
Volume 46 Number 1 | Journal of Research on Technology in Education | 81

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Let’s Dance the “Robot Hokey-Pokey!”: Children’s Programming Approaches and Achievement
throughout Early Cognitive Development

JRTE | Vol. 46, No. 1, pp. 81–101 | ©2013 ISTE | iste.org/jrte

Let’s Dance the “Robot Hokey-Pokey!”:
Children’s Programming Approaches and Achievement

throughout Early Cognitive Development

Louise P. Flannery & Marina Umaschi Bers
Tufts University

Abstract

Young learners today generate, express, and interact with sophisticated ideas
using a range of digital tools to explore interactive stories, animations, com-
puter games, and robotics. In recent years, new developmentally appropri-
ate robotics kits have been entering early childhood classrooms. This paper
presents a retrospective analysis of one study within a design-based robotics
research program. We examine how patterns of cognition throughout early
childhood relate to programming approaches and achievement in a robotics
context. The findings lay a foundation for applying cognitive developmental
theory to early technology education and inform the evaluation of the study’s
programming and robotics technologies and curriculum. (Keywords: cogni-
tive development, robotics, computer programming, early childhood educa-
tion, STEM)

Children today, as in the past, explore and create artifacts from the
materials around them. Clearly, though, the affordances of those ma-
terials have dramatically changed with the proliferation and evolu-

tion of computers. Activities from games to model-making and storytelling
that first took form in the physical world have migrated into digital territory
(Bers, 2008; Resnick et al., 2009). Young children’s computer use need not be
synonymous with passivity or pushing down content and learning strate-
gies better suited to older learners (National Association for the Education
of Young Children [NAEYC] & Fred Rogers Center, 2012). Novel advances
in human-computer interaction mechanisms let young children engage in
digital creation, including by programming child-friendly robots to carry
out sequences of behaviors and interactions (e.g., Bers & Horn, 2010).

Working with age-appropriate programming tools and curricula, children
can creatively problem solve and explore powerful interdisciplinary skills and
knowledge (Bers, 2010; Bers & Horn, 2010; Grover & Pea, 2013). However, as
new technological tools reach ever-younger children, more research is needed
to define expectations for developmentally appropriate technology features
and learning activities. The TangibleK Robotics Project (http://ase.tufts.edu/
devtech/tangiblek/), an ongoing design-based research initiative conducted by
the DevTech Research Group at Tufts University, explores learning trajectories

82 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

and developmentally appropriate technical and curricular designs for early-
childhood robotics. Unanticipated observations in one study—namely the
wide variety in young children’s abilities to attend to and solve introductory
programming and robotics challenges—raised questions about the origin
of the disparities. The purpose of this article is to explore a preliminary
hypothesis that cognitive development, which drives dramatic changes in
reasoning throughout early childhood, might also influence achievement in
learning to program robots. In addition to connecting classical developmen-
tal theory with an emerging domain, the overarching goal of this analysis is
to evaluate the developmental assumptions underlying an existing program-
ming tool and curriculum.

Programming in Early Childhood
During the 1970s and 1980s, the first personal computers introduced Logo, a
text-based programming language (Logo Foundation, 2000). Meanwhile in a
research lab, the first tangible children’s programming language also debuted
(Perlman, 1976). Since then, theoretical and empirical work has aimed to
clarify the possible benefits of children’s learning to program and the fea-
tures of technologies and instruction that support positive outcomes (e.g.,
Battista & Clements, 1986; Bers, 2008; Clements & Gullo, 1984; Farr, Yuill,
& Raffle, 2010; Horn, Solovey, & Jacob, 2008; Liao & Bright, 1991; Marshall,
2007; Pea & Kurland, 1984; Pea, Kurland, & Hawkins, 1985). Deep and
meaningful learning can occur when children have rich problems to solve
and powerful tools to work with (Martin, Mikhak, Resnick, Silverman, &
Berg, 2000; Papert, 1993). Re-programmable—rather than minimally inter-
active pre-programmed—toys (Bergen, 2001) give children ownership over
a piece of their world as they playfully imagine, create and program, explore,
share, and reflect on their efforts (Bers, 2012; Resnick, 2006, 2007).

Our perspective on programming in early childhood education en-
compasses two bodies of theoretical work: computational thinking, which
addresses problem solving with computers; and technological literacy and
fluency, which examine expressivity with new technologies. More specifi-
cally, computational thinking describes a broad and still-coalescing range of
analytic and problem-solving skills, dispositions, habits, and approaches as
applied to solving problems with computers and algorithms (Barr, Harrison,
& Conery, 2011; Barr & Stephenson, 2011; Grover & Pea, 2013; Lee et al.,
2011; Guzdial, 2008; International Society for Technology Education [ISTE]
& Computer Science Teachers Association, 2011; Wing, 2008). Building and
programming computational artifacts can facilitate children’s engagement
in such high-level cognitive processes as creative design, problem solving,
divergent thinking, and reflectivity, given a learning context that fosters ac-
tive, iterative, and retrospective thinking and the appropriation of “failures”
as intermediate learning opportunities en route to success (Clements &
Meredith, 1992; Papert, 1993; Resnick, 2006).

Volume 46 Number 1 | Journal of Research on Technology in Education | 83

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Frameworks describing new media literacies and technological fluency
use different terms to do so, but they all focus beyond procedural knowledge
of using computers for word processing or internet research (Massachusetts
Department of Education [MA DOE], 2006; 2008; McGill & Volet, 1997)
and toward creating content as well as exploring and communicating ideas
in a variety of computer-based media (Buckingham, 2007; Jenkins, Puru-
shotma, Weigel, Clinton, & Robison, 2009; New Media Consortium, 2005;
Papert, 1993; Peppler & Kafai, 2007). Just as literacy education aims beyond
decoding letters, words, and sentences toward oral and written fluency, so
too should children develop technological fluency or expressivity.

Technical and interface design advances can and have led to increasingly
child-friendly tools that support engagement with such learning—includ-
ing in early childhood (Grover & Pea, 2013; Revelle, 2013). Children in the
TangibleK Robotics Project used a programming language called CHERP (see
Figure 1), which is designed specifically for their age range to create behav-
iors for robots they build from LEGO robotics construction kits (Bers, 2010;
DevTech Research Group, 2011). Intended for programming robotic vehicles
with such high-level instructions as “Forward” and “Beep,” CHERP offers
children the flexibility to switch between on-screen and tangible interfaces as
they see fit (Horn, Crouser, & Bers, 2011), depending on manual dexterity,

Figure 1. On-screen features of the CHERP interface, including a “Hokey-Pokey” solution (1a), and the tangible interface,
with interconnecting wooden blocks (1b).

84 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

perceived social appeal of the interface, and the challenge of the programming
task at hand. The programming instructions, their representations, and the hy-
brid interface for manipulating them are cognitively and physically accessible
to kindergarteners (Bers & Horn, 2010). Children can use CHERP to explore
powerful ideas from technology-based domains that are often and unnecessar-
ily reserved for older children or adults (Bers, 2008; Bers & Horn, 2010).

Given such early childhood educational technologies, it is up to society
to understand how to use them to foster positive learning outcomes through
formal and informal curricular designs. For instance, explicit instruction
supports learning transfer of domain-specific, technological, and meta-
cognitive knowledge from technology-based learning to other domains
(Clements & Gullo, 1984; Clements & Meredith, 1992; Klahr & Carver,
1988; Nir-Gal & Klein, 2004; Salomon & Perkins, 1987). A less researched
component involves understanding how children’s cognitive developmental
level affects their technology use. Application of this knowledge can result in
effective pedagogical designs to teach not only technology-specific content
but also the high-level thinking skills that make up computational thinking
and technological fluency.

A Contemporary Revision of Piaget’s Stages
Though computers existed only late in Jean Piaget’s life, his work on develop-
mental patterns in children’s thinking applies to young children’s problem-
solving-based computer use today. Core tenets of Piaget’s field-transforming
theory remain salient to current understandings of cognitive development,
from the active and internally driven construction of knowledge to the co-
herent patterns of cognition seen at different ages (Flavell, 1996). Over time,
scholars have also extensively reshaped his theories to specify mechanisms
by which stage transitions occur and new cognitive structures arise, and to
address individual differences observed in these transitions (e.g., Case, 1984;
Feldman, 2004; Fischer, 1980; Granott & Parziale, 2002; Kuhn, 1995; Lewis,
2000; Siegler & Crowley, 1991; van Geert, 1998).

Feldman (2004) reconciles Piaget’s theory with empirical observations of
uneven and gradual progress from one stage to the next and incorporates the
principle of emergence common among other neo-Piagetian theories. Under-
pinning this analysis, a key insight of Feldman’s (2004) theory is that, halfway
into each stage, children move from actively constructing new systems of
thought to energetic application of those systems, building a bridge toward
upcoming cognitive structures. Children in the present study ranged from
about 4.5 to 6.5 years old, a timespan during which children experience sub-
stantial cognitive growth (Case, 1984) as they move from late pre-operations,
somtimes called intuitive operations, toward early concrete operations. The
characteristics of Feldman’s phases highlight the salience of many develop-
mentally influenced thought processes to reasoning, problem solving, com-
puter programming, and understanding how digital objects work.

Volume 46 Number 1 | Journal of Research on Technology in Education | 85

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

During the late pre-operational stage of cognitive development (ages
4–6), children extend and apply culturally learned symbol systems to
interactions with the physical and social world and rely on transductive
reasoning—the joining of unrelated observations in idiosyncratic ways
that the child finds immensely compelling, although they defy adult logic
(Feldman, 2004; Gardner, Kornhaber, & Wake, 1996; McDevitt & Ormrod,
2002). These cognitive structures form the precursors to subsequent increas-
ingly adult-like logic (Feldman, 2004; Gardner et al., 1996). Also shaping the
cognition of children in this stage are difficulties relating multiple aspects of
objects, distinguishing appearances from reality, taking multiple psychologi-
cal and physical perspectives, and mentally manipulating objects (Feldman,
2004; Gardner et al., 1996; McDevitt & Ormrod, 2002). While the 4- or
5-year old child is certainly hard at work asking questions and theorizing
about how the world works, the cognitive tools s/he employs to construct
those theories are unique to that age (Feldman, 2004); thus the child’s con-
clusions also differ drastically from those of older children and adults.

The transitional period described by Feldman’s (2004) model is character-
ized by the staggered appearance of concrete operational mental processes
and inconsistent use of these strategies. The child becomes interested in
exploring concepts and cognitive processes that previously seemed irrel-
evant: using symbol systems to begin constructing categories, hierarchies,
and other relationships, based on the child’s own experience (Feldman,
2004; Gardner et al., 1996). During this period, children may switch between
patterns of thought characteristic of the developmental level they are leaving
and the level they are entering, as the grasp of these concepts will solidify
only later on (Feldman, 2004).

By around 6 years of age, a child is likely switching into concrete op-
erational patterns of thinking (Lightfoot, Cole, & Cole, 2009). S/he is now
familiar with representing the world with both mental and physical symbols,
and the work of the second phase of pre-operations has prepared the child’s
cognitive structures for transformation toward interest and competence in
more logical reasoning (Feldman, 2004). Children this age begin to simul-
taneously consider multiple aspects of situations or objects, allowing them
to work with conservation of quantities and the concepts of categories and
hierarchies (Feldman, 2004). A 6-year-old increasingly understands physical
and psychological points of view other than his/her own. Around this time,
a child also relies increasingly on logical reasoning about causal relation-
ships, empirical observations, and the distinction between appearances and
reality (Lightfoot et al., 2009; McDevitt & Ormrod, 2002). While a child this
age typically uses concrete materials to build mental models or representa-
tions (Feldman, 2004), s/he does not rely on the physical object’s immedi-
ate presence to mentally consider and manipulate it (Lightfoot et al., 2009).
The 6-year-old also becomes more able to plan a series of actions to fulfill
a goal and to think flexibly in doing so, and cognition in this stage is aided

86 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

by increasing memory capacity and meta-cognition (Lightfoot et al., 2009).
Over the next 2 or 3 years, the child will consolidate the cognitive structures
necessary to successfully apply these new cognitive skills (Feldman, 2004).

Understanding the natural distinctions in cognitive resources available to
a 4-year-old and a 6-year-old, as described by Piaget and subsequent cogni-
tive developmentalists, may aid in evaluating technology-based materials
and activities that engage children in logical reasoning—such as program-
ming a robot.

Research Design
The present analysis focuses on one iteration of the TangibleK Robot-
ics Project, a design-based research program (e.g., Barab & Squire, 2004;
Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) intended to detail what
kindergarteners can understand about programming and robotics and how
developmentally appropriate tools can support learning in early childhood
classrooms. The study described in this paper occurred during TangibleK’s
third year, following piloting of the CHERP programming technology and a
classroom curriculum. In depth and laboratory based, this study document-
ed individual children’s learning and problem-solving processes. Participants
of this study attended a small-group session for pre-assessments and intro-
duction to the technologies, and then three individual sessions in which they
constructed a robotic vehicle, learned new programming concepts, attempt-
ed a programming challenge, and reflected on their work. Post-assessments
took place during the final session. We present relevant data here to examine
the role of cognitive development and subsequently inform evaluation of the
programming and robotics materials and curriculum.

Throughout this study, researchers observed an unanticipated range in
children’s uses of the programming tools and their programming achieve-
ment. This article, framed as a retrospective analysis, examines children’s
first individual programming activity to uncover what patterns exist in pro-
gramming approaches and achievement based on estimated level of cogni-
tive development.

Variables

Cognitive developmental level. Cognitive development was not among the
original study variables; however, we designed a framework to classify each
child’s thinking processes during the programming task, as representative of
one of three substages of cognitive development from Feldman’s (2004) revi-
sion of Piaget’s model. Programming, while not a traditional Piagetian assess-
ment, is a rich source of logico-mathematical and deductive reasoning—the
types of thinking most relevant to Piaget’s theory (Case, 1984). We compiled
characteristics of the framework’s three categories—late pre-operations,
transitional, and early concrete operations—from the literature and mapped

Volume 46 Number 1 | Journal of Research on Technology in Education | 87

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

them to a programming context. We gave three core elements of the chil-
dren’s approach subscores based on video and written data: the child’s goal,
and the intuitive versus systematic nature of the initial solution strategy and
solution revision strategies. We determined overall developmental level from
the component scores, taking into consideration other cognitive operations
as needed (see Table 1).

Programming achievement. We assessed children's programming achieve-
ment based on their ability to program a mobile robot to dance the “Robot
Hokey-Pokey”:

You put your robot in (Forward)/You put your robot out (Backward)/
You put your robot in (Forward)/And you shake it all about! (Shake)/
It does the Hokey-Pokey, and it turns itself around (Spin)/
And that’s what it’s all about! (Sing)/*Clap, clap!* (Beep, Beep)

After the researcher ensured familiarity with the song and its actions,
the child worked on the challenge without conceptual assistance from
the researcher. Instead, the researcher reflected back any questions,
creating a supportive environment without providing answers. After a set
time, the researcher helped the child complete any unfinished aspects of
the challenge.

Pre-Operational Transitional Concrete Operational

Goal Orientation Focuses primarily or exclusively
on open-ended exploration.
May try the “Hokey-Pokey” (HP)
nominally or cursorily. *

Tries HP (with interest and effort)
but leaves it due to interest
in other explorations or being
unable to debug further (may
claim an incomplete program is
successful).

Focuses primarily on HP with
little or no redirection through
to a nearly or fully complete
solution. May explore openly
before/during HP.

Initial Solution Nominal, cursory, or no attempt.
OR Intuitive approach (considers
actions but not order).

Intuitive approach with limited
systematic logic (order).

Logical approach (step-by-step
sequencing).

Debugging
Attitudes and
Strategies

Indifferent to the need to debug
or to the results of any unsuc-
cessful efforts.

Interested in improving the pro-
gram but cannot figure out how.

Driven to find best answer.
OR Gets answer right away and
knows it.

Nominal, cursory, or no attempt.
OR Intuitive approach (e.g. guess-
and-check).

Mixed approach intuitive / logical
& empirical.
Limited / inflexible ideas on how
to systematically debug.

Logical / empirical approach.
Flexible if one idea does not
work.

Perspective and
Classification

Attributes agency inappropriately
to self versus the robot.

Attributes agency appropriately
to self versus the robot.

Confused by different orientations
of the computer, blocks, robot,
map, and self.

Unconstrained by different
orientations of the computer,
blocks, robot, map, and self.

Single classification for “blocks.” Multiple classifications for
“blocks.”

*This includes situations in which the child verbally claims to be working on the Hokey-Pokey, perhaps in an effort to avoid conflict
with a perceived authority figure, but actually makes a completely unrelated program and shows through other behavior or speech
that the Hokey-Pokey is not the actual goal.

Table 1. Cognitive Stage Markers in Programming Rubric

88 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

We assessed programming achievement at two levels. Defined as pur-
posefully choosing programming instructions to match the song’s actions,
correspondence was assessed on a Likert scale from 0 (cannot achieve)
through 5 (achieves without assistance); intermediary values represented
increasing levels of support that the child needed to successfully apply this
cognitive skill within the timespan of the session. Program completeness
measured correctly sequencing instructions in addition to making ac-
curate action-instruction correspondences. The assessment scale, shown
in Table 2, indicates how many changes a child’s independently created
program needs to match an accepted solution; the scale ranges from 0
(unrecognizable as an attempt at the “Hokey-Pokey”) to 4 (all required
instructions in exact order).

Sample
The original study included 36 children recruited from Boston-area towns and
cities via the research group’s website, email, and the snowball effect. Twenty-
nine met inclusion criteria for this analysis: sufficient documentation of the

Table 2. “Hokey-Pokey” Program Completeness Assessment Rubric

Scoring Instructions

•	 Must represent Forward | Backward | Forward | Shake | Spin. Do not score Begin/End.
•	 May use Turn(s) for Spin, sounds at the beginning or end, or a second, consecutive Shake or Spin.
•	 Use the fewest possible fixes to reach an accepted solution.

Definitions of Fixes

Addition One of the 5 basic solution instructions is missing and needs to be added.

Swap 2 consecutive instructions need to be switched.

Deletion An instruction needs to be removed.

Distinguish The child consistently confused 2 similar instructions (e.g. Backward and Forward), so these instruc-
tions need to be exchanged.

Scale and Examples

4 – no fixes

3 – one fix 1 addition	 Forward | Backward |Shake | Spin
1 swap	 Forward | Forward | Backward |Shake | Spin
1 deletion	 Forward | Backward | Forward | Shake | Backward | Spin

2 – two fixes 2 additions Forward | Backward | Shake
2 swaps	 Forward | Forward | Backward | Spin | Shake
2 deletions	 Forward | Backward | Shake | Forward | Shake | Spin | Right
1 addition, 1 swap	 Backward | Forward | Spin | Shake
1 addition, 1 deletion 	 Forward | Sing | Backward | Forward | Shake
1 swap, 1 deletion	 Backward | Forward | Forward | Shake | Left | Spin

1 – three+ fixes The child clearly attempted to make a Hokey-Pokey program. The program has 2 correct actions and
few if any extras, other than reduplications. These tend to be fairly short.
2 instructions, no reduplications	 Forward |Shake | Sing
2 instructions, with reduplications Backward | Backward | Sing | Sing | Spin | Spin
A copy of CHERP’s graphical instruction set, given the child’s recognition that parts match the song.

0 – avoided task /
unrecognizable

The child did not attempt to make a Hokey-Pokey program.	
OR The program is so incomplete as to be unrecognizable as a clear attempt at the Hokey-Pokey. (The
child may or may not have claimed it to be a Hokey-Pokey attempt. These tend to be long compared
to programs assessed as 1.)

Volume 46 Number 1 | Journal of Research on Technology in Education | 89

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

child’s thinking (as communicated verbally or behaviorally) to allow inter-
rater reliability testing, the child’s attempt of the assigned programming task
or a structural equivalent, and no evidence that the study format prevented
the child from demonstrating his or her best efforts. The 29-child subsample
was composed of 38% girls and 62% boys. Kindergarteners (20 children)
made up 69% of the sample, and preschoolers (9 children) made up the
remaining 31%. Age at the time of each child’s first session ranged from 4.4
years to 6.6 years; mean age was 5.6 years. The group came about evenly
from urban and suburban neighborhoods. Eleven children (38%) attended
public schools, whereas 18 (62%) attended private schools. (The lower avail-
ability of public preschools compared to public kindergartens probably ac-
counts for the skew.) Children also came from multiple ethnic, cultural, and
language backgrounds.

Most families (89%) had a parent with a master’s or doctoral degree.
More than half had a parent whose culminating degree and/or occupation
related to science, technology, engineering, or math. Almost a third of the
children had a parent with prior exposure to robotics, and two-thirds had a
parent with prior programming experience. Three-quarters of the children
used a computer at home, mostly to play games. A third had used program-
mable robots, but no parents reported that their children had programmed
(there may be discrepancies in definitions of “programming”). Although this
sample’s characteristics may reflect the subset of families interested in early
childhood robotics more than the general population of U.S. families with
preschoolers and kindergarteners, it does provide a useful starting point for
exploratory research.

Results

Comparison of Developmental Levels
Using the cognitive development measure described earlier, we categorized
each child’s reasoning as being characteristic of late pre-operational (28%
of the sample), transitional (24%), or early concrete operational (48%).
Inter-scorer reliability tests showed precise agreement (two items; α = 1.00).
The skew toward concrete operational reflects preferential recruitment of
kindergarteners for the study’s original goals. Each developmental category
included roughly the same proportions of demographic, experiential, and
parental characteristics as the overall study sample, with a few variations.

Children in each successive category were older, on average (F(2,28) =
5.5, p < .01). The mean age of pre-operational children fell at 5.2 years (SD
= 0.50); almost half a year higher for the transitional category, 5.6 years
(SD = 0.69); and highest for children in concrete operations, 5.9 years (SD
= 0.40). Only the difference between the earliest and latest developmental
categories was statistically significant (p < .01), reflecting broad individual
variability in the age at which developmental transitions occur. Other

90 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

differences were artifacts of the sample. Children in the earliest cognitive
developmental phase were more likely to attend private school (χ2(2, N = 29)
= 7.16, p < 0.05), use computers at home (χ2(2, N = 29) = 9.89, p < .01), and
have a parent with prior programming experience (χ2(2, N = 28) = 6.71, p <
.05) than children in the higher levels. Overall, aside from expected age dif-
ferences, the three developmental groups had characteristics that were fairly
similar to the sample as a whole.

Programming in Late Pre-Operations
Eight children (28% of the sample) exhibited late pre-operational reasoning
during the “Hokey-Pokey” activity. Half of these children disregarded the
given challenge to focus instead on open-ended explorations of the robot’s
capabilities. Two children claimed that exploratory programs matched the
“Hokey-Pokey,” perhaps to appear compliant. The other half of the children
in this category tried, at least for a while, to create the “Hokey-Pokey.” Rely-
ing heavily on trial-and-error, they thought of one or two actions, with little
further progress. They had difficulty assessing whether the robot had done
what they expected and what to fix if it had not. For some, starting over
seemed easier than revising their in-progress solution. Having exhausted
their intuitive strategies, children waited for researcher assistance; turned to
more familiar activities, such as building with LEGOs; or explored the pro-
gramming tool more. The lack of progress toward the “Hokey-Pokey” goal
concerned some children, while others happily ignored the unfinished task
in favor of their general exploration.

Programming in the Transitional Phase
Seven children (24% of the sample) exhibited a mix of characteristics of
pre-operations and concrete operations, placing them in this intermediate
category. All of the children were interested in the given activity and made
some systematic progress toward a “Hokey-Pokey” program. However, they
encountered difficulties in fully applying systematic and empirical strategies.
The abilities and general approaches seen within this group varied much
more than in the other groups. It is likely that this category comprises chil-
dren who were just beginning to use some concrete operational structures as
well as some children who were much further along in the transition.

Four transitional children started with an intuitive guess and were able
to make some systematic revisions before getting stuck. They ended up with
either a program that nearly matched the “Hokey-Pokey” or a program that
matched the song in length and a few specific actions. One child knew what
actions she needed—and in the correct order—but was unable to interpret
CHERP’s “Forward” and “Backward” instructions as representations of the
“in” and “out” movements in the verse. Two other children began with a sys-
tematic approach. One decided his program was close enough and declined
to try improving it; the other systematically improved his program—with

Volume 46 Number 1 | Journal of Research on Technology in Education | 91

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

encouragement—before resorting to a guess-and-check strategy and ending
up with an almost complete solution.

Children in the transitional group each had difficulty with at least one
aspect of debugging: recognizing a problem with the current solution,
generating a hypothesis about the cause, and attempting to solve the prob-
lem. In response to this situation, the children variously insisted that they
were stuck, reverted to unsuccessful intuitive strategies, or decided that an
incomplete solution was satisfactory. Sometimes children applied systematic
debugging toward interesting problem variations. One child worked hard to
match his program to the song’s length even though the specific actions did
not match, and another tried to direct the order and timing of lines as the
researcher sang them so that the song would match his program rather than
the other way around.

There were two categories of final program completeness within the
transitional group. Half the children ended up with programs resembling
“Hokey-Pokey” prototypes using only two of the five actions, and the
children were quite aware that their programs were incomplete. The other
half ended up with programs with only one instruction off, but they seemed
to have no interest in or awareness of this difference. These final programs
are almost on par with those of children in the concrete operational group.
However, the transitional children who made them tended not to have done
any debugging, which requires additional cognitive flexibility and was com-
mon to concrete operational children. Additionally, transitional children
who used musical instructions tended to do so simply to indicate that the
“Hokey-Pokey” is a song, rather than to represent the last line of the song
and the clapping that follows. Overall, there was an interesting bimodal
pattern of reasoning among children in the transitional category as well as
variety in the unique mixes of systematic and intuitive strategies used by
each child.

Programming in Early Concrete Operations
Fourteen children (48% of the sample) used cognitive strategies typical of
early concrete operations. Their work during the “Hokey-Pokey” program-
ming activity is markedly different from that of the pre-operational children
and, to a somewhat lesser extent, from that of the transitional children. Chil-
dren scored as concrete operational tended to stay on task once they started,
staying focused until arriving at a complete or nearly complete solution.
The children in this developmental category used systematic approaches
to create and tweak their programs and were quick to notice errors and try
to fix them, a striking and significant difference from children in the other
categories. To create their first programs, children in concrete operations
relied more on parsing the song step by step than on intuitively recalling
its elements. Then they applied their empirical observations of the robot
carrying out the program to assess their solution. Some also “read through”

92 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

their programs block by block while saying the song to themselves to assess
whether the program and song matched.

Children in concrete operations recognized whether an instruction was
missing, unnecessary, or out of order, which children in the pre-operational
category had great difficulty doing. Children in this category were rarely sat-
isfied with a program that was not entirely complete, as opposed to children
in the transitional and pre-operational categories, who were quite likely to
declare a partially complete or even completely unrelated program success-
ful. This evolution of self-imposed standards seems to parallel the increas-
ing orientation toward exactness in “bring[ing] a productive situation to
completion” during the elementary school years (Erikson, 1998, p. 72).

Three of the 14 concrete operational children put together a correct
solution on their first try. The others revised and tested (debugged) their
programs one to five times. Of the 11 children who used such an iterative
trouble-shooting process, about half began with a long program (four to
seven instructions), which they corrected by re-ordering, adding, or remov-
ing instructions as needed. The other half began with a small portion of the
final solution—two or three instructions—and built up to the final solution
with each debugging iteration.

Developmental Level and Achievement
Children at each level of cognitive development varied distinctly in their
approaches to programming. This trend is also seen in their achievement of
core programming concepts and skills. Average achievement levels of two
programming concepts—correspondence and final program completeness—
were high across the full sample, but the different distribution of scores in
each developmental category warrants further discussion.

For making correspondences between programming instructions and
robotic actions, the overall mean score was nearly 4 out of 5—needing
little help to apply this concept (see Table 3). However, 62% of the children
achieved the highest score (a ceiling effect), whereas the remaining 38%
were distributed among the lower scores (see Figure 2). The distribution of

Table 3. Programming Achievement by Cognitive Developmental Level

Outcome Variable Level n M SD

Correspondence Full Sample 29 3.86 1.66

Pre-Operational 8 1.87 1.46

Transitional 7 3.86 1.46

Concrete Operational 14 5.00 0.00

Program Completeness Full Sample 29 2.31 1.69

Pre-Operational 8 0.13 0.35

Transitional 7 1.86 1.07

Concrete Operational 14 3.79 0.43

Note. Interscorer reliability was very high on both measures (two items; α = .99 in each case).

Volume 46 Number 1 | Journal of Research on Technology in Education | 93

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

scores within each cognitive developmental category is shown in Figure
3 (p. 94). Pre-operational children scored lowest on average, gener-
ally needing periodic to step-by-step intervention to select instructions
based on their actions (M = 1.87 out of 5, SD = 1.46). Their scores are
distributed across nearly the full range of possible values, with a drop-off
toward the top of the range. Children in the transitional category scored
statistically significantly higher (M = 3.86, SD = 1.46, p < .05). Their
scores are split between the middle and uppermost ranges of possible
scores; they needed either periodic or no support with correspondence.
Those in the concrete operational category (M = 5.00, SD = 0.00) also
scored statistically significantly higher than the pre-operational group (p <
.001), and their uniform achievement of the highest score indicated no need
of help in applying this skill.

Looking at program completeness (how close the child’s program was to
using only the correct instructions in the correct order), the overall sample
mean was less than 2.5 out of 4 (see Table 3). However, the scores followed

Figure 2. Frequency of programming achievement scores within the sample. (Note: The program completeness scale
ranged from 0 to 4, in contrast with the correspondence scale of 0–5.)

Fr
eq

ue
nc

y

Programming Score

Correspondence

Program Completeness

94 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

a bimodal distribution (see Figure 2, p. 93). About 40% of children’s final
programs were either very rough attempts at the “Hokey-Pokey” or even
unrecognizable as an attempt at the “Hokey-Pokey.” The other 60% of pro-
grams had the five basic actions solution in order or needed to fix a single
instruction. Interestingly, no children achieved a midrange score (for a final
program on the right track but needing two changes to be correct).

Figure 4 shows the distribution of completeness scores by developmental
category. Children in the pre-operational group again scored the low-
est, with an average near 0 out of 4 possible points (M = 0.13, SD = 0.35),
meaning that their programs were generally unrecognizable as attempts at
the “Hokey-Pokey.” Children in the transitional category scored statistically
significantly higher (M = 1.86, SD = 1.07, p < .001). Although this average
score implies that their programs required two to three fixes to be complete,
these children actually made either a nearly complete program or a nearly
unrecognizable attempt at the solution, with no children scoring in the
middle. Children in the concrete operational group scored the highest, with
at most one change needed to make their program complete (M = 3.79, SD =
0.43, p < .001 compared to both other groups).

Figure 3. Frequency of correspondence scores within each cognitive developmental group.

Pre-Operational

Transitional

Concrete Operational

Correspondence Score

Fr
eq

ue
nc

y

Volume 46 Number 1 | Journal of Research on Technology in Education | 95

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Discussion
Several compelling results stem from this analysis. First is the preschool and
kindergarten study participants’ categorization by cognitive developmental
markers seen in their thinking and problem-solving strategies as they pro-
grammed mobile robots. This categorization allowed a preliminary examina-
tion of the relationship of developmentally based cognitive characteristics
with the programming skills young children can apply and the extent of their
achievement. Children in the latter half of pre-operations tended to explore
the possibilities and boundaries of CHERP rather than engage in specific,
given challenges. The intuitive problem-solving strategies characteristic of this
group made the “Hokey-Pokey” goal unattainable. Children in the first phase
of concrete operations responded quite differently to the task. They enthusias-
tically generated iteratively more precise solutions. Unlike their pre-operation-
al peers, they used empirical feedback and systematic logic to reach the goal.
When taking on self-defined challenges, their goals were contextualized; they
wanted to use CHERP to accomplish an imagined scenario and go beyond
simply understanding how CHERP works, as younger children were satisfied
to do. Results varied more within the group transitioning between cognitive

Concrete Operational

Transitional

Pre-Operational

Figure 4. Frequency of program completeness scores within each cognitive developmental group.

Program Completeness Score

Fr
eq

ue
nc

y

96 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

stages. These children were generally interested in solving the challenge, like
the concrete operational group, and made some similar progress, though it
was inconsistently systematic or empirically based. Like the pre-operational
group, they became stuck before fully solving the challenge and often moved
on to open-ended explorations.

Another interesting finding was that children across the age range of the
study seemed to experience similar challenges and successes with manipu-
lating the robotics and programming materials. However, children re-
sponded quite differently to the lesson goal and format. Given the evidence
presented here, it is expected that children in different stages and substages
of cognitive development would benefit from learning goals, activities, and
scaffolding designed specifically for their distinct cognitive characteristics.

In the pre-operational stage of cognitive development, children’s learning
outcomes might improve given curricula focused on exploring the program-
ming tool to discover its capabilities and boundaries and to begin to use it
as an expressive medium. Over time, they can work toward solving short
challenges, and they benefit from teacher interactions that scaffold careful
observation and responding iteratively to the results of each new program-
ming effort. These children can reason through or solve limited chunks of a
larger programming challenge, but they need support in managing aware-
ness of the scope of an activity like the “Hokey-Pokey” and the problem-
solving process it requires.

Children who have entered the concrete operational stage, on the other
hand, would likely benefit from an expanded curriculum of contextual-
ized activities akin to the “Hokey-Pokey” task. Activities like this, whether
defined by a teacher, a curriculum, or the child him/herself, provide a
context for children in concrete operations to apply their growing systematic
reasoning and meta-cognitive skills to increasingly complex activities and
programming concepts.

To date, new implementations of the TangibleK curriculum have included
several adaptations based on these ideas. For example, a slower pace and
expanded focus on the introductory activities are used with the youngest
participants, allowing more time to explore the tools; whole-group inves-
tigation of higher-level cognitive aspects of programming and robotics is
also included. Expansion of the curriculum is also being tested with older
children by providing multiple activities on each concept.

As this analysis was retrospective, and in many respects a pilot study, it
had several areas warranting revision and follow-up. Although we grounded
our method of estimating cognitive development in theory and literature, it
can be expected that the cognitive and programming achievement variables
are confounded to an unknown extent. For instance, pre-operational think-
ers are likely to guess and check when problem solving, which naturally cor-
relates to less effective correspondence and sequencing. New studies already
in progress will employ distinct cognitive and programming measures to

Volume 46 Number 1 | Journal of Research on Technology in Education | 97

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

allow correlational analysis and provide insights into revising the frame-
work, perhaps by defining multiple transitional categories. A larger, more
representative sample, including more girls and a wider range of parental
backgrounds, would support the generalization of these findings. Analysis
of multiple programming activities per child would also help paint a more
detailed picture of children’s programming.

Despite the limitations inherent in this retrospective analysis, its formu-
lation provides a foundation for understanding the variability in program-
ming tool use and achievement seen in this study, and for informing the
evaluation of the TangibleK Robotics Project learning materials and goals.
By analyzing the in-depth data collected from almost 30 preschool and kin-
dergarten children, this study has connected a long-standing cognitive de-
velopmental theoretical tradition with the relatively newer realm of engaging
young children with technologies that invite creativity and problem solving.

Conclusions
Children use new technologies from very young ages today as never
before, but adults in their lives may not yet know how to support devel-
opmentally appropriate options, for instance, by considering the diverse
cognitive characteristics children exhibit over the span of only a few years.
This study, made possible by the design of a framework for retrospective
estimation of cognitive development, can help parents, educators, and
technology designers promote positive and meaningful learning experi-
ences with new technologies. The results also point to the need for differ-
entiated learning expectations and curricula for programming throughout
the early childhood years and perhaps also the design of new program-
ming and robotics technologies.

Some parents and teachers hesitate to have children engage in program-
ming and robotics, citing a preference to limit “screen time.” This well-
founded concern highlights the need to differentiate the current vocabulary,
as there is a vast difference in the cognitive activity fostered by screen-based
activities for consumption (i.e., many video games and television) compared
to those for production (i.e., programming and creative design). In using
tools like CHERP, children move physically and cognitively between on-
and off-screen materials as they imagine, plan, and construct a robot and
its actions; they iteratively observe, analyze, and adapt their work amid new
discoveries. In a classroom, children naturally investigate the work of their
peers, collaborate, and negotiate over materials. The robot and its program
serve as points from which to discuss and reflect on content even after the
computer has been turned off.

Through rich processes of creation and problem solving, even young chil-
dren can engage in programming robots’ behaviors, bridging the physical
and digital worlds, and actively exploring both general cognitive skills and
domain-specific content in developmentally appropriate ways.

98 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Acknowledgments
We would like to express our gratitude to Professors David Henry Feldman and Bakhtiar Mikhak.
This work was supported by National Science Foundation Grant #DRL-0735657.

Author Notes
Louise P. Flannery is a research scientist and coordinator in the DevTech Research Group in
the Eliot-Pearson Department of Child Development at Tufts University. Her research interests
encompass cognitive development, reasoning, and learning throughout early childhood and the
application of these to the design of new educational technologies, especially those for creative
expression and construction. Please address correspondence regarding this article to Louise P.
Flannery, Tufts University, Eliot-Pearson Dept. of Child Development, 105 College Ave, Medford,
MA 02155. E-mail: louise.flannery@alumni.tufts.edu

Marina Umaschi Bers has joint appointments at Tufts University as professor in the Eliot-Pearson
Department of Child Development and adjunct professor in the Computer Science Department.
As head of the interdisciplinary DevTech Research Group, her research involves the design and
study of innovative learning technologies to promote children’s positive development.

References
Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of

the Learning Sciences, 13(1), 1–14. doi:10.1207/s15327809jls1301_1
Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for

everyone. Learning and Leading with Technology, 38(6), 20–23.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved

and what is the role of the computer science education community? ACM Inroads, 2(1),
48–54. doi:10.1145/1929887.1929905

Battista, M. T., & Clements, D. H. (1986). Effects of Logo and CAI environments on cognition
and creativity. Journal of Educational Psychology, 78(4), 309–318. doi:10.1037/0022-
0663.78.4.309

Bergen, D. (2001). Learning in the robotic world: Active or reactive? Childhood Education,
77(4), 249–250.

Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom.
New York: Teachers College.

Bers, M. (2010). The TangibleK Robotics Program: Applied computational thinking for young
children. Early Childhood Research & Practice, 12(2). Retrieved from http://ecrp.uiuc.edu/
v12n2/bers.html

Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen
to playground. Oxford, UK: Oxford Press.

Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: Revisiting
developmental assumptions through new technologies. In I. R. Berson & M. J. Berson
(Eds.), High-tech tots (pp. 49–70). Greenwich, CT: Information Age.

Buckingham, D. (2007). Digital media literacies: Rethinking media education in the age of the
Internet. Research in Comparative and International Education, 2(1), 43–55. doi:10.2304/
rcie.2007.2.1.43

Case, R. (1984). The process of stage transition: A neo-Piagetian view. In R. Sternberg (Ed.),
Mechanisms of cognitive development (pp. 19–44). San Francisco: Freeman.

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s
cognition. Journal of Educational Psychology, 76(6), 1051–1058. doi:10.1037/0022-
0663.76.6.1051

Clements, D. H., & Meredith, J. S. (1992). Research on Logo: Effects and efficacy. Retrieved
from http://el.media.mit.edu/logo-foundation/pubs/papers/research_logo.html

Volume 46 Number 1 | Journal of Research on Technology in Education | 99

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design
experiments in educational research. Educational Researcher, 32(1), 9–13.
doi:10.3102/0013189X032001009

DevTech Research Group (2011). C.H.E.R.P. Retrieved from http://ase.tufts.edu/DevTech/
tangiblek/research/CHERP.asp

Erikson, E. H. (1998). Eight stages of man. In C. L. Cooper & L. A. Pervin (Eds.), Personality:
Critical concepts in psychology (pp. 67–77). London: Routledge.

Farr, W., Yuill, N., & Raffle, H. (2010). Social benefits of a tangible user interface for children
with autistic spectrum conditions. Autism, 14(3), 237–252. doi:10.1177/1362361310363280

Feldman, D. H. (2004). Piaget’s stages: The unfinished symphony of cognitive development.
New Ideas in Psychology, 22, 175–231. doi:10.1016/j.newideapsych.2004.11.005

Fischer, K. (1980). A theory of cognitive development: The control and construction of
hierarchies of skills. Psychological Review, 87(4), 477–531. doi:10.1037/0033-295X.87.6.477

Flavell, J. H. (1996). Piaget’s legacy. Psychological Science, 7(4), 200–203.
doi:10.1111/j.1467-9280.1996.tb00359.x

Gardner, H., Kornhaber, M. L., & Wake, W. K. (1996). Intelligence: Multiple perspectives. Fort
Worth, TX: Harcourt Brace College.

Granott, N., & Parziale, J. (2002). Introduction. In N. Granott & J. Parziale (Eds.),
Microdevelopment: Transition processes in development and learning (pp. 1–28). Cambridge,
UK: Cambridge University Press.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the
field. Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM,
51(8), 25–27. doi:10.1145/1378704.1378713

Horn, M. S., Crouser, R. J., & Bers, M. U. (2011). Tangible interaction and learning: The case a
hybrid approach. Personal and Ubiquitous Computing, Special Issue: Tangibles and Children.
doi:10.1007/s00779-011-0404-2

Horn, M. S., Solovey, E. T., & Jacob, R. J. (2008). Tangible programming and informal science
learning: Making TUIs work for museums. In Proceedings of the Seventh International
Conference on Interaction Design and Children (pp. 194–201). New York: ACM.
doi:10.1145/1463689.1463756

ISTE & Computer Science Teachers Association (2011). Operational definition of
computational thinking for K–12 education. Retrieved from http://www.iste.org/docs/ct-
documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2

Jenkins, H., Purushotma, R., Weigel, M., Clinton, K., & Robison, A. J. (2009). Confronting the
challenges of participatory culture: Media education for the 21st century. Cambridge, MA:
MIT Press.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:
Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362–404. doi:10.1016/0010-
0285(88)90004-7

Kuhn, D. (1995). Microgenetic study of change: What has it told us? Psychological Science,
6(3), 133–139. doi:10.1111/j.1467-9280.1995.tb00322.x

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J. ... Werner, L.
(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.
doi:10.1145/1929887.1929902

Lewis, M. D. (2000). The promise of dynamic systems approaches for an integrated account of
human development. Child Development, 71(1), 36–43.

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of computer programming on cognitive
outcomes: A meta-analysis. Journal of Educational Computing Research, 7(3), 251–268.
doi:10.2190/E53G-HH8K-AJRR-K69M

Lightfoot, C., Cole, M., & Cole, S. (Eds.) (2009). The development of children (6th ed.). New
York: Worth.

100 | Journal of Research on Technology in Education | Volume 46 Number 1

Flannery & Bers

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Logo Foundation (2000). What is Logo? Retrieved from http://el.media.mit.edu/logo-
foundation/logo/index.html

MA DOE (2006). Massachusetts science and technology/engineering curriculum framework.
Retrieved from http://www.doe.mass.edu/frameworks/scitech/1006.pdf

MA DOE (2008). Massachusetts technology literacy standards and expectations. Retrieved from
http://www.doe.mass.edu/odl/standards/itstand.pdf

Marshall, P. (2007). Do tangibles enhance learning? In Proceedings of the First International
Conference on Tangible and Embedded Interaction (pp. 163–170). New York: ACM.
doi:10.1145/1226969.1227004

Martin, F., Mikhak, B., Resnick, M., Silverman, B., & Berg, R. (2000). To mindstorms and
beyond: Evolution of a construction kit for magical machines. In A. Druin & J. A. Hendler
(Eds.), Robots for kids: Exploring new technologies for learning (pp. 9–33). San Francisco:
Morgan Kaufman.

McDevitt, T. M., & Ormrod, J. E. (2002). Child development and education. Upper Saddle
River, NJ: Merrill/Prentice Hall.

McGill, T. J., & Volet, S. E. (1997). A conceptual framework for analyzing students’ knowledge
of programming. Journal of Research on Computing in Education, 29(3), 276–297.

NAEYC & Fred Rogers Center (2012). Technology and interactive media as tools in early
childhood programs serving children from birth through age 8. Retrieved from http://www.
naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf

New Media Consortium (2005). A global imperative: The report of the 21st century literacy
summit. Retrieved from http://www.nmc.org/pdf/Global_Imperative.pdf

Nir-Gal, O., & Klein, P. S. (2004). Computers for cognitive development in early childhood:
The teacher’s role in the computer learning environment. Information Technology in
Childhood Education Annual, 2004(1), 97–119.

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). New York:
Basic Books.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer
programming. New Ideas in Psychology, 2(2), 137–168. doi:10.1016/0732-118X(84)90018-7

Pea, R. D., Kurland, D. M., & Hawkins, J. (1985). Logo and the development of thinking skills.
In M. Chen & W. Paisley (Eds.), Children and microcomputers: Research on the newest
medium (pp. 193–317). Beverly Hills, CA: Sage.

Peppler, K. A., & Kafai, Y. B. (2007). From SuperGoo to Scratch: Exploring creative media
production in informal learning. Learning, Media and Technology, Special Issue: Media
Education Goes Digital, 32(2), 149–166. doi:10.1080/17439880701343337

Perlman, R. (1976). Using computer technology to provide a creative learning environment for
preschool children (AI Memo 360: Logo Memo No. 24). Cambridge, MA: MIT Artificial
Intelligence Laboratory.

Resnick, M. (2006). Computer as paintbrush: Technology, play, and the creative society. In D.
Singer, R. Golikoff, & K. Hirsh-Pasek (Eds.), Play = learning: How play motivates and enhances
children’s cognitive and social-emotional growth. Oxford, UK: Oxford University Press.

Resnick, M. (2007). Sowing the seeds of a more creative society. Learning & Leading with
Technology, 35(4), 18–22. doi:10.1108/14777280710828549

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ...
Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.
doi:10.1145/1592761.1592779

Revelle, G. (2013). Applying developmental theory and research to the creation of educational
games. New Directions for Child and Adolescent Development, 2013(139), 31–40.
doi:10.1002/cad.20029

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When
and how? Journal of Educational Computing Research, 3(2), 149–169. doi:10.2190/6F4Q-
7861-QWA5-8PL1

Volume 46 Number 1 | Journal of Research on Technology in Education | 101

Children's Programming throughout Early Cognitive Development

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying
cognitive development. American Psychologist, 46(6), 606–620.

van Geert, P. (1998). A dynamic systems model of basic developmental mechanisms:
Piaget, Vygotsky, and beyond. Psychological Review, 105(4), 634–677. doi:10.1037//0033-
295X.105.4.634-677

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society—Series A, 366, 3717–3725. doi:10.1098/rsta.2008.0118

Manuscript received October 12, 2012 | Initial decision March 26, 2013 | Revised manuscript accepted May 20, 2013

Copyright © 2013, ISTE (International Society for Technology in Education), 800.336.5191
(U.S. & Canada) or 541.302.3777 (Int’l), iste@iste.org, iste.org. All rights reserved.

