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ABSTRACT. Geometric Manin’s conjecture for complex Fano va-
rieties describes the structure of the moduli space of curves. We
propose a version of this conjecture in characteristic p and describe
its connection to the Batyrev—Manin—Peyre—Tschinkel conjecture
over global fields. This is a survey paper written for a volume
of the Summer Research Institute in Algebraic Geometry held at
Colorado State University in 2025.
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1. INTRODUCTION

Geometric Manin’s conjecture predicts the structure of the moduli
space of curves on a Fano variety. This conjecture has its roots in
several influential discoveries made approximately 40 years ago: the
close relationship between curves and birational geometry ([Mor79],
[Mor&2]), asymptotic formula describing counts of rational points ([FMT89],
[BMO0]), and the topological properties of spaces of maps from Rie-
mann surfaces into projective Fano manifolds ([Seg79]).

In this expository paper our goals are:

Date: January 14, 2026.
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(1) To give a conjectural description of families of curves on Fano
varieties in characteristic p while accounting for pathological
examples.

(2) To give a careful formulation of the Batyrev—Manin—Peyre-
Tschinkel conjecture over a global function field with a clear
explanation of Peyre’s constant in this setting.

(3) To briefly explain the recent developments of | | to solve
new cases of the Batyrev—Manin—Peyre—Tschinkel conjecture
over global function fields.

This paper is intended to supplement the material in the recent book
[ |. Throughout, by a curve on a projective variety X we mean a
morphism s : €' — X from a smooth projective geometrically integral
curve C.

1.1. Historical background: curves on Fano varieties. Over the
past 50 years, rational curves have emerged as an essential tool in the
study of complex Fano varieties. Some highlights are:

e Mori’s solution of Hartshorne’s conjecture using Bend-and-Break
and the deformation properties of free curves (| |). Since
Mori’s ground-breaking work, rational curves have continued to
play a key role in our understanding of positivity of the tangent
bundle.

e The use of lines and conics in the classification of smooth Fano
threefolds by | , , , , , ].

e The proof of the boundedness of smooth Fano varieties by |

Starting from the influential works [ | (for homogeneous spaces)
and | | (for hypersurfaces), attention turned toward the explicit
study of the moduli space of rational curves on Fano varieties: classi-
fying the irreducible components, studying their dimension and singu-
larities, etc. Some examples are | , , , , ,

Y Y ) ) Y Y )

) 9 Y
, , , ]. For a long time there was no general
expectation about how such curves should behave; the situation in char-
acteristic 0 was clarified in the papers | I, 1 | and extended
to curves of arbitrary genus.

1.2. Historical background: Manin’s conjecture on rational
points. Yuri Manin and his collaborators initiated a program (later
known as the Manin program) seeking a geometric explanation of vari-
ous asymptotic formulas for the counting functions of rational points on
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smooth Fano varieties. This program led to the Batyrev—Manin—Peyre—
Tschinkel conjecture (or Manin’s conjecture for short) which predicts
the precise asymptotic formula for the counting function of rational
points of bounded height on smooth Fano varieties. This has been
developed in a series of works | , ,

, , ]. This conjecture has been conﬁrmed for various
examples including, but not limited to, various homogeneous spaces
using harmonic analysis | ) ],
complete intersections of low degree using the cwcle method [ ,

: |, and various (singular) del Pezzo surfaces using the
universal torsor method | , , , , ,

, DP20, BD23].

There also have been many works developing Manin’s Conjecture
over global function fields. Versions of this conjecture were first formu-
lated by Bourqui and Peyre; in | , , | Bourqui stud-
ied toric varieties and varieties with simple Cox rings and in | ]
Peyre studied flag varieties. More recent examples include hyper-
surfaces | , , , , | and del Pezzo surfaces
[ ) : | as well as many others.

When one counts the number of rational points, it is important to
consider the exceptional set and remove the contribution of the excep-
tional set from the counting function so that the asymptotic formula
reflects the global geometry of the underlying pair. The geometric as-
pect of Manin’s conjecture, particularly concerning the exceptional set,
has been developed in | , , , , ;

. In | ] the authors and Sengupta proposed a conjectural
description of the exceptional set in Manin’s conjecture; using recent
advances in higher dimensional algebraic geometry such as the minimal

model program | | and Birkar’s solution to the BAB conjec-
ture in | , | we verified that this proposed set is indeed a thin
set as predicted by Peyre in | |. There is an alternative proposal

using the notion of freeness of rational points combined with all heights
approach; see | ] and | ].

1.3. Batyrev’s heuristic and extensions. In his influential lecture
notes [ ], Batyrev developed a heuristic for the asymptotic behav-
ior of rational points on Fano varieties over global fields. The heuristic
is based on the geometry of moduli spaces of curves. Suppose that X
is a Fano variety defined over a finite field. Counting the number of
degree d maps s : P! — X is equivalent to counting the F,-points on
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the associated irreducible components of Mor(P!, X). We can estimate
these numbers once we know the dimension and number of irreducible
components in degree d. If we assume that these spaces have the “ex-
pected” geometry, we obtain the familiar predicted asymptotic formula
cq?dPX)=1 for the counting function in Manin’s conjecture. This is
further pioneered by David Bourqui and Emmanuel Peyre. See, e.g.,
[ ) ) ) ]

The geometric meaning of the leading constant was later clarified
by Ellenberg and Venkatesh. They observed that such an asymp-
totic formula naturally follows from homological stability results via
the Grothendieck-Lefschetz trace formula. Furthermore, over C the
Cohen—Jones—Segal conjecture predicts that the stable homology of
the moduli space of curves does indeed stabilize to the homology of the
space of continuous maps, and such stable homology naturally leads to
Peyre’s constant.

[ | was the first to recognize the importance of the minimal
model program in establishing Batyrev’s geometric heuristic. Building
on recent advances in the MMP, | ] and [ | formulated a set
of conjectures in characteristic 0 which translate Batyrev’s heuristics
into a precise description of the irreducible components of the spaces
of curves on any Fano variety (or the spaces of sections of any Fano

fibration). Also [ | completed the first major step toward solving
these conjectures by computing the exceptional set in the geometric
setting.

An alternative approach to Batyrev’s heuristic is to work in the
Grothendieck ring. This motivic approach was pioneered particularly
by Bourqui in | : , | and also by | |. The re-
cent development of the motivic Euler product by | | has opened
the way for new advances; see e.g. | , .

Disclaimer: Geometric Manin’s conjecture in characteristic p and
Batyrev—Manin—Peyre—Tschinkel’s conjecture over global function fields
are still under development. This survey paper contains lots of specu-
lative observations and conjectures; these may need further corrections
in the future.
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Number 851129. Sho Tanimoto was partially supported by JST FOR-
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2. PRELIMINARIES

Throughout we will work over a ground field k. A variety is an
integral separated scheme of finite type over the ground field. When
the ground field has characteristic p, we denote by F¢ the e-th iterate
of the (absolute) Frobenius map on X which is a homeomorphism that
raises all functions to the p°-th power. If the ground field k is finite,
then for any k-scheme X we denote by Fr; the geometric Frobenius
automorphism of Xz, i.e. the morphism X7 — Xj induced by base
change from the automorphism of k that is the inverse of ¢ — t/*,

2.1. Numerical spaces. Let X be a normal projective variety over a
field. We denote the abelian group of Cartier divisors by CDiv(X). A
Q-Cartier divisor is an element of CDiv(X) ®z Q.

Two Cartier divisors Dy, Dy are numerically equivalent if for every
closed integral curve C' on X we have D;.C' = D,.C; numerical equiv-
alence is written as D; = Dy. We define N'(X) to be the R-vector
space of Cartier divisors up to numerical equivalence.

2.1.1. Curves. A 1-cycle on X is a formal sum of closed integral curves
on X. Two l-cycles aj,as are numerically equivalent if for every
Cartier divisor D we have D.ay = D.as; numerical equivalence is writ-
ten as o = ao.

We define N;(X) to be the R-vector space of 1-cycles up to numerical
equivalence. This is a finite-dimensional vector space and it contains a
natural lattice N;(X)z generated by classes of curves. It contains two
natural cones:

e Eff;(X) is the closure of the cone generated by all effective 1-
cycles.

e Nef,(X) is the nef cone, i.e. the cone of all numerical classes «
such that E.a > 0 for every effective Cartier divisor E.

Both cones are closed, convex, full-dimensional, and pointed.
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2.2. Brauer groups. Since we will be working exclusively with quasipro-
jective schemes X over fields, the cohomological and Azumaya Brauer
groups coincide; we denote this common group by Br(X). The al-
gebraic part of the Brauer group Bri(X) is the kernel of the map
Br(X) — Br(Xks) induced by base change to the separable closure.

Let X be a smooth projective variety over a global field k. Then its
adelic space is given by

X(Ak) = H X(kv)a

vEQ

as a topological space with the product topology, where €0 is the set
of all places of k and k, is the completion of k with respect to v € 2.
One can define the Brauer—Manin set

X(Ak)Br(X)

which contains the set X (k) of rational points. When X is geometri-
cally rationally connected, the Colliot-Thélene conjecture predicts that
X (k) is non-empty as soon as the Brauer-Manin set is non-empty.
Moreover the conjecture predicts that X (k) is dense in X (A;)B*0).
Readers interested in this construction should consult | -

2.3. Thin sets. Suppose X is a variety over a global field k. One
possible notion of a “small” subset Z C X (k) is a non-Zariski dense
subset. However, this notion is not sufficiently flexible for working
with arithmetic questions. Instead, we will need the notion of a thin
set introduced by Serre in the context of the inverse Galois problem.
See | ] for more details.

Definition 2.1. Let X be a projective variety over a field k. A thin
map is a morphism of projective varieties f : Y — X such that

(1) f is generically finite onto its image, and

(2) f is not birational.

A thin set in X (k) is any subset of a finite union U]_, f;(Y;(k)) where
{fi : Y; = X} is a finite collection of thin maps.

The notion of a thin set is meaningless over some fields (e.g. an
algebraically closed field), but over global fields it is an important and
useful condition.

2.4. Fujita invariants. The following invariant plays a central role in
Manin’s conjecture:
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Definition 2.2. Let X be a smooth projective variety defined over
k and L be a big and nef Q-divisor on X. The Fujita invariant or
a-imvariant is the following invariant:

a(X, L) := min{t € R|the numerical class t[L] + [Kx] is pseudo-effective}.

When L is nef but not big, we set a(X,L) = +oo. By | :
Proposition 2.7], this is a birational invariant under pullback via a
birational morphism between smooth projective varieties. (See also
[ , Proposition 4.1.3].)

In characteristic 0, [ | shows that when L is big and nef
a(X, L) is positive if and only if X is geometrically uniruled. In positive
characteristic, the same statement holds by | , Theorem 1.6].

Definition 2.3. Let X be a smooth projective variety defined over £
and L be a big and nef Q-divisor on X. Let f : Y — X be a dominant
generically finite morphism from a smooth projective variety Y. We
say fis an a-cover if a(Y, f*L) = a(X, L).

Next we define the b-invariants:

Definition 2.4. Let X be a smooth projective variety defined over k
and L be a big and nef Q-divisor on X. Assume that X is geometrically
uniruled. The face of (k, X, L) is defined by

F(X,L) := Nef1(X)N{a € Ni(X)]|(a(X,L)L + Kx).ao = 0}.
The b-invariant of (k, X, L) is defined by
b(k, X, L) = dim(F(X, L)),

where (F(X, L)) C Ny(X) is the subspace generated by F(X,L). By
[ , Proposition 2.10] as well as | , Proposition 4.1.16], this
is a birational invariant under pullback via a birational morphism be-
tween smooth projective varieties.

The most standard example of Fujita invariants and b-invariants is
the following;:

Example 2.5. Let X be a smooth weak Fano variety defined over
k and let L = —Kx. Then we have a(X,L) = 1 and b(k, X,L) =
dim N7 (X)) = p(X).

Definition 2.6. Let X be a smooth Fano variety and let f : Y — X
be an a-cover. We say f is face-contracting if the induced map

F(Y, f"L) = F(X, L),

is not injective.
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2.5. Globally F-regular varieties. | | provided the first exam-
ple of the failure of Kodaira vanishing for a smooth projective variety
in characteristic p. This failure leads to many other pathologies. How-
ever, if we impose an F-splitting assumption then we can sometimes
recover certain consequences of Kodaira vanishing.

Definition 2.7. Let X be a smooth projective variety over an alge-
braically closed field of characteristic p. We say that X is F-split if
the natural map Oy — F,Ox admits a splitting in the category of
Ox-modules.

We will mainly use the following stronger property.

Definition 2.8. Let X be a normal variety over an algebraically closed
field of characteristic p. We say that X is globally F-regular if for every
effective Cartier divisor D there is a positive integer e such that the
natural map

OX — FEOX(D)
admits a splitting in the category of Ox-modules.

Globally F-regular varieties share many important properties with
Fano varieties in characteristic 0. A key advantage of globally F-regular
varieties is the following vanishing result:

Theorem 2.9 (] , Theorem 6.8]). Let k be a field of character-
istic p.  Suppose X is a smooth projective geometrically integral k-
variety that is geometrically globally F-reqular. Then for any big and
nef Cartier divisor L on X we have H'(X,Ox(Kx + L)) = 0 for every
1> 0.

Corollary 2.10. Let k be a field of characteristic p. Suppose X is
a smooth geometrically integral Fano k-variety that is geometrically
globally F-regular. Then H'(X,Ox) =0 for all i > 0.

Many techniques in Manin’s conjecture (such as the formulation of

Peyre’s constant in | 1 [ ], and [ ]) require such a van-
ishing condition. Since this condition does not hold for arbitrary Fano
varieties in characteristic p — | | gives the counterexample of reg-

ular del Pezzo surfaces over imperfect fields — we will rely on these
vanishing results in our cases of interest.
Finally we have the following conjecture:
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Conjecture 2.11. Let k be a field of characteristic p. Suppose X
is a smooth geometrically integral Fano k-variety that is geometri-
cally globally F-regular. Let f : ¥ — X be a dominant generi-
cally finite morphism from a smooth projective variety. Then we have
a(Y,—f"Kx) < a(X, —Kx).

Note that in characteristic 0 this easily follows from the ramification
formula.

3. RATIONAL CURVES ON FANO VARIETIES IN CHARACTERISTIC P

As discussed above, the work of Mori and his collaborators revo-
lutionized the study of rational curves on Fano varieties. The fol-
lowing definition identifies the rational curves with the best possible
deformation-theoretic properties; such rational curves play a key role
in the theory.

Definition 3.1. Let X be a smooth projective geometrically integral
variety over a field k. We say that a rational curve s : P! — X is:

o free, if s*T'x is nef;

e very free, if s*T’x is ample.
More generally, suppose C'is a smooth projective geometrically integral
curve over k. For any r > 0, we say that s : C' — X is r-free if every
positive rank quotient of s*T’x has slope at least 2¢g(C') + r.

A famous question of Kollar asks whether every smooth Fano variety
over an algebraically closed field of characteristic p carries a very free
rational curve (or equivalently, is separably rationally connected). We
review known results on this question in the next two subsections.

3.1. Counterexamples. Although Kollar’s question is still open for
smooth Fano varieties, there are mildly singular Fano varieties which
do not carry any free rational curves at all. The first examples were
given in | ]; the following example is a particular case of Kollar’s
construction presented by | , Section 5].

Example 3.2. We work over Fo. Let ¢ : X — P? be the blow-up of
the seven [Fo-points of P2. Then X is a weak del Pezzo surface of degree
2.

There are exactly seven (—2)-curves on X corresponding to the strict
transforms of the seven Fy-lines on P2. The contraction of these (—2)-
curves yields a birational map ¢ : X — X’ to a degree 2 log del
Pezzo surface X’. The anticanonical linear series defines a degree 2



10 BRIAN LEHMANN AND SHO TANIMOTO

finite morphism ¢ : X’ — P? that turns out to be purely inseparable.
Using the theory of p-closed foliations, one sees that g corresponds to
a surjection ¢ : T'xys — g*Opz2(—1).

This quotient obstructs the existence of (very) free rational curves in
the smooth locus of X’. Indeed, if there were such a curve s : Pt — X,
then a general deformation would be contained in the locus where v
is a surjective map of locally free sheaves. Then s*i) would define a
negative quotient of s*T'x/, a contradiction.

The previous example is a specific instance of an interesting class
of weak del Pezzo surfaces X described by the following lemma. The
surfaces which satisfy the equivalent conditions are classified explicitly

by [ J-

Lemma 3.3 (| , Theorem 1.1]). Let X be a weak del Pezzo
surface over an algebraically closed field of characteristic p. Then the
following properties are equivalent:
e Every element in | — Kx| is singular.
o X admits a dominant family of rational curves with larger than
expected dimension.

In fact, in all such examples there is a finite purely inseparable mor-
phism f:Y — X such that Ky, x is not pseudo-effective. This implies
that there are many dominant families of rational curves on X (coming
from Y) which have dimension larger than expected. In many cases
(such as the example of | ] discussed above) there is a birational
model that carries no free curves at all; such examples will necessarily
be poorly behaved for Manin’s conjecture.

3.2. Positive examples. There are several classes of Fano varieties
over algebraically closed fields for which the existence of (very) free
rational curves is known. In some cases, one needs to include an F-
splitting assumption to obtain the best behavior of curves.

Example 3.4. Suppose X is a smooth Fano hypersurface in P". It
is known that X is separably rationally connected when X is general
([ ]), or even when X is a general Fano complete intersection
([CZ14]).

The case of an arbitrary smooth Fano hypersurface is still open.
[ | shows separable rational connectedness of all Fano hypersurfaces
of index > 2 with degree less than the characteristic (and a similar
statement for Fano complete intersections). However, in general it can
be difficult to find a very free rational curve: | ] shows that the
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minimal degree of a very free rational curve on a Fano hypersurface
cannot be bounded above by a linear function in the dimension or the
degree. There is an alternative approach to this problem using the
circle method. See | , Theorem 1.5].

[ | proves similar results for complete intersections in certain
homogeneous varieties.

Example 3.5. Suppose that X is a smooth del Pezzo surface. Since
X is rational, it is separably rationally connected. Furthermore the
result of | ] mentioned above shows that every dominant family
of rational curves on X has the expected dimension.

If we assume that X has degree > 2, or X has degree 1 and the
characteristic satisfies p > 11, then [ ] shows that the following
conditions are equivalent:

o X is F-split.
e Every irreducible component of Mor(P!, X) representing a nef
class will generically parametrize free rational curves.

Example 3.6. Suppose that X is a normal projective threefold of Fano
type in characteristic > 5. Then | , Theorem 1.5] shows that X
is rationally chain connected.

If X is a smooth projective threefold that is globally F-regular in
characteristic > 11 and X admits a Mori contraction to a curve or sur-
face, then X is separably rationally connected by | , Theorem
0.2].

As in the previous examples, it is reasonable to expect better behav-
ior for Fano varieties under an F-splitting assumption:

Conjecture 3.7. Let X be a globally F-regular smooth Fano vari-
ety over an algebraically closed field of characteristic p. Then X is
separably rationally connected.

In fact, we expect more to be true: every rational ray in the interior of
Nef; (X) should be represented by the class of a very free rational curve.
Thus such varieties are suitable candidates for Manin’s conjecture.

4. SECTIONS OF FANO FIBRATIONS IN CHARACTERISTIC P

Manin’s conjecture addresses the behavior of rational points on a
Fano variety over a number field. To obtain the best geometric ana-
logue, we should study rational points on a Fano variety over the func-
tion field of a curve (particularly over a finite base field). We will
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always pass directly to an integral model and focus on the equivalent
problem of understanding sections of a Fano fibration.

Geometric Manin’s conjecture is the study of the asymptotic behav-
ior of sections of Fano fibrations. In this section, we give a precise
formulation of this conjecture, focusing on the geometric aspects. This
section is adapted from | |. Some of the conjectures in this sec-
tion have been established in characteristic 0 using birational geometry,
but currently the characteristic p versions seem out of reach.

Definition 4.1. Let k be a field of characteristic p. A good Fano
fibration is a morphism 7 : X — B with the following properties:

(1) X is a smooth projective geometrically integral variety.

(2) B is a smooth projective geometrically integral curve.

(3) mis flat and Op = 7, Ox.

(4) The generic fiber X, is a smooth geometrically integral Fano
variety that is geometrically globally F-regular.

(5) The generic fiber X, is a Mori dream space.

(6) m admits a section.

We denote the moduli space of sections of 7 : X — B by Sec(X/B).
For a curve class a € Ny(X), Sec(X/B,a) denotes the finite type
subscheme parametrizing sections with numerical class a.

Remark 4.2. For a projective smooth family over an uncountable
algebraically closed field being globally F-regular is an open condition.
Indeed, let f: Y — T be a projective smooth family and let £ be an
f-ample divisor on Y. Then by [ , Proposition 5.3(1)], each fiber
Y, is globally F-regular if and only if the section ring

Ry = @ HO(Yt» O(mL)),

is strongly F-regular. Then being strongly F-regular is an open condi-
tion by | , Theorem B|. Thus our claim.

It is natural to wonder whether some of the properties in Definition
4.1 can be weakened. However we will focus only on this case where a
positive answer seems most likely.

The following key definition identifies the analogue of a free curve
in the relative setting. Just as with freeness, relative freeness is deter-
mined by the positivity of the pullback of the tangent bundle. Note
that a section will automatically be contained in the locus where Ty,
is locally free.
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Definition 4.3. Let 7 : X — B be a good Fano fibration. A section
s: B — X is relatively r-free if every positive rank quotient of s*Tx/p
has slope at least 2g(B) + r.

4.1. Numerical classes. Our first task is to describe the set of nu-
merical classes of sections of . This set will be contained in a translate
of the subspace
V={ae N(X)|a.F =0}

where F'is a general fiber of . Thus we first focus our attention on V.

Note that we have an injective linear map N;(X,) — N;(X) whose
image is contained V. (This map is dual to the surjective restriction
map N'(X) — N'(X,).) From now on we will identify N;(X,,) with
its image in V.

Lemma 4.4 (] , Lemma 5.2]). Let m : X — B be a good Fano
fibration. Then we have

Nef1 (Xn) =Vn Nef1 (X)
We define Nef e,z to be Nefi(X,) N Vy.

Proof. Since we are assuming that &, is a Mori dream space, the
pseudo-effective cone of divisors on &) is equal to the effective cone.
Then the proof of | , Lemma 5.2] applies. O

Remark 4.5. There is a minor subtlety: although N;(X,)z is con-
tained in V7 N Ny (&;,), the two lattices may not coincide; the difference
reflects the monodromy of 7. In particular, the monoid Nef,.,; z may
be strictly larger than the monoid Nef; (X)) N N1 (X,)z.

We next turn from V' to the possible numerical classes of nef sec-
tions (contained in a translate of V). We can put restrictions on the
numerical classes of sections as follows. Suppose X}, is a reducible fiber
of m over a closed point b of B. Every section of m must intersect A}
at a smooth point, and in particular, will intersect a unique irreducible
component of Aj.

Definition 4.6. Let 7 : X — B be a good Fano fibration. An in-
tersection profile \ consists of a choice of one generically smooth and
geometrically integral irreducible component in each fiber of 7. The
(finite) set of all intersection profiles is denoted by A.

Alternatively, we can identify an intersection profile with the affine
subspace of N;(X') that consists of classes a which have intersection
1 against the irreducible component in each fiber identified by A and
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intersection 0 against all other components. Henceforth we will not
distinguish between these two different ways of thinking about inter-
section profiles.

The following definition summarizes the above discussion by identi-
fying the possible classes of nef sections.

Definition 4.7. We define Sy, to be the convex hull of the set of nef
Z-classes which have intersection 1 against a general fiber F' of 7.

For each intersection profile A, we let Sy denote the convex hull of the
set of nef Z-classes lying in the affine subspace of N;(X') corresponding
to A

Remark 4.8. We emphasize that S, can be strictly contained in the
set of nef R-curve classes which have intersection profile .

Note that Sy 7z is preserved by adding nef curve classes in V7. In
particular, Lemma 4.4 shows that S, 7 naturally carries the structure of
a module over the monoid Nef,.,; 7. The following conjecture predicts
that this module structure essentially controls S .

Conjecture 4.9 (char 0: | , Corollary 5.8]). Let 7 : X — B be
a good Fano fibration. For each intersection profile A, S, is a rational
polyhedral convex set whose recession cone is Nef;(&})).

One consequence of this conjecture is that Sy 7z is “sandwiched” be-
tween two translates of Nef,.;z. In other words, any sum indexed
over Sy z will only differ from a similar sum indexed over Nef,,.; 7 by
an asymptotically negligible amount.

4.2. Exceptional set. It is well-known that in Manin’s conjecture one
must remove an “exceptional set” to obtain the correct count. | ]
and | | predict that the exceptional set comes from certain types
of maps f: )Y — X.

Definition 4.10. Let 7 : X — B be a good Fano fibration. Suppose
that Y is a smooth projective B-scheme such that ), is geometrically
integral. A thin B-morphism f : Y — X is an exceptional map if either
e f is non-dominant and a(Y,, —f*Kx/sly,) > 1
e fis dominant and a(Y,, — f*Kx/gly,) > 1;
e fis an a-cover and x(—f*Kx,ply, + Ky,) > 0;
e fis an a-cover with x(—f*Kx/ply, + Ky,) = 0 and is geomet-
rically non-Galois, or;
e fis an a-cover with x(—f*Kx/gly, + Ky,) = 0, geometrically
Galois, and face-contracting.



GEOMETRIC MANIN’S CONJECTURE 15

Remark 4.11. We expect that certain pathologies of Sec(X /B) —such
as the existence of infinitely many irreducible components of Sec(X/B)
with too large dimension — should be accounted for by exceptional
maps, in the sense that such irreducible components should be the im-
ages of sections on some ). See [ , Theorem 1.3] for a statement
of this type over C.

Definition 4.12. Let 7 : X — B be a good Fano fibration.

For a numerical class @ € Sy/p, an irreducible component M of
Sec(X /B, «) is an ezceptional component if there is an exceptional map
f:Y — X and a component N of Sec()/B) such that f induces a

dominant map
fe: N — M.

A component M is a Manin component if it is not exceptional.

4.3. Manin components. The final step is to understand the struc-
ture of the set of Manin components M,. The key task facing us to
identify precisely which classes in Sy, represent Manin components
and how many Manin components there are in each numerical class.

First of all we expect that Manin components parametrize free sec-
tions.

Conjecture 4.13 (char 0: | , Geometric Manin’s conjecture 3]).
Let 7 : X — B be a good Fano fibration. For each intersection profile A,
there is an ay € Sy 7z such that every Manin component M, representing
a class a € ag + Nef .,y z will generically parametrize free sections.

The following conjecture allows us to count the number of Manin
components.

Conjecture 4.14 (char 0: | , Geometric Manin’s conjecture 4]).
Let m: X — B be a good Fano fibration. For each intersection profile
A, there is an oy € Syz such that every algebraic equivalence class of
curves contained in o + Nef,,¢ 7z is represented by exactly one Manin
component.

We emphasize that it is algebraic and not numerical equivalence that
appears in Conjecture 4.14. (See [ ] for an example demonstrating
the difference.) Currently the best known results which relate algebraic
equivalence and the existence of families of curves are due to | ]
and | |. Extending these results to solve Conjecture 4.14 is an
important but challenging problem.



16 BRIAN LEHMANN AND SHO TANIMOTO

Remark 4.15. To identify the number of Manin components in a given
numerical equivalence class of curves, one must understand the differ-
ence between algebraic and numerical equivalence for curves. Over
C, conjecturally there are |Br(X')| algebraic equivalence classes rep-
resenting each numerical equivalence class. Indeed, this would be a
consequence of triviality of the Griffiths group and the integral Hodge
conjecture for Fano fibrations as developed by | | and others.

Remark 4.16. The main geometric structure carried by spaces of sec-
tions is the breaking-and-gluing structure. That is, using Bend-and-
Break one can break off m-vertical rational curves from any section
that has sufficiently many deformations. Conversely, starting from any
section one can obtain a new section by gluing on sufficiently many
m-vertical free rational curves and smoothing.

In practice, the validity of Conjecture 4.14 depends on whether the
general fibers of m admit sufficiently many very free rational curves.
This is one reason we have restricted our attention to fibrations whose
generic fiber is globally F-regular.

5. MANIN’S CONJECTURE OVER GLOBAL FUNCTION FIELDS

In this section, we state two versions of Manin’s conjecture over
global function fields. The first version is the standard one based on
ideas of [FMTS0], [BMO0], [Pey05], [BT98a], [Pey03], [LST22], and
[ ] in characteristic 0. The second version is based on the language
of Manin components and the all-height-approach of Peyre | ].

5.1. The standard formulation. Let us describe the set up: let
k = F, be a finite field and let B be a smooth geometrically inte-
gral projective curve defined over k with function field K(B). Let
m: X — B be a good Fano fibration. We are interested in counting
rational points of the set

X, (K(B)).

To this end, we discuss how to define the correct counting function for
this set. First, unlike over number fields, the height function only takes
the values of ¢" where n is an integer. For this reason it is necessary
to consider the following definitions:

Definition 5.1. We define the minimal degree by
m(n) := min{—Kx,5.C'| [C] € Sec(X/B)(k)}.
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By the Northcott property as in | , Lemma 2.6] and | , Lemma
2.2], this minimum is well-defined. Next we define the index by
r(m) == min{—Kxy/p.a|a € N1(X)z, Xp.a =0, —Kx/p.a > 0}.
Note that for any section [C] € Sec(X'/B)(k), we have
—Kx/p.C =m(r) +r(n)d,

for some non-negative integer d > 0.
Next we fix an intersection profile A\. We define the minimal degree
with respect to A by

m(m,\) 1=
min{—Ky/5.C' | [C] € Sec(X/B)(k), the intersection profile of C'is A}.
Next we define the intersection profile index by

r(m)" = min{—-Kx/p.ac| @ € N1(X,;) " N1(X)z, —Kx/p.cc > 0}.

Note r(7)" does not depend on A. For any section [C] € Sec(X/B)(k)
with intersection profile A, we have

_KX/B-C = m(ﬂ', )\) + T'(ﬂ')/d,
for some non-negative integer d > 0. It is clear from the definition that
we have r(m)|r(r)".
We introduce the following definition to specify the exceptional set:

Definition 5.2 (| 1, 1 , Definition 4.7]). Let f : ), = X,

be a thin map from a geometrically integral smooth projective variety

over K(B). We say f is a breaking thin map if either there is a strict
inequality

(a(XTH _KXn)> b(K(B)v Xﬂa _K/\’n>> < (a(yﬁa _f*KXn)a b<K<B)7 ym _f*KXn))
in the lexicographic order or if equality holds and f is an exceptional

map.

Inspired by | |, we define the exceptional set to be
Z:=|Jr(K(B))) C X,(K(B)) = Sec(X/B)(k)
f

where f runs over all breaking thin maps. The following conjecture
has been proved in | , Theorem 5.7] in characteristic 0:

Conjecture 5.3. The exceptional set Z C &, (K (B)) is a thin subset
of X,(K(B)).



18 BRIAN LEHMANN AND SHO TANIMOTO

With these definitions, we can set up the counting function whose
asymptotic behavior we are hoping to understand:

Definition 5.4. The standard counting function assigns to any non-
negative integer d the quantity

Nitan(m, d) := #{[C] € (Sec(X/B)(k)\Z) | —Kx/p.C < m(m)+r(m)d}.

Now our goal is to describe the prediction of the asymptotic formula
for this counting function as d — oo. First, we introduce the alpha
constant and beta constant:

Definition 5.5. Let 7 : X — B be a good Fano fibration. To the
vector space of real 1-cycles N;(A&,) we assign the Lebesgue measure
such that the fundamental domain of the lattice N; (&}, )NV7 has volume
equal to 1. Let C C Nef;(&,) C N;(&,) be a closed cone. We define
the alpha constant of C as

a(X,,C) = (dim N;(&,)) .vol({a € C| — Ky/p.a < 1}).
When C = Nef;(&),)), we write a(X;, C) = a(X}).

Definition 5.6. Let 7 : X — B be a good Fano fibration. The beta
constant is

p(X,) = #(Br(X,)/Br(K(B))).

A natural question is whether the beta constant is finite under the as-
sumption that &, is smooth Fano and geometrically globally F-regular.
The following proposition is an affirmative answer to this question:

Proposition 5.7. Let m : X — B be a good Fano fibration. Then
B(X,) is finite.

Proof. We address the algebraic and transcendental contributions to
B(X,) separately. We first claim that Pic(Xj,):) is torsion-free. By
[ , Corollary 5.1.3], we have Pic(&Xj,s) = Pic(X;) and so it suf-
fices to show that Pic(AF) is torsion free. Suppose that D is a divisor
on A5 that is numerically trivial. By Grothendieck-Riemann-Roch and
Corollary 2.10 x(Ox, (D)) = x(Ox,) = 1. By Theorem 2.9 we see that
H°(X;,Ox (D)) = 1. Thus D ~ 0.

Because of the torsion-freeness, [ , Chapter VII, Proposition 4]
and | , Chapter VIII, Corollary 2] show that H' (K (B), Pic(Xy(,):))
is finite. Since &, has a rational point, the Hochschild-Serre spectral
sequence

0 — Br(K(B)) — Bri(&,) - H'(K(B), Pic(&Xyapys)) — 0
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implies the finiteness of Br;(X,,)/Br(K(B)).

To prove that 5(X),) is finite, by | , Theorem 5.2.5(ii)] it suffices
to prove the finiteness of the geometric Brauer group Br(A%). Since a
smooth Fano variety over an algebraically closed field is rationally chain
connected, an argument of Starr as explained in | , Proposition 4.2]
shows that there is some integer N that uniformly bounds the order
of any element of Br(A5). | , Corollary 5.2.8] shows that the the
prime to p part of Br(A%) is finite. For the p-primary part, it follows
from | , Appendix Theorem A.1] that we have an isomorphism

Br(Xg){p} = (Q,/Z,)" & H3(Xﬁ, Zp(1)){p},
where M{p} denotes the p-primary part of a group M. Since Br(&5){p}
is annihilated by some power of p, n has to be zero. Then

H* (X, Z,(1)){p},
can be interpreted as the extension of a finite group by the group of
K (B)-points on a connected unipotent group U (see e.g. | , Cor.
2.7 (a)]). Since the Picard scheme is smooth, | , Proposition
3.4] shows that the formal Brauer group of A% is representable and the

dimension of the tangent space is h*(Xg, Ox,). Then | , Equation
(19)] shows that

h* (X, O,) > dim U.
Since we have h*(Xy, Ox,) = 0, U is 0. Thus our assertion follows. [

The main ingredient of the leading constant of the asymptotic for-
mula is the Tamagawa number which was first introduced by Peyre
[ | for the anticanonical divisor and Batyrev—Tschinkel | ]
for arbitrary big divisors. A modern account is | ], and we closely
follow its exposition. First we need to introduce the local Tamagawa
measures:

Definition 5.8. Let 7 : X — B be a good Fano fibration. Let b € |B)|
be a closed point and denote the completion of K(B) with respect to
b by K(B)s. Let w be a top degree rational differential form on Xy (p),
and div(w) be its corresponding divisor. Let € be the flat closure of
div(w) in m, : &,, — Speco, where o0, is the ring of integers for the
local field K (B), and m, is the base change of m. We define the local
function
ol + (X \ Supp(2)(K (B)s) — R,
that assigns to any x € (X \ Supp(Q2))(K(B),) the quantity

—up(a*Q
lw]|(2) = g, ",
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where o : Speco, — &, is the corresponding jet, v, is the discrete
valuation of 0, and g, is the size of the residue field.

Now w induces a Radon measure |w| on X' (K (B);) and we define the
local Tamagawa measure by

Sl
T lwll”

Note that this definition does not depend on the choice of w and it only
depends on our model 7, : X,, — Spec 0.

Next, we introduce the local convergence factors:

Definition 5.9. Let 7 : X — B be a good Fano fibration. Let ¥ C |B)|
be a finite set such that 7 is smooth outside of ¥. We define the local
convergence factor X\, for b € |B| by

y, = { det(l— g ‘Frop)™' ifbe B\Y
b 1 ifbey

where (D) is the residue field at b and Fr,) is the geometric Frobenius
acting on Pic(X ;) ® Q. We also define

Ly .(1,Pic(A) © Q) ==
tlirfl(l — t)p(X") H det(1 — qb_ltlb| . Frﬁ(b))_l,
be|B\X|

where |b| = [k(b) : k]. This limit exists as a positive real number. We
define the Tamagawa measure 7o on the adelic space

X)(Axm) = [ XK
be|B]
by
Pyp— o _1
v = Ly (1, Pic(Xy) @ Q) [ Ay e
be|B]|

Since we have h'(X,,Ox,) = 0 for i = 1,2, using the Weil estimates
[ , Section 2| proves that this measure is well-defined as a Borel
measure and that 7x (X (Ag(p))) is a finite positive real number as soon
as X(Ag(p)) is non-empty.

Finally we define the Tamagawa number tx(—Kyx,) by

(=K, ) i= g n1-9(3) / dry.

X (A (p))Bri¥n)
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where n = dim X,,. Note that by Proposition 5.7, the set
Br(&,)/Br(K(B)),
is a finite set, so the Brauer—-Manin set
Xy (Ak(p) ™ C X, (Akp)),
is an open and closed set on the adelic space. Colliot-Thélene’s conjec-
ture predicts that
X,(K(B)) C Xy (Ag(m)> ™,

is dense so that the above integral is expected to be an integration over

A, (K(B)).

Finally we state a provisional version of Manin’s conjecture over
global function fields:

Provisional Conjecture 5.10 (Standard Manin’s conjecture over
global function fields). Let 7 : X — B be a good Fano fibration.
Suppose that &, (K (B)) is not thin. Then

Nygan(7,) ~ (147 ) 2) 8, )r () (Ko, )7 () ),
as d — oo with d € Z.

Remark 5.11. We expect that when
r(m) =r(r), (5.1)

is true, Provisional Conjecture 5.10 holds. Note that (5.1) is satisfied
when every fiber of 7 is integral. However, when (5.1) fails, the asymp-
totic formula may have some periodicity observed by | , Example
1.1.4] in the context of Malle’s conjecture. | | suggests that we
might need some averaging over degrees. This is the main reason why
Conjecture 5.10 is provisional.

5.2. All height approach. It is also natural to consider the following
modification of our counting problem. For each algebraic curve class
a € Sy/p consider the quantity

#Mo (k)

—Kyx/p-atn(l—g(B))

q
where M, denotes a Manin component associated to a. We would like
to have an asymptotic formula describing the limit of this quantity as
— Ky p.a goes to oco. As before, it is important to exclude some loci
of M, since such loci can affect the leading constant. To this end, we
would like to propose the following definition:
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Definition 5.12. A thin set Z C X,(K(B)) is properly constructible
if there are finitely many finite thin B-maps f; : J; — X from geomet-
rically integral projective B-varieties ); — B such that

7= U fi(Vin(K(B))).

We conjecture the following:

Conjecture 5.13. The exceptional set Z C &, (K(B)) is a properly
constructible thin set.

We should note that this conjecture is still open even in characteristic
0. Using this property, one can construct an open subscheme M, C M,
by removing the exceptional set:

Proposition 5.14. Let f; : V; — X be finitely many finite thin B-
maps. For any extension k'/k, let Ziy C X, (K(B)®yk') = Sec(X/B)(k')
be the properly constructible thin set defined by f;’s. Then for any
irreducible component M C Sec(X/B), there ezists a unique open sub-
scheme M° C M such that for any extension k' /k we have

MO(K) = M(K)\ Z.

Proof. We may assume that k is algebraically closed. Then our claim
follows from the fact that for any finite B-morphism f : )Y — X, the
induced map
fe: Mg(3)0(Y) = M) 0(X)

is proper. Note that since f is finite, for any stable map that is nu-
merically equivalent to a section its composition with f is still a stable
map. This means f, maps a stable map with reducible domain to a
stable map with reducible domain. Thus our assertion follows. 0

We next set up the counting problem. Let 7 : X — B be a good
Fano fibration. Let
Z C Sec(X/B)(k),
be the exceptional set. By Conjecture 5.13, Z is defined by finitely
many finite thin B-maps {f;}. Let A be an intersection profile. Recall
that S, denotes the set of real nef classes of section type which are

compatible with the intersection profile A\. We fix a rational max norm
on Nl(X)

Definition 5.15. We let £, : Sy — R>( denote the rational piecewise
linear function that measures the distance to the relative boundary of

Sa.
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Let o be an algebraic class of a section such that its numerical class
is contained in S). We assume /,(«) is sufficiently large so that by
Conjecture 4.14, there exists a unique Manin component M,. Let
M: C M, be the open subscheme induced by f;’s. With these setups,
we have the following conjecture. There are very similar conjectures
proposed by David Bourqui (see | , Question 1.10] and | ,
Definition 2.2]) and Emmanuel Peyre (see [ , Question 6.27)):

Conjecture 5.16 (All height approach version of Manin’s conjecture).
There exists constants ¢(X', A) > 0 and § > 0 such that we have

#M°(k) = (X, /\)Q—KX/B-aJrn(l—g(B)) + O(q_KX/B-O‘_‘%A(O‘))’
as (\(a) — oo. Here n = dim X,.

Moreover, one can provide a precise prediction for the value of ¢(X, A).
Let m : X — B be a good Fano fibration. Let 3, C |B| be the set
of closed points b € |B| such that the fiber A, — Specr(b) is not
smooth. We denote the smooth locus of this fiber by A;™. Since for
any B-morphism o : Spec K(B), — X, its specialization ¢(b) lands in
A (k(b)), we have the following continuous map:

@ X (Ars) ™ [ (KB — [] 4" (5(0)

be|B| beX

For an intersection profile A and b € ¥, let A} be the component of
X;™ specified by the intersection profile A. Then we define

Xo(Aw)y = 7! (H AR (s )
bez‘n

which is an open and closed subset of X, (Akp)) because of Proposi-
tion 5.7. Here is a conjectural description of ¢(X, \):

Conjecture 5.17. In Conjecture 5.16, we have

c(X,\) = —B(Xn) dr
; — B N Br(Xy) X
n(Ar(B))x

where B is the number of algebraic equivalence classes representing one
single numerical class. It is natural to wonder whether B is equal to

#Br(X).
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5.3. Relationship between conjectures. Finally we give a heuristic
argument explaining how the all height approach (when combined with
earlier conjectures) implies a version of Provisional Conjecture 5.10.

Assumption 5.18. In this subsection we assume the validity of Con-
jectures 4.9, 4.13, .14, 5.16, and 5.17. We also assume that (5.1)
holds to avoid some lattice issues.

Consider the following counting function:

NMamn , d Z Z Z#MO

OéES/\ 7
—Kx/B- a<m(7r)+dr(7r)

where A runs over all intersection profiles and M, runs over all Manin
components associated to a numerical class av. Note that Nypapin (7, d) <
Nstan (7, d), but they need not agree when there are exceptional compo-
nents that do not come from breaking thin maps. We expect that the
difference between Nyian (7, d) and Nypanin (7, d) is asymptotically negli-
gible, but do not have a rigorous proof. Here we focus on Nypanin (7, d).

Let € > 0 be a sufficiently small rational number. Then we define
the following shrunken set:

Sxae:i={a € Sy|l(a) > —eKy/p.a}.

In the view of Conjecture 4.9, this is a rational polyhedral convex set
with the recession cone Nef;(&,). C Nef;(&;). By Conjecture 4.14,
there exists oy € Sy z, such that for any o € o + Nefye 7z, there is a
unique Manin component for any algebraic class whose numerical class
is . We denote those Manin components by M, ; for i = 1,---  B.
Now note that when —Ky,p.a is sufficiently large, any class in Sy
is contained in ag + Nefyez. To compute the asymptotic behavior,
we may assume that every class « in S .z is represented by B Manin
components.
Let us consider the counting function for classes in Sy ¢ z:

SR SR

OzGS)\@’Z
—Kx/p.a<m(m)+dr(m)
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By Conjectures 5.16 and 5.17, this is equal to

2.

a€Sy 7
—Kxg.a<m(m)+dr(m)

(ﬁ(.)() (X (AK )Br Xn)>q Kx/p.a+n(1—g(B)) +O( (1-66)Kx/p. a)) .
Then using the counting arguments of | , Proposition 4.3] (com-

bined with Conjecture 4.9 and the argument of | , Theorem 5.7]),
the asymptotic formula for the sum is given by

(1=~ ) ™ (X, Nefy (X)) B( ) ()7 (X () x4 (dr () )P,

as d — oo with d € Z. Hence after taking the summation over A\, we
obtain

(1= ¢7"™) " a( Xy, Nef1 (X)) B(X, )r(m) o (K, )a" ™ () )P0~
To finish the argument, we introduce one more conjecture:

Conjecture 5.19. There exists uniform constants B’ and C such that
for any a € Sy 7z, the number of Manin components of the class « is
bounded by B’ and for such a Manin component M,, we have

#M2 (k) < CqKx/patni=g(B))

Since Sy.z C Syz and the difference is controlled by the region
Nef; (&) \Nef; (&), we have

(1= ¢ (X, Nefy (X,)) B(X,)r(m) 2 (—Kx, )
NManin(ﬂ—yd)
= hégg}lf q" ™ (dr(7))P(Xn) -1
]\/YManm(’/-r d)
: hf{f“p A (dr ()01
< (1= ¢ ™) (X, Nefy (X)) (X)) (m) T (—K )
+ (1 — q*T(7T )" 'CB'a(X,), Nef,(X,) \ Nefy(&,)))r ().

As € — 0, we conclude

. NManin <7T7 d)
lim
a0 @ (dr (7)) P 1

=(1- q_r(“))_1a(Xn),8(Xn)7"(7r)TX(—ICXn).
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6. EXAMPLES

Finally, we discuss a few examples where (weaker forms of) the con-
jectures of the previous sections have been verified. We do not attempt
to give a complete account of the literature, instead focusing on a few
notable examples.

6.1. Toric varieties. Manin’s conjecture for smooth projective toric
varieties over F,(¢) has been settled by David Bourqui in | | and
[ |. The first paper used the method of universal torsors de-
veloped by Salberger | ] over number fields and the second paper
used harmonic analysis on tori following ideas of Batyrev—Tschinkel in
[ | and | |. Indeed, using these methods, Bourqui obtained
an analytic continuation of the height zeta function. Then Conjec-
ture 5.10 follows from the Tauberian theorem as in | , Corollary
A.13]. Bourqui also proves the all height version of Manin’s Conjecture
in | , Section 2.9].

Bourqui’s pioneering work has been quite influential. In fact | ]
proved a motivic version of Manin’s Conjecture for toric varieties; his
work has been revisited in | | and [ ].

6.2. Low degree hypersurfaces. Manin’s conjecture over global func-
tion fields has been proved for low degree hypersurfaces in P” with p be-

ing greater than the degree using the Hardy—Littlewood circle method

which is a technique from analytic number theory. See | Nl 1,

[ ], [ ], and | | for more details.

6.3. Homological sieve method. Let k = F, be a finite field and
S be a split smooth del Pezzo surface of degree d < 7 defined over k.
Here split means that we have p(S) = p(S%). | | and | ]
studied Manin’s conjecture for the trivial family 7 : S x P! — P!. This
is based on the homological sieve method developed in | |. Let
us state the main result of | |: we assume that d = 4. Let ¢ be
non-negative, rational, homogeneous, continuous, and piecewise linear
function on the nef cone Nef;(S). Let € > 0 be a sufficiently small
rational number. Then we define the shrunken nef cone by

Nef;(S)e := {a € Nefy(9) | l(a) > —eKgs.a}.
We define the counting function by

Nyan.e(m, d) := > #Mor(P, S, a)(k),

a€Nef1(S)e,z,—Ks.a<d
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where Mor(P!, S, «) is the morphism scheme parametrizing morphisms
s : P! — S such that s,[P'] = «. Here is the main theorem of
[ Ik

Theorem 6.1 (] , Theorem 1.1)). Fiz a sufficiently small ra-
tional number ¢ > 0. Let q be a power of a prime number such that
q¢ > 232, Let S be a split smooth quartic del Pezzo surface defined over
F,. Then there exists a non-negative, rational, homogeneous, continu-
ous, and piecewise linear function ¢ on Nefy(S) which does not depend

on € and q and takes positive values on a dense open cone U C Nef;(S)
such that

Nstan,5<7ra d) ~ (1 - q_l)_la(sv Nefl (S)e)TSXPl(_’C){7,)qdd5a
as d — oo.

The method of the proof, developed by Das, Tosteson, and the au-
thors, is called the homological sieve method. Its ingredients are the
following:

e algebraic geometry (birational geometry of moduli spaces of
rational curves on smooth quartic del Pezzo surfaces);

e arithmetic geometry (simplicial schemes, their homotopy theory
and Grothendieck—Lefschetz trace formula);

e algebraic topology (the inclusion—exclusion principle and the
Vassiliev type method of bar complexes), and;

e clementary analytic number theory.

To our knowledge, this is the first time that such a geometric and
topological method was used to establish Manin’s conjecture over global
function fields for highly non-trivial examples. Moreover, the second
author applied this method to study split del Pezzo surfaces of degree
> 5in | ]. Readers interested in this method should consult

[ J

Remark 6.2. Over C, the Cohen—Jones—Segal conjecture predicts that
the homology of the irreducible components M, C Mor(B, X) stabi-
lizes to the homology of the space of continuous maps Top(B, X),
as « increases. | ] also proved a version of the Cohen—Jones—
Segal conjecture for quartic del Pezzo surfaces over C using similar
techniques. This is based on the method of the bar complexes devel-
oped by Das—Tosteson in | ] which settles the Cohen—Jones—Segal
conjecture for quintic del Pezzo surfaces. An upcoming paper of Das,
Tosteson, and the authors gives a general description of the relationship
between Manin’s conjecture and the Cohen—Jones—Segal conjecture.
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