Rob Gross

Homework 8
Mathematics 2216.01
Due September 21, 2022

1. Use Euclid's algorithm to find integers x and y so that $a x+b y=\operatorname{gcd}(a, b)$ if
(1) $a=86$ and $b=16$.
(2) $a=21$ and $b=91$.
(3) $a=-72$ and $b=312$.
2. Suppose that n is a positive integer. Prove using induction and integration by parts that

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}
$$

Hint: The case $n=1$ is easy (but you need to do it anyway). The rest is not trivial. For the induction, write $\left(1-x^{2}\right)^{k+1}=\left(1-x^{2}\right)^{k}\left(1-x^{2}\right)$ and expand. For integration by parts, set $u=x$ and $d v=-x\left(1-x^{2}\right)^{k} d x$.

