## Rob Gross

Homework 7
Mathematics 2216.01
Due September 19, 2022

1. Let $a$ be any positive real number, and let $k$ be a positive integer. Prove that

$$
\lim _{x \rightarrow \infty} \frac{(\log x)^{k}}{x^{a}}=0
$$

Here, as usual $\log x$ refers to the natural logarithm of $x$.
2. Suppose that $f(x)$ and $g(x)$ are functions with derivatives of all orders. For simplicity in what follows, write $f$ and $g$ rather than $f(x)$ and $g(x)$. The product rule is $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.

Write $f^{(n)}$ for the $n$th derivative of $f$. In other words,

$$
f^{(n)}=\frac{d^{n} f}{d x^{n}} .
$$

We also define $f^{(0)}=f$.
Prove by induction that

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)}
$$

The case $n=1$ is the product rule, so you do not need to verify that the formula is true when $n=1$.
3. Use the formula in the previous problem to compute the fourth derivative of $e^{2 x} \sin (3 x)$. You might want to check your answer using a computer algebra system.

