Rob Gross

Homework 12
Mathematics 2216.01
Due October 14, 2022

1. Define a sequence of real numbers with the definitions

$$
\begin{aligned}
& x_{1}=1 \\
& x_{n}=\sqrt{x_{n-1}+1}
\end{aligned}
$$

On the examination, we showed that $x_{n} \leq 2$ for all positive integers n.
(a) Show using induction that $x_{n} \leq x_{n+1}$ for all positive integers n.
(b) A theorem from real analysis now tells us that $\lim _{n \rightarrow \infty} x_{n}$ exists. (The theorem states that a sequence of numbers that is increasing and bounded must have a limit.)

Suppose that $\lim _{n \rightarrow \infty} x_{n}=L$. What is L? State your answer in terms of radicals. Hint: Start with the equation $x_{n}=\sqrt{x_{n-1}+1}$ and compute $\lim _{n \rightarrow \infty}$ of that equation.
2. Prove that if k and n are integers, with $n \geq 2$ and $k \geq 0$, then

$$
F_{n} F_{n+k}-F_{n-1} F_{n+k+1}=(-1)^{n+1} F_{k+1}
$$

Note: One challenge is deciding whether to use induction on k or n.
3. Find three complex numbers z so that $z^{3}=i$ in two different ways:
(a) First, write $(a+b i)^{3}=i$, expand using the binomial theorem, and solve for the real numbers a and b.
(b) Second, use de Moivre's Theorem or Euler's Formula, whichever you prefer.

