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Associative learning can enable environmental cues to signal food and stimulate feeding, independent of
physiological hunger. Two forebrain regions necessary in cue driven feeding, the basolateral area of the
amygdala and the medial prefrontal cortex, communicate via extensive, topographically organized con-
nections. The basolateral nucleus (BLA) sends extensive projections to the prelimbic cortex (PL), and our
aim here was to determine if this pathway was selectively recruited during cue-food associative learning.
The anterior and posterior basolateral nuclei are recruited during different phases of cue-food learning,
and thus we examined whether distinct pathways that originate in these nuclei and project to the PL
are differently recruited during early and late stages of learning. To accomplish this we used neu-
roanatomical tract tracing combined with the detection of Fos induction. To identify projecting neurons
within the BLA, prior to training, rats received a retrograde tracer, Fluoro-Gold (FG) into the PL. Rats were
given either one or ten sessions of tone-food presentations (Paired group) or tone-only presentations
(Control group). The Paired group learned the tone-food association quickly and robustly and had greater
Fos induction within the anterior and posterior BLA during early and late learning compared to the
Control group. Notably, the Paired group had more double-labeled neurons (FG + Fos) during late training
compared to the Control group, specifically in the anterior BLA. This demonstrates selective recruitment
of the anterior BLA-PL pathway by late cue-food learning. These findings indicate plasticity and specificity
in the BLA-PL pathways across cue-food associative learning.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction see Crombag, Bossert, Koya, & Shaham, 2008; Everitt, Cardinal,
Cues that signal food can increase the motivation to procure and
consume food in the absence of hunger across species (e.g., Birch,
McPhee, Sullivan, & Johnson, 1989; Weingarten, 1983; for reviews
see Holland & Petrovich, 2005; Petrovich, 2013; Petrovich &
Gallagher, 2003). Environmental cues can gain this ability through
associative learning, such as during Pavlovian appetitive condition-
ing. In this preparation, a neutral cue from the environment (condi-
tioned stimulus, CS) is repeatedly followed by food (unconditioned
stimulus, US), which innately evokes feeding behaviors (uncondi-
tioned response, UR). The CS then becomes the predictor of the
US and ultimately drives the same behaviors (conditioned response,
CR). These acquired abilities are well established behaviorally;
however, much less is known about the neural plasticity, particu-
larly at a circuit level, that underlies cue-food learning.

The amygdala, specifically the basolateral area, is important for
appetitive associative learning and subsequent behaviors (Cole,
Powell, & Petrovich, 2013; Corbit & Balleine, 2005; for reviews
Parkinson, & Robbins, 2003; Gallagher & Schoenbaum, 1999;
Holland & Petrovich, 2005; Wassum & Izquierdo, 2015), and its
function is conceptualized to involve ‘tagging’ biologically relevant
incoming stimuli and then informing other brain systems via com-
plex and distributed connectional networks (e.g., Swanson &
Petrovich, 1998; Weiskrantz, 1956). The amygdala is a heteroge-
neous structure (Swanson & Petrovich, 1998), and recent work
found that distinct nuclei within the basolateral area (containing
the lateral, basolateral [BLA] and basomedial nuclei) were differen-
tially recruited during early and late cue-food learning (Cole et al.,
2013). Specifically, the anterior basolateral nucleus (BLAa,
Swanson, 2004; also known as the magnocellular division based
on its morphology, Pitkänen, Savander, & LeDoux, 1997;
Savander, Go, LeDoux, & Pitkänen, 1995) was the only amygdalar
nucleus that displayed a significant increase in activation (mea-
sured with Fos induction) during early learning, which was main-
tained throughout training. The posterior basolateral nucleus
(BLAp, Swanson, 2004; also known as the parvocellular division
based on its morphology, Pitkänen et al., 1997; Savander et al.,
1995) was recruited during late training along with other amyg-
dalar nuclei that are connected with the BLAa. These results
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demonstrate specificity in the recruitment of amygdalar nuclei,
and the differential recruitment across early and later learning sug-
gests plasticity within the BLAa and, potentially, with its connec-
tional targets.

The BLA has extensive connections with the medial prefrontal
cortex (Hoover & Vertes, 2007; Kita & Kitai, 1990; Reppucci &
Petrovich, 2016), which is important for the executive function
and control of feeding and other motivated behaviors (Dalley,
Cardinal, & Robbins, 2004; O’Doherty, 2011; Swanson &
Petrovich, 1998). Specifically, the ventromedial prefrontal cortex,
including the prelimbic (PL) and infralimbic (ILA) areas, is critical
in appetitive cue learning (Ashwell & Ito, 2014; Baldwin,
Holahan, Sadeghian, & Kelley, 2000; Baldwin, Sadeghian, &
Kelley, 2002; Burgos-Robles, Bravo-Rivera, & Quirk, 2013; Cole,
Hobin, & Petrovich, 2015; Corbit & Balleine, 2003). This area is nec-
essary for feeding driven by learned food cues (Cole, Mayer, &
Petrovich, 2015; Petrovich, Ross, Holland, & Gallagher, 2007), can
be stimulated to drive food intake (Blasio, Steardo, Sabino, &
Cottone, 2014; Land et al., 2014; Mena, Sadeghian, & Baldo,
2011) and alters activity in downstream neural regions mediating
feeding behaviors (Mena, Selleck, & Baldo, 2013). Furthermore, dis-
ruption of the BLA-mPFC pathway attenuates reward-seeking dri-
ven by learned contextual and discrete cues (Fuchs, Eaddy, Su, &
Bell, 2007; Mashhoon, Wells, & Kantak, 2010; Stefanik & Kalivas,
2013). Nevertheless, the functional connectivity of the BLA-PL
pathways has not been investigated during the acquisition of
cue-food associations.

Within the medial prefrontal cortex, the BLA most densely
innervates the PL, with topographically distinct pathways originat-
ing in the BLAa and BLAp (Hoover & Vertes, 2007; Kita & Kitai,
1990; Reppucci & Petrovich, 2016). The BLAa and BLAp are
recruited during different phases of cue-food learning (Cole et al.,
2013), suggesting that the BLAa-PL and BLAp-PL pathways may
also be differently engaged. The goal of the current study was to
determine whether the BLA neurons that send direct projections
to the PL are selectively activated during cue-food learning and
whether distinct pathways that originate in the BLAa and BLAp
are differentially recruited during early and late learning of cue-
food associations.

2. Methods

In order to identify BLA-to-PL projecting neurons, rats were ion-
tophoretically injected with the retrograde tracer Fluoro-Gold (FG)
into the PL. After recovery, rats received either one training session
(early learning; S1) or ten training sessions (late learning; S10) of
Pavlovian appetitive conditioning. Each training session included
eight presentations of a tone CS that for the Paired condition co-
terminated with the delivery of two food pellets (US). Rats in the
Control group received the CS presentations in the behavioral
chambers followed by the US delivery in their home cage at a ran-
dom interval after each session. The primary measure of learning
was the percentage of time rats expressed food cup behavior dur-
ing the CS. Rats were perfused 90 min after the cessation of S1 or
S10 for brain tissue collection. The Control groups did not receive
the US on perfusion day. The brain tissue was processed for
double-label fluorescence immunohistochemistry for FG and Fos
detection (see Supplemental Material for details).

3. Results

3.1. Behavior

During early training (Session 1), the Paired group displayed
increasingly more food cup behavior during CSs throughout the
session compared to the Control group, signifying learning
(Fig. 1A). Repeated measures ANOVA (Training group � CS) found
a significant effect of CS (F(1,18) = 2.713, P < 0.05), but no effect of
training group (F(1,18) = 2.793, P > 0.05), or interaction
(F(1,18) = 1.239, P > 0.05). To assess learning during the session, fur-
ther analysis compared behavior between the first half and the sec-
ond half of the session (four CSs each). The Paired group displayed
more food cup behavior during the last four CSs compared to their
responding during the first four CSs (P < 0.05) and compared to the
Control group (P < 0.05; Fig. 1B). There were no differences
between the groups during the first four CSs (P > 0.05) or during
pre-CS intervals (P > 0.05).

Over ten sessions of training, the Paired group showed an
increase in food cup behavior during the CSs, while the Control
group displayed minimal and non-specific food cup behavior
throughout training. Repeated measures ANOVA (Training
group � Session) revealed a significant effect of training group
(F(1,14) = 139.018, P < 0.0001), a significant effect of session
(F(1,14) = 6.968, P < 0.001) and a significant interaction across ses-
sions (F(1,14) = 9.781, P < 0.001). During session 2, the Paired group
had higher food cup responding compared to the Control group
(P < 0.05; Fig. 1C), but similar responding during the pre-CS and
CS intervals (P > 0.05). Throughout sessions 3–10, the Paired group
showed high responding specifically to the CS compared to their
pre-CS responding (P < 0.05) and compared to the behavior of the
Control group during the CS (P < 0.05). During the last session of
training (session 10), repeated measures ANOVA (Training group -
� Time period [CS or pre-CS]) found a significant effect of training
group (F(1,14) = 8.287, P < 0.05), a significant effect of CS vs Pre-CS
time period (F(1,14) = 63.816, P < 0.0001), and a significant interac-
tion (F(1,14) = 64.858, P < 0.0001). The Paired group showed higher
food cup behavior during the CS than the Control group
(P < 0.001) with no difference in pre-CS behavior between the
groups (P > 0.05; Fig. 1D).
3.2. Neural analysis

The location and spread of FG injection sites were analyzed
throughout the rostro-caudal extent of the prelimbic cortex (PL)
based on the Swanson brain atlas (Swanson, 2004). Acceptable
injections (see Supplemental Materials) were confined predomi-
nantly within the PL (n = 36) and were centered within the mid
rostro-caudal extent of the PL (Fig. 2; Levels 6, 7 and 8; +4.2,
+3.6, and +3.2 mm from bregma, respectively). The final group
numbers were S1 Paired (n = 10), S1 Control (n = 10), S10 Paired
(n = 8), and S10 Control (n = 8). Importantly, the total numbers of
retrogradely-labeled neurons were similar across groups
(Fig. 3B), confirmed by two-way ANOVAs (Training group � Ses-
sion) in the BLAa (Training group: F(1,32) = 2.477, P > 0.05; Session:
F(1,32) = 0.585, P > 0.05) and BLAp (Training group: F(1,32) = 0.542,
P > 0.05; Session: F(1,32) = 0.119, P > 0.05), signifying that any differ-
ences found in the number of double-labeled (FG + Fos) neurons
are not due to variances in the number of FG-labeled neurons.

Representative images of Fos and FG labeled neurons in the
BLAa are shown in Fig. 3A. Fos induction in the BLA neurons was
examined during early (session 1; S1) and late (session 10; S10)
tone-food conditioning. Within the BLAa, the Paired group had
more Fos-positive neurons than the Control group during S1 and
S10 (Fig. 3B). The two-way ANOVA (Training group � Session)
revealed a significant effect of training group (F(1,32) = 16.722,
P < 0.01), but no effect of session (F(1,32) = 0.609, P > 0.05), or inter-
action (F(1,32) < 0.000, P > 0.05). Post hoc analysis confirmed the
Paired group had significantly more Fos-positive neurons than
the Control group during S1 (P < 0.01) and S10 (P < 0.05), replicat-
ing previous findings using this protocol (Cole et al., 2013).
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Fig. 1. Conditioned responses during training. Percentage of time rats expressed food cup behavior (mean ± SEM) during each CS presentation (A) and during the first and last
four pre-CSs and CSs (B) during session 1. Expression of food cup behavior during the pre-CS and CS across ten sessions of training (C) and during session 10 (D). *P < 0.05;
#P < 0.05 Paired pre-CS = Paired CS > Control CS.
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There was a similar pattern within the BLAp of higher Fos
induction in the Paired group compared to Control group, but there
was also an overall decrease in Fos induction across training
(Fig. 3B). Within the BLAp, a two-way ANOVA (Training
group � Session) of Fos induction found a significant effect of train-
ing group (F(1,32) = 11.279, P < 0.01) and a significant effect of ses-
sion (F(1,32) = 6.369, P < 0.05), but no interaction (F(1,32) = 0.378,
P > 0.05). The Paired group had more Fos-positive neurons than
the Control group during S1 (P < 0.001) and a trend towards signif-
icance during S10 (P = 0.087). Overall, there were more Fos-
positive neurons in the S1 groups compared to the S10 groups
(P < 0.05).

To examine the activation of the BLA-PL pathways, the total
number of double-labeled neurons (FG + Fos) within the BLAa
and BLAp was quantified (see Supplemental Materials for specifica-
tions) and compared across groups and sessions. We found selec-
tive Fos induction in the PL projecting BLAa neurons, but not
BLAp neurons, in the Paired group during S10. In the BLAa, two-
way ANOVA (Training group � Session) of Fos induction in BLAa
neurons that project to the PL revealed a significant effect of train-
ing group (F(1,32) = 7.818, P < 0.01), but no effect for session
(F(1,32) = 0.123, P > 0.05), or interaction (F(1,32) = 0.290, P > 0.05).
Post hoc analysis confirmed the Paired S10 group had more
double-labeled neurons than the Control S10 group (P < 0.05),
but a difference between S1 groups was not statistically significant
(P > 0.05; Fig. 3B). In the BLAp, there were no differences in the
number of activated projecting neurons between the Paired and
Control groups during S1 or S10 (Training group: F(1,32) = 1.127,
P > 0.05; Session: F(1,32) = 0.730, P > 0.05; Fig. 3B).
4. Discussion

In the current study, we examined the functional activation of
the BLA-PL pathways during the acquisition of Pavlovian appetitive
conditioning. We found significantly more Fos induction in BLAa-
to-PL projecting neurons in the Paired group compared to the Con-
trol group. This effect was statistically reliable specifically during
the late training, but not during the early training. This finding
demonstrates recruitment of the BLAa-PL pathway across training,
suggesting plasticity during cue-food associative learning. Interest-
ingly, Fos induction in projecting neurons within the BLAp was
similar between training groups throughout tone-food condition-
ing, demonstrating activation of the BLAp-PL pathway was similar
in the Paired and Control groups throughout learning. Together,
these results show that only the BLAa-PL pathway, but not the
BLAp-PL pathway, is activated during well-learned cue-food asso-
ciations. Additionally, we analyzed total Fos induction in the BLAa
and BLAp and found higher overall induction in the Paired groups
compared to the Control groups during both phases of learning.
This difference between overall activation and the activation of
specific BLA-to-PL projecting neurons highlights the importance
of identifying how specific neurons are recruited within a critical
neural circuitry underlying behavior.

Here, the retrograde tracer injections were aimed at the PL, an
area substantially innervated by the BLAa. Our focus was on the
BLAa, because that was the only amygdalar cell group recruited
during early cue-food training, suggesting it is informing its con-
nectional targets during appetitive conditioning (Cole et al.,
2013). Nevertheless, the BLAa and BLAp have distinct connections
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Fig. 2. Fluoro-Gold (FG) injection sites in the prelimbic cortex (PL). A photomicrograph of a representative FG injection in the PL (A) with adjacent thionin-stained section (B)
used to demarcate PL borders based on a rat atlas (Swanson, 2004). Illustration of all FG injections in the PL for each training group shown on modified Swanson atlas
templates (atlas Levels 6, 7 and 8; +4.2, +3.6, and +3.2 mm from bregma respectively; C). Scale bar = 100 lm.
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with the medial prefrontal cortex, and while the BLAa has dense
connections with the PL and the anterior cingulate area, the BLAp
is connected more heavily with the ILA compared to the PL
(Hoover & Vertes, 2007; Kita & Kitai, 1990; Little & Carter, 2013;
Reppucci & Petrovich, 2016; Sesack, Deutch, Roth, & Bunney,
1989; Swanson & Petrovich, 1998). In accordance, our injections
in the PL resulted in labeling and analysis only within the rostral
half of the BLAp, and thus the current study did not capture the
more substantial projections from the BLAp to the ILA. Given the
ILA was also recruited during late learning of cue-food associations,
similar to the PL (Cole, Hobin, et al., 2015), it is possible the BLAp-
ILA pathway may be important during appetitive associative learn-
ing. Furthermore, the current study found more overall Fos induc-
tion in the BLAp (total Fos induction in both projecting and non-
projecting neurons) during early and late training in the Paired
group, whereas Cole et al. (2013) found recruitment of the BLAp
only during late learning. A methodological difference in sampling
is a potential reason why these results differ. Cole et al. (2013)
examined the entire extent of the BLAp (the entire dorso-ventral
and rostro-caudal area within the nucleus), while in the current
study the total Fos was counted within the area of substantial PL
projection (only the rostral portion of the BLAp).

In addition to the functional differences found in the current
study and aforementioned distinct connections with the mPFC,
the BLAa and BLAp also differ in their connections with other fore-
brain areas. Within the amygdala, the BLAp sends substantial
direct pathways to the central amygdala, while the BLAa reaches
it indirectly through its connections to the BLAp (Savander et al.,
1995; Swanson & Petrovich, 1998). Based on its forebrain connec-
tions, the BLAa was characterized as a part of the frontotemporal
system, and it projects to the nucleus accumbens and caudoputa-
men, as well as to the medial frontal and adjacent somatomotor
cortical areas (Kita & Kitai, 1990; Swanson & Petrovich, 1998).
Importantly, it does not send direct projections to hippocampal
formation, the hypothalamus, or the bed nuclei of the stria termi-
nals (Dong, Petrovich, & Swanson, 2001; Petrovich, Canteras, &
Swanson, 2001; Swanson & Petrovich, 1998). The BLAp was charac-
terized as a part of the main olfactory system, and it projects to the
nucleus accumbens and the substantia innominata, as well as the
hippocampal formation, the hypothalamus, and bed nucleus of



Fig. 3. Fos induction in BLA-PL projecting neurons during early and late cue-food
learning. Representative images from the BLAa from each training group depicting
FG-positive neurons (green), Fos-positive neurons (red), and DAPI, a nuclear
counterstain (blue). Scale bar = 25 lm (A). Total number of FG-positive neurons,
Fos-positive neurons, and double-labeled (FG + Fos) neurons (mean ± SEM) during
the first (Session 1; S1) and last (Session 10; S10) training sessions in the BLAa (left)
and BLAp (right; B). *P < 0.05; #P = 0.087. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the stria terminalis, (Petrovich et al., 2001; Reppucci & Petrovich,
2016; Swanson & Petrovich, 1998).

The findings from the current study and previous work support
the notion that the BLAa is a critical early ‘processor’ during appet-
itive associative learning. Here, we found recruitment of the BLAa
during early learning in agreement with Cole et al. (2013). The
BLAa was the only forebrain region to show selective activation
during early learning, while the amygdalar and forebrain targets
of its inputs were recruited during late training (Cole et al., 2013;
Cole, Hobin, et al., 2015). Furthermore, electrophysiological record-
ings also provide evidence that the BLA precedes and influences
other cortical processing. Single-unit recordings found that the
BLA is activated prior to the activation of the gustatory cortex dur-
ing palatability processing (Grossman, Fontanini, Wieskopf, & Katz,
2008), and BLA inactivation can alter gustatory cortex responses
(Piette, Baez-Santiago, Reid, Katz, & Moran, 2012). This early pro-
cessing function of the BLA may capture its role in tasks with
reward predictive cues, including cue-potentiated eating
(Holland, Petrovich, & Gallagher, 2002), discriminative stimulus
responding (Ishikawa, Ambroggi, Nicola, & Fields, 2008), second-
order conditioning (Hatfield, Han, Conley, Gallagher, & Holland,
1996), devaluation (Hatfield et al., 1996), and Pavlovian to instru-
mental transfer (Blundell, Hall, & Killcross, 2001; for review see
Wassum & Izquierdo, 2015). The current study suggests that the
BLAa processing is relayed to the PL during acquisition, potentially
enabling this pathway to later control cue driven reward behaviors.
Indeed, inhibition of the BLA-PL pathway decreased conditioned
reward seeking (Fuchs et al., 2007; Mashhoon et al., 2010;
Stefanik & Kalivas, 2013), and BLA inactivation caused a disinhibi-
tion of the PL activity during reward seeking, resulting in a deficit
in conditioned place preference for morphine (Sun & Laviolette,
2012).

The BLAa is a cortical part of the amygdala (Swanson &
Petrovich, 1998), and its output from pyramidal neurons can influ-
ence the PL through monosynaptic (McDonald, 1992; Sotres-
Bayon, Sierra-Mercado, Pardilla-Delgado, & Quirk, 2012) and
polysynaptic pathways involving inhibitory interneurons (Dilgen,
Tejeda, & O’Donnell, 2013; Floresco & Tse, 2007; Gabbott,
Warner, & Busby, 2006; Perez-Jaranay & Vives, 1991; Sun &
Laviolette, 2012). Inactivation of the BLA decreased PL pyramidal
neuron activity, suggesting a monosynaptic pathway (Sotres-
Bayon et al., 2012). Alternatively, BLA stimulation increased activ-
ity within interneurons, which inhibited PL pyramidal neurons,
suggesting a polysynaptic pathway (Dilgen, Tejeda, & O’Donnell,
2013). Through these pathways the BLA input can critically control
PL activity, either through excitation or inhibition, and ultimately
control behavioral outcomes.
5. Conclusions

In conclusion, we found plasticity and selectivity within the
BLA-PL pathways across Pavlovian appetitive conditioning. The
BLAa-PL, and not the BLAp-PL, pathway was selectively recruited
during cue-food learning and, importantly, this recruitment sug-
gests plasticity in BLAa-PL communication across training. These
results suggest the BLA is important during initial appetitive learn-
ing, and its communication with the medial prefrontal cortex
increases throughout learning as a cue becomes predictive of food
to control behavior.
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