interact with them.

Amanda Sullivan PhD is a researcher at the DevTech Research Group
in the Eliot-Pearson Department of Child Study & Human Development
at Tufts University. Amanda is also the Associate Director of the Early
Childhood Technology Graduate Certificate Program at Tufts University.
She received her PhD and MA in Child Development from Tufts Univer-
sity where her dissertation explored young children’s development of
gender stereotypes about technology and engineering. Amanda’s research
interests include gender stereotypes, girls and STEM, curriculum devel-
opment, robotics, programming, STEAM, and the arts. More on Aman-
da: http://ase.tufts.edu/devtech/amanda_sullivan.html

Marina Umaschi Bers PhD is a Professor at the Eliot-Pearson De-
partment of Child Study and Human Development and the Computer
Science Department at Tufts University. She heads the interdisciplinary
Dev-Tech Research group which focuses on designing studying innova-
tive learning technologies to promote positive youth development. Dr
Bers received prestigious awards and has written three books: Coding as a
Playground: Programming and Computational Thinking in the Early Childhood
Classroom (2017; Routledge Press), Blocks to Robots: Learning with Technology
in the Early Childhood Classroom (2008; Teacher's College Press) and Design-
ing Digital Experiences for Positive Youth Development: From Playpen to Playground

(2012; Oxford University Press). Dr Bers has an MEd from Boston University and an MS and PhD
from the MIT Media Lab. More on Dr Bers: emerald.tufts.edu/~mbers01/

http://ase.tufts.edu/devtech/amanda_sullivan.html

	The Impact of User Interface on Young Children’s Computational Thinking
	Abstract
	Introduction
	Literature Review
	Computational Thinking
	Tangible versus Graphical Interfaces

	Method
	Research Questions
	Sample
	Procedure
	Tangible: KIBO Robotics Kit
	Graphical: ScratchJr
	Comparing KIBO and ScratchJr
	Curriculum
	Computational thinking
	Positive technological development

	Results
	Solve-Its
	PTD Engagement
	Collaboration

	Discussion
	Computational Thinking
	Positive Technological Development
	Limitations
	Future Research

	Conclusion
	References
	Appendix A
	Solve-It Assessments

	Appendix B
	Positive Technological Development (PTD) Checklist

	Biographies

