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Abstract

How do we learn what we know about others? Answering this question
requires understanding the perceptual mechanisms with which we recog-
nize individuals and their actions, and the processes by which the resulting
perceptual representations lead to inferences about people’s mental states
and traits. This review discusses recent behavioral, neural and compu-
tational studies that have contributed to this broad research program,
encompassing both social perception and social cognition.
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1 INTRODUCTION

The past decade has seen significant progress in the study of person perception
and the representation of person knowledge. New methods for generating stim-
uli, analyzing brain data and modeling behavior have led to new observations
and opened the door to new questions. However, the literature on perception
and the literature on person knowledge have remained largely separate, with
limited interchange between them.

Building on recent advances, we can begin to envision the goal of under-
standing how people construct and use models of other agents, starting from
the perceptual mechanisms that transform sensory inputs into representations
of individuals and their actions, continuing with how these representations are
used to infer emotions, beliefs, and traits, and concluding with how these infer-
ences are used to understand and predict others’ behavior.

These processes are deeply interrelated: each of them depends on the inputs
it receives from the others and on the behavioral functions it needs to support.
In this article, we provide an overview of current work in this area, bringing
together the literatures on social perception and person knowledge.

2 PERSON PERCEPTION

Perception plays a fundamental role in the acquisition of person knowledge.
Observing others’ actions unfold in the world, we can make inferences about
their emotions, beliefs and traits. Even when we learn something about a person
from a third party, the original observer must have engaged with the challenge
of starting from a sequence of observations to infer a mental state or a trait that
could then be communicated.

The term ‘person perception’ has been sometimes used in the literature
to refer to a variety of processes, including some that have little to do with
perception itself (i.e. retrieving knowledge about a person from memory given
their name). In this article we reserve the term for the recognition of agents
and their identities, and for the recognition of expressions and actions.

2.1 Recognizing agents and conspecifics

Recognizing an entity as an agent and as a conspecific are two fundamental steps
in social cognition. They can lead an observer to attribute goals, traits, and
beliefs, and to expect that the entity might initiate actions. Furthermore, they
can induce the observer to consider the entity’s possible reactions to his/her
own behavior.

2.1.1 Recognition of agents from static images

Entities can be visually recognized as agents using static information such as
shape as well as other cues (i.e. color, texture). Humans can detect the pres-
ence of animals and faces in static images rapidly and from very brief exposures.
Above-chance animal detection is achieved for images presented for as short as
20ms, and behavioral responses are produced as early as 290ms after stimulus
onset [Thorpe et al., 1996]. The 290ms include the time to plan and execute
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a motor response: EEG data indicate that differences between the neural re-
sponses to animals and inanimate objects emerge as early as 150ms post stimulus
onset [Thorpe et al., 1996]. It has been argued that the speed of categorization
suggests that this process is largely feedforward [Serre et al., 2007].

The ability to discriminate between animate and inanimate objects from
pictures is relatively robust to damage. Object recognition deficits affect the
ability to categorize objects at a basic and subordinate level [Caramazza and
Mahon, 2003], but do not usually affect the ability to recognize whether or
not an object is an animal. The animate-inanimate distinction is a large-scale
principle of organization of visual cortex [Chao et al., 1999]. Category-specific
brain regions showing selective responses to faces [Sergent et al., 1992, Kan-
wisher et al., 1997] and bodies [Downing et al., 2001] lie within broader areas
of selectivity for animals, comprised between the object-selective regions in the
medial fusiform gyrus and the dorsal stream [Konkle and Caramazza, 2013].
Category-specificity might be the outcome of computational demands [Leibo
et al., 2015].

Brain regions showing selectivity for faces and bodies do not respond ex-
clusively to conspecifics. For example, the fusiform face area (FFA) responds
equally strongly to faces of humans and of cats [Tong et al., 2000]. Despite this,
several lines of evidence indicate that conspecifics hold a special status among
types of animals. A recent study in humans found that human faces could be dis-
criminated from animals in MEG signals as early as 100ms post stimulus onset
[Cauchoix et al., 2014], suggesting that conspecifics might hold a special sta-
tus among basic-level categories. Neuroimaging studies have found that faces
of conspecifics can be discriminated from faces of other animal species based
on response patterns in ventral prefrontal cortex [Anzellotti and Caramazza,
2014a].

2.1.2 Motion, agency and animacy

Motion cues play a critical role for the recognition of agents. Humans attribute
goals and intentions even to geometric shapes that appear to move intentionally
[Heider and Simmel, 1944], suggesting that motion information is used not only
to recognize known types of agents, but also to infer that novel, never-before
encountered entities might be agents.

Biological motion selectively activates the posterior temporal sulcus (pSTS,
Pelphrey et al. [2005]). Identifying regions distinguishing humans from other
animals based on biological motion is challenging: humans are bipedal while
animals often are not, so pedalism can be a confound. A recent study used point-
light displays depicting the motion of infants and chicken to control for pedalism,
and found that information distinguishing point-light displays of humans from
animals across pedalism (that is, for both infants and adults - Papeo et al.
[2017]) could be decoded in left pSTS and posterior cingulate. The right STS
encodes information distinguishing bipeds from quadrupeds, but in right STS
responses to light displays of humans and of other bipedal animals (chickens)
could not be distinguished [Papeo et al., 2017].

Geometric shapes that appear to move intentionally [Heider and Simmel,
1944] elicit activity in the pSTS bilaterally and in lateral portions of fusiform
gyrus approximately corresponding to the areas which show increased responses
to animals [Chao et al., 1999, Konkle and Caramazza, 2013]. This finding sug-

4



gests that dynamic cues can induce objects of arbitrary shapes to be processed
by neural systems specialized for animal recognition. More broadly, it suggests
that the organization of ventral temporal regions might not be solely driven by
static visual features. Importantly, biological motion recognition is impaired in
children with autism spectrum disorders (ASD) [Blake et al., 2003]; however,
the causal link between deficits for biological motion and other social deficits in
ASD remains unknown.

Agency is distinct from animacy: self-initiated action is not unique to ani-
mals. Natural phenomena like wind, rain, and avalanches have agency without
animacy [Lowder and Gordon, 2015]. A recent study [Jozwik et al., 2018] used a
wide array of stimuli to investigate the extent to which animacy judgments are
predicted by a set of relevant properties: ‘being alive’, ‘looking like an animal’,
‘having mobility’, ‘having agency’ and ‘being unpredictable’. The properties
‘being alive’ and ‘having agency’ were the most correlated, with correlation
values r > 0.6. Attribution of animacy differs across cultures. For example,
indigenous Ngöbe of Panama are more likely than US citizens to attribute in-
tentions to plants and to infer that they engage in social actions like kin altruism
[Medin et al., 2017].

2.2 Recognizing individuals

Social behavior relies critically on the recognition of people’s identity. Upon
recognizing the identity of a person we can acquire knowledge about them and
then retrieve it on future encounters. Recognition of person identity relies on
specialized neural mechanisms that can be selectively impaired while sparing the
recognition of other object domains [Hecaen and Angelergues, 1962, Rezlescu
et al., 2014]. Face-selective regions encode information about individual faces
[Kriegeskorte et al., 2007, Natu et al., 2008, Nestor et al., 2011] and exhibit
different extents of generalization across image transformations: the occipital
face area (OFA) and FFA only generalize across changes in viewpoint [Anzellotti
et al., 2013, Anzellotti and Caramazza, 2014b], while the anterior temporal lobe
also generalizes across face parts [Anzellotti and Caramazza, 2015].1 A similar
organization consisting of selective patches with different degrees of generaliza-
tion is observed in macaque monkeys [Freiwald and Tsao, 2010]. Furthermore,
single neurons appear to represent dimensions of a face space, and have orthog-
onal subspaces of faces within which their responses are approximately constant
[Chang and Tsao, 2017].

Person identity can also be recognized using information about someone’s
face movements, gait, and voice. Observers use information about face move-
ments during identity recognition [Dobs et al., 2016], and integrate it with shape
information weighting different cues depending on their reliability [Dobs et al.,
2017]. The identity of moving individuals can be decoded from STS, and, when
the individuals are close to the observer, from body-selective regions like the
extrastriate body area and the fusiform body area [Hahn et al., 2016, Hahn and
O’toole, 2017]. Voice identity can also be decoded from the STS [Formisano
et al., 2008, Anzellotti and Caramazza, 2017, Hasan et al., 2016]. Furthermore,
STS encodes representations of person identity that generalize across the visual
and auditory modality [Anzellotti and Caramazza, 2017].

1Different temporal stages of face processing have been recently identified with electroen-
cephalography [Kietzmann et al., 2017].
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In addition to cues such as the face, body, movements, and voice, we perceive
the context in which we encounter people - including the place and the moment
in time in which we encounter them [Bar, 2004, Bar et al., 2006, Kaiser and
Cichy, 2018, Castelhano and Pereira, 2017]. Faces presented in a context in
which they had previously been seen are recognized faster [Hanczakowski et al.,
2015]. Furthermore, presenting novel faces in a context where another face
had been previously shown increases false alarm rates for judgments of face
familiarity [Gruppuso et al., 2007].

2.2.1 Familiar faces and people

Familiar faces are recognized more accurately than unfamiliar faces using part
of the face, and are recognized more accurately given presentation of the in-
ner part of the face than given the contour [Ellis et al., 1979]. Familiar faces
are also recognized faster than unfamiliar faces [Ramon et al., 2011]. Familiar
people are recognized more accurately than unfamiliar people in noisy videos
showing their faces and bodies [Burton et al., 1999], and performance signifi-
cantly worsens for familiar people when the faces are obscured. This suggests
that information about the face contributes importantly, and person recognition
could not be completed at the same level of accuracy relying only on the body.
Taken together, this evidence shows that familiarity alters the process of face
recognition, leading to greater speed, accuracy, and robustness to information
loss in the stimuli.

Familiar faces lead to stronger responses than unfamiliar faces in several
cortical regions, including posterior cingulate, medial prefrontal cortex, ante-
rior STS, and hippocampus [Leveroni et al., 2000, Gobbini and Haxby, 2007].
Recognition of familiar faces and matching of unfamiliar faces show double-
dissociations in patients [Malone et al., 1982, Young et al., 1993]. A patient
with damage to medial parietal regions presented with impaired recognition of
familiar and famous people, alongside spared matching of different images of
unfamiliar faces with the same identity [Malone et al., 1982]. This finding is
in line with the possible causal role of medial parietal cortex (i.e. posterior
cingulate) for familiar face recognition.

Patients with semantic dementia [Hodges et al., 1992] can also present with
deficits for the recognition of famous people, with greater deficits for the recog-
nition of famous faces in patients with disproportionate atrophy to the right
hemisphere and greater deficits for the recognition of famous names in patients
with disproportionate atrophy to the left hemisphere [Snowden et al., 2004].
These observations and more recent neuroimaging results [Wang et al., 2017]
have led to the proposal that the anterior temporal lobe (ATL) might serve as
a hub for the integration of knowledge about people [Wang et al., 2017]. In
macaques, familiar faces disproportionately activate a patch in the temporal
pole, and one in entorhinal cortex [Landi and Freiwald, 2017]. The relative
contributions of posterior cingulate and ATL remain unknown.

2.3 Recognizing facial expressions

Facial expressions can provide important cues about others’ mental states. The
view that expressions are clear and unambiguous indicators of specific emo-
tions [Ekman, 1992, 1999], however, is challenged by several lines of evidence
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showing that facial expressions can be highly ambiguous [Aviezer et al., 2012],
demonstrating the importance of context for expression recognition [Carroll and
Russell, 1996, Barrett et al., 2011, Hassin et al., 2013].

However, spontaneous facial expressions still convey sufficient information
to infer emotions with above-chance accuracy2 [Wagner et al., 1986], and ex-
pressions can be used to infer desires and beliefs [Wu and Schulz, 2018]. Fur-
thermore, facial expressions might be used to disambiguate between alternative
possible emotional reactions to a given context [Saxe and Houlihan, 2017]. Facial
expression recognition is affected by familiarity: expressions of famous people
are recognized more accurately than expressions of unfamiliar people [Baudouin
et al., 2000].

An influential account of the neural bases of face processing holds that fa-
cial expressions and face identity are processed by distinct pathways [Haxby
et al., 2000]: ventral temporal regions (OFA and FFA) would be specialized for
face identity, while pSTS would be specialized for facial expressions. Indeed,
in pSTS, emotional faces yield a stronger response than neutral faces [Engell
and Haxby, 2007], and produce response patterns that can be used to decode
emotional valence [Skerry and Saxe, 2014]. Multivariate analyses show that the
pSTS encodes information about emotion that generalizes across facial expres-
sions, voices, body posture [Peelen et al., 2010, Skerry and Saxe, 2014], and
information about specific face movements [Srinivasan et al., 2016, Deen and
Saxe, 2019].

However, support for a complete separation between identity recognition
and expression recognition is weaker than is often assumed [Calder and Young,
2005, Bernstein and Yovel, 2015]. Emotional faces yield stronger responses than
neutral faces not only in pSTS but also in occipital and fusiform regions [Engell
and Haxby, 2007], and the valence of expressions can be decoded from the OFA
and the FFA [Skerry and Saxe, 2014]. In addition, recent results show that
face identity can be decoded from patterns of activity in pSTS [Anzellotti and
Caramazza, 2017], and a patient with a lesion involving the pSTS (Fox et al.
[2011], patient 5) showed impairments not only for the recognition of facial
expressions, but also for the recognition of identity across different expressions.

One possible explanation for the finding that identity can be decoded from
pSTS is that information about identity is not discarded entirely in the pathway
for recognition of facial expressions. According to an alternative hypothesis, it
might be computationally efficient to implement the recognition of identity and
expressions within the same neural mechanisms: recognition of identity could
help to isolate what aspects of an image are due to expression, and vice versa.3

If recognition of identity and expression are intertwined, we would predict
that as recognition of facial expressions improves from region to region in the
processing hierarchy, recognition of identity would also improve. A recent study
found that classification of identity using features from the layers of a deep
network trained to label facial expressions increased from layer to layer, even
though the deep network had not been trained to recognize identity [O’Nell
et al., 2019].

2Here a participant’s response is considered as ‘accurate’ if it matches consensus of inde-
pendent observers, this is to some extent an abuse of language because the true emotion that
was experienced by the person in the image is usually not known.

3This hypothesis is consistent with the proposal that pSTS might also contribute to recog-
nition of identity from dynamic stimuli [O’Toole et al., 2002].
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The broader area surrounding the face-selective pSTS might play a more
general role for recognition of identity from face and body motion. Gait can
be used not only for recognizing conspecifics [Papeo et al., 2017], but also for
recognizing identity [O’Toole et al., 2011, Simhi and Yovel, 2016]. Regions of
pSTS neighboring the face-selective pSTS respond to biological motion and to
point light displays [Martin and Weisberg, 2003]. Taken together, this evidence
suggests that a larger patch of pSTS including the face-selective pSTS might be
a multimodal convergence zone integrating motion and form information as well
as auditory information [Yovel and O’Toole, 2016, Peelen et al., 2010, Anzellotti
and Caramazza, 2017].

2.4 Recognizing actions

Recognizing the actions of other agents is critical for detecting threats, engag-
ing in cooperation, and coordinating our own actions with consideration to the
social context around us. Actions can be recognized at different levels of ab-
straction. For example, transitive actions (actions that involve an object) can
be categorized based on the category of the object involved: we can recognize
the opening or closing of a specific bottle, of any bottle, or of any object (i.e. a
bottle and a box, Wurm and Lingnau [2015]). Actions can also be categorized at
different levels of abstraction based on their goal. We can recognize the action
of clapping, or at a more abstract level the action of producing sound.

2.4.1 Neural mechanisms for action recognition

Neuroimaging studies show that action observation leads to increased responses
in lateral occipito-temporal cortex (LOTC) [Watson et al., 2013, Lingnau and
Downing, 2015], as well as pSTS, anterior intraparietal sulcus/inferior parietal
lobule (aIPS/IPL), ventral premotor cortex (PMv), and the supplementary mo-
tor area (SMA) [Grafton et al., 1996, Rizzolatti et al., 1996, Buccino et al., 2001,
Molnar-Szakacs et al., 2006, Cross et al., 2006]. This network of brain regions
is often referred to as the ‘action observation network’ (AON) [Calvo-Merino
et al., 2006, Cross et al., 2009]. A similar network of brain regions is activated
by biological motion [Grezes et al., 2001].

Furthermore, different actions can be decoded from the patterns of response
in LOTC [Oosterhof et al., 2010], in the aIPS/IPL [Dinstein et al., 2008], and
in ventral premotor cortex [Wurm and Lingnau, 2015]. In PMv, decoding of
actions succeeds at the most concrete level, but generalization (i.e. opening
vs closing across different types of bottles, or opening vs closing of bottles and
boxes) fails [Wurm and Lingnau, 2015]. Furthermore, decoding in PMv succeeds
only when participants are explicitly requested to recognize actions [Wurm et al.,
2016]. By contrast, in aIPS/IPL and in LOTC classification succeeded at both
concrete and abstract levels [Wurm and Lingnau, 2015], and even when recog-
nizing actions is not required by the task [Wurm et al., 2016]. Representations
of actions in portions of LOTC generalize across videos and sentences [Wurm
and Caramazza, 2018], lending additional support to the view that LOTC en-
codes abstract representations of actions. Representations in aIPS/IPL encode
information about abstract functions of objects (i.e. ‘an umbrella is for protect-
ing oneself from the rain’. It remains unknown whether such representations
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and the aIPS/IPL representations of actions [Wurm and Lingnau, 2015, Wurm
et al., 2016] overlap.

Recent work shows that LOTC is organized at a macroscopic scale by the
transitivity and sociality of actions. Pattern similarity in dorsal portions of
LOTC reflects how similar actions are in terms of sociality, whereas pattern
similarity in ventral portions reflects how similar actions are in terms of transi-
tivity [Wurm et al., 2017].

According to an influential proposal, recognizing actions relies on the neu-
ral mechanisms for action execution [Rizzolatti et al., 2001, Rizzolatti and
Craighero, 2004, Rizzolatti and Sinigaglia, 2016]: action understanding consists
in a ‘direct mapping’ from perception to motor representations of an action
[Iacoboni et al., 1999]. This perspective, however, is fraught with theoretical
and empirical issues [Caramazza et al., 2014]. The finding that mirror neu-
rons respond to both observed actions and executed actions is symmetrical: it
could be used just as well to claim that action execution is performed by visual
simulation. Furthermore, observed actions are different from any action the ob-
server can perform (they are performed with a different body); therefore, some
abstraction would need to occur before the appropriate motor representations
could be accessed. At the empirical level, there is extensive evidence for pre-
cisely this type of abstraction in the LOTC [Wurm and Lingnau, 2015, Wurm
et al., 2017], which does not respond during action execution. In addition, pa-
tients with impairments for action execution [Negri et al., 2007] and patients
with upper limb dysplasia [Vannuscorps and Caramazza, 2016] can have spared
action recognition.

3 PERSON KNOWLEDGE

Humans represent a wealth of information about others, ranging from some-
one’s current mental states (i.e. emotions and thoughts), to more lasting traits
(i.e. personality and moral values), from semantic knowledge (i.e. someone’s
occupation) to episodic memories of particular moment spent with someone (i.e.
meeting family arriving at the airport). Understanding person knowledge re-
quires understanding 1) what information we represent about others, 2) how
this information is acquired, and 3) how this information is used to make new
inferences and decisions. We will discuss in separate subsections emotions, be-
liefs and intentions, and traits, but this does not amount to a claim that they
are distinct natural kinds. Due to space limitations, for semantic knowledge we
refer the reader to recent reviews [Ralph et al., 2017, Leshinskaya et al., 2017,
Yee et al., 2018].

3.1 Emotions

Since the focus of this article is on person knowledge, we discuss emotion at-
tribution, not the first-person experience of emotions. For this reason, some
important theories of first person emotion recognition will not be discussed in
detail (i.e. Barrett [2014]).
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3.1.1 Structure

The theory of basic emotions [Ekman, 1992] proposes that emotions can be
represented as a vectors of 5 values encoding the intensity of each of the basic
emotions: anger, disgust, fear, happiness, and sadness. By contrast, according
to the circumplex model, emotions are represented as lying on a circle within
the space spanned by valence and arousal [Russell, 1980, Feldman Barrett and
Russell, 1998, Russell and Barrett, 1999, Russell et al., 2003]. The distance
between two emotions in this space reflects the similarity between them. A key
idea introduced by the circumplex theory [Russell, 1980] is that emotions might
not be best represented as a vector space, but as a manifold (i.e. see Tenenbaum
[1998]).

Recent models suggest that more than 5 dimensions might be needed to cap-
ture human emotion attribution. A space consisting of 38 appraisal dimensions
was found to outperform a model using 5 basic emotions and a model using va-
lence and arousal [Skerry and Saxe, 2015]. An optimized 10 dimensional space
could achieve very similar performance to the 38 appraisal dimensions [Skerry
and Saxe, 2015]. It remains unknown whether representations of emotions may
be captured by an even lower dimensional nonlinear manifold embedded in this
10 dimensional space. The dimensionality of emotion space may also depend on
the stimuli used: a broader range of stimuli might elicit a variety of emotions
that require more dimensions.

Observers are usually uncertain about the emotion experienced by an agent.
Emotion attribution can be thought as the process of inferring a probability
distribution on the space of emotions [Gygax et al., 2003, Ong et al., 2015, Saxe
and Houlihan, 2017]. The language of probability also helps to differentiate
between the notions of similarity, independence, and transition probability. We
can use the term ‘independence’ in the sense of probability theory: two emotions
are independent if knowing that a person is experiencing one of them does not
affect how likely it is that the same person is experiencing the other. Two
emotions might be dissimilar but not independent, and vice versa. For example,
being surprised and being upset feel quite different, but someone who does not
like surprises might often be upset when she is surprised (dependence without
similarity). Finally, in addition to asking whether the presence of an emotion
at a given time makes another emotion more or less likely at the same time, we
can ask whether one emotion makes another emotion more or less likely some
time later (‘transition probability’).

In sum, representations of emotions could be thought of as consisting of
an emotion space or manifold, equipped with 1) a similarity metric and 2)
a stochastic process that captures the non-independence between emotion di-
mensions and the dependence of emotions on their history (see Lewis [2005],
Thornton and Tamir [2017], Tamir and Thornton [2018]). Individual-specific
stochastic processes can be learned, representing information about the tempo-
ral dynamics of an emotion for that individual (i.e. ‘does he hold a grudge?’),
and the interactions between different emotions (i.e. ‘does she get upset when
she is surprised?’). These issues bring us closer to the topic of traits which will
be discussed later.
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3.1.2 Inference

Observers can infer emotions from several types of cues, including facial expres-
sions, actions, and situations [Gygax et al., 2003, Skerry and Saxe, 2014]. Recent
studies propose to understand emotion attribution using ideas from probabil-
ity theory and Bayesian model inversion [Ong et al., 2015, Saxe and Houlihan,
2017]. These studies are part of a broader literature using Bayesian models as
a window into several facets of person knowledge, including the attribution of
desires [Baker et al., 2009, Baker and Tenenbaum, 2014, Baker et al., 2017], in-
tentions [Jern and Kemp, 2015, Jara-Ettinger et al., 2016, 2017], and preferences
[Jern et al., 2011, Gershman et al., 2017]. In the case of emotions, partially ob-
servable causes (i.e. a situation) lead to non-observable emotional states, which
in turn lead to observable actions and facial expressions. As a consequence, the
probability of non-observable emotional states can be inferred on the basis of
the observable causes and the observable actions and expressions, combining a
model that links the observable causes to the likely resulting emotional states
and the inversion of a model that links the emotional states to the observed
actions and facial expressions [Saxe and Houlihan, 2017].

3.1.3 Neural bases

The neural bases for the recognition of facial expressions have been discussed
in detail in the section on perception. Recent work investigated representations
of emotions, when they recognized from a facial expression, and when they are
inferred based on information about a situation (without any facial expressions
shown) [Skerry and Saxe, 2014]. Dorsomedial prefrontal cortex (DMPFC) was
found to encode the valence of emotions generalizing across facial expressions
and situations [Skerry and Saxe, 2014], suggesting that this brain region encodes
abstract representations of the valence of emotions.

3.2 Beliefs and intentions

3.2.1 Structure

Candidate theories of the representations of one’s own beliefs can also be used
as candidate theories of how we represent the beliefs of others4. Modeling the
structure of beliefs is extremely challenging. One challenge is that beliefs are tied
to the complexity of the world, and the world itself is changing. Models in the
field of artificial intelligence and natural language processing attempt to capture
world knowledge as a network of concepts and their relations [Speer et al., 2017,
Miller, 1995, Goodman et al., 2014]. Another challenge comes from the fact that
different representational structures might be used as a function of the task: this
view has been put forward in the context of ‘commonsense knowledge’ [Minsky,
2000]. Improving models of world knowledge is a key direction of research in
current artificial intelligence [Shi and Weninger, 2018], and research in social
psychology could leverage these advances to investigate how we represent the
beliefs of others. In addition to these complexities, beliefs about other agents
can be recursive (‘I believe that she believes that I believe...’, Goodie et al.
[2012]), and models with many levels of recursion rapidly become intractable.

4Although of course the appropriate theories for the representation of one’s own beliefs
and for the representation of others’ beliefs might be different.
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Several models have been proposed for the structure of intentions/goals
[Austin and Vancouver, 1996]. The most influential accounts are based on a
hierarchy of goals organized in clusters at different levels (i.e. Chulef et al.
[2001]). Dimensional accounts of goals have also been proposed (i.e. Winell
[1987]), leading to 6 proposed factors: ‘importance’, ‘difficulty’, ‘specificity’,
‘temporal range’, ‘level of consciousness’, and ‘connectedness’ [Austin and Van-
couver, 1996].

3.2.2 Inference

A wealth of research has investigated the development of intention understand-
ing, for lack of space we refer the reader to existing reviews [Tomasello et al.,
2005]. Recent studies have focused on the attribution of intentions and beliefs
in controlled settings, where the space of beliefs and intentions is restricted so
that it becomes tractable [Baker et al., 2009, 2017]. Bayesian models have been
successful at modeling human inferences about beliefs and intentions in these
controlled settings, mirroring closely the inferences made by participants [Baker
and Tenenbaum, 2014, Baker et al., 2017]. The framework of Partially Observ-
able Markov Decision Processes (POMDPs, Cassandra [1998]) has been used to
account for how multiple sequential observations are integrated during inference
[Baker and Tenenbaum, 2014, Baker et al., 2017].

3.2.3 Neural bases

A wealth of research has investigated the neural mechanisms by which humans
attribute beliefs to others, consistently identifying a network of brain regions
including the dorsal and ventral sub-regions of the medial prefrontal cortex
(DMPFC, VMPFC), right and left temporo-parietal junction (RTPJ, LTPJ),
and precuneus. Brain regions in the ‘Theory of Mind Network’ or ToM [Frith
and Frith, 2000, Gallagher and Frith, 2003] show stronger responses when par-
ticipants read stories about others’ thoughts and feelings than when they read
about physical properties of objects [Fletcher et al., 1995]. The same effect holds
when the stories are presented with visual vignettes in the absence of text [Gal-
lagher et al., 2000]. These regions also respond more when participants attribute
false beliefs to a character than during control tasks such as inferring a physi-
cal process like melting or rusting and representing ‘false’ photographs or maps
[Saxe and Kanwisher, 2003], and more to sentences describing thoughts than
facts [Zaitchik et al., 2010]. A recent activation likelihood estimation (ALE)
meta-analyss of 144 datasets (3150 participants) uncovered MPFC and bilat-
eral TPJ activation across all ToM tasks sampled [Molenberghs et al., 2016].
In sum, regions in the ToM network respond during the attribution of beliefs
to others across a variety of experimental paradigms (see Koster-Hale and Saxe
[2013] for an in-depth review).

Patterns of activity in RTPJ can be used to decode whether participants
think that another’s action was intentional or accidental [Koster-Hale et al.,
2013], and to decode the strength of the evidence supporting a belief as well as
the modality through which the belief was acquired [Koster-Hale et al., 2017] (see
also Mengotti et al. [2017] for TMS evidence that RTPJ contributes to updating
probabilistic beliefs). Other recent work has combined inhibitory continuous
theta-burst TMS with model-based fMRI to look at the causal role of the RTPJ
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in ToM in a game context [Hill et al., 2017]. TMS to the RTPJ disrupted
participants’ estimation of how their own actions would influence the other
player’s strategy, as well as the functional connectivity of the RTPJ to VMPFC
and DMPFC.

3.3 Traits

In addition to mental states, beliefs, and intentions, observers attribute to others
more lasting properties - traits [Allport and Odbert, 1936]. Whether or not
states and traits are qualitatively different is an open issue in the literature
[Allen and Potkay, 1981, Anzellotti, 2019].

3.3.1 Structure

Early research has led to the identification of five factors that capture most of
participants’ variability in trait ratings, where the ratings were collected with
scales asking questions such as ‘to what degree is person X fearful’ [Digman,
1990]. The finding of five reliable factors has been replicated by several groups of
researchers [Tupes and Christal, 1992, Norman, 1963], and across very different
populations of participants, such as teachers rating children and college students
rating one another [Digman and Takemoto-Chock, 1981].

Other dimensions capturing traits have been proposed in the literature, such
as warmth and competence [Fiske et al., 2018], agency and experience [Gray
et al., 2007], and trustworthiness and social dominance [Oosterhof and Todorov,
2008]. A recent study collected behavioral ratings along the dimensions pro-
posed by previous theories for 60 famous people chosen to span a variety of
traits, and used principal component analysis to identify three dimensions that
explain most of the variance (‘power’,‘valence’, and ‘sociality’) [Thornton and
Mitchell, 2017]. These dimensions account for a high percentage (66%) of the
reliable variance in fMRI responses within regions responding reliably to the 60
people’s names [Thornton and Mitchell, 2017].

More recently, it has been proposed that other people might be represented
as the sum of the mental states they usually experience [Thornton et al., 2018],
and this ‘sums of states’ model has been shown to outperform the previous three
dimensional model [Thornton and Mitchell, 2017] at explaining neural responses
[Thornton et al., 2018]. However, the sums of states model only accounts for
the frequency of mental states and not for individual differences in responding
to different situations. For instance two different individuals might experience
fear equally often, but one could be afraid of heights while the other could be
afraid of spiders - it seems unlikely that human observers would not represent
the differences between these individuals.

3.3.2 Inference

Behavioral studies have investigated how participants form representations of
others based on descriptions, behaviors [Hastie, 1980], nonverbal behaviors
[Kraft-Todd et al., 2017], and face images [Todorov and Uleman, 2002, 2003]. A
seminal paper [Hastie, 1980] introduced a model of the mechanism of impression
formation and of the retrieval of person knowledge that was subsequently ex-
panded to account for a variety of behavioral findings on person memory [Srull
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and Wyer, 1989].
Recently, studies on intelligence attribution [Kryven et al., 2016, Kryven,

2018] have used controlled experimental paradigms, Bayesian models and the
inverse planning approach [Baker et al., 2009] to study how observers judge the
ability of players weighing the importance of successful outcomes vs optimal
strategies. This work takes initial steps towards the long-term goal of building
task-performing models that can produce human-like trait inferences based on
perceptual inputs.

3.3.3 Neural bases

In the section on perception of familiar people, we discussed the involvement
of posterior cingulate, anterior STS and hippocampus, and medial prefrontal
cortex (mPFC). Early social neuroscience studies found stronger responses in
mPFC when participants were presented with behaviors and asked to form an
impression about the character performing those behaviors than when they were
presented with the same behaviors and asked to remember their order [Mitchell
et al., 2004].

Furthermore, mPFC responds more during trials that will be successfully
remembered [Mitchell et al., 2004, Baron et al., 2010], and during formation of
impressions about people than during formation of impressions about objects
[Mitchell et al., 2005]. In addition, mPFC responds more to action that are
diagnostic of traits than to actions that are not (i.e. ‘he played his music loud at
the public picnic grounds’ vs ‘he ordered a cup of coffee at Starbucks’) [Mitchell
et al., 2006]. Response patterns in mPFC also distinguish between individuals
with high and low agreeableness, and between individuals with different trait
combinations [Hassabis et al., 2013].

After being told a set of behaviors implying a trait, a new inconsistent be-
havior leads to stronger responses in mPFC [Ma et al., 2011, Mende-Siedlecki
et al., 2012]. A recent study [Ferrari et al., 2016] found that applying tran-
scranial magnetic stimulation (TMS) to mPFC affects impression updating, re-
ducing the extent to which participants revise their judgments of an individual
from trustworthy to untrustworthy. This finding [Ferrari et al., 2016] provides
causal evidence for the involvement of mPFC in trait representations. We refer
the reader to a recent review [Mende-Siedlecki, 2018] for in-depth discussion of
impression updating.

In addition to mPFC, other brain regions might be involved in the repre-
sentation of traits. Individuals high versus low in extraversion can be classified
from the posterior cingulate, but not from mPFC [Hassabis et al., 2013]. Fur-
thermore, a recent study found that the anterior temporal lobe (ATL) tracks the
valence associated with social groups [Spiers et al., 2017]. A wealth of neuropsy-
chological studies implicates ATL in the representation of semantic knowledge
about people [Ellis et al., 1989, Snowden et al., 2012] - its role for the represen-
tation of traits remains to be elucidated.

4 OUTSTANDING QUESTIONS

The past decade has seen significant progress in our understanding of the ac-
quisition of person knowledge. Despite this progress, many questions remain
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open.

4.1 How is person knowledge acquired from observation?

The study of how knowledge is acquired from perceptual inputs is in its infancy,
and it is challenging in several respects. First, it requires a joint understanding
of the perceptual mechanisms providing the inputs from inference and of the
inferential processes [Schirmer and Adolphs, 2017, Grill-Spector et al., 2018].
Second, it requires a consideration of the integration of observations about an
agent and about context [Carroll and Russell, 1996, Aviezer et al., 2012, Saxe
and Houlihan, 2017, Baker et al., 2017]. Third, it requires us to characterize
the acquisition of information over time, and the use of previously acquired
knowledge jointly with new perceptual inputs [Ma et al., 2011, Mende-Siedlecki
et al., 2012, Hassabis et al., 2013]. Current computational studies have focused
mostly on states, and computational models of trait learning are few (intelli-
gence is a notable exception Kryven et al. [2016], Kryven [2018]). Furthermore,
existing models are usually limited to constrained scenarios, and cannot explain
the acquisition of person knowledge in naturalistic settings.

4.2 Towards integrated person models

Most studies in the literature adopt a ‘divide et impera’ strategy, isolating a
particular kind of representation or inference. However, understanding other
agents requires person models that capture the interactions and causal relations
among emotions, goals, beliefs, traits, and other properties of an agent.

The need for rich models that capture multiple aspects of an agent and go
beyond simple statistical associations is not new. The literature on schemas in
the 1980s arose from the realization that associative models were inadequate for
a variety of cognitive processes [Simon, 1978, Anderson, 1980, Hastie, 1980]. At
the time, formalizing these latent models and using them to generate measurable
predictions proved a daunting challenge [Fiske and Linville, 1980].

Current computational techniques are beginning to make this kind of re-
search possible. The investigation of individual types of representations and
processes is leading to the study of pairwise interactions, in the recognition of
identity and expressions [Dobs et al., 2016, O’Nell et al., 2019], of goals and
beliefs [Baker and Tenenbaum, 2014], of states and traits [Tamir and Thornton,
2018, Anzellotti, 2019], of group membership and moral judgments [Waytz and
Young, 2018].

A related issue is that observers likely use different models at different levels
of complexity in different circumstances [Minsky, 2000, Gershman et al., 2016].
Therefore, understanding how humans acquire knowledge about others likely
does not mean just understanding one model of agents, but possibly an ensemble
of models together with mechanisms to select which models in the ensemble to
adopt depending on the situation.

4.3 Person model impairments

Finally, disorders of social cognition such as autism spectrum disorder affect mil-
lions of people across the world [Christensen et al., 2018]. Our understanding
of the cognitive and neural mechanisms affected in these disorders is still very
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limited. We hope that the formulation of models that capture the inferences
and predictions of healthy controls and the study of their neural implementa-
tion can help to pinpoint quantitatively which components of the computations
are affected in patients, and lead to a clearer picture of the underlying neural
impairments.

5 CONCLUSIONS

We have attempted to collect in one article an overview of studies ranging from
perception to social cognition, that are converging to shape our understanding
of how humans recognize and make sense of others. We have argued that this
literature can be unified under the broad research program of understanding
how humans learn, represent, and use models of other agents. Different parts of
this research program are being pursued by distinct communities of scientists,
and interactions between them are often limited.

A key goal for the future of the field is the construction of models of other
agents that can match the human ability to predict the behavior of other agents
(see Kriegeskorte and Douglas [2018] for broader discussion of task-performing
models). These models will need to infer unobservable latent variables like
emotions, beliefs, goals, and traits from observations of agents’ behavior, and
will need to use these latent variables to generate human-like predictions of
the agents’ future actions. Furthermore, these models will need to support
human-like decisions and judgments (for example in the moral domain). Moving
towards this goal will call for growing interaction and communication between
different communities of researchers.

As in most domains of Psychology and Neuroscience, direct measurement
of the mechanisms implementing the computations underlying the acquisition
of person knowledge at the resolution and scale needed to reconstruct them
artificially is currently beyond our reach. However, we can observe their traces
in behavior and in different brain measures. A critical future direction will
involve jointly leveraging behavioral and neural data across multiple methods,
as if they were shades on a wall from which we need to recover the object that
is casting them.
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6 ELEMENTS OF THE MANUSCRIPT

6.1 Figures

Figure 1: Schematic of the mechanisms engaged in the understanding and pre-
diction of other people. Sensory inputs produced by a situation involving a
person are mapped onto perceptual representations. Recognition of the identity
of the person is used to retrieve the prior state of the person model for that
identity. The perceptual representations are used to update the person model.
The updated person model can be used to generate action predictions, and can
be modified if those predictions are violated. Note that the separate spaces for
subjective states, beliefs, intentions and traits are only meant to exemplify the
variety of latent variables in a person model: we make no claim that these are
different natural kinds with specialized neural mechanisms.

6.2 Acronyms and abbreviations

1. fMRI: functional Magnetic Resonance Imaging

2. TMS: transcranial magnetic stimulation

3. ERP: event related potentials

4. ToM: theory of mind

5. ASD: autism spectrum disorders

6. FFA: fusiform face area

7. STS: superior temporal sulcus
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8. TPJ: temporoparietal junction

9. ATL: anterior temporal lobe

10. MPFC: medial prefrontal cortex

6.3 Summary Points

1. Humans use observation to acquire knowledge about other people’s mental
states and traits.

2. Investigating how humans acquire and use this knowledge requires con-
vergence between the literature on perception and the literature on social
cognition.

3. Perceptual mechanisms enable recognition of agents and their actions,
providing the necessary inputs for inference.

4. Perceptual inputs are used to infer identity-specific ‘person models’ with
which observers can predict others’ actions.

5. Recognition of agents and their actions is implemented by networks of
specialized brain regions encoding representations at multiple levels of
abstraction (OFA, FFA, STS, ATL for faces, EBA, FBA for bodies, LOTC,
aIPS, PMv for actions).

6. ‘Theory of Mind’ regions, including the temporoparietal junction (TPJ),
medial prefrontal cortex (MPFC), and precuneus, support person knowl-
edge

7. Developing task-performing computational models of the acquisition of
person knowledge jointly constrained by behavioral and neural data is a
promising direction for future research.

6.4 Future issues

1. What are the computations supporting the recognition of agents?

2. How are perceptual representations of agents, objects, and actions inte-
grated to make inferences about person knowledge?

3. What is the relationship between mental states (beliefs, intentions) and
traits within a person model?

4. How can we jointly leverage behavioral and neural data in an optimal way
to test task-performing models of person knowledge acquisition?

5. How is person knowledge acquired through observation integrated with
knowledge communicated by language?
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