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Automatic Spike-Removal Algorithm
for Raman Spectra

Yao Tian1 and Kenneth S. Burch2

Abstract

Raman spectroscopy is a powerful technique, widely used in both academia and industry. In part, the technique’s extensive

use stems from its ability to uniquely identify and image various material parameters: composition, strain, temperature,

lattice/excitation symmetry, and magnetism in bulk, nano, solid, and organic materials. However, in nanomaterials and

samples with low thermal conductivity, these measurements require long acquisition times. On the other hand, charge-

coupled device (CCD) detectors used in Raman microscopes are vulnerable to cosmic rays. As a result, many spurious

spikes occur in the measured spectra, which can distort the result or require the spectra to be ignored. In this paper, we

outline a new method that significantly improves upon existing algorithms for removing these spikes. Specifically, we

employ wavelet transform and data clustering in a new spike-removal algorithm. This algorithm results in spike-free

spectra with negligible spectral distortion. The reduced dependence on the selection of wavelets and intuitive wavelet

coefficient adjustment strategy enables non-experts to employ these powerful spectra-filtering techniques.
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Introduction

Raman microspectroscopy has been applied to wide-

ranging areas including chemistry,1 physics,2–11 materials sci-

ence,12 and biology13 because of its simple instrumental

structure and wide range of information provided by

Raman spectra. However, Raman measurements are often

limited to low signal levels and thus long integration times

are necessary. In principle this would only lead to increased

statistical noise, which could ultimately be averaged out.

However, for dispersive spectrometers, charge-coupled

devices (CCD) are widely employed because of their

unique advantages such as high quantum efficiency, great sen-

sitivity, high dynamic range, linear response to photons, small

thermal/readout noise, and high reliability. Unfortunately,

these detectors are highly vulnerable to cosmic rays, resulting

in extremely large spikes in the data, where the signal level on

a single/few pixels becomes many orders of magnitude larger

than the measured spectra. The majority of cosmic rays are

muons and most of the remainder is protons and neutrons.14

These high energy particles collide and interact electromag-

netically with materials on a CCD chip causing ionization

and atomic or collective excitations and thus cannot be

easily blocked by shielding.15 Such events typically generate

a charge of at least several thousand electrons on a single

pixel or over a few consecutive pixels of a CCD detector,16

leading to spurious, comparatively narrow spikes.17

Moreover, given the nature of the highly stochastic collision

process, these spikes are distributed randomly both in time

and space causing further complexity for spike-removal. To

solve this problem, many approaches have been taken, includ-

ing both software and hardware based implementations. For

example, an image curvature correction method was

employed to improve the optical hardware of a spectrom-

eter.18 However, this is more instrumentally complex and

costly. Therefore, for most Raman applications, software

approaches are more widely applied.

Many algorithms have been proposed for different appli-

cations based on either a single scan or multiple scan mech-

anism. The single scan methods include smoothing, weighted
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moving window filtering,19 wavelet transform based filter-

ing16,20 and attempts to fit spikes with predefined profiles.21

These algorithms rely on the assumption that the amplitudes

of spikes are much higher and/or linewidths narrower than

real Raman features. Beyond the sometimes limited validity

of this assumption, these algorithms also require a deep

knowledge of spectral filtering such that proper threshold

settings can be chosen to minimize distortion. Therefore,

taking the random nature of the cosmic rays into account,

multiple scan methods, to some extent, can overcome the

above drawbacks through a comparison between consecu-

tive scans. For example, the upper-bound spectrum

method,22 second difference comparison,23 and time

domain comparison24 have received a lot of attention and

some of them are even fully automated. Nevertheless, these

methods also suffer from the difficulty of properly choosing

the numerous parameters involved or failure to explore the

different local frequency characteristics between spikes and

real features. As such, these methods have not found wide-

spread use due to the difficulty of implementing them, inabil-

ity to properly detect all spikes, and/or their tendency to

distort the spectra.

To overcome these difficulties, we have devised a new algo-

rithm that combines wavelet transforms with data clustering

methods to automatically detect and remove spikes from

Raman spectra. Specifically, based on the randomness of

cosmic rays, spike detection was ensured by a clustering of

wavelet coefficients method. By analyzing the clustering behav-

ior, the erroneous coefficients can be reset to the most prob-

able value. A multiresolution analysis is also employed to

enable separation of spikes and real features by different

local frequency characteristics. This approach ensures the

preservation of real Raman features of both broad and

narrow profiles, as well as insensitivity to spike amplitude.

Furthermore, this automatic detection enables easy implemen-

tation, provides a more intuitive threshold setting, and reduces

dependency on the particular wavelets employed. Although

our method is not fully automated, the algorithm is capable

of removing spikes in different contexts and preserving the real

Raman features well. As such our method is easily

implemented by those not familiar with spectral filtering

algorithms.

Theory

In this section, we outline the theory behind the two tech-

niques used in our algorithm.

Wavelet Transform

Fourier transforms are well known for their exceptional

ability to reveal the frequency composition of a series x(t)

and thus remove periodic noise. However, because of its

extended and periodic basis functions (sine and cosine),

localized features in x(t) will strongly overlap in the

frequency domain after transform. Thus Fourier filters are

unable to remove localized features, and as such are not

appropriate for separating spectral spikes from Raman fea-

tures, both of which are generally localized and not peri-

odic. To solve this problem, some authors have turned to

wavelet transforms.25

In wavelet transforms one represents localized and

non-stationary signals by a set of functions called wave-

lets. Wavelets are a series of functions that are all loca-

lized, quickly decaying, and can be translated and scaled

to form a complete basis. To gain more insight into

wavelet transforms, let us consider the following formula

which is used to obtain continuous wavelet transform

coefficients,

cð p, qÞ ¼

Z
xðtÞ�p,qðtÞdt ð1Þ

�p,qðtÞ ¼
1ffiffiffiffiffiffi
j pj
p �

t� q

p

� �
ð2Þ

Here x(t) is the original signal, �p,qðtÞ is a series of wave-

let functions generated by the scaling and translation of the

mother wavelet �ðtÞ, p characterizes the range and local

frequency (here local frequency represents how fast the

signal changes locally), and q translates the center of the

wavelet. An example is shown in Figure 1 where one can

see that as the scaling factor (p) decreases, the wavelets

become more localized with a decreasing period of oscilla-

tion. Thus, as p is reduced, higher local frequencies are

sampled, and only a smaller section near x(q) is included

in Eq. 1. In other words, c(p, q) is capable of extracting the

local frequency component of x(t). The frequency window

(bandwidth) is controlled by the scaling factor p whose

reduction leads to the extraction of higher frequency/

more local components. For a continuous transform-

ation, p and q can take any positive value. From the per-

spective of reduction of redundant information and for real

applications, discrete wavelet transforms are preferred

where the values taken by p, q normally have the following

relation

p ¼ 2j q ¼ 2j � k k, j 2 Z ð3Þ

where wavelets �p,qðtÞ are denoted by �j,kðtÞ instead.26

This natural ability of wavelets to separate out informa-

tion at various degrees of local variation makes them a

natural choice for removing cosmic ray induced spikes in

Raman spectra. Specifically, real features are typically

broader than spikes leading to a natural separation into

different local frequency bands. Therefore, most of the

real Raman features will appear in lower local frequency

components (i.e., higher j) than spikes. If features in a

series x(t) have different local frequency characteristics, a
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multiresolution analysis can be achieved by discrete wavelet

transform.

Multiresolution analysis was first proposed by Mallat27

in his research of computer vision. The basic idea is to

decompose signals under different scales (local frequen-

cies). Through analysis and comparison of the decompos-

ition coefficients, one can obtain useful information.

Mathematically speaking, x(t) is firstly projected onto a

series of orthogonal subspaces that are spanned by

the wavelet functions �j,kðtÞ (j 2 ½0, jn� where jn is the

number of steps in wavelet transform). To satisfy

the requirement of completeness, x(t) is also projected

to the space of spanned by the scaling functions �jn,kðtÞ
which is the orthogonal complementary space of the

spaces spanned by �j,kðtÞ. Each of these spaces has its

unique local frequency characteristics. The coefficients

obtained by projecting x(t) on �j,kðtÞ (�jn,kðtÞ) are

named as dj,k (aj,k). d and a are abbreviations for detail

and approximation due to the local frequency characteris-

tics of g and h explained below. The same as continuous

wavelet transform, as j increases, the more coarse (low

local frequency) information is represented. More details

about the multi-resolution analysis and the relation

between � and � can be found in the supplemental mater-

ials. Readers interested in the mathematical construction

procedure of wavelet function � and scaling function �
are referred to Daubechies et al.,26 where the detailed

mathematical background is discussed. From the perspec-

tive of signal filtering, the wavelet functions �j,kðtÞ are

determined by a series of high-pass filters (g) and the

complementary scaling functions �j,kðtÞ are related to

low-pass filters (h).26 If the original spectrum can be con-

sidered as the approximation at level 0 by the a0 coeffi-

cients, then the Mallat algorithm tells us the hierarchical

coefficients ajþ1,k (djþ1,k) can be obtained by deconvolu-

tion of aj,k with filters h (g) and subsequent down-sam-

pling.27 Thus, dj,k (aj,k) represents the information of the

original signals in different local frequency bands. High

local frequency information is stored in low level (small

j) detail coefficients and vice versa. Once the coefficients

are obtained, one can then analyze the signal at different

resolution levels. This shows a clear advantage for the

wavelet approach, namely the local distortion can be

removed without distorting the signal resulting from

non-local components. However, a key difficulty in this

approach is finding a reliable method for adjusting the

coefficients at each level, such that only the spikes are

removed. The solution to this is described in the section

via a data clustering technique.

K-Means Clustering

In our multiresolution analysis, a data clustering technique is

employed to distinguish wavelet coefficients originating from

spikes from real signals. The most widely used clustering

algorithm is k-means clustering. K-means clustering is

designed to partition n data points into K clusters in which

each point belongs to the cluster with the nearest mean. The

goal of the algorithm is to choose the cluster centroid (cl) to

minimize total intra-cluster variance, while maintaining max-

imum distinction between the clusters. Thus the cost func-

tion in Euclidean space, which represents the variant, is just

Figure 1. Mexican hat wavelet functions with four different scaling factors.
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the sum of the square distance of each data point to its

corresponding centroid, given by Bishop et al.28:

J ¼
XK
l¼1

Xln
i¼1

jxli � cl j
2 ð4Þ

where cl is the centroid for cluster l and ln is the number

of data points in the cluster and xli is a data point in cluster

l. A more detailed description can be found in Smola and

Schölkopf.29 Nonetheless, a difficulty with this approach is

that the best number of clusters is not known and has to

be determined for each application of the algorithm.

Another downside of k-means algorithms are that the

cost function is not concave, leading to the production

of local minimums, and the outcome strongly relies on

the initial guess. So as to achieve a global minimum, one

typically runs the k-means algorithm multiple times with

different initial guesses and chooses the one with

minimum J.

Spike-Removal Algorithm

The basic idea behind our algorithm is to adjust the errone-

ous wavelet coefficients caused by spikes (amjn,k and dmj,k, m

indicates the specific spectra being transformed) to the

values that they are most likely to be. As mentioned

above, the locations of the spikes are highly random leading

to very low probability that two spikes are located at the

same position in all spectra. Consequently, most of the coef-

ficients representing the real data should aggregate into a

cluster. Erroneous coefficients that appear with low prob-

ability can be detected by analysis of clustering behaviors.

Then, the wrong one can be adjusted to the average of

the data points in an aggregated cluster. We proceed by

assuming three or more spectra (h is the total number of

spectra recorded) were measured under the same condi-

tions for a given sample. The algorithm consists of four steps:

(1) Wavelet transforms up to level n are performed on

each spectrum individually. The optimal n is determined

by the relation: 2nþ3 � number of data points. The

resulting amjn,k and dmj,k (j 2 ½0, n�, m 2 ½1, h�) are stored

in array lmj,k. With

lmj,k ¼ dmj,k j 2 ð0, nÞ l
m
nþ1,k ¼ amjn,k

where j denotes the level of wavelet coefficients and k rep-

resents the translation.

(2) Set a cluster radius rj for each decomposition level j to

allow for variance among the h spectra. Theoretically,

the measured spectra should be very similar resulting in

no small difference in coefficients. Thus, if one clusters

the coefficients, all the coefficients should aggregate

into one cluster except the erroneous coefficients

caused by spikes. In practice, there will always be

some environmental changes or drifts (e.g., sample tem-

perature or laser power) leading to variances between

the consecutive measurements. As mentioned in the

previous section, Raman features are usually broader

than spikes and thus have different local frequency char-

acteristics. Thus it is safe to infer that lmj,k at higher level

j better represents the real features. Hence, the cluster

radius at a high level should be set larger to account for

the variance among spectra. Detailed discussion about

selection of rj will be given in the subsection ‘‘Selection

of rj’’ where rj will be set as different functions of j to

minimize spectra distortion.

(3) In this step, the erroneous wavelet coefficients lmj,k caused

by spikes are adjusted. These coefficients are auto-

detected through a clustering search. As mentioned

above, the optimal number of clusters is unknown in

advance. Thus an algorithm is employed to search for

the best number of clusters so as to detect all the erro-

neous coefficients and exclude real features. The number

of clusters cnum starts with one and is iterated until the

Algorithm 1. The algorithm of Step 3.
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appropriate cluster number cnum is found. This can be

achieved by comparing the radius of the largest cluster

to the preset rj. If the radius is smaller than rj, all coeffi-

cients in the largest cluster will be labeled as the coeffi-

cients from real features and those not in the cluster will

be detected as erroneous coefficients. Then, all errone-

ous coefficients will be reset to the centroid of the cluster.

If not, the algorithm will try to find cnum þ 1 clusters and

repeat the aggregation procedure. On other hand, if no

cluster can be found, which means the algorithm is clus-

tering h coefficients to h clusters, in this case, it is likely

all coefficients are real but with large variance,

so no change will be made. More details of this step can

be referred to the pseudocode (Alogrithm 1). In Figure 2,

one example is also shown to illustrate this step.

(4) In the end, the processed coefficients amjn,k and dmj,k will

be used to perform an inverse wavelet transform to

recover the h spectra with the spikes removed

Experiments

The Raman measurements were performed using a home-

built Raman microscope, the details of which can be found

in Tian et al.30 Two single crystal samples, Cr2Ge2Te6 and

Sr3Ir2O7, were measured, chosen for their very small

Raman cross-section, low thermal conductivities, and var-

iety of Raman features (two-phonon as well as two-

magnon). Thus in order to achieve sufficient signal to

noise ratios as well as avoid laser heating, one has to use

small laser excitation powers and long exposure times,

increasing the possibility of spikes in the spectra. For the

clustering purpose, at least three acquisitions taken with

the same exposure time, laser power, and under the

same physical conditions are required.

The algorithm was implemented in Matlab. Matlab 2014a

built-in wavelet transform, its inverse and k-means cluster-

ing functions were used. The code ‘‘Spike Removal for

Raman Spectra’’ can be downloaded at http://www.math-

works.com/.

Results and Discussion

Spikes in Raman spectra are typically very narrow (full

width at half-maximum, (FWHM) 1.5–3 cm–1);16 however,

the features they interfere with are of various types. In this

section, we show the processed results on four data sets

with different characteristics. Subsequently, the influence of

the selection of rj and different wavelets on the perform-

ance of the algorithm will be discussed.

Primary Tests

The first two sets of spectra were taken on single crystal

Sr3Ir2O7 at 280 K and 125 K (shown in Figure 3).

The measurement was performed under laser power as

low as 0.1 mW with 1 mm spot size. Each spectrum was

collected with 10 min acquisition. The processed spectral

range was set to (–200,1600) cm–1 to show both anti-

Stokes and Stokes sides, resulting in 1803 data points.

The central multiple peaks near 0 cm–1 are Rayleigh scat-

tering and artifacts from our notch filters. The Raman spec-

tra of Sr3Ir2O7 contain five phonons31 (centered at

143.0 cm–1, 177.6 cm–1, 268.4 cm–1, 389.4 cm–1, and

586.0 cm–1) and two broad features (710–880 cm–1, 1307–

1462 cm–1) due to two-magnon and two-phonon excita-

tions.32 In the following, the amplitude of the line-widths

of both spikes and Raman features are given inside paren-

thesis. In the first data set (shown in Figure 3a), we focused

Figure 2. One example of step 3. (a) Clustering performed at j¼ 1. 2*r1 is visualized by the red line. In the first trial, the algorithm

aggregated all data points into one cluster (the green rectangle). Since the radius (height) of cluster (green) is larger than 2*r1, the

algorithm continues. In the next trial, the data points were aggregated into two clusters. The radius (height) of the bigger cluster (the

blue rectangle) is smaller than 2*r1. Thus the algorithm accepts this aggregation and resets the wrong coefficients to the centroid of the

bigger cluster (shown by the arrow). (b) Clustering performed at j¼ 5. 2*r5 is denoted by the purple line. Since r5> r1, one cluster was

found and its diameter (the short edge of the purple rectangle) was accepted by the algorithm and no change was made.
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on the spikes overlapping with intermediately broad fea-

tures (FWHM 5-50 cm–1). There are six spikes in total vis-

ible in the spectra. Here phonons, spikes, two-magnons,

and two-phonons are denoted by P, S, TM, and TP, respect-

ively. The original and processed spectra (obtained with

rj ¼ 20� j) are shown in a blue dash–dot line and a red

solid line, respectively. Judging by the zoom-in image in

Figure 3a, we can see the algorithm indeed removes

spikes S1 (overlapped with P1 (6 cm–1, 400 counts)) and

S2 (overlapped with P2 (40 cm–1, 300 counts)) very well,

while there is still some residue left in the processed spec-

tra from S3 to S5. In the next subsection, a strategy of the

selection of rj will be discussed to minimize these residues.

Compared to the first set, spikes S2–S4 (1–3 cm–1, 200–600

counts) in the second data set (shown in Figure 3b) inter-

fere with much broader features TM (�100 cm–1, 150

counts) and TP (�80 cm–1, 250 counts). Broad features

like this also are often observed in organic samples33,34

and other two-particle excitations35,36 and are more

likely to be contaminated by spikes due to the broadness.

Nonetheless, it is clear that our method was able to elim-

inate spikes S2–S4 from the spectra with negligible distor-

tion of the original spectra.

Another two data sets on single crystal Cr2Ge2Te6 were

taken at 100 K and 185 K with laser power 0.08 mW.37

Each spectrum was collected with 15 min exposure and

900 data points were acquired. The spectra processed

with rj ¼ 15
ffiffi
j
p

are shown in Figure 4. As can been seen

Figure 3. The original (blue dash-dot line) and processed (red line) Raman spectra of Sr3Ir2O7. The spectra are offset for clarity.

The zoom-in images show details of both spectra. The labels P, S, TM, and TP indicate phonon, spike, two-magnon, and two-phonon,

respectively. The correspondences are indicated by the underlined spike indexes. (a) Spectra taken at 280 K. S3 spike is as high as 6000.

(b) Spectra taken at 125 K.

Figure 4. The original (blue dash-dot line) and processed (red line) Raman spectra of Cr2Ge2Te6. The spectra are offset for clarity. The

zoom-in images show details of both spectra. The correspondences are indicated by the underlined spike indexes. Phonons and spikes

are indicated by P and S, respectively. PXa denote PX (X¼ 1,2,3) phonon at anti-Stokes side. (a) Spectra taken at 100 K. (b) Spectra

taken at 185 K.
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from Figure 4, Cr2Ge2Te6 contains much sharper phonon

lines than Sr3Ir2O7 which is obviously more challenging to

cope with. For example, spike S1 (2 cm–1, 1500 counts) sits

at the top of a narrow feature P1a (2.8 cm–1, 700 counts) in

Figure 4a, while Spike S2 (1.4 cm–1, 800 counts) is very near

to the shoulder of P2a (2.3 cm–1, 1100 counts) in Figure 4b.

From the insets of Figure 4a and b, we can see the phonon

lines were well recovered. Especially noteworthy is the

removal of the tiny S3 spike (Figure 4b). Moreover, in the

inset of Figure 4b, we can see the phonon P3a (5 cm–1, 50

counts) which is almost overwhelmed by spike S1 were well

recovered. The spikes (S2 in Figure 4a and S4 in Figure 4b)

overlapped with phonons with broader linewidth were also

removed. However, as can be seen from the circled region

in Figure 4a, there are some distortions to the original

spectra. In the next subsection, these artifacts can be

resolved through a careful selection of rj. Nonetheless

our method is able to safely remove the spikes while pre-

serving most of the features of the original data.

Selection of rj

Without any doubt, rj is the most important parameter in

the entire algorithm. Since rj represents the allowance of

variance among spectra, a good rj should be able to keep

small differences resulting from environmental changes,

while still filtering out spikes. In the previous subsection,

we already demonstrated results with different choice of rj.

In this subsection, we study its influence more thoroughly.

One representative data set, Cr2Ge2Te6 taken at 185 K was

used for the investigation. rj was firstly set as a linear func-

tion of rs � j with rs taking four different values 5, 10, 15,

and 20. The resulting spectra are shown in Figure 5. For the

purpose of quantitative comparison, the spikes were also

removed by hand, namely adjusting the data to an approxi-

mate value. The cross-correlations38 between the pro-

cessed spectra and the corrected spectra were computed

and shown in the plot. In theory, if the spectra are of high

similarity except for the spikes, one would set rs as small as

possible to remove all local frequency components of the

spikes. As shown in Figure 5b, although the spike was

removed in all four cases, when we take the difference

between the processed spectra and manually corrected

spectra, we can see the spectra with minimum rs indeed

has the best performance. Specifically, the low local fre-

quency components (310–340 cm–1) of the spike are not

completely diminished in other cases. On the other hand, if

the spectral variance is noticeable, an intermediate rs is

needed to avoid unexpected errors. This can be seen by

comparing the processed spectra in Figure 5d. For the

bottom spectra, because the rs was set too small, no cluster

with radius r1 smaller than 5 could be found. Consequently,

no change was made for d1 at the location of the spikes,

resulting in the spike remaining in the processed spectra.

For the other three cases, the algorithm was able to

aggregate d1 with larger r1 and reset the erroneous coeffi-

cients, leading to the spike-removal. Besides, in Figure 5e

when one compares the resulting difference between the

two green dashed lines where the phonon features are

located, as rs increases the ‘‘W’’ shape in the resulting dif-

ferences becomes more and more flat. Thus, if rs is small

the resulting difference is larger, and the automatically fil-

tered spectra reveal more rapid fluctuations, indicating the

modification of high local frequency components of phonon

features. This results from a lack of variance allowance at

low levels for high local frequency components. As such,

the peak feature is better preserved for larger rs. On the

other hand, just as the case discussed previously, the low

local frequency components of the spike are better

removed with small rs which is shown over the spectral

range –130 cm–1 to –70 cm–1 in Figure 5e. So a trade-off

between the allowance of variance to keep the real feature

and elimination of low local frequency components of

spikes has to be made, leading one to choose intermediate

rs. This is confirmed by the highest cross-correlation

(shown in Figure 5a) obtained with 15� j.
To further improve the performance and remove the

low local frequency components of the spikes (the feature-

less and flat offset region between –140 and –80 cm–1 and

between 270 and 340 cm–1, see Figure 5c and e) of the

spikes, one can also decrease the rj for high level clustering.

To achieve this, we employ a second strategy where rj is

proportional to
ffiffi
j
p

. This strategy will definitely reduce the rj
for high level clustering, however it will also significantly

change rj for the intermediate levels. To compensate that,

instead of setting rj ¼ 15�
ffiffi
j
p

, we set rj ¼ 20�
ffiffi
j
p

. In

Figure 6, we show the results with rj set to 20�
ffiffi
j
p

as

well as the best result obtained with the previous

rj ¼ 15� j. For convenience, we have abbreviated the rj
settings to S20 (S15) for 20�

ffiffi
j
p

(15� j). Judging from

the two curves in Figure 6a and c, both settings were

able to retain the real features and result in overall simi-

lar residues in between the two dashed lines (shown in

Figure 6b and d). However, when comparing the region

outside of the lines, the residue for S15 is more significant

than S20 in terms of both amplitude and oscillation. By

comparison, the residue for S20 is more or less flat and

featureless. So it can be concluded S20 indeed performed

better in terms of eliminating the low local frequency com-

ponents of the spikes, which is also confirmed by the cal-

culated cross-correlation (shown in Figure 6a).

As we mentioned above, sometimes artifacts are gener-

ated in the processed spectra (circled region in Figure 4a).

These broad artifacts are usually due to the less sufficient

tolerance of rj at high level. Since it is just the opposite to

what we met previously where we shrunk the amplitude of

rj at high level, in this case, we need to adjust rj in the

opposite direction and reset rj from 15�
ffiffi
j
p

to 10� j.
The results are shown in Figure 7. We can see clearly the

artifacts are removed while leaving other real Raman
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features almost intact. This was further confirmed by the

larger cross-correlation shown in the figure.

To correctly choose a rj, one can judge the relative local

frequency characteristic of Raman features, if the Raman

features are very broad as well as have large variation,

a linear setting of rj should be used. On the other hand, if

the feature is sharp as the case in the representative spectra

above, a square root setting of rj should achieve better

performance. However, if broad artifacts are generated in

the resulting spectra, one could consider switching back

to the ‘‘linear’’ strategy and adjusting the coefficients cor-

respondingly. We only show two different strategies to set

rj: linear and square root. In practice, other settings can be

explored to fit in different applications.

Selection of Wavelets

Eight orthogonal wavelets were considered (Figure 8).

The corresponding wavelet functions � and scaling func-

tions � can be found in the supplemental materials. More

details about these wavelets can be found in Matlab help

documents and the ‘‘Wavelet Browser’’ website developed

by Filip Wasilewski.39 The same representative spectra on

Cr2Ge2Te6 taken at 185 K as well as the processed spectra

Figure 5. Influence of rs (shown in the labels) on the resulting spectra. The original (processed) spectra are shown in blue (red).

Spectra are offset intentionally for clarity. (a) Wider range spectra processed by four rs. The cross-correlation coefficients are shown in

number. (b, d) The processed spectra are shown in zoom-in images. (c, e) The differences between the processed spectra and manually

fixed spectra. The resulting differences are shown in red. The black dashed lines are the reference lines. The green dashed lines indicate

the region where phonon features and spikes are located.
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are shown in Figure 8. The rj was set to 15� j. As we can

see, generally spikes are removed from all spectra regard-

less the wavelet employed. The reduced dependence on

specific choice of wavelet makes our algorithm even more

user-friendly. Nonetheless, there is still slightly different

behavior in terms of low local frequency residue. This can

be explained by the different profiles of the wavelets. When

the spikes are projected into the wavelet space using dif-

ferent wavelets, some wavelets can represent spikes and

Raman features better than others due to the different

vanishing moment of wavelets.

To compare the performances and check the integrity,

we computed the cross-correlation between the processed

spectra and manually processed spectra for all four data sets.

The calculated results and the one for original spectra are

listed in Tables 1 and 2. In general, all wavelets are capable of

spike-removal and have very close performances less than

0.1–0.2%. Nonetheless, ‘‘sym2’’ has the highest cross-corre-

lation for the first three sets and ‘‘coif1’’ works best for the

last data set. Thus, it can be inferred that ‘‘sym2’’ is more

suitable for the spike-removal algorithm.

Figure 8. Wavelets dependence of the performance of the

algorithm. From the bottom to top, the wavelets are ‘‘haar,’’ ‘‘db3,’’

‘‘db6,’’ ‘‘sym2,’’ ‘‘sym3,’’ ‘‘sym4,’’ ‘‘coif1,’’ and ‘‘coif5,’’ respectively.

Figure 7. Demonstration of the removal of the artifacts.

Figure 6. Spectra processed by different threshold setting strategies 20�
ffi
j
p

and 15� j. (a, c) Zoom-in images highlight the position

of spikes. The numbers in plot show the cross-correlation coefficients for the entire spectral range. (b, d) Differences between

processed spectra and manually fixed spectra. The resulting differences are shown in red. The black dashed line are the reference lines.

The green dashed lines indicate the region where phonon features and spikes are located.
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Conclusion and Future Improvement

Cosmic ray induced spike-removal in Raman spectra is not

a simple task due to the complex shape and large amplitude

of spikes. A novel algorithm based on wavelet transform

and data clustering has been proposed and validated using a

wide range of experimental data. The spike detection and

removal is performed by a multiresolution data clustering

of wavelet coefficients. The processed coefficients can then

be used for reconstruction through the inverse wavelet

transform. The procedure has advantageously utilized the

localization property of wavelets, which not only enables

good separation of real features and spikes in wavelet space

but also results in little dependence of the specific choice of

wavelets. The algorithm is simple, easy to implement, uses

widely available functions, has a little dependency on the

specific wavelets employed, as well as intuitive threshold

setting, allowing for usage by non-experts in spectra filter-

ing. Nonetheless one small drawback still remains: one still

has to set a reasonable rj which limits its potential to be

integrated for full automation. Future improvement will be

focused on a more intelligent clustering strategy to remove

this bottleneck.
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