Rob Gross
Homework 6
Mathematics 2216.01
Due September 16, 2022

1. There are times when it is useful to define F_{k} for $k \leq 0$. The standard definition is that $F_{0}=0$ and if $k<0$, then $F_{k}=(-1)^{k+1} F_{-k}$. For example, $F_{-1}=(-1)^{0} F_{1}=1$, $F_{-2}=(-1)^{-1} F_{2}=-1, F_{-3}=(-1)^{-2} F_{3}=2$, and $F_{-4}=(-1)^{-3} F_{4}=-3$.

It is easy to see that $F_{1}=F_{0}+F_{-1}, F_{0}=F_{-1}+F_{-2}$, and $F_{-1}=F_{-2}+F_{-3}$. Show that if k is a negative integer, and $k<-1$, then $F_{k}=F_{k-1}+F_{k-2}$.
2. There is a formula that allows us to compute Fibonacci numbers more easily. That is the point of this problem.

The two solutions of the equation $x^{2}-x-1=0$ are $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. It is sometimes helpful to use the formulas $\alpha+\beta=1, \alpha \beta=-1$, and $\alpha-\beta=\sqrt{5}$. You may use all of those without verification.

Prove using induction that

$$
F_{k}=\frac{\alpha^{k}-\beta^{k}}{\sqrt{5}}
$$

if $k \geq 1$.

