Rob Gross

Homework 10
Mathematics 2216.01
Due September 28, 2022
Please note that there is no class on Monday, September 26.

1. Compute the integral

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

using a trigonometric substitution (no tables!) and perhaps a trigonometric identity.
2 . Let n be a positive integer. Show using induction

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n-\frac{1}{2}} d x=\frac{(2 n)!\pi}{(n!)^{2} 2^{2 n+1}}
$$

The case $n=1$ is the previous problem.
3. Suppose that a, b, and c are positive integers. Suppose as well that $(a, b)=1, a \mid c$, and $b \mid c$. Prove that $a b \mid c$.
4. Suppose that a and b are positive integers, and $d=(a, b)$. Find an example of integers integers a and b so that $\left(\frac{a}{d}, b\right) \neq 1$ and $\left(a, \frac{b}{d}\right) \neq 1$.
5. Suppose that a and b are relatively prime positive integers. Let d be a positive integer.
(a) Suppose that $d \geq(a-1)(b-1)$. Show that it is always possible to find non-negative integers m and n so that $a m+b n=d$.
(b) Show that it is not possible to find non-negative integers m and n so that $a m+b n=$ $(a-1)(b-1)-1$.

