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A decision to eat or not to eat can be beneficial or detrimental to

an organism, depending on internal and external conditions.

Because feeding is essential for survival, as it replenishes

energy and nutrients, in safe environments, its expression is

prioritized over other behaviors. Under threat, responding to

danger is a higher priority for survival and feeding is paused

even in hungry states. Thus, successful expression of feeding

behavior requires adaptive control that utilizes cognitive

processes to dynamically assess and update internal drives

and environmental changes. Recently identified key circuit

components, which are important in anticipatory responding

based on food memories and predictions and in resolving

feeding versus threat avoidance competition, will be discussed

within a connectional schema.
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Introduction
Organisms must feed to survive. They also need to avoid

danger and adjust feeding behavior (foraging and con-

sumption) accordingly. A decision to eat or not to eat,

therefore, reflects both the internal drives and external

conditions. In safe environments, when energy and nutri-

ent resources are low or their depletion is anticipated,

feeding takes priority over other behaviors. Conversely,

under imminent threat, real or anticipated, attending and

responding to danger takes priority over replenishing

energy and nutrients, and feeding is halted even in

hungry states. Accordingly, successful expression of feed-

ing is coordinated with other survival behaviors (e.g.

defensive), and is regulated in response to actual and

expected events (e.g. energy and nutrients usage/gains,

danger, reward).

The assessments of internal and external environments

that guide feeding behavior engage cognitive processes,

including learning and memory and decision-making.

These computations are complex but do not require con-

sciousness; they can occur in the absence, or independent,

of conscious awareness and the fundamental principles are

conserved across mammals. Consequently, research find-

ings in animal models have improved our understanding of

the neural mechanisms underlying human feeding control

and its dysregulation (e.g. [1,2]). Notable progress has been

made in uncovering the neural mechanisms mediating

physiological control of food consumption, in the context

of energy metabolism and body weight regulation [3]. In

contrast, much remains unknown about the neural mecha-

nisms mediating adaptive control of feeding behavior. In

part, this is due to scarcity of prior behavioral investigations

combined with neural analyses, and in part due to meth-

odological limitations and complexity of the underlying

neural substrates. Recent methodological advancements

with optogenetics and chemogenetics have enabled cell-

specific manipulations within functional circuits in behav-

ing animals [4,5]. Novel circuit mechanisms underlying

adaptive control of feeding behavior that were revealed

with these approaches are highlighted here within an

established connectional schema. These findings are inter-

preted within the concept of survival circuits that was put

forward by LeDoux and others [6–8].

Survival circuits: a brief overview of connectional

organization

Anatomical connections in rodents indicate that the neu-

ral systems underlying mammalian survival behaviors are

similarly organized [9,10]. Within each circuitry, physio-

logical and environmental sensory inputs could converge

with cognitive, hedonic and behavioral state information

at multiple stages of processing. The expression of each

behavior is accompanied with appropriate physiological

(endocrine, autonomic) responses and their coordinated

expression is orchestrated through hypothalamic systems.

These circuitries could cross-communicate, and have

access to sensory and motor brainstem areas, cognitive

processing via cortical and hippocampal systems, and

action and reward control via striatal systems [9,10].

The connectional patterns further suggest that the incom-

ing and processed information could be shared across the

forebrain-brainstem components, via convergingor parallel

pathways (Figure 1). Similarly, each circuit’s outputs (cog-

nitive, behavioral, physiological) could be initiated after

different stages of processing. Consequently, distinct
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functional circuitries may be recruited within a broader

connectional network, depending on the type of input

(physiological, cognitive) and levels of processing, from

innate (reflex) to highly integrated (predictive). For

instance, when survival depends on rapid control of feed-

ing—to enhance food seeking and consumption under

starvation or to pause these behaviors when encountering

a proximal danger—relatively simple, reflex-type circuit-

ries may be engaged[11], similar to the patterns observed in

defensive behaviors [12,13]. Under other circumstances,

more complex computations within an integrated circuitry

determine the expression of feeding behavior. These pro-

cesses involve continuous assessments of internal and

external environments and updating through cognitive

processes (learning and memory, decision-making, plan-

ning) about ongoing and expected changes.

Anticipatory regulation of feeding: learning and memory

integration across the network

The ability to regulate an ongoing behavior in anticipa-

tion of future events is clearly advantageous to survival.

Regulation of feeding in anticipation of future energy

changes is also advantageous physiologically, as it should

minimize the extent of homeostatic perturbations [14].

Adaptive regulation is based on prior experience but how

learning and memory are integrated within the feeding

circuitry has not been clear. Recent work demonstrated

that hypothalamic neurons are critical for food memory

encoding and recall, and that acquired predictions are

dynamically updated across the feeding circuitry.

Hypothalamus: food memories and predictions

In a recent study, Sharpe et al. [15��] demonstrated with

optogenetic methods in a novel GAD-Cre rat that the

lateral hypothalamic GAD-expressing (LHAGABA) neu-

rons are required for cue-food learning and memory.

They manipulated the LHAGABA neurons during a Pav-

lovian conditioning task, where cue-food associations

were assessed by the cue’s ability to drive food seeking

(food receptacle approach). Temporally selective silenc-

ing of the LHAGABA neurons during the cue presentations

disrupted the acquisition and memory of cue-food asso-

ciations. These findings are consistent with prior evi-

dence that the LHA is recruited during cue-food learning

acquisition [16] and that the LHAGABA neurons are criti-

cal in the control of feeding behavior ([17–19]. Indeed,

the LHA may function as a motivation-cognition inter-

face within the feeding network [20].

Another hypothalamic area, the arcuate nucleus (ARH) is

considered a primary sensory relay for energy balance

signals. It contains two sets of neurons, orexigenic, AgRP

(NPY/GABA) and anorexigenic, POMC/CART. These

neurons respond to energy signals (e.g. adipose-released

hormone, leptin), GI-derived satiety signals (e.g. CCK),

and food deprivation (ghrelin) in opposite ways to ulti-

mately stimulate or inhibit food consumption, respec-

tively [3]. Intriguingly, these neurons respond rapidly

upon food presentation during a meal, which suggests

they are dynamically guided by predicted, rather than

actual, meal-associated changes. Chen et al. [21��] found

that in fasted mice, the activity of the AgRP (NPY/GABA)

neurons was high, as expected, but it decreased as soon as

food was presented and eating began. The opposite was

found for the POMC/CART neurons. When food was

removed during a meal, these patterns were reset, activity

of AgRP neurons increased, while POMC/CART neurons

decreased.

According to these patterns, the ARH neurons may be

critical during the food seeking rather than consumption

phases of feeding behavior (additional evidence reviewed

in [3]). In that regard, Livneh et al. [22��] demonstrated in

mice that the AgRP neurons regulate food seeking
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Feeding behavior neural network.

The diagram depicts the organization of the connections that mediate

adaptive control of feeding behavior. For clarity, some brains areas are

not shown (e.g. pallidal regions) and only select areas and

connections that were discussed in the text are represented.

Abbreviations: ACB-nucleus accumbens; ARH-arcuate nucleus of the

hypothalamus; BLA-basolateral area of the amygdala; CEA-central

nucleus of the amygdala; DMX-dorsal motor nucleus vagus nerve; HF-

hippocampal formation (includes hippocampal proper and subiculum);

LHA-lateral hypothalamic area; NTS-nucleus of the solitary tract; PAG-

periaqueductal gray; PB-parabrachial nucleus; PVH-paraventricular

hypothalamic nucleus; PVT-paraventricular thalamic nucleus; VTA-

ventral tegmental area.
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induced by food cues and processing within the insular

cortex, according to hunger state. They found that the

AgRP neurons reach the insular cortex via relays in the

paraventricular thalamus (PVT) and the basolateral amyg-

dala (BLA). Interestingly, at least the PVT and insular

components of that circuitry also guide flexible behavioral

control under competing cognitive drives.

Insular cortex, paraventricular thalamus & central amygdala:

behavioral guidance during flexible, anticipatory responding

Mammals, from rodents to primates, show innate prefer-

ence for sweet over biter tastes, indicated by acceptance

and rejection swallowing patterns, respectively [23].

These biases likely reflect hardwired survival strategies,

as typically sweet tastes signal nutrients while bitter

tastes predict decayed foods. The input and output

components of the basic circuitry for these responses—

the sensory (taste) and motor (controlling orofacial mus-

cles) neurons—are located in the brainstem [10]. Accord-

ingly, rats with the brainstem disconnected from the

forebrain can respond reflexively to accept sweet and

reject bitter tastes [24]. Without the brainstem-forebrain

communications, however, these rats cannot integrate

prior experience and respond in a flexible way [24]. It

has been known for a long time that the insular cortex is

important for taste integration and memory [25,26], but

the circuitry through which it guides feeding behavior

based on taste-associated memory has not been clear. A

recent study demonstrated that its pathway to the central

nucleus of the amygdala (CEA) is necessary in guiding

flexible anticipatory responding when different cues pre-

dict appetitive (sweet) or aversive (bitter) tastes [27��].

In mice, Schiff et al. [27��] identified an excitatory mono-

synaptic connection from the insular cortex to the lateral

CEA, somatostatin and PKCd neurons. They demon-

strated that the insular-CEAl pathway is required during

a go/no-go task, where mice respond to one cue to receive

a sweet (sucrose) liquid and withhold responding to

another cue in order to avoid a bitter (quinine) liquid.

Bilateral inhibition of the transmission within the insular-

CEAl pathway, with the tetanus toxin light chain

expressed in a Cre-dependent manner, impaired correct

responding, most notably during the no-go trials when

animals suppress licking in response to the quinine cue.

These manipulations specifically impacted adaptive con-

trol, when behavioral choice is guided by cues, but not

when mice responded to increased concentration of qui-

nine. Activation of the insular-CEAl pathway by photo-

stimulation was sufficient to induce lick suppression and

place aversion and to serve as a negative reinforcer

(instead of quinine).

The CEA is well positioned to coordinate suppression of

feeding behavior in anticipation of multifaceted aversive

outcomes. In addition to the insular cortex, it receives

cortical inputs from the BLA, PFC and HF [28], as well as

inputs from the brainstem sensory and feeding areas

(reviewed in [29�]). Some of these inputs have been

shown to selectively promote appetitive or avoidance

behaviors. Optogenetic stimulation of distinct BLA path-

ways (from neurons expressing Rspo2 or Ppp1r1b) to the

CEA, induced freezing or self-stimulation [30��]. The

BLA inputs to the mPFC (prelimbic area), which could

potentially reach the CEA, bias the expression of defen-

sive behaviors [31]. The BLA-mPFC pathways are topo-

graphically organized and distinct subsystems may dif-

ferently bias appetitive and aversive behaviors [32,33].

The CEA is also connected with the PVT [34,35], which

mediates adaptive responding when food reward- and

danger cue-induced behaviors are pitted against each

other. Choi and McNally [36��] demonstrated that che-

mogenetic silencing of the PVT selectively interfered

with balancing the expression of food seeking (lever

presses and approach to food receptacle) and threat

avoidance (freezing), but did not impact the expression

of either behavior alone or bias the balance in one

direction.

Silencing the PVT did not completely reverse the balance

between food seeking and threat avoidance, indicating

that additional areas within the critical circuitry contrib-

ute to the computations that resolve the outcome of these

competitions. These additional areas could exert influ-

ence by impacting the PVT targets, notably two striatal

regions, the nucleus accumbens (ACB) and CEA

[34,35,37]. Prior, influential work has established the

ACB in motivational and hedonic control of feeding

behavior, and provided the foundation for its interactions

with the LHA and ventral pallidum [38,39]. Recent work

found that the ACB dopamine D2 receptor–expressing

neurons inhibit food-reward seeking under innate threat,

and their responses were guided by the LHA orexin/

hypocretin neurons [40�]. The PVT receives inputs from

the mPFC and hippocampal formation [41], which could

concurrently influence the ACB and CEA [42–46].

Central amygdala circuitry in resolving feeding versus

threat avoidance competition

Cessation of eating under threat is adaptive, as it enables

the expression of defensive behaviors. The CEA is nec-

essary for cessation of food consumption in response to

innate and learned threats, as well as satiety signals

[29�,47,48]. To effectively inhibit feeding behavior, the

CEA is structurally well positioned to engage multiple

pathways that would simultaneously impact hypotha-

lamic and brainstem targets [29�]. The CEA is also well

positioned to receive physiological and environmental

sensory inputs from different stages of processing, includ-

ing integrated information from cortical and thalamic

areas (discussion above, Figure 1). Functional activation

patterns during fearcue induced anorexia suggest that the

CEA circuitry coordinates conflict resolution when threat
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avoidance competes with food consumption [29�]. In

accordance with an integrative role in adaptive control

of survival behaviors, the CEA has been shown to coor-

dinate the expression of prey hunting and biting beha-

viors through divergent pathways [49].

The CEA also drives food consumption [29�] and Dou-

glass et al. [50�] showed that the serotonin receptor 2a-

expressing (CEAHtr2a) neurons are critical. The activity of

these neurons increased during food consumption and

their bidirectional manipulations modulated intake

accordingly. The effects of these manipulations were

reinforcing, based on food and place preference and

self-stimulation assays. This study also identified that

CEAHtr2a neurons inhibit local and brainstem targets that

suppress food consumption, the CEAPKCd neurons [48],

and the parabrachial nucleus [51]. Thus, the CEA sub-

strates underlying the drives to consume or avoid food

may compete at multiple targets.

The CEA neurons are exceedingly diverse [30��,52,53]
and determining how they are organized locally and at

their targets remains an important inquiry. Another area

of pressing interest is determining individual differences

that lead to dysregulation and maladaptive behaviors. In

that regard, there are profound sex differences in anorexia

nervosa, and in animal models of threat (fear cue) induced

short-term anorexia female rats show enhanced inhibition

of feeding compared to males [54–56]. There are also sex

differences in the mPFC recruitment during inhibition of

feeding under threat, as well as under a cognitive drive to

eat [29�,57]. That work highlights the mPFC circuitry, as

a potential source of vulnerability to maladaptive control

of feeding.

Concluding remarks

Adaptive control of feeding behavior is essential for

survival. The underlying mechanisms require interac-

tions between cognitive, hedonic, and physiological sys-

tems. Accordingly, these processes are supported by a

highly integrated and exceedingly complex neural cir-

cuitry. The schematic in Figure 1 illustrates multiple

anatomical pathways that could support distinct func-

tional circuitries during adaptive control of feeding

behavior, depending on the type of input (physiological,

cognitive) and a degree of processing (shorter versus

longer and more integrated loops between sensory inputs

and behavioral outputs for reflexive versus cognitive

control). Recently identified circuit components that

are important during anticipatory regulation of feeding

and during competition with other survival behaviors are

conceptualized within this framework (Figure 1). Dis-

played are novel findings that hypothalamic neurons

participate in formation of food memories and that

acquired predictions are dynamically updated across

the feeding network, and that the central amygdala

circuitry resolves feeding and threat avoidance

competition. The outlined network may serve as a blue-

print for future work investigating adaptive regulation of

feeding, as well as for potential sites of dysregulation

when hunger and other survival drives compete.
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