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Abstract

Young learners today generate, express, and interact with sophisticated ideas 
using a range of digital tools to explore interactive stories, animations, com-
puter games, and robotics. In recent years, new developmentally appropri-
ate robotics kits have been entering early childhood classrooms. This paper 
presents a retrospective analysis of one study within a design-based robotics 
research program. We examine how patterns of cognition throughout early 
childhood relate to programming approaches and achievement in a robotics 
context. The findings lay a foundation for applying cognitive developmental 
theory to early technology education and inform the evaluation of the study’s 
programming and robotics technologies and curriculum. (Keywords: cogni-
tive development, robotics, computer programming, early childhood educa-
tion, STEM)

Children today, as in the past, explore and create artifacts from the 
materials around them. Clearly, though, the affordances of those ma-
terials have dramatically changed with the proliferation and evolu-

tion of computers. Activities from games to model-making and storytelling 
that first took form in the physical world have migrated into digital territory 
(Bers, 2008; Resnick et al., 2009). Young children’s computer use need not be 
synonymous with passivity or pushing down content and learning strate-
gies better suited to older learners (National Association for the Education 
of Young Children [NAEYC] & Fred Rogers Center, 2012). Novel advances 
in human-computer interaction mechanisms let young children engage in 
digital creation, including by programming child-friendly robots to carry 
out sequences of behaviors and interactions (e.g., Bers & Horn, 2010). 

Working with age-appropriate programming tools and curricula, children 
can creatively problem solve and explore powerful interdisciplinary skills and 
knowledge (Bers, 2010; Bers & Horn, 2010; Grover & Pea, 2013). However, as 
new technological tools reach ever-younger children, more research is needed 
to define expectations for developmentally appropriate technology features 
and learning activities. The TangibleK Robotics Project (http://ase.tufts.edu/
devtech/tangiblek/), an ongoing design-based research initiative conducted by 
the DevTech Research Group at Tufts University, explores learning trajectories 
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and developmentally appropriate technical and curricular designs for early-
childhood robotics. Unanticipated observations in one study—namely the 
wide variety in young children’s abilities to attend to and solve introductory 
programming and robotics challenges—raised questions about the origin 
of the disparities. The purpose of this article is to explore a preliminary 
hypothesis that cognitive development, which drives dramatic changes in 
reasoning throughout early childhood, might also influence achievement in 
learning to program robots. In addition to connecting classical developmen-
tal theory with an emerging domain, the overarching goal of this analysis is 
to evaluate the developmental assumptions underlying an existing program-
ming tool and curriculum.

Programming in Early Childhood
During the 1970s and 1980s, the first personal computers introduced Logo, a 
text-based programming language (Logo Foundation, 2000). Meanwhile in a 
research lab, the first tangible children’s programming language also debuted 
(Perlman, 1976). Since then, theoretical and empirical work has aimed to 
clarify the possible benefits of children’s learning to program and the fea-
tures of technologies and instruction that support positive outcomes (e.g., 
Battista & Clements, 1986; Bers, 2008; Clements & Gullo, 1984; Farr, Yuill, 
& Raffle, 2010; Horn, Solovey, & Jacob, 2008; Liao & Bright, 1991; Marshall, 
2007; Pea & Kurland, 1984; Pea, Kurland, & Hawkins, 1985). Deep and 
meaningful learning can occur when children have rich problems to solve 
and powerful tools to work with (Martin, Mikhak, Resnick, Silverman, & 
Berg, 2000; Papert, 1993). Re-programmable—rather than minimally inter-
active pre-programmed—toys (Bergen, 2001) give children ownership over 
a piece of their world as they playfully imagine, create and program, explore, 
share, and reflect on their efforts (Bers, 2012; Resnick, 2006, 2007). 

Our perspective on programming in early childhood education en-
compasses two bodies of theoretical work: computational thinking, which 
addresses problem solving with computers; and technological literacy and 
fluency, which examine expressivity with new technologies. More specifi-
cally, computational thinking describes a broad and still-coalescing range of 
analytic and problem-solving skills, dispositions, habits, and approaches as 
applied to solving problems with computers and algorithms (Barr, Harrison, 
& Conery, 2011; Barr & Stephenson, 2011; Grover & Pea, 2013; Lee et al., 
2011; Guzdial, 2008; International Society for Technology Education [ISTE] 
& Computer Science Teachers Association, 2011; Wing, 2008). Building and 
programming computational artifacts can facilitate children’s engagement 
in such high-level cognitive processes as creative design, problem solving, 
divergent thinking, and reflectivity, given a learning context that fosters ac-
tive, iterative, and retrospective thinking and the appropriation of “failures” 
as intermediate learning opportunities en route to success (Clements & 
Meredith, 1992; Papert, 1993; Resnick, 2006). 
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Frameworks describing new media literacies and technological fluency 
use different terms to do so, but they all focus beyond procedural knowledge 
of using computers for word processing or internet research (Massachusetts 
Department of Education [MA DOE], 2006; 2008; McGill & Volet, 1997) 
and toward creating content as well as exploring and communicating ideas 
in a variety of computer-based media (Buckingham, 2007; Jenkins, Puru-
shotma, Weigel, Clinton, & Robison, 2009; New Media Consortium, 2005; 
Papert, 1993; Peppler & Kafai, 2007). Just as literacy education aims beyond 
decoding letters, words, and sentences toward oral and written fluency, so 
too should children develop technological fluency or expressivity.

Technical and interface design advances can and have led to increasingly 
child-friendly tools that support engagement with such learning—includ-
ing in early childhood (Grover & Pea, 2013; Revelle, 2013). Children in the 
TangibleK Robotics Project used a programming language called CHERP (see 
Figure 1), which is designed specifically for their age range to create behav-
iors for robots they build from LEGO robotics construction kits (Bers, 2010; 
DevTech Research Group, 2011). Intended for programming robotic vehicles 
with such high-level instructions as “Forward” and “Beep,” CHERP offers 
children the flexibility to switch between on-screen and tangible interfaces as 
they see fit (Horn, Crouser, & Bers, 2011), depending on manual dexterity, 

Figure 1.  On-screen features of the CHERP interface, including a “Hokey-Pokey” solution (1a), and the tangible interface, 
with interconnecting wooden blocks (1b).
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perceived social appeal of the interface, and the challenge of the programming 
task at hand. The programming instructions, their representations, and the hy-
brid interface for manipulating them are cognitively and physically accessible 
to kindergarteners (Bers & Horn, 2010). Children can use CHERP to explore 
powerful ideas from technology-based domains that are often and unnecessar-
ily reserved for older children or adults (Bers, 2008; Bers & Horn, 2010). 

Given such early childhood educational technologies, it is up to society 
to understand how to use them to foster positive learning outcomes through 
formal and informal curricular designs. For instance, explicit instruction 
supports learning transfer of domain-specific, technological, and meta-
cognitive knowledge from technology-based learning to other domains 
(Clements & Gullo, 1984; Clements & Meredith, 1992; Klahr & Carver, 
1988; Nir-Gal & Klein, 2004; Salomon & Perkins, 1987). A less researched 
component involves understanding how children’s cognitive developmental 
level affects their technology use. Application of this knowledge can result in 
effective pedagogical designs to teach not only technology-specific content 
but also the high-level thinking skills that make up computational thinking 
and technological fluency.

A Contemporary Revision of Piaget’s Stages
Though computers existed only late in Jean Piaget’s life, his work on develop-
mental patterns in children’s thinking applies to young children’s problem-
solving-based computer use today. Core tenets of Piaget’s field-transforming 
theory remain salient to current understandings of cognitive development, 
from the active and internally driven construction of knowledge to the co-
herent patterns of cognition seen at different ages (Flavell, 1996). Over time, 
scholars have also extensively reshaped his theories to specify mechanisms 
by which stage transitions occur and new cognitive structures arise, and to 
address individual differences observed in these transitions (e.g., Case, 1984; 
Feldman, 2004; Fischer, 1980; Granott & Parziale, 2002; Kuhn, 1995; Lewis, 
2000; Siegler & Crowley, 1991; van Geert, 1998).

Feldman (2004) reconciles Piaget’s theory with empirical observations of 
uneven and gradual progress from one stage to the next and incorporates the 
principle of emergence common among other neo-Piagetian theories. Under-
pinning this analysis, a key insight of Feldman’s (2004) theory is that, halfway 
into each stage, children move from actively constructing new systems of 
thought to energetic application of those systems, building a bridge toward 
upcoming cognitive structures. Children in the present study ranged from 
about 4.5 to 6.5 years old, a timespan during which children experience sub-
stantial cognitive growth (Case, 1984) as they move from late pre-operations, 
somtimes called intuitive operations, toward early concrete operations. The 
characteristics of Feldman’s phases highlight the salience of many develop-
mentally influenced thought processes to reasoning, problem solving, com-
puter programming, and understanding how digital objects work.
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During the late pre-operational stage of cognitive development (ages 
4–6), children extend and apply culturally learned symbol systems to 
interactions with the physical and social world and rely on transductive 
reasoning—the joining of unrelated observations in idiosyncratic ways 
that the child finds immensely compelling, although they defy adult logic 
(Feldman, 2004; Gardner, Kornhaber, & Wake, 1996; McDevitt & Ormrod, 
2002). These cognitive structures form the precursors to subsequent increas-
ingly adult-like logic (Feldman, 2004; Gardner et al., 1996). Also shaping the 
cognition of children in this stage are difficulties relating multiple aspects of 
objects, distinguishing appearances from reality, taking multiple psychologi-
cal and physical perspectives, and mentally manipulating objects (Feldman, 
2004; Gardner et al., 1996; McDevitt & Ormrod, 2002). While the 4- or 
5-year old child is certainly hard at work asking questions and theorizing 
about how the world works, the cognitive tools s/he employs to construct 
those theories are unique to that age (Feldman, 2004); thus the child’s con-
clusions also differ drastically from those of older children and adults.

The transitional period described by Feldman’s (2004) model is character-
ized by the staggered appearance of concrete operational mental processes 
and inconsistent use of these strategies. The child becomes interested in 
exploring concepts and cognitive processes that previously seemed irrel-
evant: using symbol systems to begin constructing categories, hierarchies, 
and other relationships, based on the child’s own experience (Feldman, 
2004; Gardner et al., 1996). During this period, children may switch between 
patterns of thought characteristic of the developmental level they are leaving 
and the level they are entering, as the grasp of these concepts will solidify 
only later on (Feldman, 2004).

By around 6 years of age, a child is likely switching into concrete op-
erational patterns of thinking (Lightfoot, Cole, & Cole, 2009). S/he is now 
familiar with representing the world with both mental and physical symbols, 
and the work of the second phase of pre-operations has prepared the child’s 
cognitive structures for transformation toward interest and competence in 
more logical reasoning (Feldman, 2004). Children this age begin to simul-
taneously consider multiple aspects of situations or objects, allowing them 
to work with conservation of quantities and the concepts of categories and 
hierarchies (Feldman, 2004). A 6-year-old increasingly understands physical 
and psychological points of view other than his/her own. Around this time, 
a child also relies increasingly on logical reasoning about causal relation-
ships, empirical observations, and the distinction between appearances and 
reality (Lightfoot et al., 2009; McDevitt & Ormrod, 2002). While a child this 
age typically uses concrete materials to build mental models or representa-
tions (Feldman, 2004), s/he does not rely on the physical object’s immedi-
ate presence to mentally consider and manipulate it (Lightfoot et al., 2009). 
The 6-year-old also becomes more able to plan a series of actions to fulfill 
a goal and to think flexibly in doing so, and cognition in this stage is aided 
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by increasing memory capacity and meta-cognition (Lightfoot et al., 2009). 
Over the next 2 or 3 years, the child will consolidate the cognitive structures 
necessary to successfully apply these new cognitive skills (Feldman, 2004).

Understanding the natural distinctions in cognitive resources available to 
a 4-year-old and a 6-year-old, as described by Piaget and subsequent cogni-
tive developmentalists, may aid in evaluating technology-based materials 
and activities that engage children in logical reasoning—such as program-
ming a robot.

Research Design
The present analysis focuses on one iteration of the TangibleK Robot-
ics Project, a design-based research program (e.g., Barab & Squire, 2004; 
Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) intended to detail what 
kindergarteners can understand about programming and robotics and how 
developmentally appropriate tools can support learning in early childhood 
classrooms. The study described in this paper occurred during TangibleK’s 
third year, following piloting of the CHERP programming technology and a 
classroom curriculum. In depth and laboratory based, this study document-
ed individual children’s learning and problem-solving processes. Participants 
of this study attended a small-group session for pre-assessments and intro-
duction to the technologies, and then three individual sessions in which they 
constructed a robotic vehicle, learned new programming concepts, attempt-
ed a programming challenge, and reflected on their work. Post-assessments 
took place during the final session. We present relevant data here to examine 
the role of cognitive development and subsequently inform evaluation of the 
programming and robotics materials and curriculum.

Throughout this study, researchers observed an unanticipated range in 
children’s uses of the programming tools and their programming achieve-
ment. This article, framed as a retrospective analysis, examines children’s 
first individual programming activity to uncover what patterns exist in pro-
gramming approaches and achievement based on estimated level of cogni-
tive development. 

Variables

Cognitive developmental level. Cognitive development was not among the 
original study variables; however, we designed a framework to classify each 
child’s thinking processes during the programming task, as representative of 
one of three substages of cognitive development from Feldman’s (2004) revi-
sion of Piaget’s model. Programming, while not a traditional Piagetian assess-
ment, is a rich source of logico-mathematical and deductive reasoning—the 
types of thinking most relevant to Piaget’s theory (Case, 1984). We compiled 
characteristics of the framework’s three categories—late pre-operations, 
transitional, and early concrete operations—from the literature and mapped 
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them to a programming context. We gave three core elements of the chil-
dren’s approach subscores based on video and written data: the child’s goal, 
and the intuitive versus systematic nature of the initial solution strategy and 
solution revision strategies. We determined overall developmental level from 
the component scores, taking into consideration other cognitive operations 
as needed (see Table 1).

Programming achievement. We assessed children's programming achieve-
ment based on their ability to program a mobile robot to dance the “Robot 
Hokey-Pokey”:

You put your robot in (Forward)/You put your robot out (Backward)/ 
You put your robot in (Forward)/And you shake it all about! (Shake)/ 
It does the Hokey-Pokey, and it turns itself around (Spin)/ 
And that’s what it’s all about! (Sing)/*Clap, clap!* (Beep, Beep)

After the researcher ensured familiarity with the song and its actions, 
the child worked on the challenge without conceptual assistance from 
the researcher. Instead, the researcher reflected back any questions, 
creating a supportive environment without providing answers. After a set 
time, the researcher helped the child complete any unfinished aspects of 
the challenge.

Pre-Operational Transitional Concrete Operational 

Goal Orientation Focuses primarily or exclusively 
on open-ended exploration.
May try the “Hokey-Pokey” (HP) 
nominally or cursorily. *

Tries HP (with interest and effort) 
but leaves it due to interest 
in other explorations or being 
unable to debug further (may 
claim an incomplete program is 
successful).

Focuses primarily on HP with 
little or no redirection through 
to a nearly or fully complete 
solution. May explore openly 
before/during HP.

Initial Solution Nominal, cursory, or no attempt.
OR Intuitive approach (considers 
actions but not order).

Intuitive approach with limited 
systematic logic (order).

Logical approach (step-by-step 
sequencing).

Debugging 
Attitudes and 
Strategies

Indifferent to the need to debug 
or to the results of any unsuc-
cessful efforts.

Interested in improving the pro-
gram but cannot figure out how.

Driven to find best answer.
OR Gets answer right away and 
knows it.

Nominal, cursory, or no attempt.
OR Intuitive approach (e.g. guess-
and-check).

Mixed approach intuitive / logical 
& empirical.
Limited / inflexible ideas on how 
to systematically debug.

Logical / empirical approach. 
Flexible if one idea does not 
work.

Perspective and 
Classification

Attributes agency inappropriately 
to self versus the robot.

Attributes agency appropriately 
to self versus the robot.

Confused by different orientations 
of the computer, blocks, robot, 
map, and self.

Unconstrained by different 
orientations of the computer, 
blocks, robot, map, and self.

Single classification for “blocks.” Multiple classifications for 
“blocks.”

*This includes situations in which the child verbally claims to be working on the Hokey-Pokey, perhaps in an effort to avoid conflict 
with a perceived authority figure, but actually makes a completely unrelated program and shows through other behavior or speech 
that the Hokey-Pokey is not the actual goal.

Table 1. Cognitive Stage Markers in Programming Rubric
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We assessed programming achievement at two levels. Defined as pur-
posefully choosing programming instructions to match the song’s actions, 
correspondence was assessed on a Likert scale from 0 (cannot achieve) 
through 5 (achieves without assistance); intermediary values represented 
increasing levels of support that the child needed to successfully apply this 
cognitive skill within the timespan of the session. Program completeness 
measured correctly sequencing instructions in addition to making ac-
curate action-instruction correspondences. The assessment scale, shown 
in Table 2, indicates how many changes a child’s independently created 
program needs to match an accepted solution; the scale ranges from 0 
(unrecognizable as an attempt at the “Hokey-Pokey”) to 4 (all required 
instructions in exact order).

Sample
The original study included 36 children recruited from Boston-area towns and 
cities via the research group’s website, email, and the snowball effect. Twenty-
nine met inclusion criteria for this analysis: sufficient documentation of the 

Table 2. “Hokey-Pokey” Program Completeness Assessment Rubric

Scoring Instructions

•	 Must represent Forward | Backward | Forward | Shake | Spin. Do not score Begin/End.
•	 May use Turn(s) for Spin, sounds at the beginning or end, or a second, consecutive Shake or Spin.
•	 Use the fewest possible fixes to reach an accepted solution.

Definitions of Fixes

Addition One of the 5 basic solution instructions is missing and needs to be added.

Swap 2 consecutive instructions need to be switched.

Deletion An instruction needs to be removed.

Distinguish The child consistently confused 2 similar instructions (e.g. Backward and Forward), so these instruc-
tions need to be exchanged.

Scale and Examples

4 – no fixes

3 – one fix 1 addition	 Forward | Backward |Shake | Spin
1 swap	 Forward | Forward | Backward |Shake | Spin
1 deletion	 Forward | Backward | Forward | Shake | Backward | Spin

2 – two fixes 2 additions     Forward | Backward | Shake
2 swaps	 Forward | Forward | Backward | Spin | Shake 
2 deletions	 Forward | Backward | Shake | Forward | Shake | Spin | Right
1 addition, 1 swap	 Backward | Forward | Spin | Shake 
1 addition, 1 deletion 	 Forward | Sing | Backward | Forward | Shake
1 swap, 1 deletion	 Backward | Forward | Forward | Shake | Left | Spin

1 – three+ fixes The child clearly attempted to make a Hokey-Pokey program. The program has 2 correct actions and 
few if any extras, other than reduplications. These tend to be fairly short.
2 instructions, no reduplications	 Forward |Shake | Sing 
2 instructions, with reduplications Backward | Backward | Sing | Sing | Spin | Spin
A copy of CHERP’s graphical instruction set, given the child’s recognition that parts match the song.

0 – avoided task / 
unrecognizable

The child did not attempt to make a Hokey-Pokey program.	
OR The program is so incomplete as to be unrecognizable as a clear attempt at the Hokey-Pokey. (The 
child may or may not have claimed it to be a Hokey-Pokey attempt. These tend to be long compared 
to programs assessed as 1.)
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child’s thinking (as communicated verbally or behaviorally) to allow inter-
rater reliability testing, the child’s attempt of the assigned programming task 
or a structural equivalent, and no evidence that the study format prevented 
the child from demonstrating his or her best efforts. The 29-child subsample 
was composed of 38% girls and 62% boys. Kindergarteners (20 children) 
made up 69% of the sample, and preschoolers (9 children) made up the 
remaining 31%. Age at the time of each child’s first session ranged from 4.4 
years to 6.6 years; mean age was 5.6 years. The group came about evenly 
from urban and suburban neighborhoods. Eleven children (38%) attended 
public schools, whereas 18 (62%) attended private schools. (The lower avail-
ability of public preschools compared to public kindergartens probably ac-
counts for the skew.) Children also came from multiple ethnic, cultural, and 
language backgrounds.

Most families (89%) had a parent with a master’s or doctoral degree. 
More than half had a parent whose culminating degree and/or occupation 
related to science, technology, engineering, or math. Almost a third of the 
children had a parent with prior exposure to robotics, and two-thirds had a 
parent with prior programming experience. Three-quarters of the children 
used a computer at home, mostly to play games. A third had used program-
mable robots, but no parents reported that their children had programmed 
(there may be discrepancies in definitions of “programming”). Although this 
sample’s characteristics may reflect the subset of families interested in early 
childhood robotics more than the general population of U.S. families with 
preschoolers and kindergarteners, it does provide a useful starting point for 
exploratory research.

Results

Comparison of Developmental Levels
Using the cognitive development measure described earlier, we categorized 
each child’s reasoning as being characteristic of late pre-operational (28% 
of the sample), transitional (24%), or early concrete operational (48%). 
Inter-scorer reliability tests showed precise agreement (two items; α = 1.00). 
The skew toward concrete operational reflects preferential recruitment of 
kindergarteners for the study’s original goals. Each developmental category 
included roughly the same proportions of demographic, experiential, and 
parental characteristics as the overall study sample, with a few variations. 

Children in each successive category were older, on average (F(2,28) = 
5.5, p < .01). The mean age of pre-operational children fell at 5.2 years (SD 
= 0.50); almost half a year higher for the transitional category, 5.6 years 
(SD = 0.69); and highest for children in concrete operations, 5.9 years (SD 
= 0.40). Only the difference between the earliest and latest developmental 
categories was statistically significant (p < .01), reflecting broad individual 
variability in the age at which developmental transitions occur. Other 
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differences were artifacts of the sample. Children in the earliest cognitive 
developmental phase were more likely to attend private school (χ2(2, N = 29) 
= 7.16, p < 0.05), use computers at home (χ2(2, N = 29) = 9.89, p < .01), and 
have a parent with prior programming experience (χ2(2, N = 28) = 6.71, p < 
.05) than children in the higher levels. Overall, aside from expected age dif-
ferences, the three developmental groups had characteristics that were fairly 
similar to the sample as a whole.

Programming in Late Pre-Operations
Eight children (28% of the sample) exhibited late pre-operational reasoning 
during the “Hokey-Pokey” activity. Half of these children disregarded the 
given challenge to focus instead on open-ended explorations of the robot’s 
capabilities. Two children claimed that exploratory programs matched the 
“Hokey-Pokey,” perhaps to appear compliant. The other half of the children 
in this category tried, at least for a while, to create the “Hokey-Pokey.” Rely-
ing heavily on trial-and-error, they thought of one or two actions, with little 
further progress. They had difficulty assessing whether the robot had done 
what they expected and what to fix if it had not. For some, starting over 
seemed easier than revising their in-progress solution. Having exhausted 
their intuitive strategies, children waited for researcher assistance; turned to 
more familiar activities, such as building with LEGOs; or explored the pro-
gramming tool more. The lack of progress toward the “Hokey-Pokey” goal 
concerned some children, while others happily ignored the unfinished task 
in favor of their general exploration.

Programming in the Transitional Phase
Seven children (24% of the sample) exhibited a mix of characteristics of 
pre-operations and concrete operations, placing them in this intermediate 
category. All of the children were interested in the given activity and made 
some systematic progress toward a “Hokey-Pokey” program. However, they 
encountered difficulties in fully applying systematic and empirical strategies. 
The abilities and general approaches seen within this group varied much 
more than in the other groups. It is likely that this category comprises chil-
dren who were just beginning to use some concrete operational structures as 
well as some children who were much further along in the transition.

Four transitional children started with an intuitive guess and were able 
to make some systematic revisions before getting stuck. They ended up with 
either a program that nearly matched the “Hokey-Pokey” or a program that 
matched the song in length and a few specific actions. One child knew what 
actions she needed—and in the correct order—but was unable to interpret 
CHERP’s “Forward” and “Backward” instructions as representations of the 
“in” and “out” movements in the verse. Two other children began with a sys-
tematic approach. One decided his program was close enough and declined 
to try improving it; the other systematically improved his program—with 
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encouragement—before resorting to a guess-and-check strategy and ending 
up with an almost complete solution. 

Children in the transitional group each had difficulty with at least one 
aspect of debugging: recognizing a problem with the current solution, 
generating a hypothesis about the cause, and attempting to solve the prob-
lem. In response to this situation, the children variously insisted that they 
were stuck, reverted to unsuccessful intuitive strategies, or decided that an 
incomplete solution was satisfactory. Sometimes children applied systematic 
debugging toward interesting problem variations. One child worked hard to 
match his program to the song’s length even though the specific actions did 
not match, and another tried to direct the order and timing of lines as the 
researcher sang them so that the song would match his program rather than 
the other way around.

There were two categories of final program completeness within the 
transitional group. Half the children ended up with programs resembling 
“Hokey-Pokey” prototypes using only two of the five actions, and the 
children were quite aware that their programs were incomplete. The other 
half ended up with programs with only one instruction off, but they seemed 
to have no interest in or awareness of this difference. These final programs 
are almost on par with those of children in the concrete operational group. 
However, the transitional children who made them tended not to have done 
any debugging, which requires additional cognitive flexibility and was com-
mon to concrete operational children. Additionally, transitional children 
who used musical instructions tended to do so simply to indicate that the 
“Hokey-Pokey” is a song, rather than to represent the last line of the song 
and the clapping that follows. Overall, there was an interesting bimodal 
pattern of reasoning among children in the transitional category as well as 
variety in the unique mixes of systematic and intuitive strategies used by 
each child.

Programming in Early Concrete Operations
Fourteen children (48% of the sample) used cognitive strategies typical of 
early concrete operations. Their work during the “Hokey-Pokey” program-
ming activity is markedly different from that of the pre-operational children 
and, to a somewhat lesser extent, from that of the transitional children. Chil-
dren scored as concrete operational tended to stay on task once they started, 
staying focused until arriving at a complete or nearly complete solution. 
The children in this developmental category used systematic approaches 
to create and tweak their programs and were quick to notice errors and try 
to fix them, a striking and significant difference from children in the other 
categories. To create their first programs, children in concrete operations 
relied more on parsing the song step by step than on intuitively recalling 
its elements. Then they applied their empirical observations of the robot 
carrying out the program to assess their solution. Some also “read through” 
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their programs block by block while saying the song to themselves to assess 
whether the program and song matched. 

Children in concrete operations recognized whether an instruction was 
missing, unnecessary, or out of order, which children in the pre-operational 
category had great difficulty doing. Children in this category were rarely sat-
isfied with a program that was not entirely complete, as opposed to children 
in the transitional and pre-operational categories, who were quite likely to 
declare a partially complete or even completely unrelated program success-
ful. This evolution of self-imposed standards seems to parallel the increas-
ing orientation toward exactness in “bring[ing] a productive situation to 
completion” during the elementary school years (Erikson, 1998, p. 72).

Three of the 14 concrete operational children put together a correct 
solution on their first try. The others revised and tested (debugged) their 
programs one to five times. Of the 11 children who used such an iterative 
trouble-shooting process, about half began with a long program (four to 
seven instructions), which they corrected by re-ordering, adding, or remov-
ing instructions as needed. The other half began with a small portion of the 
final solution—two or three instructions—and built up to the final solution 
with each debugging iteration.

Developmental Level and Achievement
Children at each level of cognitive development varied distinctly in their 
approaches to programming. This trend is also seen in their achievement of 
core programming concepts and skills. Average achievement levels of two 
programming concepts—correspondence and final program completeness—
were high across the full sample, but the different distribution of scores in 
each developmental category warrants further discussion.

For making correspondences between programming instructions and 
robotic actions, the overall mean score was nearly 4 out of 5—needing 
little help to apply this concept (see Table 3). However, 62% of the children 
achieved the highest score (a ceiling effect), whereas the remaining 38% 
were distributed among the lower scores (see Figure 2). The distribution of 

Table 3. Programming Achievement by Cognitive Developmental Level

Outcome Variable Level n M SD

Correspondence Full Sample 29 3.86 1.66

Pre-Operational 8 1.87 1.46

Transitional 7 3.86 1.46

Concrete Operational 14 5.00 0.00

Program Completeness Full Sample 29 2.31 1.69

Pre-Operational 8 0.13 0.35

Transitional 7 1.86 1.07

Concrete Operational 14 3.79 0.43

Note. Interscorer reliability was very high on both measures (two items; α = .99 in each case).
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scores within each cognitive developmental category is shown in Figure 
3 (p. 94). Pre-operational children scored lowest on average, gener-
ally needing periodic to step-by-step intervention to select instructions 
based on their actions (M = 1.87 out of 5, SD = 1.46). Their scores are 
distributed across nearly the full range of possible values, with a drop-off 
toward the top of the range. Children in the transitional category scored 
statistically significantly higher (M = 3.86, SD = 1.46, p < .05). Their 
scores are split between the middle and uppermost ranges of possible 
scores; they needed either periodic or no support with correspondence. 
Those in the concrete operational category (M = 5.00, SD = 0.00) also 
scored statistically significantly higher than the pre-operational group (p < 
.001), and their uniform achievement of the highest score indicated no need 
of help in applying this skill.

Looking at program completeness (how close the child’s program was to 
using only the correct instructions in the correct order), the overall sample 
mean was less than 2.5 out of 4 (see Table 3). However, the scores followed 

Figure 2. Frequency of programming achievement scores within the sample. (Note: The program completeness scale 
ranged from 0 to 4, in contrast with the correspondence scale of 0–5.)
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a bimodal distribution (see Figure 2, p. 93). About 40% of children’s final 
programs were either very rough attempts at the “Hokey-Pokey” or even 
unrecognizable as an attempt at the “Hokey-Pokey.” The other 60% of pro-
grams had the five basic actions solution in order or needed to fix a single 
instruction. Interestingly, no children achieved a midrange score (for a final 
program on the right track but needing two changes to be correct).

Figure 4 shows the distribution of completeness scores by developmental 
category. Children in the pre-operational group again scored the low-
est, with an average near 0 out of 4 possible points (M = 0.13, SD = 0.35), 
meaning that their programs were generally unrecognizable as attempts at 
the “Hokey-Pokey.” Children in the transitional category scored statistically 
significantly higher (M = 1.86, SD = 1.07, p < .001). Although this average 
score implies that their programs required two to three fixes to be complete, 
these children actually made either a nearly complete program or a nearly 
unrecognizable attempt at the solution, with no children scoring in the 
middle. Children in the concrete operational group scored the highest, with 
at most one change needed to make their program complete (M = 3.79, SD = 
0.43, p < .001 compared to both other groups).

Figure 3. Frequency of correspondence scores within each cognitive developmental group.

Pre-Operational

Transitional

Concrete Operational

Correspondence Score

Fr
eq

ue
nc

y



Volume 46 Number 1  |   Journal of Research on Technology in Education  |  95

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Discussion
Several compelling results stem from this analysis. First is the preschool and 
kindergarten study participants’ categorization by cognitive developmental 
markers seen in their thinking and problem-solving strategies as they pro-
grammed mobile robots. This categorization allowed a preliminary examina-
tion of the relationship of developmentally based cognitive characteristics 
with the programming skills young children can apply and the extent of their 
achievement. Children in the latter half of pre-operations tended to explore 
the possibilities and boundaries of CHERP rather than engage in specific, 
given challenges. The intuitive problem-solving strategies characteristic of this 
group made the “Hokey-Pokey” goal unattainable. Children in the first phase 
of concrete operations responded quite differently to the task. They enthusias-
tically generated iteratively more precise solutions. Unlike their pre-operation-
al peers, they used empirical feedback and systematic logic to reach the goal. 
When taking on self-defined challenges, their goals were contextualized; they 
wanted to use CHERP to accomplish an imagined scenario and go beyond 
simply understanding how CHERP works, as younger children were satisfied 
to do. Results varied more within the group transitioning between cognitive 
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Figure 4. Frequency of program completeness scores within each cognitive developmental group.
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stages. These children were generally interested in solving the challenge, like 
the concrete operational group, and made some similar progress, though it 
was inconsistently systematic or empirically based. Like the pre-operational 
group, they became stuck before fully solving the challenge and often moved 
on to open-ended explorations.

Another interesting finding was that children across the age range of the 
study seemed to experience similar challenges and successes with manipu-
lating the robotics and programming materials. However, children re-
sponded quite differently to the lesson goal and format. Given the evidence 
presented here, it is expected that children in different stages and substages 
of cognitive development would benefit from learning goals, activities, and 
scaffolding designed specifically for their distinct cognitive characteristics. 

In the pre-operational stage of cognitive development, children’s learning 
outcomes might improve given curricula focused on exploring the program-
ming tool to discover its capabilities and boundaries and to begin to use it 
as an expressive medium. Over time, they can work toward solving short 
challenges, and they benefit from teacher interactions that scaffold careful 
observation and responding iteratively to the results of each new program-
ming effort. These children can reason through or solve limited chunks of a 
larger programming challenge, but they need support in managing aware-
ness of the scope of an activity like the “Hokey-Pokey” and the problem-
solving process it requires. 

Children who have entered the concrete operational stage, on the other 
hand, would likely benefit from an expanded curriculum of contextual-
ized activities akin to the “Hokey-Pokey” task. Activities like this, whether 
defined by a teacher, a curriculum, or the child him/herself, provide a 
context for children in concrete operations to apply their growing systematic 
reasoning and meta-cognitive skills to increasingly complex activities and 
programming concepts. 

To date, new implementations of the TangibleK curriculum have included 
several adaptations based on these ideas. For example, a slower pace and 
expanded focus on the introductory activities are used with the youngest 
participants, allowing more time to explore the tools; whole-group inves-
tigation of higher-level cognitive aspects of programming and robotics is 
also included. Expansion of the curriculum is also being tested with older 
children by providing multiple activities on each concept. 

As this analysis was retrospective, and in many respects a pilot study, it 
had several areas warranting revision and follow-up. Although we grounded 
our method of estimating cognitive development in theory and literature, it 
can be expected that the cognitive and programming achievement variables 
are confounded to an unknown extent. For instance, pre-operational think-
ers are likely to guess and check when problem solving, which naturally cor-
relates to less effective correspondence and sequencing. New studies already 
in progress will employ distinct cognitive and programming measures to 
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allow correlational analysis and provide insights into revising the frame-
work, perhaps by defining multiple transitional categories. A larger, more 
representative sample, including more girls and a wider range of parental 
backgrounds, would support the generalization of these findings. Analysis 
of multiple programming activities per child would also help paint a more 
detailed picture of children’s programming. 

Despite the limitations inherent in this retrospective analysis, its formu-
lation provides a foundation for understanding the variability in program-
ming tool use and achievement seen in this study, and for informing the 
evaluation of the TangibleK Robotics Project learning materials and goals. 
By analyzing the in-depth data collected from almost 30 preschool and kin-
dergarten children, this study has connected a long-standing cognitive de-
velopmental theoretical tradition with the relatively newer realm of engaging 
young children with technologies that invite creativity and problem solving.

Conclusions
Children use new technologies from very young ages today as never 
before, but adults in their lives may not yet know how to support devel-
opmentally appropriate options, for instance, by considering the diverse 
cognitive characteristics children exhibit over the span of only a few years. 
This study, made possible by the design of a framework for retrospective 
estimation of cognitive development, can help parents, educators, and 
technology designers promote positive and meaningful learning experi-
ences with new technologies. The results also point to the need for differ-
entiated learning expectations and curricula for programming throughout 
the early childhood years and perhaps also the design of new program-
ming and robotics technologies.

Some parents and teachers hesitate to have children engage in program-
ming and robotics, citing a preference to limit “screen time.” This well-
founded concern highlights the need to differentiate the current vocabulary, 
as there is a vast difference in the cognitive activity fostered by screen-based 
activities for consumption (i.e., many video games and television) compared 
to those for production (i.e., programming and creative design). In using 
tools like CHERP, children move physically and cognitively between on- 
and off-screen materials as they imagine, plan, and construct a robot and 
its actions; they iteratively observe, analyze, and adapt their work amid new 
discoveries. In a classroom, children naturally investigate the work of their 
peers, collaborate, and negotiate over materials. The robot and its program 
serve as points from which to discuss and reflect on content even after the 
computer has been turned off.

Through rich processes of creation and problem solving, even young chil-
dren can engage in programming robots’ behaviors, bridging the physical 
and digital worlds, and actively exploring both general cognitive skills and 
domain-specific content in developmentally appropriate ways.
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